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Abstract

In this paper, we develop an importance sampling method with the help of flexible control
on the Lévy measure in the density transformation. The method has significant efficacy even
on evaluating random variables with complex path-dependent structures. Numerical examples
are presented to illustrate convergence acceleration through variance reduction with a view
towards financial derivatives pricing.
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1 Introduction

In practical finance, one often needs to rely on the Monte Carlo simulations, e.g., for pricing
financial derivatives or for computing their Greeks as soon as their analytical formula cannot be
derived. In particular, when asset price dynamics are modeled by general Lévy processes, we
hardly arrive at desired analytical solutions. In spite of the intense need for the Monte Carlo
method due to its wide applicability, its square root convergence is not always satisfactory and
thus it has been a major effort to develop various variance reduction techniques for Monte Carlo
simulations, including the importance sampling method.

The aim of this paper is to develop an importance sampling method based on the density trans-
formation of Lévy processes. In the Brownian setting, on one hand, there is the literature discussing
importance sampling and their methods are based only on transformation of the drift parameter,
but not of the variance. Indeed, the Girsanov transformation tells us that in the Brownian case,
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the transformation of the drift is the best one could do. On the other hand, although the density
transformation of general Lévy processes is of much complexity, its relatively unrestricted control
on the Lévy measure may change the shape of the marginal, which is the key of our construction.

The rest of the paper is organized as follows. Section 2 recalls the density transformation and
the series representation of Lévy processes, which are building blocks for our entire construction.
Section 3 introduces our new importance sampling method and, for illustration purpose, considers
a simplified Esscher-transform framework so as to look closely at how our method serves as a
variance reduction method. Section 4 presents numerical examples with discussion on some issues
arising out of actual numerical procedures. Finally, Section 5 concludes this work.

2 Preliminaries

Let us begin with some notations which will be used throughout the text. Rd is the d-dimensional
Euclidean space with the norm ‖ · ‖, Rd

0 := Rd \ {0} and B(Rd
0) is the Borel σ -field of Rd

0 . L=

and L→ denote, respectively, equality and convergence in distribution, or of the finite dimensional
distributions when random processes are considered. D([0,∞),Rd) is the space of càdlàg functions
from [0,∞) into Rd . P|Ft is the restriction of a probability measure P to the σ -field Ft . ∆Xt denotes
the jump of X at time t, that is, ∆Xt := Xt −Xt−, while the continuous part of X is denoted by
X̃t := Xt −∑s∈(0,t] ∆Xs. As usual, for a ∈ R, (a)+ := max(a,0). Finally, we say that a Lévy process
{Xt : t ≥ 0} in Rd is generated by the triplet (γ,A,ν) if its characteristic function is given by

E[ei〈y,Xt〉] = exp

[
t

(
i〈y,γ〉− 1

2
〈y,Ay〉+

∫
Rd

0

(ei〈y,z〉−1− i〈y,z〉1(0,1](‖z‖))ν(dz)

)]
,

where γ ∈Rd , A is a symmetric nonnegative-definite d×d matrix, and ν is a Lévy measure on Rd
0 ,

i.e., ∫
Rd

0

(‖z‖2 ∧1)ν(dz) < +∞. (2.1)

2.1 Density transformation of Lévy processes

We here recall the density transformation of (multivariate) Lévy processes in the most general
form. For more details, we refer the reader to Sato [7].

Let ({Xt : t ≥ 0},P) and ({Xt : t ≥ 0},Q) be Lévy processes in Rd generated, respectively,
by (γP,AP,νP) and (γQ,AQ,νQ), and let (Ft)t≥0 be the natural filtration of {Xt : t ≥ 0}. If the
following four conditions hold;

(i) AP = AQ,

(ii) the Lévy measures νP and νQ are equivalent,
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(iii) the function ϕ : Rd
0 7→ R, defined via

eϕ(z) =
dνP
dνQ

(z), (2.2)

satisfies ∫
Rd

0

(eϕ(z)/2 −1)2νQ(dz) < +∞, (2.3)

