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Abstract 
Three commonly used techniques for combining uncertain evidence are explored with reference to 
different three types of land cover knowledge: numerical distributions, relative spectral distances, and 
human expert “rules of thumb”. In attempting to combine such evidence Bayes’, Dempster-Shafer and 
Endorsement theories answer different questions depending on nature of the land cover evidence 
(completeness and format). The approaches therefore have different utilities in the development of 
automated approaches to land cover monitoring. Whilst Bayes’ and Dempster-Shafer theories may be 
more useful in situations where evidence is expressed numerically, Bayes’ theorem requires a complete 
probability model. The advantage of Endorsement theory derives from its ability to represent different 
kinds of evidence in a natural form. It is a fundamentally symbolic approach that represents and reasons 
with knowledge of real-world problems and allows inferences to be drawn from partial knowledge. Such 
an approach is advantageous in knowledge acquisition and expert system development. 
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1. Introduction 
 
The aim of this work is to explore the relative utility of three methods for combing uncertain evidence in 
order to facilitate automated GIS approaches to land cover monitoring. Such approaches are being 
developed to update the Land Cover of Scotland 1988 survey (LCS88) through the integration of 
knowledge about land cover in an artificial intelligence (AI) environment (Comber et al, 2001). This 
knowledge includes land cover bio-geographic, and reflectance characteristics, expert descriptions of the 
land cover changes possible and interpreter “rules of thumb” used in the process of land cover mapping 
from aerial photography. Such interpretation routinely involves the use of contextual information (Paine, 
1981). This may be from the imagery (the tone, texture and contrast within the scene), the bio-physical 
conditions at the micro- (hillside) or macro- (landscape) scale, evidence of the local land management, 
and from first hand knowledge of the area. The interpreter brings the combined effects of these factors 
upon the land cover together. 
 
There is considerable uncertainty associated with such land cover knowledge: land cover classes cannot 
be uniquely defined in terms of their species composition (Comber et al, 2001), their position in bio-
physical feature space (Armstrong and Milne, 1995), their reflectance characteristics (e.g. Price, 1994; 
Blackburn and Steele, 1999) and the rules of thumb employed to map them. In order to facilitate the 
development of expert land cover monitoring systems that incorporate data and knowledge from a variety 
of sources, such as SYMOLAC (Skelsey, 1997), a further dimension of uncertainty has to be considered: 
that of the rules used to combine the data. The knowledge used by human interpreters may be better 
represented as a series of “if X then probably Y” rules, with the probably having various degrees of 
strength depending on the land cover under consideration, the geographic location of the scene, the 
management context, and so on. Some of the land cover knowledge is described in qualitative terms and 
does not lend itself to easy and transparent numeric representation. It is difficult to ascribe numerical 
values to the strength of the evidence provided by the expert rules of thumb – their strength will depend 
on the specific context of the land cover change under consideration – and allocating values to qualitative 
statements would be open to criticism that it is not empirical. Any results derived by analysis of such 
evidence could be accused of being pre-determined. It is within this application complexity that methods 
are sought to manage the uncertainty from different knowledge sources.  
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Three methods for combining uncertain information commonly are described in the AI literature: Bayes’, 
Dempster-Shafer and Endorsement theories. Of these, Bayes’ and Dempster-Shafer are the most widely 
known and have caused two distinct schools of thought to be delineated. Bayes’ theorem is described in 
most introductory texts to AI (e.g. Jackson, 1986; Norvig and Russell, 1995), and see Howson and 
Urbach (1993) for a more detailed discussion. Much recent work describes modifications to Dempster-
Shafer theory, but Parsons (1994) provides a clear introduction to the application and mechanics of 
Dempster-Shafer. A good description of the arguments and counter-arguments put forward by both sides 
of the Bayes-Dempster-Shafer dichotomy is contained in a text edited by the main protagonists from 
either side: Shafer & Pearl (1990). Endorsement theory is the third approach to combining uncertain 
information described here. It is non-numeric approach was developed by Cohen (1985), and has been 
used in some automated mapping applications, where different types of evidence have been combined 
(e.g. Srinivasan and Richards, 1990; Srinivasan and Richards, 1993; Skelsey, 1997).  
 
