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framework of weakly attracting sets. We discuss explicit implementation of this prin-
ciple in neural systems and show that it naturally explains a range of phenomena in
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time scales in adaptation. We illustrate our results with an application to a realistic
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Invariant template matching in systems with
spatiotemporal coding: a matter of instability

Abstract

We consider the design principles of algorithms that match templates to images sub-
ject to spatiotemporal encoding. Both templates and images are encoded as temporal
sequences of samplings from spatial patterns. Matching is required to be tolerant to
various combinations of image perturbations. These include ones that can be modeled
as parameterized uncertainties such as image blur, luminance, and, as special cases, in-
variant transformation groups such as translation and rotations, as well as un-modeled
uncertainties (noise). For a system to deal with such perturbations in an efficient way,
they are to be handled through a minimal number of channels and by simple adapta-
tion mechanisms. These normative requirements can be met within the mathematical
framework of weakly attracting sets. We discuss explicit implementation of this prin-
ciple in neural systems and show that it naturally explains a range of phenomena in
biological vision, such as mental rotation, visual search, and the presence of multiple
time scales in adaptation. We illustrate our results with an application to a realistic
pattern recognition problem.

1 Notational preliminaries

We define an image as a mapping S0(x, y) from a class of locally bounded mappings S ⊆
L∞(Ωx × Ωy), where Ωx ⊆ R, Ωy ⊆ R, and L∞(Ωx × Ωy) is the space of all functions

f : Ωx × Ωy → R such that ‖f‖∞ = ess sup{‖f(x, y)‖, x ∈ Ωx, y ∈ Ωy} < ∞. Symbols x, y

denote variables on different spatial axes. The value of S0(x, y) depends on the domain of

interest (e.g. brightness, contrast, color, etc.). Our interpretation of images as functions from

L∞(Ωx×Ωy) is motivated mostly by the fact that in the domain of vision the characteristic

values are usually bounded. We will treat them as such unless information to the contrary

is available.

We assume that within a system an image is represented as a set of pre-specified tem-

plates, Si(x, y) ∈ S, i ∈ I ⊂ N, where I is the set of indices of all templates associated with

the image S0(x, y) ∈ S. Symbol I+ is reserved for I+ = I ∪ 0.

The solution of a system of differential equations ẋ = f(x, t, θ,u(t)), u : R≥0 → Rm,

θ ∈ Rd passing through point x0 at t = t0 will be denoted for t ≥ t0 as x(t,x0, t0, θ,u),

or simply as x(t) if it is clear from the context what the values of x0, θ are and how the

function u(t) is defined.

By Ln
∞[t0, T ], t0 ≥ 0, T ≥ t0 we denote the space of all functions f : R≥0 → Rn such

that ‖f‖∞,[t0,T ] = ess sup{‖f(t)‖, t ∈ [t0, T ]} < ∞; ‖f‖∞,[t0,T ] stands for the Ln
∞[t0, T ] norm

of f(t).
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Let A be a set in Rn and ‖ · ‖ be the usual Euclidean norm in Rn. By the symbol ‖·‖A
we denote the following induced norm:

‖x‖A = inf
q∈A

{‖x− q‖}

In case x is a scalar and ∆ ∈ R>0, notation ‖x‖∆ stands for the following

‖x‖∆ =

{ |x| −∆, |x| > ∆
0, |x| ≤ ∆

2 Introduction

This article deals with the challenges and opportunities that spatiotemporal representation

of visual information offers for visual pattern recognition. We will consider spatiotemporal

pattern representation in the framework of template matching, the oldest and most common

method for detecting an object in an image. According to this method the image is searched

for items that match a template. A template consists of one or more local arrays of values

representing the object, e.g. intensity, color, or texture. A similarity value1 is calculated

between these templates and domains of the image, and a domain is associated with the

template once their similarity exceeds a given threshold.

Despite the simple and straightforward character of this method, its implementation

requires us to consider two fundamental problems. The first relates to what features should

be compared between the image S0(x, y) and the template Si(x, y), i ∈ I. The second

problem is how this comparison should be done.

The normative answer to the question of what features should be compared invokes solv-

ing the issue of optimal image representation, ensuring most effective utilization of available

resources and, at the same time, minimal vulnerability to uncertainties. Principled solu-

tions to this problem are well-known from the literature and can be characterized as spatial

sampling. For example, when the resource is frequency bandwidth of a single measurement

mechanism, the optimality of spatially sampled representations is proven in Gabor’s seminal

work (Gabor, 1946)2. In classification problems, the advantage of spatially sampled image

representations is demonstrated in (Ullman et al., 2002). In general, these representations are

1Traditionally a correlation measure is commonly used for this purpose (Jain et al., 2000).
2Consider, for instance, a system which measures image Si(x, y) using a set of sensors {m1, . . . , mn}.

Each sensor mi is capable of measuring signals within the given frequency band ∆i at the location xi in
corresponding spatial dimension x. Then according to (Gabor, 1946), sensor mi can measure both the
frequency content of a signal and its spatial location with minimal uncertainty only if the signal has a
Gaussian envelope in x: Si(x, y) ∼ eσ−2

i (x−xi)
2
. In other words, the signal should be practically spatially

bounded. This implies that the image must be spatially sampled.
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Figure 1: Spatial sampling of image S(x, y) : Ωx × Ωy → R+ according to the factorization
of Ωx × Ωy into subsets Ωx,t1 × Ωy,t1 , Ωx,t2 × Ωy,t2 , Ωx,t3 × Ωy,t3

obtained naturally when balancing the system resources and uncertainties in the measured

signal. A simple argument supporting this claim is provided in Appendix 1.

A variety of sophisticated spatial sampling methods exists (Gabor, 1946; Blake et al.,

1994; Bueso et al., 1999; Lee & Yuille, 2006). Here we limit ourselves to spatial sampling in

its elementary form, which is achieved by factorizing both the domain Ωx×Ωy of the image

S0 and the templates Si, i ∈ I into subsets:

Ωx × Ωy =
⋃
t

Ωx,t × Ωy,t, t ∈ Ωt, Ωx,t ⊆ Ωx, Ωy,t ⊆ Ωy. (1)

Factorization (1) induces sequences {Si,t}, where Si,t are the restrictions of mappings Si to

the domains Ωx,t × Ωy,t. These sequences constitute sampled representations of Si, i ∈ I+

(see Figure 1). Notice that the sampled image and template representations {Si,t} are,

strictly speaking, sequences of functions. In order to compare them, scalar values f(Si,t)

are normally assigned to each Si,t. Examples include various functional norms, correlation

functions, spectral characterizations (average frequency or phase), or simply weighted sums

of the values of Si,t over the entire domain Ωx,t × Ωy,t. Formally, f could be defined as a

functional, which maps restrictions Si,t into the field of real numbers:

f : L∞(Ωx,t × Ωy,t) → R (2)

This formulation allows a simple representation of images and templates as sequences of

scalar values {f(Si,t)}, i ∈ I+, t ∈ Ωt. We will therefore adopt this method here.
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The answer to the second question, how the comparison is done, involves finding the

best and simplest way possible to utilize the information that a given image representation

provides, while at the same time ensuring invariance to basic distortions. Even though

considerable attention has been given to this problem, a unified solution is not yet available.

The primary goal of our current contribution is to present a unified framework to solve this

problem for a class of systems of sufficiently broad theoretical and practical relevance.

We consider the class of systems in which spatially sampled image representations are

encoded as temporal sequences. In other words, parameter t in the notation f(Si,t) is the time

variable. This type of representation is frequently encountered in neuronal networks (Gutig &

Sompolinsky, 2006) (see also references therein). Examples of similar representation schemes

are widely reported in the neuroscience literature. For example (Alonso et al., 1996) show

that patches of visual stimuli which are perceived as spatially close by the processing system

(e.g. when the receptive fields of individual cells overlap) are encoded by similar firing spike

patterns and vice versa. In our model spatially non-overlapping patches are represented by

different sequences {f(Si,t)}, and identical images have identical temporal representations.

Hence such systems have a claim to biological plausibility. In addition, they enable a simple

solution to a well-known dilemma. This is about whether comparison between templates

and image domains should be made on a large, i.e. global, or on a small, i.e. local scale.

The solution to this dilemma consists in temporal integration. Let, for instance, Ωt = [0, T ],

T ∈ R>0. Then an example of a temporally-integral, yet spatially sampled, representation

is:

f(Si,t) 7→ φi(t) =

∫ t

0

f(Si,τ )dτ, t ∈ [0, T ], i ∈ I+ (3)

The temporal integral φi(t) contains both spatially local and global image characterizations.

Whereas its time-derivative at t equals to f(Si,t) and corresponds to spatially sampled, local

representation Si,t, the global representation φi(T ) equals to the integral, cumulative charac-

terization of Si. An example illustrating these properties is provided in Figure 2. A further

advantage of spatiotemporal representations φi(t) is that they offer powerful mechanisms for

comparison, processing and matching of φi(t), i ∈ I. These mechanisms can generally be

characterized in terms of dynamic oscillator networks which synchronize when their inputs

are converging to the same function.

Despite advantages such as optimality, simplicity and biological plausibility, there are

theoretical issues which have prevented wide application of spatiotemporal representations

to template matching. The most important issues, from our point of view, are, first, how

to achieve effective recognition in the presence of modeled disturbances, of which the most
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Figure 2: Spatiotemporal image representation via spatial sampling and temporal integra-
tion. Panel a contains the original object, S0; (x, y) marks a point on the image with respect
to which the correlation is calculated; factorization of the domain Ωx×Ωy into ten arbitrary,
here chosen to be nonintersecting, subsets Ωx × Ωy = ∪10

j=1Ωx,tj × Ωy,tj . Panel b – templates
S1, S2 and plots of ftj(S1,tj)(x, y), ftj(S2,tj)(x, y) – the values of the normalized correlation
between Si,tj = Si(Ωx,tj × Ωy,tj) and S0(Ωx,tj × Ωy,tj). Panel c – plots of the values of (3) as
a function of parameter t for templates S1 (blue line) and S2 (red line).

common ones are blur, luminance, and rotational and translational distortions. Second, how

to take into account inevitable unmodeled perturbations.

The first class of problems amounts to finding a possible transformation of the template

that can model the disturbance. Similarly to the framework of deformable templates (Amit,

2002; Amit, Grenader, & Piccioni, 1991) we assume a disturbance model to be a mapping

which maps the template, Si, into the image, S0. Unlike in traditional deformable templates

approaches (Miller & Younes, 2001) we do not wish to assume, however, that this mapping is

invertible or forms a group action. This is because we would like to enable multiple solutions

to the matching problem, as is appropriate in case of biological vision. Furthermore, even

when a transformation is invertible the inverse operation could be highly susceptible to small

image noise which, for instance, is the case for integration/differentiation operations. Finally,

for the sake of computational effectiveness we would like to refrain from posing the matching

problem as an optimization problem in the space of functions (transformations).

For these reasons we will consider modeled disturbances as known, yet nonlinearly pa-

rameterized mappings. Parameters of these mappings, however, are allowed to be uncertain.

This enables us to consider non-invertible and generally nonlinear image transformations
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such as blur. Standard group actions, such as rotation, translation, or scaling can be treated

as special cases of such transformations. Finding a suitable transformation of the template

amounts to designing a dynamic identification/adaptation algorithm with proven efficiency

in reconstructing parameters of generally nonlinear perturbations. The latter is an optimiza-

tion problem in finite (low) dimensional space as compared to optimization in the infinite-

dimensional space of functions. Currently available approaches to designing such algorithms

either are restricted to linear parametrization of disturbances, involve overparametrization,

or use domination feedback. Yet, linear parametrization is too restricted to be plausible,

overparametrization is expensive in terms of the number of adjustable units, and domina-

tion lacks adequate sensitivity. For these reasons current methods remain unsatisfactory.

We will, therefore, propose a novel solution to these problems.

The second class of problems, recognition in presence of unmodeled perturbations, calls

for procedures for recognizing an image from its perturbed temporal representation φi(t). At

this level the system is facing the contradictory requirements of ensuring robust performance

while being highly sensitive to minor changes in the stimulation. Here, too, we will advocate

a solution.

The proposed solution to both types of problem diverges from current approaches, which

invoke the concept of Lyapunov-stable attractors. We concur that by allowing the system

to converge on an attractor, these methods are able to eliminate modeled and unmodeled

distortions and thus, for instance, complete an incomplete pattern in the input (Amit et al.,

1985; Fuchs & Haken, 1988; Herz et al., 1989; Hopfield, 1982; Ritter & Kohonen, 1989). The

strength of these systems resides in the robustness inherent in uniform asymptotic Lyapunov

stability. There is, however, a corresponding weakness: such systems are generally lacking

in flexibility. Each stable attractor in the system represents one pattern; but often an image

contains more than one pattern. When the system is steered to one template, the other is

lost from the representation. It would, therefore, be preferable to have a system that allows

flexible switching between alternative patterns and exploration of alternatives beyond the

ones currently recognized. Yet, the very notion of stable convergence to an attractor provides

an obstacle to switching and exploration. Furthermore, as we will show, for a class of the

images with multiple representations and various symmetries, globally stable solutions to

the problem of invariant template matching may not even exist.

We propose a unifying framework capable of combining robustness and flexibility. In

contrast to common intuitions, which aim at achieving desired robustness by means of sta-

ble attractors, we advocate instability as an advantageous substitute. More precisely, we
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Figure 3: General scheme of a system for adaptive template matching using temporal codes.
Level 1 contains the adaptive compartments. Its functional role is to ensure invariance to
modeled uncertainties. Level 2 corresponds to the comparison compartments and consists
of coupled nonlinear oscillators. Solid arrows represent the information flow in the system.

consider a specific type of instability inherent to solutions converging to proper weakly at-

tracting sets and Milnor attractors (Milnor, 1985). The utility of weakly attracting sets has

already been acknowledged in the general context of modeling brain activity and decision-

making. For example, in networks of nonlinear oscillators and coupled maps emergence of

Milnor attractors is considered as a precursor of chaotic itinerancy – the systems’s dynamic

state corresponding to sporadic chaotic switching of trajectories from one quasi-attractor

(ghost attractor) to another (Tsuda & Fujii, 2007) 3. Here we demonstrate that the con-

cept of weakly attracting sets provides a unifying framework for solving pattern recognition

problems. We show that trading the habitual requirement of Lyapunov stability for a more

relaxed property of convergence to weakly attracting sets provides both the necessary in-

variance and the flexibility needed for invariant template matching. Doing so, furthermore,

allows us to overcome challenging technical issues related to nonlinearity and non-convexity

of modeled uncertainties in tuning of parameters for spatio-temporal encoding. Finally, the

relevance of Milnor attractors has been argued extensively for models of information pro-

cessing in the human brain (see (van Leeuwen, 2008) for review). We will briefly illustrate

with examples how Milnor attractors could instill functionality in the brain.