(iv) the constants γP and γQ satisfy

γQ− γP−
∫
‖z‖≤1

z(νQ−νP)(dz) = APη , (2.4)

for some η ∈ Rd ,

then the probability measures P and Q are equivalent with the Radon-Nikodym derivative,

dP
dQ

|Ft = eUt , Q-a.s.,

where the stochastic process {Ut : t ≥ 0} in R is defined by, Q-a.s.,

Ut := 〈η , X̃t〉−
t
2
〈η ,AQη〉− t〈γQ,η〉

+ lim
ε↓0

[
∑

(s,∆Xs)∈(0,t]×{‖z‖>ε}
ϕ(∆Xs)− t

∫
‖z‖>ε

(eϕ(z)−1)νQ(dz)

]
. (2.5)

Here, {Ut : t ≥ 0} is uniformly convergent in t on any bounded interval Q-a.s., and satisfies

EQ[eUt ] = EP[e−Ut ] = 1, t ∈ [0,∞).

2.2 Series representation of Lévy processes

As seen in (2.5), the density transformation requires jumps of sample paths, and so the increment-
based sample path is of no use for our purpose. We will use a well known jump-based sample
paths generation method, the so-called series representation of Lévy processes. Let us here briefly
summarize its essence. (See Rosiński [5] for details.) Assume that a Lévy measure ν can be
decomposed in the following form

ν(B) =
∫ ∞

0
P(H(r,V ) ∈ B)dr, B ∈ B(Rd

0), (2.6)

where V is a random variable taking values in a suitable space S with a distribution F , and where
H : (0,∞)× S 7→ Rd

0 is such that for each v ∈ S, r 7→ ‖H(r,v)‖ is non-increasing. Then, a Lévy
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process {Xt : t ∈ [0,T ]} generated by (0,0,ν) admits the following series representation in the
finite dimensional distributions sense,

{Xt : t ∈ [0,T ]} L=

{
∞

∑
i=1

[
H(Γi/T,Vi)1(Ti ≤ t)− ci

t
T

]
: t ∈ [0,T ]

}
, (2.7)

where {Γi}i≥1 are arrival times of a standard Poisson process, {Vi}i≥1 is a sequence of iid random
variables in S with the distribution F , {Ti}i≥1 is a sequence of iid uniform random variables on
[0,T ], {ci}i≥1 is defined by

ci := E[H(Γi/T,Vi)1(‖H(Γi/T,Vi)‖ ≤ 1)],

and the sequences {Γi}i≥1, {Vi}i≥1 and {Ti}i≥1 are mutually independent. Moreover, several Lévy
processes can be compared at once in Monte Carlo simulations by putting those random sequences
in common, that is,{

∞

∑
i=1

[
Hk(Γi/T,Vi)1(Ti ≤ t)− ck

i
t
T

]
: t ∈ [0,T ]

}
, k = 1,2, · · · ,

where Hk and {ck
i }i≥1 are derived suitably for each k. Let us note that the decomposition (2.6) is

not necessarily unique.

Example 2.1. (CGMY process) The CGMY process (C,G,M,Y ) {Xt : t ≥ 0} is a Lévy process in
R defined via the Lévy measure of the form

ν(dz) = C|z|−1−Y
[
e−G|z|

1(z < 0)+ e−M|z|
1(z > 0)

]
dz,

where C > 0, G ≥ 0, M ≥ 0, and Y < 2. (See Carr et al[2] for details.) If G,M ∈ (0,∞) and
Y ∈ (0,2), then it is a special class of the tempered stable process of Rosiński [6] and a series
representation can be derived as follows,

{Xt : t ∈ [0,T ]} L=

{
∞

∑
i=1

[(
Y Γi

2CT

)−1/Y

∧EiU
1/Y
i |Vi|

]
Vi

|Vi|
1(Ti ≤ t)+ γ1t : t ∈ [0,T ]

}
, (2.8)

where {Γi}i≥1 are arrival times of a standard Poisson process, {Ei}i≥1 is a sequence of iid standard
exponential random variables, {Ui}i≥1 is a sequence of iid uniform random variables on [0,1],
{Vi}i≥1 is a sequence of iid random variables taking values −G−1 and M−1 with equal probability,
{Ti}i≥1 is a sequence of iid uniforms on [0,T ], and γ1 is a suitable constant. Here, the sequences
{Γi}i≥1, {Ei}i≥1, {Ui}i≥1, {Vi}i≥1 and {Ti}i≥1 are mutually independent.