Section 2 describes the land cover knowledge, the three approaches to combining uncertain evidence are 
introduced in Section 3 and Section 4 discusses the issues raised by apply Dempster-Shafer, Bayes and 
Endorsement theorems to the different types of land cover knowledge. Some conclusions are presented in 
Section 5.  
 
2. Knowledge or “evidence” 
 
Different analyses have elicited various types of knowledge and data about different aspects of land 
cover. These include matrices of the possible land cover changes at Time2 from any land cover class at 
Time1, distributions of land cover over different environmental gradients, land cover class reflectance 
characteristics and statements from air-photo interpreters of their rules of thumb. It is desirous to 
combine this information in order to determine the likely land cover class of an area identified as having 
changed since Time1. However this evidence has “uncertainty” associated with it.  
 
The transition matrices provide a list of all the possible land cover changes at Time2 from any land cover 
class at Time1. This list forms the initial set of land cover change direction hypotheses and is 
comprehensive. However it includes some extremely unlikely transitions such as those that will not occur 
because of the time frame for the transition. For instance, changes to Peatland vegetation, whilst possible, 
will take millennia. 
 
The rules of thumb can be specific or ambiguous in their applicability. This ambiguity can have an 
ecological basis and can be rooted in the nature of the classification scheme, LCS88. They vary in the 
confidence with which they can be applied. For instance, rules such as “There will not be any changes in 
scattered-rock status (an LCS88 classification feature)” could be reliably used to eliminate certain change 
hypotheses either pre- or post-analysis. Whilst one would have much less confidence in applying a rule 
such as “There probably will not be any changes in scattered-tree status (another LCS88 feature)”. Other 
rules of thumb define land cover bio-geographic parameters such as “Undifferentiated Smooth 
Grasslands will only be found on slopes greater than 15°”. 
 
The presence of any particular vegetation community can be seen as the interaction between the 
environmental gradients and the management practice at that point (Comber et al 2001). Therefore bio-
geographic phenomena might be expected to indicate the presence of land cover classes. Overlaying 
environmental datasets provides distributions of land cover over such gradients. An example of the 
distribution of land cover classes with slope is shown in Table 1. The land cover classes in Table 1 are a 
subset of the actual classes in the Elgin-Speyside area in NE Scotland. Whilst the distribution of land 
cover with slope is presented here, it is noteworthy that land cover class is not uniquely defined by its 
bio-geographic position. This contributes uncertainty about the extent to which such environmental data 
can be used to individual land cover classes.  

 
Further land cover knowledge is provided by comparing the reflectance characteristics of the change area 
with those of the various land cover classes. The “closeness” of the change area reflectance properties to 
the class populations can be measured and this provides another source of evidence about land cover 
change directions. This can be done by measuring the relative distance of the change area median to 
some measure of central tendency such as the class medians. In Table 2, this relative distance is derived 
from the inverse of the measured distance. This calculation of spectral distance is very simplistic. 
However it serves to illustrate the type of data and information about the spectral characteristics of land 
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cover classes might be available as evidence, regardless of remote sensor, band or band index. The data 
in Table 2 illustrates the origins of this work: land cover class reflectance values are not unique and it 
would difficult to label the change area to any particular land cover class with confidence (although it 
could be stated that it likely to be a grassland). 
 
In summary, the descriptions of the data and knowledge have illustrated the uncertainty involved in using 
such evidence to infer land cover change direction. Indeed, some of the evidence may be contradictory. 
For instance, from the data in Table 1 it is apparent that some Undifferentiated Smooth Grasslands is 
found on slopes less than 15°, contrary to one of the expert statements. Further, not all of the possible 
land cover change directions indicated by the transition matrix are likely. There may also be doubt about 
the applicability of interpreter rules of thumb, in the strength of evidence provided by distributions land 
cover across bio-geographic phenomena and by reflectance characteristics for determining the direction 
of land cover change. However, together these pieces of evidence, although uncertain, can provide 
enough weight to indicate actual land cover change direction. What is needed is some method to 
combine such uncertain evidence. It should be emphasised that this uncertainty is not associated with the 
cartographic paradigm, commonly considered in much GIS research. We are not concerned here with 
such issues as boundary position and polygon attribute allocation. Rather, it is the uncertainty in the land 
data and knowledge itself and the extent to which it can be reliably applied to the problem of determining 
land cover change direction that is explored via three techniques for combining uncertainty evidence.  
 
