
 1

Bridging the gap between scheduling algorithms
and scheduler implementations in time-triggered

embedded systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Mouaaz Nahas

M.Sc. (Loughborough)

Embedded Systems Laboratory

Department of Engineering

University of Leicester

Leicester, United Kingdom

October 2008

 i

Bridging the gap between scheduling algorithms and
scheduler implementations in time-triggered embedded

systems

Mouaaz Nahas

Abstract

The scheduling of tasks in real-time, resource-constrained embedded systems is
typically performed using a simple scheduler. Scheduling algorithm is the key scheduler
component which determines the way in which tasks can be executed to meet their
timing constraints. To ensure precise task scheduling, the right decisions about the
scheduler implementation have to be made. It has been argued that there is a wide gap
between scheduling theory and its practical implementation which must be bridged to
achieve a meaningful validation of embedded systems.

The work described in this thesis attempts to address this gap by proposing a simple
(generic) technique, called the Scheduler Test Case (STC), which provides the facility
to explore how a particular real-time scheduler implementation can be expected to
behave under a range of both normal and abnormal operating conditions. The primary
focus of this thesis is on single-processor embedded systems employing Time-Triggered
Co-operative (TTC) architectures. The technique proposed is a testing method which
helps facilitate an empirical “black-box” comparison between the behaviour of a set of
representative implementation classes of the TTC scheduling algorithm. The key
criterion against which scheduler behaviour is weighed up is the system predictability
manifested by predictable task execution sequence, low timing jitter and unplanned-
error handling capabilities. The implementation costs (including CPU, memory and
power requirements) involved in creating each scheduler are also considered for
distinguishing between the different TTC implementations.

The STC technique is then extended to provide a practical means for assessing the
behaviour of multi-processor embedded designs employing Shared-Clock (S-C)
scheduling architectures and TTC algorithm on the Controller Area Network (CAN)
hardware protocol. In this part of the study, the STC technique explores the impact of
using particular implementations of the S-C scheduler on the overall timing behaviour
of multi-processor embedded systems. In addition to jitter behaviour which is measured
empirically, the STC evaluates the communication behaviour by assessing the message
latencies between any two communicating nodes in the network and the time frame
required by the network to detect a temporary node failure. The results are expressed
using mathematical equations. Moreover, the implementation costs (including network
utilisation and memory overheads) are also considered to differentiate between the
compared S-C schedulers.

The thesis finally concludes by discussing the overall findings of this project and
making some proposals for future work in the area concerned with in the project.

 ii

I dedicate this thesis to my parents and wife

Professor Mahmoud Nahas, Mrs. Sahar Abousaleh & Mrs. Zilal Aseel

 iii

Acknowledgement

First of all, I would like to thank my supervisor Professor Michael Pont for providing

me with constant guidance and help throughout this research project. Without him, this

thesis would not have been possible.

Next, I would like to thank the UK Government for awarding me the EPSRC-DTA

scholarship which covered my full-time tuition fees and life expenses in the first three

years of this project. Also many thanks to the University of Leicester’s Welfare Office,

The Worshipful Company of Engineers and Sidney Perry Foundation for funding my

project in the last year through paying my part-time tuition fees and some extra fund to

compensate for my life expenses. Without their valuable contributions, I would not have

been able to complete my course. I would specifically express my thanks to Mr. Adrian

Gascoigne (a welfare officer at the University of Leicester) who made a substantial

effort to help me receive such grants through advising me on the available charitable

organisations and the right way to approach them. Of course, without his guidance, I

would not have been able to proceed with this process.

I would also like to thank the following people who helped me in one way or another

during my PhD period:

• Zemian Hughes: for helping me in creating the software codes for the TTC-MTI and

TTC-Adaptive schedulers presented in Chapter 5.

• Dr.Teera Phatrapornnant: for helping me to carry out the power-consumption

measurements, presented in Chapter 7, using a simple and cost-effective method.

• Dr. Michael Short: for guiding me through a major part of the work carried out for

multi-processor embedded systems. In particular, he provided me with useful

comments on the mathematical equations derived for the TTC-SCC scheduling

protocols (Chapter 11) and the SBS programs (Appendix H). He also helped me to

perform the experiments for the ACC testbed (Appendix G).

 iv

• Dr. Devaraj Ayavoo: for providing me with useful information about the prices for

TTP protocol and supplying me with the software codes for the TTC-SCC1 – TTC-

SCC4 schedulers described in Chapter 9.

• Dr. Fernando Schlindwein: for providing me with an appreciated help to obtain a

three-month (free-of-charge) extension to my PhD period in the final year before I

transferred my registration to part-time.

• Ayman Gendy: for providing me with useful feedback on the results presented in the

thesis, and being a very close and sincere friend of mine during my time in

Leicester.

• Dr. Ricardo Bautista-Quintero: for providing me with a great deal of support and

encouragement, being my best friend in the ESL group.

• Ziyad Mohammed, Saeed Ahmed, Yousef Bakkar and Dr. Adi Maaita: for being very

close and sincere friends of mine during my time in Leicester.

• Riyadh Al-Rawi: for carrying out a proofreading to a major part of my thesis

document, and being the closest friend to me during my time in UK.

Also many thanks to all other people in the ESL research group and my friends in

Loughborough for their good company.

More importantly, I would like to send special thanks to my honoured parents Professor

Mahmoud Nahas and Mrs. Sahar Abousaleh, parents-in-low Mr. Zuhair Aseel and Mrs.

Safaa Labanieh, brothers Obeida, Mousaab and Huzifa Nahas, and sisters Arwa, Awfa

and Aya Nahas for the constant support and encouragement they provided me with

during the whole period of my PhD course. I am very grateful to all of you and can

never be able to thank you enough for your favour.

Finally, I would like to express my deepest thanks and gratitude to my wife Zilal Aseel,

for her extensive help, patience, sacrifice, support, encouragement and prayers, without

which I would definitely not have been able to complete my PhD work successfully. I

am so grateful to you Zilal, and believe that whatever I try to give you in return would

never be enough to reward you for what you have done to me.

 v

Table of contents

ACKNOWLEDGEMENT ...III
TABLE OF CONTENTS.. V
LIST OF FIGURES ...IX
LIST OF TABLES ...XIII
LIST OF AUTHOR’S PUBLICATIONS ... XVI
LIST OF ABBREVIATION .. XVIII
PART A: INTRODUCTION ... 1
CHAPTER 1 INTRODUCTION... 2

1.1 INTRODUCTION ...2
1.2 WHAT IS AN EMBEDDED SYSTEM?..2
1.3 EMBEDDED SYSTEMS MARKET ...4
1.4 THE NEED FOR PREDICTABILITY IN EMBEDDED SYSTEMS ...5
1.5 CHALLENGES IN BUILDING PREDICTABLE EMBEDDED SYSTEMS ...7
1.6 THE FOCUS OF THIS THESIS ..9
1.7 THESIS CONTRIBUTIONS ..11
1.8 THESIS LAYOUT ..12
1.9 CONCLUSIONS ..13

PART B: LITERATURE REVIEW.. 14
CHAPTER 2 REAL-TIME SCHEDULING ALGORITHMS ... 15

2.1 INTRODUCTION ...15
2.2 TASKS ..15
2.3 TIMING CONSTRAINTS ...17
2.4 JITTER ..17
2.5 SOFTWARE ARCHITECTURES ..19
2.6 SCHEDULERS ..23
2.7 SCHEDULE DESIGN ..27
2.8 SCHEDULING ALGORITHMS ..28
2.9 JITTER IN SCHEDULING ALGORITHMS ...35
2.10 ERROR DETECTION AND ERROR RECOVERY MECHANISMS..39
2.11 SCHEDULING MULTI-PROCESSOR EMBEDDED SYSTEMS ...40
2.12 CONCLUSIONS ..40

CHAPTER 3 REAL-TIME SCHEDULER IMPLEMENTATIONS.. 42
3.1 INTRODUCTION ...42
3.2 CHOICE OF THE PROGRAMMING LANGUAGE..42
3.3 SCHEDULING ALGORITHMS AND SCHEDULER IMPLEMENTATIONS47

 vi

3.4 GENERAL SCHEDULER IMPLEMENTATION APPROACHES...50
3.5 TTC SCHEDULER IMPLEMENTATIONS ...54
3.6 HARDWARE-BASED SCHEDULER IMPLEMENTATIONS ...57
3.7 THE IMPACT OF SCHEDULER IMPLEMENTATION DECISIONS ON SYSTEM BEHAVIOUR............57
3.8 DISCUSSION ..60
3.9 CONCLUSIONS ..61

CHAPTER 4 LINKING SCHEDULING ALGORITHMS AND SCHEDULER
IMPLEMENTATIONS... 63

4.1 INTRODUCTION ...63
4.2 DEFINITIONS ...64
4.3 SOFTWARE VERIFICATION TECHNIQUES..66
4.4 DISCUSSION ..87
4.5 CONCLUSIONS ..88

PART C: SINGLE-PROCESSOR SYSTEMS .. 89
CHAPTER 5 TTC SCHEDULER IMPLEMENTATIONS.. 90

5.1 INTRODUCTION ...90
5.2 A GENERAL STRUCTURE OF TTC SCHEDULER IMPLEMENTATION90
5.3 A TTC-ISR SCHEDULER ..93
5.4 A TTC-DISPATCH SCHEDULER ..95
5.5 APPLYING DYNAMIC VOLTAGE SCALING (DVS) .. 100
5.6 ADDING TASK GUARDIANS (TGS) ... 102
5.7 WORKING WITH MULTIPLE TIMER INTERRUPTS (MTIS) .. 104
5.8 TOWARDS A “PERFECT” TTC IMPLEMENTATION ... 110
5.9 CONCLUSIONS .. 118

CHAPTER 6 SCHEDULER TEST CASES (STCS) FOR TTC SCHEDULERS........................... 120
6.1 INTRODUCTION ... 120
6.2 OVERVIEW OF THE SCHEDULER TEST CASE (STC) TECHNIQUE 121
6.3 THE SCHEDULER TEST CASES (STCS) FOR TTC ALGORITHM .. 123
6.4 CONCLUSIONS .. 133

CHAPTER 7 ASSESSING THE BEHAVIOUR OF TTC SCHEDULER IMPLEMENTATIONS134
7.1 INTRODUCTION ... 134
7.2 EXPERIMENTAL METHODOLOGY .. 134
7.3 RESULTS... 141
7.4 SUMMARY OF THE RESULTS ... 162
7.5 CONCLUSIONS .. 166

PART D: MULTI-PROCESSOR SYSTEMS.. 167
CHAPTER 8 NETWORK AND SCHEDULING PROTOCOLS FOR MULTI-PROCESSOR

EMBEDDED SYSTEMS... 168
8.1 INTRODUCTION ... 168

 vii

8.2 OVERVIEW OF MULTI-PROCESSOR EMBEDDED SYSTEMS .. 168
8.3 NETWORK PROTOCOLS FOR MULTI-PROCESSOR SYSTEMS .. 170
8.4 SCHEDULING PROTOCOLS FOR MULTI-PROCESSOR SYSTEMS .. 184
8.5 CONCLUSIONS .. 188

CHAPTER 9 TTC-SCC SCHEDULER IMPLEMENTATIONS... 190
9.1 INTRODUCTION ... 190
9.2 IMPLEMENTING S-C SCHEDULER ON CAN PROTOCOL ... 191
9.3 TTC-SCC1 SCHEDULING PROTOCOL .. 192
9.4 TTC-SCC2 SCHEDULING PROTOCOL .. 194
9.5 TTC-SCC3 SCHEDULING PROTOCOL .. 197
9.6 TTC-SCC4 SCHEDULING PROTOCOL .. 200
9.7 TTC-SCC5 SCHEDULING PROTOCOL .. 201
9.8 CONCLUSIONS .. 203

CHAPTER 10 SCHEDULER TEST CASES (STCS) FOR TTC-SCC SCHEDULERS................ 205
10.1 INTRODUCTION ... 205
10.2 THE SCHEDULER TEST CASES (STCS) FOR TTC-SCC PROTOCOL 205
10.3 CONCLUSIONS .. 210

CHAPTER 11 ASSESSING THE BEHAVIOUR OF TTC-SCC SCHEDULER
IMPLEMENTATIONS... 212

11.1 INTRODUCTION ... 212
11.2 METHODOLOGY .. 212
11.3 RESULTS... 216
11.4 SUMMARY OF THE RESULTS ... 241
11.5 CONCLUSIONS .. 244

PART E: DISCUSSION AND CONCLUSIONS... 245
CHAPTER 12 DISCUSSION .. 246

12.1 INTRODUCTION ... 246
12.2 LITERATURE REVIEW... 246
12.3 SINGLE-PROCESSOR STUDY.. 250
12.4 MULTI-PROCESSOR STUDY .. 254
12.5 CONCLUSIONS .. 259

CHAPTER 13 CONCLUSIONS AND FUTURE WORK... 260
13.1 INTRODUCTION ... 260
13.2 MAIN ACHIEVEMENTS ... 260
13.3 LIMITATIONS AND FUTURE WORK .. 262
13.4 CONCLUSIONS .. 264

PART F: APPENDICES.. 266
APPENDIX A OVERVIEW OF SYSTEM DEVELOPMENT PROCESS 267

 viii

APPENDIX B OVERVIEW OF PROGRAMMING LANGUAGES .. 272
APPENDIX C HARDWARE-BASED SCHEDULER IMPLEMENTATION APPROACHES... 282
APPENDIX D ADDITIONAL SET OF TTC SCHEDULER IMPLEMENTATIONS................. 286
APPENDIX E TECHNIQUES FOR REDUCING JITTER IN S-C SCHEDULERS 307
APPENDIX F RESULTS FROM THE JITTER-REDUCTION TECHNIQUES......................... 329
APPENDIX G ADAPTIVE CRUISE CONTROL (ACC) SYSTEM: A CASE STUDY 352
APPENDIX H SELECTIVE CODE LISTINGS.. 360
APPENDIX I BIBLIOGRAPHY... 399

 ix

List of figures

FIGURE 1-1: EXAMPLES OF APPLICATIONS USING EMBEDDED SYSTEMS. .. 3
FIGURE 1-2: GLOBAL EMBEDDED SYSTEMS MARKET, 2003 – 2009 (SOURCE: BBC RESEARCH GROUP). 5

FIGURE 1-3: THE SYSTEM DEVELOPMENT LIFE CYCLE (ADAPTED FROM SOMMERVILLE, 2007).................... 7
FIGURE 2-1: SEQUENCE FOR A PERIODIC TASK. THE FIGURE IS ADAPTED FROM (BUTTAZZO, 2005). 16

FIGURE 2-2: SEQUENCE FOR AN APERIODIC TASK. THE FIGURE IS ADAPTED FROM (BUTTAZZO, 2005)....... 16
FIGURE 2-3: SEQUENCE FOR A SPORADIC TASK... 16

FIGURE 2-4: A SCHEMATIC REPRESENTATION OF FOUR TASKS WHICH NEED TO BE SCHEDULED FOR
EXECUTION ON A SINGLE-PROCESSOR EMBEDDED SYSTEM. ... 24

FIGURE 2-5: PRE-EMPTIVE SCHEDULING OF TASK A AND TASK B IN THE SYSTEM SHOWN IN FIGURE 2-4:
TASK B, HERE, IS ASSIGNED A HIGHER PRIORITY. ... 24

FIGURE 2-6: CO-OPERATIVE SCHEDULING OF TASK A AND TASK B IN THE SYSTEM SHOWN IN FIGURE 2-4.24
FIGURE 2-7: HYBRID SCHEDULING OF FOUR-TASKS: TASK B IS SET TO BE PRE-EMPTIVE, WHERE TASK A,

TASK C AND TASK D RUN CO-OPERATIVELY. ... 25
FIGURE 2-8: A TIME-TRIGGERED CYCLIC EXECUTIVE MODEL FOR A SET OF FOUR PERIODIC TASKS (ADAPTED

FROM KALINSKY, 2001).. 31
FIGURE 2-9: A GENERAL STRUCTURE OF THE TIME-TRIGGERED CO-OPERATIVE (TTC) SCHEDULER. 32

FIGURE 2-10: TASK PERIOD JITTERS (ADAPTED FROM MART, 2002). ... 37
FIGURE 2-11: RELEASE JITTER CAUSED BY VARIATION OF SCHEDULING OVERHEAD (PHATRAPORNNANT,

2007)... 37
FIGURE 2-12: RELEASE JITTER CAUSED BY TASK PLACEMENT IN TTC SCHEDULERS. 38

FIGURE 2-13: CLOCK DRIFT IN DVS SYSTEMS (PHATRAPORNNANT, 2007). ... 38
FIGURE 3-1: PROGRAMMING LANGUAGES USED IN EMBEDDED SYSTEM PROJECTS SURVEYED BY ESD IN

2006. THE FIGURE IS DERIVED FROM THE DATA PROVIDED IN (ESD, 2006)............................ 46
FIGURE 3-2: THE ONE-TO-MANY RELATIONSHIP BETWEEN THE TTC SCHEDULING ALGORITHM AND ITS

IMPLEMENTATIONS USING PATTERNS. THIS FIGURE IS ADAPTED FROM (MWELWA, 2006)....... 49
FIGURE 3-3: MARS PATHFINDER SPACECRAFT (SOURCE: NASA JET PROPULSION LABORATORY)............. 59

FIGURE 4-1: INTEGRATING VALIDATION AND VERIFICATION IN THE SOFTWARE DEVELOPMENT LIFE CYCLE
(ADAPTED FROM SOMMERVILLE, 2007). .. 66

FIGURE 4-2: TESTING PROCESS MODEL (ADAPTED FROM SOMMERVILLE, 2007). 80

FIGURE 5-1: A GENERAL STRUCTURE OF THE TTC SCHEDULER CONSIDERED IN THIS STUDY..................... 93
FIGURE 5-2: A SCHEMATIC REPRESENTATION OF A SIMPLE TTC-ISR SCHEDULER. 94

FIGURE 5-3: THE TASK EXECUTIONS EXPECTED FROM THE TTC-ISR SCHEDULER CODE SHOWN IN FIGURE

 5-2... 94

FIGURE 5-4: FUNCTION CALL TREE FOR THE TTC-ISR SCHEDULER. .. 95
FIGURE 5-5: FUNCTION CALL TREE FOR THE TTC-DISPATCH SCHEDULER.. 97

 x

FIGURE 5-6: EXAMPLE ILLUSTRATING THE POSSIBILITY OF TASK STRETCHING IN A SLOT
(PHATRAPORNNANT, 2007)... 101

FIGURE 5-7: THE IMPACT OF TASK OVERRUN ON A TTC SCHEDULER. .. 103
FIGURE 5-8: FUNCTION CALL TREE FOR THE TTC-TG SCHEDULER. ... 104

FIGURE 5-9: USING MTIS TO REDUCE RELEASE JITTER IN TTC SCHEDULERS. .. 106
FIGURE 5-10: FUNCTION CALL TREE FOR THE TTC-MTI SCHEDULER (IN NORMAL CONDITIONS)............. 106

FIGURE 5-11: FUNCTION CALL TREE FOR THE TTC-MTI SCHEDULER (WITH TASK OVERRUN). 110
FIGURE 5-12: FUNCTION CALL TREE FOR THE TTC-ADAPTIVE SCHEDULER (CALCULATING MODE). 112

FIGURE 5-13: FUNCTION CALL TREE FOR THE TTC-ADAPTIVE SCHEDULER ‘OPTION 2’ (NORMAL
OPERATION). .. 115

FIGURE 5-14: FUNCTION CALL TREE FOR THE TTC-ADAPTIVE SCHEDULER ‘OPTION 2’ (WITH TASK
OVERRUN).. 115

FIGURE 5-15: FUNCTION CALL TREE FOR THE TTC-ADAPTIVE SCHEDULER ‘OPTION 3’ (WITH TASK
OVERRUN).. 115

FIGURE 6-1: THE TESTING PROCESS IN STC TECHNIQUE (ADAPTED FROM SOMMERVILLE, 2007). 122

FIGURE 6-2: GRAPHICAL REPRESENTATION OF THE TASK SET IN STC A. ... 124
FIGURE 6-3: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE A1.. 125

FIGURE 6-4: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE A2.. 125
FIGURE 6-5: GRAPHICAL REPRESENTATION OF THE TASK SET IN STC B... 126
FIGURE 6-6: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE B1.. 127

FIGURE 6-7: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE B2.. 127
FIGURE 6-8: GRAPHICAL REPRESENTATION OF THE TASK SET IN STC C... 128

FIGURE 6-9: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C1.. 129
FIGURE 6-10: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C2. ... 129

FIGURE 6-11: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C3. ... 130
FIGURE 6-12: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C4. ... 130

FIGURE 6-13: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C5. ... 131
FIGURE 6-14: GRAPHICAL REPRESENTATION OF EXAMPLE SCHEDULE C6. ... 131

FIGURE 6-15: GRAPHICAL REPRESENTATION OF THE TASK SET IN STC D... 132
FIGURE 7-1: THE TECHNIQUE USED TO MEASURE RELEASE JITTER IN TICK. .. 136

FIGURE 7-2: MEASURING CPU OVERHEAD IN THE KEIL SIMULATOR. .. 137
FIGURE 7-3: MEASURING CODE MEMORY OVERHEAD FROM THE “.MAP” FILE....................................... 138

FIGURE 7-4: MEASURING DATA MEMORY OVERHEAD FROM THE “.MAP” FILE. 139
FIGURE 7-5: MEASURING STACK OVERHEAD FROM THE KEIL SIMULATOR. .. 140

FIGURE 7-6: THE CIRCUIT USED TO MEASURE THE SYSTEM POWER CONSUMPTION IN EACH TTC SCHEDULER.
.. 141

FIGURE 7-7: THE BEHAVIOUR OF TTC-ISR SCHEDULER WITH STC D (D1A SCHEDULE CLASS). 144

 xi

FIGURE 7-8: THE BEHAVIOUR OF DISPATCH SCHEDULER WITH STC D (D1B SCHEDULE CLASS). 148

FIGURE 7-9: THE BEHAVIOUR OF TG SCHEDULER WITH STC D (D2B SCHEDULE CLASS). 154
FIGURE 7-10: THE BEHAVIOUR OF MTI SCHEDULER WITH STC D (D3A SCHEDULE CLASS). 157

FIGURE 7-11: THE BEHAVIOUR OF MTI SCHEDULER WITH STC D (D3B SCHEDULE CLASS). 160
FIGURE 7-12: SUMMARY OF KEY JITTER RESULTS IN ALL TTC IMPLEMENTATIONS................................. 163

FIGURE 7-13: SUMMARY OF CPU REQUIREMENTS IN ALL TTC IMPLEMENTATIONS. 164
FIGURE 7-14: SUMMARY OF ROM REQUIREMENTS IN ALL TTC IMPLEMENTATIONS............................... 164

FIGURE 7-15: SUMMARY OF RAM REQUIREMENTS IN ALL TTC IMPLEMENTATIONS............................... 165
FIGURE 7-16: SUMMARY OF POWER REQUIREMENTS IN ALL TTC IMPLEMENTATIONS............................. 165

FIGURE 8-1: COMPARISON BETWEEN CAN LAYERS AND ISO/OSI MODEL. ... 172
FIGURE 8-2: LAYOUT OF THE CAN FRAME... 173

FIGURE 8-3: THE BASIC OPERATION OF BIT-STUFFING IN THE SENDING CAN CONTROLLER..................... 176
FIGURE 8-4: EXAMPLE OF A LOCAL LIN NETWORK CONNECTED TO A MAJOR CAN NETWORK. 180

FIGURE 8-5: IEEE802.3 FRAME FORMAT. .. 181
FIGURE 8-6: EXAMPLE OF TTCAN MATRIX CYCLE. THE FIGURE IS REPRODUCED FROM (RYAN ET AL.,

2004)... 186
FIGURE 8-7: SIMPLE ARCHITECTURE OF SHARED-CLOCK (S-C) SCHEDULER. ... 187
FIGURE 9-1: TDMA ROUND FOR A FOUR-NODE SYSTEM USING TTC-SCC1 SCHEDULER......................... 193

FIGURE 9-2: A SIMPLE TDMA CONFIGURATION FOR A FOUR-NODE SYSTEM USING TTC-SCC2 SCHEDULER.
.. 195

FIGURE 9-3: A MORE COMPLICATED TDMA CONFIGURATION FOR A SIX-NODE SYSTEM USING TTC-SCC2
SCHEDULER. ... 195

FIGURE 9-4: A TDMA CONFIGURATION FOR A SIX-NODE SYSTEM WITH ARBITRARY PATTERN USING TTC-
SCC2 SCHEDULER. ... 196

FIGURE 9-5: A SIMPLE TDMA CONFIGURATION FOR A FOUR-NODE SYSTEM USING TTC-SCC3 SCHEDULER.
.. 198

FIGURE 9-6: TWO POSSIBLE TDMA CONFIGURATIONS FOR A SEVEN-NODE SYSTEM USING TTC-SCC3
SCHEDULER. ... 199

FIGURE 9-7: A SIMPLE TDMA CONFIGURATION FOR A FOUR-NODE SYSTEM USING TTC-SCC4 SCHEDULER.
.. 200

FIGURE 9-8: A TDMA CONFIGURATION FOR A SEVEN-NODE SYSTEM USING TTC-SCC5 SCHEDULER. 202

FIGURE 10-1: HARDWARE ARCHITECTURE OF THE MULTI-PROCESSOR SYSTEM USED FOR THE STCS....... 206
FIGURE 10-2: IMPACT OF TICK MESSAGE VARIATION ON THE TIMING OF SLAVE TICKS IN TTC-SCC

SYSTEMS. ... 207
FIGURE 11-1: THE METHOD USED TO MEASURE THE TRANSMISSION TIME IN TTC-SCC SCHEDULERS...... 214
FIGURE 11-2: MASTER-TO-SLAVE MESSAGE LATENCY IN TTC-SCC1. .. 217

FIGURE 11-3: SLAVE-TO-MASTER MESSAGE LATENCY IN TTC-SCC1. .. 218
FIGURE 11-4: SLAVE-TO-SLAVE MESSAGE LATENCY IN TTC-SCC1. ... 220

 xii

FIGURE 11-5: FAILURE DETECTION TIME IN TTC-SCC1.. 222

FIGURE 11-6: MASTER-TO-SLAVE MESSAGE LATENCY IN TTC-SCC1. .. 225
FIGURE 11-7: SLAVE-TO-SLAVE MESSAGE LATENCY IN TTC-SCC2. ... 227

FIGURE 11-8: FAILURE DETECTION TIME IN TTC-SCC2.. 228
FIGURE 11-9: SLAVE-TO-SLAVE MESSAGE LATENCY IN TTC-SCC3. ... 231

FIGURE 11-10: FAILURE DETECTION TIME IN TTC-SCC3.. 233
FIGURE 11-11: FAILURE DETECTION TIME IN TTC-SCC5.. 240

FIGURE 12-1: ALL TTC SCHEDULER IMPLEMENTATIONS REVIEWED IN THIS STUDY................................ 250

 xiii

List of tables

TABLE 6-1: TASK SET (TEST INPUT) FOR STC A (MAJOR CYCLE = 1 TICK)... 124
TABLE 6-2: EXAMPLE SCHEDULE A1 ... 125

TABLE 6-3: EXAMPLE SCHEDULE A2 ... 125
TABLE 6-4: TASK SET (TEST INPUT) FOR STC B (MAJOR CYCLE = 2 TICKS). .. 126

TABLE 6-5: EXAMPLE SCHEDULE B1 (BASIC SCHEDULER) .. 127
TABLE 6-6: EXAMPLE SCHEDULE B2 (TTC SCHEDULER WITH GAP INSERTION) 127

TABLE 6-7: TASK SET (TEST INPUT) FOR STC C (MAJOR CYCLE = 4 TICKS). .. 128
TABLE 6-8: EXAMPLE SCHEDULE C1 (BASIC SCHEDULER) .. 129

TABLE 6-9: EXAMPLE SCHEDULE C2 ... 129
TABLE 6-10: EXAMPLE SCHEDULE C3 ... 130

TABLE 6-11: EXAMPLE SCHEDULE C4 ... 130
TABLE 6-12: EXAMPLE SCHEDULE C5 ... 131

TABLE 6-13: EXAMPLE SCHEDULE C6 ... 131
TABLE 6-14: TASK SET (TEST INPUT) FOR STC D (MAJOR CYCLE = 20 TICKS). 132

TABLE 6-15: EXAMPLE SCHEDULE D1A, D1B, D2A, D2B, D3A AND D3B... 132
TABLE 7-1: TASK SCHEDULE IN TTC-ISR SCHEDULER. .. 144

TABLE 7-2: TASK JITTER FROM THE TTC-ISR SCHEDULER (ALL VALUES IN µS). 145
TABLE 7-3: CPU OVERHEAD FOR THE TTC-ISR SCHEDULER. ... 146

TABLE 7-4: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-ISR SCHEDULER. 146
TABLE 7-5: POWER REQUIREMENTS FOR THE TTC-ISR SCHEDULER. ... 146

TABLE 7-6: TASK SCHEDULE IN TTC-DISPATCH SCHEDULER. ... 147
TABLE 7-7: TASK JITTER FROM THE TTC-DISPATCH SCHEDULER (ALL VALUES IN µS)............................ 148

TABLE 7-8: CPU OVERHEAD FOR THE TTC-DISPATCH SCHEDULER... 149
TABLE 7-9: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-DISPATCH SCHEDULER. 149

TABLE 7-10: POWER REQUIREMENTS FOR THE TTC-DISPATCH SCHEDULER. ... 149
TABLE 7-11: TASK SCHEDULE IN TTC-DVS SCHEDULER. ... 150

TABLE 7-12: TASK JITTER FROM THE TTC-DVS SCHEDULER (ALL VALUES IN µS).................................. 151
TABLE 7-13: CPU OVERHEAD FOR THE TTC-DVS SCHEDULER... 152

TABLE 7-14: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-DVS SCHEDULER. 152
TABLE 7-15: POWER REQUIREMENTS FOR THE TTC-DVS SCHEDULER. ... 152

TABLE 7-16: TASK SCHEDULE IN TTC-TG SCHEDULER. ... 153

 xiv

TABLE 7-17: TASK JITTER FROM THE TTC-TG SCHEDULER (ALL VALUES IN µS). 154

TABLE 7-18: CPU OVERHEAD FOR THE TTC-TG SCHEDULER. .. 155
TABLE 7-19: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-TG SCHEDULER. 155

TABLE 7-20: POWER REQUIREMENTS FOR THE TTC-TG SCHEDULER. .. 156
TABLE 7-21: TASK SCHEDULE IN TTC-MTI SCHEDULER. ... 156

TABLE 7-22: TASK JITTER FROM THE TTC-MTI SCHEDULER (ALL VALUES IN µS). 157
TABLE 7-23: CPU OVERHEAD FOR THE TTC-MTI SCHEDULER. .. 158

TABLE 7-24: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-MTI SCHEDULER. 158
TABLE 7-25: POWER REQUIREMENTS FOR THE TTC-MTI SCHEDULER. .. 158

TABLE 7-26: TASK SCHEDULE IN TTC-ADAPTIVE SCHEDULER.. 159
TABLE 7-27: TASK JITTER FROM THE TTC-ADAPTIVE SCHEDULER (ALL VALUES IN µS). 161

TABLE 7-28: CPU OVERHEAD FOR THE TTC-ADAPTIVE SCHEDULER... 161
TABLE 7-29: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-MTI SCHEDULER. 162

TABLE 7-30: POWER REQUIREMENTS FOR THE TTC-ADAPTIVE SCHEDULER. ... 162
TABLE 7-31: SUMMARY OF RESULTS OBTAINED IN THIS CHAPTER. .. 163

TABLE 11-1: TASK JITTER FROM THE TTC-SCC1 SCHEDULER (ALL VALUES IN µS). 216
TABLE 11-2: MASTER-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC1. .. 218

TABLE 11-3: SLAVE-TO-MASTER LATENCY EQUATIONS IN TTC-SCC1. .. 219
TABLE 11-4: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC1.. 221

TABLE 11-5: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC1 (SIMPLIFIED FORMULA). 221
TABLE 11-6: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SCC1 SCHEDULER. 223

TABLE 11-7: TASK JITTER FROM THE TTC-SCC2 SCHEDULER (ALL VALUES IN µS). 223
TABLE 11-8: MASTER-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC2. .. 225

TABLE 11-9: SLAVE-TO-MASTER LATENCY EQUATIONS IN TTC-SCC2. .. 225
TABLE 11-10: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC2 (BEST-CASE SCENARIO). 226

TABLE 11-11: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC2 (WORST-CASE SCENARIO). 227
TABLE 11-12: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SCC2 SCHEDULER. 229

TABLE 11-13: TASK JITTER FROM THE TTC-SCC3 SCHEDULER (ALL VALUES IN µS). 229
TABLE 11-14: MASTER-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC3. .. 230

TABLE 11-15: SLAVE-TO-MASTER LATENCY EQUATIONS IN TTC-SCC3. .. 230
TABLE 11-16: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC3. ... 232

TABLE 11-17: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SCC3 SCHEDULER. 234
TABLE 11-18: TASK JITTER FROM THE TTC-SCC4 SCHEDULER (ALL VALUES IN µS). 234

TABLE 11-19: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SCC4 SCHEDULER. 236
TABLE 11-20: TASK JITTER FROM THE TTC-SCC1 SCHEDULER (ALL VALUES IN µS). 237

 xv

TABLE 11-21: MASTER-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC5. .. 238

TABLE 11-22: SLAVE-TO-MASTER LATENCY EQUATIONS IN TTC-SCC5. .. 239
TABLE 11-23: SLAVE-TO-SLAVE LATENCY EQUATIONS IN TTC-SCC5. ... 239

TABLE 11-24: MEMORY REQUIREMENTS (ROM AND RAM) FOR THE TTC-SCC5 SCHEDULER. 241
TABLE 11-25: SUMMARY OF THE EMPIRICAL RESULTS FROM ALL TTC-SCC SCHEDULERS. 241

TABLE 11-26: TTC-SCC MODELS USED IN THE CASE STUDY TO ALLOW A COMPARISON BETWEEN
SCHEDULERS. ... 242

TABLE 11-27: RESULTS FROM THE CASE STUDY USED TO COMPARE BETWEEN TTC-SCC SCHEDULERS. . 243

 xvi

List of author’s publications

All papers, which have been published and submitted during the course of the work
described in this thesis, are listed below. Please note that the contents of some of these
papers have been adapted for presentation in this thesis: where applicable, a footnote
at the beginning of a chapter indicates that material from one or more papers has been
included.

Directly-related publications:

[1] Pont, M.J., Nahas, M., Phatrapornnant, T. and Hughes, Z. (Submitted) “Test cases
for single-processor embedded systems which employ a time-triggered system
architecture”, submitted for a journal.

[2] Nahas, M., Pont, M.J. and Short, M. (In preparation) “Test cases for multi-processor
embedded systems which employ a time-triggered and a shared-clock architectures
on CAN networks”.

[3] Nahas, M., Hughes, Z. and Pont, M.J. (In preparation) “Towards a ‘perfect’ time-
triggered co-operative scheduler implementation for highly-predictable embedded
systems”

 xvii

Indirectly-related publications:

[4] Nahas, M., Pont, M.J. and Jain, A. (2004) “Reducing task jitter in shared-clock
embedded systems using CAN”. In: Koelmans, A., Bystrov, A. and Pont, M.J.
(Eds.) Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October
2004), pp.184-194. Published by University of Newcastle upon Tyne [ISBN: 0-
7017-0180-3].

[5] Nahas, M., Short, M. and Pont, M. J. (2005) “The impact of bit stuffing on the real-
time performance of a distributed control system”, Proceeding of the 10th
International CAN conference iCC (Rome, Italy, March 2005), pp. 10-1 to10-7.

[6] Nahas, M. and Pont, M.J. (2005) “Maximizing the reliability of CAN-based
distributed embedded systems”, Poster presentation at ‘Festival of Postgraduate
Research 2005’ at University of Leicester, (Leicester, UK, June 2005).

[7] Nahas, M. and Pont, M.J. (2005) “Using XOR operations to reduce variations in the
transmission time of CAN messages: A pilot study”. In: Koelmans, A., Bystrov, A.,
Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded
Forum (Birmingham, UK, October 2005), pp.4-17. Published by University of
Newcastle upon Tyne [ISBN: 0-7017-0191-9].

[8] Nahas, M. and Pont, M.J. (2006) “Reducing task jitter in TTC schedulers for
resource-constrained embedded systems”, Poster presentation at ‘Festival of
Postgraduate Research 2006’ at University of Leicester, (Leicester, UK, June 2006).

[9] Nahas, M., Pont, M. J. and Short, M. (Submitted) “Reducing message-length
variations in resource-constrained embedded systems implemented using the CAN
protocol”, submitted for a journal.

 xviii

List of abbreviation

General terms:

ACC Adaptive Cruise Control
CAN Controller Area Network
CE Cyclic executive
CM Calculating Mode
CPU Central Processing Unit
CSMA/CA Carrier Sense Multiple Access / Collision Avoidance
CSMA/CD Carrier Sense Multiple Access / Collision Detection
DVS Dynamic Voltage Scaling
EEM Eight-to-Eleven Modulation
EFM Eight-to-Fourteen Modulation
EMI Electromagnetic Interface
ESL Embedded Systems Laboratory
ET Event-Triggered
GPOS General Purpose Operating System
HIL Hardware-in-the-Loop
HW Hardware
I/O Input/Output
ISR Interrupt Service Routine
Kbps Kilo bits per second
LIN Local Interconnect Network
Mbps Mega bits per second
MTI Multiple Timer Interrupts
NFDT Node-Failure Detection Time
NU Network Utilisation
OM Operating Mode
OS Operating System
PC Personal Computer
PID Proportional, Integral and Derivative
PLL Phase Looked Loop
RT Release Time
RTOS Real-Time Operating System
SBS Software Bit Stuffing
S-C Shared-Clock
SCC Shared-Clock CAN
SD Sandwich Delay
SL Super Loop
SW Software
TDMA Time Division Multiple Access
TG Task Guardian
TT Time-Triggered
TTC Time-Triggered Co-operative
TTCAN Time-Triggered Controller Area Network
TTP Time-Triggered Protocol
TTP/C Time-Triggered Protocol, Class C

 xix

UART Universal Asynchronous Receiver/Transmitter
WCET Worst Case Execution Time

Scheduler architectures:

TTC-SL Time-Triggered, Co-operative, Super Loop
TTC-ISR Time-Triggered, Co-operative, Interrupt Service Routine
TTC-Dispatch Time-Triggered, Co-operative, Dispatch
TTC-SD Time-Triggered, Co-operative, Sandwich Delays
TTC-MTI Time-Triggered, Co-operative, Multiple Timer Interrupts
TTC-TG Time-Triggered, Co-operative, Task Guardians
TTC-DVS Time-Triggered, Co-operative, Dynamic Voltage Scaling
TTC-SC Time-Triggered, Co-operative, Shared-Clock
TTC-SCC Time-Triggered, Co-operative, Shared-Clock CAN

PART A:

INTRODUCTION

Chapter 1

Introduction

1.1 Introduction

This introductory chapter provides a general overview of the work carried out during

the course of this PhD project. It discusses the scope of this research and explains the

aim of the studies detailed in the remainder of this thesis.

1.2 What is an embedded system?

Unlike general-purpose desktop computers, an embedded system is a special-purpose

computer system which is designed to perform a small number of dedicated functions

for a specific application (Sachitanand, 2002; Ali, 2004; Kamal, 2003). An embedded

system might contain one or more programmable chips such as a microcontroller,

microprocessor or digital signal processor (Pont, 2001). The word “embedded”

indicates that the computer unit (e.g. microprocessor) is fully surrounded by the device

it controls, and is invisible to the user of the device. An embedded system usually

consists of hardware, software and perhaps mechanical or other components, and can be

a small part of a larger system or machine (Barr, 1999; Kamal, 2003). In desktop

computer systems, the user usually interacts with the software application through a set

of highly-capable input / output devices such as keyboard, mouse, and coloured screen.

In contrast, embedded systems have no such sophisticated interface devices: instead,

they interact with the surrounding environment through a set of simple components

such as switches, small keypads, light-emitting diodes (LEDs) and so on.

Historically, the first computer system, recognised as an embedded system, was the

Apollo Guidance Computer developed in 1959 to control the Apollo spacecraft (Hall,

2000). The first successful commercial minicomputer was the PDP-8 produced by

Digital Equipment Corporation in 1965 (Bell and Newell, 1971). In 1971, Intel released

the first commercial single-chip microprocessor, the Intel 4004, which was primarily

used in calculators and small systems (Bellis, 2007). Although this single-chip had

replaced hardwired circuitry, external memory and support chips were still required

 Chapter 1: Introduction 3

with the microprocessor unit until 1980s, when microcontrollers were developed to

integrate all components of a microprocessor system into a single chip (Axelson, 1994;

Bolton, 2000). Since then, many commercial companies have become involved in the

development of embedded microcontrollers to meet the increasingly growing demand of

modern technology, e.g. Atmel, Philips, Intel, Infineon, Texas Instruments, Microchip

and Motorola. Examples of different processor platforms used nowadays in the design

of embedded systems are: 8051 (Pont, 2001), ARM (ARM, 2001), PIC (Huang, 2004),

MIPS (Chow, 1989), PowerPC (Chakravarty and Cannon, 1994), Atmel AVR (Kühnel,

2006), MPC555 (Bannatyne, 2004) and C16x (Siemens, 1996).

People in the 21st century may not realise the fact that without the emergence of

embedded technology their life would have become harder. This is because most

electrical devices people use nowadays are utilising embedded processors. Examples of

such devices are: microwave ovens, TVs, VCRs, DVDs, mobile phones, MP3 players,

washing machines, air conditions, handheld calculators, printers, digital watches, digital

cameras, automatic teller machines (ATMs) and medical equipments (Barr, 1999;

Bolton, 2000; Fisher et al., 2004; Pop et al., 2004; Kamal, 2003). Figure 1-1 shows

examples of the wide ranging use of embedded systems in modern applications.

Telephone

Automobiles

Printer

Microwave
oven

ECG

Mobile
phone

Figure 1-1: Examples of applications using embedded systems.

In a recent publication by ABB Corporate Research (2006), Christoffer Apneseth has

reported that the need for embedded microprocessors arises mainly because general-

purpose computers, like PCs, generally exceed the cost of the majority of products that

utilise embedded systems, and are not capable of meeting the requirements that

 Chapter 1: Introduction 4

embedded systems should have such as reliability1, product-size limitation, real-time

performance and power-consumption constraints (Apneseth, 2006).

1.3 Embedded systems market

Since embedded systems are ubiquitous, their market size today is estimated 100 times

larger than the size of desktop market (Eggermont, 2002). This scale was expected to

grow exponentially within the next ten years or so (Graaf et al., 2003).