Example 2.2. (Gamma process) The Gamma process {Xt : t ≥ 0} is an increasing Lévy process in
[0,∞) whose characteristic function is given by

E[eiyXt ] = exp
[

t
∫
(0,∞)

(eiyz −1)ν(dz)
]
,
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where

ν(dz) = a
e−z/b

z
dz, z ∈ (0,∞),

with a,b ∈ (0,∞). Its sample paths can be generated via the series representation

{Xt : t ∈ [0,T ]} L=

{
∞

∑
i=1

be−
Γi
aT Vi1(Ti ≤ t) : t ∈ [0,T ]

}
,

where {Γi}i≥1, {Vi}i≥1 and {Ti}i≥1 are same as in the last example.

3 Main framework

We are now in a position to construct our method. Consider a Lévy process {Xt : t ≥ 0} defined on
a filtered probability space (Ω,F ,(Ft)t≥0,P). Let F be a functional from D([0,T ],Rd) to R and
suppose that we want to evaluate

EP[F(X)](=: I)

by Monte Carlo simulation, provided that the expectation is well defined. Following Monte Carlo
procedures, on one hand, we first generate a sequence {XP,i

t : t ∈ [0,T ]}i≥1 of iid Lévy process
sample paths, each of which replicates {Xt : t ∈ [0,T ]} under the probability measure P, and then
compute n−1 ∑n

i=1 F(XP,i). By the strong law of large numbers, n−1 ∑n
i=1 F(XP,i) → I a.s. as n →

∞. The speed of convergence is usually measured in terms of the variance of the estimator, i.e.,

Var

(
1
n

n

∑
i=1

F(XP,i)

)
=

1
n

VarP(F(X)).

Clearly, the convergence is likely to be faster with smaller VarP(F(X)). On the other hand, in view
of the equality

EP[F(X)] = EQ

[
dP
dQ

|FT F(X)
]

= EQ
[
eUT F(X)

]
,

we also get, Q-a.s.,

lim
n→∞

1
n

n

∑
i=1

eU i
T F(XQ,i) = I, (3.1)

where {XQ,i
t : t ∈ [0,T ]}i≥1 is a sequence of iid Lévy processes replicating {Xt : t ∈ [0,T ]} under

Q, and where {U i
t : t ∈ [0,T ]}i≥1 is a corresponding sequence sampled in accordance with (2.5).

The Monte Carlo computation (3.1) after the density transformation will perform more ef-
ficiently once we find a probability measure Q which makes the new variance VarQ(eUt F(X))
smaller than the original VarP(F(X)). A widely used criterion in choosing such a probability mea-
sure Q is the importance sampling of the random variable eUT F(X). The fundamental idea of
the importance sampling is to choose Q under which we may more likely sample Monte Carlo
summands of large values, which contributes more to the computation.
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Now, among the density transformations of Section 2.1, there is a simple class ending up with
a path-independent structure and thus does not need jumps of sample paths. It is well known as the
Esscher transform, where the function ϕ in (2.2) is linear, i.e., ϕ(z) = λ z with some λ ∈ R, so that

∑ϕ(∆X) only depends on the terminal value of X . This simple structure enables us to investigate
closely how our method may contribute to variance reduction in Monte Carlo simulations.

We first recall the Esscher transform in brief. Let {Xt : t ≥ 0} be a Lévy process in R generated
by (γ,σ2,ν) and let (Ft)t≥0 be the natural filtration of {Xt : t ≥ 0}. Assume that there exists
λ ∈ R such that EP[eλX1 ] < +∞. Under the probability measure Qλ , which is defined via the
Radon-Nikodym derivative, P-a.s.,

dQλ
dP

|Ft =
eλXt

EP[eλXt ]
,

the stochastic process {Xt : t ≥ 0} is again a Lévy process generated by (γλ ,σ2,νλ ) where

γλ = γ +
∫
‖z‖≤1

z(νλ −ν)(dz)

and
νλ (dz) = eλ zν(dz).

The probability measure Qλ is then equivalent to P. Therefore, we also get EQλ [e−λX1 ] < +∞, and
Qλ -a.s.,

dP
dQλ

|Ft =
e−λXt

EQλ [e−λXt ]
.