3. Approaches to combining uncertain evidence 
 
3.1. Bayes’ Theorem 
 
Bayes’ theorem provides a simple numerical method for updating the probability of a hypothesis given 
an observation of evidence. It computes the probability of an hypothesis or event, h given the evidence, e 
in support of that event, P(h|e). More complex forms exist for revising the probability of a number of 
hypotheses by pooling the weights of pieces of evidence (e.g. Cohen, 1985). However the issues raised 
by using this approach to combining the evidence described in Section 2 can be illustrated using the 
simpler, more familiar form: 

 

Equation 1. 
where,  p(h|e) is the posterior probability of hypothesis h given 
evidence e, 

p(h) ) is the prior probability, 
p(e|h) is the likelihood, and  
p(e) is the probability of the evidence. 

As we have no initial reason to believe one hypothesis over another p(h), nor any belief in the probability 
of the evidence, p(e), these terms can considered constant for all hypotheses. Therefore the relative value 
posterior probability for each hypothesis depends on the likelihood of the evidence given the hypothesis, 
p(e|h). From the areas of different land cover classes with different categories of slope data in Table 1 we 
can calculate p(e|h) on a per slope category basis, that is by dividing each element in the table by total 
area for that type of evidence. These are shown in Table 3.  
 
The issues raised by using Bayes’ theorem to determine the strength of belief in each hypothesis can be 
illustrated by considering the data in Table 3. If the change area has a slope in the range 3-8°, then the 
evidence in Table 3 would indicate a shift to Arable (0.45) despite only a third or so of the total Arable 
area being in that category of slope. This is due to the large area of Arable in the Elgin-Speyside region. 
Other classes such as Undifferentiated Heather Moorland, have a low probability (0.11) despite a third of 
its total area being on that type of slope. This is after all what Bayes’ theorem does: it determines the 
probability of the hypothesis given the evidence. The entities used to provide evidence in this case are the 
areas of land cover class in each slope category. The hypotheses with large areas will be classes with the 
highest probability and indicated as the likely land cover change. (If counts of land cover polygons in 
each slope category were the entities, then the results of applying Bayes’ theorem to such data would be 
biased towards land cover classes with largest number of polygons.) However, this is not necessarily the 
answer that we require. What we would like is the probability of the change class being Undifferentiated 
Heather Moorland given the evidence that slope is 3-8°, relative to the distribution of Undifferentiated 
Heather Moorland across the categories of slope. This would mean calculating the distributions of land 
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cover classes with environmental features on a per land cover class basis. However, to organise the data 
in this way, so that any results are not biased towards the land cover classes with the largest entities (in 
this case area), changes the question that is being answered. Organising the data so that it reflects the 
relative likelihood of the evidence given the hypothesised land cover class, changes the question that is 
answered. By calculating distributions on a per land cover class basis means that question being 
answered is “how likely is the evidence (over other types of evidence) given the class?” rather than “how 
likely is the class (over other classes) given this evidence?”.  
 
The issues raised by the organisation of the slope data are compounded by the application of Bayes’ 
theorem to the other evidence. The reflectance “distances” in Table 2 do not represent a distribution 
across all the classes: they are not probability measures summing to unity. Rather they are measures of 
the closeness of the change area to the possible change directions. In that sense they are per class 
evidence and indicate the likelihood of the evidence given the hypothesis (land cover class). If the 
interpreter rules of thumb were to be incorporated into a Bayesian analysis they would have to be given 
numeric values. For those with strong conclusions, a value can be allocated to the x number of 
hypotheses that are supported by the rule of 1 / x. The allocation of values to the more ambiguous rules 
of thumb is more problematic. Consider the rule that “There probably will not be any changes in 
scattered-tree status”. We have no indication of the strength of the rule relative to any of the change 
hypotheses. Therefore allocating a value would be arbitrary.  
 