In a report developed by Ravi Krishnan (from BBC research group) in June 2005, the

worldwide embedded systems market was estimated at $45.9 billion in 2004 and

expected to grow at an average annual growth rate of 14% over the next five years to

reach $88 billion by 2009. This total figure was broken down as follows: embedded

software market is expected to grow from about $1.6 billion in 2004 to $3.5 billion by

2009 at an average annual growth rate of 16%, embedded hardware market is expected

to grow from about $40.5 billion in 2004 to $78.7 billion by 2009 at an average annual

growth rate of 14.2%, and embedded board revenues will increase from about $3.7

billion in 2004 to about $6 by 2009 at an average annual growth rate of 10% (see

Krishnan, 2005). Figure 1-2 shows the evolution in the worldwide embedded markets

from 2003 through to 2009.

1 Reliability means that the system is able to provide the service to the user whenever requested
(Sommerville, 2007).

 Chapter 1: Introduction 5

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

2003 2004 2009

1,401 1,641 3,448

34,681
40,539

78,746

3,401 3,693 5,950

$
M

ill
io

ns

Embedded Software Embedded IC Embedded Boards

Figure 1-2: Global embedded systems market, 2003 – 2009 (Source: BBC Research Group).

1.4 The need for predictability in embedded systems

Besides the application types listed in Section 1.2, which can be viewed as “non-

critical” systems, embedded technology has also been used to develop “safety-critical”

systems in which failures can have very serious impacts on human safety. For example,

incorrect operation of such systems may endanger human lives or cause catastrophic

consequences. Safety-critical systems are typically used in the development of

aerospace, automotive, railway, military and medical applications (Redmill, 1992;

Profeta et al., 1996; Storey, 1996; Konrad et al., 2004).

The utilisation of embedded systems in safety-critical applications requires that the

system should have real-time operations to achieve correct functionality and/or avoid

any possibility for detrimental consequences. Real-time systems are computer systems

which must react (respond) to events in the environment within limited time boundaries

(Barr, 1999; Buttazzo, 2005). Real-time behaviour can only be achieved if the system is

able to perform predictable and deterministic processing (Stankovic, 1988; Pont, 2001;

Buttazzo, 2005; Phatrapornnant, 2007). More clearly, a given system is described as

real-time if it is able to complete the execution of particular activities within specific

time intervals. In another word, the system should guarantee that a particular set of

activities (e.g. calculating the required throttle settings to control speed in an auto-driver

system) will always be completed within (for example) 4 ms or at precisely 3 ms

periods. In situations where the system is unable to meet these time constraints, then the

 Chapter 1: Introduction 6

whole application is not simply slower than would be expected, it tends to be entirely

useless (Pont, 2001). As a result, the correct behaviour of a real-time system depends on

the logical correctness of the output results as well as the time at which these results are

produced (Avrunin et al., 1998; Kopetz, 1997).

Overall, real-time systems can be divided into two main classes: soft-real-time and

hard-real-time systems (Buttazzo, 2005). In soft-real-time systems, timing constraints

have to be “generally” met, and failure to do so may only result in reduced system

performance but does not cause serious damages or jeopardise correct behaviour. In

contrast, in hard-real-time systems such as those related to safety-critical applications,

timing constraints must be “deterministically” met in order to achieve correct operations

or avoid harmful consequences. For example, consider the Brake-by-Wire system

designed for modern passenger cars (Hedenetz and Belschner, 1998), the brake

actuators may be required to respond within a fixed amount of time after the brake pedal

is pressed. If the system fails to respond within this time bound, then there could be a

danger that the vehicle may not stop in time before crashing into another vehicle

causing serious damage and possibly loss of passenger lives (Ayavoo, 2007). Another

example is an aircraft auto-pilot system in which rapid reactions, involving (for

example) rudder, elevator, aileron and engine settings, are necessarily required to keep

the aircraft staying on its path. In situations where the system cannot (for example)

adjust the rudder setting in millisecond time-scale, the plane may oscillate unpleasantly

or even crash in more severe circumstances (Pont, 2001).

In such real-time embedded applications, it is important to predict the timing behaviour

of the system to guarantee that the system will behave correctly and as a result the life

of the people using the system will be saved. Many researchers indicate that, whilst the

most important property of a desktop computing system is its speed, the most important

property in a real-time computing system is predictability (Kontak, 1988; Stankovic,

1988; Halang and Stoyenko, 1990). This is clearly stated by Buttazzo (2005) as:

“… rather than being fast, a real-time computing system should be predictable”

Hence, predictability is the key characteristic in real-time embedded systems.

Predictability can simply reflect the ability to determine, in advance, exactly what the

system will do at every moment of time in which it is running and hence determine

 Chapter 1: Introduction 7

whether the system is capable of meeting all its timing constraints. According to this

definition, building an embedded application with highly-predictable system behaviour

is, in most cases, a non straightforward process as will be discussed in the next section.

1.5 Challenges in building predictable embedded systems

Embedded systems engineering is viewed as a branch of systems engineering discipline

where engineers are concerned with all aspects of the system development including

hardware and software engineering. Therefore, activities such as specification, design,

implementation, validation, deployment and maintenance will all be involved in the

development of an embedded application.

A design of any system usually starts with ideas in people’s mind. These ideas need to

be captured in requirements specification documents that specify the basic functions and

the desirable features of the system. The system design process then determines how

these functions can be provided by the system components. Figure 1-3 illustrates the life

cycle of a system development process.

Requirement
definition Implementation

System and
Software
design

Integration and
Testing

Operation and
Maintenance

Figure 1-3: The system development life cycle (adapted from Sommerville, 2007).

For successful design, the system requirements have to be expressed and documented in

a very clear way. Inevitably, there can be numerous ways in which the requirements for

a simple system can be described: this may involve structured natural language, models

or graphical representations, formal specification techniques, etc. (Sommerville, 2007).

Once the system requirements have been clearly defined and well documented, the first

step in the design process is to design the overall system architecture. Architecture of a

system basically represents an overview of the system components (i.e. sub-systems)

and the interrelationships between these different components. Since embedded

engineers are concerned with hardware and software design aspects of the system, they

must decide on both the hardware and the software architectures of the intended design.

 Chapter 1: Introduction 8

This thesis is mainly concerned with the software architectures for embedded designs.

Douglass (2004) defines architecture as: “the set of strategic design decisions that affect

the structure, behaviour, or functionality of the system as a whole”.

Clear documentation of the software architecture is paramount as it helps the developers

consider key design aspects of the system early in the design process. Since they

provide a high-level representation of the system, software architectures allow the

developers to establish discussions about the system requirements and begin to predict

how the system will operate after implementation (Sommerville, 2007). Determining

the most appropriate architecture is a key requirement in the design and implementation

processes of a given system. More specifically, embedded systems are often designed

and implemented as a collection of processes (called tasks) which share the system

resources and interact with the system and/or environment in which they operate. The

various possible system architectures are then characterised in terms of these tasks. For

example, if the tasks are invoked periodically under the control of timer, the system

architecture may be described as time-triggered (Kopetz, 1997; Albert, 2004).

Alternatively, if the tasks are invoked as a response to aperiodic external events, then

the system architecture may be described as event-triggered (Nissanke, 1997; Albert,

2004). These are the two fundamental architectures used in the design of embedded

systems. More details are provided later in Section 2.5.

Once the software architecture is identified, the process of implementing that

architecture should take place. This can be achieved using a lower-level system

representation such as an operating system or a scheduler. Scheduler is a very simple

operating system for an embedded application (Pont, 2001). As with desktop operating

systems, the scheduler has the responsibility to manage the computational and data

resources in order to meet all temporal and functional requirements of the system

(Mwelwa, 2006). A vital role of the scheduler is to organise the operation of the tasks

running in the system, so as to guarantee that all timing requirements will be met.

Building the scheduler would require a scheduling algorithm which simply provides the

set of rules that determine the order in which the tasks will be executed by the scheduler

during the system operating time. It is therefore the most important factor which

influences predictability in the system, as it is responsible for satisfying timing and

resource requirements (Buttazzo, 2005). However, the actual implementation of the

 Chapter 1: Introduction 9

scheduling algorithm on the embedded microcontroller has an important role in

determining the functional and temporal behaviour of the embedded system.

In view of all these different representations for a simple embedded design, the main

challenge is to ensure that the various system representations are all matching up and

the system would maintain its required behaviour whilst moving between

representations. For example, Marwedel (2006) noted that when a system is modelled,

each system model views a particular aspect of the system and it is not possible to

ensure complete consistency between the various models; although some tools available

nowadays can help perform partial consistency checking between the different models.

As a consequence, ensuring predictability of the system, whilst translating between its

various representations, would require further techniques to be applied at different

stages in the development process. This is clearly underlined by Buttazzo (2005) as:

“… one safe way to achieve predictability is to investigate and employ new

methodologies at every stage of the development of an application, from design to

testing.”

1.6 The focus of this thesis

The work described in this thesis seeks to address the process of translating between

various possible representations of an embedded system and ensuring predictability

during this process. However, the thesis is not attempting (by any mean) to match all

system representations which cannot be possible in a single study. Instead, it is mainly

concerned with translating between the high-level representation of the system, in terms

of its scheduler, and the actual software implementation for that scheduler.

Given that a scheduling “algorithm” is the set of rules that, at every moment in the

system run-time, determines which task must be allocated the resources to execute, the

scheduler “implementation” is the process of transforming these rules into an executable

source code (Sommerville, 2007; Koch, 1999). The source code can hence be viewed as

the lower-level software representation of the system which practically dictates its

functional and temporal behaviour.

 Chapter 1: Introduction 10

Inevitably, there are many possible behaviour patterns one can get from a very simple

software design, not least because of the various possible ways in which the source code

for this design can be implemented. Therefore, it has been widely accepted that there is

a ‘one-to-many’ mapping between a scheduling algorithm and its software

implementations in practical real-time embedded designs (e.g. Baker and Shaw, 1989;

Katcher et al., 1993; Koch, 1999). As a consequence, any – even comparatively small –

changes at the implementation stage of a scheduler can have a profound impact on the

behaviour of the system which implements this scheduler (see Section 3.3 for more

details).

Despite this, the topic of scheduler implementation is rarely considered in detail (Cho et

al., 2007). In a research conducted by Katcher and his colleges (Katcher et al., 1993), it

was argued that there is a wide gap between scheduling theory and its implementation

in operating system kernels running on specific hardware platforms, where this gap

must be bridged for meaningful validation of a real-time application. Katcher et al. have

also noted that the implementation of a particular algorithm can introduce costs which

must be taken into account when validating the timing properties of a real-time system.

The aim of this thesis is to bridge the gap between scheduling algorithms and practical

scheduler implementations in real-time embedded systems. A main goal is to ensure that

precise timing predictions made at the design stage of a system are not lost in the

process of creating or maintaining a practical system implementation, thereby ensuring

that the implemented scheduler matches the original design specifications and hence

meets the user’s requirements.

To address these issues, this study proposes the use of “scheduler test cases” as a way

for recording and distinguishing the impact of different (scheduler) implementations on

the behaviour of embedded systems. The Scheduler Test Case (STC) technique

proposed is intended to allow those implementing a system to gain a full understanding

of its characteristics by exploring the ways in which the various implementations of the

system scheduler can be expected to behave under a range of both normal and abnormal

operating conditions.

 Chapter 1: Introduction 11

Note that the particular focus of this study is on resource-constrained, embedded

systems which employ time-triggered co-operative (TTC) architectures. These

architectures are reviewed in Section 2.8.3. However, the study also considers multi-

processor embedded designs which are based on TTC algorithm and a Shared-Clock (S-

C) scheduling protocol. These architectures are reviewed in Section 8.4.3.

1.7 Thesis contributions

The main contributions of this thesis are summarised as follows:

• A technique for employing a set of generic Scheduler Test Cases (STCs) is

developed and implemented with the intention to facilitate a “black box”

comparison between the behaviour of different Time-Triggered Co-operative

(TTC) scheduler implementations in single-processor, resource-constrained

embedded systems.

• An extension to the STC technique is proposed to allow assessing the behaviour of

(distributed) multi-processor embedded designs implemented using a wide range of

Shared-Clock (S-C) scheduling architectures built on the Controller Area Network

(CAN) protocol.

• A set of standard forms (i.e. representative implementation classes) of TTC

schedulers (for single-processor embedded systems) and TTC-SCC schedulers (for

multi-processor embedded systems) are fully documented, classified and compared

using a systematic approach.

• The development of a flexible (adaptive) TTC architecture that provides extremely

predictable task scheduling is described and evaluated. This is aimed towards

implementing a “perfect” TTC scheduler.

• A range of data coding techniques are developed to reduce transmission jitter and,

hence, increase the predictability of multi-processor embedded networks that

employ TTC-SCC scheduling protocols.

 Chapter 1: Introduction 12

1.8 Thesis layout

The remaining chapters of this thesis are organised as follows:

Part B reviews previous work carried out in the areas concerned with in this thesis. It

begins, in Chapter 2, by providing essential background material that is necessary to

understand the work presented in the remaining chapters of the thesis. It mainly focuses

on scheduling algorithms used in real-time embedded systems which have severe

resource constraints and require highly-predictable system behaviour. Following this

chapter, a more detailed literature review of the previous work in this area is provided.

This includes the work on real-time scheduler implementations, with a particular focus

on the TTC scheduling algorithm (Chapter 3) and possible ways to match scheduling

algorithms and scheduler implementations using generic techniques (Chapter 4). By the

end of Part B, the limitations in previous work to address the problems considered in

this thesis are clarified.

Part C presents the work carried out in this project for single-processor embedded

system implementations. It begins, in Chapter 5, by reviewing a wide range of

representative implementation classes for TTC scheduling algorithm. Chapter 6 then

describes the STC technique developed in this project to document (and assess) the

various TTC scheduler implementations. In Chapter 7, the STC technique is applied to

the reviewed TTC scheduler implementations and the output results are presented and

analysed. The experimental methodology used to obtain the results is also outlined in

this chapter.

Part D considers the work carried out in this project for multi-processor embedded

system implementations. This study begins, in Chapter 8, by reviewing various network

and scheduling protocols used to implement multi-processor embedded systems which

have severe resource constraints and highly-predictable behaviour requirements. The

focus in this chapter will particularly be on systems employing Controller Area

Network (CAN) communication protocol and Shared-Clock (S-C) scheduling protocol.

The next three chapters then follow the same layout as in the single-processor study. In

particular, Chapter 9 reviews a wide range of representative implementation classes for

 Chapter 1: Introduction 13

S-C scheduling protocol as implemented with TTC algorithm on CAN network (the

resulting system will be referred to as TTC-SCC scheduler). Chapter 10 describes a

possible modification to the STC technique to allow documenting (and assessing) the

various TTC-SCC scheduler implementations. In Chapter 11, the modified STC

technique is applied to the reviewed TTC-SCC scheduler implementations and the

output results are presented and analysed. The methodology used to obtain the results is

outlined at the beginning of this chapter.

Part E contains the discussion and conclusions of the thesis. In particular, Chapter 12

summarises the work presented in the previous chapters and discusses the overall

findings of the project. Finally, Chapter 13 draws the overall thesis conclusions and

suggests some work for future research projects.

Part F contains Appendices which provide supplementary materials and summarise

additional work which has been carried out during the course of this project, but is

indirectly related to the studies presented in the thesis chapters.

1.9 Conclusions

This introductory chapter has discussed the overall theme of the work described in this

PhD thesis. It provided an introduction to embedded systems and discussed the

challenges involved in the process of creating a predictable embedded application.

The discussions indicated that, despite the importance of scheduling algorithms in

managing the operation of real-time embedded systems, scheduler implementations

have a major role in determining the actual run-time behaviour of the system: however,

there is still a wide gap between scheduling algorithms and their practical

implementations which must be addressed to achieve correct validations of embedded

systems.

Based on these discussions, the main goal and key contributions of this thesis were

stated, and the layout for the remaining chapters provided.

PART B:

LITERATURE REVIEW

Chapter 2

Real-time scheduling algorithms

2.1 Introduction

As previously noted, this thesis is mainly concerned with the process of translating

between scheduling algorithms and scheduler implementations in practical real-time

embedded systems which employ time-triggered software architectures. This chapter

introduces the concepts of scheduling and discusses scheduling algorithms which are

widely used in the design of real-time, resource-constrained embedded systems when

highly-predictable system behaviour is a key requirement. The chapter begins by

providing some essential background material and definitions.

2.2 Tasks

The most important software entity of the real-time embedded system is the process or

task which is a computation that is executed by the CPU in a sequential manner

(Buttazzo, 2005). Most embedded systems are assembled from collections of tasks. For

example, complex systems (such as aircraft control) may have hundreds of tasks,

possibly distributed across a number of CPUs: see Section 2.11 . However, the tasks

executed by a single CPU may still need to exchange data between them and access

shared resources, e.g. ports, serial interfaces, digital-to-analogue converters, and so

forth. The interaction between the various tasks depends on the method of scheduling

that is employed: this is discussed further shortly.

Real-time tasks are divided into three main categories:

• Periodic tasks: tasks implemented as functions which are called at regular

intervals (e.g. every millisecond or every 100 milliseconds) during some or all of

the time that the system is active. Periodic tasks usually have critical timing

constraints which must be met precisely (Cottet, 2002). Figure 2-1 shows an

example of a periodic task. Note that the task is ready at ai, must complete its

execution before di (where i = 1, 2, 3, …, n) and is called every T interval.

 Chapter 2: Real-time scheduling algorithms 16

T

Timea1 d1 a2 d2 an dna3 d3

Figure 2-1: Sequence for a periodic task. The figure is adapted from (Buttazzo, 2005).

• Aperiodic tasks: tasks implemented as functions which may be activated if a

particular event takes place. For example, an aperiodic task might be activated

when a switch is pressed, or a character is received over a serial connection.

Timing constraints for aperiodic tasks can be less critical than those for periodic

tasks (Cottet, 2002). Figure 2-2 shows an example of an aperiodic task.

Timea1 d1 a2 d2

Figure 2-2: Sequence for an aperiodic task. The figure is adapted from (Buttazzo, 2005).

• Sporadic tasks: tasks implemented as functions which are called repeatedly at

variable intervals. However, the minimum interval between any two successive

occurrences of the sporadic task is known. Figure 2-3 shows an example of a

sporadic task. Note that the task is called at variable periods with the minimum

value of Tm.

Tm

Timea1 d1 a2 d2 a4 d4a3 d3

Figure 2-3: Sequence for a sporadic task.

 Chapter 2: Real-time scheduling algorithms 17

2.3 Timing constraints

For any type of tasks running in a real-time system, timing constraints are often a key

concern. Tasks can be divided – according to the implications of missing their timing

constraints – into two main classes: soft and hard. In particular, a task is said to be soft

if meeting its timing constraints is desirable for performance, but missing these

constraints does not affect the correctness of the system behaviour. In contrast, a task is

said to be hard if missing its timing constraints can result in harmful consequences or

misbehaviour of the system (Buttazzo, 2005).

The typical timing constraints associated with each task in real-time systems are:

• Release time: the time after which a task can start its execution. This parameter is

sometimes called request time, ready time, or arrival time.

• Deadline: the time before which a task must complete its execution.

Some other timing parameters, which are used to characterise tasks in real-time systems,

are:

• Start time: the time at which a task starts its execution.

• Completion time: the time at which a task completes its execution. This parameter

is also called finishing time.

• Execution time: the time taken by the processor to execute a task without

interruption. This parameter is also called computation time.

• Lateness: the delay between the deadline and the completion time. A task is

considered late if its lateness value is positive.

2.4 Jitter

Jitter is a term which describes variations in the timing of activities (Wavecrest, 2001).

For some periodic tasks, such variations are more important than the absolute deadline.

For example, suppose that some activity should occur at times:

t = {1.0 ms, 2.0 ms, 3.0 ms, 4.0 ms, 5.0 ms, 6.0 ms, 7.0 ms, …}.

 Chapter 2: Real-time scheduling algorithms 18

Suppose, instead, that the activity occurs at times:

t = {11.0 ms, 12.0 ms, 13.0 ms, 14.0 ms, 15.0 ms, 16.0 ms, 17.0 ms, …}.

In this case, the activity has been delayed (by 10 ms). For some applications – such as

data, speech or music playback (for example) – this delay may make no measurable

difference to the user of the system. However, suppose that – for a data playback system

– same activities were to occur as follows:

t = {1.0 ms, 2.1 ms, 3.0 ms, 3.9 ms, 5.0 ms, 6.1 ms, 7.0 ms, …}.

In this case, there is a variation in the activity timing which is referred to as jitter. In

real-time embedded systems, various system activities are identified as tasks that need

to be performed at precise timing without delays or, more importantly, jitter.

The present work is concerned with implementing highly-predictable embedded

systems. As previously introduced, predictability is one of the most important objectives

of real-time embedded systems which can simply be defined as the ability to determine,

in advance, exactly what the system will do at every moment of time in which it is

running. One way in which predictable behaviour manifests itself is in low levels of task

jitter. As jitter is used in this study as a way of assessing timing behaviour, previous

work in this area is briefly reviewed in this section and later in Section 2.9. This section,

in particular, discusses the impact of jitter on the performance of real-time embedded

systems.

Jitter is a key timing parameter that can have detrimental impacts on the performance of

many applications, particularly those involving period sampling and/or data generation

(e.g. data acquisition, data playback and control systems: see Torngren, 1998). The need

for high-speed systems has enforced the embedded processors to operate in multi-

gigahertz frequency range, and reliable operation of such high-frequency systems would

require substantial understanding of timing jitter characteristics (Ong et al., 2004). For

example, Cottet and David (1999) show that – during data acquisition tasks – jitter rates

of 10% or more can introduce errors which are so significant that any subsequent

interpretation of the sampled signal may be rendered meaningless. Similarly, Jerri

(1977) discusses the serious impact of jitter on applications such as spectrum analysis

and filtering. Also, in control systems, jitter can greatly degrade the performance by

 Chapter 2: Real-time scheduling algorithms 19

varying the sampling period (Torngren, 1998; Marti et al., 2001b). The serious impacts

of jitter on a wide range of applications have been discussed in a number of previous

studies (e.g. Jerri, 1977; Hong, 1995; Stothert, 1998; Gulliver and Ghinea, 2007;

Phatrapornnant, 2007). For example, Gulliver and Ghinea (2007) exemplify that

applications – such as distributed multimedia communications – are highly sensitive to

jitter, where the presence of even low amounts of jitter may result in a severe

degradation in perceptual video quality.

2.5 Software architectures

Embedded systems are composed of hardware and software components. The success of

an embedded design, thus, depends on the right selection of the hardware platform(s) as

well as the software environment used in conjunction with the hardware. The selection

of hardware and software architectures of an application must take place at early stages

in the development process (typically at the design phase). Hardware architecture relates

mainly to the type of the processor (or microcontroller) platform(s) used and the

structure of the various hardware components that are comprised in the system: see

Mwelwa (2006) for further discussion about hardware architectures for embedded

systems.

Provided that the hardware architecture is decided, an embedded application requires an

appropriate form of software architecture to be implemented. To determine the most

appropriate choice for software architecture in a particular system, this condition must

be fulfilled (Locke, 1992):

“The [software] architecture must be capable of providing a provable prediction of the

ability of the application design to meet all of its time constraints.”

Since embedded systems are usually implemented as collections of real-time tasks, the

various possible system architectures may then be determined by the characteristics of

these tasks. In general, there are two main software architectures which are typically

used in the design of embedded systems:

• Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this

case, the system takes no account of time: instead, the system is controlled purely

by the response to external events, typically represented by interrupts which can

 Chapter 2: Real-time scheduling algorithms 20

arrive at anytime (Bannatyne, 1998; Kopetz, 1991b). Generally, ET solution is

recommended for applications in which sporadic data messages (with unknown

request times) are exchanged in the system (Hsieh and Hsu, 2005).

• Time-triggered (TT): tasks are invoked periodically at specific time intervals

which are known in advance. The system is usually driven by a global clock which

is linked to a hardware timer that overflows at specific time instants to generate

periodic interrupts (Bennett, 1994). In distributed systems, where multi-processor

hardware architecture is used, the global clock is distributed across the network

(via the communication medium) to synchronise the local time base of all

processors. In such architectures, time-triggering mechanism is based on time-

division multiple access (TDMA) in which each processor-node is allocated a

periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT solution

can suit many control applications where the data messages exchanged in the

system are periodic (Kopetz, 1997).

To better explain the differences between the TT and ET software architectures,

consider the following example (Pont, 2001). A hospital doctor is required to look after

a group of seriously ill patients overnight, with a support of some nursing staff. With ET

solution, the doctor might arrange to go to sleep and only if a significant problem occurs

with one patient a nurse can waken him up to deal with the problem. An alternative

solution to this is TT in which the doctor might set his alarm to ring every hour. When

the alarm rings, the doctor wakes up and begins to check the status of all patients in

sequence before going to sleep for the rest of the hour.

Many researchers argue that ET architectures are highly flexible and can provide high

resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow

several interrupts to arrive at the same time, where these interrupts might indicate (for

example) that two different faults have been detected at the same time. Inevitably,

dealing with an occurrence of several events at the same time will increase the system

complexity and reduce the ability to predict the behaviour of the ET system (Scheler

and Schröder-Preikschat, 2006). In more severe circumstances, the system may fail

completely if it is heavily loaded with events that occur at once (Marti, 2002). In

 Chapter 2: Real-time scheduling algorithms 21

contrast, using TT architectures helps to ensure that only a single event is handled at a

time and therefore the behaviour of the system can be highly-predictable.

To make this point clearer, reconsider the hospital doctor example. With a TT solution,

where the doctor visits all patients at hourly intervals, each patient will be checked and

appropriate treatment is hence arranged before serious problems arise. With this

process, the doctor’s workload is spread out equally throughout the night making all

patients survive without difficulty. On the contrary, using ET solution may cause

serious problems. For example, assume that a minor problem occurs with one patient

while the doctor is asleep and the nursing staff decide not to waken the doctor but to

solve the problem themselves. Few hours later, several patients have minor problems

after which the nurses decide to wake the doctor up to look at those problems. Once the

doctor sees the patients, he realises that some of them have severe complications and

they need surgery. One implication of this process is that before the doctor can deal with

the first patient, the second one gets very close to death, and so on.

Since highly-predictable system behaviour is an important design requirement for many

embedded systems, TT software architectures have become the subject of considerable

attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT

architectures are a good match for many safety-critical applications, since they can help

to improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke,

1997; Bates; 2000; Obermaisser, 2004). For example, Time-Triggered Group (TTG) –

established by Airbus, Audi, Delphi, Honeywell, PSA Peugeot Citroën, Renault and

TTTech companies – promotes cross-industry technologies for a TT solution on many

safety-critical industries including aerospace, railway and automotive where safety

requirements must be satisfied at low cost (TTA-Group, 2007). In the automotive

industry, as an example, TT architectures have been recently accepted as a generic

solution for highly dependable systems such as X-by-Wire systems (see Ayavoo, 2006;

Mwelwa, 2006). The main reason why the TT approaches are preferred in such

applications is that they result in systems which have very predictable and deterministic

behaviour. Liu (2000) highlights that TT systems are easy to validate, test, and certify

because the times related to the tasks are deterministic.

 Chapter 2: Real-time scheduling algorithms 22

Moreover, it was pointed out that fault tolerance (which requires a proper synchronism

of the redundant component) can be easily achieved with TT systems without requiring

additional CPU overhead (Scheler and Schröder-Preikschat, 2006). Detailed

comparisons between the TT and ET concepts were performed by Kopetz (1991a and

1991b), Albert (2004) and Scheler and Schröder-Preikschat (2006). Scheler and

Schröder-Preikschat (2006) went further to outline a method which helps describing the

real-time system independent of its architecture and therefore eases the process of

migrating between TT and ET architectures later in the development process. Before

wrapping up this discussion, it should be noted that in some applications, a mix of TT

and ET system architectures can be an optimal design solution (for more details see Pop

et al., 2002).

Over recent years, the ESL researchers have considered various ways in which TT

architectures can be employed in low-cost embedded systems (see ESL, 2008 for the

full list of ESL publications). The techniques described in these studies have involved

the development of software for industry-standard commercial-off-the-shelf (COTS)

hardware platforms, such as the 8051 microcontroller (Pont, 2001), ARM processor

(Pont and Mwelwa, 2003) or PC platform (Pont et al., 2003). For example, Pont (2001)

provides a wide range of design pattern2 collections to support the software

development of embedded systems which are based on TT architectures. Recently, in

(Mwelwa, 2006), a tool to support pattern-based code generation of TT embedded

systems is developed and assessed. More recently, Phatrapornnant (2007) looked at

ways in which dynamic voltage scaling (DVS) techniques – for reducing system power

consumption – can be incorporated in simple TT scheduling algorithms.

Nonetheless, previous work in this area has also focused on the development of multi-

processor designs. For such designs, it has been demonstrated that a “Shared-Clock” (S-

2 Patterns describe a solution to a frequently recurring design problem that can be applied in different
contexts. The first “pattern language” was described by Christopher Alexander, an architect who intended
to link between architectural problems and good design solutions (Pont, 2001). Software patterns are
hence used in software systems to facilitate design reuse by providing developers with previously
successful design solutions (see Mwelwa, 2006 for more information).

 Chapter 2: Real-time scheduling algorithms 23

C) architecture provides a simple and low-cost software framework for TT systems

without requiring specialised hardware (Pont, 2001). S-C protocols are further discussed

in Chapter 8.

2.6 Schedulers

As previously noted, most embedded systems involve several tasks that share the

system resources and communicate with one another and/or the environment in which

they operate. For many projects, a key challenge is to work out how to schedule tasks so

that they can meet their timing constraints. This process requires an appropriate form of

scheduler3. A scheduler can be viewed as a very simple operating system which calls

tasks periodically (or aperiodically) during the system operating time. Moreover, as

with desktop operating systems, a scheduler has the responsibility to manage the

computational and data resources in order to meet all temporal and functional

requirements of the system (Mwelwa, 2006).

According to the nature of the operating tasks, any real-time scheduler must fall under

one of the following types of scheduling policies:

• Pre-emptive scheduling: where a multi-tasking process is allowed. In more

details, a task with higher priority is allowed to pre-empt (i.e. interrupt) any lower

priority task that is currently running. The lower priority task will resume once the

higher priority task finishes executing. For example, suppose that – over a

particular period of time – a system needs to execute four tasks (Task A, Task B,

Task C, Task D) as illustrated in Figure 2-4.

3 Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels.
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx (from
LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software
Systems). Most of these operating systems require large amount of computational and memory resources
which are not readily available in low-cost microcontrollers like the ones considered in this study.

 Chapter 2: Real-time scheduling algorithms 24

A

C

B

D
Time

Figure 2-4: A schematic representation of four tasks which need to be scheduled for execution on a
single-processor embedded system.

Assuming a single-processor system is used, Task C and Task D can run as required

where Task B is due to execute before Task A is complete. Since no more than one task

can run at the same time on a single-processor, Task A or Task B has to relinquish

control of the CPU. In pre-emptive scheduling, a higher priority might be assigned to

Task B with the consequence that – when Task B is due to run – Task A will be

interrupted, Task B will run, and Task A will then resume and complete (Figure 2-5).

Time

BA - - A C D

Figure 2-5: Pre-emptive scheduling of Task A and Task B in the system shown in Figure 2-4: Task
B, here, is assigned a higher priority.

• Co-operative (or “non-pre-emptive”) scheduling: where only a single-tasking

process is allowed. In more details, if a higher priority task is ready to run while a

lower priority task is running, the former task cannot be released until the latter one

completes its execution. For example, assume the same set of tasks illustrated in

Figure 2-4. In the simplest solution, Task A and Task B can be scheduled co-

operatively. In these circumstances, the task which is currently using the CPU is

implicitly assigned a high priority: any other task must therefore wait until this task

relinquishes control before it can execute. In this case, Task A will complete and

then Task B will be executed (Figure 2-6).

Time

B C DA

Figure 2-6: Co-operative scheduling of Task A and Task B in the system shown in Figure 2-4.

 Chapter 2: Real-time scheduling algorithms 25

• Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are

provided (Pont, 2001). That is, only one task in the whole system is set to be pre-

emptive (this task is best viewed as “highest-priority” task), while other tasks are

running co-operatively (Figure 2-7). In the example shown in the figure, suppose

that Task B is a short task which has to execute immediately when it arrives. In this

case, Task B is set to be pre-emptive so that it acquires the CPU control to execute

whenever it arrives and whether (or not) other task is running.

Time

B C - DA - - A B - C

Figure 2-7: Hybrid scheduling of four-tasks: Task B is set to be pre-emptive, where Task A, Task C
and Task D run co-operatively.

Overall, when comparing co-operative with pre-emptive schedulers, many researchers

have argued that co-operative schedulers have many desirable features, particularly for

use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates,

2000; Pont, 2001). For example, Bates (2000) identified the following four advantages

of co-operative scheduling over pre-emptive alternatives:

• The scheduler is simpler.

• The overheads are reduced.

• Testing is easier.

• Certification authorities tend to support this form of scheduling.

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime

overheads because of the need for context switching - storage and retrieval of partially

computed results. [Co-operative] algorithms do not incur such overheads. Other

advantages of co-operative algorithms include their better understandability, greater

predictability, ease of testing and their inherent capability for guaranteeing exclusive

access to any shared resource or data.”

Many researchers still, however, believe that pre-emptive approaches are more effective

than co-operative alternatives (Allworth, 1981; Cooling, 1991; Bannet, 1994). This can

 Chapter 2: Real-time scheduling algorithms 26

be due to different reasons. As in (Pont, 2001), one of the reasons why pre-emptive

approaches are more widely discussed and considered is because of confusion over the

options available. Pont gave an example that the basic cyclic scheduling, which is often

discussed by many as an alternative to pre-emptive, is not a representative of the wide

range of co-operative scheduling architectures that are available.

Moreover, one of the main issues that concern people about the reliability of co-

operative scheduling is that long tasks can have a negative impact on the responsiveness

of the system. This is clearly underlined by Allworth (1981):

“[The] main drawback with this co-operative approach is that while the current process

is running, the system is not responsive to changes in the environment. Therefore,

system processes must be extremely brief if the real-time response [of the] system is not

to be impaired.”

However, in many practical embedded systems, the process (task) duration is extremely

short. For example, calculations of one of the very complicated algorithms, the

proportional integral differential (PID) controller, can be carried out on the most basic

(8-bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load

in most systems – including flight control – where 10 ms sampling rate is adequate

(Pont, 2001). Pont has also commented that if the system is designed to run long tasks,

“this is often because the developer is unaware of some simple techniques that can be

used to break down these tasks in an appropriate way and – in effect – convert long

tasks called infrequently into short tasks called frequently”: some of these techniques

are introduced and discussed in Pont (2001).

Moreover, if the performance of the system is seen slightly poor, it is often advised to

update the microcontroller hardware rather than to use a more complex software

architecture. However, if changing the task design or microcontroller hardware does not

provide the level of performance which is desired for a particular application, then more

than one microcontroller can be used. In such cases, long tasks can be easily moved to

another processor, allowing the host processor to respond rapidly to other events as

required. Further discussions about multiple-processor designs, in this thesis, are

provided in Chapter 8.

 Chapter 2: Real-time scheduling algorithms 27

Please note that the very wide use of pre-emptive schedulers can simply be resulted

from a poor understanding and, hence, undervaluation of the co-operative schedulers.

For example, a co-operative scheduler can be easily constructed using only a few

hundred lines of highly portable code written in a high-level programming language

(such as ‘C’), while the resulting system is highly-predictable (Pont, 2001).

It is also important to understand that sometimes pre-emptive schedulers are more

widely used in RTOSs due to commercial reasons. For example, companies may have

commercial benefits from using pre-emptive environments. Consequently, as the

complexity of these environments increases, the code size will significantly increase

making ‘in-house’ constructions of such environments too complicated. Such

complexity factors lead to the sale of commercial RTOS products at high prices (Pont,

2001). Therefore, further academic research has been conducted in this area to explore

alternative solutions. For example, over the last few years, the ESL researchers have

considered various ways in which simple, highly-predictable, non-pre-emptive (co-

operative) schedulers can be implemented in low-cost embedded systems (see Section

 2.8.3).

2.7 Schedule design

When any type of scheduler is to be employed in a real-time system, a number of key

scheduler parameters must be determined: e.g. the task order, initial delay (i.e. phase or

offset) and period of each task. The aim with this design process is to ensure that all

tasks are able to meet their deadlines and that the simplest scheduler architecture is

employed (Gendy and Pont, 2008). It is so important to realise that inappropriate

choices of such design parameters may mean that a given task set cannot be scheduled

at all.

Automatic generation of schedules and schedulers is less common than general-purpose

code generation, but work has been done in this area too. Examples of methods used in

automatic schedule / scheduler generation include: simulated annealing (Tindell et al.,

1992), constraint programming heuristics (Ekelin and Jonsson, 2001), branch and bound

algorithm (Xu and Parnas, 1990) and genetic algorithm (Sandström and Norström,

2002): for mode details see Gendy and Pont (2008). The work described in the previous

 Chapter 2: Real-time scheduling algorithms 28

studies is relevant to a discussion about tool support for scheduler design. However,

none of this previous work relates directly to time-triggered architectures that form the

key focus of this study. In fact, previous studies have tended to focus on “conventional”

RTOSs (e.g. VxWorks: Sandström and Norström, 2002). Such operating systems

greatly exceed the resource requirements available in the types of processors considered

in this study.

Two recent studies within the ESL group (Gendy et al., 2007; Gendy and Pont, 2008)

have explored scheduler design for time-triggered (co-operative and hybrid)

architectures. The approach involves a “best characteristics first” search intended to

identify a good (but not necessarily optimal) set of scheduler parameters while

maintaining low levels of system power consumption.

2.8 Scheduling algorithms

2.8.1 Introduction

A key component of the scheduler is the scheduling algorithm which basically

determines the order in which the tasks will be executed by the scheduler (Buttazzo,

2005). More specifically, a scheduling algorithm is the set of rules that, at every instant

while the system is running, determines which task must be allocated the resources to

execute.

Developers of embedded systems have proposed various scheduling algorithms that can

be used to handle tasks in real-time applications. The selection of appropriate

scheduling algorithm for a set of tasks is based upon the capability of the algorithm to

satisfy all timing constraints of the tasks: where these constraints are derived from the

application requirements. Examples of common scheduling algorithms are: Cyclic

Executive (Locke, 1992), Rate Monotonic (Liu and Layland, 1973), Earliest-Deadline-

First (Liu and Layland, 1973; Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline

Monotonic (Leung, 1982) and Shared-Clock (Pont, 2001) schedulers (see Rao et al.,

2008 for a simple classification of scheduling algorithms).

 Chapter 2: Real-time scheduling algorithms 29

This section outlines two key examples of scheduling algorithms that are widely used in

the design of real-time embedded systems when highly-predictable system behaviour is

an essential requirement: these are the rate monotonic and a form of cyclic executive.

2.8.2 Rate monotonic (RM) scheduler

The rate-monotonic (RM) (Liu and Layland, 1973) is a well-known fixed-priority

scheduling algorithm. RM is a time-triggered, pre-emptive algorithm in which task

priorities are fixed and inversely proportional to their periods. Liu and Layland

demonstrated that – with a set of n tasks – every task in the RM scheduler will meet its

deadline if the total CPU utilisation is less than or equal to n(2^(1/n)-1); all tasks in the

system are independent of one another; the deadline for each task is equal to its period;

the worst-case execution time of all tasks is known; and context switching time can be

ignored4 (see Liu and Layland, 1973). As a result, highly-predictable system behaviour

can be achieved when RM algorithm is employed in hard real-time systems. This is

simply because it provides a guarantee that all tasks will complete execution before

their deadlines, if all conditions are met. A key advantage of RM, as observed by Locke

(1992) and Bate (1998), is that it is so flexible and as a result of its simple schedulability

definition, the only process required to schedule a new task is the recalculation of the

CPU utilisation value.

However, as with most pre-emptive schedulers, the RM algorithm may carry large

scheduling overhead due to the context switching required to store (and retrieve) the

partially computed results (Locke, 1992; Nissanke, 1997). Wendorf (1988) also

emphasised that, despite many advantages, fixed-priority schedulers may not perform

well (or even fail to meet system requirements) under overload conditions. Moreover,

even if all schedulability conditions are met, RM only provides a guarantee that each

task will execute once at some point in its execution “slots” and does not guarantee any

more precise control over timing behaviour. For example, when a higher priority task

pre-empts a lower priority task, this may cause a delay in the output results expected

4 In RM algorithm, if the number of tasks n goes to infinity, then the task set is schedulable if the total
CPU utilisation does not exceed 69% (Liu and Layland, 1973).

 Chapter 2: Real-time scheduling algorithms 30

from the latter task or unwanted jitter in the release time of this task. Lin and Herkert

(1996) note that in RM scheduler:

“Although every task must be completed before the end of each period, there is no

constraint on when in the period it must be executed. This is because the completion

time of a lower priority task in each period depends on if and when some higher priority

tasks may arrive (…). Therefore, task execution jitters are unavoidable using RM.”

Another problem with such a scheduling algorithm is that a high priority task can be

entirely blocked by a low priority task if the former requires access to a shared resource

(e.g. analogue-to-digital converter, serial port, etc) while the latter is using it, causing an

inversion in the task priorities. Such “priority inversion” consequently produces very

high levels of task jitter and hence affects system predictability. Although priority

inversion problem can be solved using different techniques, e.g. Priority Ceiling

Protocol, (Sha et al., 1990), the impact of such techniques on jitter is not always easy to

predict (Phatrapornnant, 2007).

An alternative to this scheduling algorithm is the time-triggered co-operative (TTC)

scheduler.

2.8.3 Time-triggered co-operative (TTC) scheduler: Cyclic executive

A key defining characteristic of a time-triggered (TT) system is that it can be expected

to have highly-predictable patterns of behaviour. This means that when a computer

system has a time-triggered architecture, it can be determined in advance – before the

system begins executing – exactly what the system will do at every moment of time

while the system is operating. Based on this definition, completely defined TT

behaviour is – of course – difficult to achieve in practice. Nonetheless, approximations

of this model have been found to be useful in a great many practical systems. The

closest approximation of a “perfect” TT architecture which is in widespread use

involves a collection of periodic tasks which operate co-operatively (or “non-pre-

emptively”). Such a time-triggered co-operative (TTC) architecture has sometimes been

described as a cyclic executive (e.g. Baker and Shaw, 1989; Locke, 1992).