Moreover, letting T > 0 and let p be the probability density function of the random variable XT

under P, the density function pλ of XT under Qλ is then given by

pλ (x) =
eλx

EP[eλXT ]
p(x), x ∈ R,

and, conversely,

p(x) =
e−λx

EQλ [e−λXT ]
pλ (x), x ∈ R.

In the simplified Esscher-transform framework, suppose that we want to evaluate

EP[ f (XT )](=: I)

by Monte Carlo simulation, where f : R 7→ R satisfies EP[ f (XT )] < +∞ and where the density p
of XT under P is known. We generate a sequence of iid random variables {xP

i }i≥1 with common
density p and computes n−1 ∑n

i=1 f (xP
i ). Just as before, in view of the equality

EP[ f (XT )] = EQλ

[
dP

dQλ
|FT f (XT )

]
= EQλ

[
e−λXT

EQλ [e−λXT ]
f (XT )

]
,

6



it also holds that, Qλ -a.s.,

lim
n→∞

1
n

n

∑
i=1

e−λx
Qλ
i

EQλ [e−λXT ]
f (xQλ

i ) = I,

where {xQλ
i }i≥1 is a sequence of iid random variables with common density pλ , which is the

density of XT under Qλ . The new variance is then given by

VarQλ

 e−λx
Qλ
1

EQλ [e−λXT ]
f (xQλ

1 )

 =
∫

R

(
e−λx

EQλ [e−λXT ]
f (x)

)2

pλ (x)dx− I2

=
∫

R2
eλ (y−x) f (x)2 p(x)p(y)dxdy− I2 =: J(λ ).

We want to find λ minimizing J(λ ), or such that J(λ ) < VarP( f (XT )). Here, the sign of the first
derivative of J,

J′(λ ) = −
∫

R2
(x− y)e−λ (x−y)p(x)p(y) f (x)2dxdy,

depends on p and f , while J is convex since

J′′(λ ) =
∫

R2
(x− y)2e−λ (x−y)p(x)p(y) f (x)2dxdy ≥ 0,

provided that for n = 1,2, ∫
R2

|x− y|ne−λ (x−y)p(x)p(y) f 2(x)dxdy < ∞.

Example 3.1. (European call) Consider the European call option,

f (X) = (exp(X)−K)+,

where K is a prescribed strike price. We set X to be a random variable with Meixner (a,b,d,m)
distribution of Schoutens and Teugels [8] under the probability measure P. Recall that the Meixner
(a,b,d,m) distribution is infinitely divisible on R defined via the Lévy measure of the form

ν(dz) = d
exp(bz/a)

zsinh(πz/a)
dz, z ∈ R0,

and the probability density function p of X is given in closed form by

p(x) =
(2cos(b/2))2d

2aπΓ(2d)
eb(x−m)/a

∣∣∣∣Γ(
d +

i(x−m)
a

)∣∣∣∣2

,

where a > 0, b ∈ (−π,π), d > 0, and m ∈ R. Note that the Meixner distribution is closed under
the Esscher transform with λ ∈ ((−π −b)/a,(π −b)/a), since

νλ (dz) = eλ zν(dz) = d
exp

(
aλ+b

a z
)

zsinh(πz/a)
dz.
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We here fix (a,b,d) = (0.1,−1.0,0.1), put m = −2d ln(cos(b/2)/cos((a + b)/2)) to guarantee
an arbitrage-free state, i.e., EP[exp(X)] = 1, and restrict to λ ∈ (−21.416,41.416). Following the
fundamental idea of the importance sampling, we wish to evaluate intensively a domain of x with
larger values of (exp(x)−K)+p(x). Clearly, the interval x ∈ (−∞, lnK) makes no contribution
to the computation since then (exp(x)−K)+ = 0. In this case, we intuitively want X to realize
greater values, and thus wish to tilt the density p to the right, i.e. we set λ to be positive. For exact
comparison purpose in the simulations, we will sample the sequences {xP

i }i≥1 and {xQλ
i }i≥1 by the

transformation method with a common sequence of iid uniform random variables, i.e., for each i,
xP

i = G−1(Ui) and xQλ
i = G−1

λ (Ui), where G(x) =
∫ x
−∞ p(y)dy, Gλ (x) =

∫ x
−∞ pλ (y)dy, and {Ui}i≥1

is a sequence of iid uniform random variables on [0,1].
The left of Figure 1 shows the variance ratios J(λ )/J(0) for each fixed moneyness K/S0(= K,

in this case). We find the variance reduced uniformly with λ > 0, and our method performs more
effectively for the far-out-of-money cases. The right figure shows typical convergences with K =
1.02 under the original P and under Qλ with λ = 30. The convergence is clearly accelerated, and
5,775 non-zero realizations out of 20,000 under Qλ , while only 1,994 under P.
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Figure 1: Variance ratios (left) and a comparison of convergence in Monte Carlo simulations with
λ = 30 and K = 1.02 (right)