To illustrate these principles we designed a recognition system consisting of two major

components (see Figure 3). The first is an adaptive component in which information is

processed by a class of spatiotemporal filters. These filters represent internal models of dis-

tortions. The models of most common distortions, including rotation, translation, and blur,

3See also related concepts of heteroclinic channels (Rabinovic et al., 2008) and relaxation times (Gorban,
2004)
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are often nonlinearly parameterized. Until recently, adequate compensatory mechanisms

for nonlinearly parameterized uncertainties have been unexplored territory. In recent work

(Tyukin & van Leeuwen, 2005) we have shown that the problem of nonlinear parameteriza-

tion could, in principle, be solved within the concept of Milnor or weak, unstable attractors.

Here we provide a solution to this problem that will enable systems to deal with specific

nonlinearly parameterized models of distortions that are typical for a variety of optical and

geometrical perturbations.

The second major component of our system consists of a network of coupled nonlinear

oscillators. These operate as coincidence detectors. Each oscillator in our system represents

a Hindmarsh-Rose model neuron. These model neurons are generally believed to provide a

good qualitative approximation to biological neuron behavior. At the same time they are

computationally cost-effective (Izhikevich, 2004). For networks of these oscillators we prove,

first of all, boundedness of the state of the perturbed solutions. In addition, we specify

the parameter values which lead to emergence of globally stable invariant manifolds in the

system state space. Although we do not provide explicit criteria for the meta-stability that

quasi-attractors provide in this class of networks, the conditions presented allow us to narrow

substantially the domain of relevant parameter values in which this behavior is to be found.

There is an interesting consequence to the unstable character of the compensation for

modeled perturbations. When the system negotiates multiple classes of uncertainties simul-

taneously (e.g. focal/contrast and intensity/luminance), different types of compensatory

adjustments are made at different time scales. Adaptation at different time scales is a

well-known phenomenon in biological visual systems (Baccus & Meister, 2002; Demontis

& Cervetto, 2002; Sharpe & Stockman, 1999; Smirnakis et al., 1997), in particular when

light/dark adaptation is combined with optical/neuronal blur (Hofer & Williams, 2002;

Mather, 2006; Mon-Williams et al., 1998; Rodieck, 1998). Our analytical study suggests

that this difference in time-scales emerges naturally as a sufficient condition for the proper

operation of our system.

This paper is organized as follows. In Section 3 we provide a formal description of the

class of images and templates, and formally state the problems of our study. In Section

4 we provide the main results of our present contribution. In Section 5 we discuss the

theoretical results and relate them to relevant observations in the empirical literature on

visual perception and adaptation. In Section 6 we provide an illustrative example of a

simple system ensuring invariant recognition of rotated and shifted templates in images with

varying intensity. We also present an application of our approach to a realistic pattern
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recognition problem: the detection of morphological changes in dendritic spines based on

measurements obtained from a multiphoton scanning microscope. Section 7 concludes the

paper.

3 Preliminaries and problem formulation

We assume that the values S0(x, y) of the original image are not available explicitly to the

system; it only is able to measure perturbed values of S0(x, y). Perturbation is defined as a

mapping F :

F [S0,θ] : L∞(Ωx × Ωy)× Rd → L∞(Ωx × Ωy),

where θ is the vector of parameters of the perturbation. The values of θ are assumed to be

unknown a-priori, whereas the mapping F is known.

In systems for processing spatial information, mappings F often belong to a specific class

that can be defined as follows:

F [S0, θ] = θ1 · F̄ [S0, θ2], θ1 ∈ R, θ2 ∈ R
F̄ [S0, θ2] : L∞(Ωx × Ωy)× R→ L∞(Ωx × Ωy),

θ = (θ1, θ2)

(4)

Parameter θ1 ∈ [θ1,min, θ1,max] ⊂ R in (4) models linear perturbations, for instance varia-

tions of overall brightness or intensity of the original image S0. The parameter can also be

interpreted as an a-priori unknown gain in the measurement channel of a sensor. Mapping

F̄(S0, θ2) in (4), parameterized by θ2 ∈ [θ2,min, θ2,max] ⊂ R, corresponds to typical nonlinear

perturbations of image S0. Table 1 provides examples of such perturbations, their mathe-

matical models and the physical meaning of parameter θ2. Throughout the paper we assume

that mappings F̄ [S0, θ2] are Lipschitz in θ2:

∃ D ∈ R>0 :
∣∣F̄ [S0, θ

′
2](x, y)− F̄ [S0, θ

′′
2 ](x, y)

∣∣ ≤ D|θ′2 − θ′′2 |,
∀ (x, y) ∈ Ωx × Ωy, θ′2, θ

′′
2 ∈ R

(5)

Notice that, strictly speaking, several typical transformations such as translation, scaling,

and rotation, are not always Lipschitz. This is because image S0 can, for instance, have sharp

edges which corresponds to discontinuities in x, y. In practice, however, prior application

of a blurring linear filter will render sharp edges in an image smooth, thus assuring that

condition (5) applies4.

4In biological vision discontinuity of S0 in x, y corresponds to images with abrupt local changes in bright-
ness along spatial dimensions x, y. Although this is a rather common situation in nature, in visual systems
actual images S0 rarely reach a sensor in their spatially discontinuous form. In fact, prior to reaching the
sensory receptors, they are subject to optical linear filtering. Therefore images that reach the sensor are
always smooth. Hence condition (5) will generally be satisfied.
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Table 1: Examples of typical nonlinear perturbations of S0. Parameter ∆θ in the right
column is a positive constant

Physical meaning Mathematical model Domain of
of F̄ [S0, θ2] physical relevance

Translation (in x dimension) F̄ [S0, θ2] = S0(x + θ2, y) −∆θ ≤ θ2 ≤ ∆θ

θ2 – shift

Scaling (in x dimension) F̄ [S0, θ2] = S0(θ2 · x, y) 0 < θ2 ≤ ∆θ

θ2 – scaling factor

Rotation F̄ [S0, θ2] = S0(xr(x, y, θ2), yr(x, y, θ2)) 0 ≤ θ2 ≤ 2π
around the origin

xr(x, y, θ2) = cos(θ2)x− sin(θ2)y
θ2 – angle of rotation yr(x, y, θ2) = sin(θ2)x + cos(θ2)y

Image blur (not normalized) F̄ [S0, θ2] =
∫
Ωx×Ωy

h · S2(ξ, γ)dξdγ 0 < θ2 ≤ ∆θ

(Banham & Katsaggelos, 1997)

θ2 – blur parameter
1) Gaussian:

h = exp−
1

θ2
((x−ξ)2+(y−γ)2)

2) Out-of-focus:

h =

{
1

πθ2
2
,

√
(x− ξ)2 + (y − γ)2 ≤ θ2

0, else

The image F [S0, θ] is assumed to be spatially sampled according to factorization (1):

Ft[S0,θ](x, y) =

{ F [S0,θ](x, y), (x, y) ∈ Ωx,t × Ωy,t,
0, else

t ∈ Ωt (6)

Because index t in (6) is assumed to be a time variable we let Ωt = [0,∞). To each Ft[S0,θ]

a value f(Ft[S0,θ]) ∈ R is assigned. Formally this procedure can be defined by a functional

which maps mappings Ft[S0,θ] into the real values:

f : L∞(Ωx × Ωy) → R. (7)

In the singular case, when Ωx,t × Ωy,t is a point (xt, yt), the mapping Ft[S0,θ](x, y) and

functional f will be defined as f = Ft[S0,θ](xt, yt) = F [S0,θ](xt, yt).

We concentrated our efforts on obtaining a principled solution to the problem of invariant

template matching in systems with spatiotemporal processing of information. For this reason
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Table 2: Examples of spatially-sampled representations of S0

Physical meaning Mathematical model of f

Spectral power within
the given frequency bands: f =

∫ ωb

ωa

∫ ωd

ωc

∥∥∥
∫
Ωx×Ωy

Ft[S0, θ](x, y)e−j(ωxx+ωyy)dxdy
∥∥∥ dωxdωy

ωx ∈ [ωa, ωb], ωy ∈ [ωc, ωd]

Weighted sum f =
∫
Ωx×Ωy

Ft[S0,θ](x, y)e−|x−x0|−|y−y0|dxdy

(for instance, convolution
with exponential kernel) (x0, y0) is the reference, “attention” point

Scanning the image Ωx,t × Ωy,t = (ξ(t), γ(t))
along a given trajectory
(x(t), y(t)) = (ξ(t), γ(t)) f = F [S0,θ](ξ(t), γ(t))

we prefer not to provide a specific description of functionals f . We do, however, restrict our

consideration to functionals that are both linear and Lipschitz, i.e. ones satisfying the

following constraints:

f(κF) = κf(F), ∀ κ ∈ R, |f(F)− f(F ′)| ≤ D2‖F − F ′‖∞, D2 ∈ R>0 (8)

Examples of functionals f satisfying conditions (8) and their physical interpretations are

provided in Table 2.

Taking into account (4), (6) and the fact that f is linear, the following equality holds

f(Ft[S0,θ]) = θ1f(F̄t[S0, θ2]), F̄t[S0, θ2] =

{ F̄ [S0, θ2](x, y), (x, y) ∈ Ωx,t × Ωy,t,
0, else

(9)

For the sake of compactness, in what follows we replace f(F̄t[S0, θ2]) in the definition of

f(Ft[S0,θ]) in (9) with the following notation:

f(F̄t[S0, θ2]) = f0(t, θ2), f0 : Ωt × R→ R (10)

Notation f0(t, θ2) in (10) allows us to emphasize the dependence of f on unknown θ2, time

variable t, and original image S0. Subscript “0” in (10) indicates that f0(t, θ2) corresponds

to the sampled and perturbed S0 (equations (4), (7), (8)), and argument θ2 is the nonlinear

parameter of the perturbation applied to the image. Adhering to this logic, we introduce
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the notation

f(Ft[Si, θ]) = θ1f(F̄t[Si, θ2]) = θ1fi(t, θ2),

where subscript “i” indicates that fi(t, θ2) corresponds to the perturbed and sampled tem-

plate Si, and θ2 is the nonlinear parameter of the perturbation applied to the template.

Let us now specify the class of schemes realizing temporal integration of spatially sampled

image representations. Explicit realization of temporal integration (3) is not feasible because

it may lead to unbounded outputs for a wide class of relevant signals, for instance signals

that are constant or periodic with a nonzero average. The behavior of a temporal integrator

(3), however, can be fairly well approximated by a first-order linear filter. For the sampled

image and template representations θ1fi(t, θ2), these filters can be defined as follows:

φ̇0 = −1

τ
φ0 + k · θ1f0(t, θ2)

φ̇i = −1

τ
φi + k · θ1fi(t, θ2), k, τ ∈ R>0, i ∈ I

(11)

In contrast to (3), for filters (11) it is ensured that their state remains bounded for bounded

inputs. In addition, on a first approximation, equations (11) present a simple model of neural

sensors, collecting and encoding spatially-distributed information in the form of a function of

time5. With respect to the physical realizability of (11), in addition to requirements (5), (8)

we shall only assume that spatially sampled representations θ1fi(t, θ2), i ∈ I+ of Si ensure

the existence of solutions for system (11).

Consider the dynamics of variables φ0(t) and φi(t), i ∈ I defined by (11). We say that

the i-th template matches the image iff for some given ε ∈ R≥0 the following condition holds

lim sup
t→∞

|φ0(t)− φi(t)| ≤ ε. (12)

The problem, however, is that parameters θ1, θ2 in (11) are unknown a-priori. While pertur-

bations affect the image directly, they do not necessarily influence the templates. Rather to

the contrary, for consistent recognition the templates are better kept isolated from external

perturbations – at least within the time frame of pattern recognition, although they may,

of course, be affected by adaptive learning on a larger time scale. Having fixed, unmodi-

fied templates in comparison with perturbed image representations implies that even in the

cases when objects corresponding to the templates are present in the image, temporal image

5In principle, equation (11) can be replaced with a more plausible model of temporal integration such as
integrate-and-fire, Fitzhugh-Nagumo, or Hodgkin-Huxley model neurons. These extensions, however, are not
immediately relevant for the purpose of our current study. We decided to keep the mathematical description
of the system as simple as possible, keeping in mind the possibility of extension to a wider class of temporal
integrators (11).
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representation φ0(t) will likely be different from any of the templates, φi(t). This will render

the chances that condition (12) is satisfied very small, so a template would almost never be

detected in an image.

We propose that the proper way for a system to meet requirement (12) is to mimic

the effect of disturbances in the template. In order to achieve this, the template matching

system should be able to track the unknown values of parameters θ1, θ2. Hence the original

equations for temporal integration (11) will be replaced with the following:

φ̇0 = −1

τ
φ0 + k · θ1f0(t, θ2)

φ̇i = −1

τ
φi + k · θ̂i,1fi(t, θ̂i,2), k, τ ∈ R>0, i ∈ I

(13)

where θ̂i,1, θ̂i,2 are the estimates of θ1, θ2. The estimates θ̂i,1, θ̂i,2 must track instantaneous

changes of θ1, θ2. The information required for such an estimation should be kept at a

minimum. An acceptable solution would be a simple mechanism capable of tracking the

perturbations from the measurements of the image alone. The formal statement of this

problem is provided below:

Problem 1 (Invariance) For a given image S0, template Si, and their spatiotemporal rep-

resentations satisfying (5), (8), and (13), find estimates

θ̂i,1 = θ̂i,1(t, τ, κ, φ0, φi), θ̂i,2 = θ̂i,2(t, τ, κ, φ0, φi) (14)

as functions of time t, variables φ0, φi and parameters τ , κ such that for all possible values

of parameters θ1 ∈ [θ1,min, θ1,max], θ2 ∈ [θ2,min, θ2,max]

1) solutions of system (13) are bounded;

2) in case f0 = fi property (12) is ensured, and

3) the following holds for some θ′1 ∈ [θ1,min, θ1,max], θ′2 ∈ [θ2,min, θ2,max]:

lim sup
t→∞

|θ̂i,1(t, τ, κ, φ0(t), φi(t))− θ′i,1| ≤ εθ,1, εθ,1 ∈ R+

lim sup
t→∞

|θ̂i,2(t, τ, κ, φ0(t), φi(t))− θ′i,2| ≤ εθ,2, εθ,2 ∈ R+

(15)

Once the solution to Problem 1 is found, the next step will be to ensure that similarities

(12) are registered in the system. In line with Figure 3, we propose that detection of

similarities is realized by a system of coupled oscillators. In particular, we require that

states of oscillators i and 0 converge as soon as the signals φ0(t), φi(t) become sufficiently

close.