According to Baker and Shaw (1989), the cyclic executive scheduler is designed to

execute tasks in a sequential order that is defined prior to system activation; the number

 Chapter 2: Real-time scheduling algorithms 31

of tasks is fixed; each task is allocated an execution slot (called a minor cycle or a

frame) during which the task executes; the task – once interleaved by the scheduler –

can execute until completion without interruption from other tasks; all tasks are periodic

and the deadline of each task is equal to its period; the worst-case execution time of all

tasks is known; there is no context switching between tasks; and tasks are scheduled in a

repetitive cycle called major cycle. The major cycle can be defined as the time period

during which each task in the scheduler executes – at least – onece and before the whole

task execution pattern is repeated. This is numerically calculated as the lowest common

multiple (LCM) of the periods of the scheduled tasks (Baker and Shaw, 1989; Xu and

Parnas, 1993). Koch (1999) emphasised that cyclic executive is a “proof-by-

construction” scheme in which no schedulability analysis is required prior to system

construction.

Figure 2-8 illustrates the (time-triggered) cyclic executive model for a simple set of four

periodic tasks. Note that the final task in the task-group (i.e. Task D) must complete

execution before the arrival of the next timer interrupt which launches a new (major)

execution cycle.

Task B

Task C

Task D

Task A

Figure 2-8: A time-triggered cyclic executive model for a set of four periodic tasks (adapted from
Kalinsky, 2001).

In the example shown, each task is executed only once during the whole major cycle

which is, in this case, made up of four minor cycles. Note that the task periods may not

 Chapter 2: Real-time scheduling algorithms 32

always be identical as in the example shown in Figure 2-8. When task periods vary, the

scheduler should define a sequence in which each task is repeated sufficiently to meet

its frequency requirement (Locke, 1992).

Figure 2-9 shows the general structure of the time-triggered cyclic executive (i.e. time-

triggered co-operative) scheduler. In the example shown in this figure, the scheduler has

a minor cycle of 10 ms, period values of 20, 10 and 40 ms for the tasks A, B and C,

respectively. The LCM of these periods is 40 ms, therefore the length of the major cycle

in which all tasks will be executed periodically is 40 ms. It is suggested that the minor

cycle of the scheduler (which is also referred to as the tick interval: see Pont, 2001) can

be set equal to or less than the greatest common divisor value of all task periods

(Phatrapornnant, 2007). In the example shown in Figure 2-9, this value is equal to 10

ms. In practice, the minor cycle is driven by a periodic interrupt generated by the

overflow of an on-chip hardware timer or by the arrival of events in the external

environment (Locke, 1992; Pont, 2001). The vertical arrows in the figure represent the

points at which minor cycles (ticks) start.

A C

Minor
cycle

Major cycle

t (ms)0 10 20

A

30 40

B BBB A B

Figure 2-9: A general structure of the time-triggered co-operative (TTC) scheduler.

Overall, TTC schedulers have many advantages. A key recognisable advantage is its

simplicity (Baker and Shaw, 1989; Liu, 2000; Pont, 2001). Furthermore, since pre-

emption is not allowed, mechanisms for context switching are, hence, not required and,

as a consequence, the run-time overhead of a TTC scheduler can be kept very low

(Locke, 1992; Buttazzo, 2005). Also, developing TTC schedulers needs no concern

about protecting the integrity of shared data structures or shared resources because, at a

time, only one task in the whole system can exclusively use the resources and the next

due task cannot begin its execution until the running task is completed (Baker and

Shaw, 1989; Locke, 1992).

 Chapter 2: Real-time scheduling algorithms 33

Since all tasks are run regularly according to their predefined order in a deterministic

manner, the TTC schedulers demonstrate very low levels of task jitter (Locke, 1992;

Bate, 1998; Buttazzo, 2005) and can maintain their low-jitter characteristics even when

complex techniques, such as dynamic voltage scaling (DVS), are employed to reduce

system power consumption (Phatrapornnant and Pont, 2006). Therefore, as would be

expected (and unlike RM designs, for example), systems with TTC architectures can

have highly-predictable timing behaviour (Baker and Shaw, 1989; Locke, 1992). Locke

(1992) underlines that with cyclic executive systems “it is possible to predict the entire

future history of the state of the machine, once the start time of the system is determined

(usually at power-on). Thus, assuming this future history meets the response

requirements generated by the external environment in which the system is to be used, it

is clear that all response requirements will be met. Thus it fulfils the basic requirements

of a hard real time system.”

Provided that an appropriate implementation is used, TTC architectures can be a good

match for a wide range of low-cost embedded applications. For example, previous

studies have described – in detail – how these techniques can be applied in various

automotive applications (e.g. Ayavoo et al., 2006; Ayavoo, 2006), a wireless (ECG)

monitoring system (Phatrapornnant and Pont, 2004; Phatrapornnant, 2007), various

control applications (e.g. Edwards et al., 2004; Key et al., 2004; Short and Pont, 2008),

and in data acquisition systems, washing-machine control and monitoring of liquid flow

rates (Pont, 2002). Outside the ESL group, Nghiem et al. (2006) described an

implementation of PID controller using TTC scheduling algorithm and illustrated how

such architecture can help increase the overall system performance as compared with

alternative implementation methods.

However, TTC architectures have some shortcomings. For example, many researchers

argue that running tasks without pre-emption may cause other tasks to wait for

sometime and hence miss their deadlines. However, the availability of high-speed,

COTS microcontrollers nowadays helps to reduce the effect of this problem and, as

processor speeds continue to increase, non-pre-emptive scheduling approaches are

expected to gain more popularity in the future (Baruah, 2006).

 Chapter 2: Real-time scheduling algorithms 34

Another issue with TTC systems is that the task schedule is usually calculated based on

estimates of Worst Case Execution Time (WCET) of the running tasks. If such

estimates prove to be incorrect, this may have a serious impact on the system behaviour

(Buttazzo, 2005). Further discussions on possible solutions to this problem are provided

later in Section 2.10.

One recognised disadvantage of using TTC schedulers is the lack of flexibility (Locke,

1992; Bate, 1998). This is simply because TTC is usually viewed as ‘table-driven’ static

scheduler (Baker and Shaw, 1989) which means that any modification or addition of a

new functionality, during any stage of the system development process, may need an

entirely new schedule to be designed and constructed (Locke, 1992; Koch, 1999). This

reconstruction of the system adds more time overhead to the design process: however,

with using tools such as those developed recently to support “automatic code

generation” (Mwelwa et al., 2006; Mwelwa, 2006; Kurian and Pont, 2007), the work

involved in developing and maintaining such systems can be substantially reduced.

Another drawback of TTC systems, as noted by Koch (1999), is that constructing the

cyclic executive model for a large set of tasks with periods that are prime to each other

can be unaffordable. However, in practice, there is some flexibility in the choice of task

periods (Xu and Parnas, 1993; Pont, 2001). For example, Gerber et al. (1995)

demonstrated how a feasible solution for task periods can be obtained by considering

the period harmonicity relationship of each task with all its successors. Kim et al.

(1999) went further to improve and automate this period calibration method. Please also

note that using a table to store the task schedule is only one way of implementing TTC

algorithm where, in practice, there can be other implementation methods (Baker and

Shaw, 1989; Pont, 2001). For example, Pont (2001) described an alternative to table-

driven schedule implementation for the TTC algorithm which has the potential to solve

the co-prime periods problem and also simplify the process of modifying the whole task

schedule later in the development life cycle or during the system run-time (more details

about this type of implementation are presented in Chapter 5).

Furthermore, it has also been reported that a long task whose execution time exceeds the

period of the highest rate (shortest period) task cannot be scheduled on the basic TTC

scheduler (Locke, 1992). As previously discussed (see Section 2.6), one solution to this

 Chapter 2: Real-time scheduling algorithms 35

problem is to break down the long task into multiple short tasks that can fit in the minor

cycle. Also, possible alternative solution to this problem is to use a Time-Triggered

Hybrid (TTH) scheduler (Pont, 2001) in which a limited degree of pre-emption is

supported. One acknowledged advantage of using TTH scheduler is that it enables the

designer to build a static, fixed-priority schedule made up of a collection of co-operative

tasks and a single (short) pre-emptive task (Phatrapornnant, 2007). Note that TTH

architectures are not covered in the context of this thesis. For more details about these

scheduling approaches, see (Pont, 2001; Maaita and Pont, 2005; Hughes and Pont, in

press; Phatrapornnant, 2007).

Please note that later in this thesis, it will be demonstrated how, with extra care at the

implementation stage, one can easily deal with many of the TTC scheduler limitations

indicated above.

2.9 Jitter in scheduling algorithms

Having discussed the impact of jitter on the performance of real-time embedded systems

(Section 2.4), this section goes on to review some previous work that attempted to deal

with jitter in scheduling systems. Note that during the scheduler design process, while

the schedule parameter set ensures that all tasks can be scheduled, inappropriate

decisions may still lead (for example) to high levels of task jitter.

Recently, Dr. Teera Phatrapornnant, has carried out a detailed research on possible

sources of jitter (Phatrapornnant, 2007). A brief summary of his findings is presented

here.

Overall, jitter is a common problem which faces the developers of modern systems. For

example, in digital wireless communication systems, jitter can be found in the form of a

phase noise of the local oscillator. In practice, noise may come from the power supply

lines or interference from other nearby signals. Such noise may have a direct impact on

timing margins and, consequently, limit the system performance. In high-speed-digital

systems, jitter can arise from crosstalk, caused by electromagnetic interference (EMI)

along a circuit or a cable pair. Another example affected by EMI is a high-speed optical

transmitter which converts data from electrical to optical format at speeds of 10

 Chapter 2: Real-time scheduling algorithms 36

Gigabits per second. EMI can cause excessive clock jitter that may lead to errors in the

optical transmitted data. To overcome this type of jitter, a suggested solution is to

enclose the transmitter oscillator in a metal shield.

Jitter is also a common problem in the implementations of real-time control systems. In

control systems, there are three main processes performed: sampling, control

computation, and actuation. Delays in the operation of these processes can result in

degraded performance and hence instability of the system. The main source of such

delays is the scheduling algorithm employed. An example of this can be the dynamic

scheduling (as opposed to static scheduling such as that used in RM and TTC) where

activities such as context switches can cause delays to the operating tasks. Moreover,

since the three main processes in the control loop execute in a sequential manner,

variation in their execution times may lead to sampling jitter and sampling-actuation

delays.

In ideal real-time systems, tasks must be scheduled and executed very precisely. In

practice, however, accurate executions may not be achievable: not least because of

inappropriate selection of the scheduling algorithm or due to imperfect implementations

of the designed scheduler (this issue is further highlighted in Chapter 3). Such imprecise

executions of the tasks can, in turn, result in considerable amounts of jitter and hence

cause a reduction in the overall system performance.

In real-time tasks, jitter can be associated with different parameters such as release time,

execution time and finishing time. For example, every task is ideally required to begin

execution immediately after it is released. If the task execution deviates from its ideal

release time, then this time deviation (variation) is described as release jitter. Similarly,

execution jitter and finishing jitter describe the deviation of the execution duration and

the completion time of the task, respectively.

Real-time systems are typically made up of periodic (and possibly aperiodic) tasks. As

an example, in many real-time control systems, sampling and actuating tasks are run

periodically and have hard timing constraints. These tasks are expected to execute

repeatedly at their own periods. Figure 2-10 illustrates a periodic task that is intended to

run with period Ti. The task is characterised by its starting time s, finishing time f and

 Chapter 2: Real-time scheduling algorithms 37

deadline d. The figure shows that delays in s1 and s3 (and variations in the task

durations: i.e. fi – si, where i = 1, 2, 3, …) mean that these tasks show evidence of jitter

in both release and completion times. For deterministic execution of a periodic task,

intervals between its successive execution times must be kept constant (i.e. Pi = Pi+1,

where i = 1, 2, 3, …).

s2 f3 d3

t
s3d2d1 f2s1 f1

T2T1 T3
P1 P2

Figure 2-10: Task period jitters (adapted from Mart, 2002).

When TTC architectures (which represent the main focus of this thesis) are employed,

possible sources of task jitter can be divided into three main categories:

• Scheduling overhead variation.

• Task placement.

• Clock drift.

The overhead of a conventional (non-co-operative) scheduler arises mainly from context

switching. However, in some TTC systems the scheduling overhead is comparatively

large and may have a highly variable duration due to code branching or computations

that have non-fixed lengths. As an example, Figure 2-11 illustrates how a TTC system

can suffer release jitter as a result of variations in the scheduler overhead (this relates to

DVS system).

Speed
Over
head Task

OverheadTask

Task
Period

OverheadTask
Over
headTask

Task
Period

Task
Period

Figure 2-11: Release jitter caused by variation of scheduling overhead (Phatrapornnant, 2007).

Even if the scheduler overhead variations can be avoided, TTC designs can still suffer

from jitter as a result of the task placement. To illustrate this, consider Figure 2-12. In

 Chapter 2: Real-time scheduling algorithms 38

this schedule example, Task C runs sometimes after A, sometimes after A and B, and

sometimes alone. Therefore, the period between every two successive runs of Task C is

highly variable. Moreover, if Task A and B have variable execution durations (as in

Figure 2-10), then the jitter levels of Task C will even be larger.

Speed

Task
A

Task
C

Task
Period

Task
Period

Task
Period

Task
C

Task
A

Task
C

Task
B

Task
C

Task
B

Figure 2-12: Release jitter caused by task placement in TTC schedulers.

For completeness of this discussion, it is also important to consider clock drift as a

source of task jitter. In the TTC designs, a clock “tick” is generated by a hardware

timer that is used to trigger the execution of the cyclic tasks (Pont, 2001). This

mechanism relies on the presence of a timer that runs at a fixed frequency. In such

circumstances, any jitter will arise from variations at the hardware level (e.g. through

the use of a low-cost frequency source, such as a ceramic resonator, to drive the on-chip

oscillator: see Pont, 2001). In the TTC scheduler implementations considered in this

study, the software developer has no control over the clock source. However, in some

circumstances, those implementing a scheduler must take such factors into account. For

example, in situations where DVS is employed (to reduce CPU power consumption), it

may take a variable amount of time for the processor’s phase-locked loop (PLL) to

stabilise after the clock frequency is changed (see Figure 2-13). As discussed elsewhere,

it is possible to compensate for such changes in software and thereby reduce jitter (see

Phatrapornnant and Pont, 2006; Phatrapornnant, 2007).

Expected

Tick Period
Expected

Tick Period

Speed

Task

Expected
Tick Period
Expected

Tick Period
Timer

Counter

Task

Timer
Counter

Task

Timer
Counter

Figure 2-13: Clock drift in DVS systems (Phatrapornnant, 2007).

As a general summary, jitter in embedded systems has been found to arise due to clock

drift, branching in the code, the scheduling algorithm employed, or as a consequence of

using specific hardware (Sanfridson, 2000). In real-time systems, where real-time

 Chapter 2: Real-time scheduling algorithms 39

schedulers are employed, the jitter is mainly considered at task level (e.g. release time),

and most concern about task jitter has been in the context of scheduling (Lin and

Herkert, 1996). For example, standard scheduling algorithms based on fixed timing

constraints (e.g. fixed periods and deadlines) can induce jitter if a task is blocked in a

high-load situation: to deal with such issues, a range of flexible solutions have been

proposed for use at run-time (Marti, 2001a). In distributed systems, reducing the

variations in message transmission times can help to reduce the jitter levels (Nolte et al.,

2001; Nolte et al., 2002; Nolte, 2003; Nahas and Pont, 2005). Jitter in multi-processor

systems is further discussed in Chapter 10.

2.10 Error detection and error recovery mechanisms

So far, it has been assumed that the system always operates correctly. Of course, this

may not always be the case. For example, TTC architectures employ static scheduling

and no task pre-emption. The schedule is calculated based on estimates of task “worst

case execution time” (WCET). If such estimates prove to be incorrect, the problem may

not even be detected in a basic TTC implementation. In hard real-time systems, it is

essential to monitor the execution times of all tasks and detect overrun situations in

which the estimated WCET of a task is exceeded (Burns and Wellings, 2007a). Such a

task overrun error may have serious impact on system behaviour. For example, as

Buttazzo (2005) has noted: “[Co-operative] scheduling is fragile during overload

situations, since a task exceeding its predicted execution time could generate (if not

aborted) a domino effect on the subsequent tasks.”

As many researchers have observed (Becker et al., 2003; Becker and Gergeleit, 2001;

Domaratsky and Perevozchikov, 2000; Engblom et al., 2001; Gergeleit and Nett, 2002;

Kirner and Puschner, 2003; Liu and Layland, 1973; Nett et al., 1996; Puschner, 2002),

determining the WCET of tasks is rarely straightforward. This is therefore a significant

concern and – if implementing a TTC scheduler – the user needs to appreciate this

potential risk, and understand precisely how the scheduler will behave if such an error

occurs. It should be noted that lack of knowledge about WCET is a problem which faces

the developers of many embedded systems (not just those based on TTC). For example,

as Gergeleit and Nett (2002) have noted: “Nearly all known real-time scheduling

approaches rely on the knowledge of WCETs for all tasks of the system.”

 Chapter 2: Real-time scheduling algorithms 40

One simple solution to this problem is to err on the side of caution when employing

WCET estimates, thereby reducing the chances of an overrun occurrence. Typical

“safety margins” used in this way are said to be around 20% (Vallerio and Jha, 2003).

Such an approach is simple and can be effective, but inevitably adds to costs. An

alternative is to be slightly more conservative when estimating WCET values (e.g. add

5% to accurate estimates) and then extend the scheduler (or add additional hardware) in

such a way that (at run time) any overrunning tasks can be shut down, and/or the

schedule can be adjusted (Gendy and Pont, 2008). Such an approach also allows

dealing with error-related overruns (for example, tasks which overrun because of a

hardware-related error). In these circumstances, the problem can be addressed (at least

in part) by employing some form of “watchdog timer” (e.g. Ganssle, 1992) in a

“scheduler watchdog” design (e.g. Pont and Ong, 2003). Alternatively, greater control

over the system behaviour can be obtained by using a “task guardian” (Hughes and

Pont, 2004).

The use of task guardians in TTC scheduler implementation will be considered in more

detail in Chapter 5.

2.11 Scheduling multi-processor embedded systems

In the case of multi-processor embedded systems, where tasks are distributed across a

number of CPUs communicating with each other, the need for effective network

protocol as well as scheduling algorithm is essential. Further details about scheduling

methods for multi-processor embedded systems which have severe resource constraints

and require high predictability are provided later in Chapter 8.

2.12 Conclusions

This chapter described in detail the various elements required to build a scheduler for

real-time embedded systems. The particular focus was on systems which have severe

resource constraints and require high levels of timing predictability. All necessary

 Chapter 2: Real-time scheduling algorithms 41

definitions have been provided to help understand the scheduling theory which is the

central topic of the studies detailed in this thesis.

The chapter began by discussing how embedded systems can be built from scratch. As

the chapter moved on, various techniques and architectures used to build a scheduler

were described and compared. It was emphasised that scheduling algorithms are key

elements in scheduling systems which dictate the way in which real-time tasks must

operate during the system run-time. Two particular scheduling algorithms – that provide

high predictability – have been outlined and compared in detail. These algorithms are:

rate monotonic and time-triggered co-operative (as a form of cyclic executive)

schedulers.

The discussions indicated that for the type of embedded systems considered in this

project, no scheduling algorithms can be competitive to time-triggered co-operative

(TTC) schedulers. This was mainly due to their simplicity, low resource requirements

and extreme predictability they can offer. The chapter, however, discussed major

problems that can affect the performance of TTC schedulers and reviewed some

previously-suggested solutions to overcome such problems. Note that ways to deal with

some of these problems will be considered in more detail later in this thesis.

Chapter 3

Real-time scheduler implementations

3.1 Introduction

In Chapter 1, it was noted that once the design specifications of a system are clearly

defined and then turned into appropriate design elements, the system implementation

process can take place by translating those designs into software and hardware

components. People working on the development of embedded systems are often

concerned with the software implementation of the system in which the system

specifications are converted into an executable system (Sommerville, 2007; Koch,

1999). For example, Koch interpreted the implementation of a system as the way in

which the software program is arranged to meet the system specifications.

Chapter 2 provided an overview of a number of effective schedule design techniques

and scheduling algorithms used to implement the software architecture of an embedded

design. This chapter moves on to discuss the challenges encountered in the process of

translating between scheduling algorithms and scheduler implementations in practical

real-time embedded systems. It also reviews previous work in the area of scheduler

implementations and discusses the main drawbacks and limitations of this work. Please

note that the main focus of the discussions is on software methods for scheduler

implementations.

3.2 Choice of the programming language

3.2.1 Introduction

Having decided on the software architecture of the embedded design, the next key

decision to be made is the choice of programming language to implement the embedded

software (including the scheduler code). The choice of programming language is an

important design consideration as it plays a significant role in reducing the total

development time (Grogono, 1999). This section discusses the key challenges faced by

an embedded programmer to select a suitable programming language for their

 Chapter 3: Real-time scheduler implementations 43

implementations. The section summarises the main motivations behind using ‘C’

programming language to implement software codes for the designs considered in this

study. Please note that a detailed overview of the available programming languages is

provided in Appendix B.

3.2.2 Choosing a language for embedded systems

Overall, it has been widely accepted that the low-level Assembly language suffers high

development costs and lack of code portability, and only very few highly-skilled

Assembly programmers can be found today (see Barr, 1999 and Walls, 2005). If the

decision is therefore made not to use the Assembly language due to its inevitable

drawbacks, there is no scientific way to select the most optimal high-level programming

language for a particular application (Sammet, 1969; Pont, 2002). Instead, people tend

to discuss the important factors which should be considered in the choice of a language.

For example, Sammet (1969) indicated that a major factor in selecting a language is the

language suitability to solve the particular classes of problems for which it is intended,

and the type of the actual user (i.e. user professionalism). It has also been noted by

Sammet that factors such as availability on the desired computer hardware, history and

previous evaluation, implementation consequences of the language are also key factors

to consider in language selection process. However, Sammet stressed that a successful

choice can only be made if the language includes the required technical features.

Specifically, when choosing a language for embedded systems, the following factors

must be considered (Pont, 2003):

• Embedded processors normally have limited speed and memory, therefore the

language used must be efficient to meet the system resource constraints.

• Programming embedded systems require a low-level access to the hardware. For

example, there might be a need to read from / write to particular memory locations.

Such actions require appropriate accessing mechanisms, e.g. pointers.

• The language must support the creation of flexible libraries, making it easy to re-

use code components in various projects. It is also important that the developed

software should be easily ported and adapted to work on different processors with

minimal changes.

 Chapter 3: Real-time scheduler implementations 44

• The language must be widely used in order to ensure that the developer can

continue to recruit experienced professional programmers, and to guarantee that

the existing programmers can have access to information sources (such as books,

manuals, websites) for examples of good design and programming practices.

3.2.3 The ‘C’ programming language

Of course, there is no perfect choice of the language. However, the chosen language is

required to be well-defined, efficient, supports low-level access to hardware, and

available for the platform on which it is intended to be used. Against all of these factors,

C language scores well, hence it turns out to be the most appropriate language to

implement software for small (low-cost) embedded systems like the ones considered in

this project. Pont (2003) stated that “C’s strengths for embedded system greatly

outweigh its weaknesses. It may not be an ideal language for developing embedded

systems, but it is unlikely that a ‘perfect’ language will be created”.

The key features of the C language can be summarised as follows:

• C is easy to learn and program by both skilled and unskilled programmers.

• It is very popular as many experienced C programmers can be found today.

• It has well-proven compilers available for almost every embedded processor in use

today (e.g. 8-, 16-, 32-bit or more).

• Materials (such as books, training courses, code examples and websites) that

discuss the use of the language are all widely available.

• It has efficient run-time performance.

• It is a hardware-independent programming language which allows the programmer

to concentrate only on the algorithm instead of the hardware on which the program

will operate.

• It is a mid-level language with both high-level features (such as support for

functions and modules) and low-level features (such as access to hardware via

pointers) that allows the programmer to interact easily with the underlying

hardware without sacrificing the benefits of using high-level programming.

 Chapter 3: Real-time scheduler implementations 45

For more details, refer to (Barr, 1999; Grogono, 1999; Jones, 2002; Brosgol, 2003;

Pont, 2003; Fisher et al., 2004; Ciocarlie and Simon, 2007).

Moreover, since C was recognised as the de facto language for coding embedded

systems including those which are safety-related (Jones, 2002; Pont, 2002; Walls,

2005), there have been attempts to make C a standard language for such applications by

improving its safety characteristics rather than promoting the use of safer languages that

are less popular (such as Ada). For example, The UK-based Motor Industry Software

Reliability Association (MISRA) has produced a set of guidelines (and rules) for the use

of C language in safety-critical software: such guidelines are well known as “MISRA

C”. For more details, see (Jones, 2002).

3.2.4 Why does ‘C’ overwhelm other languages?

When comparing C to other alternative languages such as C++ or Ada, the following

observations have been made. C++ is a good alternative to C as it provides better

abstraction for data and offers better Object-Oriented (O-O) programming style, but

some of its features may cause degradation in program efficiency (Barr, 1999). Also,

such a new generation O-O language is not readily available for the small embedded

systems, primarily because of the overheads inherent in the O-O approach, e.g. CPU-

time overhead (Pont, 2003).

Despite that Ada was the foremost language that provided full support for concurrent

and real-time programming, it has not gained much popularity (Brosgol, 2003) and has

rarely been used outside the areas related to defence and aerospace applications (Barr,

1999; Ciocarlie and Simon, 2007). Unlike C, not many programmers nowadays are

professional in Ada, therefore only a small number of embedded systems are currently

developed in this language (Ciocarlie and Simon, 2007). In addition, despite their

approved efficiency, Ada’s compilers are not widely available for small embedded

microcontrollers and usually need hard work to accept the program; especially by new

programmers (Dewar, 2006). Indeed, both Ada and C++ have too large demand on low-

 Chapter 3: Real-time scheduler implementations 46

cost embedded systems resources (e.g. memory requirements) and therefore they cannot

be suitable languages for such applications5 (Walls, 2005).

In a survey carried out recently by Embedded Systems Design (ESD) in 2006, it was

shown that the majority of existing and future embedded projects to which the survey

applied were programmed (and likely to be programmed) in C. In particular, the figures

show that for 2006 projects, 51% were programmed in C, 30% in C++, and less than 5%

were programmed in Ada. The survey shows that 47% of the embedded programmers

were likely to continue to use C in their next projects. See Figure 3-1 for further details.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55% 0.51

0.3

0.08

0.03
0.01 0.03

0.005 0.02 0.05

0.47

0.32

0.06
0.03

0.01 0.03
0.01 0.02 0.05

La
ng

ua
ge

 u
sa

ge
 (%

)

Current projects Next projects

Figure 3-1: Programming languages used in embedded system projects surveyed by ESD in 2006.
The figure is derived from the data provided in (ESD, 2006).

5 However, despite the indicated limitations of Ada, there has recently been a great deal of work on
assessing a new version of Ada language (i.e. Ada-2005) to widen its application domain (see Burns,
2006; Taft et al., 2007). It has been noted that Ada-2005 – once standardised – will have enough power to
overwhelm the use of C and its descendants in embedded systems programming (Brosgol and Ruiz,
2007).

 Chapter 3: Real-time scheduler implementations 47

3.3 Scheduling algorithms and scheduler implementations

3.3.1 Introduction

As discussed in Chapter 2, implementing the software architecture of an embedded

design requires a simple form of operating system such as a scheduler. It was also noted

that the core component of a scheduler is the scheduling algorithm which mainly

determines the run-time execution order of the application tasks executed by the

scheduler. In Chapter 2, a range of widely-used scheduling algorithms in the

development of embedded systems were listed and two key algorithms discussed in

more detail.

The discussion in Chapter 2 remarked that when high predictability is an important

design feature of the embedded system, time-triggered co-operative (TTC) schedulers

can be a good design solution, if an appropriate implementation is used. This section

discusses the differences and relationships between scheduling algorithms and scheduler

implementations in practical real-time embedded systems, with a particular focus on

software implementations.

The implementation of schedulers is a major problem which faces designers of real-time

scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho

and colleges clarified that the well-known term scheduling is used to describe the

process of finding the optimal schedule for a set of real-time tasks, while the term

scheduler implementation refers to the process of implementing a physical (software or

hardware) scheduler that enforces – at run-time – the task sequencing determined by the

designed schedule (Cho et al., 2007).

Generally, it has been argued that there is a wide gap between scheduling theory and its

implementation in operating system kernels running on specific hardware, and for any

meaningful validation of timing properties of real-time applications, this gap must be

bridged (Katcher et al., 1993).

3.3.2 The ‘one-to-many’ relationship

To begin to address the gap between scheduling algorithms and scheduler

implementations, it must be noted that the relationship between any scheduling

 Chapter 3: Real-time scheduler implementations 48

algorithm and the number of possible implementation options for that algorithm – in

practical designs – has generally been viewed as ‘one-to-many’, even for very simple

systems (Baker and Shaw, 1989; Koch; 1999; Pont, 2001; Baruah, 2006; Pont et al.,

2007; Phatrapornnant, 2007).

For example, the cyclic executive is a very simple scheduling algorithm in widespread

use which can, in practice, be implemented using several forms. In (Baker and Shaw,

1989), it was stated that task schedule in cyclic executive can be constructed either by a

pre-processor, manually, or using a table of actions that is generated offline and

interpreted by the executive. Pont (2001) provided an alternative implementation in

which the task schedule in the cyclic executive system can be constructed and/or

modified at run-time, allowing more flexibility and responsiveness to system changes.

Various possible ways to implement software for a cyclic executive scheduler were

discussed in (Kontak, 1988; Baker and Shaw, 1989; Pont, 2001). In the same way, Koch

(1999) has viewed the cyclic executive as one of only four high-level software

architecture families6 used in real-time systems, where each of these architectures can,

in practice, have many variations. In (Pont et al., 2007), it was clearly mentioned that if

someone was to use a particular scheduling architecture, then there are many different

implementation options which can be available. This claim was also supported by

Phatrapornnant (2007) by noting that the TTC scheduler (which is a form of cyclic

executive) is only an algorithm where, in practice, there can be many possible ways to

implement such an algorithm.

Of course, the one-to-many relationship is not only limited to the cyclic executive. For

example, Baruah (2006) has demonstrated how the Earliest-Deadline-First7 (EDF)

algorithm (Liu, 2000) – which often schedules tasks pre-emptively in single-processors

– can be implemented using other forms, such as using non-pre-emptive scheduling

6 These architecture families are: [1] cyclic executive, [2] concurrent task systems activated by events, [3]
message passing systems, and [4] client-server systems. For more details, see (Koch, 1999).
7 In EDF system, the task priorities are dynamically allocated, at each time instant, so that the task with
the closest deadline will be assigned the highest priority to run first (Liu, 2000).

 Chapter 3: Real-time scheduler implementations 49

architectures upon multi-processor platforms. Section 3.4 (and Appendix C) reviews

studies which looked at various possible ways for implementing scheduling algorithms

including fixed-priority schedulers.

The project described in this thesis was mainly concerned with linking scheduling

algorithms and their software implementations. Therefore, the term “scheduler

implementation” used in the context of this thesis will refer to the process of

implementing scheduler in software in which the scheduling algorithm is translated into

a general-purpose executable source code (using C language).

It is worth noting that the source code of a scheduler may be implemented using an

appropriate collection of “software design patterns” (see Section 3.5.3 for more

information). Mwelwa (2006) discussed in detail how a design pattern can have almost

an infinite number of implementation options and therefore the relationship between

any pattern and its implementation is best described as “one pattern, many

implementations”. Figure 3-2 illustrates how a simple TTC algorithm can be

implemented using a range of software patterns, each of which is related to a different

scheduler implementation (e.g. TTC-1, TTC-2, etc) and has a number of Pattern

Implementation Examples (PIEs) associated with different hardware platforms (e.g.

8051, c167 or ARM microcontroller). This example can provide the basis for

understanding the one-to-many relationship between a scheduling algorithm and its

software implementation in practical real-time embedded systems.

Abstract Pattern
TTC algorithm

(Pattern)
TTC-1 scheduler

(Pattern)
TTC-2 scheduler

(Pattern)
TTC-n scheduler

(PIE)
TTC-1 for 8051

(PIE)
TTC-1 for c167

(PIE)
TTC-1 for ARM

Implementation
Layer (2)

Design Layer

Implementation
Layer (1)

Figure 3-2: The one-to-many relationship between the TTC scheduling algorithm and its
implementations using patterns. This figure is adapted from (Mwelwa, 2006).

 Chapter 3: Real-time scheduler implementations 50

3.3.3 The importance of scheduler implementation process

Overall, the scheduling algorithm can only be viewed as a “high-level” mathematical

description of the scheduling policy, and the scheduler behaviour can only be defined

through the implementation process of this algorithm (e.g. through the source code

implementation which is the executable software product par excellence at the moment:

see Bloomfield et al., 2004). The scheduler source code can hence be described as the

lower-level software representation of the system which has the responsibility of

determining the functional and temporal behaviour of the system in practical use.

Avrunin et al. (1998) underlined that the performance of a real-time system depends

crucially on implementation details that cannot be captured at the design level, thus it is

more appropriate to evaluate the real-time properties of the system after it is fully

implemented. This simply means that ensuring predictability in system behaviour would

require an additional care to be taken during the (software) coding process.

3.4 General scheduler implementation approaches

3.4.1 Scheduler implementations in Ada

Early work on software scheduler implementation is referred back to 1980s when

researchers attempted to implement scheduling systems using Ada programming

language. Many researchers began by identifying the main shortcomings and limitations

of the original Ada definitions (i.e. Ada, 1980) to fulfil the requirements of real-time

embedded systems, especially those which have hard timing constraints. For example, it

was widely accepted that despite many useful advantages of Ada in supporting software

engineering principles, Ada language was yet fragile in supporting the software

development for real-time scheduling systems (Burns and Wellings, 1987; Cornhill and

Sha, 1987; Locke and Vogel, 1987; McCormick, 1987; Borger et al., 1988; LeGrand,

1988; Baker and Shaw, 1989). This had, in turn, driven researchers to explore

techniques which can address the real-time deficiencies of Ada. For example, many

studies proposed useful extensions to Ada language to enable it facilitate a real-time

software programming (Burns and Wellings, 1987; Locke and Vogel, 1987;

McCormick, 1987; Cornhill et al., 1987; Borger et al., 1988; LeGrand, 1988; Baker and

Shaw, 1989). Some of this work is reviewed here.

 Chapter 3: Real-time scheduler implementations 51

McCormick (1987) discussed a number of limitations in Ada task timing which made it

inadequate to fulfil the requirements of hard real-time scheduling systems: e.g.

nondeterminism of the Ada tasking model. One major problem which received a

particular concern was the inability of Ada to detect and hence deal with the situations

of task overruns. McCormick therefore proposed a method for providing finer control of

task timing to circumvent such an Ada limitation with only little impact on the existing

language definitions. In another study, Cornhill et al. (1987) proposed some

modifications to the existing Ada language to support the implementation of hard real-

time, fixed-priority scheduling algorithms such as rate monotonic.

LeGrand (1988) discussed the main features of Ada in supporting real-time task

scheduling and outlined main committee and research activities in this area.

Goodenough and Sha (1988) described one way in which priority ceiling protocol can

be implemented in Ada to address the priority inversion problem in fixed-priority

schedulers. In (Kontak, 1988; Baker and Shaw, 1989), possible ways for implementing

cyclic executive scheduling algorithm in Ada language were presented (see Section 3.5

for more details). Moreover, there has been some effort made towards developing tools

for automatic Ada code generation for real-time scheduling systems (for more details,

see Cross II et al., 1989).

Later on, Sha and Goodenough (1990) explored alternative ways for implementing rate

monotonic scheduling algorithms using Ada model. Burns (1991) reviewed the results

in the application of scheduling algorithms to hard real-time systems (including both

static and dynamic algorithms) with a particular consideration to Ada tasks scheduling.

Baker and Pazy (1991) provided an overview of a later generation of Ada (i.e. Ada-9X)

and discussed the changes that this version brought to the Ada priority scheduling

model. The practicality of using pre-emptive, priority-based scheduling techniques in

on-board space application, using Ada (i.e. Ada-83 and Ada-9X) as the implementation

language, was studied by the European Space Agency (ESA) in the early 1990s (Bailey

et al., 1993). In (Vardanega, 1996), the design and implementation of pre-emptive,

priority-based scheduler to use for on-board satellite control systems were presented.

Over the last years, people in the Real-Time Systems (RTS) Group, The University of

York, UK, have been greatly involved in the design and implementation of real-time

 Chapter 3: Real-time scheduler implementations 52

scheduling systems using Ada language. For example, Burns (1999) began to describe

Ada tasking features which are designed specifically for safety-critical, hard real-time

systems (i.e. Ravenscar Profile). Real and Wellings (1999a) studied the impact of using

Ada to implement inheritance priority ceiling protocol on the task schedulability. Real

and Wellings (1999b) described the importance of mode-change support in real-time

systems in which the system functionality can vary as the operation progresses, and

discussed how this feature can be implemented safely in Ada.

McElhone and Burns (2000) discussed requirements for adaptive real-time systems and

demonstrated how adaptivity can be achieved (in Ada system) by using spare resource

capacity to schedule optional computations. Burns (2001) suggested new modifications

to Ada language to allow the implementation of non-pre-emptive schedulers. Bernat and

Burns (2001) demonstrated how Ada tasking facilities enables the implementation of

flexible scheduling schemes in which hard deadlines must always be met and any spare

capacity (typically CPU resources) must be used to maximise the total utility of the

application (see Davis et al., 1995). Burns et al. (2003a) described how Ada can be used

to implement a form of round-robin scheduling algorithm in which tasks are executed in

a circular queue and each task is allocated a bounded time slot for execution. Burns and

Wellings (2003) and Burns et al. (2004) described possible extensions to Ada language

to facilitate the implementation of non-fixed-priority scheduling algorithms such as

EDF.

Overall, the RTS group has shown a great deal of interest in implementing flexible real-

time systems using Ada (e.g. Burns and Wellings, 2002; Burns et al., 2003a; Burns and

Wellings, 2003; Burns et al., 2003b; Wellings, 2003; Burns et al., 2004). However, it

has been emphasised that most of the mechanisms explored and applied in these studies

are incorporated in Ada-2005 standard (Burns, 2006): for Ada-2005 user manual, see

(Taft et al., 2007). The use of Ada-2005 in real-time implementations has also been

discussed in a range of papers published by RTS group (e.g. Burns and Wellings,

2007b; Zerzelidis et al., 2007; Wellings and Burns, 2007a; Wellings and Burns, 2007b).

For the full list of RTS publications, see RTS (2008).

 Chapter 3: Real-time scheduler implementations 53

3.4.2 Scheduler implementations in ‘C’

As remarked in Section 3.2, despite the strengths of Ada, C remains the most popular

means of developing software for real-time and embedded systems. Therefore, C has

been extensively used in the implementation of real-time schedulers and operating

systems for embedded applications. In general, C was adopted in the software

development of almost all operating systems (including RTOSs) in which schedulers are

the core components (Laplante, 2004).

In Michael Barr’s book on embedded systems programming (i.e. Barr, 1999), it was

noted that C is the main focus of any book about embedded programming. Therefore,

most of the sample codes presented in Barr’s book – for both schedulers and operating

systems – were written in C and the key focus of the discussion was on how to use C

language for ‘in-house’ embedded software development. However, some of the

example code presented later in the book was written in C++ while Assembly language

was avoided as much as possible. In (Barr and Massa, 2006), possible ways for

implementing the eCos and the Embedded Linux, as a small and a large open-source

operating systems (respectively), in C language were discussed. Other books which

discuss the use of C language in the software implementation of real-time embedded

systems include (Ganssle, 1992; Brown, 1994; Sickle, 1997; Zurell, 2000; Labrosse ,

2000; Samek, 2002; Barnett et al., 2003; Laplante, 2004).

More specifically, in the field of embedded systems development, using C language to

implement the software code for particular scheduling algorithms is quite common. For

example, Mooney et al. (1997) described a strategy for implementing a dynamic run-

time scheduler using both hardware and software components: the software part was

implemented using C language. Kravetz and Franke (2001) described an alternative

implementation of Linux operating system scheduler using C programming. It was

emphasised that the new implementation can maintain the existing scheduler behavior /

semantics with very little changes in the existing code.

Rao et al. (2008) discussed the implementation of a new pre-emptive scheduler

framework using C language. The study basically reviewed and extracted the positive

characteristics of existing pre-emptive algorithms (e.g. rate monotonic, EDF and LLF)

 Chapter 3: Real-time scheduler implementations 54

to implement a new robust, fully pre-emptive real-time scheduler aimed at providing

better performance in terms of timing and resource utilisation.

As will be shown in the next section (Section 3.5), the ESL researchers have been

greatly concerned with developing techniques and tools to support the design and

implementation of reliable embedded systems, mainly using C programming language.

3.5 TTC scheduler implementations

3.5.1 Introduction

From the previous section, it can be clearly seen that pre-emptive scheduling

architectures have received a widespread attention by embedded systems developers

and researchers while non-pre-emptive schedulers have almost been ignored. More

specifically, the software implementations of time-triggered co-operative (TTC)

scheduling architectures and their implications in practical real-time embedded systems

have rarely received any coverage. This is an unfortunate trend because TTC

architectures are widely used in practical embedded applications (see Section 2.8.3) and

– as a consequence of the resource, timing, and power constraints – the implementation

of such designs is often far from trivial. For example, Pont (2001) has provided a

general discussion of the challenges involved in practical implementations of TTC

architectures. Previous work on the implementation of such systems is reviewed in this

section.

3.5.2 Early work on TTC scheduler implementations

Some early work concerning the implementation of TTC architectures (in the Ada

programming language) was carried out by Baker and Shaw (1989). Baker and Shaw

began by outlining the problems in Ada which impose challenges on such type of work.

For example, tasks in Ada usually execute indefinitely and non-periodically, and the

tasking system is based on nondeterministic event-triggered scheduling approach. The

authors then demonstrated how such and other limitations in Ada language can be

solved to facilitate the implementation of a cyclic executive (that is periodic and time-

triggered-based) scheduler in such a programming language.

 Chapter 3: Real-time scheduler implementations 55

The work by Baker and Shaw also proposed and evaluated two standard methods

(within Ada) to implement a code for cyclic executive scheduler: one method was based

on using delay statement while the other was based on using timer interrupts. The paper

then described several ways in which the task overrun problems in TTC systems can be

addressed in Ada language.

3.5.3 Recent work on TTC scheduler implementations

Recently, the ESL researchers have widely considered the implementation process of

TTC schedulers on a broad range of low-cost embedded microcontroller platforms. An

early work in this area was carried out by Pont (2001) which described techniques for

implementing TTC architectures using a comprehensive set of “software design

patterns” written in C programming language. The resulting “pattern language” was

referred to as “PTTES8 Collection” which contained more than seventy different

patterns.