4 Numerical examples and considerations

We have observed that our method effectively accelerates convergence of Monte Carlo simulations
in the simplified Esscher-transform framework. In this section, we put our method to full use
with illustrating numerical examples. Before proceeding to numerical experiments, however, let
us discuss two new possible numerical problems.

One issue is the discretization error, just as in most numerical procedures simulating stochastic
process sample paths. In our case, the discretization originates from the series representation since
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we cannot simulate infinity many jumps and thus need to discard small jumps. This is typically
equivalent to truncating to a finite number of terms of the series due to the non-increasingness of the
function r 7→ ‖H(r, ·)‖ in (2.6). To deal with this problem, we may use the Gaussian approximation
of Asmussen and Rosiński [1], which approximates small jumps of Lévy processes by a Gaussian
random variable. Let us briefly state its multivariate version (Cohen and Rosiński [3]). Let {Xε

t :
t ≥ 0} be a compensated Lévy process in Rd without Gaussian component and consisting only of
bounded jumps, i.e., its characteristic function is given in the form of

E[ei〈y,Xε
1 〉] = exp

[∫
Rd

0

(ei〈y,z〉−1− i〈y,z〉)νε(dz)
]
,

where νε is a restriction of a Lévy measure ν to {z ∈ Rd
0 : ‖z‖ ≤ ε} with some ε > 0. Moreover,

let Σε be the covariance matrix of Xε
1 , i.e., Σε =

∫
Rd

0
zzT νε(dz), and let Wd be a standard normal

random vector in Rd. Then, as ε ↓ 0,

Σ−1/2
ε Xε

1
L→Wd,

if and only if for every κ > 0,

lim
ε↓0

∫
〈Σ−1

ε z,z〉>κ
〈Σ−1

ε z,z〉νε(dz) = 0.

This result implies that the process consisting of discarded small jumps may also be approximated
by a Brownian motion, i.e.,

{Σ−1/2
ε Xε

t : t ≥ 0} L→{Wt : t ≥ 0},

where {Wt : t ≥ 0} is a d-dimensional standard Brownian motion, since for Lévy processes, the
weak convergence of the marginal at some fixed time is necessary and sufficient for the weak
convergence in D([0,∞),Rd) equipped with the Skorohod topology.

The second problem comes from the explosion of the compensation term in the definition (2.5)
of {Ut : t ≥ 0}, i.e., ∫

Rd
0

|eϕ(z)−1|νQ(dz) = +∞. (4.1)

Although the compensation term after the Gaussian approximation with any positive threshold ε
is necessarily finite, i.e.,

∫
‖z‖>ε |eϕ(z) − 1|νQ(dz) < +∞, it is still very sensitive to the threshold,

since its choice directly relates to the singularity of the Lévy measure around the origin. Indeed,
by our numerical experiences, the equation

EQ[eUt ] = 1, t ∈ [0,∞) (4.2)

was far from being satisfied. To avoid this, we will replace the sequence {eU i
T }i≥1 of Radon-

Nikodym derivatives by its self-normalized version {eU i
T /1

i ∑i
j=1 eU j

T }i≥1. Note that the latter
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achieves (4.2), while it does no longer consist of iid random variables. Let us mention that this was
not a problem in the Esscher-transform framework since then the Esscher transform requires us to
choose λ so that EP[eλXT ] < +∞, or equivalently, EQλ [e−λXT ] < +∞.