In the present article we restrict ourselves to the class of systems composed of linearly

coupled Hindmarsh-Rose model neurons (Hindmarsh & Rose, 1984). This choice is motivated
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by the fact that these oscillators can reproduce a broad class of behaviors observed in real

neurons while being computationally efficient (Izhikevich, 2004). A network of these neural

oscillators can be mathematically described as follows:

SDi
:





ẋi = −ax3
i + bx2

i + yi − zi + I + ui + φi(t),
ẏi = c− dx2

i − yi,
żi = ε(s(xi + x0)− zi),

i ∈ I+ (16)

Variables xi, yi, zi correspond to membrane potential, and aggregated fast and slow adap-

tation currents, respectively. Coupling ui in (16) is assumed to be linear and symmetric:

u =




u0

u1
...

un


 = Γ




x0

x1
...

xn


 , Γ = γ




−n 1 · · · 1
1 −n · · · 1
· · · · · · · · · · · ·
1 1 · · · −n


 , (17)

and parameter γ ∈ R+. Our choice of the coupling function in (17) is motivated by the

following considerations. Fist, we wish to preserve the intrinsic dynamics of the neural

oscillators when they synchronize, e.g. when xi = xj, yi = yj, zi = zj, i, j ∈ {0, . . . , n}. For

this reason it is desirable that the coupling vanishes when the synchronous state is reached.

Second, we seek for a system in which synchronization between two arbitrary nodes, say

the i-th and the j-th nodes, is determined exclusively by the degree of (mis)matches in

φi(t), φj(t), independently of the activity of other units in the system. Third, the coupling

should “pull” the system trajectories towards the synchronous state. Coupling function (17)

satisfies all these requirements.

We set parameters of equations (16) to the following values:

a = 1, b = 3, c = 1, d = 5,
s = 4, x0 = 1.6, ε = 0.001,

(18)

which correspond to the regime of chaotic bursting in each uncoupled element in (16) (Hansel

& Sompolinsky, 1992).

The problem of detection of similarities in φ0(t) and φi(t) can now be stated as follows.

Problem 2 (Detection) Let system (16), (17) be given and there exist i ∈ I such that

condition (12) is satisfied. Determine the coupling parameter γ as a function of system (16)

parameters such that

1) solutions of the system are bounded for all bounded φi, i ∈ I;

2) states (x0(t), y0(t), z0(t)) and (xi(t), yi(t), zi(t)) asymptotically converge to a vicinity
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of the synchronization manifold x0 = xi, y0 = yi, z0 = zi. In particular,

lim sup
t→∞

|x0(t)− xi(t)| ≤ δ(ε)

lim sup
t→∞

|y0(t)− yi(t)| ≤ δ(ε)

lim sup
t→∞

|z0(t)− zi(t)| ≤ δ(ε),

where δ(·) is a non-decreasing function vanishing at zero.

In the next section we present solutions to the problems of invariance and detection. We

start from considerations of what would be an adequate concept of analysis. The conclusion

will be that for solving the problem of invariance, using the concept of Milnor attractors

is advantageous over traditional concepts resting on the notion of Lyapunov stability. This

implies that the sets to which the estimates θ̂i,1, θ̂i,2 converge should be weakly attracting

rather than Lyapunov stable. We present a simple mechanism realizing this requirement

for a wide class of models of disturbances. With respect to the second problem, that of

detection, we provide sufficient conditions for asymptotic synchrony in system (16).

4 Main Results

Consider a system of temporal integrators, (13), in which the template subsystem (second

equation in (13)) mimics the temporal code of an image as a result of applying adjustment

mechanisms (14). Ideally, the template subsystem should have a single adjustment mecha-

nism, which is structurally simple and yet capable of handling a broad class of perturbations.

In addition it should require the least possible amount of a-priori information about images

and templates.

In our search for a candidate adjustment mechanism let us first explore the available the-

oretical concepts which can be used in its derivation. The problem of invariance, as stated in

Problem 1, can generally be understood as a specific optimization task. Particular solutions

to such tasks as well as the choice of appropriate mathematical tools depend significantly

on the following characteristics: uniqueness of the solutions, convexity with respect to pa-

rameters, and sensitivity to the input data (images and templates). Let us consider if the

invariant template matching problem meets these requirements.

Uniqueness. Solutions to the problem of invariant template matching are generally not

unique. The image may contain multiple instances of the template. Even if there is only

a single unique object the template may fit it in multiple ways, for instance because it has

rotational symmetry. Both cases are illustrated in Figure 4. A similar argument applies to
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Figure 4: Example of a template and images which lead to non-unique solutions in the
problem of invariant template matching. Image 1 is a rotated version of the template.
Because the template has rotational symmetry, the angles θ2 = θ∗2 ± π

2
n, n = 0, 1, . . . at

which the template and the image match to each other are not unique. Image 2 contains
two multiple instances of the template, which also leads to non-uniqueness.

translational invariance in the images with multiple instances of the template (right picture

in Figure 4).

Non-linearity and non-convexity. The problem of invariant template matching is gener-

ally nonlinear and nonconvex in θ1, θ2. Nonlinearity is already evident from Table 1. For

illustration of non-convexity consider the following function

θ1fi(t, θ2) = θ1

∫

Ωx,t×Ωy,t

e−|x−x0|−|y−y0|
(∫

Ωx×Ωy

e
− 1

θ2
((x−ξ)2+(y−γ)2

Si(ξ, γ)dξdγ

)
dxdy (19)

which is a composition of Gaussian blur (the forth row in Table 1) with spatial sampling

and subsequent exponential weighting (the second row in Table 2). In the literature on

adaptive systems two versions of the convexity requirement are available. The first version

applies to the case where the difference θ1fi(t, θ2)− θ̂1,ifi(t, θ̂i,2) is not accessible for explicit

measurement, and the variables φ0(t), φi(t) should be used instead. In this case the convexity

condition will have the following form (Fradkov, 1979):

ei(φ0, φi)

[
(θ1 − θ̂i,1)

∂

∂θ̂i,1

θ̂i,1fi(t, θ̂i,2) + (θ2 − θ̂i,2)
∂

∂θ̂i,2

θ̂i,1fi(t, θ̂i,2)

]
≥

ei(φ0, φi)
[
θ1fi(t, θ2)− θ̂i,1fi(t, θ̂i,2)

] (20)

Term ei(φ0, φi) in (20) is usually the difference ei(φ0, φi) = φ0 − φi and has the meaning

of error. For the same pairs of points θ1, θ2 and θ̂i,1, θ̂i,2 condition (20) may hold or fail

depending on the sign of ei(φ0(t), φi(t)) at the particular time instance t. Hence it is not

always satisfied, not even for convex θi,1fi(t, θi,2).
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The second version of the convexity requirement applies when the difference θ1fi(t, θ2)−
θ̂i,1fi(t, θ̂i,2) can be measured explicitly. In this case the condition is formulated as definite-

ness of the Hessian of θ1fi(t, θ2). It can easily be verified, however, that in (19) satisfaction

of this requirement depends on the values of Si(ξ, γ). Hence both versions of the convexity

conditions generally fail in invariant template matching.

Critical dependence on stimulation. An important feature of invariant template matching

problem is that its solutions critically depend on particular images and templates. Presence

of rotational symmetries in the templates affect the number of solutions. Hence objects

with different numbers of symmetries will be characterized by sets of solutions with different

cardinality.

We conclude that the problem of invariant template matching generally assumes multiple

alternative solutions, nonlinearity and non-convexity with respect to parameters, and the

structure of its solutions depends critically on a-priori unknown stimulation. What would

be a suitable way to approach this class of problems in a principled manner?

Traditionally, processes of matching and recognition are associated with convergence of

the system’s state to an attracting set. In our case the system’s state is defined by vector x:

x = (φ0, φ1, . . . , φi, . . . , θ̂1,1, θ̂2,1, . . . θ̂i,1, θ̂i,2, . . . )

The attracting set, A, is normally understood as a set satisfying the following definition

(Guckenheimer & Holmes, 2002):

Definition 1 A set A is an attracting set iff it is

i) closed, invariant, and

ii) for some neighborhood V of A and for all x0 ∈ V the following conditions hold:

x(t,x0) ∈ V ∀ t ≥ 0; (21)

lim
t→∞

‖x(t,x0)‖A = 0 (22)

Traditional techniques for proving attractivity employ the concept of Lyapunov asymptotic

stability6. Although the notion of set attractivity is wider, the method of Lyapunov func-

tions is constructive and, in addition, Lyapunov asymptotic stability implies the desired

attractiviy. For these reasons it is highly practical, and the tandem of set attractivity in

Definition 1 and Lyapunov stability has been used extensively in recognition systems, in-

cluding Hopfield networks, recurrent neural nets, etc.

6We recall that the set A is (globally) Lyapunov asymptotically stable iff for all ε > 0 there exists
δ(x0, ε) > 0 such that ‖x0‖A < δ(x0, ε) ⇒ ‖x(t,x0)‖A ≤ ε for all t ≥ 0, and limt→∞ ‖x(t,x0)‖A = 0
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Figure 5: Standard stable attractors, panel a, vs weak attractors, panel b. Domains of stable
attractors are neighborhoods containing A1, A2. Estimates of sizes of these domains depend
on particular images S0,1, S0,2, S0,3. These estimates are depicted as closed curves around
A1, A2. Once the state converges to either of the attractors it stays there unless, probably,
when the image changes. In contrast to this, domains of attraction for Milnor attracting sets
are not neighborhoods. Hence, even a slightest perturbation in the image induces a finite
probability of escape from the attractor. Hence multiple alternative representations of the
image could eventually be recovered.

The problem of invariant template matching, however, challenges the universal appeal of

this tandem. First, because of inherent non-uniqueness of the solutions, there are multiple

invariant sets in the system’s state space. Hence, global Lyapunov asymptotic stability

cannot be ensured. Second, when each solution is treated as a locally stable invariant set,

it is essentially important to know its domain of attraction. This domain, however, depends

on properties of function θ1f0(t, θ2) in (13), which vary with stimulation. Third, no method

exists for solving Problem 1 for general nonlinearly parameterized θ1f0(t, θ2) that assures

Lyapunov stability of the system.

In order to solve the problem of invariant template matching we therefore propose to

replace the standard notion of attracting set with a less restrictive concept. In particular we

advocate the concept of weak or Milnor attracting sets (Milnor, 1985):

Definition 2 A set A is weakly attracting, or Milnor attracting set iff

i) it is closed, invariant and

ii) for some set V (not necessarily a neighborhood of A) with strictly positive measure

and for all x0 ∈ V limiting relation (22) holds

The main difference between the notions of a weak attracting set, Definition 2, and

the standard one, Definition 1, is that the domain of attraction is not required to be a

neighborhood of A. The concept is illustrated in Figure 5. On the one hand, this allows us to

use mathematical tools beyond the concept of Lyapunov stability in order to avoid problems

with nonlinear parametrization and critical dependance on stimulation. On the other hand,
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it offers a natural mechanism for systems to explore multiple image representations.

In the next paragraph we present technical details of how Problem 1 could be solved

within the framework of Milnor attractors.

4.1 Invariant template matching by Milnor attractors

Consider system (13):

φ̇0 = −1

τ
φ0 + k · θ1f0(t, θ2)

φ̇i = −1

τ
φi + k · θ̂i,1fi(t, θ̂i,2), k, τ ∈ R>0, i ∈ I

and assume that the i-th template is present in the image. This implies that both the image

and the template will have, at least locally in space, sufficiently similar spatiotemporal

representations. Formally this can be stated as follows:

∃ ∆ ∈ R>0 : |θ1f0(t, θ2)− θ1fi(t, θ2)| ≤ ∆, ∀ θ1, θ2, t ≥ 0 (23)

Hence without loss of generality we can replace equations (13) with the following:

φ̇0 = −1

τ
φ0 + k · θ1fi(t, θ2) + ε(t)

φ̇i = −1

τ
φi + k · θ̂i,1fi(t, θ̂i,2), k, τ ∈ R>0, i ∈ I

(24)

where ε(t) ∈ L∞[0,∞], ‖ε(t)‖∞ ≤ ∆ is a bounded disturbance. Solving Problem 1, therefore,

amounts to finding adjustment mechanisms (14) such that trajectories φ0(t), φi(t) in (24)

converge and limiting relations (15) hold.

The main idea of our proposed solution to this problem can informally be summarized

as follows. First, we introduce an auxiliary system

λ̇ = g(λ, φ0, φi, t), λ ∈ Rλ, g : Rλ × R× R× R≥0 → Rλ (25)

and define θ̂i,1, θ̂i,2 as functions of λ, φ0, and φi:

θ̂i,1 = θ̂i,1(λ, τ, κ, φ0, φi), θ̂i,2 = θ̂i,2(λ, τ, κ, φ0, φi). (26)

Second, we show that for some ε ∈ R>0, and Ωλ ⊂ Rλ the following set

Ω∗ = {φ0, φi ∈ R,λ ∈ Rλ| |φ0(t)− φi(t)| ≤ ε, λ ∈ Ωλ ⊂ Rλ}

is forward-invariant in the extended system (24), (25) and (26). Third, we restrict our

attention to systems which have a subset Ω in their state space such that trajectories starting

19



in Ω converge to Ω∗. Finally, we guarantee that the state will eventually visit domain Ω thus

ensuring that (12) holds.

We have found that choosing extension (25) in the class of simple third-order bilinear

systems 



λ̇1 =
γ1

τ
· (φ0 − φi)

λ̇2 = γ2 · λ3 · ‖φ0 − φi‖ε, γ1, γ2 ∈ R>0

λ̇3 = −γ2 · λ2 · ‖φ0 − φi‖ε,
√

λ2
2(t0) + λ2

3(t0) = 1

(27)

ensures the solution of Problem 1. Specific technical details and conditions are provided in

Theorem 1

Theorem 1 Let system (24), (27) be given, and function fi(t, θ2) be separated from zero and

bounded. In other words, there exist constants D3, D4 ∈ R>0 such that for all t ≥ 0, θ2 ∈
[θ2,min, θ2,max] the following condition holds:

D3 ≤ fi(t, θ2) ≤ D4 (28)

Then there exist positive γ1, γ2, and ε (see Table 3 for the particular values):

γ2 ¿ γ1, ε > τ∆

(
1 +

D4

D3

)
(29)

such that adaptation mechanisms





θ̂i,1 = eiγ1 + λ1

θ̂i,2(t) = θ2,min + (λ2(t) + 1)
θ2,max − θ2,min

2

(30)

deliver a solution to Problem 1. In particular, for all θ1 ∈ [θ1,min, θ1,max], θ2 ∈ [θ2,min, θ2,max]

the following properties are guaranteed:

lim sup
t→∞

|φ0(t)− φi(t)| ≤ ε; ∃ θ′2 ∈ [θ2,min, θ2,max] : lim
t→∞

θ̂i,2(t) = θ′2,

where the value of ε, depending on the choice of parameters γ2, γ1, can be made arbitrarily

close to τ∆ (1 + D4/D3).

Proof of the theorem is provided in Appendix 2.