Pont has demonstrated that the main aim with this language was to facilitate a reliable

implementation of TT systems in low-cost, resource-constrained embedded applications

with a particular focus on TTC architectures. Since then, as experience in this area has

grown, this pattern collection has expanded and subsequently been revised in a series of

ESL publications (e.g. Pont and Ong, 2003; Pont and Mwelwa, 2003; Mwelwa et al.,

2003; Mwelwa and Pont, 2003; Pont et al., 2003; Pont and Banner, 2004; Mwelwa et

al., 2004; Kurian and Pont, 2005; Kurian and Pont, 2006b; Pont et al., 2006; Wang et

al., 2007).

One main objective of introducing patterns was to describe various ways in which

simple embedded software can be implemented in practical systems. For example, Pont

(2001) and Kurian and Pont (2007) introduced a range of different patterns which

describe some of the possible ways in which a TTC scheduler can be implemented. It

was illustrated how these implementations have significant differences in their resource

8 PTTES stands for Patterns for Time-Triggered Embedded Systems.

 Chapter 3: Real-time scheduler implementations 56

requirements (e.g. data and code memory overhead). Note that an overview of these and

some other TTC implementations will be provided later in this thesis.

Another example of studies that considered the implementation process of TTC systems

is a work carried out by Key et al. (2003) which addressed the problems, and possible

solutions, when attempting to implement TTC architectures in Assembly language.

In (Nahas et al., 2004), a low-jitter TTC scheduler framework was described and

compared with an early scheduler implementation (as in Pont, 2001) that took no

account of the impact of scheduler overhead variation on the timing behaviour of the

co-operative tasks running in the system.

Phatrapornnant and Pont (2004a and 2004b) looked at ways for implementing low-

power TTC schedulers by applying “dynamic voltage scaling” (DVS) algorithm. In

(Phatrapornnant and Pont, 2006), the authors went further to describe techniques which

can maintain low jitter behaviour when the DVS algorithm is employed in a TTC

system to reduce the system power consumption. The study also considered ways in

which the low-jitter DVS algorithm on TTC can be applied using a range of System-on-

Chip (SoC) embedded platforms (in addition to the COTS microcontroller platforms).

In another project, Hughes and Pont (2004 and ‘in press’) described an implementation

of TTC schedulers with a wide range of “task guardian” mechanisms that aimed to

reduce the impact of a task-overrun problem on the real-time performance of a TTC

system.

Moreover, Dr Michael Pont and his PhD students have also considered the design and

implementation of a time-triggered hybrid (TTH) scheduler which allows a single, time-

triggered, pre-emptive task to be scheduled in the TTC scheduling framework. This

architecture can sometimes be viewed as an extended version, or simply a modified

implementation, of the original TTC scheduler. Various ways in which such a TTH

scheduler can be implemented in practice have been described in (Pont, 2001; Maaita

and Pont, 2005; Hughes and Pont, in press; Phatrapornnant, 2007).

 Chapter 3: Real-time scheduler implementations 57

For example, Maaita and Pont (2005) described two possible ways for implementing a

TTH scheduler in low-cost embedded systems. They then described a technique (called

“planned pre-emption”) that can be applied to both TTH implementations considered in

order to reduce jitter in the release time of the pre-emptive task. Hughes and Pont (in

press) described a novel TTH implementation which incorporates “task guardian”

mechanisms to deal with overruns in both the co-operative and the pre-emptive tasks

running in the system. Likewise, Phatrapornnant (2007) considered the implementation

of low-jitter DVS algorithm (developed originally for TTC architectures) on the

equivalent TTH architectures.

Note that the source codes in all the outlined scheduler implementations (unless stated)

were written in C programming language. Please also note that since 2001, the ESL

researchers have also been concerned with the implementation of TTC architectures

upon multi-processor embedded platforms. More details about the researches conducted

in this area and the results obtained are provided later in Part D.

3.6 Hardware-based scheduler implementations

For completeness of the current research, it is worth noting that there has been a great

deal of previous work on hardware-based scheduler implementation techniques. This

work is beyond the scope of this thesis. However, Appendix C reviews some of the key

studies carried out in this area.

3.7 The impact of scheduler implementation decisions on
system behaviour

Considering the one-to-many mapping between the scheduling algorithm and its

implementations in practical systems, it has been widely argued that particular

implementation decisions for a given scheduler can have a profound impact on the

behaviour of the system which implements this scheduler. This section discusses such

an impact in a little more detail and provides an illustrative example.

Katcher et al. (1993) stated that the implementation of a particular algorithm can

introduce costs which must be taken into account when validating the timing

 Chapter 3: Real-time scheduler implementations 58

correctness properties of a real-time system. Katcher et al. also argued that while the

task periods (which are design parameters) are a function of the environment and the

task specification, the actual execution times of tasks are a function of the particular

implementation of the designed scheduler. In (Koch, 1999), it was reported that the

choice of particular scheduler implementation can have a major impact on the critical

success factors for a real-time system.

Xu (2003) emphasised that “the simplified high-level abstraction of code” is only an

approximation of “the actual real-time software implementation” which does not take

into account all the implementation details that may affect timing. Xu also reported that,

in most cases, there is no proof that design abstractions such as specifications, models,

algorithms and protocols have the same timing properties as the actual implementation

code. Phatrapornnant (2007) noted that in the ideal case a real-time scheduler must

schedule and execute tasks precisely, where in practice (given that the scheduling

algorithm is selected properly) accurate execution of tasks cannot be achieved due to

factors such as imperfect scheduler implementation.

Moreover, the different implementation options of a particular scheduler would have

different resource requirements and performance results (Pont et al., 2007). Diversity of

implementations would also result in diverse complexity levels. For example, Baker and

Shaw (1989) went through different possible cases in which the implementation of a

cyclic executive scheduler requires additional complexity. Therefore, the performance

of the real-time system would critically depend on implementation details of the task

scheduler (Avrunin et al., 1998). In addition, as the system expands, the scheduler

design and implementation processes will increase in complexity and, consequently, the

impact on the entire system performance becomes more significant (Cho et al., 2007).

A very well-known example on how scheduler implementation can affect the overall

system behaviour is the widely-publicised problems encountered during the Mars

Pathfinder mission in 1997 (Jones, 1997). The Mars Pathfinder used VxWorks real-time

operating system kernel which provides pre-emptive, fixed-priority scheduling of tasks.

There were three tasks running in the system:

• A frequent bus management task (with high priority).

 Chapter 3: Real-time scheduler implementations 59

• An infrequent meteorological data gathering task (with low priority).

• An infrequent communications task (with medium priority).

The pathfinder used one shared bus for passing information between different

components of the spacecraft.

Figure 3-3: Mars pathfinder spacecraft (Source: NASA Jet Propulsion Laboratory).

On arrival of the management task, it was always being blocked by the meteorological

data task for a very short time before the latter one releases the bus. This worked fine

most of the time. However, at a particular time later on, the long-running

communication task was ready to execute during the short interval while the (high

priority) management task was blocked, awaiting the (low priority) meteorological data

task. What happened is that this medium priority task pre-empted the low priority

meteorological data task and began to execute. Consequently, the awaiting high-priority

management task was prevented from running: this caused what is known as “priority

inversion” (see Section 2.8.2). After sometime, it was detected that the data bus task had

not been executed for a while and hence a total system reset was initiated. For more

details, see (Jones, 1997). This example illustrates how an improper (or incomplete)

 Chapter 3: Real-time scheduler implementations 60

implementation of the task scheduler can have the potential to jeopardise the correct

behaviour of the whole system9.

3.8 Discussion

Despite the usefulness of the studies carried out in the area of schedulers, the topic of

scheduler implementation and its implications in practical real-time embedded systems

has not been discussed thoroughly. More specifically, while there has been a great deal

of interest in the development, assessment and refinement of real-time scheduling

algorithms, the process of translating between algorithms and implementations has not

been widely considered. This claim is supported by Cho et al. (2007) who clearly stated

that only very few researches address the architecture and the implementation of the

schedulers. The great majority of the studies reviewed during the course of this project

tend to focus mainly on design issues and only discuss implementation issues from a

high perspective without considering the potential impact a particular software

implementation would have on the actual run-time behaviour of the system

implementing the scheduler.

Moreover, despite the usefulness of the studies carried out in the area of TTC

schedulers, there are apparent limitations. For example, it can be noticed that the

number of TTC scheduler implementations developed in the ESL group has

significantly increased over the past few years. Due to the high experience gained with

TTC, this trend is expected to continue over the next few years or even grow as

concerns about predictability in real-time embedded systems is growing. Therefore, the

9 Once debugged, the problem was solved by amending the software code of the spacecraft from the lab.
In more details, the access to the bus was synchronised with mutual exclusion locks (mutexes). In the
VxWorks mutex object, there was a parameter that indicates whether priority inheritance should be
performed by the mutex. This parameter, which was initially set ‘off’, had been set ‘on’. This caused the
low-priority meteorological data task to inherit the priority of the high-priority management task, while
the latter one is blocked, and hence complete execution before the medium-priority communication task:
thus, the priority inversion was prevented (Jones, 1997).

 Chapter 3: Real-time scheduler implementations 61

need for documenting, categorising and comparing the various TTC scheduler

implementations in a systematic way becomes of vital importance.

It should also be underlined that each of the TTC scheduler implementations developed

previously was dedicated specifically to solve a particular class of problems, while have

not been assessed against other issues. This leaves a gap that when a particular TTC

scheduler is to be selected for a project, the user will not have sufficient information

about the way the system is expected to behave in the future when different operating

conditions apply. So far, there has been no attempts within the ESL group to combine

all achievements in a single study in which all TTC schedulers are linked and compared

systematically to help potential users understand all aspects of the TTC system and

consequently be able to decide whether (or not) to use a particular TTC scheduler

implementation in a given project.

3.9 Conclusions

Having discussed scheduling algorithms in Chapter 2, this chapter moved on to discuss

the various issues related to the process of implementing real-time schedulers in

practical embedded systems, with a particular focus on software implementation

process.

The chapter began by discussing the process of selecting a programming language to

implement software for low-cost, resource-constrained embedded designs like those

dealt with in this project. The key features of C language, which made it an appropriate

choice for such designs, were summarised.

The chapter then discussed the challenges that might arise when implementing software

for a particular scheduler. Such challenges were mainly caused by the broad range of

possible implementation options a scheduler can have in practice, and the impact of

such implementations on the overall system behaviour. It was hence noted that source

code implementation is a crucial component to take care of during the implementation

process for achieving predictable behaviour.

 Chapter 3: Real-time scheduler implementations 62

A wide range of previous work on scheduler implementations, using different

programming languages, was then reviewed. This work considered various scheduling

algorithms including cyclic executive, fixed- and dynamic-priority scheduling

algorithms. The discussions then focused on previous work carried out in the area of

TTC scheduler implementations, particularly within the ESL research group.

Thereafter, the impact of scheduler implementation on system behaviour was discussed

in detail with presenting a famous example that shows how improper implementation

decisions can detrimentally affect the system operation.

Before concluding the chapter, the gaps in the previous work have been emphasised. In

summary, the topic of scheduler implementation requires further consideration, and the

work conducted in the ESL group on TTC implementations can be improved by

employing further techniques which provide a deep understanding of the scheduler

implementation process for use in future applications.

Chapter 4

Linking scheduling algorithms and scheduler

implementations

4.1 Introduction

Having discussed the relationship between scheduling algorithms and scheduler

implementations in practical real-time embedded systems, the main focus of this chapter

is on generic methods that link these two system representations in a systematic way.

In real-time operating environments, it is important to ensure that – after the scheduler

software is implemented – it will behave as required. Generally, there are two main

processes to evaluate the operation of any software-based system: validation, to ensure

that the right system is built, and verification, to ensure that the system is built right

(Boehm, 1981; Hessel, 2007). The primary purpose of the validation and verification

processes is to establish confidence that the software system is adequate for its intended

use (Sommerville, 2007). Therefore, validation and verification can hold the promise to

narrow the gap between the processes of scheduler design and scheduler

implementation in real-time, resource-constrained embedded systems.

Before beginning to review and analyse results from previous work in this area, it must

be pointed out that there has been confusion in the use of the terms “validation” and

“verification” by many people working on the evaluation of software systems. For

example, some people tend to think that “validation” and “verification” are synonyms

(Sommerville, 2007). The discussion in this chapter begins by reviewing the various

definitions for these two terms using a collection of recognised sources. The chapter

then reviews prevalent techniques for verifying software systems with a particular focus

on real-time embedded software systems. The chapter finally concludes by discussing

the limitations of these techniques in addressing the problems concerned with in this

project.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 64

4.2 Definitions

In the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990),

validation is defined as: “The process of evaluating a system or component during or at

the end of the development process to determine whether it satisfies specified

requirements.” Similarly, the STING software engineering glossary (STING, 1996)

defines validation as: “The process of evaluating software at the end of the development

process to ensure compliance with software requirements.” The Glossary of

Computerized System and Software Development Terminology (GCSSDT, 1995),

which is based mainly on IEEE and many other international standards, defines

software validation as: “Determination of the correctness of the final program or

software produced from a development project with respect to the user needs and

requirements.” The National Institute of Standards and Technology (NIST, 2007)

defines validations as: “The process of determining whether or not the standard at a

given phase of its development fulfils the established requirements.”

In contrast, verification is defined in the IEEE Standard Glossary of Software

Engineering Terminology (IEEE Std, 1990) as: “(1) The process of evaluating a system

or component to determine whether the products of a given development phase satisfy

the conditions imposed at the start of that phase. (2) Formal proof of program

correctness.” The Glossary of Computerized System and Software Development

Terminology (GCSSDT, 1995) defines software verification as: “The demonstration of

consistency, completeness, and correctness of the software at each stage and between

each stage of the development life cycle.” The STING software engineering glossary

(STING, 1996) defines verification as: “The process of determining whether or not the

products of a given phase in the life-cycle fulfil a set of established requirements.”

Moreover, verification is also defined in the Software Testing Glossary (STG, 2008) as:

“The process of determining whether or not the products of a given phase of the

software development cycle meet the implementation steps and can be traced to the

incoming objectives established during the previous phase.”

Despite this, Ian Sommerville (in his famous book on “Software Engineering”, Eighth

Edition, 2007) defines validation as a general process which shows that the software

meets the customer needs, while verification is the process which ensures that the

 Chapter 4: Linking scheduling algorithms and scheduler implementations 65

software conforms to its specification. He also notes that a key role of the verification

process is to check that the software meets specified functional and non-functional

requirements.

According to the discrepancy in the way validation and verification are defined, it will

not be possible to pursue the discussion in this chapter before distinguishing between

these two terms and providing a more generic definition for each term. By reviewing the

list of definitions stated above, it can be concluded that a system is said to be valid (or

validated) if its final software product meets the user’s needs and requirements. Any

process involved in checking this is described as a validation process. In contrast, to

verify the system, it means checking whether the implementation of a system

component matches its defined specifications which have originally been derived from

the user’s requirements.

This interpretation of the terms validation and verification might sound more

compatible with the definitions provided by Sommerville (2007). However, it does not

necessarily contradict the concepts behind the IEEE and the other international

standards definitions. For example, the IEEE, STING and STG glossaries indicate that

verification is used mainly to determine whether the products of a given development

phase satisfy the conditions imposed at the start of that phase or at the end of the

previous phase. This has clearly been asserted by Sommerville that while validation is a

general process which checks the consistency of the system – as a whole – with its

requirements, verification is a more detailed process which must be applied at each

stage in the software development process to check the conformance of that stage with

its predefined specification.

Tran (1999) makes this point clearer by noting that “validation usually takes place at

the end of the development cycle, and looks at the complete system as opposed to

verification, which focuses on smaller sub-systems”. The same point is made in the

Glossary of Computerized System and Software Development Terminology (GCSSDT,

1995), one of which the definitions provided here are compared to, as “Validation is

usually accomplished by verifying each stage of the software development life cycle.” In

another word, validation can be viewed as “end-to-end” verification process

(Bloomfield et al., 2004). This concept is illustrated schematically in Figure 4-1 which

 Chapter 4: Linking scheduling algorithms and scheduler implementations 66

shows one possible way of including validation and verification processes in the

software development life cycle model.

Validation process

Requirement
definition

ImplementationDesign
Integration

and Testing
Operation and
Maintenance

Verification
process

Verification
process

Verification
process

Verification
process

Verification
process

Figure 4-1: Integrating validation and verification in the software development life cycle (adapted
from Sommerville, 2007).

Both validation and verification (which is commonly referred to as V&V process) are

required in the evaluation of any software system to make sure that the whole software

product fulfils the system requirements and operates as the user wants it to operate. In

the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990), it

is pointed out that V&V describes “The process of determining whether the

requirements for a system or component are complete and correct, the products of each

development phase fulfil the requirements or conditions imposed by the previous phase,

and the final system or component complies with specified requirements.” Sommerville

(2007) also reported that, during and after implementation, the developed software

needs checking to ensure that it meets its specification and delivers the functionality

expected by its user, where this can only be achieved through combining validation and

verification processes together.

Since this thesis is concerned with matching scheduling algorithms and scheduler

implementations, a software verification technique may be applied between the system

design and system implementation stages (see Figure 4-1).

4.3 Software verification techniques

4.3.1 Introduction

For safety-critical embedded systems, a high degree of reliability is needed for software

implementations since faults can result in catastrophes. Therefore, the validation and

 Chapter 4: Linking scheduling algorithms and scheduler implementations 67

verification of software used in this type of applications poses challenges which are not

usually addressed in conventional software engineering (Dai and Scott, 1995).

Overall, verification of real-time embedded system designs was found to be typically

performed by prototyping and simulation or, more effectively, by means of formal

methods which express the behaviour of the system mathematically (Balarin et al.,

1996). Balarin and colleges underlined that prototyping is expensive and cannot be

performed until the design is almost completed and, for complex systems, simulation

becomes less effective as only limited number of patterns can be tried.

By referring to (Sommerville, 2007), there are two main approaches which can be used

for system verification: “static”, through software inspections and formal methods, and

“dynamic”, through software testing. Software inspections and formal methods are

static verification techniques simply because they check and analyse the system without

running its software on a computer, while software testing is a dynamic verification

technique that mainly examines the output of the system after running its software

implementation on a computer with test data. It has been argued that any product

obtained during development (e.g. specification document or source code) can be

evaluated using static analysis, while dynamic analysis (namely testing) almost

evaluates software code only (Bloomfield et al., 2004). In a project carried out recently

by Hessel (2007), it has been affirmed that testing is the foremost software verification

method in computer and real-time applications.

Moreover, in embedded software development, it has been argued that techniques for

“automated code generation” can be an effective way of verifying the correctness of the

implemented software: this is simply because they help to ensure that the generated

source code is error-free and matches the requirements specified at the design phase of

the system development process (Mwelwa, 2006).

This section reviews each of the outlined software verification techniques and related

research in this area.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 68

4.3.2 Software inspections

4.3.2.1 Introduction

According to the IEEE Standard Glossary of Software Engineering Terminology (IEEE

Std, 1990), inspection is a “static analysis technique that relies on visual examination of

development products to detect errors, violations of development standards, and other

problems.” Inspections (which are sometimes described as “peer reviews”) mainly

check and analyse the source code representation of the system but can also be used to

review other readable system representations such as specification document or design

diagrams. Performing inspections is highly based on previous knowledge about the

system and its application domain as well as familiarity with the programming language

used to implement its source code (i.e. program). The main goal of program inspection

is to reveal errors, omissions and anomalies. Overall, program inspection is a dedicated

verification method in which only defects in the program are detected: such defects may

include logical errors, invalid conditions or incompliance with organisational standards

(Sommerville, 2007).

4.3.2.2 Software inspection process

Generally, software inspection is a formal process which requires a team of people to

analyse the software component and hence find possible defects in it. The concept of

formal inspection process was first developed in the 1970s at IBM (Fagan, 1976). Fagan

suggested that a team of – at least – four people would be required for a complete

program inspection activity: e.g. “author”, who writes the source code, “reader”, to read

the program to the team, “tester”, to inspect the program from a testing point of view

and “moderator”, to organise the whole process. Moreover, it was suggested that any

inspection process would be divided into six stages: planning, by the moderator who

selects the inspection team and organises the inspection meeting, overview, by the

author who describes the objective of the written program to the team, individual

preparation, by inspection team members who study the program and begin to look for

defects, inspection meeting, where discovered defects are announced by the inspectors,

rework, by the author who corrects the identified problems and, finally, follow-up, by

the moderator who decides whether the corrected program needs a new inspection or the

defects have successfully been fixed by the author (Fagan, 1976 and 1986; Ackerman et

al., 1989; Sommerville, 2007).

 Chapter 4: Linking scheduling algorithms and scheduler implementations 69

In a later study, Grady and Van Slack (1994) suggested other set of roles which offers

more flexibility to the number of inspection team members. Gilb and Graham (1993)

described alternative approaches and provided many examples and case studies based

on actual experience at well-known software development companies such as IBM,

AT&T and others. A general comment they made was that the inspection team should

be selected in such a way that they can reflect different perspectives about the program.

Before any inspection process starts, the specification of the program to be inspected

must be defined accurately, the members of the inspection team must be familiar with

the organisational standards, and each member must have an up-to-date version of the

program (Sommerville, 2007). A set of defined checklists are typically used in the

inspection process to focus the inspectors on the common errors that are likely to exist

in a particular application domain and/or a programming language. This combination of

well-structured team and checklists made the formal inspections distinguished from

other types of software reviews (Dyer, 1992). A detailed description of the inspection

theory and practice is provided in (Wheeler et al., 1996).

Although originally designed to verify the system at the code level, inspection practices

were extended to cover earlier stages of the system development life-cycle such as the

design process (Fagan, 1976 ; Ackerman et al., 1989; Grady , 1992; Gilb and Graham,

1993; Ebenau and Strauss, 1994; Cheng and Jeffery 1996). Kelly et al. (1992) reported

that defects in software requirement specifications are likely to be more than in any

other document produced later in the development process. Therefore, inspection

techniques can always be applied to verify software design and software

implementation, where design inspections check the translation of the requirements into

a software design, and code inspections check the translation of that design into a

program implementation (Dyer, 1992).

4.3.2.3 Enhancement of inspection process

Despite their noticeable advantages, conventional inspection activities (like the ones

described earlier) are known to have a number of drawbacks. For example, Nunamaker

et al. (1991), Gilb and Graham (1993) and Harjumaa and Tervonen (1998) highlighted

the most common problems that might arise during a conventional inspection process,

 Chapter 4: Linking scheduling algorithms and scheduler implementations 70

e.g. insufficient knowledge about the process or the document to be inspected,

geographical distribution of the inspection team members and possible conflicts

between the inspectors during the inspection meetings.

To deal with such problems and hence ensure the cost-effectiveness of an inspection

process, a number of computer-based tools have been developed and employed. One

recognised work in this field is that carried out by Harjumaa and Tervonen (1998) in

which a cost-effective tool – based on the World Wide Web (WWW) – was developed

to provide a set of well-defined functions for distributing the document to be inspected,

annotating it, searching related documents, choosing the checklist and gathering

inspection statistics easily.

As previously noted, inspections are driven from checklists of errors relate to various

application domains and programming languages. In some cases, it is possible to

automate the process of checking the program against the listed errors. This led to the

development of static analysers for different programming languages. Static analysers

are basically software tools which scan the program and detect possible errors. They

typically utilise the error detection facilities provided by the language compiler to detect

if any statement in the program produces errors or formed incorrectly. One of the main

purposes of automatic static analysis is to detect errors that might cause problems later

when the program is executed and which cannot be detected by manual inspection

activities (e.g. data whose value goes out of range). Static analysers are more effective

when used with programming languages such as C as an error-prone language whose

compilers have limited checking capabilities (for more details, see Sommerville, 2007).

4.3.2.4 Strengths and weaknesses of software inspections

Overall, the significant role of inspection in the software verification process has been

recognised by foremost researchers in this area. For example, Fagan (1976) has made it

clear that if errors are not detected close to their place of origin, the cost of rework as a

fraction of the overall development cost can be incredibly high. Boehm (1981) provided

data which illustrated that repairing a software error, after the software production, can

be 100 times more costly than if early error-detection mechanisms are employed.

Therefore, the use of software inspections (where errors are detected and eliminated

near the point of their introduction) helps to increase productivity and improve the

 Chapter 4: Linking scheduling algorithms and scheduler implementations 71

overall quality of the produced software (Fagan, 1976 and 1986; Ackerman et al., 1989;

Dyer, 1992).

Moreover, there has been an argument that software inspection can be more effective

than testing (Section 4.3.4), due to the following advantages (Sommerville, 2007):

• Inspection allows many errors in the system to be detected at once where there are

no worries about interactions between errors.

• It is a low-cost process in which the software can be verified before completion.

• It helps developers consider other quality attributes of the system (e.g. poor

programming) along with finding program defects.

In addition, inspections are very cost-effective methods for software defect detection

and elimination, where between 50% and 90% of the errors in the program can be

discovered using these techniques (Fagan, 1986; Mills et al., 1987; Dyer, 1992; Gilb

and Graham, 1993). Sommerville has noted that the effort devoted to static verification

techniques generally increases as the system goes more critical, however, the effort

required for program inspection can always be 50% less than would be required for

equivalent testing process.

Despite the recognised advantages of using program inspections to verify software,

more formalised techniques will still be required to address the verification problems

that cannot be addressed by basic software inspection activities, e.g. the functional

correctness of the developed software. This has prompted software engineers to develop

formal verification techniques.

4.3.3 Formal methods

4.3.3.1 Introduction

As the complexity and criticalness of the system increase, a more detailed analysis of

the system specification and program is required for verification process. Such type of

analysis can be achieved by means of formal methods. Formal methods are primarily

based on mathematical representation of the system software which are mainly

concerned with mathematically analysing the system specification or transforming this

 Chapter 4: Linking scheduling algorithms and scheduler implementations 72

specification into a semantically equivalent representation of the system (Wang and Lin,

2001; Wang, 2004; Sommerville, 2007). Note that using formal methods in the

verification process is a static approach in which a detailed analysis of the system

components is carried out without executing them on a computer.

Balarin et al. (1996) emphasised that formal verification is a set of techniques that allow

for proving mathematically that specifications are fit for a design. This process can

hence be used at various points during the software development process. For example,

formal methods can be used – at the design level – to discover errors / omissions in the

specification document and at the implementation level to check that the software

program is compatible with its specification.

It is accepted that formal approaches (which incorporate formal specification and formal

verification) are well suited for safety-related systems which almost require a high

degree of reliability (Hevner et al., 1992; Bowen, 1993; Sommerville, 2007). Bowen

(1993) surveyed a number of safety-related standards in terms of their utilisation of

formal methods, e.g. 00-55 (Mod, UK), IEC880 (IEC, Europe), MIL-STD-882B / 882C

(DoD, US) and P1228 (IEEE, US).

4.3.3.2 Cleanroom development process

Formal methods have been used in various software development processes such as

VDM (Jones, 1989), Z (Spivey, 1992) and B (Wordsworth, 1996). A well-known

example of development processes which rely on formal methods is the Cleanroom

process developed by IBM and aimed at producing zero-defect software system with

high reliability (Dyer and Mills, 1981; Dyer, 1982; Currit et al., 1986; Mills et al., 1987;

Linger, 1994; Spangler; 1996). Briefly, Cleanroom software development combines

three main processes: formal method for specification and design, non-execution-based

program development, and statistically-based independent testing (Selby et al., 1987).

In the Cleanroom development process, the life cycle mainly consists of executable

product increments which all accumulate to yield the final product with full

functionality (Currit et al., 1986; Selby et al., 1987; Linger, 1994). Each software

product increment is specified formally and this specification is then transformed into

an implementation.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 73

Sommerville (2007) summarised the processes involved in any Cleanroom development

environment as: formal specification, in which the software is formally specified,

incremental development, in which the software is partitioned into increments to be

validated separately, structured programming, for stepwise refinement of the

specification in which only few constructs are used for systematically transforming the

specification into a source code, static verification, in which software inspections are

used to verify the software increment, and finally statistical testing, where the

integrated software increment is verified statistically using an “operational profile”

which has already been developed simultaneously with system specification. He also

suggested that three different teams would ideally be required for a Cleanroom process:

specification team, which develop the system specification and its equivalent

mathematical model, development team, which develop and verify the software using

formal approach to verification, and certification team, which develop statistical tests to

exercise the developed software for reliability certification.

Dyer (1992) pointed out that the mathematical-based design of the Cleanroom method

results in a more correctly developed software with a significantly reduced number of

errors in comparison with the level of errors assumed in conventional development

practices. He therefore suggested that the role of inspection in such a formal

development process should change from error detection only to confirmation of

software correctness. In his useful study, Dyer discussed how the use of verification-

based software inspection (instead of formal software inspection) can be more effective

in Cleanroom environments as it prevents the introduction of errors while the software

design is being constructed, thereby achieving error-free software products. Likewise,

Powell (2002) reported that inspection techniques mainly focus on quality attributes that

affect readability and maintainability where only limited amount of work on inspection

considered the functional correctness. To verify the functional correctness of software

in Cleanroom process, systematic code reading techniques were found to be more

effective than the traditional code reading techniques based on checklists (Dyer, 1992;

Jackson and Hoffman, 1994; Porter et al., 1995; Powell, 2002).

The integration of Computer-Aided Software Engineering (CASE) environments to

support Cleanroom development process has also been considered and found to be very

 Chapter 4: Linking scheduling algorithms and scheduler implementations 74

useful especially for solving complex development problems (Fuhrer et al., 1992;

Hevner et al., 1992)

Overall, it has been widely agreed that Cleanroom approach is an effective development

method for systems which have stringent safety and reliability requirements such as the

majority of real-time embedded systems (Hevner et al., 1992; Sommerville, 2007). The

Cleanroom’s ease-of-use, low-cost and effectiveness in reducing failure rate have been

proven practically in a number of studies (e.g. Selby et al., 1987; Cobb and Mills, 1990;

Linger, 1994; Stavely, 1999). For example, Cobb and Mills (1990) summarised the

results from a list of previously-conducted projects which utilised Cleanroom

development process. They show how the use of such development environments had

the potential to improve software quality and productivity in all the surveyed projects.

4.3.3.3 Formal verification of real-time embedded systems

The use of formal methods in the verification of real-time embedded systems has

received widespread consideration. For example, Dai and Scott (1995) developed a

CASE tool (called “Automation of the Verification, Validation and Testing – AVAT”)

to verify real-time embedded software using the Program Function (PF) table method

(Pamas, 1994) as a widely-used formal method in industrial applications. Bradley et al.

(1996) indicated that testing only is insufficient to provide confidence that a real-time

system would always meet its deadlines and therefore formal methods would be

required in the verification of such systems. Authors however noted that despite that

formal methods can result in assured designs, they do not necessarily lead to assured

implementations. The study therefore proposed a formal-based technique, based on

Application Oriented Real-Time Algebra (AORTA) as a formal language, to verify

implementation of particular real-time designs.

Liu et al. (1998) described a technique with a case study to verifying safety-critical

embedded software using the practical formal method “Structured-Object-based-Formal

Language” (SOFL). In their technique, three verification processes were applied

consecutively as to verify both functionality and safety properties of the software: data

flow reachability checking, specification testing, and rigorous proofs (see Liu et al.,

1998 for further details). Formal verification of a large-scale, fault-tolerant embedded

 Chapter 4: Linking scheduling algorithms and scheduler implementations 75

system was carried out in (Shi et al., 1999) where the developed technique was based on

using CSP model-checker (Roscoe, 1994).

Clarke et al. (2000) and Cortès (2001) argued that techniques such as simulation and

testing are often insufficient as they evaluate the system performance for only selected

subsets of operating conditions. Clarke et al. (2000) hence proposed a tool which

complements simulation and testing methods for embedded systems with formal

verification methods that analyse the behaviour of the system over a large set of

operating conditions without recourse to exhaustive simulation. Cortès (2001) noted that

formal methods had extensively been used in software development as well as in

hardware verification but not widely used in embedded systems design. Consequently,

Cortès (2000) and Cortès et al. (2001) proposed a modelling formalism for real-time

embedded systems – based on Petri Net modelling language (Marwedel, 2006) – and

introduced an approach to solve the problem of formal verification of real-time

embedded systems represented in his modelling formalism.

Likewise, Xu (2003) stated that while they had been used successfully to verify

hardware designs, formal methods were rarely used to verify actual software code and

were not used at all to verify timing properties of large-scale, real-time software

implementations. Xu listed the following examples of proposed formal methods for

real-time systems: timed and hybrid automata, timed transition systems / temporal logic,

timed Petri-nets, theorem proving techniques using PVS to analyse real-time protocols

and algorithms and model checking. However, he underlined that such methods mainly

focus on the verification of high-level abstractions of the system but not its actual

software code. Xu proposed a “pre-run-time” scheduling framework that imposes

restrictions on the software structures to reduce the complexity of large-scale embedded

software and hence simplify the process of formally verifying its functional as well as

timing correctness properties.

Broadfoot and Broadfoot (2003) published a useful paper which attempted to link

between academic research in formal methods and their practical use in embedded

software development. They discussed the main reasons why formal verification

methods are not widely utilised in industry, some of which were the lack of scalability,

limited accessibility to non-specialists and immaturity of the available tools and

 Chapter 4: Linking scheduling algorithms and scheduler implementations 76

techniques. However, the two key problems the authors identified as the main

challenges for industrial software practices were the need for specialists who have

sound mathematical background to create the systems formal specifications and the

complexity of using available methods and tools to verify the system correctness even

after the formal specifications are developed. The study then discussed the applicability

of combining the two formal methods, namely “Cleanroom” and “CSP” (with its model

checker FDR) to overcome the outlined shortfalls. The proposed approach was then

applied to a number of industrial case studies to show its effectiveness in practical

applications.

Wang (2004) reviewed previous works on formal verification of real-time systems.

More specifically, he discussed a wide range of research papers on various topics in

formal verification including formal modelling, specification languages, verification

frameworks, state-space representations and some others.

Arons et al. (2006) noted that although simulation is not adequate to verify large,

complex embedded systems due to its limited coverage metrics of the system,

simulation techniques can still be very effective if appropriately combined with formal

verification techniques: such an approach is referred to as hybrid verification. Arons et

al. described a hybrid approach – supported by automatic tools – to improve traditional

simulation-based validation techniques for complex embedded software designs. The

approach is based on formally analysing the software program to generate a coverage

space for all feasible control paths of the program and then building architectural tests

(Section 4.3.4). Ribeiro and Fernandes (2007) proposed an approach for applying a

particular model checker (called “Spin”: Holzmann, 1997) to verify some key properties

of embedded systems, such as deadlock-freedom, where the behaviour of the embedded

system is modelled using a variant of Petri Nets modelling language.

Crocker and Carlton (2007) suggested that before any testing commences, the

correctness of the system must be verified formally to ensure that the executed software

will meet the stated requirements. Such an approach was described as “correctness-by-

construction”. Crocker and Carlton discussed their software development tool “Perfect

Developer” which was developed in 2004 to reason about requirements and

specifications of the system by using a single formal notation for specification, design

 Chapter 4: Linking scheduling algorithms and scheduler implementations 77

and refinement, followed by automatic translation of the refined design to source code.

The study moved on to investigate the applicability of this automated reasoning

approach on verifying programs written in C, as a popular implementation language for

embedded software. It was found that automated reasoning can still achieve an

acceptable degree of success in the verification of software written in conventional

programming languages such as C.

In another study, Gargantini et al. (2008) proposed a validation and verification tool that

supports high level formal analysis of model-driven embedded system designs. The tool

was based on a formal method called “Abstract State Machine” and aimed at providing

a design and analysis environment for HW/SW co-design where both software

application and hardware architecture are described using UML model.

4.3.3.4 Strengths and weaknesses of formal methods

It has been argued that formal specification is a very effective way to discover problems

in the specification which is the most common cause of system failures, and formal

verification increases the confidence in the most critical component of the system which

is the software program (Sommerville, 2007). It is also believed that formal methods are

so beneficial especially in the development of critical systems such as safety-related

embedded systems (Hevner et al., 1992; Bowen and Hinchey, 1995).

Nonetheless, the use of formal specification and corresponding formal verification is

often time-consuming and expensive, and its cost would increase as the complexity and

criticalness of the system increase (Broadfoot and Broadfoot, 2003; Sommerville,

2007). There is a feeling among some researchers that software systems can still be

effectively verified using cheaper verification techniques such as inspections and testing

(Sommerville, 2007).

Moreover, formal methods require specialised engineers with solid mathematical

expertise to create formal specification, whereas this specification is almost not

understandable by domain users. The need for specialised people to create the formal

model of a design makes it impractical to adopt formal techniques in the verification of

many software systems.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 78

More importantly, despite that they can lead to highly-reliable and safe systems, formal

methods do not guarantee software reliability in practical use. For example, although

they can assure matchup between formal specification and generated code, the

developers cannot guarantee matchup between their formal model and the original

system (and user) requirements (Lutz, 1993) or that the code – once running on COTS

microcontroller hardware – would behave as expected since the hardware is not

formally modelled in the system design process.

As a consequence, it seems that dynamic verification techniques are likely to remain a

key way of checking the correctness of the system behaviour while it is operational for

the foreseeable future. In 2004, Farn Wang noted that “in the foreseeable future, it will

be difficult to use formal techniques alone for decisive answers to complex verification

tasks.” Wang hence predicted that formal verification would be used in the future as a

superior technology to guarantee the quality of software systems but not to verify them

(Wang, 2004).

In addition (as previously noted in Chapter 1), in real-time environments, besides the

correct functionality of the software, it is essential to make sure that the system fulfils

its predefined timing constraints and hence behave deterministically. It is unlikely that

formal methods – as a static verification technique – can guarantee this. Instead,

dynamic techniques (such as testing) would be required in which the developed

software is executed on a computer to check its real-time behaviour while it is

operational. As a result, software testing would remain – in many cases – the most

effective way to achieve a confidence that the system is “completely” fit for its intended

use, especially in real-time applications.

4.3.4 Software testing

4.3.4.1 Introduction

Software testing is an essential part in any evaluation process of software systems. In

the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std, 1990),

testing is defined as “(1) The process of operating a system or component under

specified conditions, observing or recording the results, and making an evaluation of

some aspect of the system or component. (2) The process of analyzing a software item to

 Chapter 4: Linking scheduling algorithms and scheduler implementations 79

detect the differences between existing and required conditions (that is, bugs) and to

evaluate the features of the software items.” Hessel (2007) defined testing as the

process of exercising the system in a controlled environment and examine if its

behaviour complies with the requirements of the system.

It has been argued that while static analysis techniques are used to evaluate static

criteria of the software product at rest (e.g. errors in software documents), dynamic

analysis, namely testing, is used to evaluate dynamic criteria related to the properties

that can only manifest when the system is running (e.g. failure when the software does

not behave as required): see Bloomfield et al. (2004). Sommerville (2007) reported that

both processes, static and dynamic, are needed for successful verification of real-time

systems. For example, inspections can be used to verify the system in the early stages of

its development process, while testing is needed after the whole system is integrated in

order to verify the behaviour of the final system before deployment.

4.3.4.2 Testing process

Sommerville (2007) pointed out that there are two key activities for testing: component

testing, which tests particular parts of the system, and system testing, which tests the

system as a whole. In system testing, the system is checked against its functional and

non-functional requirements to ensure that the system behaves correctly for practical

use. The main objectives of software testing are:

• To ensure that the software meets its requirements.

• To discover any faults or defects in the software.

In general, software testing cannot discover all errors but can guarantee that the

software is good enough for operational use. For complex systems, system testing is

usually divided into integration testing, which is concerned with finding problems that

arise as a result of integrating the system components, and release testing, which is

concerned with validating that the system meets the user requirements and is

dependable. For more details, refer to (Sommerville, 2007).

As the complexity of software application increases, software testing process becomes

less trivial. For example, various researchers argued that, in the software development

 Chapter 4: Linking scheduling algorithms and scheduler implementations 80

process, testing can consume up to 50% of the total development cost (e.g. Singh et al.,

1997; Liu et al., 2005; Pringsulaka and Daengdej, 2006; Sommerville, 2007).

For any testing process, a set of suitable test cases must be designed. A test case is “(1)

A set of test inputs, execution conditions, and expected results developed for a

particular objective, such as to exercise a particular program path or to verify

compliance with a specific requirement. (2) Documentation specifying inputs, predicted

results, and a set of execution conditions for a test item.” (IEEE Std, 1990). A

comprehensive testing using every possible execution of the software is unfeasible.

Therefore, only an effective subset of possible test cases is used. For successful test

cases design, the feature of the system to be tested must be selected along with the

inputs that will execute that feature. In addition, the expected outputs of the test cases

must also be known. A general model for software testing process is illustrated in

Figure 4-2.

Design test
cases Test cases

Prepare test
data

Test data
(test input)

Run software
with test data Test output

Compare
output with
test cases

Figure 4-2: Testing process model (adapted from Sommerville, 2007).

The figure shows the key elements in the testing process which include: test cases, test

data (or test input) and test output. The obtained output from the test must be compared

to the output predicted – during the test case design phase – by those who possess a full

understanding of the system and how it should operate after implementation.

Overall, test cases can be generated either manually or automatically. Many studies

however demonstrated that automating the test processes has the potential to reduce

 Chapter 4: Linking scheduling algorithms and scheduler implementations 81

time, effort and costs (e.g. Cunning and Rozenblit, 1999; Rayadurgam, 2001; Tsai et al.,

2003; Do and Rothermel, 2006; Sommerville, 2007).

4.3.4.3 Test cases and test-case generation

There has been a great deal of interest on both test cases and test-case generation. For

example, Beck’s (2001) work on “extreme programming” had at heart a view that test

cases for the system should be produced early in the product life cycle. Hassel (2007)

argued that the most challenging phase in the test process is the selection and execution

of test cases. Many studies have, therefore, proposed techniques for automatically

generating the test cases (Tsai et al., 2003; Bai et al., 2002, Cunning and Rozenblit,

1999; Ince, 1987; Poston, 1986; Tai, 1993; White and Sahay, 1985; Munoz, 1988;

Singh et al., 1997; Kim et al., 1998; Hessel, 2007).

Test cases can be generated from the source code, control flow graphs, design

representations and specifications (Offutt and Liu, 1999). In specification-based test

case generation approach – which is popular and widely used – test cases are derived

from a specification model that provides a high-level abstraction of the desired system

behaviour. One advantage of using specification-based test generation (over the code-

based test generation where test cases are directly derived from the software code) is

that the output test data will be independent of any particular implementation of the

system: e.g. the source code (Offutt and Liu, 1999). This also means that test cases can

be generated earlier in the development process, even before the coding is finished,

allowing more utilisation of the time and resources.