Let us give a precise summary of our method after the suggested modifications. Fix a suf-
ficiently small threshold ε ∈ (0,1) and replace a Lévy process generated by (γP,0,νP) with one
generated by (γP,Aε ,νP − νε

P). Next, transform (γP,Aε ,νP − νε
P) into (γQ,Aε ,νQ − νε

Q), so that
the new probability measure Q is likely to provide a faster convergence in interested Monte Carlo
simulations. Here, the transformation is defined via the Radon-Nikodym derivative, Q-a.s.,

dP
dQ

|Ft = eUt , (4.3)

where
Ut = ∑

(s,∆Xs)∈(0,t]×{‖z‖>ε}
ϕ(∆Xs)− t

∫
‖z‖>ε

(eϕ(z)−1)νQ(dz).

Notice that the density transformation via (4.3) has no effect on the approximating Gaussian com-
ponent. Moreover, the Lévy measure νQ and the constant γQ are required to satisfy, respectively,∫

‖z‖>ε
(eϕ(z)/2 −1)2νQ(dz) < +∞,

where
eϕ(z) =

dνP
dνQ

(z)1(‖z‖ > ε),

and with η = 0 in (2.4),

γQ = γP +
∫
‖z‖∈(ε,1]

z(νQ−νP)(dz). (4.4)

We then compute
1
n

n

∑
i=1

eUQ,i
T

1
i ∑i

j=1 eUQ, j
T

F(XQ,i),

where {XQ,i
t : t ∈ [0,T ]}i≥1 is a sequence of iid Lévy processes, each of which replicates {Xt : t ∈

[0,T ]} under Q and where {UQ,i
t : t ∈ [0,T ]}i≥1 is a sequence of iid random processes replicating

{Ut : t ∈ [0,T ]} under Q, defined by, Q-a.s.,

Ut = ∑
s∈(0,t]

ϕ(∆Xs)− t
∫
‖z‖>ε

(eϕ(z)−1)νQ(dz).

Example 4.1. (A lookback type) Suppose that we are interested in the expectation

EP

[(
sup

t∈[0,1]
exp(Xt)− inf

t∈[0,1]
exp(Xt)−K

)+]
(=: EP[F(X)]),
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where {Xt : t ≥ 0} is a CGMY process generated by (γP,0,νP) and γP is chosen so that EP[exp(X1)]=
1. Its analytical solution is unknown in the Lévy setting. From the path-dependent structure above,
we infer that as the “volatility”∗ of X is greater, the random variable inside the expectation is
more likely to generate non-zero realizations. For clear illustration, we will compare three CGMY
processes;

(i) original one; (C1,G1,M1,Y1) = (0.03,4.0,4.0,1.5),
(ii) well-transformed one; (C2,G2,M2,Y2) = (C1,1.0,1.0,Y1),

(iii) badly-transformed one; (C3,G3,M3,Y3) = (C1,9.0,9.0,Y1).

Clearly, we intend by (ii) greater jumps via fatter tails of the Lévy measure, while smaller ones by
(iii) via the heavily tempered Lévy measure.

We use the series representation of (2.8) to generate jump-based sample paths and remove small
jumps |∆X | ≤ ε . In this example, we put ε = 1.0×10−5, where the required number of jumps is
then around 5×103 for (i), 2×104 for (ii) and 3×103 for (iii). Denoting by (γP,σ2

ε ,νP −νε
P) the

triplet after the Gaussian approximation, where

σ2
ε =

∫
|z|≤ε

z2νP(dz) = C1(M
Y1−2
1 Γ(2−Y1,εM1)+GY1−2

1 Γ(2−Y1,εG1)), (4.5)

and Γ : R+ ×R+ 7→ R+ is the lower incomplete gamma function, we perform a transformation
into (γQ,σ2

ε ,νQ−νε
Q), where νQ is the well-transformed Lévy measure of (ii) and where γQ is the

constant satisfying (4.4). The sequence {eU i
1}i≥1 of Radon-Nikodym derivatives is generated in

accordance with

eU1 = exp

[
∑

s∈(0,1]
ϕ(∆Xs)− γ2

]
,

where the function ϕ is defined via

eϕ(z) = e−(G1−G2)|z|1(z < −ε)+ e−(M1−M2)|z|1(z > ε), (4.6)

and where the constant γ2 is given by

γ2 = νP({z ∈ R0 : |z| > ε})−νQ({z ∈ R0 : |z| > ε}). (4.7)

Finally, we use the self-normalized sequence {eU i
1/1

i ∑i
j=1 eU j

1}i≥1, instead of {eU i
1}i≥1. The entire

procedure for (iii) can be taken just in a similar manner.
Table 4 summarizes the variance ratios, with respect to the original CGMY, estimated from