3.2. Dempster-Shafer  
 
Dempster-Shafer theory is another numerical method for combining uncertain evidence. A numerical 
measure of the weight of evidence (mass assignment, m) is assigned to sets of hypotheses as well as 
individual hypotheses. Dempster-Shafer is not a method that considers the evidence hypothesis by 
hypothesis as Bayes’ theorem does, rather the evidence is considered in light of the hypotheses. A second 
piece of evidence is introduced by combining the mass assignments (m and m’) using Dempster's rule of 
combination, to create a new mass assignment m’’. Dempster’s rule of combination is defined by: 
 

 

(Equation 2, from Parsons, 1994) 
That is, the combined mass assignment of C (m´´(C)) is equal to the sum of m(Ai) * m´(Bj)) for all i and j 
such that set Ai ∩ Bj is equal C. The result of combining two assignments is that for any intersecting sets 
A and B, where A has mass M from assignment m and B has mass M´ from assignment m´, the belief 
accruing at their intersection is the product of M and M´. Or, “sum for each combination of A and B that 
overlap with C”. This process can be repeated for additional evidence D, such that m´´´´(E) equals each 
overlapping combination of m´´(C) and m´´´(D). 
 
Applying Dempster-Shafer to the data or evidence we have presented is not straightforward. The data has 
to be organised so that a piece of evidence is seen to support a set of change hypotheses, with a 
percentage certainty that the solution is to be found in that set. For instance, if the change area has a slope 
in the range 3-8°, from Table 3 it would be difficult to determine the members of the subset of 
hypotheses supported by that evidence and the weight of evidence, m, for that subset. We would like to 
be able to say, for instance, that the subset of {Wet Heather Moorland, Undifferentiated Heather 
Moorland, Undifferentiated Smooth Grassland} is indicated by that evidence with a strength of X, as 
these classes have the largest proportion of their areas on slopes of that type (from Table 1). But because 
of the detail contained in Table 1, we also know that the subset members have considerable portions of 
their populations on other slope types. It would be preferable to have evidence with a greater degree of 
disaggregation such as a statement from an expert that they are 60% sure that evidence indicates one of 
the subset of hypotheses. In this sense there may be too much evidence in the data contained in Tables 1 
and 3 for Dempster-Shafer. Of course, the data in Table 1 can be re-organised so that for each land cover 
class only one type of slope is indicated. This is shown in Table 4. Determining the subset of hypotheses 
from Table 4 is straightforward. However, further contortions are necessary to generate a mass 
assignment for evidence. One solution is to determine the mass assignment by the proportion of 
hypotheses supported by the (disaggregated) data. So that for slope type 3-8°, the subset {Wet Heather 
Moorland, Undifferentiated Heather Moorland, Undifferentiated Smooth Grassland} is supported with a 
strength of 3/7. 
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To derive similar subsets and strengths of belief for the reflectance data in Table 2, would require 
applying a threshold. We might decide that land cover classes whose medians are within 5 of the change 
area will constitute the subset of hypotheses supported by this evidence. The mass assignment for the 
subset could be calculated in the same manner as for the slope evidence, by the proportion of the total 
number of hypotheses falling within that threshold. The application of uncertain rules of thumb in a 
Dempster-Shafer approach requires that they be given numeric values. Again, similar to Bayes’ theorem, 
we have no indication of the strength of the rule relative to any of the change hypotheses and any 
allocation of a numerical value to that rule would be arbitrary. 
 
3.3. Endorsement Theory 
 
Endorsement theory (Cohen, 1985) is a non-numerical approach to combining uncertain evidence. 
Evidence is given a description of the belief that it contributes to a hypothesis being true. Different 
strengths of beliefs are defined, and a hypothesis is given an endorsement depending on all the different 
statements of belief and disbelief, accrued from the evidence. Although endorsements and beliefs are 
given names, the names are tokens. Their meanings derive from specifying the situations in which they 
are applicable, how they combine and how they are ranked.  This requires the definition of four aspects 
of the problem (Sullivan and Cohen, 1985): 
i) Beliefs must be identified and named. For instance we could define and rank our beliefs and 

disbeliefs as: 
- “conclusive-belief” where a single piece of evidence alone indicates that the hypothesis is 

true; 
- “prima-facie” where the evidence alone would support the hypothesis, but may be 

contradicted; 
- “strong” where the evidence contributes some of the overall support for the hypothesis;  
- “weak” where the evidence supports the hypothesis, but not enough to conclude about it.  