Let us comment on the conclusions and conditions of Theorem 1. First of all, the theorem

shows that each i-th subsystem ensuring invariance of a spatiotemporal image representation

to the given modelled perturbations can be composed of no more than four differential
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Table 3: Parameters of the compensatory mechanisms (30)

Parameter Values

γ1
γ1

γ2
= q, q ∈ R>0

ε
ε > τ

(
∆

(
1 +

D4

D3

)
+

γ2

γ1

[
θ1,maxDD2D4

(D3)2
M1τ

(
1 +

D4

D3

)
θ2,max − θ2,min

2

])

M1 = ∆ + kθ1,maxDD2|θ2,max − θ2,min|

γ2 γ2 <

(
1
4τ

)2 [
kθ1,maxDD2

(
1 +

D4

D3

)(
θ2,max − θ2,min

2

)]−1

equations:

Temporal integration : φ̇i = −1

τ
φi + k · θ̂i,1fi(t, θ̂i,2) (31a)

Fast adaptation dynamics : λ̇1 =
γ1

τ
· (φ0 − φi) (31b)

Slow adaptation dynamics :

{
λ̇2 = γ2 · λ3 · ‖φ0 − φi‖ε,

λ̇3 = −γ2 · λ2 · ‖φ0 − φi‖ε
(31c)

Notice that the time scales of temporal integration (31a), adaptation to linearly pa-

rameterized uncertainties, (31b), and adaptation to nonlinearly parameterized uncertainties,

(31c), are all different. Because of these differences, subsystem (31b) is referred to as slow

adaptation dynamics and subsystem (31c) as fast adaptation dynamics. The difference be-

tween their time scales determines the degree of invariance and precision in the resulting

system. For instance, as follows from Table 3, the ratio γ2/γ1 affects the value of ε. This

value defines the acceptable level of mismatches between an image and a template. In other

words, it regulates the sensitivity of the system. The smaller the ratio γ2/γ1, the higher the

sensitivity. Ratio γ2/(1/τ) (see proof for details) affects the conditions for convergence.

The slow adaptation dynamics, (31c), can be interpreted as a searching, or wandering

dynamics in the interval [θ2,min, θ2,max]. Its function is to explore the interval [θ2,min, θ2,max]

for possible values of θ̂i,2 when models of perturbation are inherently nonlinear and no other

choice except of explorative search is available. Solutions of the searching dynamics in (31c)

are harmonic signals with time-varying frequency γ2‖φ0(t) − φi(t)‖ε. The larger the error,
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the higher the frequency of oscillation. When γ2‖φ0(t) − φi(t)‖ε is constant, for instance

equals to unit, equations (31c) reduce to

λ̇2 = λ3

λ̇3 = −λ2

(32)

We presently adopt (32) as a prototype system for generating searching trajectories. This is

motivated primarily by its simplicity in realization and linearity in state. In general, every

system

λ̇2 = g2(λ2, λ3, t),

λ̇3 = g3(λ2, λ3, t), g2, g3 ∈ C0
(33)

generating dense trajectories λ2(t) in [θ2,min, θ2,max] for some initial conditions λ2(t0), λ3(t0)

and at the same time ensuring boundedness of λ2(t), λ3(t) for all t ∈ R≥0 could replace (32)

in (31c), see also (Tyukin et al., 2008). Conclusions of the theorem in this case will remain

the same except of the values of γ1, γ2, ε in Table 3.

The fast adaptation dynamics, (31b), corresponds to exponentially stable mechanisms.

This can easily be verified by differentiating the difference θ̂i,1(t) − θ1 with respect to time

(see also (51) in Appendix 2). The function of the fast adaptation subsystem is to track

instantaneous changes in θ1 exponentially fast in such a way that the difference θ̂i,1(t) − θ1

is determined mostly by mismatches θ̂i,2(t)− θ2.

The problem of template matching is solved through the interplay of searching dynamics

θ̂i,2(t) − θ2 (see Figure 6) and the stable, contracting dynamics expressed by φ0(t) − φi(t).

We use the results from (Tyukin et al., 2008) to prove the emergence of weakly (Milnor)

attracting sets in the system state space.

In principle, linearity of the uncertainty models in θ1 is not necessary to guarantee ex-

ponential stability of θ̂i,1(t) − θ1. As has been shown in (Tyukin et al., 2007), exponential

stability of θ̂i,1(t) − θ1 can be ensured by the same function θ̂i,1(t) as in (26) if we replace

θ1fi(t, θ2) with f̃i(t, θ1, θ2) : R≥0 × R × R → R. Nonlinearities f̃i(t, θ1, θ2), however, should

be monotone in θ1. In this case condition (28) is to be replaced with the following

D3 ≤ f̃i(t, θ̂i,1, θ2)− f̃i(t, θ1, θ2)

θ̂i,1 − θ1

≤ D4, ∀ θ2 ∈ [θ2,min, θ2,max] (34)

The general line of the proof remains unaffected by this extension.

The proposed compensatory mechanisms (24), (27) (30) are nearly optimal in terms of

the dimension of the state of the whole system. Indeed, in order to track uncertain and

independent θ1, θ2 two extra variables are to be introduced. The minimal dimension of the
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Figure 6: The interplay between temporal integration, (31a), and fast and slow adaptation
(31b), (31c) in the proposed solution to the problem of invariant template matching. Panel
a. Contracting dynamics corresponds to the processes of temporal integration of a template
and adaptation to linearly parameterized uncertainties. Searching dynamics corresponds
to the adaptation to nonlinearly parameterized uncertainties. Panel b. Diagram of the
phase portrait of system (31a), (31b), (31c). Interaction between searching and contracting
subsystems forms a weakly attracting invariant setA. Its basin of attraction is not necessarily
a neighborhood of A. This means that some trajectories starting in a small vicinity of A
may eventually leave its neighborhood (dashed trajectory), while trajectories starting far
away from A enter such neighborhoods and remain there (solid line).

state of a system which solves Problem 1 equals three. This implies that our four-dimensional

system is close to the optimal configuration. Furthermore, as follows from the proof of the

theorem, the dimension of the slow subsystem could be reduced to one. Thus, in principle,

a minimal realization could be achieved. In this case, however, boundedness of the state for

every initial condition is no longer guaranteed.

Theorem 1 establishes convergence conditions for the trajectories of our prototype system

(24), (27) (30) to an invariant set in the system state space. In particular, when matching

condition (23) is met, the theorem assures that temporal representation φi(t) of the template

tracks temporal representation φ0(t) of the image. In the next subsection we discuss how the

similarity between these temporal representations can be detected by a system of coupled

spiking oscillators. In particular, we will consider coincidence detectors (16), (17), (18)

modeled by a system of coupled Hindmarsh-Rose oscillators.

4.2 Conditions for synchronization of coincidence detectors

The goal of this section is to provide a constructive solution to Problem 2, the problem

of detection. First, we seek for conditions ensuring global exponential stability of the syn-

chronization manifold of φ0(t) = φi(t) when φi(t) are identical for each i. We do this by
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showing that solutions of the system are globally bounded, and for each pair of indexes

i, j ∈ {0, . . . , n} there exists a differentiable positive definite function V (xi, yi, zi, xj, yj, zj),

∂V /∂xi = −∂V /xj such that V grows towards infinity with distance from the synchroniza-

tion manifold and for all bounded continuous φi(t) = φj(t) the following holds:

V̇ ≤ −αV, α ∈ R>0. (35)

When φi(t) 6= φj(t) equation (35) implies that

V̇ ≤ −αV +
∂V

xi

(φi(t)− φj(t)). (36)

Then using (36) and the Comparison Lemma (Khalil, 2002), we show that convergence of

φi(t) to φj(t) at t → ∞ implies convergence of variables xi(t), yi(t), zi(t), xj(t), yj(t), zj(t)

to the synchronization manifold. The formal statement of this result is provided in Theorem

2

Theorem 2 Let system (16) be given, function u be defined as in (17) and functions φi(t),

i ∈ {0, . . . , n} be bounded. Then

1) solutions of the system are bounded for all γ ∈ R+;

2) if, in addition, the following condition is satisfied

γ >
1

(n + 1) · a
(

d2

2
+ b2

)
, (37)

then for all i, j ∈ {0, . . . , n} condition

lim sup
t→∞

|φi(t)− φj(t)| ≤ ε

implies that

lim sup
t→∞

|xi(t)− xj(t)| ≤ δ(ε),

lim sup
t→∞

|yi(t)− yj(t)| ≤ δ(ε),

lim sup
t→∞

|zi(t)− zj(t)| ≤ δ(ε).

(38)

where δ : R+ → R+ is a monotone function vanishing at zero.

Theorem 2 specifies the boundaries for stable synchrony in the system of coupled neural

oscillators (16) as a function of the coupling strength, γ, and parameters a, b, and d of

a single oscillator. The last three parameters represent properties of the membrane and

combined with x0, ε, s and I completely characterize the dynamics of a single model neuron

(Hindmarsh & Rose, 1984), ranging from single spiking to periodic or chaotic bursts.
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The distinctive feature of Theorem 2 is that it is suitable for analysis of systems with

external time-dependent perturbations φi(t). This property is essential for the comparison

task, where the oscillators are fed with time-varying inputs and the degree of their mutual

synchrony is the measure of similarity between the inputs.

While the theorem provides us with conditions for stable synchrony, it allows us to

estimate the domain of values of the coupling parameter γ corresponding to potential inter-

mittent, itinerant (Kaneko & Tsuda, 2000, 2003), or meta-stable regimes. In particular, as

follows from Theorem 2, a necessary condition for unstable synchronization in system (16)

is

γ <
1

(n + 1) · a
(

d2

2
+ b2

)
. (39)

Notice that conditions (39), (37) do not depend on the “bifurcation” parameter I which

usually determines the type of bursting in the single oscillator. They also do not depend

on the differences in the time scales defined by parameter ε between the fast x, y, and

slow, z, variables. Hence these conditions apply in a wide range of system behavior on the

synchronization manifold. This advantage also has a downside, because conditions (39), (37)

are too conservative. However, this may be a reasonable price for invariance of criteria (39),

(37) with respect to the full range of dynamical behavior of a generally nonlinear system.

5 Discussion

We provided a principled solution to the problem of invariant recognition in template match-

ing. Recognition occurs when mismatches in the temporal representations of image and

templates converge to a small neighborhood of zero. This in turn leads to synchronized tra-

jectories in a network of nonlinear oscillators serving as detectors of coincidences. Although

our overall implementation of this idea may not normative we tried to keep the number of

relevant parameters at minimum. In particular the dimension of the state of a single adap-

tation compartment is three, which is minimal for generation of spikes ranging from periodic

to chaotic bursts. Moreover, conditions (39), (37) allow us to choose coupling strength γ as

a single control parameter for regulating stability/instability of the synchronous activity in

the network.

In this section we provide further extensions of the basic results of Theorems 1, 2, discuss

possible links between the normative part of our theory and some known results in biological,

human vision.
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5.1 Extension to the frequency-encoding schemes

For the sake of notational simplicity we restricted our attention to temporal representations

(6), (9) of spatially sampled images. These encoding schemes can be interpreted as scanning

of an image over time. Yet, the results of Section 4 apply to a broader class of encoding

schemes. One example is frequency-coding used in many neural systems. Let us consider

factorization (6) where in the notation Ft[S0,θ](x, y) symbol t is replaced with ν. In order

to extend the initial encoding scheme to the domain of frequency/spike rate encoding we

introduce an additional linear functional fω as follows:

fω(t,Fν [S0,θ]) =
∑

ν

h(ων · t) · f(Fν [S0,θ]), (40)

where h : R → R is a bounded periodic function, and ων are distinct real numbers indexed

by ν. Function h(ων · t) in (40) serves as a basis or carrier function generating periodic

impulses of various frequencies ων . Thus each ν-th spatial sample of the image is assigned

a particular frequency, and the amplitude of the oscillation is specified by f(Fν [S0,θ]).

Temporal representation of a one-dimensional stimulus according to encoding scheme (40)

is illustrated in Figure 7, panel a.

This encoding scheme is plausible to biological vision, when frequencies ων are ordered

according to relative position of domains Ωx,ν , Ωy,ν to the center of the image. This cor-

responds, in particular, to the receptive fields in cat retinal ganglion cells (Enroth-Cugell

et al., 1983). Because the functional fω is linear in f(Fν [S0,θ]) and function h(ων · t) is

bounded for all t, condition (8) will be satisfied for fω. Hence the conclusions of Theorem 1

apply to these representations.

5.2 Multiple representations of uncertainties

Another property of system (24), (27), (30), in addition to its ability to accommodate relevant

encoding schemes such as frequency/rate and sequential/random scanning, is that each single

value of θ2 ∈ (θ2,min, θ2,max) induces at least two distinct attracting sets in the extended space.

Indeed

λ2
2(t) + λ2

3(t) = const = 1

along the trajectories of (24), (27), (30) (see also the proof of Theorem 1). Hence for almost

every value of λ2 (except when λ2 = ±1) in the definition of θ̂2(t) in (30) there will always

be two distinct values of λ3:

λ3,1 =
√

1− λ2
2, λ3,2 = −

√
1− λ2

2.
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Figure 7: Panel a. Temporal representation of a spatially distributed stimulus using fre-
quency encoding. A stimulus (upper row) S(x) is spatially sampled by partitioning its
domain into the union of intervals Ωi. For each Ωi an integral fi = f(Fi) =

∫
Ωi

S(x)dx is
calculated and a frequency ωi is assigned. The resulting temporal representation (lower row)
is expressed as the sum of two amplitude-modulated harmonic signals of frequencies, ω3,
ω5. Panel b. Temporal representation of a two-dimensional pattern. The pattern consists
of black filled circles. The image domain is partitioned into a collection of horizontal and
vertical strips. Darker domains correspond to higher frequencies.

These two values give rise to distinct invariant sets in the system state space for a single

value of θ2. The presence of two complementary encodings for the same figure is a plausible

assumption that has been used in the perceptual organization literature to explain a range of

phenomena, including perceptual ambiguity, modal and amodal completion, etc. (Hatfield

& Epstein, 1985), (Leeuwenberg & Buffart, 1983), p. 29, (Shepard, 1981). A consequence

of the presence of multiple attractors corresponding to the single value of perturbation is

that the time for convergence (the decision time) may change abruptly with small variations

of initial conditions. The latter property is well documented in human subjects (Gilden,

2001). Furthermore, the presence of two attractors with different basins for a single value

of perturbation will lead to asymmetric distributions of decision times, which is typically

observed in human and animal reaction time data (Smith & Ratcliff, 2004).

5.3 Multiple time scales for different modalities in vision

An important property of the proposed solution to the problem of invariance is that the time

scales of adaptation to linearly and nonlinearly parameterized uncertainties are substantially
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different. This difference in time scales emerged naturally in the course of our mathematical

argument as a consequence of splitting the system dynamics into a slow searching subsystem

and a fast asymptotically stable one. This allowed us to prove emergence of unstable yet

attracting invariant sets, thus ensuring existence of a solution to the problem of invariant

template matching. In particular, Theorem 1 requires that the time constant of adaptation to

image intensity (a linearly parameterized uncertainty) is substantially smaller than those of

image blur, rotation, or scaling (nonlinearly parameterized uncertainties). Indeed, as follows

from Table 3, the larger the difference in the time scales the higher the possible precision

and the smaller the errors. This is not to say that successful adaptation is impossible if the

time scales of adaptation are of the same order. Our results are sufficient and only suggest

that having different adaptation time scales may be beneficial for convergence. On the other

hand, a simple geometrical argument can be used to demonstrate that the larger the value of

γ1/τ the larger the trapping regions of stimuli-induced attracting sets (Gorban et al., 2008).