To implement and test the specification model, formal specification languages can be

used such as Z (Spivey, 1988), VDM (Jones, 1989), and RAISE (Nielsen et al., 1988).

Once the specification model – for the application under test – is verified, test cases can

then be automatically (or manually) generated using the appropriate test-case generation

method.

There has also been work carried out in the area of testing other features of the system.

Such studies are concerned mainly with testing the “non-functional” (i.e. “quality”)

requirements of the application software, such as scalability, reliability, maintainability,

availability and portability: a detailed list of non-functional requirements of a

 Chapter 4: Linking scheduling algorithms and scheduler implementations 82

computing system is provided in (Chung et al., 2000). Just as an example, Laria (2005)

has argued that architectural decisions affect the quality of software systems and that it

is important to detect the potential risks of using particular architectures as early as

possible during the development process. Examples of widely-used approaches for

evaluating software architectures are: Architecture Tradeoff Analysis Method (ATAM:

Kazman et al., 2000) and Cost Benefit Analysis Method (CBAM: Bass et al., 2003).

4.3.4.4 Testing real-time embedded systems

Rayadurgam (2001) noted that testing is one of the most widely used V&V techniques

for verifying embedded systems. There has been a great deal of interest in generating

test cases for real-time embedded systems (Cunning and Rozenblit, 1999; Larsen et al.,

2005; Nielsen and Skou, 2003; Shere and Carlson, 1994; En-Nouaary et al., 2002;

Hessel, 2007). In real-time testing activities, testers take into account the time at which

the input parameters are supplied to the system and, therefore, the correct behaviour is

achieved when the test verifies that the output values are produced in the correct time.

Overall, the testing of real-time embedded systems has been based on creating timed

models (Clarke and Lee, 1997; Springintveld et al., 1997; En-Nouaary et al., 1998;

Cunning and Rozenblit, 1999; En-Nouaary et al., 1999; En-Nouaary et al., 2000; Larsen

et al., 2005; Hessel, 2007). Hessel (2007) noted that “Model-based testing is a black

box testing technique where test cases are derived from a model that specifies the

expected behaviour of a system.” It was also shown that it is sometimes required to used

model checking tools (e.g. “Spin”: Holzmann, 1997 or “UPPAAL”: Larsen et al., 1997)

to ensure correctness of the specification model before moving to the implementation

stage.

In a study carried out by Cunning and Rozenblit (1999), approaches for model-based

automatic test-case generation for event-triggered, real-time embedded systems were

presented. They attempted to generate a set of test cases that provide a complete

coverage of the system requirements. The work was though based on software /

hardware codesign in contrast to that presented earlier by Chandrasekharan et al. (1985)

and Hsia et al. (1994 and 1997) which were concerned with testing software designs

only.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 83

En-Nouaary et al. (2000) clearly stated that the correctness of safety-critical embedded

systems can be improved by verifying the system specification and testing the system

implementation: that is to assess the conformance of the system implementation to its

specified requirements. In their paper, En-Nouaary et al. focused on testing of real-time

embedded systems. The embedded system in their study was modelled using

Communicating Timed Input Output Automata (CTIOA) model. The study also

described an approach for test-cases generation from an embedded CTIOA model.

Larsen et al. (2005) described a tool for online testing of real-time systems based on

UPPAAL model checker.

Hessel (2007) considered testing the functionality (i.e. logical and temporal correctness)

of real-time systems based on state-based formalism. In particular, he developed a test

generation tool called “COVER” which was built on UPPAAL model checker and used

the formal method “timed automata”. The tool proved to be effective in generating test

suites with full coverage and minimal cost. Hessel also provided a detailed literature

review of previous work carried out in the areas of model-based testing of timed

systems, test-case generation with coverage criteria, and tools for model-based testing.

Please note that all of this previous work is mainly based on formal modelling of the

real-time system properties.

4.3.4.5 Strengths and weaknesses of software testing

 The strengths and weaknesses of software testing have already been discussed in the

previous sections (e.g. Section 4.3.3.4 and Section 4.3.4.1). Overall, the discussions

indicate that testing can be the most superior verification technique to achieve a

“complete” confidence in a developed real-time software product, as it verifies

properties that can only be revealed when the system is in operation. Please note that the

decision to use testing would critically depend on the type of application in which

software is used. For example, if the software is developed to operate an aircraft, then

formal verification would be the only way to ensure correct operations before the plane

flies in the air. In such circumstances, testing would not be the appropriate verification

solution.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 84

However, if testing is to be applied, developing test cases with full coverage of system

requirements can often be a time-consuming and expensive process. This in turn

induces further research interest in this area, where the advantages of testing can be

utilised, but with using simple test case generation approaches in order to test only a

small set of system properties for certain purposes.

Before testing takes place, and to avoid the need for applying ordinary static verification

techniques (such as inspections and formal methods), one can use recently developed

techniques for automated software generation. Assuming that design specifications are

derived accurately from user requirements, such techniques can help guarantee matchup

between design specifications and the produced software.

4.3.5 Automated code generation

4.3.5.1 Introduction

As previously noted, the current project considers the implementation process of TTC

scheduling algorithm. One suggested approach to verify the software implementations

of such a system is to use automated code generation in the creation of scheduler code

(Mwelwa, 2006). By doing so, the generated source code is guaranteed to have zero-

defects and thus only testing will be required to verify correctness of the system

behaviour when it is operational. Automated code generation approach is reviewed in

this section.

4.3.5.2 Manual generation of code using software patterns

An early work on patterns, in the ESL group, has resulted in a collection of several tens

of software design patterns aimed at supporting the development of reliable TT

embedded systems (see Section 3.5.3). These patterns were documented in a structured

manner so that any developer – who wishes to use them – can refer to the relevant

publication in which the patterns are detailed. However, the process of manually

referring to pattern collection before using a pattern increases the probabilities of coding

errors and hence becomes inefficient software development method for systems that

require high level of reliability (Kurian and Pont, 2006a; Mwelwa, 2006). Therefore, it

was necessary to develop techniques for automatically generating source code from a

selected set of design patterns (Mwelwa et al., 2005; Mwelwa et al., 2007).

 Chapter 4: Linking scheduling algorithms and scheduler implementations 85

4.3.5.3 Automating the code generation process

Overall, it has previously been argued that automated code generation holds the promise

of reducing the time and effort required to implement safety-critical systems, while at

the same time eliminating errors introduced in this stage of development (Whalen and

Heimdahl, 1999). Industries such as aerospace and automotive have made extensive

use of automatic code generation tools aimed at control and signal processing systems

(Marsh, 2003; O’Halloran, 2000; Schatz et al., 2003): these are typical application areas

for the TTC schedulers considered in this study. Such tools are used first to model

systems and then to generate code. Originally, code was generated automatically for

prototyping platforms or PCs. More recently, code generation has become a more

practical means of generating production code for embedded hardware. It is thought that

hundreds of thousands of cars now rely on code generated using these techniques

(Marsh, 2003).

4.3.5.4 Automated code generation techniques

According to (Mwelwa, 2006), two main approaches are used in automated code

generation, model-based and pattern-based code generation. In model-based code

generation, models are used to represent the system at the abstract level thus allowing

developers to design applications based on requirements only, discuss the design ideas

among the design team, and validate the design even before it is implemented. The

Unified Modelling Language (UML), which is used for organising and communicating

design ideas, has become the de facto technology for design, analysis and modelling of

various software architectures and more recently for model-based code generation. In

model-based code generation method, source code is automatically generated from the

UML design models and therefore errors caused by hand-coding are eliminated. Other

modelling languages and frameworks which help in model-based software development

are discussed in (Mwelwa, 2006).

Mwelwa has made it clear that despite many advantages of model-based code

generation, such as the provision for software maintenance, these techniques have

limited effects in embedded system designs. This is mainly due to the limitations

experienced with UML such as inability to address timing, memory and power

constraints, and handling of periodic time-triggered tasks (note that there has recently

been significant work on extending the UML to embedded systems domain: e.g. UML

 Chapter 4: Linking scheduling algorithms and scheduler implementations 86

2.0). Mwelwa has also argued that model-based code generation does not necessarily

promote software reuse where software reuse is recognised as an important factor for

improving the quality of software and reducing development costs. Therefore, pattern-

based code generation can offer an alternative method to model-based code generation.

It was argued that pattern-based code generation has the potential to produce codes with

high quality. Previous work in this area has led to the development of a tool for

“automatic” creation of systems with TTC architecture (e.g. Mwelwa et al., 2003;

Mwelwa, 2006; Mwelwa et al., 2007). Such work enables the developer to employ a

collection of “design patterns” to support the creation of code for complete TTC

systems (including the system scheduler). Kurian and Pont (2006a) noted that pattern-

based tools provide support for automatic code generation from pattern-based designs,

where the full potential of pattern-based design was still to be fully realised in such

tools. Kurian and Pont therefore began to explore the challenges involved in engaging

tool support in the design phase of pattern-based software development.

In (Kurian and Pont, 2007) it was underlined that most previous work on pattern-based

software development had focused on the process of creating a system but not on the

post-creation project phases. The study therefore explored techniques for automatically

replacing an existing core scheduler pattern with a suitable alternative pattern in a

design after the project has been completed.

4.3.5.5 Strengths and weaknesses of automated code generation

Automated code generation can be viewed as a feed forward process which

substantially helps the developer create (or manipulate) the source code for their

application with minimal amount of time and effort. They also help to verify the

embedded software by ensuring that the implementation of the system scheduler

matches the predefined design specification.

However, automated code generation techniques cannot guarantee that the implemented

software meets the user requirements and the software product is hence validated. For

example, automated code generation techniques take no account of the possible

behaviour patterns a particular code may produce during the system operating time. In

another word, such techniques do not involve any feedback process from which the

 Chapter 4: Linking scheduling algorithms and scheduler implementations 87

developer can understand (or predict) the implications of using particular source code

implementations in their system.

4.4 Discussion

The work described in this thesis is mainly concerned with software verification of real-

time schedulers as a potential means for bridging the gap between scheduling

algorithms and scheduler implementations in practical embedded systems. By going

back to Figure 1-3 in Chapter 1 (the life cycle of a system development process), it can

be clearly seen that after the system design process completes, the implementation

process should begin. As in Figure 4-1, to address the process of translating between

design and implementation of a given embedded software (e.g. scheduler), an

appropriate verification technique must be applied during this process to check whether

the resulting implementation matches the requirements specified at the end of the design

phase (which is obviously the previous phase to implementation in the development life

cycle).

Given that real-time embedded software often requires a high degree of reliability and

predictability, dynamic approaches (namely testing) remain in many cases the most

effective means for verifying that the software – after implementation – will match the

original design specifications and hence fulfil the desired user requirements.

As the literature indicates, previous work on testing and test cases was concerned

mainly with testing the detailed operations (i.e. functionality) or checking quality

attributes of a given software application.

Although there has been considerable effort made towards testing real-time embedded

software, this work was mainly based on developing a formal specification model of the

embedded design from which suitable suite of test cases can then be generated. As

previously noted, formal modelling of a system is a complicated process that requires a

specialist to describe and analyse the system specifications using mathematical

notations.

 Chapter 4: Linking scheduling algorithms and scheduler implementations 88

In particular, the author found no previous work which considered the creation of test

cases to specifically address the impact of using a given scheduler software on the

operational behaviour of embedded systems, particularly when algorithms such as TTC

schedulers are employed.

On the other hand, despite the great potential of work carried out on automated code

generation to link TTC designs and implementations, such work suffers considerable

limitations, some of which have already been discussed in Section 4.3.5.5. Moreover, it

must be noted that the automated code generation tools developed in the ESL group so

far have been proven to work successfully with simple TTC scheduler implementations

while have not been used to generate / verify codes for large-scale, complex TTC

designs like the majority of those considered in this project. This imposes the demand to

explore alternative techniques for verifying such manually-developed complex

implementations without use of any code generation tool.

4.5 Conclusions

This chapter reviewed general software verification methods with a particular focus on

verifying real-time embedded software. Both static and dynamic verification techniques

have been reviewed, and their advantages and disadvantages discussed.

The discussions suggest that there are inevitable limitations in previous work to address

verification problem in real-time, resource-constrained embedded systems. In particular,

none of the previous work attempted to verify the embedded software in such a way that

it helps to understand the impact of using various software implementations on the

operational timing behaviour of the whole system. This fact prompts further research

interests in this area where the timing behaviour of embedded software can be verified

dynamically using simple, cheap and efficient “testing” techniques. Such techniques

would be expected to explore the impact of using particular implementation decisions

on the run-time behaviour of systems employing real-time scheduling algorithms.

The next chapters begin to describe and evaluate a testing technique developed in this

project as one way to verify software implementations for embedded systems

employing a TTC scheduling algorithm.

PART C:

SINGLE-PROCESSOR SYSTEMS

Chapter 5

TTC scheduler implementations

5.1 Introduction

As discussed in Chapter 3, the Time-Triggered Co-operative (TTC) scheduling

algorithm can have a wide range of possible implementation options, each with a

different set of distinctive features as well as behaviour patterns. Of course, it is not

feasible to cover all possible implementation options for TTC scheduler in a single

study. Thus, only a set of “representative” examples of the various classes of TTC

implementations are reviewed in this chapter. Such a representative collection of TTC

schedulers will be used as a basis for assessing the testing technique proposed in this

project for single-processor designs.

Note that this chapter reviews six different implementations for TTC scheduler. Four

implementations have been taken / modified from studies conducted previously in the

ESL research group, where the remaining two are new TTC implementations developed

in this project. Three further implementation options, which have less distinctive

features, are outlined in Appendix D10.

5.2 A general structure of TTC scheduler implementation

This section begins by introducing a simple approach for implementing TTC scheduler

software in low-cost embedded microcontrollers and then describes the main structure

used in the TTC implementations reviewed in this chapter.

10 The work described in this chapter has been adapted from the study presented in the author’s
publications [1] and [3] listed in page xvi.

 Chapter 5: TTC scheduler implementations 91

As in (Pont, 2001; Kurian and Pont, 2007), The majority of embedded systems run only

one program where this program usually starts to execute when power is applied to the

microcontroller and stops executing when the power is removed (or some error occurs).

Moreover, there is no operating system returned to by the program, and allowing the

program to terminate might have undesirable consequences. In order to avoid this, a

form of endless “Super Loop” is usually employed (see Listing 5-1). In the example

shown in the listing, the application has a “one-shot” task to be executed only once and

then the program will remain in the super loop doing nothing until the whole system is

reset. It is obvious that the super loop is employed mainly to “stop” the system.

int main(void)
 {
 Do_X();

 while(1);

 // Should never reach here
 return 1
 }

Listing 5-1: Use of a “Super Loop” to avoid termination of a simple embedded application.

However, the super loop can be used as the basis for implementing a simple TTC

scheduler (e.g. Pont, 2001; Kurian and Pont, 2007). A possible implementation of such

a scheduler is illustrated in Listing 5-2.

int main(void)
 {
 ...
 while(1)
 {
 TaskA();
 Delay_6ms();
 TaskB();
 Delay_6ms();
 TaskC();
 Delay_6ms();
 }

 // Should never reach here
 return 1
 }

Listing 5-2: A very simple TTC scheduler which executes three periodic tasks, in sequence.

By assuming that each task in Listing 5-2 has a fixed duration of 4 ms, a TTC system

with a 10 ms “tick interval” has been created using a combination of super loop and

delay functions. Note that if task durations are variable, then it is almost impossible to

 Chapter 5: TTC scheduler implementations 92

achieve a precisely fixed tick interval with this approach, making the use of such a

super-loop-based scheduler inappropriate for systems which have rigid timing

constraints11.

In general, software architectures based on super loop can be seen simple, highly

efficient and portable (Pont, 2001; Kurian and Pont, 2007). However, these approaches

lack the provision of accurate timing and the efficiency in using the power resources, as

the system always operates at full-power which is not necessary in many applications.

An alternative (and more efficient) solution to this problem is to make use of the

hardware resources to control the timing and power behaviour of the system. For

example, a TTC scheduler implementation can be created using “Interrupt Service

Routine” (ISR) linked to the overflow of a hardware timer. In such approaches, the

timer is set to overflow at regular “tick intervals” to generate periodic “ticks” that will

drive the scheduler. The rate of the tick interval can be set equal to (or higher than) the

rate of the task which runs at the highest frequency (Phatrapornnant, 2007).

When the timer overflows and a tick interrupt occurs, the ISR will be called, and

awaiting tasks will then be activated either from the ISR directly or from a scheduler

function (this depends on the implementation class used as will be discussed in the next

sections). Moreover, when not executing ISR or scheduler functions, the system is

usually placed in a low-power sleep (“idle”) mode in order to reduce system operating

power (Pont, 2001). Most processors have idle modes, and their use can (for example)

greatly increase battery life in embedded designs: however, use of idle modes is

common but not essential. Once entered the idle mode, the system will only wake up

when the next tick interrupt takes place.

11 Ways in which a Super Loop approach can be used to implement a TTC system with variable task
durations are discussed in detail in Appendix D. Such an implementation is referred to as TTC-SL
scheduler.

 Chapter 5: TTC scheduler implementations 93

Figure 5-1 illustrates a general structure of the TTC scheduler implementations

considered in this chapter which is based on using the timer interrupts. The vertical

arrows in the figure represent the points at which timer interrupts and, hence, ticks

occur. The tick intervals are often numbered (starting from 0). The figure also shows

how a system is placed in the idle mode when not executing tasks.

C

Tick
interval

Major cycle

TimeTick 0 Tick 1

A B BBB A B
Idle

mode

Tick 2 Tick 3

A

Tick 4

Figure 5-1: A general structure of the TTC scheduler considered in this study.

5.3 A TTC-ISR scheduler

5.3.1 Introduction

The TTC-ISR scheduler describes a very simple software implementation of the TTC

scheduling algorithm. The particular implementation discussed in this section is based

on that described in detail elsewhere (Pont, 2002; Kurian and Pont, 2007).

5.3.2 Overview of the scheduler implementation

As the name indicates, the basis of a TTC-ISR scheduler is an Interrupt Service Routine

(ISR) which is linked to the overflow of a hardware timer. Figure 5-2 shows how such a

scheduler can be implemented in software. In this example, it is assumed that one of the

microcontroller’s timers has been set to generate an interrupt once every 10 ms, and

thereby call the function Update(). This Update() function represents the scheduler

ISR. At the first tick, the scheduler will run Task A then go back to the while loop in

which the system is placed in the idle mode waiting for the next interrupt. When the

second interrupt takes place, the scheduler will enter the ISR and run Task B, then the

cycle continues. The overall result is a system which has a 10 ms “tick interval” and

three tasks executed in sequence (see Figure 5-3).

 Chapter 5: TTC scheduler implementations 94

while(1)
{
Go_To_Sleep();
}

BACKGROUND
PROCESSING

FOREGROUND
PROCESSING

void Update(void)
{
Tick_G++;

switch(Tick_G)
{
case 1:

Task_A();
break;

case 2:
Task_B();
break;

case 3:
Task_C();
Tick_G = 0;

}
}

10ms timer
while(1)

{
Go_To_Sleep();
}

BACKGROUND
PROCESSING

FOREGROUND
PROCESSING

void Update(void)
{
Tick_G++;

switch(Tick_G)
{
case 1:

Task_A();
break;

case 2:
Task_B();
break;

case 3:
Task_C();
Tick_G = 0;

}
}

10ms timer

Figure 5-2: A schematic representation of a simple TTC-ISR scheduler.

Whether or not the idle mode is used in TTC-ISR scheduler, the timing observed is

largely independent of the software used but instead depends on the underlying timer

hardware (which will usually mean the accuracy of the crystal oscillator driving the

microcontroller). One consequence of this is that, for the system shown in Figure 5-2

(for example), the successive function calls will take place at precisely-defined

intervals, even if there are large variations in the duration of tasks which are run from

the Update()function (Figure 5-3). This is very useful behaviour which is not easily

obtained with implementations based on super loop.

C

Tick interval

TimeTick 0 Tick 1

B
Idle

mode

Tick 2

A

Major
cycle

Tick 3

Figure 5-3: The task executions expected from the TTC-ISR scheduler code shown in Figure 5-2.

The function call tree for the TTC-ISR scheduler is shown in Figure 5-4.

 Chapter 5: TTC scheduler implementations 95

Main () Sleep ()Task ()Update ()

Figure 5-4: Function call tree for the TTC-ISR scheduler.

5.4 A TTC-Dispatch scheduler

5.4.1 Introduction

Implementation of a TTC-ISR scheduler requires a significant amount of hand coding

(to control the task timing), and there is no division between the “scheduler” code and

the “application” code (i.e. tasks). The TTC scheduler implementation referred to here

as a TTC-Dispatch scheduler provides a more flexible alternative. The particular

implementation discussed in this section has been adapted from an original version of

TTC scheduler described in detail in (Pont, 2001) 12.

5.4.2 Overview of the scheduler implementation

The TTC-Dispatch scheduler implementation considered in this section is characterised

by distinct and well-defined scheduler functions (see Listing 5-3).

12 The modified TTC implementation considered in this section has previously been published in the
author’s publications [4] listed in page xvii. The original TTC scheduler as in (Pont, 2001) is described in
detail in Appendix D.

 Chapter 5: TTC scheduler implementations 96

void main(void)
 {
 // Set up the scheduler
 SCH_Init_T2();

 // Init tasks
 TaskA_Init();
 TaskB_Init();

 // Add tasks (5 ms ticks)
 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(TaskA, 0, 3);
 SCH_Add_Task(TaskB, 1, 3);
 SCH_Add_Task(TaskC, 2, 3);

 // Start the scheduler
 SCH_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 SCH_Go_To_Sleep();
 }
 }

Listing 5-3: An overview of a possible TTC Dispatch scheduler implementation: see Pont (2001) for
details.

Like TTC-ISR, the TTC-Dispatch scheduler is driven by periodic interrupts generated

from an on-chip timer. When an interrupt occurs, the processor executes an Update()

function (see Listing 5-5). In the scheduler implementation discussed here, the

Update() function simply keeps track of the number of ticks. A Dispatch() function

(Listing 5-6) will then be called, and the due tasks (if any) will be executed one-by-one.

Note that the Dispatch() function is called from an “endless” loop placed in the

function Main(): see Listing 5-3 and Figure 5-5. When not executing the Update()

or Dispatch() functions, the system will usually enter the low-power idle mode.

In this TTC implementation, the software employs a SCH_Add_Task() and a

SCH_Delete_Task() functions to help the scheduler add and/or remove tasks during

the system run-time. Such scheduler architecture provides support for “one shot” tasks

and dynamic scheduling where tasks can be scheduled online if necessary (Pont, 2001).

To add a task to the scheduler, two main parameters have to be defined by the user in

addition to the task’s name: task’s offset, and task’s period. The offset specifies the

time (in ticks) before the task is first executed. The period specifies the interval (also in

ticks) between repeated executions of the task. In the Dispatch() function, the

scheduler checks these parameters for each task before running it. Please note that

information about tasks is stored in a user-defined scheduler data structure: see Listing

 Chapter 5: TTC scheduler implementations 97

 5-4. Both the “sTask” data type and the “SCH_MAX_TASKS” constant are used to create

the “Task Array” which is referred to throughout the scheduler as “sTask
SCH_tasks_G[SCH_MAX_TASKS]”. See (Pont, 2001) for further details.

// Total memory per task is >>> bytes
typedef struct
 {
 // Pointer to the task (must be a 'void (void)' function)
 void (*pTask) (void);

 // Delay (ticks) until the function will (next) be run
 // - see SCH_Add_Task() for further details
 int Delay;

 // Interval (ticks) between subsequent runs.
 // - see SCH_Add_Task() for further details
 int Period;

 } sTask;

 ...

 // Define the maximum number of tasks
 #define SCH_MAX_TASKS (3)

Listing 5-4: Data structure in the TTC-Dispatch scheduler.

The function call tree for the TTC-Dispatch scheduler is shown in Figure 5-5.

Main () Sleep ()Task ()Dispatch ()Update ()

Figure 5-5: Function call tree for the TTC-Dispatch scheduler.

Figure 5-5 illustrates the whole scheduling process in the TTC-Dispatch scheduler. For

example, it shows that the first function to run (after the startup code) is the Main()
function. The Main()calls Dispatch()which in turn launches any tasks which are

currently scheduled to execute. Once these tasks are complete, the control will return

back to Main() which calls Sleep() to place the processor in the idle mode. The

timer interrupt then occurs which will wake the processor up from the idle state and

invoke the ISR Update(). The function calls then returns all the way back to Main(),

where Dispatch() is called again and the whole cycle thereby continues.

Update() and Dispatch() codes for the TTC-Dispatch scheduler is shown in Listing

 5-5 and Listing 5-6.

 Chapter 5: TTC scheduler implementations 98

void SCH_Update(void)
 {
 // Note that an interrupt has occurred
 Tick_count_G++;

 // After interrupt, reset interrupt flag (by writing “1”)
 T0IR = 0x01;
 }

Listing 5-5: “Update” ISR of the TTC-Dispatch scheduler.

 Chapter 5: TTC scheduler implementations 99

void SCH_Dispatch_Tasks(void)
 {
 int Index;
 int Update_required = 0;

 // Need to check for a timer interrupt since this
 // function was last executed (in case idle mode is not being used)

 // Disable timer interrupt
 VICIntEnClr = 0x10;

 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }

 // Re-enable timer interrupts
 VICIntEnable = 0x10;

 while (Update_required)
 {
 // Go through the task array
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 (*SCH_tasks_G[Index].pTask)(); // Run the task

 if (SCH_tasks_G[Index].Period != 0)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Disable timer interrupt
 VICIntEnClr = 0x10;

 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }
 else
 {
 Update_required = 0;
 }

 // Re-enable timer interrupts
 VICIntEnable = 0x10;
 }

 }

Listing 5-6: Dispatch function of the TTC-Dispatch scheduler.

 Chapter 5: TTC scheduler implementations 100

5.5 Applying Dynamic Voltage Scaling (DVS)

5.5.1 Introduction

In order to reduce the CPU power consumption in TTC schedulers, a Dynamic Voltage

Scaling (DVS) approach can be employed. The particular implementation discussed in

this section – which will be referred to as TTC-DVS – has been described in detail

elsewhere (Phatrapornnant and Pont, 2006; Phatrapornnant, 2007).

5.5.2 Overview of the scheduler implementation

The full details about implementing dynamic voltage scaling in the TTC scheduler

framework have been provided in the PhD thesis written by Dr. Teera Phatrapornnant,

while he was working in the ESL research group (e.g. Phatrapornnant, 2007). A brief

summary of this work is presented here.

Dynamic Frequency Scaling (DFS) involves reducing the operating frequency of a

processor in order to reduce the power consumption when full performance is not

required. DFS forms the starting point for a wide range of power-saving techniques.

For example, many designs combine frequency changes and (CPU) voltage changes,

resulting in what is usually referred to a Dynamic Voltage Scaling (DVS).

When employing any approaches which build on DFS, the designer faces some

significant challenges, if precise control of system timing is an important consideration.

This is because – in modern, general-purpose processors – the CPU core and

“peripherals” (such as a timer, UART, analogue-to-digital converter, CAN module, etc)

are tightly integrated onto a single chip, in order to maximize performance and

minimize cost. In almost all cases, the CPU core and peripherals share a common clock

source which is expected to remain largely fixed as the device operates. In the event of

high-frequency changes to this clock source (as occurs when DFS-based techniques are

employed) it becomes very difficult to maintain fixed timing in peripheral components

 Chapter 5: TTC scheduler implementations 101

(such as timers), with the consequence that some level of jitter in task timing is

unavoidable.

The key to applying DVS in a TTC application is the presence of slack time13

(Phatrapornnant and Pont, 2006). Under DVS, tasks – which normally run at the same,

fixed, CPU speed – will be stretched to fill the available slack time (see Figure 5-6).

Therefore, the speed-setting policy is determined by the available slack time for a task

(or multiple tasks) in each slot.

Task B

Deadline of Task A

Task A

Task BTask A Slack Time
Speed

Speed

Time

Time

slack time employed

1 Slot

 Figure 5-6: Example illustrating the possibility of task stretching in a slot (Phatrapornnant, 2007).

The TTC-DVS is applicable to periodic tasks and can be implemented using a circular

array of the size equal to the number of task slots in a complete cycle to store the

required CPU speed for each task. Before running tasks, the system runs the speed-

finding process for a full cycle, hence calculates and stores the required speed values.

Such calculations need information about the WCET and deadline of each task. The

WCET is assumed to be provided by the user while the deadline of a given task is the

release time of the next task. In this algorithm, the speed is only altered once per tick

interval, causing all tasks in the same tick to run at the same speed.

Moreover, a reduced-jitter implementation of the TTC-DVS scheduler was developed

and aimed to minimise jitter in systems using this scheduler. The low-jitter TTC-jDVS

scheduler includes a timer-adjustment process to load new timer values whenever the

frequency is changed. The TTC-jDVS then reduces the variation in scheduler overhead

13 Slack time is the spare processing time during which the scheduler is in its idle state (Davis, 1993).

 Chapter 5: TTC scheduler implementations 102

prior to the release of such tasks by means of a “jitter guardian”, which is a form of

“sandwich” delay (Pont et al., 2006). Finally, TTC-jDVS deals with the problems

caused by variations in the task duration by running all “reduced-jitter” tasks at the

same speed every time they are released. This can (for example) reduce the impact of

frequency changes on a system involving data sampling within a task.

Please note that this implementation has been described in brief. For a complete

description and code listings of the TTC-DVS scheduler implementation, refer to

Phatrapornnant and Pont (2006) and Phatrapornnant (2007).

Note that the scheduler structure used in TTC-DVS scheduler is same as that employed

in the TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer

interrupt and a Dispatch function called periodically from the Main code (Section

 5.4.2).

5.6 Adding Task Guardians (TGs)

5.6.1 Introduction

Despite many attractive characteristics, TTC designs can be seriously compromised by

tasks that fail to complete within their allotted periods. This section reviews a TTC

implementation which employs a Task Guardian (TG) mechanism to deal with the

impact of such task overruns. The particular implementation discussed in this section –

which will be referred to as TTC-TG – has been described in detail elsewhere (Hughes

and Pont, 2004; Hughes and Pont, in press).

5.6.2 Overview of the scheduler implementation

When dealing with task overruns, the TG mechanism is required to shutdown any task

which is found to be overrunning. The proposed solution also provides the option of

replacing the overrunning task with a backup task (if required).

The implementation is again based on TTC-Dispatch (Section 5.4). In the event of a

task overrun with ordinary Dispatch scheduler, the timer ISR will interrupt the

overrunning task (rather than the Sleep() function). If the overrunning task keeps

executing then it will be periodically interrupted by Update() while all other tasks will

 Chapter 5: TTC scheduler implementations 103

be blocked until the task finishes (if ever): this is shown in Figure 5-7. Note that (a)

illustrates the required task schedule, and (b) illustrates the scheduler operation when

Task A overrun by 5 tick interval. .

A1 B1 A2 A3 A4 A5 A6 B2

t = 0 1 2 3 4 5 t (ms)

in
te

rru
pt

A1 B1in
te

rr
up

t

(a)

(b)

t = 0 1 2 3 4 5 t (ms)

Figure 5-7: The impact of task overrun on a TTC scheduler.

In order for the TG mechanism to work, various functions in the TTC-Dispatch

scheduler are modified as follows:

• Dispatch() indicates that a task is being executed.

• Update() checks to see if an overrun has occurred. If it has, control is passed

back to Dispatch(), shutting down the overrunning task.

• If a backup task exists it will be executed by Dispatch().

• Normal operation then continues.

In a little more detail, detecting overrun in this implementation uses a simple, efficient

method employed in the Dispatch() function. It simply adds a “Task_Overrun”

variable which is set equal to the task index before the task is executed. When the task

completes, this variable will be assigned the value of (for example) 255 to indicate a

successful completion. If a task overruns, the Update() function in the next tick should

detect this since it checks the Task_overrun variable and the last task index value. The

Update() then changes the return address to an End_Task() function instead of the

overrunning task. The End_Task() function should return control to Dispatch. Note

that moving control from Update() to End_Task() is a nontrivial process and can be

done by different ways (Hughes and Pont, 2004).

 Chapter 5: TTC scheduler implementations 104

The End_Task() has the responsibility to shutdown the overrunning task. Also, it

determines the type of function that overrun and begins to restore register values

accordingly. This process is complicated which aims to return the scheduler back to its

normal operation making sure the overrun has been resolved completely. Once the

overrun is dealt with, the scheduler replaces the overrunning task with a backup task

which is set to run immediately before running other tasks. If there is no backup task

defined by the user, then the TTC-TG scheduler implements a mechanism which turns

the priority of the task that overrun to the lowest so as to reduce the impact of any future

overrunning by this task. The function call tree for the TTC-TTG scheduler can be

shown in Figure 5-5.

Main () Backup
Task ()Dispatch ()End Task ()Update ()

Figure 5-8: Function call tree for the TTC-TG scheduler.

Please note that this implementation has been described in brief. For a complete

description and code listings of the TTC-TG scheduler implementation, refer to Hughes

and Pont (2004) and Hughes and Pont (in press).

Note that the scheduler structure used in TTC-TG scheduler is same as that employed in

the TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer

interrupt and a Dispatch function called periodically from the Main code (Section

 5.4.2).

5.7 Working with Multiple Timer Interrupts (MTIs)

5.7.1 Introduction

In Chapter 2, the impact of task placement on “low-priority” tasks running in TTC

schedulers was considered. The TTC schedulers described in the previous sections lack

the ability to deal with jitter in the starting time of such tasks. In order to address this

problem, a “gap insertion” mechanism that uses “Multiple Timer Interrupts” (MTIs)

was developed and implemented in this project. The particular TTC implementation

 Chapter 5: TTC scheduler implementations 105

which employs MTI technique is called TTC-MTI scheduler and described in detail in

this section.

5.7.2 Overview of the scheduler implementation

In the TTC-MTI scheduler, multiple timer interrupts are used to generate the predefined

execution “slots” for tasks. This allows more precise control of timing in situations

where more than one task executes in a given tick interval. The use of interrupts also

allows the processor to enter an idle mode after completion of each task, resulting in

power saving14.

In order to implement this technique, two interrupts are required:

• Tick interrupt: used to generate the scheduler periodic tick.

• Task interrupt: used – within tick intervals – to trigger the execution of tasks.

The process is illustrated in Figure 5-9. In this figure, to achieve zero jitter, the required

release time prior to Task C (for example) is equal to the WCET of Task A plus the

WCET of Task B plus scheduler overhead (i.e. ISR Update() function). This implies

that in the second tick (for example), after running the ISR, the scheduler waits – in idle

mode – for a period of time equals to the WCETs of Task A and Task B before running

Task C. Figure 5-9 shows that when an MTI method is used, the periods between the

successive runs of Task C (the lowest priority task in the system) are always equal.

This means that the task jitter in such implementation is independent on the task

placement or the duration(s) of the preceding task(s).

14 Note that similar results can be obtained using “sandwich delays” (Pont et al., 2006). However, this
approach does not give such a precise control over timing and can significantly increase the levels of CPU
power consumption. An example of TTC implementation – which employs sandwich delays to reduce
task jitter – is described in detail in Appendix D: this is called TTC-SD scheduler.

 Chapter 5: TTC scheduler implementations 106

A C

Task C
Period

CB B

TimeTick 0 Tick 1 Tick 2

Task C
Period

C

Tick
Interrupt Task

Interrupts

Idle
Mode

Idle
Mode

I
S
R

I
S
R

I
S
R

Idle
Mode

Figure 5-9: Using MTIs to reduce release jitter in TTC schedulers.

In general, it can be argued that the use of multiple timers to execute multiple tasks is

not practical since most embedded microcontrollers have limited number of hardware

timers (Eswaran et al., 2005). Indeed, the method described here requires no more than

two timers in total. Alternatively, one timer – with multiple channels – can adequately

do the job. Like many modern processors, the hardware used in this study to implement

this scheduler (i.e. LPC21xx microcontroller: see Section 7.2.1) supports multiple

channels per timer, allowing efficient use of the available resources.

In the implementation considered in this section, the WCET for each task is input to the

scheduler through SCH_Task_WCET() function placed in the Main() code. The

scheduler then employs Calc_Sch_Major_Cycle() and Calculate_Task_RT()

functions to calculate the scheduler major cycle and the required release time for the

tasks, respectively (Listing 5-7). Moreover, there is no Dispatch() called in the

Main() code: instead, “interrupt request wrappers” – which contain Assembly code –

are used to manage the sequence of operation in the whole scheduler. The function call

tree for the TTC-MTI scheduler is shown in Figure 5-10 (compare with Figure 5-5).

Main () Tick
Update () Sleep () Task

Update () Task () Sleep ()

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Figure 5-10: Function call tree for the TTC-MTI scheduler (in normal conditions).

Code for the TTC-MTI scheduler is shown in Listing 5-7 to Listing 5-9.

 Chapter 5: TTC scheduler implementations 107

int main (void)
 {
 ...

 // Add tasks
 // Delay and Period values are in *ticks*
 SCH_Add_Task(Task_A, 0, 1);
 ...

 // Input duration for tasks
 // Values are in *microseconds*
 SCH_Task_WCET(Task_A, 2000);
 ...

 // Calculate the Scheduler Major Cycle
 Calc_Sch_Major_Cycle(SCH_MAX_TASKS);

 // Calculate the required release time for each task
 Calculate_Task_RT();

 // Start the scheduler
 SCH_Start();

 // The scheduler may enter idle mode at this point (if used)
 SCH_Go_To_Sleep();

 return 0;
 }

Listing 5-7: “Main” function in the TTC-MTI scheduler.

 Chapter 5: TTC scheduler implementations 108

void SCH_Tick_Update(void)
 {
 int i = 0;
 int Index;

 // Go through the task array
 for (Index = 0; Index < SCH_MAX_TASKS ; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // indicate the task is to be run
 runme[i++] = Index;

 if (SCH_tasks_G[Index].Period != 0)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Indicate no more tasks in runme queue
 runme[i] = SCH_MAX_TASKS;

 /* If there are tasks in current tick interval */
 if (runme[0] != SCH_MAX_TASKS)
 {
 // Setup Match Register 1 - interrupt in uS from tick
 T1MR1 = SCH_tasks_G[runme[0]].Rls_time + 50*(runme[0]+1);

 // Interrupt on match 1
 T1MCR |= 0x08;
 }

 // Return to sleep
 cTask = SCH_Go_To_Sleep;

 // Reset the task index
 Index_G = 0;
 }

Listing 5-8: “Update” ISR of the Tick-Timer-Interrupt in the TTC-MTI scheduler.

 Chapter 5: TTC scheduler implementations 109

void SCH_Task_Update(void)
 {
 // Run task after this function
 cTask = SCH_tasks_G[runme[Index_G]].pTask;

 // Setup Match Register 1 - for the next task
 T1MR1 = SCH_tasks_G[runme[Index_G+1] % SCH_MAX_TASKS].Rls_time +
 50*(runme[Index_G]+2);

 // Increment task count
 Index_G++;

 // Disable Interrupt on match 1
 T1MCR &= 0xFFFFFFF7;

 // Enable Interrupt on match 1
 T1MCR |= (1 & (tLong) (runme[Index_G] != SCH_MAX_TASKS)) << 3;
 }

Listing 5-9: “Update” ISR of the Task-Timer-Interrupt in the TTC-MTI SCHEDULER.

Unlike the normal Dispatch schedulers, Figure 5-10, Listing 5-8 and Listing 5-9 show

that the implementation relies on two interrupt Update() functions: Tick Update()

and Task Update(). The Tick Update() – which is called every tick interval (as

normal) – identifies which tasks are ready to execute within the current tick interval.

Before placing the processor in the idle mode, the Tick Update() function sets the

match register of the task timer according to the release time of the first due task

running in the current interval. Calculating the release time of the first task in the

system takes into account the WCET of the Tick Update() code.

When the task interrupt occurs, the Task Update() sets the return address to the task

that will be executed straight after this update function, and sets the match register of

the task timer for the next task (if any). The scheduled task then executes as normal.

Once the task completes execution, the processor goes back to Sleep() and waits for

the next task interrupt (if there are following tasks to execute) or the next tick interrupt

which launches a new tick interval. Note that the Task Update() code is written in

such a way that it always has a fixed execution duration for avoiding jitter at the starting

time of tasks.

It is worth highlighting that the TTC-MTI scheduler described here employs a form of

“task guardians” which help the system avoid any overruns in the operating tasks. More

specifically, the described MTI technique helps the TTC scheduler to shutdown any

overrunning task by the time the following interrupt takes place. For example, if the

 Chapter 5: TTC scheduler implementations 110

overrunning task is followed by another task in the same tick, then the task interrupt –

which triggers the execution of the latter task – will immediately terminate the overrun.

Otherwise, the task can overrun until the next tick interrupt takes place which will

terminate the overrun immediately.

The function call tree for the TTC-MTI scheduler – when a task overrun occurs – is

shown in Figure 5-11. The only difference between this process and the one shown in

Figure 5-10 is that an ISR will interrupt the overrunning task (rather than the Sleep()

function). Again, if the overrunning task is the last task to execute in a given tick, then it

will be interrupted and terminated by the Tick Update() at the next tick interval:

otherwise, it will be terminated by the following Task Update().

Main () Tick
Update () Sleep () Task

Update () Task ()

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Figure 5-11: Function call tree for the TTC-MTI scheduler (with task overrun).

Please note that the complete code for this scheduler implementation is provided later in

 Appendix H.

5.8 Towards a “perfect” TTC implementation

5.8.1 Introduction

It can be noticed that each of the previous scheduler implementations was created to

deal with one particular problem in TTC algorithm. For applications which require

extremely high degree of reliability, a combinational TTC architecture – which

incorporates multiple features – can be an appropriate solution. This section describes

 Chapter 5: TTC scheduler implementations 111

the implementation of a highly flexible TTC implementation aimed towards achieving

“perfect” time-triggered behaviour in resource-constrained embedded systems15.

This new scheduler implementation will be called TTC-Adaptive scheduler in this

thesis. This is because, unlike previous schedulers, this scheduler is self-adapted to

changes in task execution times. A full description of this particular TTC

implementation is provided in this section. Note that the idea behind this

implementation has been developed from the concepts used in the implementations of

the two schedulers described in Section 5.6 and Section 5.7 with a further (substantial)

modification.

5.8.2 Overview of the scheduler implementation

The architecture of this TTC implementation was based on that used in TTC-MTI

scheduler (see Figure 5-10). The present scheduler however employs a simple, but

effective, mechanism for calculating the WCET of each task at the beginning of the

system operating period. Remember that in the previous scheduler implementations,

WCET information is input to the system by the user.