ii) The interaction of beliefs when combined must be specified to produce overall endorsements. In 
this example the endorsements are defined as:  
- “definite-hypothesis” when the evidence provides conclusive belief and no conclusive 

disbelief; 
- “confident-hypothesis” when the combined evidence provides prima-facie belief and no 

prima-facie disbelief; 
- “likely-hypothesis” when strong belief is greater than strong disbelief; 
- “indicated-hypothesis” when weak belief is greater than weak disbelief; 
- “contradicte- hypothesis” when the weights of belief and disbelief are equal, and further 

evidence is required to be able to conclude about the hypothesis. 
iii) A system for ranking endorsements must be specified. The endorsements strength, in this 

example, goes from definite to confident to likely to indicated.  
iv) Rules must be defined to decide when evidence accrued is “believable enough”. This decision 

depends on the endorsement of the evidence and on the intended use of that evidence. It may be 
that a single piece of evidence providing conclusive belief in a hypothesis, would be enough to 
stop the reasoning process, and enable conclusions to be drawn. It is noteworthy that this kind of 
evidence is rare for the determination of land cover change direction.  

From the above it is obvious that individual problem domains will have characteristic kinds of beliefs 
endorsements, and criteria for reasoning with them. Endorsement model makes sources of uncertainty 
explicit and takes a much more heuristic approach to reasoning about uncertainty than either Dempster-
Shafer or Bayesian approaches. Firstly it is able to represent common knowledge (such as ambiguous 
API knowledge) in a natural form. Secondly its symbolic approach is adequate to represent and to reason 
with such knowledge and real-world problems. Thirdly such reasoning allows inferences to be drawn 
from partial knowledge (Srinivasan and Richards, 1993). The question that the endorsement-based 
approach seeks to answer is “what are the sources of uncertainty in the reasoning process, and where 
were they introduced?” The meaning of this answer is then interpreted through the method by which 
endorsements combine and how they are ranked. 
 
These aspects of the approach can be illustrated by considering the slope evidence. Suppose that we 
again have a change area with a slope in the range 3-8°. A simple approach would be to take the evidence 
from Table 1 in isolation from other available evidence and to allocate beliefs to that evidence. One way 
of doing this is to go back to the raw data in Table 1. If the largest land cover area is also in the slope 
category 3-8°, then beliefs can be allocated to the hypotheses that change is to Wet Heather Moorland, 
Undifferentiated Heather Moorland and to Undifferentiated Smooth Grassland. We have no particular 
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indication of the strength of evidence that slope type contributes to individual hypotheses, so one 
approach is to relate the strength of belief to the proportion of it in the same slope category as the change 
area.  For instance, conclusive belief if the percentage of that class found on that slope type was greater 
than 95%, prima-facie belief if greater than 60%, strong belief if greater than 40% and weak belief if 
greater than 25%. The per land cover class distributions of slope type, and the associated strength of 
belief that they confer upon the evidence, according to the scheme above, are presented in Table 5. 

 
The evidence from the reflectance data in Table 2 can also be allocated beliefs according to a scheme 
based on the proximity of the change area median to the class medians. For the interpreter rules of thumb 
we do not have the problem of trying to quantify them numerically. Due to the heterogeneous nature of 
much semi-natural land cover in terms of its bio-geographic distribution and definition, few rules of 
thumb will offer very strong or prima-facie evidence, and even fewer will contribute evidence that is 
conclusive. Those that do are self-defining. For instance, the rule of thumb that states “There will not be 
any changes in scattered-rock status”. Most will contribute some strong evidence, which together with 
other contextual evidence enables the land cover to be determined. For instance, “Undifferentiated 
Smooth Grasslands will only be found on slopes greater than 15°”. In this way the interpreter rules of 
thumb can be readily combined using Endorsement theory, which combines those qualitative terms 
explicitly.  
 