In Section 6.1.3 we illustrate with an example how the time scales of adaptation to different

modalities might affect performance of a simple recognition system.

Even though the difference in time scales was motivated purely by theoretical consid-

erations, there is strong evidence that biological systems adapt at different time scales to

uncertainties from different modalities. For example, the time scale of light adaptation is

within tens of milliseconds (Wolfson & Graham, 2000) while adaptation to “higher-order”

modalities such as rotation and image blur extends from hundreds of milliseconds to min-

utes (Webster et al., 2002). In motor learning evidence for the presence of slow and fast

adaptation is reported in (Smith et al., 2006). These findings, therefore, motivate our belief

that system (24), (27), (30) could serve as a simple, yet qualitatively realistic, model for

adaptation mechanisms in vision, motor behavior, and decision making.

6 Examples

In this section we provide simple illustrations of how particular systems for invariant template

matching can be constructed using the results of this article.

6.1 Rotation-invariant matching and mental rotation experiments

Let us illustrate how the results of Theorems 1, 2 can be applied to template matching when

an object is rotated over an unknown angle and its brightness is uncertain a-priori. Below we

consider three examples illustrating the performance of our system in different experimental

settings. The first example corresponds to the case when only one object is present in the
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image. The task is to detect the object and infer its rotation angle and brightness. In

the second example we consider an image which contains two different objects of which the

rotation angle and brightness are uncertain. The system should be able to report matching

templates and estimate the values of rotation angles and brightness. In the third experiment

we illustrate the importance of separating the adaptation time scales.

6.1.1 Rotation-invariant matching in images with single objects

Without loss of generality and for the sake of notational convenience, suppose that the

domain Ωx × Ωy is a square of the following dimensions: Ωx × Ωy = [0, ymax] × [0, xmax].

In order to obtain a temporal representation of the image we use the frequency-encoding

scheme (40) which was illustrated in Figure 7, panel b. In particular we use the following

transformation

θ1fi(t, θ2) = θ1

∑
ν

h(ων · t) · f(F̄ν [Si, θ2]), (41)

where θ2 is the rotation angle of image Si(x, y) around its central point, θ1 is the image

brightness, function h(ων · t) = sin2(ων · t), and

f(F̄ν [Si, θ2]) =

∫

Ωx,ν×Ωy,ν

F̄ν [Si, θ2](ξ, γ)dξdγ. (42)

is simply an integral of the rotated image Si by an angle θ2 over the strip Ωx,ν × Ωy,ν .

For instance, let us have m horizontal strips aligned along the x-coordinates of the tem-

plates, and n vertically aligned strips along the y-coordinates. Then

Ωx,i × Ωy,i =

{
[a(i), b(i)]× [0, ymax], a(i) < b(i), i = 1, . . . , m
[0, xmax]× [a(i), b(i)], a(i) < b(i), i = m + 1, . . . , m + n

,

and integrals (42) transform into

f(F̄ν [Si, θ2]) =





∫ b(ν)

a(ν)

∫ ymax

0

F̄ν [Si, θ2](ξ, γ)dξdγ,ν = 1, . . . , m

∫ xmax

0

∫ b(ν)

a(ν)

F̄ν [Si, θ2](ξ, γ)dξdγ,ν = m + 1, . . . , m + n

(43)

Hence our temporal representation of the image and the templates is simply a weighted sum

of periodic functions of time sin2(ων · t), scaled by θ1, with weights determined by (43).

According to (24), (27), (30), (16) the recognition system (see Figures 3, 9 for its general

structure) can be described by the system of differential equations provided in Table 4. Im-

plementation details, initial conditions, and the source files of a working MATLAB Simulink

model can be found in (Tyukin et al., 2007).
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Function Image Template

Temporal
integration

φ̇0 = −1
τ
φ0 + k · θ1f(t, θ2) φ̇i = −1

τ
φi + k · θ̂1,if(t, θ̂2,i)

Adaptation
to brightness

No
θ̂1,i = (φ0 − φi)γ1 + λi,1

λ̇i,1 =
γ1

τ
(φ0 − φi)

Adaptation
to rotation

No

θ̂2,i = (λ2,i(t) + 1)π
λ̇i,2 = γ2λi,3‖φ0 − φi‖ε

λ̇i,3 = −γ2λi,2‖φ0 − φi‖ε

Detectors
of similarity

ẋ0 = −ax3
0 + bx2

0 + y0 − z0 + I
+u0 + φ0(t),

ẏ0 = c− dx2
0 − y0,

ż0 = ε(s(x0 + x̄0)− z0),

ẋi = −ax3
i + bx2

i + yi − zi + I
+ui + φi(t),

ẏi = c− dx2
i − yi,

żi = ε(s(xi + x̄0)− zi),

Coupling
function u0 = γ

(
−(N + 1)x0 +

∑
j 6=0 xj

)
ui = γ

(
−(N + 1)xi +

∑
j 6=i xj

)

Parameters

Temporal integration
subsystem:

τ = 1, θ1 = 2.3, θ2 =
π/4, k = 1/20, xmax = 101,
ymax = 101, m = 33, n = 17,
a(i) = 1, 4, 7, . . . , 101 − 3, ωi =
1/80 i ≤ m; a(i + m) =
1, 7, 13, . . . , ωi+m = 1/30, i ≤ n,
b(i) = a(i) + 3,

Detectors of similarity:

a = 1, b = 3, c = 1, d = 5, ε =
0.001, s = 4, γ = 0.5, I = −6.2,
x̄0 = 1.6

Intensity adaptation subsystem:

γ1 = 0.5

Rotation adaptation subsystem:

γ2 = 0.01, ε = 0.05

Table 4: Equations of the system for rotation and brightness-invariant template matching;
N – the total number of templates.
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Figure 8: Template matching for Garner patterns with 3 levels of complexity. The patterns
(upper row) were rotated by π/4 and varied in intensity levels. Depending on the number of
their rotational symmetries they induced different numbers of invariant sets in the system
state space: two, four and eight respectively. The diagrams of corresponding phase plots are
provided in the middle row. Estimates of the rotation angle as functions of time for different
initial conditions are depicted in the third row.

We tested system performance for a variety of input images, in particular the class of

Garner patterns (Garner, 1962) (see Figure 8, first row; for ease of computation we used

relatively low resolution images of 101 × 101, i.e. with xmax, ymax = 101). These patterns

serve as a interesting benchmark because in a long line of behavioral experiments, most

recently (Lachmann & van Leeuwen, 2005), the human pattern recognition process of these

patterns has been studied in great detail. Overall intensity of these patterns does not vary

from one pattern to another. At the same time, the number of symmetries increases from the

first, through the second to the third pattern in Figure 8. Because of this, their complexity

decreases proportionally (Garner, 1962).

Using as templates the first row of Figure 8, we developed and ran a recognition system,

of which the description is given in Table 4. The second row of Figure 8 illustrates the

system dynamics involved in template matching. The diagrams represent phase plots of the

successful node j (for the template subsystem in which the matching occurs). The third

row contains trajectories of the estimates of the rotation angle θ̂j,2(t). Each object induces
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various number of invariant sets in the template subsystems. The number of these invariant

sets is inversely proportional to stimulus complexity. Hence, the higher the complexity

the more time the system requires to reach one. Thus the time needed for recognition

increases monotonically with the stimulus complexity. This is consistent with empirical

results reported in experimental studies, for instance (Lachmann & van Leeuwen, 2005).

An additional property of our system is that it is capable of reporting multiple represen-

tations of the same object. This is indicated by the dashed trajectories in Figure 8. Even

though the system parameters are chosen such that trajectories converge to an attractor,

we can still observe meta-stable behavior. This is because the attractors in our system are

of Milnor-type, which implies that trajectories starting in the vicinity of one attractor may

actually belong to the basin of another attractor. Furthermore, it is even possible to tune

the system in such a way that it will always switch from one representation to another. The

latter property suggests that our simple system in Table 4 can model perceptual ambigu-

ity and binocular rivalry, where spontaneous switching and perceptual multi-stability are

commonly observed (Attneave, 1971; Leopold & Logothetis, 1999).

6.1.2 Rotation-invariant matching in images with multiple objects

Let us now consider the case in which two patterns are simultaneously present in an image.

As an image we chose a concatenation of two rotated Garner patterns. The values of rotation

angles and intensity of the patterns are unknown. In order to be able to detect and recognize

multiple patterns in the image, the system, in addition to ensuring rotation and intensity

adaptation, should be able to scan the image in space. Therefore we extend the system

for invariant template matching as proposed in the previous subsection (see Table 4) by

introducing an additional operation, i.e. a (moving) frame, which projects part of the image

into a spatiotemporal code, similarly to (41). In particular, instead of (41)–(43) we will deal

with the following spatiotemporal representation

θ1fi(t, θ2, p) = θ1

∑
ν

h(ων · t) · f(F̄ν [Si, θ2, p]), (44)

f(F̄ν [Si, θ2]) =





∫ b(ν)+p

a(ν)+p

∫ ymax

0

F̄ν [Si, θ2](ξ, γ)dξdγ,ν = 1, . . . ,m

∫ xmax

0

∫ b(ν)

a(ν)

F̄ν [Si, θ2](ξ, γ)dξdγ,ν = m + 1, . . . ,m + n

(45)

where p is the position of the frame in an image. The spatial configuration of the frame is

chosen to be identical to that of the templates.
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Figure 9: Diagram of the template-matching system detecting multiple objects in an image.
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Given that the true positions of the objects in the image are unknown, an extra adaptation

mechanism is needed to realize scanning behavior. Table 5 shows an economical way to

include such a mechanism into the system. Instead of having an additional compartment

within each template subsystem in order to realize the scanning of an image, we propose

that the frame of the recognition system moves along the x-coordinate of the image (see also

Fig. 9). The equations that govern this motion can be defined as

p = pmax
λ0,1 + 1

2
λ̇0,1 = γ0λ0,2 min

i∈{1,2}
{‖φ0 − φi‖ε}

λ̇0,2 = −γ0λ0,1 min
i∈{1,2}

{‖φ0 − φi‖ε},
(46)

where pmax determines the range of scanning. The value of γ0 is to be chosen small enough

and is set to be rationally independent on the value of γ2 to assure that the conditions of

Theorem 1 apply. This ensures that every combination of rotation angles and positions of

the templates in the image will be visited in the process of searching.

If we were to detect just one template in the image then adding these new equations

(44) – (46) to the previous system would suffice; it would then behave similarly to what is

shown in Fig. 8. However, if all patterns need to be recovered, a slight modification of the

adaptation algorithms is required.

In systems with weakly attracting sets connected by homoclinic trajectories (see e.g.

Fig. 8, the second row) intermittent switching between the attractors can be achieved by

arbitrarily small perturbations applied to the solutions. In our case we implement these

perturbations by adding a small positive constant δ to the error variables ‖φi(t) − φ0(t)‖ε.

This is reflected in the adaptation equations of Table 5.

We simulated this simple template-matching system, taking as an input image a com-

bination of two rotated and shifted Garner patterns (Fig. 10, on the right). The system

persistently reports the presence of two patterns (Fig. 10, on the left), and successfully esti-

mates their positions and rotation angles. Figure 11 shows the accurately of estimation and

demonstrates how much time the system spends in the states corresponding to successful

recognition. The latter amounts to about 50 percent of the total time spent; the rest is due

to transients. These values can be controlled by parameter δ > 0: the smaller its value δ the

more time the system will spend in the state of successful recognition.

An additional observation can be made about this model: in both template subsystems

there are domains (e.g., gray areas on the right in the left picture, and the areas on the left

in the right picture) that are visited relatively often despite absence of templates in these
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Figure 11: Normalized contour plots of the frequencies with which trajectories (θ̂2,i(t), p(t))
explore the parameter space of the modeled perturbations (rotation and translation). The
left panel corresponds to the Garner pattern with no symmetries (Template 1), and the
right panel corresponds to the pattern with one symmetry (Template 2). As these pictures
demonstrate, the system spends most of time in the small vicinities of true values of θ2

and p. In the case of Template 2 the most visited set consists of two separated domains
corresponding to two values of θ2 with identical temporal representation due to the symmetry.
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Function Image Template

Temporal
integration

φ̇0 = −1
τ
φ0 + k · θ1f(t, θ2, p) φ̇i = −1

τ
φi + k · θ̂1,if(t, θ̂2,i, 0)

Adaptation
to brightness

No
θ̂1,i = (φ0 − φi)γ1 + λi,1

λ̇i,1 =
γ1

τ
(φ0 − φi)

Adaptation
to rotation

No

θ̂2,i = (λ2,i(t) + 1)π
λ̇i,2 = γ2λi,3‖φ0 − φi‖ε

λ̇i,3 = −γ2λi,2‖φ0 − φi‖ε

Adaptation
position

p = pmax
λ0,1 + 1

2
λ̇0,1 = γ0λ0,2e

λ̇0,2 = −γ0λ0,1e,

e = min
i∈{1,2}

{‖φ0 − φi‖ε}+ δ

No

Detectors
of similarity

ẋ0 = −ax3
0 + bx2

0 + y0 − z0 + I
+u0,

ẏ0 = c− dx2
0 − y0,

ż0 = ε(s(x0 + x̄0)− z0),

ẋi = −ax3
i + bx2

i + yi − zi + I
+ui + φi(t)− φ0(t),

ẏi = c− dx2
i − yi,

żi = ε(s(xi + x̄0)− zi),

Coupling
function u0 = γ

(
−(N + 1)x0 +

∑
j 6=0 xj

)
ui = γ

(
−(N + 1)xi +

∑
j 6=i xj

)

Parameters
(additional or

having different
values than those
provided in the

previous examples)

Detectors of similarity:

γ = 0.4, I = 2.2

Position adaptation subsystem:

γ0 = 0.005/π, δ = 0.05, pmax =
101

Rotation adaptation subsystem:

ε = 0.2

Table 5: Equations of the system for rotation, position and brightness-invariant template
matching in images with multiple objects; N – the total number of templates.

regions. These are phantom states induced by the concurrent presence of several template

subsystems. These phantom states occur because the value of p is shared between the

template subsystems. If Template 1 is detected then the value of mini ‖φi(t) − φ0(t)‖ is
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Figure 12: Convergence time T as a function of γ1. Vertical gray line delimits the domain
of γ1 into two regions: γ1 ≥ γ2, and γ1 < γ2.

small, and position p is not changing much. Because the value of p is shared, the second

template subsystem is forced to search for Template 2 in the same position. This property

is reflected in the picture on the right.

6.1.3 Effect of differences in time scales

As we mentioned earlier, difference in time scales between adaptation to linearly and nonlin-

early parameterized uncertainties is likely to affect recognition performance. In particular,

our sufficient conditions suggest that accuracy is smaller when adaptation to linearly param-

eterized uncertainties is faster than adaptation to nonlinearly parameterized ones. Here we

check computationally if this prediction holds for the template matching system considered

in Section 6.1.1.