20,000 Monte Carlo summands for several K’s. We see that the simulation works more efficiently
for greater K, just as expected. The right of Figure 2 shows a typical convergence when K =
0.5. The number of non-zero realizations is 4,487 out of 20,000 in the ”Original”, 6,100 in the
”Well-transformed” achieving faster convergence, and 2,974 for the ”Badly-transformed” with an
undesirable performance.
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K 0.0 0.1 0.2 0.3 0.4 0.5
Ratio1 2.1902 1.3055 0.79732 0.51505 0.53705 0.38410
Ratio2 25.475 11.539 15.913 8.9055 6.5652 43.029

Table 1: Empirical variance ratios ; Ratio1= (well-transformed)
(original) and Ratio2= (badly-transformed)
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Figure 2: Typical sample path and its transformed sample paths (left) and a typical convergence in
Monte Carlo simulations with K = 0.5 (right)

One might have wondered whether or not our importance sampling method with the jump-
based sample paths outperforms an ordinary Monte Carlo simulation with the increment-based
sample paths in terms of the CPU time. We give in Table 2 the elapsed time required for ±0.5%
accuracy, together with that by the Monte Carlo simulation with increment-based sample paths. For
the increment-based MC, each sample path is approximated by 500 equidistant increments and the
Fourier inversion computation time (only once) for the unknown CGMY density is included in the
CPU time. Since the true value is unknown, we set the average of 5×104 samples from the “Orig-
inal” simulation to be the basis for the ±0.5% accuracy for “Original” and “Well-transformed”,
while the average of 1× 105 samples from the “increment-based MC” simulation to be its ba-
sis. This distinction is made since the rough discretization by 500 increments in “increment-
based MC” yields a smaller expected value, due to supt∈[0,1] exp(Xt) ≥ supt∈{t1,t2,...} exp(Xt) and
inft∈[0,1] exp(Xt) ≤ inft∈{t1,t2,...} exp(Xt). Let us also mention that the extra computations of the
Radon-Nikodym derivatives and of more jumps for “Well-transformed” did not have much impact
on the CPU times. (Remember that we need to generate around 2× 104 jumps to achieve the
threshold ε = 1.0× 10−5 for each sample path in “Well-transformed”, while only 5× 103 jumps
in “Original.”) Table 2 indicates that our method is still behind the increment-based sample paths

∗We use the word “volatility” for an association with the Black-Scholes setting although it is an abuse of word for
a Lévy process without Gaussian component.
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framework in terms of the CPU time at least for this example.

Method #Sample (×104) CPU time (×102 sec)
Original 4 13
Well-transformed 2 7
Increment-based MC 6 4

Table 2: #Sample and CPU time required for 4 digits accuracy

Example 4.2. (Lookback type revisited) On comparing CPU times in the last example, we need
only one CGMY density, which can be used throughout the entire Monte Carlo simulations. What
if each Monte Carlo summand requires us to perform the Fourier transform to compute a density
function? Its vast computational cost would then make such Monte Carlo simulations too expen-
sive to be of practical use. Let us here present such a case in which our method would be the only
choice.

Consider {XYt : t ∈ [0,1]}, where {Xt : t ≥ 0} is a CGMY process and {Yt : t ∈ [0,1]} is a Gamma
process independent of {Xt : t ≥ 0}. We call the transformation of X to XY subordination by the
subordinator Y . The subordination has recently attracted much attention in financial modelling.
See, for example, Cont and Tankov [4]. Now, as in the last example, let us again consider a
lookback type,

EP

[(
sup

t∈[0,1]
exp(XYt )− inf

t∈[0,1]
exp(XYt )−K

)+]
(=: EP[F(X ,Y )]). (4.8)

Here, we need not generate sample paths of the subordinator but only its terminal values Y1, since
by Y -pointwise,

sup
t∈[0,1]

exp(XYt )− inf
t∈[0,1]

exp(XYt ) = sup
t∈[0,Y1]

exp(Xt)− inf
t∈[0,Y1]

exp(Xt),

and then by fixing Y1, we get

{Xt : t ∈ [0,Y1]}
L=

{
∞

∑
i=1

[
H(Γi/Y1,Vi)1(Ti ≤ t)− ci

t
Y1

]
: t ∈ [0,Y1]