4. Discussion and conclusions 
The question that the Bayesian approach is answering is “what is the belief in A?” as expressed by the 
unconditional probability that A is true given evidence, e ?” In principal the Bayesian approach can be 
applied to any problem involving uncertainty, assuming that precise probabilities can be assessed for all 
events. The rules of the probability calculus are uncontroversial, they ensure that the conclusions are 
constant with these assessments and it is easy to understand what Bayesian theory does. It is the 
assumption of precision that can be unacceptable because in practice it can be difficult to make many 
precise assessments of probabilities. In order to apply Bayes’ theorem in a consistent manner to the 
different types of evidence presented here requires some data re-organisation. The slope distributions 
have to be calculated on a per land cover class basis to avoid biasing results towards hypotheses with the 
largest number of entities (areas). The reflectance data has to be re-organised so that the distances 
summed to unity and the ambiguous rules of thumb have to be allocated numeric values. However, such 
contortions change the meaning of the data and the results. The conclusion is that Bayes’ theorem is most 
suited to problems where there are probabilities for all events. It does poorly where there is partial or 
complete ignorance, or limited or conflicting information and it cannot deal with imprecise, qualitative or 
natural language judgements such as “if A then probably B”.  These are not easily accommodated 
because of the requirement for precise assessments and a complete probability model. 
 
Whereas a Bayesian approach assesses probabilities directly for the answer, the Dempster-Shafer 
approach assesses evidence for related questions. It can be thought of as answering the question “what is 
the belief in A, as expressed by the probability that the proposition A is provable given the evidence?” 
(Pearl, 1988). In this sense Dempster-Shafer can model various types of partial ignorance, limited or 
conflicting evidence and is a more flexible model than Bayes’ theorem. Although because of this, it has 
been criticised for not giving clear guidance to understand its conclusions (e.g. Walley, 1996; Howson 
and Urbach, 1993) and it can produce conclusions that are counter-intuitive. Dempster-Shafer is 
computationally simpler than Bayes’ theorem. However some important types of uncertainty such as 
judgements of probability in ordinary language are not easily modeled. An approach for disaggregating 
the slope data into a single statement for each of the land cover classes was described, and a method 
found for allocating mass assignments. However, whilst it may be possible to re-organise the data and 
knowledge about land cover into a format suitable for combination, a considerable amount of evidence is 
lost in this process. In conclusion, Dempster-Shafer is most suited to situations where beliefs are 
numerically expressed and where there is some degree of ignorance, i.e. there is an incomplete model. 
 
Endorsement theory allows the definition of beliefs and their interaction to be specified according to the 
problem domain being considered. The question that the endorsement-based approach answers is “what 
are the sources of uncertainty in the reasoning process, and where were they introduced?” The meaning 
of this answer is then interpreted through the method by which endorsements combine and how they are 
ranked. Despite some aspects of endorsement models being cumbersome they have one distinct 
advantage over numerical approaches: their results contain explicit information about why one believes 
and disbelieves. Consequently it is possible to reflect on these, and decide how to act - a very useful 
property for expert system development. Historically, expert systems have used numerical techniques to 
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assess subjective degrees of belief in uncertain alternatives: it is very easy to rank them, and 
combinations are calculated by simple arithmetic rules. The application of endorsement-based 
approaches is most suited to situations where subjective degrees of belief do not generally behave as 
probabilities. The knowledge elicitation phase of the construction of expert systems is one such 
application area: domain experts are often uncomfortable committing themselves to numerical values. 
Numbers may be ambiguous and composed of salience and probability considerations. Endorsements are 
records of sources of uncertainty and provide explicit records of the introduction of uncertainty into the 
reasoning process.  However, they may be inappropriate for domains in which numerical degrees of 
belief have a clear semantics and are adequate expressions of all information about uncertainty. In these 
situations Bayesian approaches may be preferable. 
 
In conclusion, the relative value of Endorsement theory over Bayes’ and Dempster-Shafer theories is due 
to: 
1) Its ability to incorporate qualitative knowledge such as rules of thumb into the method of evidence 

evaluation; 
2) Conflicting evidence is not aggregated and lost, as in numeric methods, rather it is explicitly handled 

and included in the hypothesis endorsement explanations; 
3) It does not rely on mathematical functions to produce a numerical description of the strength of the 

combined evidence. Instead, Endorsement theory produces a description of the evidence, its strength 
of belief and the method by which it was combined, allowing the operator to trace back through the 
reasons for every hypothesis endorsement.  