In order to avoid potential influence of image complexity, the Garner patter without sym-

metries was used. We computed system solutions starting from identical initial conditions

but for different values of γ1 ∈ [0.005, 0.1]. In total 200 equally spaced points in this interval

were tested. The value of ε, regulating the accuracy of inferring the true value of rotation

angle, was set to ε = 0.01. All other parameters were kept identical to the setup described

in Section 6.1.1.

For every γ1 we calculated the amount of time T (γ1) needed for the estimate of rotation

angle, θ̂2,1, to converge into a 5-percent neighborhood of its true value, π/4. This value was

chosen as estimate of convergence time. Results of these simulations are summarized in Fig.

12. As we observe, very small values of γ1, chosen in the interval [0.005, 0.01], result in large

convergence times. When the value of γ1 exceeds a certain threshold, γc = 0.02, convergence
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times T (γ1) reduce substantially and remain relatively constant with slight fluctuations for

all γ1 ∈ [γc, 0.1]. Notice that γc is two times larger than the value of γ2 corresponding to the

time scale of adaptation to rotation. This supports our initial hypothesis that separate time

scales of adaptation may be advantageous for system performance.

6.2 Tracking disturbances in scanning microscopes

We next consider the application of a template-matching system with weakly attracting sets

to a problem of realistic complexity. We applied our approach to the problem of tracking

morphological changes in dendritic spines based on measurements received from a multipho-

ton scanning microscope in vitro. A distinctive property of laser microscopy is that in order

to ”see” an object one needs, first, to inject it with a photo-sensitive dye (fluorophore). The

particles of the fluorophore emit photons of light under external stimulation, thus illumi-

nating an object from inside the tissue. Typical data from a two-photon microscope are

provided in Figure 137.

We addressed the problem of how to register fast dynamical changes in spine geometry

after application of chemical stimulation. The measurements were performed on slices. Here

the need for unstable convergence is motivated by nonlinearly and non-convexly parameter-

ized models of uncertainty. Measurements of this kind suffer from effects of photobleaching

and diffusion of the dye (see Figure 13), and dependance of the scattering of the emitted

light on the a-priori unknown position of the object in the slice. On-line estimation and

tracking photobleaching (intensity) and changes of the object position (blur) in the slice are

therefore necessary.

The measured signal is already a temporal sequence, which fits nicely to our approach.

An inherent feature of scanning microscopy is that the object is measured using a sequence

of scans along one-dimensional domains (see Figure 13, panel a). Hence the objects in this

case are one-dimensional mappings, and the domain Ωx is an interval Ωx = [xmin, xmax]. For

the particular images we set xmin = 1 and xmax = 176, which corresponds to a scanning line

of 176 pixels and 5.95 micro meters. In order to reduce measurement noise we consider the

averaged data in the scanning line over n successive subsequent trials.

The measured image, S0, was chosen to be the averaged data along the scanning line over

n successive subsequent trials. The template, S1, substituted the averaged measurements of

the object at the initial time T1.

Samples of data used to generate S1 are provided in Figure 14, a. These correspond to

7The images are provided by S. Grebenyuk, group of neuronal circuit mechanisms, RIKEN BSI
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Figure 13: Typical images from the two-photon microscope. Panel a shows a dendrite;
the domain of scanning (red line) is in the vicinity of two spines (small protrusions on the
dendrite). Size of the domain is 5.95 micron, and speed of scanning, vs, is 1 pixel per 2 micro
seconds. Panel b shows results of scanning as a function of time in the beginning (interval
[T1, T2]), in the middle of experiment (domain [T3, T4]), and in the end of the experiment
(domain [T5, T6]).

the intensity of the emitted radiation from the object in the red part of the spectrum for

the data shown in Figure 13, b, fragment 1. Measured objects, S0, are the averaged samples

of data at the time instants Ti 6= T1 (proportional to Ts). Focal distortions were simulated

using conventional filters from Photoshop applied to S1. These fragments are provided in

Figure 14, panels b and c.

The sources of perturbation are the effects of photobleaching (affecting brightness) and

deviations in the object position in the slice (affecting scattering and leading to blurred

Figure 14: Data which has been used to generate the template, S1 (panel a), and perturbed
measurements S0 at time instants T2 and T3 (panels b and c respectively).
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Figure 15: Trajectories e(t), θ̂1(t), θ̂2(t) as functions of time. Black lines and regions corre-
spond to measurements in Fig. 14, panel b. Blue lines and regions correspond to the data
in Fig. 14, panel c.

Figure 16: Plots of the synchronization errors x0(t) − x1(t) as a function of time. Panel a
corresponds to the data depicted in Fig. 14, b. Panel b corresponds to the measurements
shown in Fig. 14, c.

images). Therefore the following model of uncertainty was used:

θ1f1(x, θ2, t) = θ1

∫

Ωx

e−θ2(ξ−x(t))2S1(ξ)dξ, (47)

where x(t), the scanning trajectory in (47), is defined as:

x(t) =

{
xmin + ks · t t ≤ xmax − xmin

x(t− (xmax − xmin)), t > xmax − xmin
, ks = 1.

Figures 15, 16 show the performance of our system (24), (27), (30), (16) in tracking

focal/brightness perturbations for two measurements S0. Figure 15 shows the tracking

of unknown modelled perturbations in the images. Figure 16 shows the synchronization

errors of the detection subsystem. Symbol tsyn denotes ”synchronization time” spent in

the vicinity of the invariant synchronization manifold. As follows from both figures, the

system successfully tracks/reconstructs the estimates of unknown perturbations applied to

the object (Fig. 15). Coincidence detectors report synchrony only when the error between
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the profiles of the template and object is sufficiently small (Fig. 16). The actual time

required for recognition on a standard PC was less than 5 seconds.

7 Conclusion

We provided a principled solution to the problem of invariant template matching on the

basis of temporal coding of spatial information. We considered the problem at the levels

of mathematical analysis as well as implementation of specific recognition systems. Our

analysis showed that a solution to the problem requires us to abandon the traditional notion

of stable attractor, in the Lyapunov sense, for defining the target set of a system (van

Leeuwen, 1990). As a substitute we proposed the concept of Milnor attracting sets. At the

level of implementation we provided systems in which such attractors emerge as a result of

external stimulation. These systems are endowed with mathematical rigor in the form of

conditions sufficient for ensuring global convergence of trajectories to their target invariant

sets. The results provided are normative in the sense that we require a minimal number of

additional variables and consider as simple structures as possible.

Even though the proposed system stems from theoretical considerations, it captures qual-

itatively a wide range of phenomena observed in biological visual perception. These include

multiple time scales for different modalities during adaptation (Wolfson & Graham, 2000;

Webster et al., 2002; Smith et al., 2006), switching and perceptual multi-stability (Attneave,

1971; Leopold & Logothetis, 1999), the principle of complementarity in perceptual represen-

tation (Hatfield & Epstein, 1985), empirical observations in mental rotation (Lachmann &

van Leeuwen, 2005) and decision time distributions (Smith & Ratcliff, 2004). The presence

of multiple time scales in adaptation could explain the 1/f signature of times scales in hu-

man behavior (Gilden, 2001). This motivates our belief that present results may contribute

to the further understanding of visual perception in biological systems, including humans.

We demonstrated that the problem of invariant recognition can be solved by a simple

system of ordinary differential equations with locally Lipschitz right-hand side. This result

can be used as an existence proof for solving the problem of adaptive recognition by means

of recurrent neural networks with fixed weights. Such systems are being used in various

computational tasks (Prokhorov et al., 2002) without any guarantee of a solution. We

guarantee that, with such networks, solutions to realistic recognition problems ensuring

invariance to rotation, blur, scaling, translation etc. can be obtained.
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Appendix 1 Optimality of sampled representations

Consider an image S(x, y) and its quantized version Sq obtained from S(x, y) by dividing

domain Ωx × Ωy into the union of finite number of subsets Ωx,j × Ωy,i, Ωx = ∪Nx
j Ωx,j,

Ωy = ∪Ny

i Ωy,i. To each subset Ωx,j ×Ωy,i a value is assigned, which can be thought of as the

median value of S(x, y) over Ωx,j×Ωy,i. We represent Sq as a function of indices i, j: Sq(i, j)

and assume that the value of Sq(i, j) is quantized by a set of Ns levels.

Consider a system of sensors which are capable of measuring image S(x, y) instanta-

neously over the given k-union of subsets Ωx,j × Ωy,i. The system’s cost can be naturally

defined in terms of its total number of sensors. In order to measure the entire image at once

the system must have at least NxNy/k sensors8, so in the optimal case its cost C should

equal C(k) = NxNy/k.

We estimate the amount of information contained in this sampled representation of the

image. The image is represented by an NxNy/k-tuple of elements. Each element is assigned

a value, say σi, from a set of Ns levels with the given probability p(σi). Hence the entropy

of the representation is

H(k) = −
∑

i

p(σi) log

(
k

NxNy

p(σi)

)
= log

(
NxNy

k

)
−

∑
i

p(σi) log p(σi)

The entropy characterizes the informational content of a representation, and function 1/H(k)

its ambiguity.

Overall losses, Q(k), therefore can be defined as a weighted sum of costs, C(k), and

ambiguity, 1/H(k):

Q(k) = λ1C(k) + λ21/H(k), λ1, λ2 ∈ R>0, k ∈ [1, NxNy]

Function Q(k) is unimodal and increasing towards the boundaries of k: k = 1, k = NxNy.

This implies that the minimum of Q(k) is achieved for some k = k∗ ∈ (1, NxNy). In other

words, a representation is optimal only when it is sampled, e.g. induced by a finite, yet

neither complete nor elementary, partition of the domain Ωx × Ωy.

8For simplicity we assume that NxNy can be expressed as multiples of k.
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Appendix 2 Proofs of the theorems

Proof of Theorem 1. We prove the theorem in three steps. First, we show that the solution of

the extended system (24), (27), (30) is bounded. Second, we prove that there are constants

ρ, b, ε and time instant t′ > 0 such that the following holds for system solutions:

‖φ0(t)− φi(t)‖ε ≤ e−ρ(t−t0)‖φ0(t0)− φi(t0)‖ε + b‖θ2 − θ̂i,2(τ)‖∞,[t0,t] ∀ t ≥ t0 > t′ (48)

Third, using this representation we invoke results from (our paper) and demonstrate that

the conclusions of the theorem follow.

1. Boundedness. To prove boundedness of the solutions of the extended system in forward

time let us first consider the difference ei(t) = φ0(t)− φi(t). According to (24), dynamics of

ei(t) will be defined as

ėi = −1

τ
ei + k

(
θ1fi(t, θ2)− θ̂i,1fi(t, θ̂i,2)

)
+ ε(t) (49)

Noticing that

θ1fi(t, θ2)− θ̂i,1fi(t, θ̂i,2) = [θ1fi(t, θ2)− θ1fi(t, θ̂i,2)] + [θ1fi(t, θ̂i,2)− θ̂i,1fi(t, θ̂i,2)]

and denoting δ1 = θ̂i,1 − θ1, δ2(t, θ1, θ2, θ̂i,2) = θ1fi(t, θ2)− θ1fi(t, θ̂i,2) we can rewrite (49) as

follows

ėi = −1

τ
ei − δ1[kfi(t, θ̂i,2)] + δ2(t, θ1, θ2, θ̂i,2)k + ε(t) (50)

Let us now write equations for θ̂i,1−θ1 in (26) in differential form. To do so we differentiate

variable θ̂i,1 − θ1 = δ1 with respect to time, taking into account equations (49), (50):

δ̇1 = −γ1

(
δ1[kfi(t, θ̂i,2)]− δ2(t, θ1, θ2, θ̂i,2)k − ε(t)

)
(51)

Variable ε(t) in (51) is bounded according to (23). Let us show that δ2(t, θ1, θ2, θ̂i,2) is

also bounded. First of all notice that the following positive definite function

Vλ = 0.5
(
λ2

2 + λ2
3

)

is not growing with time:

V̇ = λ2γ2λ3‖φ0(t)− φi(t)‖ε − λ3γ2λ2‖φ0(t)− φi(t)‖ε = 0

Furthermore

λ2(t) = r · sin
(

γ2

∫ t

t0

‖φ0(τ)− φi(τ)‖εdτ + ϕ0

)

λ3(t) = r · cos

(
γ2

∫ t

t0

‖φ0(τ)− φi(τ)‖εdτ + ϕ0

)
, r, ϕ0 ∈ R

(52)
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Choosing initial conditions λ2
2(t0) + λ2

3(t0) = 1 ensures that r = 1. Hence, according to

equation (30), variable θ̂i,2 belongs to the interval [θ2,min, θ2,max].

Consider variable δ2(t, θ1, θ2, θ̂i,2):

δ2(t, θ1, θ2, θ̂i,2) = θ1fi(t, θ2)− θ1fi(t, θ̂i,2(t)) = θ1

(
fi(t, θ2)− fi(t, θ̂i,2(t)

)
(53)

Taking into account notational agreement (9), and properties (5), (8), we conclude that the

following estimate holds

|δ2(t, θ1, θ2, θ̂i,2)| ≤ θ1|fi(t, θ2)− fi(t, θ̂i,2(t)| ≤ θ1,maxDD2|θ2 − θ̂i,2(t)| (54)

Given that θ̂i,2(t) ∈ [θ2,min, θ2,max] and using (54) we can provide the following estimate for

δ2(t, θ1, θ2, θ̂i,2):

|δ2(t, θ1, θ2, θ̂i,2)| ≤ θ1,maxDD2|θ2,max − θ2,min| (55)

Let us consider equality (51). According to condition 1) of the theorem, term

α(t) = kfi(t, θ̂i,2(t))

is nonnegative and bounded from below:

α(t) = kfi(t, θ̂i,2(t)) ≥ kD3, ∀ t ≥ 0 (56)

Taking into account equations (51), (56) we can estimate |δ1(t)| as follows:

|δ1(t)| ≤ e
−γ1

∫ t
t0

α(τ)dτ |δ1(t0)|+ γ1e
−γ1

∫ t
t0

α(τ)dτ

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|ε(τ) + δ2(τ)k|dτ (57)

According to (23), (55) we have that for all t ≥ t0 ≥ 0

|ε(t) + δ2(t)k| ≤ ‖ε(τ) + kδ2(τ)‖∞,[t0,t] ≤ ∆ + kθ1,maxDD2|θ2,max − θ2,min| = M1 (58)

Furthermore
∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1dτ =
1

γ1

(
1

α(t)
e

γ1

∫ t
t0

α(τ)dτ − 1

α(t0)

)
≤ 1

γ1D3k
e

γ1

∫ t
t0

α(τ)dτ
(59)

Taking into account (57), (58), and (59) we can obtain the following estimate:

|δ1(t)| ≤e−γ1kD4(t−t0)|δ1(t0)|+ M1

D3k
(60)

Inequality (60) proves that δ1(t) is bounded.