Overall, there are two different modes in which the system can operate: Calculating

Mode (CM) and Operating mode (OM). Each of these modes is described as follows.

a) Calculating mode (CM)

The system runs the calculating mode for a short period of time, allowing the scheduler

to perform an online calculation of the WCET for each co-operative task, and the

required release time at which the task must start its execution. That is, once the system

starts (power is up), the scheduler takes short time to measure the WCETs and release

times of all tasks before switching into a normal operating mode. The calculating time

period must be defined by the user in “number of ticks”, based on system specifications.

15 The work described in this section has been carried out in collaboration with Zemian Hughes, a
member of the ESL research group.

 Chapter 5: TTC scheduler implementations 112

The scheduler structure, described in Section 5.7.2, is used here but with some

modification (Figure 5-12).

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Main () Tick
Update () Sleep () Task

Update () Task () Sleep ()
WCET

Calculation ()

Figure 5-12: Function call tree for the TTC-Adaptive scheduler (calculating mode).

In this process, after the task is executed, SCH_WCET() function is called to calculate

the WCET of the completed task and its release time required for low jitter

characteristics. The WCET of a task is measured by recording the time just before and

after the task execution (using, for example, the Timer Control Register “TCR”: see

Philips Semiconductors, 2003). The WCET is then calculated, in the “SCH_WCET()”

function, by subtracting the stop time from the start time. In the same way, release time

of a task is measured by recoding the time just after the Task Update() function

begins to execute. The SCH_WCET() stores the maximum WCET and the maximum

release time for each task in the task array. Note that the release time of the first task in

the system is based on the worst case duration of the Tick Update() function. After

calculating the WCET of the current task, the processor is placed in the idle mode for a

very short period before the next task interrupt occurs (see Listing 5-10).

Please note that the WCET value computed in this algorithm is basically the longest

possible execution time of the task obtained during the measurement period. As

previously underlined in Section 2.10, calculating the accurate WCET of a particular

activity is often a complicated process.

 Chapter 5: TTC scheduler implementations 113

void SCH_WCET(void)
{
 tLong Duration;

 // Record Stop time
 Stop_Time = T1TC;

 // Calculate duration for no overrun
 Duration = Stop_Time - Start_Time;

 // Calculate duration of Task Update
 Task_Update_Duration = Start_Time - Release_Time;

 // If index is larger than 0
 if (Index_G)
 {
 // If the measured WCET is larger than recorded
 if (SCH_tasks_G[runme[Index_G - 1]].WCET < Duration)
 {
 // Modifiy the recorded WCET
 SCH_tasks_G[runme[Index_G - 1]].WCET = Duration+1;
 }

 // If release time is less than the tasks start time
 if (SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm < (Release_Time))
 {
 // Modify the release time
 SCH_tasks_G[runme[Index_G - 1]].Req_Rls_Tm = Release_Time+2;
 }

 // set the match register to current time plus little margin: this is
 // because we want the Task_Update to be called immediately
 if (runme[Index_G] != SCH_MAX_TASKS)
 {
 // Set the timer to interrupt almost immediately so we can run next
task
 // Set timer match register to current time + 4
 T1MR1 = T1TC + 4;
 }
 }

 // Disable any interrupt and send the scheduler to sleep
 SCH_End_Task();
}

Listing 5-10: WCET-calculation function in the TTC-Adaptive scheduler.

b) Operating mode (OM)

This relates to the normal operation mode of the scheduler. It is assumed here that the

user has set the duration of the calculating mode long enough to obtain a correct set of

WCET values: this must be estimated by the user based on their knowledge about the

system specifications. Once the calculation time completes, the system is switched into

the operating mode during which scheduled tasks run in their allotted time “slots” with

no release jitter.

The function call tree for the operating mode is identical to that illustrated in Figure

 5-10. Note that, without any addition to the design, the system is expected to behave in

 Chapter 5: TTC scheduler implementations 114

the same way as the TTC-MTI scheduler. This means that a very simple task guardian

mechanism is employed in which the scheduler allows an overrunning task to run until

the next task (or tick) interrupt. This solution will be called ‘Option 1’.

However, a more effective task guardian solution is still required. One suggested way is

to employ a mechanism which detects the overrun once occurred and shutdown the

overrunning task immediately whether or not there are scheduled tasks to run afterwards

in the same tick interval. This solution will be called ‘Option 2’. In this solution, the

scheduler employs three interrupts: “Tick” interrupt and “Task” interrupt (as before)

and a third interrupt called “Task Overrun” interrupt. The ISR functions for the Tick

and Task interrupts (i.e. Tick Update()and Task Update()) are very similar to those

used in the TTC-MTI scheduler. However, the Tick Update()function here keeps

track of the number of ticks for the calculating mode. Once the calculation time (defined

by the user) is over, the scheduler switches into operating mode.

In addition to setting the match register of the task timer to be equal to the RT of the

next due task, the Task Update()function also sets the match register of the “task-

overrun” timer to be equal to the task release time plus the task WCET plus the duration

of the task update function. This simply implies that if a task exceeds its measured

WCET it will be interrupted immediately by a Task_Overrun_Update() function
which is linked to the “Task Overrun” timer interrupt. This function reports the overrun

and sends the scheduler to sleep. If everything goes smoothly and no overrun occurs, an

End_Task()function is called after the completion of each task which will simply

disable the task-overrun timer interrupt and send the scheduler to sleep. Note that the

Tick Update()function sets the return address after each task to be for the

End_Task()function.

Figure 5-13 and Figure 5-14 illustrate the sequence of functions in ‘Option 2’

implementation with and without overrun.

 Chapter 5: TTC scheduler implementations 115

Main () Tick
Update () Sleep () Task

Update () Task () End
Task ()

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Sleep ()

 Figure 5-13: Function call tree for the TTC-Adaptive scheduler ‘Option 2’ (normal
operation).

Main () Tick
Update () Sleep () Task

Update () Task () Sleep ()Overrun
Update ()

Figure 5-14: Function call tree for the TTC-Adaptive scheduler ‘Option 2’ (with task
overrun).

In order to offer a complete task guardian mechanism, a third solution which includes

support for backup tasks has been proposed: this is called ‘Option 3’. In this solution,

once an overrun is detected, the Task_Overrun_Update() function will report the

overrun, set “backup” task to be the next due task to run and send the scheduler to sleep.

In the next Tick interrupt, the scheduler executes the backup task before continuing to

execute the following tasks (if any). Please note that the tasks which have already been

executed in the tick – in which the overrun took place – will not be re-executed in the

following tick. Overall, with this approach, the scheduler imposes a one-tick delay for

the whole scheduler. This can still maintain a high determinism assuming that overruns

occur very occasionally. The sequence of functions in ‘Option 3’ implementation is

illustrated in Figure 5-15.

Main () Tick
Update () Sleep () Task

Update () Task () Sleep ()Overrun
Update ()

Tick
Update () Sleep () Task

Update ()
Backup
Task () Sleep ()End

Task ()

Figure 5-15: Function call tree for the TTC-Adaptive scheduler ‘Option 3’ (with task
overrun).

 The code for the TTC-Adaptive scheduler is shown in Listing 5-11 to Listing 5-14.

 Chapter 5: TTC scheduler implementations 116

void SCH_Tick_Update(void)
 {
 tByte i = 0;
 tByte Index;
 static tWord Tick_Count = 0;

 // If tick is not paused (no overruns)
 if (!PauseTick)
 {
 // Go through the task array
 for (Index = 0; Index < SCH_MAX_TASKS - 1; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // indicate the task is to be run
 runme[i++] = Index;

 if (SCH_tasks_G[Index].Period != 0)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Indicate no more tasks in runme queue
 runme[i] = SCH_MAX_TASKS;

 /* If there are tasks in current tick interval */
 if (runme[0] != SCH_MAX_TASKS)
 {
 // If task is 0
 if (runme[0] == 0)
 {
 // If release time is less than current time + 3
 if (SCH_tasks_G[0].Req_Rls_Tm < (Tick_Update_Duration))
 {
 // Modify release time to be current + 3
 SCH_tasks_G[0].Req_Rls_Tm = Tick_Update_Duration+3;
 }
 }

 // Setup Match Register 1 - interrupt in uS from tick
 T1MR1 = SCH_tasks_G[runme[0]].Req_Rls_Tm;

 // Interrupt on match 1
 T1MCR |= 0x08;
 }
 // Reset the task index
 Index_G = 0;
 }

 // If tick is paused, set release time to backup task so that the backup
task runs
 // first and then the next tasks in the schedule can carry on as normal
 else
 {
 // Setup Match Register 1 - interrupt in uS from tick
 T1MR1 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm;

 // Interrupt on match 1
 T1MCR |= 0x08;

 Chapter 5: TTC scheduler implementations 117

 // Enable tick to run next time
 PauseTick=0;
 }

 // Return to sleep
 cTask = SCH_Go_To_Sleep;

 // Keep track of the number of ticks for the calculating mode.
 //Once the calculation time (defined by the user) completes, the scheduler
goes to
 //operating (normal) mode.
 if (Mode_G == CALCULATING_MODE)
 {
 // If ticks is larger than calculation time
 if (Tick_Count++ > CALCULATION_TIME)
 {
 // Change mode to operating mode
 Mode_G = OPERATING_MODE;
 }
 }

 // If the scheduler goes into the operating mode
 if (Mode_G == OPERATING_MODE)
 {
 // Run End_Task after evry task
 mTask = SCH_End_Task;
 }

 // Record the duation of the Tick Update
 Tick_Update_Duration = T1TC;
 }

Listing 5-11: “Update” ISR of the Tick-Timer-Interrupt in the TTC-Adaptive scheduler.

void SCH_Task_Update(void)
{
 Release_Time = T1TC;

 // Run task after this function
 cTask = SCH_tasks_G[runme[Index_G]].pTask;

 // Setup Match Register 1 - for the next task
 T1MR1 = SCH_tasks_G[runme[Index_G+1]].Req_Rls_Tm;

 // Setup Match Register 2 - for WCET for end task
 T1MR2 = SCH_tasks_G[runme[Index_G]].Req_Rls_Tm +
SCH_tasks_G[runme[Index_G]].WCET
 + Task_Update_Duration + 4;

 // Increment task index
 Index_G++;

 // Disable Interrupt on match 1
 T1MCR &= 0xFFFFFFF7;

 // Enable Interrupt on match 1
 T1MCR |= (1 & (tLong) (runme[Index_G] != SCH_MAX_TASKS)) << 3;

 // Disable Interrupt on match 2
 T1MCR &= 0xFFFFFFBF;

 // Enable WCET end_task interrupt for current task
 T1MCR |= (1 & (tLong) (Mode_G == OPERATING_MODE)) << 6;

 // Record start time
 Start_Time = T1TC;
}

Listing 5-12: “Update” ISR of the Task-Timer-Interrupt in the TTC-Adaptive scheduler.

 Chapter 5: TTC scheduler implementations 118

void SCH_End_Task(void)
{
 // Disable Interrupt on match 2
 T1MCR &= 0xFFFFFFBF;

 // Goto Sleep
 SCH_Go_To_Sleep();
}

Listing 5-13: End-Task function in the TTC-Adaptive scheduler.

void SCH_Task_Overrun_Update(void)
{
 // Goto sleep after ISR
 cTask = SCH_Go_To_Sleep;

 // Increment task overrun flag
 SCH_tasks_G[Index_G-1].Overrun++;

 // If there exists a backup task
 if (SCH_tasks_G[Index_G-1].bTask)
 {
 // Disable task interrupt on match 1
 T1MCR &= 0xFFFFFFF7;

 // Set backup task to run
 SCH_tasks_G[Index_G-1].pTask = SCH_tasks_G[Index_G-1].bTask;

 // Point index back to overruning task
 Index_G--;

 // Pause the next tick
 PauseTick = 1;
 }
}

Listing 5-14: “Update” ISR of the Task-Overrun-Interrupt in the TTC-Adaptive scheduler.

5.9 Conclusions

This chapter reviewed a selective set of implementation classes for TTC scheduling

algorithm. The chapter began by a general overview of a simple TTC implementation

using a few lines of software code. Such an implementation provided the introduction to

a more complicated implementation options which make utilisation of the available

hardware resources, such as a hardware timer, to control the system timing in a more

precise manner. The description of various TTC scheduler implementations – which are

based on such a concept – then followed.

It has been highlighted that the majority of the TTC implementations discussed in this

chapter were taken (or adapted) from previous studies carried out in the ESL research

group. Such implementations included: TTC-ISR, TTC-Dispatch, TTC-DVS and TTC-

TG schedulers. Thereafter, two now implementations were presented which suggest

 Chapter 5: TTC scheduler implementations 119

useful additions to the range of TTC schedulers developed within the group over the

past few years. These implementations were: TTC-MTI and TTC-Adaptive schedulers.

Finally, it is important to note that this chapter provides the basis for the practical work

presented in Chapter 6 and 7, in which the reviewed TTC implementations form the

testbeds for assessing the effectiveness of the testing technique introduced in this

project for single-processor designs.

Chapter 6

Scheduler Test Cases (STCs) for TTC schedulers

6.1 Introduction

As the introduction and literature review chapters indicate, the studies detailed in this

thesis attempt to bridge the gap between scheduling algorithms and scheduler

implementations when TTC software architectures are considered. This process requires

an investigation of dedicated techniques that link between such system representations

in a systematic way. One way of doing so is to find an appropriate method which can be

applied to prove that the predictions made at the design stage of the TTC scheduler are

maintained during (and after) the scheduler implementation process. In another word,

the technique employed must provide an assurance that a practical TTC implementation

matches the underlying characteristics of the TTC algorithm, e.g. high predictability.

In Chapter 4, it has been decided that testing (as a dynamic verification technique) is the

most effective way to check the correct behaviour of many systems and, hence, gain a

full confidence that those systems meet their desirable features. This was because

testing allows verifying properties which can only manifest during the normal operation

of the system. In TTC systems, predictable and deterministic behaviour is a key design

objective. Therefore, the system must be tested with respect to its operational timing

behaviour. To begin to address this issue, Scheduler Test Case (STC) technique has

been developed and applied in this project. Such a testing technique is specifically

intended to explore the impact of using a given TTC scheduler implementation on the

predictability behaviour of the running application.

This chapter describes, in detail, the STC technique and the set of Scheduler Test Cases

(STCs) developed to assess the behaviour of the TTC scheduler implementations

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 121

described in Chapter 5 for single-processor embedded designs. Remember that such

implementations were identified as representative examples of the wide range of

possible TTC implementation options16.

6.2 Overview of the Scheduler Test Case (STC) technique

It is important to begin this section by underlining that the concept of testing in the STC

technique, developed in this study, substantially differs from that used elsewhere (e.g. in

studies reviewed in Chapter 4). For example, unlike previous studies, testing here is not

aiming to check the correct functionality of the application software or evaluate its

quality attributes. Instead, it is mainly used to assess the execution behaviour of the

system as a result of employing a particular software implementation of TTC scheduler

on generic processor hardware.

According to the discussions in Chapter 4, testing requires an appropriate set of test

cases which specify the system inputs, predicted results, and execution conditions,

aimed to verify (for example) the system’s compliance with specific requirements. It

was also mentioned that only a selective subset of possible test cases can be used as a

comprehensive testing is not viable. The feature of the system to be tested must be

selected along with the inputs that will execute that feature, and the expected outputs of

the test cases must be known in advance. All of these test case elements have been

considered in the process of developing the STCs presented in this chapter. This is

further described as follows.

The STC is a simple technique which employs a collection of test cases to examine the

output behaviour of a wide range of TTC scheduler implementations. The STCs

developed in this study have been generated manually based on previous experience and

knowledge (i.e. full understanding) about the characteristics and requirements of the

TTC scheduling algorithm (see Section 2.8.3). In this sense, the STC technique is

16 The work described in this chapter has been adapted from the study presented in the author’s
publication [1] listed in page xvi.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 122

considered a component testing – as opposed to system testing – since it specifically

tests the scheduler component in the whole software and that it is based on an intuitive

understanding of how this particular component should operate after the whole system

is integrated (see Sommerville, 2007 for more details).

The STC technique employs different scheduling examples (with “dummy tasks”) that

produce different behaviour patterns as the scheduler implementation varies: such task

sets represent the test inputs (or test data). Each STC comprises a different set of tasks

with different characteristics. Bloomfield et al. (2004) documented that “The task

performed by a system during execution for the purposes of running a dynamic analysis

is what is known as workload or simply test cases.”

Once the tasks in each STC are input to the test item (which is, in this case, the

scheduler), the system will be executed on the target hardware. The system response

will then be monitored over a sufficient period of time and the output behaviour

recorded and compared to the predicted behaviour (that has been documented at the test

case design stage). The complete process of STC testing is illustrated in Figure 6-1.

Design STCs STCs

Prepare STCs
tasks STCs tasks

Run software
with STCs

tasks

Task
sequence &

task jitter

Compare
results with

STCs

Figure 6-1: The testing process in STC technique (adapted from Sommerville, 2007).

The STC technique has been designed to test the system behaviour under both normal

and abnormal operating conditions. Normal operations refer to the situations during

which the scheduler operates in an absence of any errors, while abnormal operations

relate to the occurrence of errors. The error mode in any scheduling algorithm, for

which the STCs are developed, must be defined by the developer where it has to

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 123

represent acknowledged problem(s) facing the implementers of such an algorithm. For

example, in TTC systems, “task overrun” is a major problem which can cause

measurable degradation in the system performance or jeopardise the system

functionality (Section 2.10). Therefore, task overrun has been used in this study to

define the error mode of the TTC scheduler.

The key criteria against which the TTC scheduler behaviour is assessed include the task

sequencing, jitter and ability to deal with overruns: these are the main tested features of

the TTC scheduling algorithm in this study. Such criteria have been used as a practical

means to assess the predictability of the TTC schedulers. In more detail, the task

sequencing checks whether the scheduler executes the required tasks in the required

order. Jitter in the task timing is used to assess the timing performance of the system. In

Chapter 2, jitter was defined as variations in the timing of tasks. Three different jitter

types were also listed: release jitter, execution jitter and finishing jitter. In this study, the

jitter is considered at the release time of tasks running in each TTC scheduler. Release

jitter – as in Chapter 2 – describes the deviation of the start time of a task from its

release time. Remember that tasks with low-jitter characteristics can lead to highly-

predictable behaviour in many embedded system designs. In addition to task sequencing

and jitter tests, the STC tests the capability of the scheduler to handle task overrun error.

The system can be more predictable if it is able to reduce the impact of such an error.

6.3 The Scheduler Test Cases (STCs) for TTC algorithm

6.3.1 Introduction

This section describes the STCs developed in this study for TTC algorithm. The total

number of STCs described here is four. More specifically, STC A, STC B and STC C

are intended to test the system behaviour under normal operating conditions, where STC

D was intended to test the system behaviour during the occurrence of error. Each STC

was aimed to address a different type of problem which might have a negative impact

on the overall system predictability.

6.3.2 STC A (Task-induced jitter)

STC A explores the potential impact of variations in the execution time of tasks on the

jitter levels of subsequent tasks in the schedule.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 124

A summary of the task characteristics for this STC is presented in Table 6-1 and

schematically illustrated in Figure 6-2.

Considering STC A in more detail, all tasks execute with a “tick offset” of 0: that is,

each task executes for the first time in tick interval 0 and continues to execute in each

tick interval.

Table 6-1: Task set (test input) for STC A (Major cycle = 1 Tick).

Task Name Period
(Ticks)

Offset
(Ticks)

Priority
(1 = High)

ET17 Allowable
jitter in start
time of task

A 1 0 1 ET(A) – variable (0.01 - 0.4 Ticks) Low

B 1 0 2 ET(B) – variable (0.01 - 0.2 Ticks) Low

C 1 0 3 ET(C) – variable (0.01 - 0.2 Ticks) Low

B1

Major
cycle

A1

B2

A2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

t (Ticks)

t (Ticks)

Figure 6-2: Graphical representation of the task set in STC A.

Examples of possible schedules obtained with this task set (using different

implementations) are given in Table 6-2 and Table 6-3.

17 ET denotes the actual execution time of a task on a given run (this figure will vary between runs in
most cases).

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 125

Table 6-2: Example schedule A1

 Start time (after due tick) Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx ET(Ax) Potentially high (varies with ET of preceding task)

Cx ET(Ax) + ET(Bx) Potentially high (varies with ET of preceding tasks)

Comment:
In a basic scheduler implementation, it is likely to see significant levels of jitter in the start
times of tasks executed later in the tick interval, if the execution time of the earlier tasks varies.
This is illustrated in Figure 6-3. Obviously, such a scheduler implementation is not suitable for
use with jitter-sensitive tasks.

A1 C2

Task B
Period

C3B3C1B1 A2 B2 A4 C4B4

Task B
Period

Task B
Period

t (Ticks)

A3

t = 0 1 2 3

Figure 6-3: Graphical representation of Example schedule A1.

Table 6-3: Example schedule A2

 Start time (after due tick) Jitter

Ax 0 Low (may be related to scheduler overhead)

Bx WCET (A) Low (may be related to scheduler overhead)

Cx WCET(A) + WCET(B) Low (may be related to scheduler overhead)

Comment:
In a low-jitter scheduler implementation, the scheduler will compensate for variations in the
execution time of tasks. Lower priority tasks in the schedule will have low-jitter characteristics.
This is illustrated in Figure 6-4.

A1 C2

Task B
Period

C3B3C1B1 A2 B2 A4 C4B4

t (Ticks)

A3

t = 0 1 2 3

Task B
Period

Task B
Period

Figure 6-4: Graphical representation of Example schedule A2.

It is clear from Figure 6-4 that with this schedule, Task B (and hence Task C) will be

free of jitter if the scheduler overhead is fixed.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 126

6.3.3 STC B (Schedule-induced jitter)

STC A explores the potential impact of variations in the execution time of tasks on the

jitter levels in the system. By contrast, STC B explores the potential impact of

variations in the schedule on the jitter levels of tasks.

A summary of the task characteristics for this STC is presented in Table 6-4 and

schematically illustrated in Figure 6-5.

Table 6-4: Task set (test input) for STC B (Major cycle = 2 Ticks).

Task Name Period
(Ticks)

Offset
(Ticks)

Priority
(1 = High)

ET Allowable jitter in
start time of task

A 2 0 1 ET(A) – variable (0.01 - 0.4 Ticks) Low

B 1 0 2 ET(B) – variable (0.01 - 0.2 Ticks) Low

C 1 0 3 ET(C) – variable (0.01 - 0.2 Ticks) Low

B1

A1

B2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

B3

A2

C3

2

2

2

Figure 6-5: Graphical representation of the task set in STC B.

Examples of possible schedules obtained with this task set (using different

implementations) are given in Table 6-5 and Table 6-6.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 127

Table 6-5: Example schedule B1 (Basic scheduler)

 Start time (after due tick) Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx 0 or
ET(Ax)

High (start time of task varies on alternate Ticks)

Cx ET(Bx) or
ET(Ax) + ET(Bx)

High (start time of task varies on alternate Ticks)

Comment:
Here, Task B will suffer from high levels of release jitter (because it executes sometimes after
Task A and sometimes at the start of the tick: Figure 6-6).

A1 C2

Task B
Period

C3B3C1B1 B2 C4B4

Task B
Period

Task B
Period

t (Ticks)

A2

t = 0 1 2 3

Figure 6-6: Graphical representation of Example schedule B1.

Table 6-6: Example schedule B2 (TTC scheduler with gap insertion)

 Start time (after due tick) Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx WCET(A) Low (if WCET estimates are accurate)

Cx WCET(A) + WCET (B) Low (if WCET estimates are accurate)

Comment:
This low-jitter scheduler implementation satisfies the jitter requirements for Task B and Task C
(Figure 6-7). This is because low-priority tasks always run in fixed time slots independent on
any preceding task executions.

A1 C2

Task B
Period

C3B3C1B1 A2 B2 A4 C4B4

t (Ticks)

A3

t = 0 1 2 3

Task B
Period

Task B
Period

Figure 6-7: Graphical representation of Example schedule B2.

6.3.4 STC C (Long tasks)

The majority of TTC scheduler implementations (including all of those considered in

this study) involve the use of scheduler ticks generated by means of a periodic timer

overflow, linked to an interrupt service routine. In STC A and STC B, it is assumed

that all tasks which begin execution in a given tick interval will be intended to complete

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 128

their execution before the next tick occurs. Such a restriction is not an essential

requirement in TTC designs18, but can be a limiting factor in some TTC

implementations.

The scheduler’s ability to handle “long tasks” is tested in STC C. A summary of the

task characteristics for this test is presented in Table 6-7 and schematically illustrated in

Figure 6-8.

Table 6-7: Task set (test input) for STC C (Major cycle = 4 Ticks).

Task Name Period
(Ticks)

Offset
(Ticks)

Priority
(1 = High)

ET Allowable jitter in start time of task

A 2 1 1 ET(A) – fixed (0.2 Ticks) Low

B 4 0 2 ET(B) – fixed (2.4 Ticks) Low

C 2 1 3 ET(C) – fixed (0.2 Ticks) High

Comment
In this task set, Task B runs for 2.4 ticks. During this time, Task A (assumed to be a low-jitter
task) becomes due to run. In this STC, it can be determined how the scheduler will deal with
tasks which are (deliberately) designed to have durations longer than the tick interval. It can
also be determined how the scheduler manages task priorities: Task A has a higher priority
than Task C and – following completion of Task B – Task A should execute before Task C.

B1

A1

C1

t = 0 1

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

2

2

2

3

3

3

4

4

4

A2

C2

Figure 6-8: Graphical representation of the task set in STC C.

Examples of possible schedules obtained with this task set (using different

implementations) are given in Table 6-8 to Table 6-13.

18 A TTC design is co-operative in nature. Pre-emption of one task by another is not permitted.
However, in the case of “long tasks”, a task is interrupted by the scheduler (not by another task).

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 129

Table 6-8: Example schedule C1 (Basic scheduler)

 Start time
(after due tick)

Jitter

Ax 0 or 1.4 Ticks High (start time of task varies on alternate Ticks)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx ET(Ax) or
ET(Ax) + 1.4 Ticks

High (start time of task varies on alternate Ticks)

Comment
This behaviour (illustrated in Figure 6-9) will be expected from a basic TTC scheduler.

C1B1 A1 C2

t (Ticks)t = 0 1 2 3

A2

Figure 6-9: Graphical representation of Example schedule C1.

Table 6-9: Example schedule C2

 Start time
(after due tick)

Jitter

Ax 0 or
ET(Cx) + 1.4 Ticks

High (start time of task varies on alternate Ticks)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx ET(Ax) or
1.4 Ticks

High (start time of task varies on alternate Ticks)

Comment
This behaviour will be observed with many TTC implementations which check each task, in
sequence, to see if they are due to run: in this case, Task C’s status is tested, and the task is
executed, before the status of Task A is tested. This is illustrated in Figure 6-10
.

C1B1 A1 C2

t (Ticks)t = 0 1 2 3

A2

Figure 6-10: Graphical representation of Example schedule C2.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 130

Table 6-10: Example schedule C3

 Start time
(after due tick)

Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx ET(Ax) or
1.4 Ticks

High (start time of task varies on alternate Ticks)

Comment
This behaviour can also be observed with many TTC implementations which check the status of
all tasks before beginning to execute the due tasks: in this case, after completing Task B, Task C
is executed while Task A is omitted from the schedule. So, although jitter in Task A is low, its
period is doubled, a result which may not be tolerated in many systems. This is illustrated in
Figure 6-10.

B1 C2

t (Ticks)t = 0 1 2 3

A1C1

Figure 6-11: Graphical representation of Example schedule C3.

Table 6-11: Example schedule C4

 Start time
(after due tick)

Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx ET(Ax) Low (since ET(Ax) is fixed)

Comment
In each major cycle, the first execution of both Task A and Task C is omitted from the schedule.
So, although jitter in Task A and Task C is low, their periods are doubled. This is illustrated in
Figure 6-12.

B1 C1

t (Ticks)t = 0 1 2 3

A1

Figure 6-12: Graphical representation of Example schedule C4.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 131

Table 6-12: Example schedule C5

 Start time
(after due tick)

Jitter

Ax 2 Tick or ET(Ax) High (task runs twice in the same Tick at different start times)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx 1.4 Tick or
2*ET(Ax)

High (start time of task varies on alternate Ticks)

Comment
The first execution of Task A is delayed by one tick. Thus, Task A will run twice in the following
tick before Task C runs (see Figure 6-13).

B1 C2

t (Ticks)t = 0 1 2 3

A2C1 A1

Figure 6-13: Graphical representation of Example schedule C5.

Table 6-13: Example schedule C6

 Start time
(after due tick)

Jitter

Ax 0 Low (related to Tick jitter + scheduler overhead)

Bx 0 Low (related to Tick jitter + scheduler overhead)

Cx ET(Ax) Low (since ET(Ax) is fixed)

Comment
The scheduler shuts down any task still executing when the next tick occurs (see Figure 6-14).

Task
B

Task
C

t (Ticks)t = 0 1 2 3

Task
A

Task
C

Task
A

Figure 6-14: Graphical representation of Example schedule C6.

6.3.5 STC D (Task overruns)

STC A, STC B and STC C all assume normal system operation. The goal with STC D is

to explore the potential impact of unplanned task overruns.

A summary of the task characteristics for this test is presented in Table 6-14 and

schematically illustrated in Figure 6-15.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 132

Table 6-14: Task set (test input) for STC D (Major cycle = 20 Ticks).

Task Name Period
(Ticks)

Offset
(Ticks)

Priority
(1 = High)

ET Overrun duration (in Ticks)

A 20 0 1 ET(A) – fixed (0.2 Ticks) 10

B 1 0 2 ET(B) – fixed (0.2 Ticks) 0

Comment
In this task set, Task A is designed to run for the duration of 0.2 Tick. When an error occurs,
Task A overruns by 10 Ticks. This is illustrated in Figure 6-15.

Task A
overruns

Task A
overruns

t (Ticks)t = 0 1 2 10

A1

20

A2

11 19

B1

t (Ticks)t = 0 1 2 10

B2 B3

20

B21B11 B12 B20

11 19

Major cycle

Task A

Task B

Figure 6-15: Graphical representation of the task set in STC D.

Examples of possible schedules obtained with this task set (using different

implementations) are given in Table 6-15. Note that jitter characteristics are not

considered in this STC as such values would have no meaning in this test.

Table 6-15: Example schedule D1a, D1b, D2a, D2b, D3a and D3b

Schedule
Name

Shut down time
(after Ticks) Backup task Comment

D1a --- Not
applicable

Overrunning task is not shut down. The number of elapsed ticks –
during overrun – is not counted and therefore tasks due to run in
these ticks are ignored.

D1b --- Not
applicable

Overrunning task is not shut down. The number of elapsed ticks –
during overrun – is counted and therefore tasks due to run in these
ticks are executed immediately after overrunning task ends.

D2a 1 Tick Not
available

Overrunning task is detected at the time of the next tick and shut
down.

D2b 1 Tick Available –
BK(A)

Overrunning task is detected at the time of the next tick and shut
down: a replacement (backup) task is added to the schedule.

D3a WCET(Ax) Not
available

Overrunning task is shut down immediately after it exceeds its
estimated WCET.

D3b WCET(Ax) Available –
BK(A)

Overrunning task is shut down immediately after it exceeds its
estimated WCET. A backup task is added to the schedule.

 Chapter 6: Scheduler Test Cases (STCs) for TTC scheduler 133

6.3.6 CPU, memory and power requirements

In resource-constrained embedded systems (of the type considered in this project),

designers are frequently concerned about CPU and memory requirements. These

requirements are therefore reported for all of the schedulers considered in this study.

In mobile applications (for example), average power consumption is also a key concern,

as this is related to the system battery life (Phatrapornnant, 2007). The average power

consumption figures will therefore be reported for all schedulers considered in this

study.

6.4 Conclusions

This chapter described the STC technique and the set of Scheduler Test Cases (STCs)

developed in this project to test the run-time behaviour of the various TTC scheduler

implementations considered in Chapter 5. The chapter highlighted the key criteria

against which the TTC scheduler behaviour will be assessed. These include task

sequencing, jitter and ability to deal with a task overrun. Specifically, task jitter was

given a particular consideration as a key practical measure for evaluating the system

predictability. It is useful to highlight – at this point – that while jitter has been widely

discussed in the literature, the impact of particular scheduler implementations on jitter

behaviour has not received widespread attention. Thereby, the current study attempts to

address this issue in greater depth.

Through the application of the various STCs described in this chapter, the study

presented in this thesis was intended to facilitate a meaningful comparison between the

different behaviour patterns in a wide range of “standard” TTC scheduler

implementations. The results obtained from a practical application of the STC technique

are provided in the next chapter (Chapter 7).

Chapter 7

Assessing the behaviour of TTC scheduler

implementations

7.1 Introduction

In Chapter 5, a set of representative implementation classes of the TTC scheduling

algorithm was described. Chapter 6 then described a set of generic “scheduler test

cases” (STCs) used to facilitate a meaningful comparison between the various TTC

schedulers.

This chapter provides the output results obtained when the described STCs are

employed in each TTC implementation considered. The aim of this chapter is to show

the effectiveness of the proposed STC technique in assessing (and distinguishing) the

behaviour of the various implementation classes of TTC scheduler.

The chapter begins by describing the experimental methodology used to obtain the

results presented later in the chapter19.

7.2 Experimental methodology

7.2.1 Hardware platform

It is assumed in this project that the target platform for the embedded system is a small

microcontroller (e.g. 8051, Infineon C16x, Philips LPC2xxx, or PH Processor: Hughes

et al., 2005) which will be programmed in the C language.

19 The work described in this chapter has been adapted from the study presented in the author’s
publications [1] and [3] listed in page xvi.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 135

In particular, the empirical studies reported in this thesis for the single-processor

systems were conducted using Ashling LPC2000 evaluation board supporting Philips

LPC2106 processor (Ashling Microsystems, 2007). The LPC2106 is a modern 32-bit

microcontroller with an ARM7 core which can run – under control of an on-chip PLL –

at frequencies from 12 MHz to 60 MHz (Philips Semiconductors, 2003). Except where

otherwise noted, the processor used an oscillator frequency of 12 MHz, and a CPU

frequency of 60 MHz.

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of

Cygwin (a Linux emulator for windows). The IDE and simulator used was the Keil

ARM development kit (v3.12).

7.2.2 Task sequencing and overrun tests

In each TTC scheduler implementation, the task sequencing – in both normal and

abnormal operations – was measured directly from the simulator by using breakpoints at

each task to observe the order (and the tick) at which the tasks execute. The

measurements were taken over a number of successive major cycles to ensure that the

observed behaviour is repetitive. The results obtained when executing each STC were

then reported and compared to the example schedules discussed in Section 6.3.

7.2.3 Jitter tests

In this test, two jitter measures were recorded:

• Tick jitter: represented by the variations in the interval between the release times

of the periodic tick.

• Task jitter: represented by the variations in the interval between the release times

of periodic tasks.

To obtain a meaningful set of task jitter results, Task A, Task B and Task C were set to

have variable durations in STC A and STC B. In STC C, the impact of long tasks on the

jitter levels of the scheduler tick and tasks were studied. It should be noted that the

jitter levels are only considered when the scheduler operates in normal conditions.

Therefore, in STC D – where errors relate to task overrun take place – jitter levels are

not discussed.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 136

In order to measure the jitter on the tick and tasks experimentally, a pin was set high at

the beginning of the tick or task (for a short time) then the periods between every two

successive rising edges were measured (Figure 6-1). In each experiment, 5000 samples

were recorded: this was found sufficient for the purpose of this study. The periods were

measured using a National Instruments data acquisition card ‘NI PCI-6035E’ (National

Instruments, 2006), used in conjunction with appropriate software LabVIEW 7.1

(LabVIEW, 2007).

TimeTick 0 Tick 1 Tick 2 Tick 3

Period 1 Period 2 Period 3

Figure 7-1: The technique used to measure release jitter in tick.

To assess the jitter levels, two values were reported:

• Difference jitter: obtained by subtracting the minimum period from the maximum

period obtained from the measurements in the sample set. This jitter is sometimes

referred to as “absolute jitter” (Buttazzo, 2005).

• Average jitter: represented by the standard deviation in the measure of average

periods.

Note that there are many other measures that can be used to represent the levels of task

jitter, but these measures were felt to be appropriate for this study.

7.2.4 CPU test

The CPU overhead is one of the cost parameters that have been used to differentiate

between different TTC scheduler implementations. To obtain CPU overhead

measurements in each scheduler, STC A was run for 25 seconds and then, using the

performance analyser supported by the Keil simulator, the total time required by the

scheduler in the measurement period was measured (Figure 7-2). The percentage of the

measured CPU time was then reported to indicate the overhead (i.e. computational cost)

required in each scheduler implementation.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 137

Scheduler
processing

time

Elapsed
time

Figure 7-2: Measuring CPU overhead in the Keil simulator.

7.2.5 Memory test

In this test, the CODE and DATA memory values required to implement STC A for

each scheduler were recorded. Note that these figures are independent of the STC used.

Memory values were obtained using the “.map” file which is created when the source

code is compiled (Figure 7-3 and Figure 7-4).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 138

CODE memory usage

Figure 7-3: Measuring CODE memory overhead from the “.map” file.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 139

DATA
memory
usage

Figure 7-4: Measuring DATA memory overhead from the “.map” file.

The STACK usage was also measured (as DATA memory overhead) by initially filling

the data memory with ‘DEAD CODE’ and then reporting the number of memory bytes

that had been overwritten after running the scheduler for sufficient period (Figure 7-5).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 140

STACK memory usage

Filling mempry
with dummy
code in the
startup file

Figure 7-5: Measuring STACK overhead from the Keil simulator.

7.2.6 Power test

To obtain representative values of power consumption, the input current and voltage to

the LPC2106 CPU core were measured while executing STC A and STC B: this is

because the power measures vary as the task schedule varies (from one STC to another).

Figure 7-6 shows one way of measuring the CPU power consumption in the embedded

designs considered in this study. Again, the voltage measurements were obtained by

using the National Instruments data acquisition card ‘NI PCI-6035E’ in conjunction

with LabVIEW 7.1 software. The sampling rate of 10 KHz was used over a period equal

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 141

to 5000 major cycles. Values for currents and voltages were then multiplied and then

averaged out to give the power figures presented in power result tables20.

LPC2106
 CPU

1 Ohm

Vcc

V2
V1

I

Figure 7-6: The circuit used to measure the system power consumption in each TTC scheduler.

7.3 Results

7.3.1 Applying STC to the TTC-ISR scheduler

This section discusses the implementation of STCs in the TTC-ISR scheduler and

presents the output results from such an implementation.

7.3.1.1 Implementing the test cases

Implementing STC A and STC B with the TTC-ISR scheduler was straightforward (and

very similar to the example shown in Figure 5-2). Listing 7-1 and Listing 7-2 show how

STC C and STC D were implemented, respectively, using a TTC-ISR scheduler.

20 The method used to obtain the power results was suggested by Dr. Teera Phatrapornnant, an ex-
member of the ESL research group working on reducing power consumption in low-cost embedded
systems (Phatrapornnant, 2007).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 142

void ISR_Update(void)
 {
 switch(Tick_G)
 {
 case 0:
 // Treat first three ticks as one long interval
 Task_B(); // Long task (lose 2 ticks)
 Task_A();
 Task_C();
 Tick_G = 3;
 break;

 case 3:
 // Add Tasks in the fourth tick interval
 Task_A();
 Task_C();

 // Reset Tick count
 Tick_G = 0;
 }

 // After interrupt, reset interrupt flag (by writing “1”)
 T0IR = 0x01;
 }

Listing 7-1: One way of implementing STC C using the TTC-ISR scheduler.

void ISR_Update(void)
 {
 switch(Tick_G)
 {
 case 0:
 // Add Tasks in the first tick interval
 Task_A();
 Task_B();
 Tick_G++;
 break;

 default:
 // Add Tasks in the rest of tick intervals
 Task_B();
 break;
 }

 // Reset Tick count after 20 ticks to start a new cycle
 Tick_G %= 20;

 // After interrupt, reset interrupt flag (by writing “1”)
 T0IR = 0x01;
 }

Listing 7-2: One way of implementing STC D using the TTC-ISR scheduler.

The WCETs of tasks were defined as constants and, by using a “hardware delay”

function (Pont, 2001), the execution time of each task was controlled. For example, to

implement the tasks in STC C, the WCETs for Tasks A, B and C were entered to the

scheduler using the code in Listing 7-3:

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 143

// Define WCET of each task in microsecond
#define Task_A_WCET 1000
#define Task_B_WCET 12000
#define Task_C_WCET 1000

Listing 7-3: Definition of task WCETs in STC C in the TTC-ISR scheduler.

The duration of (for example) Task A was adjusted using a hardware delay as shown in

Listing 7-4.

void Task_A(void)
 {
 …
 // Delay to control the duration of the task based on hardware timer 1
 Hardware_Delay_T1(Task_A_WCET);
 …
 }

Listing 7-4: Adjusting the duration of Task A in STC C in the TTC-ISR scheduler.

Where Hardware_Delay_T1() is a function implemented particularly to generate N

microsecond delay (approximately) based on hardware Timer 1 (see Listing 7-5).
void Hardware_Delay_T1(const unsigned int DELAY)
 {

 // Start timer 1
 T1TCR &= 0x00;
 T1TCR |= 0x01;

 // Set the match register to current time plus required delay
 T1MR0 = T1TC + ((PCLK / 1000000U) * DELAY) ;

 // On match, nothing occurs
 T1MCR &= !0x07; // to make sure that no intrrupt, no reset, no stop on match
 // register 0

 while ((T1TC < T1MR0));

 }

Listing 7-5: One way to implement a hardware delay function (see Pont, 2001 for more details).

Remember that, in STC C, the execution times of tasks were fixed. In situations where

tasks have variable durations, such as STC A and STC B, code example shown in

Listing 7-6 was used to manipulate the execution time of the tasks. For example, in STC

A, Task A’s duration varies between 0.01 to 0.4 Ticks (i.e. maximum duration is 2 ms).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 144

void Task_A(void)
 {
 int i = 0;

…

 // Delay to control the duration of the task
 // A random data array was generated to produce 5000 integers with a maximum
 // duration of 2000 µs
 Hardware_Delay_T1((Random_Data_G[i] % 2000)); //

 // increment i up to 5000 then repreat from 0
 i = (i+1) % 5000;

 }

Listing 7-6: Varying the duration of Task A in STC A in the TTC-ISR scheduler.

7.3.1.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-ISR scheduler when applying STC A, STC B, STC

C and STC D is summarised in Table 7-1.

Table 7-1: Task schedule in TTC-ISR scheduler.

STC Scheduler behaviour

A A1

B B1

C C1

D D1a

The results in Table 7-1 show that – as expected – the TTC-ISR scheduler performs the

standard scheduler tests (STC A, STC B and STC C) without problems.