The utility of Endorsement theory for reasoning about uncertainty in AI applications therefore stems 
from its ability to represent different kinds of knowledge in a natural form. It is a fundamentally 
symbolic approach that represents and reasons with knowledge of real-world problems. It allows 
inferences to be drawn from partial knowledge and consequently the approach can function in the early 
stages of knowledge acquisition and expert system development.  
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Table 1. Land cover class distribution of slope in the Elgin-Speyside area (in 10,000m2) 
 

 Slope 
Land cover class 0-2° 3-8° 9-15° 16-25° > 25° 

arable 17209.38 9164.81 2218.43 51.80 1.25 
dry heather moorland 919.70 2084.67 2456.46 445.97 11.91 
wet heather moorland 520.21 548.54 131.65 0.00 0.00 
undifferentiated heather moorland 1565.94 2195.54 1856.51 335.56 6.67 
smooth grassland with rushes 2975.60 2975.36 216.85 13.52 0.05 
smooth grassland with scrub 828.29 600.12 421.58 41.19 0.16 
undifferentiated smooth grassland 378.20 475.53 453.84 91.47 4.34 

Total 26007.61 20344.09 7791.39 982.22 24.56 
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Table 2. A measure of the distance between the class histogram medians and the histogram 
median of an area of change in Landsat band 2 for the Elgin-Speyside area 
 

Land cover class median distance 1/distance 
Change area 32   
arable 30 2 0.500 
dry heather moorland 20 12 0.083 
wet heather moorland 24 8 0.125 
undifferentiated heather moorland 22 10 0.100 
smooth grassland with rushes 30 2 0.500 
smooth grassland with scrub 31 1 1 
undifferentiated smooth grassland 34 2 0.500 
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Table 3. The likelihoods of the hypotheses given the slope evidence from Table 1. 
 

 Slope 
Land cover class 0-2° 3-8° 9-15° 16-25° > 25° 

arable 0.66 0.45 0.28 0.05 0.05 
dry heather moorland 0.04 0.10 0.32 0.45 0.48 
wet heather moorland 0.02 0.03 0.02 0.00 0.00 
undifferentiated heather moorland 0.06 0.11 0.24 0.34 0.27 
smooth grassland with rushes 0.11 0.15 0.03 0.01 0.00 
smooth grassland with scrub 0.03 0.03 0.05 0.04 0.01 
undifferentiated smooth grassland 0.01 0.02 0.06 0.09 0.18 

 



 12 

Table 4. The slope types containing the largest area for land cover classes in the Elgin-Speyside 
area are indicated by a “X”. 
 

 Slope 
Land cover class 0-2° 3-8° 9-15° 16-25° > 25° 

arable X     
dry heather moorland   X   
wet heather moorland  X    
undifferentiated heather moorland  X    
smooth grassland with rushes X     
smooth grassland with scrub X     
undifferentiated smooth grassland  X    
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Table 5. Per land cover class distributions of slope type, and the strength of belief that they confer. 
 

 Slope 
Land cover class 0-2° 3-8° 9-15° 16-25° > 25° 

arable 0.60  
prima-facie 

0.32 
weak 

0.08 
none 

0.00 
none 

0.00 
none 

dry heather moorland 0.16 
none 

0.35 
weak 

0.42 
strong 

0.08 
none 

0.00 
none 

wet heather moorland 0.43 
strong 

0.46 
strong 

0.11 
none 

0.00 
none 

0.00 
none 

undifferentiated heather moorland 0.26 
weak 

0.37 
weak 

0.31 
weak 

0.06 
none 

0.00 
none 

smooth grassland with rushes 0.48 
strong 

0.48 
strong 

0.04 
none 

0.00 
none 

0.00 
none 

smooth grassland with scrub 0.44 
strong 

0.32 
weak 

0.22 
none 

0.02 
none 

0.00 
none 

undifferentiated smooth grassland 0.27 
weak 

0.34 
weak 

0.32 
weak 

0.07 
none 

0.00 
none 

 
 
 