In order to complete this step of the proof it is sufficient to show that ei(t) is bounded.

This would automatically imply boundedness of φi(t), thus confirming boundedness of state
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of the extended system. To show boundedness of ei(t) let us write the closed-form solution

of (49):

ei(t) = e−
(t−t0)

τ ei(t0) + e−
t
τ

∫ t

t0

e
τ1
τ (δ1(τ1)α(τ1) + kδ2(τ1) + ε(τ1)) dτ1 (61)

Using (58) and (60) we can derive that

|ei(t)| ≤ e−
(t−t0)

τ |ei(t0)|+ M1τ

(
1 +

D4

D3

)
+ ε1(t), (62)

where ε1(t) is an exponentially decaying term:

|ε1(t)| ≤ e−γ1kD3(t−t0)

(
1− e−( 1

τ
−γ1kD3)(t−t0)

1
τ
− γ1kD3

)
|θ1 − θ̂i,1(t0)|. (63)

As follows from (52), (60), (62), (63), variables ei(t), θ̂i,1(t), θ̂i,2(t) are bounded. Hence the

state of the extended system is bounded in forward time.

2. Transformation. Let us now show that there exists a time instant t′ and constants

ρ, c ∈ R>0 such that the dynamics of ei(t) = φ0(t)− φi(t) satisfies inequality (48). In order

to do so we first show that term

δ1(t)kfi(t, θ̂i,2(t))

in (50) can be estimated as

|δ1(t)kfi(t, θ̂i,2(t))| ≤ M2|θ2 − θ̂i,2(t)|+ ∆2 + ε2(t) (64)

where M2, ∆2 are positive constants and ε2(t) is a function of time which converges to zero

asymptotically with time.

According to (57) the following holds

|δ1(t)| ≤ e
−γ1

∫ t
t0

α(τ)dτ |δ1(t0)|+ γ1e
−γ1

∫ t
t0

α(τ)dτ

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|ε(τ) + δ2(τ)k|dτ

Taking into account (23), (56) we can conclude that

|δ1(t)| ≤ e−γ1kD3(t−t0)|δ1(t0)|+ ∆

kD3

+ γ1e
−γ1

∫ t
t0

α(τ)dτ

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|δ2(τ)k|dτ (65)

Substituting (54) into (65) results in

|δ1(t)| ≤e−γ1kD3(t−t0)|δ1(t0)|+ ∆

kD3

+

γ1e
−γ1

∫ t
t0

α(τ)dτ

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|θ2 − θ̂i,2(τ)|dτ · (kθ1,maxDD2)

(66)
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Consider the following term in (66):
∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|θ2 − θ̂i,2(τ)|dτ (67)

Integration of (67) by parts yields

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1|θ2 − θ̂i,2(τ)|dτ =
1

γ1

(
1

α(t)
e

γ1

∫ t
t0

α(τ)dτ |θ2 − θ̂i,2(t)| − |θ2 − θ̂i,2(t0)|
α(t0)

)

− 1

γ1

∫ t

t0

1

α(τ)
e

γ1

∫ τ
t0

α(τ1)dτ1

(
d|θ2 − θ̂i,2(τ)|

dτ

)
dτ ≤

1

γ1kD3

e
γ1

∫ t
t0

α(τ)dτ |θ2 − θ̂i,2(t)|+ 1

γ1kD3

∫ t

t0

e
γ1

∫ τ
t0

α(τ1)dτ1

∣∣∣∣∣
d|θ2 − θ̂i,2(τ)|

dτ

∣∣∣∣∣ dτ

(68)

Given that

θ̂2,i = θ2,min +
θ2,max − θ2,min

2
(λ2(t) + 1),

we can estimate the derivative d|θ2 − θ̂2,i(t)|/dt as follows:

d|θ2 − θ̂i,2(t)|
dt

≤ θ2,max − θ2,min

2
· γ2 · |φ0(t)− φi(t)| (69)

Notice that the value of |φ0(t)− φi(t)| = ei(t) in (69) can be estimated according to (62) as

|φ0(t)− φi(t)| ≤ M1τ

(
1 +

D4

D3

)
+ µ1(t),

where µ1(t) ∼ ε1(t) + ei(t)e
− (t−t0)

τ is an asymptotically decaying term.

Hence, taking into account (59), (62), (66), (68), and (69) we may conclude that the

following inequality holds

|δ1(t)| ≤ θ1,maxDD2

D3

|θ2 − θ̂i,2(t)|+ ∆

D3k
+

γ2

γ1

θ1,maxDD2

D2
3k

θ2,max − θ2,min

2
M1τ

(
1 +

D4

D3

)
+ µ(t)

where µ(t) is asymptotically vanishing term. Therefore (64) holds with the following values

of M2 and ∆2:

M2 =
kθ1,maxDD2D4

D3

∆2 =
γ2

γ1

[
θ1,maxDD2D4

(D3)2
M1τ

(
1 +

D4

D3

)
θ2,max − θ2,min

2

]
+

∆D4

D3

(70)

To finalize this step of the proof consider variable ei(t) for t ∈ [t1,∞], t1 ≥ t0. According

to (61), (54) we have that

|ei(t)| ≤ e−
t−t1

τ |ei(t1)|+ τM2‖θ2 − θ̂i,2(t)‖∞,[t1,t]+

τ∆2

(
1− e−

(t−t1)
τ

)
+ τ‖ε2(t)‖∞,[t1,∞]

(
1− e−

(t−t1)
τ

)
+

τkθ1,maxDD2‖θ2 − θ̂i,2(t)‖∞,[t1,t] + τ∆
(
1− e−

(t−t1)
τ

)
(71)
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Regrouping terms in (71) yields:

|ei(t)| − τ
(
∆2 + ∆ + ‖ε2(t)‖∞,[t1,∞]

) ≤ e−
t−t1

τ

(|ei(t1)| − τ
(
∆2 + ∆ + ‖ε2(t)‖∞,[t1,∞]

))

+ τ(M2 + kθ1,maxDD2)‖θ2 − θ̂i,2(t)‖∞,[t1,t]

Denoting

∆′ = τ
(
∆2 + ∆ + ‖ε2(t)‖∞,[t1,∞]

)
(72)

we can obtain

|ei(t)| −∆′ ≤ e−
t−t1

τ (|ei(t1)| −∆′) + τ(M2 + kθ1,maxDD2)‖θ2 − θ̂i,2(t)‖∞,[t1,t]

≤ e−
t−t1

τ ‖ei(t1)‖∆′ + τ(M2 + kθ1,maxDD2)‖θ2 − θ̂i,2(t)‖∞,[t1,t]

(73)

Given that

‖ei(t)‖∆′ =

{ |ei(t)| −∆′, |ei(t)| > ∆′

0, |ei(t)| ≤ ∆′

and taking into account inequality (73), we can conclude that

‖ei(t)‖∆′ ≤ e−
t−t1

τ ‖ei(t1)‖∆′ + τ(M2 + kθ1,maxDD2)‖θ2 − θ̂i,2(t)‖∞,[t1,t] (74)

Because equations (71) – (74) hold for any t1 ∈ (t0,∞] and that

lim sup
t1→∞

‖ε2(t)‖∞,[t1,∞] = 0

for every

ε > τ(∆ + ∆2)

there exists a time instant t′ ≥ t0 such that the following inequality is satisfied

‖ei(t)‖ε ≤ e−
t−t1

τ ‖ei(t1)‖ε + τ(M2 + kθ1,maxDD2)‖θ2 − θ̂i,2(t)‖∞,[t1,t] (75)

for all t ≥ t1 ≥ t′. This proves (48) for ρ = 1
τ
, b = τ(M2 + kθ1,maxDD2). Hence the second

step of the proof is completed.

3. Convergence. In order to prove convergence we employ the following result from

(Tyukin et al., 2008):

Lemma 1 (Corollary 3 in (Tyukin et al., 2008)) Consider the following interconnec-

tion of two systems:

Sa : ‖x(t)‖A ≤ ‖x(t0)‖A · βt(t− t0) + c · ‖h(τ)‖∞,[t0,t], x : R≥0 → Rn

Sw :

∫ t

t0

γ ‖x(τ)‖A dτ ≤ h(t0)− h(t) ≤
∫ t

t0

γ̄ ‖x(τ)‖A dτ, ∀ t ≥ t0, t0 ∈ R+

(76)
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where the systems Sa, Sw are forward-complete9, function βt : R≥0 → R≥0 is strictly mono-

tone and decreases to zero as t →∞. Let us suppose that the following condition is satisfied

γ̄ · c · G < 1, (77)

where

G = β−1
t

(
d

κ

)
k

k − 1

(
βt(0)

(
1 +

κ

1− d

)
+ 1

)

for some d ∈ (0, 1), κ ∈ (1,∞).

Then there exists a set Ωγ of initial conditions corresponding to trajectories x(t), h(t)

such that

lim sup
t→∞

‖x(t)‖A ≤ c · h(t0); h(t) ∈ [0, h(t0)] ∀ t ≥ t0

In particular, Ωγ contains the following domain

‖x(t0)‖A ≤
1

βt(0)

[
1

γ̄

(
β−1

t

(
d

κ

))−1
k − 1

k
− c

(
βt(0)

(
1 +

κ

1− d

)
+ 1

)]
h(t0).

In order to apply Lemma 1 we need to further transform equations (52), (75) and

θ̂i,2(t) = θ2,min +
θ2,max − θ2,min

2
(λ2(t) + 1) (78)

into the form of equation (76). First, we notice that for every θ2 ∈ [θ2,min, θ2,max] there always

exists a real number λ∗ ∈ [−1, 1] such that

θ2 = θ2,min +
θ2,max − θ2,min

2
(λ∗2 + 1)

Hence, denoting

c = τ(M2 + kθ1,maxDD2)
θ2,max − θ2,min

2

and using (75) we ascertain that the following holds for solutions of system (24), (27), (30):

‖ei(t)‖ε ≤ e−
t−t1

τ ‖ei(t1)‖ε + c‖λ∗2 − λ2(t)‖∞,[t1,t] (79)

for ε > τ(∆ + ∆2), and t ≥ t1 ≥ t′.

Consider the difference λ∗2 − λ2(t). According to (52) we have

|λ∗2 − λ2(t)| ≤ |σ∗ −
∫ t

t1

γ2‖ei(τ)‖ε − ϕ0|, λ∗2 = sin(σ∗) (80)

9We say that a system is forward-complete iff its state is defined in forward time for all admissible
inputs. For the system Sa the inputs are functions h(t) from L∞[t0, t]. For the system Sw the inputs are
locally-bounded in t functions x(t).
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Denoting

h(t) = σ∗ −
∫ t

t1

γ2‖ei(τ)‖ε − ϕ0 (81)

and taking into account (79), we therefore obtain the following equations

‖ei(t)‖ε ≤ e−
t−t1

τ ‖ei(t1)‖ε + c‖h(t)‖∞,[t1,t]

h(t1)− h(t) =

∫ t

t1

γ2‖ei(τ)‖εdτ
(82)

Equations (82) are a particular case of equations (76) to which Lemma 1 applies. In system

(82), however, function βt(t) is defined as βt(t) = e−
t
τ . Hence

β−1
t (t) = −τ ln(t)

Therefore, according to Lemma 1, satisfying inequality

γ2 · c · τ ln
(κ

d

) k

k − 1

((
1 +

κ

1− d

)
+ 1

)
< 1 (83)

for some κ ∈ (1,∞), d ∈ (0, 1) ensures existence of initial conditions ei(t1), h(t1) such that

h(t) is bounded. Given that

min
κ∈(1,∞),,d∈(0,1)

ln
(κ

d

) k

k − 1

((
1 +

κ

1− d

)
+ 1

)
≈ 15.6886 < 16

we can rewrite condition (83) in a more conservative, yet simpler form:

γ2 · c · τ <
1

16

Taking into account notations (70), (81) we can rewrite this inequality as follows:

γ2 <

(
1

4τ

)2 [
kθ1,maxDD2

(
1 +

D4

D3

)(
θ2,max − θ2,min

2

)]−1

Notice that because the function sin(·) is periodic, the value of σ∗ in (80) and, subse-

quently the value of h(t1), can be chosen arbitrarily large. Hence for any finite ei(t1) and ϕ0

there will always exist σ∗ and h(t1) such that variable h(t) is bounded.

Taking into account that h(t) is monotone and bounded, we can conclude that according

to the Bolzano-Weierstrass theorem function h(t) has a limit in [0, h(t1)]:

∃h∗ ∈ [0, h(t1)] : lim
t→∞

h(t) = h∗.

This in turn implies that

lim
t→∞

∫ t

t1

γ2‖ei(τ)‖εdτ = σ∗ − ϕ0 − h∗ < ∞
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Therefore

∃ θ′2 ∈ [θ2,min, θ2,max] : lim
t→∞

θ̂i,2(t) = θ2,min +
θ2,max − θ2,min

2
(sin(σ∗ − ϕ0 − h∗) + 1) = θ′2

Moreover, because ‖ei(t)‖ε is uniformly continuous in t, convergence of ‖ei(t)‖ε to zero as

t →∞ follows immediately from Barbalat’s lemma. The theorem is proven.

Proof of Theorem 2. The proof consists of three major steps. First, we show that a

single Hindmarsh-Rose oscillator is a semi-passive system with radially unbounded storage

function (Pogromsky, 1998). In other words, system:

ẋ = −ax3 + bx2 + y − z + I + u

ẏ = c− dx2 − y

ż = ε(s(x + x0)− z), a, b, c, d, ε, s > 0

(84)

obeys the following inequality

V (x(t), y(t), z(t))− V (x(0), y(0), z(0)) ≤
∫ t

0

x(τ)u(τ)−H(x(τ), y(τ), z(τ))dτ. (85)

where function H(·) is non-negative outside a ball in R3, and function V is positive definite

and radially unbounded. Second, similar to (Pogromsky, 1998), we show that semi-passivity

of (84) implies that solutions of the coupled system (16) are bounded. Third, for an arbitrary

pair (i, j) of oscillators we present a nonnegative function such that properties (35), (36)

hold for sufficiently large values of γ. Then we use the comparison lemma (Khalil, 2002) to

complete the proof.

1) Semi-passivity of the Hindmash-Rose oscillator. Let us consider the following class of

functions V :

V (x, y, z) =
1

2

(
c1x

2 + c2y
2 + c3z

2
)

Then showing existence of a function V from the above class which, in addition satisfies

inequality

V̇ ≤ xu−H(x, y, z), (86)

where H is non-negative outside some ball in R3, would imply semi-passivity of (84).