The results in the table also illustrate that – in the event of task overrun – the scheduler

cannot recover. Referring back to Listing 7-2, it can be seen that – during the overrun –

the TTC-ISR scheduler will lose count of the missing ticks (see Figure 7-7). After the

overrun completes, the schedule will continue but will always be delayed by 10 ticks.

t (Ticks)t = 0 1 2 20

A2B1 B2 B3A1

3

Figure 7-7: The behaviour of TTC-ISR scheduler with STC D (D1a schedule class).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 145

7.3.1.3 Jitter

Table 7-2 shows the periods and jitter measurements for the tick and the tasks for STC

A, STC B and STC C when implemented using the TTC-ISR scheduler.

Table 7-2: Task jitter from the TTC-ISR scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 3029.1 2481.1

Max Period 4999.7 4999.7 6966.1 7595.1

Average Period 4999.7 4999.7 4938.2 4949.3

Diff. Jitter 0.0 0.0 3937.0 5114.0

Test A

Avg. Jitter 0.0 0.0 819.6 912.5

Min Period 4999.7 9999.4 2992.5 2146.1

Max Period 4999.7 9999.5 7009.2 7761.9

Average Period 4999.7 9999.5 4845.3 4498.0

Diff. Jitter 0.0 0.1 4016.7 5615.8

Test B

Avg. Jitter 0.0 0.0 1167.7 1156.4

Min Period 4999.7 2994.2 19998.9 2994.1

Max Period 14999.2 17004.7 19998.9 17004.8

Average Period 7953.6 5193.9 19998.9 4908.2

Diff. Jitter 9999.5 14010.5 0.0 14010.7

Test C

Avg. Jitter 4562.5 5097.5 0.0 4812.0

The jitter values in STC A and STC B show that with the TTC-ISR scheduler, the tick

interrupts occur at precisely-defined intervals with no measurable delays or jitter. The

release jitter in Task A is also equal to zero, while low-priority tasks (Task B and Task

C) always suffer high jitter in their release times caused by variations in the execution

times of the preceding tasks.

In situations where a task required multiple ticks to execute (as with STC C), the

resulting tick jitter was significantly increased and the system timing no longer matched

the specification. Note that the tick interval in STC C (for example) is not fixed to 5 ms

as required but instead varies between 5 and 15 ms resulting in only two (rather than

four) ticks per major cycle.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 146

7.3.1.4 CPU, memory and power requirements

Table 7-3 shows the CPU overhead for the TTC-ISR scheduler (with STC A).

Table 7-3: CPU overhead for the TTC-ISR scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 10.09 25.54 39.5

Table 7-4 summarises the memory required to implement STC A using the TTC-ISR

scheduler.

Table 7-4: Memory requirements (ROM and RAM) for the TTC-ISR scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 2256 127

Table 7-5 shows the power consumption levels from the STC A and STC B.

Table 7-5: Power requirements for the TTC-ISR scheduler.

Method
Power consumption

(mW)

Test A 39.7

Test B 36.4

7.3.2 Applying STC to the TTC-Dispatch scheduler

This section discusses the implementation of STCs in the TTC-Dispatch scheduler and

presents the output results from such an implementation.

7.3.2.1 Implementing the test cases

Implementing the STCs was straightforward using SCH_Add_Task()function. As an

example, STC C was implemented as follows:

// Add tasks (5 ms ticks)

 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(TaskA, 1, 2);
 SCH_Add_Task(TaskB, 0, 4);
 SCH_Add_Task(TaskC, 1, 2);

Listing 7-7: Implementing STC C using the TTC-Dispatch scheduler: task’s offset and period.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 147

It can be noted that the implementation of STC C was rather more straightforward than

was the case with the corresponding TTC-ISR scheduler implementation (see Listing

 7-1). Similarly, the WCETs of tasks were entered to the system using a

SCH_Task_WCET function as in Listing 7-8.

 // Input duration for tasks
 // Values are in *microseconds*
 SCH_Task_WCET(Task_A, 1000);
 SCH_Task_WCET(Task_B, 12000);
 SCH_Task_WCET(Task_C, 1000);

Listing 7-8: Implementing STC C using the TTC-Dispatch scheduler: task’s WCET.

Also in the TTC-Dispatch scheduler, hardware delays were used, in the same way as in

the TTC-ISR scheduler, to adjust the tasks WCETs.

7.3.2.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-Dispatch scheduler when applying STC A, STC B,

STC C and STC D is summarised in Table 7-6.

Table 7-6: Task schedule in TTC-Dispatch scheduler.

STC Scheduler behaviour

A A1

B B1

C C1

 D D1b

When executing STC A, STC B and STC C, the TTC-Dispatch scheduler behaves in the

same way as the TTC-ISR scheduler. However, when executing STC D, the Dispatch

scheduler keeps track of the number of elapsed ticks during the overrun, and – once the

overrunning task (Task A) completes – the scheduler performs all missing executions

for Task B (in this case, 10 executions), before continuing to serve the tasks in the

following ticks. This means that the scheduler has the potential to “catch up” in the

event of certain (infrequent and temporary) errors: see Figure 7-8.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 148

Task
B

t (Ticks)t = 0 1 2 10

Task
B

Task
B

20

A2B1 B6 B11

11 12

A1 B2 B3 B7 B8 B12

Figure 7-8: The behaviour of Dispatch scheduler with STC D (D1b schedule class).

7.3.2.3 Jitter

Table 7-7 shows the periods and jitter measurements for the tick and the tasks in STC

A, STC B and STC C implemented using the TTC-Dispatch scheduler.

Table 7-7: Task jitter from the TTC-Dispatch scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 3029.1 2480.5

Max Period 4999.7 4999.7 6966.1 7595.1

Average Period 4999.7 4999.7 4950.9 4917.0

Diff. Jitter 0.0 0.0 3937.0 5114.6

Test A

Avg. Jitter 0.0 0.0 823.9 921.0

Min Period 4999.7 9999.4 2988.4 2164.3

Max Period 4999.7 9999.5 7011.1 7864.1

Average Period 4999.7 9999.5 4882.0 4799.3

Diff. Jitter 0.0 0.1 4022.7 5699.8

Test B

Avg. Jitter 0.0 0.0 1172.7 1226.9

Min Period 4999.4 2978.7 19998.9 2978.6

Max Period 4999.9 17020.2 19998.9 17020.3

Average Period 4999.7 5326.5 19998.9 5155.3

Diff. Jitter 0.5 14041.5 0.0 14041.7

Test C

Avg. Jitter 0.2 5240.1 0.0 5082.2

The jitter values presented in the table show that with the TTC-Dispatch

implementation, the duration of the tick interval – in all cases – is constant and equal to

5 ms. However, the tick suffers small jitter when STC C is employed. This jitter is

mainly caused by the variation in time taken to leave Task B – rather than leaving the

idle mode as in the normal situations – and run the ISR Update function. Note that in

this implementation, when the interrupt occurs while Task B is running, the Update

function is executed then the scheduler returns back to continue the execution of Task

B.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 149

The table also shows that Task A has consistently low (release) jitter levels while the

jitter for Task B and Task C is rather high in STC A and STC B.

7.3.2.4 CPU, memory and power requirements

Table 7-8 shows the CPU overhead for the TTC-Dispatch scheduler (with STC A).

Table 7-8: CPU overhead for the TTC-Dispatch scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 9.93 25.01 39.7

The CPU overheads results show that the overall processing time is very similar to that

observed with the TTC-ISR scheduler.

Table 7-9 presents the memory required to implement STC A using the TTC-Dispatch

scheduler. Inevitably, these figures are somewhat larger than those required to

implement the TTC-ISR scheduler.

Table 7-9: Memory requirements (ROM and RAM) for the TTC-Dispatch scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 4012 325

Table 7-10 shows the power consumption levels for STC A and STC B when

implemented using the TTC-Dispatch scheduler.

Table 7-10: Power requirements for the TTC-Dispatch scheduler.

Method
Power consumption

(mW)

Test A 39.3

Test B 35.7

7.3.3 Applying STC to the TTC-DVS scheduler

This section discusses the implementation of STCs in the TTC-DVS scheduler and

presents the output results from such an implementation.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 150

7.3.3.1 Implementing the test cases

Since the TTC-DVS scheduler is adapted from the TTC-Dispatch scheduler, the code

examples shown in Listing 7-7 and Listing 7-8 were used to implement the STCs in

TTC-DVS.

It is important to note that the results obtained here were based on an LPC2106 board

with a 10 MHz crystal oscillator frequency (the other examples in this chapter used a 12

MHz crystal: see Section 7.2.1). The 10 MHz oscillator was used in this case to

simplify the process of implementing DVS (see Phatrapornnant and Pont, 2006).

7.3.3.2 Task sequencing and overrun

The sequence behaviour of the TTC-DVS scheduler when applying STC A, STC B,

STC C and STC D is summarised in Table 7-11.

Table 7-11: Task schedule in TTC-DVS scheduler.

STC Scheduler behaviour

A A1

B B1

C C1

D D1b

Since the DVS scheduler implementation used is based upon the TTC-Dispatch

scheduler, the task behaviour observed is identical to that shown in Table 7-6.

7.3.3.3 Jitter

Table 7-12 shows the periods and jitter measurements for the tick and the tasks in STC

A, STC B and STC C implemented on TTC-DVS scheduler.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 151

Table 7-12: Task jitter from the TTC-DVS scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.8 4999.8 3029.3 2416.7

Max Period 4999.8 4999.9 6966.3 7595.2

Average Period 4999.8 4999.8 4926.3 4937.6

Diff. Jitter 0.0 0.1 3937.0 5178.5

Test A

Avg. Jitter 0.0 0.0 821.3 913.9

Min Period 4999.8 9999.6 2904.6 2011.9

Max Period 4999.8 9999.7 7097.5 7951.0

Average Period 4999.8 9999.7 4701.0 4718.3

Diff. Jitter 0.0 0.1 4192.9 5939.1

Test B

Avg. Jitter 0.0 0.0 1167.7 1268.9

Min Period 4999.5 3457.5 19999.3 3457.3

Max Period 5000.1 16541.9 19999.4 16542.0

Average Period 4999.8 6241.9 19999.3 5006.5

Diff. Jitter 0.6 13084.4 0.1 13084.7

Test C

Avg. Jitter 0.2 5355.8 0.0 4227.8

Despite the use of DVS, the jitter values shown in the table are similar to those

presented in Table 7-7. Remember that the results obtained here were based on an

LPC2106 board running at 10 MHz oscillator frequency. This explains the little

differences in some values between the results obtained from the TTC-DVS and those

obtained from the TTC-Dispatch schedulers. For example, the difference Tick jitter in

STC C is equal to 0.6 µs at the used frequency. Since the jitter is inversely proportional

to the operating frequency, such a value would be equal to 0.5 µs if 12 MHz oscillator

frequency is used (as with the other implementations). Please compare to the equivalent

Tick jitter value in Table 7-7.

7.3.3.4 CPU, memory and power requirements

Table 7-13 shows the CPU overhead for the TTC-DVS scheduler (with STC A).

Inevitably, the CPU overhead for the TTC-DVS scheduler is greater than that for the

TTC-ISR and TTC-Dispatch schedulers.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 152

Table 7-13: CPU overhead for the TTC-DVS scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 10.16 25.03 40.6

Table 7-14 shows the memory required to implement the TTC-DVS scheduler: again,

this is greater than for previous implementations.

Table 7-14: Memory requirements (ROM and RAM) for the TTC-DVS scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 17460 767

Overall, the memory results can demonstrate the complexity of implementing a TTC-

DVS scheduler in the used embedded hardware platform. Table 7-15 shows the power

consumption levels from the STC A and STC B when implemented using the TTC-DVS

scheduler.

Table 7-15: Power requirements for the TTC-DVS scheduler.

Method
Power consumption

(mW)

Test A 24.8

Test B 16.6

The results show that the power consumption levels in the TTC-DVS scheduler are low

compared to the previous TTC implementations considered in this chapter. Compared

to the TTC-Dispatch scheduler, the values in the table show that in STC A, the average

power was reduced by the factor of 37%, where in STC B it was reduced by 53%. This

reduction may be significant in a wide range of mobile embedded applications.

7.3.4 Applying STC to the TTC-TG scheduler

This section discusses the implementation of STCs in the TTC-TG scheduler and

presents the output results from such an implementation.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 153

7.3.4.1 Implementing the test cases

Since the TTC-TG scheduler is adapted from the TTC-Dispatch scheduler, the code

example shown in Listing 7-7 and Listing 7-8 were used to implement the STCs in

TTC-TG.

7.3.4.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-TG scheduler when applying STC A, STC B, STC

C and STC D is summarised in Table 7-16.

Table 7-16: Task schedule in TTC-TG scheduler.

STC Scheduler behaviour

A A1

B B1

C C6

D D2b

The results illustrate that in STC C, Task B is terminated when the next tick interrupt

takes place. This is because the TG scheduler is designed to support tasks with a

WCET of at most one Tick.

In STC D, it is clear that the scheduler detects and hence terminates the overrunning

task (Task A) at the beginning of the tick following the one in which Task A overruns.

Moreover, the scheduler allows running a backup task BK(A) to replace Task A in the

same tick in which the overrun is detected and hence continues to run the following

tasks (Figure 7-9 (a)). This means that one tick shift is added to the schedule.

However, in some cases where (for example) the schedule is heavily loaded with tasks,

the insertion of a backup task in the next tick of overrun may cause a domino effect. To

reduce the impact of such a problem, the whole schedule can be extended for one tick to

allow the backup task to complete before the scheduler goes back to its normal

operation. In the case of STC D, the whole schedule will be extended for two ticks: one

for the backup task and one to run the missed task B1 (Figure 7-9 (b)).

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 154

Task
B

t (Ticks)t = 0 1 2

BK
(A)

21

A2B1 B2 B3A1

1 tick shift in time

3

Task
B

t (Ticks)t = 0 1 2

BK
(A)

22

A2B1 B2A1

3

1 tick shift in time

1 tick shift in time

(a)

(b)

Figure 7-9: The behaviour of TG scheduler with STC D (D2b schedule class).

7.3.4.3 Jitter

Table 7-17 shows the periods and jitter measurements for the tick and the tasks in STC

A, STC B and STC C implemented on TTC-TG scheduler.

Table 7-17: Task jitter from the TTC-TG scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 3029.1 2415.6

Max Period 4999.7 4999.7 6966.1 7541.6

Average Period 4999.7 4999.7 4933.3 4905.7

Diff. Jitter 0.0 0.0 3937.0 5126.0

Test A

Avg. Jitter 0.0 0.0 822.0 922.7

Min Period 4999.7 9999.4 2985.5 2096.2

Max Period 4999.7 9999.5 7011.7 7848.1

Average Period 4999.7 9999.5 4922.7 4595.6

Diff. Jitter 0.0 0.1 4026.2 5751.9

Test B

Avg. Jitter 0.0 0.0 1175.3 1203.3

Min Period 4999.6 9990.2 19998.9 9990.1

Max Period 4999.9 10008.7 19998.9 10008.9

Average Period 4999.7 9999.6 19998.9 9999.3

Diff. Jitter 0.3 18.5 0.0 18.8

Test C

Avg. Jitter 0.1 9.2 0.0 9.4

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 155

Comparing these results with those obtained from the TTC-Dispatch scheduler – upon

which this scheduler implementation was based – it can be seen that most are similar. A

key difference in the results was the STC C jitter values. The table shows that although

Tasks A and Task C no longer suffer very high release jitter (as in the TTC-Dispatch

scheduler), they still have variation in their release times. The 19 µs variations observed

here were caused by the modified Update function which, in this implementation,

differs in length when a task exceeds the tick interval (Hughes and Pont, 2004; Hughes

and Pont, in press).

7.3.4.4 CPU, memory and power requirements

Table 7-18 shows the CPU overhead for the TTC-TG scheduler (with STC A).

Table 7-18: CPU overhead for the TTC-TG scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 9.95 25.03 39.8

The CPU overheads results show that the overall processing time required in the

implemented TTC-TG scheduler is similar to that of the TTC-Dispatch scheduler.

Table 7-19 presents the memory requirements for implementing the STC A for the

TTC-TG scheduler. Compared with the memory requirements in Dispatch schedulers,

these figures are slightly larger.

Table 7-19: Memory requirements (ROM and RAM) for the TTC-TG scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 4296 446

Table 7-20 shows the power consumption levels from the STC A and STC B when

implemented using the TTC-TG scheduler.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 156

Table 7-20: Power requirements for the TTC-TG scheduler.

Method
Power consumption

(mW)

Test A 38.9

Test B 35.7

Since the TG scheduler is based on the Dispatch approach (the TTC-Dispatch

scheduler), the same levels of CPU power consumption were observed with the TTC-

TG scheduler.

7.3.5 Applying STC to the TTC-MTI scheduler

This section discusses the implementation of STCs in the TTC-MTI scheduler and

presents the output results from such an implementation.

7.3.5.1 Implementing the test cases

In MTI scheduler, task parameters are defined in the same way as with Dispatch

scheduler. Therefore, the code shown in Listing 7-7 and Listing 7-8 were also used here

to implement the STCs.

7.3.5.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-MTI scheduler when applying STC A, STC B,

STC C and STC D is summarised in Table 7-21.

Table 7-21: Task schedule in TTC-MTI scheduler.

STC Scheduler behaviour

A A2

B B2

C C6

D D3a

With this scheduler implementation, it can be seen that the gap insertion mechanism

employed (through the multiple timer interrupts) has helped to achieve low jitter at the

release time of all tasks running in the system (both in STC A and STC B). However, it

should be noted that, like the TG scheduler, the TTC-MTI scheduler cannot support

tasks which require multiple ticks to execute (as in STC C). This is because the

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 157

scheduler employs a simple TG mechanism and – once an interrupt occurs – the running

task (if any) will be terminated. Note that the implementation employed here did not

support backup tasks (Figure 7-10).

t (Ticks)t = 0 1 2 20

A2B1 B2 B3A1

3

Figure 7-10: The behaviour of MTI scheduler with STC D (D3a schedule class).

7.3.5.3 Jitter

Table 7-22 shows the periods and jitter measurements for the tick and the tasks in STC

A, STC B and STC C implemented using the TTC-MTI scheduler.

Table 7-22: Task jitter from the TTC-MTI scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 4999.7 4999.7

Max Period 4999.7 4999.7 4999.7 4999.7

Average Period 4999.7 4999.7 4999.7 4999.7

Diff. Jitter 0.0 0.0 0.0 0.0

Test A

Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.7 9999.4 4999.7 4999.7

Max Period 4999.7 9999.5 4999.7 4999.7

Average Period 4999.7 9999.5 4999.7 4999.7

Diff. Jitter 0.0 0.1 0.0 0.0

Test B

Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.6 9999.4 19998.9 9999.4

Max Period 4999.9 9999.5 19998.9 9999.5

Average Period 4999.7 9999.5 19998.9 9999.5

Diff. Jitter 0.3 0.1 0.0 0.1

Test C

Avg. Jitter 0.1 0.0 0.0 0.0

The jitter values in the table clearly show how the TTC-MTI scheduler helped to

remove jitter in the release time of all tasks running in the system, causing a significant

increase in the overall system predictability. Note that, in STC C, the tick jitter was

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 158

caused by the difference between the time taken to leave Task B and service the

interrupt (Tick 1 in the cycle) and the time taken to leave the idle mode and service the

interrupt (Tick 3).

7.3.5.4 CPU, memory and power requirements

Table 7-23 shows the CPU overhead for the TTC-MTI scheduler (with STC A).

Table 7-23: CPU overhead for the TTC-MTI scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 9.9 25.01 39.6

The CPU overhead results show that the overall processing time required for the TTC-

MTI scheduler is similar to that required for the other schedulers.

Table 7-24 presents the memory requirements for implementing the STC A for the

TTC-MTI scheduler. These ROM figures are slightly smaller than those used to

implement any of the previous Dispatch schedulers while the RAM figures are larger

(remember that the overall architecture is rather different in TTC-MTI: see Section 5.7).

Table 7-24: Memory requirements (ROM and RAM) for the TTC-MTI scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 3620 514

Table 7-25 shows the power consumption levels from the STC A and STC B when

implemented using the TTC-MTI scheduler.

Table 7-25: Power requirements for the TTC-MTI scheduler.

Method
Power consumption

(mW)

Test A 40.3

Test B 36.3

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 159

7.3.6 Applying STC to the TTC-Adaptive implementation

This section discusses the implementation of STCs in the TTC-Adaptive scheduler and

presents the output results from such an implementation.

7.3.6.1 Implementing the test cases

Since the structure of the TTC-Adaptive scheduler is adapted from the TTC-MTI

scheduler, where the tasks are defined based on the approaches used in TTC-Dispatch,

the code example shown in Listing 7-7 and Listing 7-8 were also used here to

implement the STCs.

7.3.6.2 Task sequencing and overrun behaviour

The sequence behaviour of the TTC-Adaptive scheduler when applying STC A, STC B,

STC C and STC D is summarised in Table 7-26.

Table 7-26: Task schedule in TTC-Adaptive scheduler.

STC Scheduler behaviour

A A2

B B2

C C6

D D3b

Since TTC-Adaptive scheduler is based on the TTC-MTI and TTC-TG, it lacks the

support for running long tasks which require multiple ticks to execute (as in STC C).

As expected, this scheduler implementation provides low jitter at the release time of all

tasks running in the system and provides an efficient solution for task overruns problem.

For example, unlike TTC-MTI, such an implementation provides a support for backup

task that will replace the overrunning task once shut down. In this scheduler, there can

be three different options:

• If it is not dependent on the output from Task A, Task B1 can still be scheduled to

run in the same tick as Task A1 (Figure 7-11(a)).

• If it is dependent on the output from Task A, Task B1 must be scheduled to run in

the next tick after task BK(A) completes execution (Figure 7-11(b)). This will

obviously add one tick shift to the schedule.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 160

• To avoid any possibility for a domino effect to take place, the whole schedule can

be extended for one more tick to allow a completion of BK(A) before returning to

the normal schedule (Figure 7-11(c)). The figure shows that, in the case of STC D,

two tick shifts will be added to the whole schedule.

t (Ticks)t = 0 1 2

BK
(A)

21

A2B1 B2 B3A1

1 tick shift in time

3

t (Ticks)t = 0 1 2

BK
(A)

20

A2B1 B2 B3A1

3

B4

(b)

(a)

t (Ticks)t = 0 1 2

BK
(A)

22

A2B1 B2A1

1 tick shift in time

3
(c)

1 tick shift in time

Figure 7-11: The behaviour of MTI scheduler with STC D (D3b schedule class).

Note that the TTC-Adaptive implementation presented in Chapter 5 considered the

second option (Figure 7-11(b)). However, the scheduler framework developed in this

study has been made flexible so that the user can – with a little modification – adopt any

of the three proposed solutions.

Remember that, in addition to low-jitter provision and overrun prevention, the most

advantageous feature of the TTC-Adaptive scheduler is its ability to control the timing

behaviour of tasks based on accurate “online” measurements (not estimations) of their

WCETs.

7.3.6.3 Jitter

Table 7-27 shows the periods and jitter measurements for the tick and the tasks in STC

A, STC B and STC C implemented using the TTC-Adaptive scheduler.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 161

Table 7-27: Task jitter from the TTC-Adaptive scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 4999.7 4999.7

Max Period 4999.7 4999.7 4999.7 4999.7

Average Period 4999.7 4999.7 4999.7 4999.7

Diff. Jitter 0.0 0.0 0.0 0.0

Test A

Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.7 9999.4 4999.7 4999.7

Max Period 4999.7 9999.5 4999.7 4999.7

Average Period 4999.7 9999.5 4999.7 4999.7

Diff. Jitter 0.0 0.1 0.0 0.0

Test B

Avg. Jitter 0.0 0.0 0.0 0.0

Min Period 4999.6 9999.4 19998.9 9999.4

Max Period 4999.9 9999.5 19998.9 9999.5

Average Period 4999.7 9999.5 19998.9 9999.5

Diff. Jitter 0.3 0.1 0.0 0.1

Test C

Avg. Jitter 0.1 0.0 0.0 0.0

The jitter values in the table also show how the TTC-Adaptive scheduler can remove

jitter in the release time of all tasks running in the system. Overall, the jitter behaviour

here is seen similar to that obtained with the TTC-MTI scheduler.

7.3.6.4 CPU, memory and power requirements

Table 7-28 shows the CPU overhead for the TTC-Adaptive scheduler (with STC A).

Table 7-28: CPU overhead for the TTC-Adaptive scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 9.95 25.01 39.8

The CPU overhead results show that the implementation of TTC-Adaptive scheduler

requires no additional processing time as compared to previous schedulers.

Table 7-29 presents the memory requirements for implementing the STC A for the

TTC-Adaptive scheduler. The figures in the table show insignificant increase in the

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 162

code memory overhead when compared to those required for TTC-MTI scheduler. The

data memory is however as low as that required for the TTC-MTI scheduler.

Table 7-29: Memory requirements (ROM and RAM) for the TTC-MTI scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 5364 510

Table 7-30 shows the power consumption levels from the STC A and STC B when

implemented using the TTC-Adaptive scheduler.

Table 7-30: Power requirements for the TTC-Adaptive scheduler.

Method
Power consumption

(mW)

Test A 40.5

Test B 36.5

7.4 Summary of the results

This section summarises the results detailed in the previous sections. The first four

columns in the summary table (Table 7-31) report the sequence behaviour from the

STCs in all TTC implementations. The remaining columns include CPU, jitter, memory

and power requirements. Since it is difficult to list all jitter results, the jitter columns

only present the Difference Tick jitter levels from STC C, and the Difference release

jitter levels for Task A and Task B from STC B as representative jitter values across all

jitter measurements.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 163

Table 7-31: Summary of results obtained in this chapter.

Scheduler
name

STC
A

STC
 B

STC
 C

STC
 D

CPU
%

Tick
Jitter
(µs)

Task A
Jitter
(µs)

Task B
Jitter
(µs)

ROM
(Bytes)

RAM
(Bytes)

Power
(mW)

TTC-ISR A1 B1 C1 D1a 39.5 9999.5 0.1 4016.7 2256 127 36.4

TTC Dispatch A1 B1 C1 D1b 39.7 0.5 0.1 4022.7 4012 325 35.7

TTC-DVS A1 B1 C1 D1b 40.6 0.5 0.1 4192.9 17460 767 16.6

TTC-TG A1 B1 C6 D2b 39.8 0.3 0.1 4026.2 4296 446 35.7

TTC-MTI A2 B2 C6 D3a 39.6 0.3 0.1 0.0 3620 514 36.3

TTC-Adaptive A2 B2 C6 D3b 39.8 0.3 0.1 0.0 5364 510 36.5

Jitter in Task A has been included in the table to allow a comparison with the jitter

levels in low-priority tasks. Key jitter results are shown in Figure 7-12 for comparison

purposes. It can be clearly noticed that with the new TTC implementations, namely

TTC-MTI and TTC-Adaptive schedulers, release jitter in all tasks running in the system

is minimised.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

TTC-ISR TTC-Dispatch TTC-DVS TTC-TG TTC-MTI TTC-Adaptive

9999.5

0.5 0.5 0.3 0.3 0.30 0 0 0 0 0

4016.7 4022.7 4192.9 4026.2

0 0

Di
ff.

 ji
tte

r (
µs

)

Tick Task A Task B

Figure 7-12: Summary of key jitter results in all TTC implementations.

The results for CPU, memory and power requirements are shown in Figure 7-13 to

Figure 7-16 for comparison purposes.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 164

38.8
39

39.2
39.4
39.6
39.8

40
40.2
40.4
40.6

39.5
39.7

40.6

39.8
39.6

39.8

Sc
he

du
le

r o
ve

rh
ea

d
(%

)

Figure 7-13: Summary of CPU requirements in all TTC implementations.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

2256
4012

17460

4296 3620
5364

RO
M

 (B
yt

es
)

Figure 7-14: Summary of ROM requirements in all TTC implementations.

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 165

0
100
200
300
400
500
600
700
800

127

325

767

446
514 510

RA
M

 (B
yt

es
)

Figure 7-15: Summary of RAM requirements in all TTC implementations.

0
5

10
15
20
25
30
35
40 36.4 35.7

16.6

35.7 36.3 36.5

Po
w

er
 (m

W
)

Figure 7-16: Summary of power requirements in all TTC implementations.

It can be clearly seen that the CPU utilisation in all assessed TTC implementations was

almost the same. The reason why CPU overheads have been included in the table is to

show that, despite the improvement that TTC-MTI and TTC-Adaptive schedulers can

offer to the system, such implementations do not compromise the resource efficiency as

a price for achieving such an improvement. Instead, it can be seen that the code memory

required to implement (for example) the TTC-MTI schedulers was even smaller than

was used for the majority of other schedulers. In the TTC-Adaptive scheduler, the little

 Chapter 7: Assessing the behaviour of TTC scheduler implementations 166

increase in the code memory as compared to other schedulers is outweighed by the

improvement it provides to the scheduler behaviour.

7.5 Conclusions

This chapter began by providing an overview of the experimental methodology used to

obtain the empirical results from single-processor TTC implementations considered in

this thesis. It discussed in detail how each parameter used to assess the behaviour of the

schedulers was measured using practical methods.

The chapter then provided the output results from the application of the STC technique,

detailed in Chapter 6, to the range of TTC scheduler implementations described in

Chapter 5.

The results presented in this chapter clearly show that even a small (and by no means

exhaustive) selection of TTC scheduler implementations demonstrated a wide range of

different patterns of behaviour. The results also suggested that a “one size fits all” TTC

implementation does not exist in practice, since each implementation has advantages

and disadvantages. The selection of a particular implementation will, hence, be decided

based on the requirements of the application in which the TTC scheduler is employed,

e.g. timing and resource requirements.

Note that, in this chapter, the STC technique was shown to be effective in assessing the

behaviour of a simple scheduling algorithm employed in a single-processor system. It

would only make sense to adopt such a technique if its applicability on wider (more

complicated) architectures can be proven. The next part of the thesis begins to look at

ways in which the STC method can be used in assessing the behaviour of scheduling

algorithms in multi-processor embedded systems.

PART D:

MULTI-PROCESSOR SYSTEMS

Chapter 8

Network and scheduling protocols for multi-processor

embedded systems

8.1 Introduction

Previous chapters in this thesis considered the use of the STC technique in assessing the

behaviour of simple embedded system implementations based on single-processor

architectures and TTC scheduling algorithms. This part of the thesis begins to

investigate the applicability of such a technique when more complicated embedded

implementations are considered: for example, when the system is based on distributed

architectures.

This chapter reviews a collection of network protocols that are widely used in the

design and implementation of distributed real-time embedded systems with high

reliability requirements. The focus of the discussion will, however, be on systems using

Controller Area Network (CAN) protocol (Bosch, 1991). The chapter provides a brief

overview of CAN and compares its features to alternative commercial network

protocols. The chapter then describes “high-level” scheduling protocols that can be

implemented on the CAN hardware to achieve time-triggered system operations for

high predictability. A particular focus of this discussion will be on the Shared-Clock (S-

C) scheduling protocol (Pont, 2001) as a simple and effective software platform for

many low-cost, reliable embedded systems.

8.2 Overview of multi-processor embedded systems

With the rapid growth of technology, the development of huge and complex embedded

systems – that are physically distributed over wide areas – has become quite common.

Leen et al. (1999) provided two familiar examples:

• A typical passenger car might contain more than 40 processor devices that control

brakes, door windows and mirrors, steering, air bags, wheels and so forth.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 169

• An industrial fire detection system might have up to 200 or more processors

associated with different sensors and actuators.

Having several microcontrollers communicating with one another in a system is referred

to as a distributed or a multi-processor system21. Ayavoo (2006) highlighted that the

number of embedded processors used in a single automotive system (e.g. passenger

vehicle) had been steadily increasing over the past few years and predicted that this

growth would continue over the next few years as the complexity and functionality of

the system increase. A distributed solution helps to reduce the complexity and increase

the reliability of the entire system where one transmission medium is shared by all

processors. Advantages of using distributed systems are discussed by Tanenbaum

(1995).

Historically, multi-processor systems were first developed in the early 1970s, when

Moore’s law22 did not work any longer, and people believed that the use of single-

processors cannot provide the level of performance that future applications would

demand (Ravikumar, 2004).

In order to connect various processors in an embedded control system, an effective

network architecture and communication medium are required. Perfect implementations

of multi-processor systems are not always justified, not least because of the very wide

range of implementation options which are available. For example, the software

engineer working on the design of a modern passenger car may need to choose between

the use of one (or more) network protocols based on Controller Area Network “CAN”

21 Please note that the term “multi-processor” is also used to describe System-on-Chip (SoC) designs with
multiple CPU cores (i.e. MP SoC). Such designs are not considered in this study. Thus, the term multi-
processor used in the context of this thesis is only referred to distributed systems where a umber of
physically-distributed microprocessors are connected via a communication network.
22 Moore's law – which refers back to Gordon E. Moore in 1965 – says: "the complexity for minimum
component costs has increased at a rate of roughly a factor of two per year ... Certainly over the short
term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a
bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10
years. That means by 1975, the number of components per integrated circuit for minimum cost will be
65,000. I believe that such a large circuit can be built on a single wafer" (Moore, 1965).

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 170

(Bosch, 1991), Time-Triggered CAN “TTCAN” (Fuhrer et al., 2000), Local

Interconnect Network “LIN” (Specks and Rajnak, 2000), FlexRay (FlexRay, 2004) or

Time-Triggered Protocol - Class C “TTP/C” (Kopetz, 2001). The resulting network

may be connected in (for example) a bus or star (Tanenbaum, 1995) topology. The

individual processor nodes in the network may use event-triggered (Nissanke, 1997) or

time-triggered (Kopetz, 1997) software architectures – or some combination of the two.

The clocks associated with these processors may be linked using (for example) shared-

clock techniques (Pont, 2001) or synchronisation messages (Fuhrer et al., 2000). These

individual processors may (for example) be C16x (Siemens, 1996), ARM (ARM, 2001),

MPC555 (Bannatyne, 2004) or 8051 (Pont, 2001).

8.3 Network protocols for multi-processor systems

8.3.1 Introduction

This section begins by providing a detailed overview of the Controller Area Network

(CAN) protocol as a genuine, well-designed hardware platform for multi-processor

embedded systems. It then outlines a few other network protocols which have also been

used (or recommended) in the design and implementation of such systems.

The section concludes by highlighting the main advantages of CAN, over other network

protocols, which made it an appropriate solution for a wide range of embedded designs

including those considered in this study.

8.3.2 Controller Area Network (CAN) protocol

8.3.2.1 Introduction

Controller Area Network (CAN) is a cost-effective protocol which is widely used in

embedded systems (Farsi and Barbosa, 2000; Fredriksson, 1994; Thomesse, 1998;

Sevillano et al., 1998). The CAN protocol was introduced by Robert Bosch GmbH in

the 1980s (Bosch, 1991). Although originally designed for automotive applications,

CAN is now widely used in process control and many other industrial areas (Farsi and

Barbosa, 2000; Fredriksson, 1994; Thomesse, 1998; Sevillano et al., 1998; Pazul, 1999;

Zuberi and Shin, 1995; Misbahuddin and Al-Holou, 2003; Short and Pont, 2007). As a

consequence of its popularity and widespread use, most modern microcontroller

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 171

families now include one or more members with on-chip hardware support for this

protocol (e.g. Philips, 1996; Siemens, 1997; Infineon, 2000; Philips, 2004).

In many distributed systems, the CAN protocol provides high reliability

communications at very low cost (Farsi and Barbosa, 2000; Fredriksson, 1994;

Thomesse, 1998; Sevillano et al., 1998). For example, in automotive vehicles, CAN

allows a huge reduction in wiring complexity as communicating devices are connected

through a single pair of wire (Farsi and Barbosa, 2000).

8.3.2.2 CAN features and operational principles

The main features and operational principles of CAN have been discussed in detail in a

number of recognised publications (e.g. Bosch, 1991; Farsi et al., 1999; Farsi and

Barbosa, 2000; Kopetz, 2001; CiA, 2008). The main features of CAN protocol can be

summarised as follows.

• High-integrity serial data communication bus for real-time applications.

• Communication speed up to 1 Mbps transmission rate (this speed is also referred to

as baudrate).

• Low-cost physical medium: simple twisted wire pair is used.

• Short data length: very low latency compared to other protocols.

• Fast reaction times: no token or permission required from a bus arbiter.

• Multi-master and peer-to-peer communication: broadcast to all or subset of nodes.

• Error detection and correction: high level of error detection and confinement.

CAN is usually viewed as an “event-triggered” protocol (Leen and Heffernan, 2002)

which has the following operational principles. Any transmitted message is defined by

an identifier which is unique throughout the network. This identifier defines the

message contents as well as the message priority. CAN follows Carrier Sense Multiple

Access / Collision Avoidance (CSMA/CA) protocol. Under such a protocol, when

several nodes compete for bus access, the higher priority message is guaranteed to gain

the bus access where lower priority messages have to wait until the bus becomes in the

idle state (CiA, 2008; Farsi et al., 1999; Bosch, 1991). When a message wins the bus

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 172

access, it has an opportunity to complete transmission without destruction. Such a

mechanism is known as “non-destructive bitwise arbitration” (NDBA) which helps

resolve conflicts in bus access (Leen and Heffernan, 2001). Once a message is received,

each node performs an acceptance test to determine if the received message is relevant

to that particular node. The ability to send data on an event basis means that the bus

load utilisation is kept to the minimal level. One advantage of CAN over other fieldbus

solutions is that this mechanism requires no interaction from a bus master or arbiter (see

Farsi et al., 1999; Egan-Krieger, 1994 for more information).

8.3.2.3 CAN layers

As shown in Figure 8-1, CAN standard is a two-layer protocol as compared to the seven

layers of the ISO/OSI Reference Model (Farsi and Barbosa, 1999; Bosch, 1991; CiA,

2008). These two layers are: Data Link Layer and Physical Layer. The data link layer

consists of two sub-layers: Medium Access Control (MAC) and Logical Link Control

(LLC). The LLC sub-layer is concerned with the errors detection and correction when

data is exchanged in the network. The MAC sub-layer is responsible for message

framing, arbitration, acknowledgement, error detection and signalling. For example, the

MAC layer decides which node has the bus control for transmission (see Farsi and

Barbosa, 2000 for more details).

Since higher layer services are needed for some applications, CAN in Automation (CiA)

defined the CAN Reference Model which incorporates the CAN Application Layer

(CAL). The CAL layer employs a large number of services and strategies which achieve

the communications between applications. For more details, refer to Farsi et al. (1999).

CAN Application layer Application layer

 Presentation Layer

 Session Layer

 Transport Layer

 Network Layer

CAN Data Link Layer Data Link Layer

CAN Physical Layer Physical Layer

Figure 8-1: Comparison between CAN layers and ISO/OSI Model.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 173

8.3.2.4 CAN format

Briefly, any transmitted CAN frame has the format shown in Figure 8-2. The function

of each field illustrated in the figure is as follows (Busch, 1991, Egan-Krieger, 1994):

• SOF indicates the start of frame.

• Identifier (ID) is used to arbitrate access to the bus. This ID can be 11-bits (in

standard CAN frames) or 29-bits (in extended CAN frames).

• The Remote Transmission Request (RTR) bit indicates whether the frame is a

request frame or a data frame.

• Identifier Extension (IDE) indicates whether the frame is a standard or an extended

format.

• The length of the data field (in bytes) is contained in Data Length Code (DLC).

• The Data field contains the message data which can be between 0 and 8 bytes in

length.

• To check the frame integrity, a 15-bits Cyclic Redundancy Check (CRC)

checksum is calculated and transmitted with each frame. CRC Delimiter bit is

always equal to 1.

• ACK slot is transmitted as a recessive bit (value of 1). Receivers that retrieve the

message correctly should overwrite this field with a dominant bit (value of 0).

• End of Frame (EOF) bit denotes that the whole frame has been terminated.

 Arbitration field Control field Data field CRC field

S
O
F

11 or 29 bits
Identifier

R
T
R

I
D
O

R
O

4-
bits

DLC

0 – 8 bytes

15-
bits

 CRC

CRC
del -
bit

Ack

End
 of

Frame

Figure 8-2: Layout of the CAN frame.

8.3.2.5 Message response time in CAN network

When calculating the response time for CAN messages, the deadline monotonic

approach described in (Audsley, 1991) is considered. In this approach, a message of

shorter deadline is given a higher priority for transmission. Tindell et al. (1994 and

1995) provided a detailed analysis of the CAN-message response time. Based on his

model, the worst-case response time for a CAN message is represented by the

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 174

summation of message jitter (Jm), physical transmission time (Cm) and the time delay

caused by bus arbitration (Wm) as in Equation 8-1.

Rm = Jm + Cm + Wm
 Equation 8-1

Note that Jm takes into account the variation in the queuing time, and Cm is a function

of the CAN baudrate as well as the message length. Punnekkat et al. (2000) and Nolte et

al. (2001 and 2002) have also provided a simple analysis for CAN message response

time, and demonstrated that the physical transmission time of a particular message on

the CAN bus is equal to the message length (in bits) multiplied by the bit-time (Tbit).

The bit-time was defined as the worst-case time spent by a bit to travel on the CAN bus.

Tbit can be calculated as follows:

BaudrateCAN
Tbit

1
=

 Equation 8-2

For example, at the maximum CAN baudrate (1 Mbps), Tbit = 1 µs. Therefore, the

transmission time (Cm) of a CAN message with 8 data bytes and standard format (111

bits length) can be calculated as:

Cm = 111 (bits) * 1 (µs/bit) = 111 µs

Similarly, the transmission time (Cm) of a CAN message with 8 data bytes and

extended format (129 bits length) can be calculated as:

Cm = 129 (bits) * 1 (µs/bit) = 129 µs

Note that the actual (physical) transmission time of a CAN message also depends on the

number of any additional hardware bits inserted by the CAN physical layer for purposes

such as clock synchronisation (Nolte et al., 2001): this process is called bit-stuffing and

is further described in Section 8.3.2.6.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 175

8.3.2.6 Error-handling mechanisms in CAN

CAN protocol employs several mechanisms for error detection and correction which

make it quite robust and, hence, a good match for many time-critical applications (Farsi

and Barbosa, 2000). Such error detection mechanisms are: bit error and bit-stuffing

error (at the bit level), and CRC error, format error and acknowledgement error (at the

message level). These mechanisms are described briefly as follows.

Bit error

When the transmitter places a bit on the bus, it monitors and compares this bit with the

actual bit on the bus. If the two bit levels are unequal, a bit error is flagged.

Bit-stuffing error

A mechanism known as bit-stuffing is used by CAN hardware for clock synchronisation

(Bosch, 1991). This mechanism is described here.