}
,

where {Ti}i≥1 is now a sequence of iid uniform random variables on [0,Y1], instead of [0,T ].
Meanwhile, in the increment-based sample paths framework, each Monte Carlo summand requires
a density of its own because of the randomness of the terminal value Y1, and so it is unrealistic to
implement the increment-based MC for this example.
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Now, in view of the trivial inequality, for t1 < t2,

sup
t∈[0,t1]

exp(Xt)− inf
t∈[0,t1]

exp(Xt) ≤ sup
t∈[0,t2]

exp(Xt)− inf
t∈[0,t2]

exp(Xt),

we want the terminal value Y1 to end up with greater values. Since

νQλ (dz) = eλ zνP(dz) = a
e−

1−bλ
b z

z
dz,

{Yt : t ∈ [0,1]} is again a Gamma process after the Esscher transform as long as λ ∈ (−∞,1/b),
and the new probability measure Qλ is defined via the Radon-Nikodym derivative, Qλ -a.s.,

dP
dQλ

|Ft =
e−λYt

EQλ [e−λYt ]
, t ∈ [0,1],

where (Ft)t∈[0,1] is the natural filtration of {Yt : t ∈ [0,1]}.
Here, we fix (C,G,M,Y ) = (0.02,1.0,1.0,1.8) for the CGMY process {Xt : t ≥ 0} and (a,b) =

(1,1) for the original Gamma process {Yt : t ∈ [0,1]}, and perform the Esscher transform on the
Gamma subordinator Y with the Esscher parameter λ = 0.3 and 0.6. To be more precise, we will
compare the original estimator

1
n

n

∑
i=1

F(XP,i,Y P,i),

with the transformed one

1
n

n

∑
i=1

e−λY
Qλ ,i
1

EQλ [e−λY1]
F(XQλ ,i,Y Qλ ,i) =

1
n

n

∑
i=1

e−λY
Qλ ,i
1

EQλ [e−λY1]
F(XP,i,Y Qλ ,i),

where the last equality holds since X is independent of the filtration (Ft)t∈[0,1]. For each i, we

sample Y P,i
1 and Y Qλ ,i

1 via the transformation method with a common uniform random variable.
Table 3 summarizes variance ratios estimated from 20,000 Monte Carlo summands, while the

right of Figure 3 shows a typical convergence with K = 2.5, where the number of non-zeros is
only 49 out of 20,000 via the original subordinator, while 128 via the transformed one and 578 via
the more transformed one. We can see that the transformation Qλ with positive λ contributes to a
faster convergence.

5 Conclusion

In this paper, we have developed a new importance sampling method based on the density transfor-
mation of Lévy processes in the form of the jumps-based sample paths. The relatively unrestricted
control on the Lévy measure in the density transformation of Lévy processes enables us to change
shapes of the marginal density, unlike the drift is the only transformable parameter in the Brownian
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K 0.0 0.5 1.0 1.5 2.0 2.5
Ratio1 0.58296 0.70519 0.72995 0.97790 0.65842 0.33633
Ratio2 0.99009 0.69830 0.68483 0.89271 0.41816 0.30966

Ratio1= (transformed(λ=0.3))
(original) and Ratio2= (more-transformed(λ=0.6))

(original)

Table 3: Empirical variance ratios
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Figure 3: Typical sample paths of subordinated CGMY process {XYt : t ∈ [0,1]} (left) and a typical
convergence in Monte Carlo simulations with K = 2.5 (right)

case. In actual numerical procedures, the discretization error may be eased through approximating
discarded small jumps by a Brownian motion, while the unit mean of Radon-Nikodym derivative
sequences can be achieved by instead using its self-normalized version.

The numerical examples show that using our method with a “right” choice of the density trans-
formation leads to very efficient simulations, especially for random variables with complex path-
dependent structure. We expect that our method plays an active part in a variety of intricate fi-
nancial derivatives modelling in the future. Meanwhile, we also find our method still behind the
increment-based Monte Carlo in terms of the CPU time, especially for simple Monte Carlo simu-
lations. This is mainly due to the cost of sample paths generation via the series representation, and
its cost improvement is left as a future research.
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