Consider the time-derivative of V :

V̇ (x, y, z) = −c1ax4 − c2dx2y − c2y
2 + c1xy

− c3εz
2 + (c3εs− c1)xz + c1bx

3 + c1Ix + c2cy + c3εsx0z + c1xu. (87)
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Let us rewrite (87) such that the cross terms xy, xz and x2y are expressed in terms of the

powers of x, y, z and their sums. In order to do this we employ the following three equalities:

−c2y
2 + c1xy = −c2λ2y

2 − c2(1− λ2)
(
y − c1

2c2(1− λ2)
x
)2

+
c1

2

4c2(1− λ2)
x2 (88)

− c3εz
2 + (c3εs− c1)xz = −c3ελ3z

2 − c3ε(1− λ3)
(
z − c3εs− c1

2c3ε(1− λ3)
x
)2

+
(c3εs− c1)

2

4c3ε(1− λ3)
x2

(89)

− c1ax4− c2dx2y = −c1aλ1x
4− c1a(1− λ1)

(
x2 +

c2d

2c1a(1− λ1)
y
)2

+
(c2d)2

4c1a(1− λ1)
y2 (90)

In what follows we will assume that constants λ1, λ2 and λ3 in (88)–(90) are chosen arbitrarily

in the interval (0, 1): 0 < λi < 1, i = 1, 2, 3.

Taking equalities (88)–(90) into account, we can rewrite the time derivative of V (equation

(87)) in the following form:

V̇ (x, y, z) = −c1a(1− λ1)
(
x2 +

c2d

2c1a(1− λ1)
y
)2

− c2(1− λ2)
(
y − c1

2c2(1− λ2)
x
)2

+

− c3ε(1− λ3)
(
z − c3εs− c1

2c3ε(1− λ3)
x
)2

− c2

(
λ2 − c2d

2

4c1a(1− λ1)

)
y2 + c2cy+

− c3ελ3z
2 + c3εsx0z − c1aλ1x

4 + c1bx
3 +

( c1
2

4c2(1− λ2)
+

(c3εs− c1)
2

4c3ε(1− λ3)

)
x2 + c1Ix + c1xu

(91)

Our goal is to express the right-hand side of (91) in the following form:

V̇ ≤ c1xu + (M −H0(x, y, z)) , (92)

where H0(x, y, z) is a radially unbounded nonnegative function outside a ball in R3, and M

is a constant. For this reason we select constants λ2, c2 in (86) as follows:

λ2 − c2d
2

4c1a(1− λ1)
> 0, or

c2

c1

<
4aλ2(1− λ1)

d2
. (93)

Noticing that

− c2

(
λ2 − c2d

2

4c1a(1− λ1)

)
y2 + c2cy =

− c2

(
λ2 − c2d

2

4c1a(1− λ1)

)(
y − 2cc1a(1− λ1)

4λ2c1a(1− λ1)− c2d2

)2

+
c1c2c

2a(1− λ1)

4λ2c1a(1− λ1)− c2d2
(94)

−c3ελ3z
2 + c3εsx0z = −c3ελ3

(
z − sx0

2λ3

)2

+
c3εs

2x0
2

4λ3
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proves representation (92) for any fixed x = const. In order to show that (92) holds with

respect to the complete set of variables, e.g. (x, y, z) we use the following sequence of

equalities:

− c1aλ1x
4 + c1bx

3 +
( c1

2

4c2(1− λ2)
+

(c3εs− c1)
2

4c3ε(1− λ3)

)
x2 + c1Ix = (see notations below)

− a0x
4 + a1x

3 + a2x
2 + a3x + a4 =

− b0x
4 − (

x− b1

)4
+ b2x

2 + b3x + b4 =

− b0x
4 − (

x− b1

)4
+

(
b2 + d0

)
x2 − d0

(
x− d1

)2
+ d2 =

− b0

(
x2 − e0

)2 − (
x− b1

)4 − d0

(
x− d1

)2
+ e1 (95)

with

a0 = c1aλ1, a1 = c1b, a2 =
c1

2

4c2(1− λ2)
+

(c3εs− c1)
2

4c3ε(1− λ3)

a3 = c1I, a4 = 0 b0 = a0 − 1, b1 = 1
4
a1, b2 = a2 + 3

8
a1

2, b3 = a3 − 1
16

a1
3, b4 = a4 + 1

256
a1

4

d0 = 1, d1 =
b3

2d0

, d2 = b4 + d1
2d0, e0 =

b2 + d0

2b0

, e1 = d2 + b0e0
2

(96)

Notice that we want the value of b0 in (95), (96) be positive. Hence the value of

a0 = c1aλ1

should be greater than 1. This can be ensured by choosing the value of c1 in (86) to be

sufficiently large. As a result of this choice, taking restrictions (93) into account, we conclude

that the value of c2 in (86) must be sufficiently small, e.g. satisfy the following inequality:

c2 < c1
4aλ2(1− λ1)

d2
.

The value for d0 can be chosen arbitrarily, here d0 = 1.

Time-derivative V̇ can now be written as follows

V̇ (x, y, z) = −c1a(1− λ1)
(
x2 +

c2d

2c1a(1− λ1)
y
)2

− c3ε(1− λ3)
(
z − c3εs− c1

2c3ε(1− λ3)
x
)2

− c2(1− λ2)
(
y − c1

2c2(1− λ2)
x
)2

− c3ελ3

(
z − sx0

2λ3

)2

+
c3εs

2x0
2

4λ3

+

− c2

(
λ2 − c2d

2

4c1a(1− λ1)

)(
y − 2cc1a(1− λ1)

4λ2c1a(1− λ1)− c2d2

)2

+
c1c2c

2a(1− λ1)

4λ2c1a(1− λ1)− c2d2
+

− b0

(
x2 − e0

)2 − (
x− b1

)4 − d0

(
x− d1

)2
+ e1 + c1xu (97)
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It is straightforward to see that expression (97) is of the form (92), where

H0(x, y, z) = c1a(1− λ1)
(
x2 +

c2d

2c1a(1− λ1)
y
)2

+ c3ε(1− λ3)
(
z − c3εs− c1

2c3ε(1− λ3)
x
)2

+ c2(1− λ2)
(
y − c1

2c2(1− λ2)
x
)2

+ c3ελ3

(
z − sx0

2λ3

)2

+ c2

(
λ2 − c2d

2

4c1a(1− λ1)

)(
y − 2cc1a(1− λ1)

4λ2c1a(1− λ1)− c2d2

)2

+ b0

(
x2 − e0

)2
+

(
x− b1

)4
+ d0

(
x− d1

)2

M =
c3εs

2x0
2

4λ3

+
c1c2c

2a(1− λ1)

4λ2c1a(1− λ1)− c2d2
+ e1

Let us denote

H1(x, y, z) = H0 −M

and rewrite (92) as

V̇ ≤ c1xu−H1(x, y, z)

Function H1(x, y, z) is radially unbounded. Furthermore, it is non-negative outside a ball in

R3. Hence choosing

V ∗(x, y, z) =
1

c1

V (x, y, z)

we assure existence of (radially unbounded) positive definite V ∗(x, y, z) such that

V̇ ∗ ≤ xu− H1(x, y, z)

c1

, (98)

where H1(x, y, z)/c1 is radially unbounded and non-negative outside a ball in R3. Thus,

according to (86), semi-passivity of the Hindmarsh-Rose system follows.

2) Boundedness of the solutions. We aim to prove that boundedness of φi(t), i ∈
{0, . . . , n} implies boundedness of the state of the coupled system. Without loss of gen-

erality we assume that

‖φi(τ)‖∞,[0,∞] ≤ Dφ

Let us denote

Vi = V ∗(xi, yi, zi), H1,i =
1

c1

H1(xi, yi, zi).

Consider the following function

VΣ(x,y, z) = ρ

(
n∑

i=0

Vi(xi, yi, zi), C

)
. (99)

where x = col(x0, . . . , xn), y = col(y0, . . . , yn), z = col(z0, . . . , zn) and

ρ(s, C) =

{
s− C, s ≥ C

0, s < C
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Function VΣ is nonnegative for any C ∈ R and, furthermore, is radially unbounded. Hence,

its boundedness for some C ∈ R implies boundedness of xi, yi, zi, i ∈ {0, . . . , n}.
Let us pick C ∈ R such that interior of the domain

ΩC = {x,y, z ∈ R |
n∑

i=0

Vi(xi, yi, zi) ≤ C}

contains the domain
n∑

i=0

H1,i(xi, yi, zi)− κx2
i < Mi, Mi ∈ R>0, κ ∈ R>0

where Mi is an arbitrarily large and κ is an arbitrary small positive constant. In other words

the following implication holds:

n∑
i=0

Vi(xi, yi, zi) ≥ C ⇒
n∑

i=0

H1,i(xi, yi, zi)− κx2
i ≥ Mi (100)

Such C always exists because H1,i(xi, yi, zi)−κx2
i can be expressed as a sum of a nonnegative

quadratic form in xi, yi, zi and non-negative functions of the higher order plus a constant,

and Vi(xi, yi, zi) is a positive-definite quadratic form.

Consider time-derivative of function VΣ(x,y, z). According to (99), (98) it is zero for all

x,y, z ∈ ΩC , and satisfies the following inequality otherwise:

V̇Σ ≤
∑

xiui −
n∑

i=0

H1,i(xi, yi, zi) = γxT Γx +
n∑

i=0

xiφi(t)−
n∑

i=0

H1,i(xi, yi, zi)

Using Gershgorin’s circle theorem, we can conclude that

V̇Σ ≤
n∑

i=0

xiφi(t)−
n∑

i=0

H1,i(xi, yi, zi)

Rewriting

xiφi(t) = −κ

(
xi − φi(t)

2κ

)2

+ κx2
i +

1

4κ
φ2

i (t), κ > 0

leads to the following inequality

V̇Σ ≤ κ

n∑
i=0

x2
i −

n∑
i=0

(
H1,i(xi, yi, zi)−

D2
φ

4κ

)
= −

n∑
i=0

(
H1,i(xi, yi, zi)−

D2
φ

4κ
− κx2

i

)

Hence, choosing the value of C such that Mi ≥ D2
φ/4κ in (100) we can ensure that

V̇Σ ≤ 0

This implies that VΣ(x(t),y(t), z(t)) is not growing with time. Hence trajectories xi(t), yi(t),

zi(t) in the coupled system are bounded.
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3) Convergence to a vicinity of the synchronization manifold. Consider the i-th and j-th

oscillators in (16), i, j ∈ {0, . . . , n}, i 6= j. Let us introduce the following function

V = 0.5
(
Cx(xi − xj)

2 + Cy(yi − yj)
2 + Cz(zi − zj)

2
)
, (101)

where Cx, Cy > 0 are to be defined and Cz = Cx/(sε).

Its time-derivative can be expressed as follows:

V̇ = −Cx(xi − xj)
2

(
ax2

i

2
+

ax2
j

2
+

a(xi + xj)
2

2
− b(xi + xj) + γ(n + 1)

)
(102)

+Cx(yi − yj)(xi − xj)− Cyd(xi − xj)(xi + xj)(yi − yj)

−Cy(yi − yj)
2 − Czε(zi − zj)

2 + Cx(xi − xj)(φi − φj)

Consider the following term in (102):

Cx(yi − yj)(xi − xj)− Cyd(xi − xj)(xi + xj)(yi − yj)− Cy(yi − yj)
2.

It can be written as follows:

C2
x

4Cy∆1

(xi − xj)
2 −

((
C2

x

4Cy∆1

)0.5

(xi − xj)− (∆1Cy)
0.5 (yi − yj)

)2

+

+
Cyd

2

4∆2

(xi − xj)
2(xi + xj)

2 − Cy

((
d2

4∆2

)0.5

(x2
i − x2

j) + ∆0.5
2 (yi − yj)

)2

−(1−∆1 −∆2)(yi − yj)
2, (103)

where ∆1, ∆2 ∈ R>0 and ∆1 + ∆2 ∈ (0, 1). Taking (103) into account we rewrite (102) as:

V̇ ≤ −Cx(xi − xj)
2

(
ax2

i

2
+

ax2
j

2
+

a(xi + xj)
2

2
− Cyd

2

Cx4∆2

(xi + xj)
2 (104)

−b(xi + xj) + γ(n + 1)− Cx

4Cy∆1

)
− Czε(zi − zi+1)

2

−Cy(1−∆1 −∆2)(yi − yj)
2 + Cx(xi − xj)(φi − φj)

Let
Cy

Cx

=
2a∆2

d2
.

Then

V̇ ≤ −Cx(xi − xj)
2

(
a

2

(
xi − b

a

)2

+
a

2

(
xj − b

a

)2

+ γ(n + 1)− d2

8a∆1∆2

− b2

a

)

−(1−∆1 −∆2)Cy(yi − yj)
2 − Czε(zi − zi+1)

2 + Cx(xi − xj)(φi − φj). (105)

55



Hence, choosing

γ >
1

(n + 1)a

(
d2

8∆1∆2

+ b2

)
.

we can ensure that the first term in (105) is non-positive. The minimal value of γ ensuring

this property can be calculated by minimizing the value

1

8∆1∆2

for all ∆1, ∆2 ∈ R>0: ∆1 + ∆2 < 1. This can be done by letting ∆2 = r − ∆1, r ∈ (0, 1)

and differentiating the term 1/(8∆1(r−∆1)) with respect to ∆1. This leads to the following

solution: ∆1 = r/2, ∆2 = r/2. Taking this into account we rewrite (105) as follows

V̇ ≤ −Cx(xi − xj)
2

(
a

2

(
xi − b

a

)2

+
a

2

(
xj − b

a

)2

+ γ(n + 1)− d2

2ar
− b2

a

)

−(1− r)Cy(yi − yj)
2 − Czε(zi − zi+1)

2 + Cx(xi − xj)(φi − φj). (106)

Let

γ =
1

(n + 1)a

(
d2

2
+ b2

)
+ ε1, ε1 ∈ R>0.

Alternatively, we can rewrite this as

γ =
1

(n + 1)a

(
d2

2r
+ b2

)
+ ε2, r ∈ (0, 1), ε2 ∈ R>0

Hence, according to (106) the following inequality holds:

V̇ ≤ −Cxε2(xi − xj)
2 − (1− r)Cy(yi − yj)

2 − Czε(zi − zi+1)
2 + Cx(xi − xj)(φi − φj).

Then denoting α = 2 min{ε2, ε, (1− r)} we obtain

V̇ ≤ −αV + Cx(xi − xj)(φi − φj) (107)

Consider the following differential equation

υ̇ = −αυ + Cx(xi − xj)(φi − φj) (108)

Its solution can be estimated as follows

|υ(t)| ≤ e−α(t−t0)|υ(t0)|+ e−αt

∫ t

t0

eατCx(xi(τ)− xj(τ))(φi(τ)− φj(τ))dτ

for all t ≥ t0. Given that xi(t), xj(t) are bounded there exists a constant B such that

|υ(t)| ≤ e−α(t−t0)|υ(t0)|+ CxB

α
‖φi(τ)− φj(τ)‖∞,[t0,t]

Then, by applying the comparison lemma (see, for example (Khalil, 2002), page 102), we

can conclude that

V (t) ≤ e−α(t−t0)V (t0) +
CxB

α
‖φi(τ)− φj(τ)‖∞,[t0,t].

Hence, conclusion 2) of the theorem follows. The theorem is proven.
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