Since CAN protocol uses “Non Return to Zero” (NRZ)23 coding for bit representation, a

drift in the receiver’s clock may occur when a long sequence of identical bits has been

transmitted on the bus. Such a drift might, in turn, result in message corruption. To

avoid the possibility of such a scenario, the CAN communication protocol (at the

physical layer) employs a bit-stuffing mechanism which operates as follows. After five

consecutive identical bits have been transmitted in a given frame, the sending node adds

an additional bit of the opposite polarity afterwards. All receiving nodes remove the

stuffed (inserted) bits to recover the original data (Farsi and Barbosa, 2000; Nolte et al.,

2001; Nolte et al., 2002; CiA, 2008). Figure 8-3 shows the basic operation of the bit-

stuffing mechanism carried out in the sending CAN controller.

23 In NRZ coding, logic “1” is implemented as high-voltage and logic “0” is implemented as low-voltage.
This is the simplest way of bit encoding in data communication which can provide maximum data
throughput.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 176

 Original frame: 111110000010110000011101011111
Transmitted frame: 1111100000101011000001111010111110

Stuffed bits:

Figure 8-3: The basic operation of bit-stuffing in the sending CAN controller.

If any six identical bits are detected by the receiver, this means that an error has

occurred during the transmission, therefore a bit-stuffing error is flagged.

CRC error

Every CAN message contains a 15-bit Cyclic Redundancy Check (CRC) code (see

Figure 8-2). The CRC is computed by the sending controller based on the message

content. All receivers that accept the message perform a similar calculation to check the

integrity of the received data and flag any error.

Format error

There are certain predefined bit values that must be transmitted at certain points within

any CAN message frame. If a receiver detects an invalid bit in one of these positions, a

format error will be flagged.

Acknowledgement error

If a transmitter determines that a message has not been acknowledged, then an

acknowledgement error is flagged.

Please note that the CAN protocol employs complex algorithms to distinguish between

temporary errors and permanent failures. More specifically, each node in the network

implements one counter for transmit-error and one counter for receive-error. The values

of these counters increase when errors occur and decrease when a message is

successfully transmitted. When the network starts, all nodes are in the Error Active

Mode. When errors begin to occur, error counters begin to count until it reaches a

certain threshold after which the node should enter the Error Passive Mode. If the errors

continue to occur, then the device will take itself off the bus by going to Bus-Off Mode

(Bosch, 1991; Farsi and Barbosa, 2000).

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 177

8.3.3 Alternative network protocols

8.3.3.1 Introduction

In this section, some alternative network protocols to CAN are described briefly. Such

protocols mainly include: Time-Triggered Protocol (TTP) and FlexRay as dedicated

platforms intended to meet the standard for highly-reliable, safety-critical embedded

systems. Other protocols which are generally used in multi-processor embedded designs

are also discussed in outline. These include: RS-485, Local Interconnect Network (LIN)

and Ethernet.

8.3.3.2 Time-Triggered Protocol (TTP)

Time-Triggered Protocol (TTP) (Kopetz, 2001; TTTech, 2008) was originally

developed for high-dependability, hard real-time applications. Kopetz provided a

detailed comparison between the CAN and TTP protocols in terms of operational

principle, protocol services, dependability and system level properties. He concluded

that CAN is more suitable for soft real-time systems where flexibility is essential, while

TTP is more suitable for hard real-time systems where composability and dependability

are more essential than flexibility.

As a summary, the main characteristics of TTP protocol are:

• Applicable to hard real-time systems.

• Provides a time-triggered communication strategy.

• Extendable (new nodes can be easily added to the system if transmission slots for

the added nodes have been reserved in the original design).

• Latency jitter is constant.

• Provides fault-tolerant clock synchronisation service (in microsecond range).

• Speed up to 2 Mbps. TTTech (2008) stated that the controllers used today can

support 25 Mbps synchronous and 5 Mbps asynchronous transmissions.

• Frame size from 21 – 149 bits (21 control bits and between 0 – 128 data bits). Any

frame can be either initialisation frame or normal frame (only two frame types).

• Uses Modified Frequency Modulation (MFM) bit coding.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 178

Briefly, media-access in TTP is controlled by conflict-free TDMA strategy (Kopetz,

2001). Within the TDMA cycle (round), every node is allocated a time slot for

transmission. Every TTP controller contains a Message Descriptor List (MEDL) which

holds information about the node that is allowed to send at a particular point in time and

which message it will send. Every TTP controller also contains two replicated channels

in order to be able to tolerate a loss of one channel if occurred (see Kopetz, 2001 for

additional explanation).

TTP/C (Kopetz, 2001) is an integrated communication protocol for hard real-time, fault-

tolerant distributed systems. TTP/C is a member of the TTP protocol family where C

indicates that it satisfies SAE (Society of Automotive Engineers) Class C requirements

for hard real-time, fault-tolerant communication in the automotive area. Excellent

features can be provided by the use of this protocol. For example, it provides hard real-

time message delivery with minimal jitter and supports fault-tolerant communication

mechanisms, such as clock synchronisation (Poledna and Kroiss, 1998). The overhead

in the TTP/C is kept to minimum levels with the provision of highest data efficiency.

8.3.3.3 FlexRay

FlexRay (FlexRay, 2005; Litterick and Brenner, 2005) is a fault-tolerant, time-triggered

communication protocol developed to meet the standard for safety-critical, real-time

control systems (e.g. X-by-wire systems). It is a combination of Byteflight (Byteflight,

2008) protocol and TTP/C (Kopetz, 2001) protocol. Like TTP, FlexRay supports a

number of fault-tolerant mechanisms which made it suitable for systems requiring high

degree of robustness and dependability.

The time line in FlexRay is divided into two channels allowing synchronous (time-

triggered) and asynchronous (event-triggered) communications. In the asynchronous,

data bandwidth is shared by all nodes to provide high bandwidth efficiency, and the

media-access is controlled by Byteflight and mini-slotting protocols. Speed in the

FlexRay can be more than 10 Mbps.

In particular, a bit-synchronisation feature in FlexRay – as opposed to bit-stuffing

mechanism in CAN – is considered in a little bit more detail. To achieve higher

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 179

synchronisation and avoid any possibility of drift in the receiving clocks, the FlexRay

protocol implements a Byte Start Sequence (BSS) mechanism which provides the

receiving nodes with bit timing information. The BSS contains two alternating bits

(logic “1” followed by logic “0”), allowing a transition in the signal level around each

byte. This bit encoding, along with other encoding mechanisms (see FlexRay, 2004),

result in a constant transmission delay for each message scheduled to transmit in the

“static” segment of the communication cycle while maintaining the synchronisation

between communicating clocks. For more details see (Rushby, 2001; Kopetz, 2001;

FlexRay, 2004).

8.3.3.4 Other network protocols

Other network protocols which have also been used in multi-processor embedded

designs include: RS-485 (Leen et al., 1999), Local Interconnect Network (LIN) (Specks

and Rajnak, 2000) and Ethernet (Metcalfe and Boggs, 1976) protocols. These protocols

are described briefly here.

RS-485 is a serial communication standard produced by the Electronics Industry

Association (EIA, 2005) and aimed at transferring data between the desktop PC and

microprocessors, or between two (or more) microprocessors in a distributed embedded

system. RS-485 can have a data rate of up to 10 Mbps (or even more with new

transceivers), has a one twisted-pair line allowing simple implementation and is a

“multipoint” communication standard in which up to 256 nodes can be connected to the

network (Pont, 2001; Leen et al., 1999).

Local Interconnect Network (LIN) is a UART-based communication protocol

developed for automotive sensors and actuators. LIN provides a cost-effective

communication choice for one Master and multi-Slaves in a local connection. The

Master node in LIN usually communicates with high-level networks such as CAN to

achieve more benefits to the local sensors and actuators (Specks and Rajnak, 2000).

Figure 8-4 shows a schematic example of a LIN network.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 180

Slave 1

Slave 2

Slave 3

Master
CAN bus

To the CAN
network

LIN Network

Figure 8-4: Example of a local LIN network connected to a major CAN network.

Ethernet is the most Local Area Network (LAN) protocol used across the world

(CISCO, 2008). It provides a transfer rate of up to 100 Mbps based on using twisted

pair and fibre optic media. Ethernet is known to be very widely used as a consequence

of its widespread availability, high flexibility and easy installation, usage, maintenance

and management. In Ethernet, multiple LANs can be linked together via advanced

switching devices to create extended LAN networks.

In contrast to CAN, Ethernet networks apply a Carrier Sense Multiple Access /

Collision Detection (CSMA/CD) protocol to provide equal chance for each node in the

system to access the communication bus. This protocol provides the capability to detect

frame collisions when two (or more) nodes begin to transmit simultaneously. If a

collision occurs, each station will be notified to reschedule its transmission after a

random period of time. Such a mechanism has the potential to minimise the possibility

of further collisions. Although more collisions are likely to take place as the network

expands, the CSMA/CD can resolve majority of collisions in microseconds to avoid

frame losses.

Note that Ethernet is a seven-layer protocol based on the ISO/OSI model shown in

Figure 8-1. The only difference between the two models is that the data link layer in

Ethernet is divided into two sub-layers: Media Access Control (MAC) and MAC-Client.

For more information, see (CISCO, 2008). The basic frame format of Ethernet, as

defined in IEEE 802.3 standard, is shown in Figure 8-5.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 181

Preamble

Start
Of

Frame

Destination
Address

Source
Address Length/Type Data Pad

Frame
Check

Sequence
7 bytes 1byte 6 bytes 6 bytes 4 bytes 64 – 1500 bytes 4 bytes

Figure 8-5: IEEE802.3 frame format.

Briefly, Preamble section contains alternating ones and zeros (e.g.1010101…) that

notify the receiver of a coming frame and also synchronise its clock. Start-Of-Frame

also contains alternating ones and zeros and ends with two successive ones to indicate

that the next bit will be the first bit of destination address. Destination Address field

identifies the node(s) to which the message is transmitted. Source Address identifies the

sending node. Data field contains the transmission information which must not be less

than 64 bytes: otherwise, this field must be padded to reach the 64 bytes size. Frame

Check Sequence contains a 32-bit Cyclic Redundancy Check (CRC) which is used, as

in CAN, to check that the received frame is free of errors (CISCO, 2008).

An important issue, which must be taken into account, is that Ethernet bus may generate

EMI and be susceptible to crosstalk due to its very fast transmission rate. These effects

are usualy minimised by using Shielded Twisted Pair Cabling (STP) (TechFest, 1999).

8.3.4 Why does CAN remain the most attractive solution?

This section highlights the key limitations of the discussed CAN alternative protocols in

fulfilling the requirements for embedded designs which are concerned with in this

project: such designs are basically built on low-cost, resource-constrained embedded

microcontrollers and have a high degree of predictability and reliability requirements.

Although TTP can provide an excellent platform for hard real-time applications, its high

implementation costs and less availability (compared to CAN) have made it less

adopted in the design of many applications. In 2002, an article written by Charles J.

Murray in EE Times website highlighted that:

“TTTech's AS8202 communication processor, unveiled last spring, supports the TTP for

a cost of about $3 per chip, but such prices are based on volumes of 5 million chips, the

company said.” (Murray, 2002).

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 182

On September 2004, soon after this project started, a personal contact with TTTech staff

was made by Devaraj Ayavoo (an ex-member of the ESL research group) enquiring

about the price for a complete TTP-development set. He found out that a TTP-

development cluster – which supports up to 64 nodes – would cost around €15000 (this

was a TURN price for universities only). For the TTP/C controller, he was told that

there were only prototyping samples available for testing which would cost around €20

per chip. The TTTech staff also pointed out that network configuration tools would also

be required with the TTP hardware set. This seemed likely to add additional cost to a

system implemented with this protocol. Later in 2006, Devaraj Ayavoo (in his PhD

thesis) confirmed that the cost of the TTP protocol was still seen much higher than CAN

protocol. Furthermore, it is worth noting that TTP controllers are still not widely

supported by COTS microcontroller boards.

Similarly, FlexRay has not gained widespread popularity and is still difficult to be

found on COTS microcontroller platforms. Ayavoo (2006) provided a comparison

between some of the characteristics of four well-known network protocols: CAN,

TTCAN, TTP/C and FlexRay. He underlined that finding the most optimal solution is

not a straightforward decision since each protocol of these has strengths and

weaknesses. Such an argument was also supported by Short and Pont (2007). However,

Ayavoo highlighted that CAN network seems to be a good match for many automotive

systems mainly due to its low implementation cost. Short and Pont (2007) argued that

under some circumstances, where (for example) cost is not an issue or the bandwidth of

CAN network is insufficient, using advanced protocols such as FlexRay or TTP/C may

be an appropriate solution. They, however, noted that:

“Due to a lack of user experience with [FlexRay and TTP] protocols, and their

comparatively high cost, it may be desirable for system developers to continue to use

CAN where this is practical.”

If more basic protocols such as RS-485, LIN and Ethernet are compared with CAN, the

following observations can be made.

Unlike CAN, the UART-based protocols, such as RS-485, are so simple and have no

error-checking capabilities. This simply means that, for high determinism, error

handling mechanisms would be carried out in the application (software) layer leading to

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 183

an increased complexity of the system implementation in terms of processing and

memory overheads. Moreover, the data bandwidth used in such a protocol is often

insufficient as only one data byte can be transmitted at a time. Accordingly, RS-485

cannot compete with well-designed protocols like CAN for high determinism

(reliability). One more issue with this protocol is that the use of UART to connect the

microcontroller to the network may not be practical, since the number of available on-

chip UART transceivers are usually limited and may be needed for communication with

a PC during the operation time.

LIN network is, indeed, not designed to operate at high speeds. The maximum

reachable speed in LIN can be up to 20 Kbps (STMicroelectronics, 2002). Overall, LIN

is a low-cost solution used only to connect sensors and actuators locally with the

embedded processor that is connected to a larger network such as CAN.

Despite the great advantages of Ethernet, it can still have some drawbacks. For

example, the CSMA/CD mechanism to solve frame conflict problems in Ethernet makes

it very sensible to high bus load during which only 60% of the bus throughput is

actually utilised: to reduce the impact of such a mechanism, the network must run at

very high speeds (Shandle, 2003). In contrast, CAN addresses this problem by

employing a clever principle of arbitration based on message priorities (CSMA/CA: see

Section 8.3.2.2). On the other hand, Ethernet is not widely available on COTS

microcontroller boards. In general, Ethernet is less popular than CAN and cannot be

used to achieve the level of determinism that CAN achieves.

In the study carried out recently by Short and Pont (2007), it has been argued (and

practically demonstrated) that experience gained with CAN over the past years allows

the creation of extremely reliable systems using this protocol, only with a little more

care to be taken at the design and implementation process. An example of a highly-

reliable CAN system implementation was described and proved to be effective in

dealing with major CAN limitations such as inability to support reliable group

communication and bus redundant arrangements.

As a result, CAN remains the most preferred network protocol by many engineers

mainly due to its simplicity, low-cost, widespread availability and extensive use in

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 184

industrial systems as compared to other protocols. In his article published in 2003 and

titled “CAN: Network for Thousands of Applications outside Automotive”, Jack

Shandle noted that:

“CAN may be overlooked by some design engineers because of its simplicity and

modest bus speeds compared to Ethernet. But considering the fact that it has its roots

deep in the automotive industry, dismissing it may be a mistake. The benefits of the

automotive connection mean both mass-market semiconductor pricing and rock solid

infrastructure support. So it's not surprising that CAN continues to grow in both market

size and application diversity”

8.4 Scheduling protocols for multi-processor systems

8.4.1 Introduction

Although CAN supports event-triggered communication between nodes, it can be set to

work in a time-triggered way by employing high-level protocols on the existing CAN

hardware. There has been a great deal of previous work on developing techniques that

enable time-triggered communication on CAN fieldbus (e.g. Turski, 1994; Broster and

Burns; 2001; Broster, 2003; Donnelly and Cosgrove, 2004).

However, key successful work in this area have led to the development of well-

designed, high-level protocols such as TTCAN (Fuhrer et al., 2000) and S-C scheduler

(Pont, 2001). Each of these protocols is outlined in this section. However, for the

purpose of this study, more consideration is given to the S-C scheduling protocol.

8.4.2 Time-Triggered Controller Area Network (TTCAN)

8.4.2.1 Introduction

One consequence of employing NDBO mechanism in CAN arbitration (see Section

 8.3.2.2), is a creation of distributed network-wide message queue (Leen and Heffernan,

2001). This, in turn, leads to a possible scenario where some messages – of lower

priorities – are delayed indefinitely by higher-priority messages and, hence, miss their

deadlines. From this example, two drawbacks of CAN are addressed: the possibility of

missing deadline, and the non-deterministic message transmission latency time.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 185

To allow better scheduling strategy for high-reliability and safety-critical embedded

applications, time-triggered CAN (TTCAN) protocol was developed (Kopetz, 1997;

Fuhrer et al., 2000; Hartwich et al.,2002; Leen and Heffernan, 2001; Leen and

Heffernan, 2002; Muller et al., 2002; CiA, 2008; Ryan et al., 2004; Short and Pont,

2007).

8.4.2.2 Overview of TTCAN operation

TTCAN is viewed as a “time-triggered” communication protocol in which the message

transactions are initiated based on the time progression (Kopetz, 1997). TTCAN

provides a high level protocol built on the CAN data link layer and physical layer to

allow communication in time-triggered fashion as well as in event-triggered fashion

(CiA, 2008). Time-triggered communication in TTCAN is basically achieved by

employing a Time Division Multiple Access (TDMA) communication scheme (Ryan et

al., 2004).

The communication process in TTCAN is based on the following principles (Fuhrer et

al., 2000; Ryan et al., 2004). A time Master transmits a regular reference message in

order to create a global time base. The nodes across the network must synchronise their

clocks according to this reference message. Each node in the system can only transmit

data within a pre-allocated time slot (window) following the reference message. The

pattern of a reference message followed by time windows is called basic cycle (BC)

(Fuhrer et al., 2000). The sequence of basic cycles forms a matrix cycle (MC). Ryan et

al. (2004) defined the MC as the fixed pre-defined schedule for message exchange.

They also provided an example of a matrix cycle consisting of four basic cycles (see

Figure 8-6). Note that “merged arbitration” windows may contain more than one CAN

message. For further information, refer to Ryan et al. (2004). The TTCAN protocol uses

a synchronisation method with a maximum accuracy of +/- 1 bit time using a

combination of hardware and software. The protocol supports a static TDMA schedule

and provides “empty” slots that allow normal message arbitration for dynamic messages

(Short and Pont, 2007).

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 186

Reference
Message

Reference
Message

Reference
Message

Reference
Message

Message A Message B Message B Free Window Message E

Message G Message F Message C Message D Message E

Message E Message B Merged
Arbitration

Merged
Arbitration Message E

Free Window Arbitration Message C Message D Message E

Transmission
Column 0

Transmission
Column 1

Transmission
Column 2

Transmission
Column 3

Transmission
Column 4

Transmission
Column 5

BC 1

BC 2

BC 3

BC 4

Figure 8-6: Example of TTCAN Matrix Cycle. The figure is reproduced from (Ryan et al., 2004).

One clear advantage of TTCAN is that it exploits the underlying CAN error handling

capabilities, whilst improving the overall timing performance of CAN aiming to achieve

highly-predictable and deterministic network operations.

Various studies have considered the use of TTCAN in various application domains due

to its simplicity and robustness: for more details, see (Fuhrer et al., 2000; Ryan et al.,

2004; Rodriguez-Navas et al., 2003).

8.4.3 Shared-Clock (S-C) protocol

8.4.3.1 Introduction

Despite that TTCAN provides a good communication platform for many real-time

systems, the TTCAN hardware is not widely supported by the COTS microcontroller

boards. Moreover, it was argued that a full implementation of TTCAN requires

dedicated hardware that is not yet widely available (Short and Pont, 2007). This, in turn,

increases the complexity and, hence, the cost of implementations using this protocol.

An alternative solution to provide a reliable time-triggered communication on CAN

without the need for additional hardware or software clock synchronisation algorithms

is to implement a “software-based only” protocol which will basically organise the

transmission of messages (and hence the operations of tasks) in a timely manner whilst

maintaining a high resource efficiency.

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 187

Over the last years, the ESL researchers have been involved in the development of

reliable embedded systems based on time-triggered software architectures. The

previous work in this area has considered the development of techniques for both

single- and multi-processor embedded designs. In the case of multi-processor designs,

they have demonstrated that a “Shared-Clock” (S-C) scheduling protocol – used in

conjunction with the TTC scheduling algorithm – can provide a simple, flexible and

predictable platform for many real-time embedded systems (Pont, 2001). This protocol

is described in this section.

8.4.3.2 Shared-clock (S-C) scheduler

The “Shared-Clock” (S-C) architecture, developed by Pont (2001), was aimed to

provide a simple and low-cost software framework for time-triggered systems without

requiring specialised hardware. The S-C scheduler operates as follows (Figure 8-7). On

the Master node, a conventional (co-operative or hybrid) scheduler operates and the

system is driven by periodic interrupts generated from an on-chip timer. On the Slave

nodes, a very similar scheduler operates. However, on the Slaves, no timer is used:

instead, the Slave scheduler is driven by interrupts generated through the arrival of

periodic “Tick” messages sent from the Master node. By doing so, all nodes will be

synchronised according to one reference clock (which is the Master clock).

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

Figure 8-7: Simple architecture of Shared-Clock (S-C) scheduler.

Overall, the S-C scheduler is extremely simple and supports a number of low cost (but

effective) error-handling mechanisms (Section 8.4.3.3). The network communications

follow a Time-Division Multiple Access (TDMA) protocol, and the system behaviour is

highly-predictable (Ayavoo et al., 2007). In such a scheduling protocol, the Master Tick

message holds data for a particular Slave or a group of Slaves. The first byte of the

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 188

transmitted data is therefore reserved for the Slave or Group identifier (ID) to which the

tick message is addressed. Only the addressed Slave(s) must reply a form of

acknowledgement “Ack” message to the Master straight after the Tick message is

received (see Pont, 2001 for more details).

Please note that in such architectures, the jitter between the timing of Master and Slave

nodes can be quite high due to bit stuffing mechanism in CAN hardware. To provide an

effective solution to this problem, a range of data coding techniques have been proposed

and evaluated in this project. These are “XOR masking”, “software bit stuffing” and

“eight-to-eleven modulation”. Such techniques are described in detail in Appendix E.

8.4.3.3 Error-handling mechanisms in S-C protocol

To achieve high degree of reliability, the S-C scheduler applies several error detection

and recovery mechanisms. For example, a Slave can detect an error on the Master by

measuring the time period between every two ticks and once it exceeds the tick interval

(which is deterministic) the Slave knows that an error has occurred in the Master node.

Since the S-C follows the TDMA protocol allowing the Master to talk to each node

individually, the Master can easily detect an error on any Slave if no “Ack” message is

received from a particular Slave within its allocated time interval.

Once an error is detected in the S-C network, appropriate handling mechanism(s) must

be employed. For example, when a Slave detects a failure in the Master, it enters a “safe

state” and waits until an appropriate series of “start” commands are received from the

Master. The situation is more complicated when a Master detects a failure in one of the

Slaves. In this case, the Master can have three options (Pont, 2001):

• Enter a safe state then shut down the whole network.

• Reset the network.

• Start a backup Slave.

8.5 Conclusions

Having completed the work on single-processor embedded systems in the previous

chapters, this chapter began to address the implementation issues for (distributed) multi-

 Chapter 8: Network and scheduling protocols for multi-processor embedded systems 189

processor embedded systems. The chapter reviewed key previous work in this area and

linked it to the work concerned with in this thesis.

The focus of the discussions in this chapter was on systems using Controller Area

Network (CAN) protocol for message transmission. The chapter reviewed CAN in

detail and compared it with other network protocols. The key features of CAN – over

alternative protocols – were summarised as simplicity, low-cost, availability and

widespread use in industry.

The discussions then moved on to consider ways for implementing “high-level”

protocols on the CAN hardware to improve its operational characteristics: in particular,

to allow the network operate in time-triggered manner rather than event-triggered.

Particular concern was given to the Shared-Clock (S-C) scheduling protocol which

offers a very flexible and predictable platform for many real-time embedded systems.

The next chapter describes how the S-C scheduling protocol can be implemented on

CAN network and reviews a number of possible implementations for such a protocol.

Chapter 9

TTC-SCC scheduler implementations

9.1 Introduction

As in the discussions provided in Chapter 8, despite that CAN supports an event-

triggered communication, time-triggered behaviour can be achieved if simple, cost-

effective software protocols (such as Shared-Clock (S-C) schedulers) are implemented

with the CAN hardware (Pont, 2001).

Like any other scheduler, the S-C scheduling protocol can have a large number of

possible implementation options, where each implementation is expected to produce

different patterns of behaviour at the system run-time. In another word, the ‘one-to-

many’ relationship (discussed in Chapter 3) does also apply between the S-C scheduling

protocol and its low-level implementations.

As noted earlier in this thesis, it is impossible to cover all possible implementation

options for a given scheduler in a single study. Therefore, this chapter reviews a

selective set of the various possible ways in which S-C scheduler can be implemented in

low-cost embedded systems. Such a representative set of S-C schedulers will be used as

a basis for assessing the effectiveness of the STC technique in testing multi-processor

embedded designs.

Note that this chapter reviews five different implementations for S-C scheduler. Four

implementations have been taken from studies conducted previously in the ESL

research group, while only one implementation is proposed in this project24.

24 The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.

 Chapter 9: TTC-SCC scheduler implementations 191

9.2 Implementing S-C scheduler on CAN protocol

The S-C scheduler can be implemented on a wide-range of network protocols used in

the design of multi-processor embedded systems, such as CAN, RS-485, TTP and

FlexRay. The work presented in this study is, however, focused on implementations

using CAN network protocol. The multi-processor systems considered in this study are

based on the following three-level implementations:

• TTC-Dispatch scheduler implemented in each individual node to achieve time-

triggered operations of scheduled tasks.

• CAN network protocol implemented as a hardware platform on which the

communicating nodes transmit their messages.

• S-C scheduling protocol – implemented on top of the CAN – as a software

platform to achieve time-triggered communications between the nodes connected

in the embedded network.

The resulting system is best described as a “TTC-SCC” scheduler25 (Ayavoo et al.,

2007). Overall, the use of TTC-SCC scheduler can be so attractive due to its

exploitation of the error handling features offered by the underlying CAN hardware,

whilst – at the same time – allowing the network to behave in a highly-predictable time-

triggered manner. The TTC-SCC scheduler has been widely adopted by ESL

researchers to implement various distributed embedded applications. For example,

Ayavoo et al. (2004); Short and Pont (2005) demonstrated how such a scheduling

protocol can be used to implement different versions of automotive cruise control

system for use in passenger car. The testbed considered in (Ayavoo et al., 2005; Short et

al., 2006; Short et al., 2007), which was based on X-by-wire control system, also used

this protocol. Similarly, Edward (2004) built an inverted pendulum testbed using several

nodes, associated with different sensors and actuators, which communicated with each

other through a TTC-SCC scheduling protocol.

25 TTC-SCC is an abbreviation for Time-Triggered Co-operative, Shared-Clock, CAN.

 Chapter 9: TTC-SCC scheduler implementations 192

9.3 TTC-SCC1 scheduling protocol

9.3.1 Introduction

The implementation of the first version of the TTC-SCC scheduler – as described in

(Pont, 2001; Ayavoo et al., 2007) – is presented in this section. This particular

implementation will be referred to as TTC-SCC1.

9.3.2 Overview of the scheduler implementation

The TTC-SCC1 scheduler is a simple version of the TTC-SCC scheduling protocol.

TTC-SCC1 follows a Time Division Multiple Access (TDMA) protocol in which the

Master node communicates with only one Slave node per tick interval. The scheduler is

based on the following arrangements: first byte of the transmitted data is reserved for

the Slave Identifier (ID) to which the Master “Tick” message is addressed. Only the

addressed Slave will reply an acknowledgement “Ack” message to the Master where

this message must be sent back within the same tick interval in which the “Tick”

message is received.

The described mechanism is used by the Master to detect network and node failure.

More clearly, at each tick interval, the Master node checks if a valid “Ack” message is

received from the addressed Slave in the previous tick. If not, then the necessary actions

might be taken, for example, starting a backup Slave, or going into a safe mode. If a

correct “Ack” message has been received from that Slave, the Master will send Tick

message on the CAN bus which addresses the next Slave node, and so on.

Figure 9-1 illustrates an example of the TDMA round (cycle) for a TTC-SCC1 network

with one Master and three Slaves, where “Tick” messages originate from the Master

and the “Ack X” message is transmitted back from “Slave X”. The figure shows that

TTC-SCC1 follows a round-robin message scheduling approach in which all Slaves are

given equal time to transmit their messages. The figure clearly shows that the TDMA

round in the TTC-SCC1 is equal to the number of Slaves multiplied by the width of the

tick interval. Given that N is the number of Slaves and T is the tick interval, the TDMA

round can be calculated as follows:

 Chapter 9: TTC-SCC scheduler implementations 193

TDMA1 = NT
Equation 9-1

Tick Ack1

Tick interval Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack2 Tick Ack3 Tick Ack1

Figure 9-1: TDMA round for a four-node system using TTC-SCC1 scheduler.

To implement TTC-SCC1 scheduler, only two CAN messages are exchanged within a

tick interval: “Tick” and “Ack” messages. The “Tick” message is assigned a higher

priority than the “Ack” message. This is because the Master Tick messages are used to

generate the timing beat of the whole network and manage the transmission of

messages. Therefore, the first CAN Message Object (CMO 0) in the Master node must

be configured to send “Tick” messages where the second CAN Message Object (CMO

1) must be configured to receive “Ack” messages. The same configurations are to be

considered in the Slave nodes. However, in Slaves, CMO 0 is configured to receive

“Tick” messages from the Master and CMO 1 is configured to send “Ack” messages to

the Master. Furthermore, the timer interrupt on the Master node is enabled to generate

periodic interrupts for triggering the Master scheduler and, hence, sending “Tick”

messages to the Slaves. On the Slave nodes, the CAN interface will be configured to

generate a CAN interrupt on arrival of a valid “Tick” message, while Slave timer

interrupts are totally disabled.

Overall, CAN messages can have up to eight bytes data bandwidth. However, in any S-

C scheduler, one byte in each (Tick or Ack) message is reserved for Slave ID. This

allows up to seven bytes per message for data transfers between nodes. Please note that

the Slave ID byte in the Ack message is used by the Master to check that a given Slave

has responded correctly and hence has no failure.

 Chapter 9: TTC-SCC scheduler implementations 194

9.4 TTC-SCC2 scheduling protocol

9.4.1 Introduction

The TTC-SCC2 scheduler provides a small (but effective) modification to the original

TTC-SCC1 scheduler. An overview of the TTC-SCC2 scheduling protocol is presented

in this section. The particular implementation discussed in this section has been

described in detail elsewhere (Pont, 2001; Ayavoo et al., 2007).

9.4.2 Overview of the scheduler implementation

The round-robin approach used in the TTC-SCC1 scheduler to communicate with the

Slave nodes may not be efficient in some networks. For example, in some applications,

the Master node may need to communicate with a particular Slave node more frequently

than the other Slaves. This is (for example) to check the Slave’s status or acquire some

data samples. In order to achieve this, an enhanced implementation of the scheduler is

required: this is referred to here as “TTC-SCC2”.

The TTC-SCC2 scheduler provides a flexible TDMA round. For example, the status of

Slave 1, in the example shown in Figure 9-1, may need to be checked more frequently

than the status of Slave 2 and Slave 3. In this case, the TDMA round used must be

amended to meet such an application requirement. An example of appropriate TDMA

round that can be used for such a system is illustrated in Figure 9-2. In the example in

the figure, the TDMA round is equal to four tick intervals (i.e. 4T). This can be broken

down into 2T (for Slave 1 Ack message which is allowed to transmit twice in the

TDMA round) plus 2T (for Slaves 2 and Slave 3 Ack messages, each transmitted once

in the TDMA round). More generally, for N Slaves, the TDMA round can be calculated

as follows:

TDMA2 = (2N-2)T
Equation 9-2

 Chapter 9: TTC-SCC scheduler implementations 195

Tick Ack1

Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack2 Tick Ack1 Tick Ack3 Tick Ack1
Tick

interval

Figure 9-2: A simple TDMA configuration for a four-node system using TTC-SCC2 scheduler.

Figure 9-2 shows a simple example of TTC-SCC2 scheduler for a system which has a

small number of Slave nodes, and the Master node communicates with only one of the

Slaves more frequently than communicating with the other Slaves (in this case, at every

other tick).

In a more complicated scenario, assume that the system has five Slave nodes, and the

Master is required to check the status of (for example) Slave 1 at every three ticks

(instead of two ticks as in the example shown in Figure 9-2). This is illustrated in Figure

 9-3. In the example shown in the figure, the TDMA round is equal to 6T. This can be

broken down into 2T (for Slave 1 Ack message, the only message which is designated

two tick intervals) plus 4T (for Slaves 2, 3, 4 and 5 Ack messages).

Tick Ack
1

Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack
2 Tick Ack

3 Tick Ack
1 Tick Ack

4 Tick Ack
5 Tick Ack

1

Tick interval

Figure 9-3: A more complicated TDMA configuration for a six-node system using TTC-SCC2
scheduler.

Figure 9-3 shows an example of TTC-SCC2 scheduler for a system which has a

comparatively large number of Slave nodes and one of these Slaves requires checking

more frequently but at a lower rate than that required in the previous example (in this

case, at every three ticks).

To make the calculations more general, given that N is the number of Slaves, T is the

tick interval, SF is the frequently checked Slave, and F is the frequency of SF “Ack”

messages (in “ticks”), the TDMA round can be calculated as follows:

 Chapter 9: TTC-SCC scheduler implementations 196

T
F

FNTNT
F

FNNT
F
NNTDMA).

1
(.).

1
().

1
11(2

−
−

+=
−
−

+=
−
−

+−=

Equation 9-3

Of course, the number of Slaves which need to be checked at higher frequency is not

limited to one: there might be a few other Slaves which the Master is required to

communicate more frequently than the other Slaves. This would add more complexity

to the TDMA calculation expressed in Equation 9-3.

In general, TTC-SCC2 scheduler has been intended to meet the requirements of any

real-time control application. Therefore, the configuration of the TDMA round in such a

scheduler is considered an application-specific design parameter which allows the

Master to communicate with Slaves in an arbitrary way. For example, consider the

system illustrated in Figure 9-4. Here, the system has five Slaves and the TDMA round

is equal to 8T. It is impossible to find a general formula which can be used to calculate

the TDMA round for any system implemented using TTC-SCC2 scheduler. Instead, the

TDMA round for a given system will be dependent on the number of Slaves as well as

the message scheduling pattern used for that particular system.

Tick Ack
1

Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack
2 Tick Ack

1 Tick Ack
1 Tick Ack

3 Tick Ack
2 Tick Ack

4

Tick interval

Tick Ack
5

Figure 9-4: A TDMA configuration for a six-node system with arbitrary pattern using TTC-SCC2
scheduler.

Overall, to implement the TTC-SCC2 scheduler, the same configuration for CAN

message objects – as described in Section 9.3.2. – is used. The only difference between

the two schedulers is, again, the way the system talks to the various Slaves.

 Chapter 9: TTC-SCC scheduler implementations 197

9.5 TTC-SCC3 scheduling protocol

9.5.1 Introduction

Overall, The TTC-SCC1 and TTC-SCC2 schedulers are very simple and allow the

creation of low-cost, time triggered CAN-based networks with highly-predictable

patterns of behaviour (Ayavoo et al., 2007).

However, the two scheduling protocols have some limitations. For example, in TTC-

SCC1 and TTC-SCC2 schedulers, Slave-to-Slave communication is not permitted as all

communication is directed via the Master node (through “Tick” and “Ack” messages).

This causes the transmission time of data between any two Slaves to be comparatively

long. Moreover, the time taken to detect the failure of any Slave node can be very long,

since the Master checks the status of all (or some) Slaves only once per TDMA round.

As the TDMA round goes larger, the failure detection time would increase

correspondingly. Finally, tasks running on the Slave nodes will suffer from high jitter

due to CAN bit stuffing in the Master Tick messages (Ayavoo et al., 2007). Note that a

complete set of results which show such characteristics is provided in Chapter 11.

To resolve some of the outlined shortcomings of the TTC-SCC1 and TTC-SCC2

schedulers, the TTC-SCC3 was developed. An overview of this scheduling protocol is

presented in this section. Note that the particular implementation discussed here has

been described in detail elsewhere (Ayavoo et al., 2007).

9.5.2 Overview of the scheduler implementation

The TTC-SCC3 scheduler provides the facility for all Slave nodes to transmit their Ack

messages within one tick interval. As with TTC-SCC1 and TTC-SCC2, each time a

Tick message is sent from the Master, an ID is also sent within the message. However,

with TTC-SCC3, this is a “Group ID” (rather than a Slave ID). This simply means that

– if there is more than one Slave in a particular group – all Slaves in the group will send

their Ack messages simultaneously. In this case, it is the responsibility of the CAN

controller to deal with any collision between messages. Thereafter, the Master node

needs to ensure that all Slaves in the group addressed in the Tick message have replied

back before transmitting the next Tick message, and so on.

 Chapter 9: TTC-SCC scheduler implementations 198

To better explain the TTC-SCC3 scheduler, assume a four-node system as illustrated in

Figure 9-5. The figure shows how Slave Ack messages can be scheduled in a simple

TTC-SCC3 scheduler, where the three Slaves are permitted to transmit in the same tick

interval. In this case, the TDMA round is equal to the tick interval.

Tick Ack1

TDMA round
= Tick interval

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack1 Ack2 Ack3

Figure 9-5: A simple TDMA configuration for a four-node system using TTC-SCC3 scheduler.

In a more complicated scenario, assume that a system has N Slaves. The scheduler has

the option to schedule the Ack messages for all N Slaves in one tick interval, or

alternatively divide them between two tick intervals. For example, m Slaves can send

Ack messages in the first tick interval while the remaining N-m Slaves send Ack

messages in the second tick interval (where m < N). In general, the TDMA in such a

scheduler can be extended across multiple tick intervals. Figure 9-6 illustrates two

possible ways to schedule messages in a seven-node system using TTC-SCC3

scheduler. In Configuration A, the TDMA round consists of two tick intervals, each

allocated for three Slaves to send their Ack messages. In contrast, the TDMA round in

Configuration B is extended across three tick intervals, so that in each interval only two

Slaves can send their Ack messages.

 Chapter 9: TTC-SCC scheduler implementations 199

Tick Ack1

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack4 Ack5 Ack6

Configuration A

Configuration B

Tick Ack1

Time

Slave
Tick

Ack2 Tick Ack3 Ack4

Tick

Tick interval

TDMA round

Tick Ack5 Ack6 Tick

Master
Tick

TDMA round

Tick interval

Figure 9-6: Two possible TDMA configurations for a seven-node system using TTC-SCC3
scheduler.

More generally, given that N is the total number of Slaves, m is the maximum number

of Slaves replying per tick and T is the tick interval, the TDMA round can be calculated

as follows:

m
TNTDMA =3

Equation 9-4

Please note that the TDMA in TTC-SCC3 can be much shorter than TDMA in TTC-

SCC1 and TTC-SCC2. For example, TDMA1 = NT and TDMA3 = NT/m. Thus, the

relationship between the two TDMA rounds can be expresses as:

TDMA3 =
m
1 × TDMA1

Equation 9-5

Remember that in the case where m = N (as in the example shown in Figure 9-5), then

TDMA3 = T.

Overall, the TTC-SCC3 scheduler allows that messages sent from the Slave nodes can

be broadcasted to both Master and all other Slave nodes. In order to allow practical

 Chapter 9: TTC-SCC scheduler implementations 200

implementation for the TTC-SCC3 scheduler, each Slave Ack message must be

assigned a unique CMO. Note that, as with TTC-SCC1 and TTC-SCC2 schedulers, such

Ack messages should not generate CAN interrupts on arrival at other nodes.

9.6 TTC-SCC4 scheduling protocol

9.6.1 Introduction

The TTC-SCC4 scheduler is another implementation of the S-C algorithm which was

adapted from the TTC-SCC3 scheduler. This section describes TTC-SCC4 scheduler

briefly. The particular implementation discussed in this section has been described in

detail elsewhere (Ayavoo et al., 2007).

9.6.2 Overview of the scheduler implementation

The motivation behind the development of TTC-SCC4 scheduler is to separate between

data messages and time-control messages in order to achieve higher predictability. More

specifically, the Master node in a TTC-SCC4 scheduler is set to transmit Tick messages

which contain no data. Such messages are used only to synchronise the local time of all

other nodes. In another word, the Master node has the responsibility to generate the

“heartbeat” of the network and then control the message transmissions over the

network. For example, it still has the responsibility to check the status of all Slave nodes

and deal with any node-failure. Moreover, it decides which Slaves must transmit in each

tick interval if the TDMA round is extended across multiple tick intervals (as in Figure

 9-6). In this case, the Master will use only one data byte for “Group ID” to which

particular messages are sent. Also, a new Slave node is needed to transmit the Master

data messages. Figure 9-7 illustrates how the TDMA round in the system shown in

Figure 9-5 will look like if TTC-SCC4 is used.

Tick Ack1

TDMA round
= Tick interval

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack1 Ack2 Ack3Ack4 Ack4

Figure 9-7: A simple TDMA configuration for a four-node system using TTC-SCC4 scheduler.

 Chapter 9: TTC-SCC scheduler implementations 201

It can be clearly noticed from the figure that the number of Slaves has increased by one.

This implies that the TDMA round in this scheduler is calculated as:

()
m

TNTDMA 14 +
=

Equation 9-6

Where N is the number of original Slaves, m is the maximum number of Slaves replying

per tick and T is the tick interval.

However, this simple modification to the previous S-C schedulers allows the Tick

messages to be of short and fixed lengths with the result that jitter caused by CAN bit

stuffing would be minimised. Remember that, in any S-C scheduler, Tick messages are

sent from the Master at each tick interval to drive the Slave schedulers. If such

messages have variable lengths, this is likely to introduce jitter in the timing of tasks

running in the Slave nodes (see Appendix E).

Since this scheduler is built on the TTC-SCC3, it provides the same features as those

outlined in 9.5.2 For example, a direct communication between any two Slaves is

permitted.

On the other hand, to implement such a scheduler in practice, an additional

microcontroller will be required as the number of nodes in the system has increased by

one. This is a disadvantage of such a scheduling protocol.

9.7 TTC-SCC5 scheduling protocol

9.7.1 Introduction

Despite the fact that the TTC-SCC4 scheduler helps to substantially reduce the jitter in

the Tick messages, the system requires – at least – one additional processor to generate

the timing beat of the network. In order to maintain the low levels of jitter without using

additional hardware, the TTC-SCC5 scheduler has been proposed in this project. This

scheduling protocol is described in this section.

 Chapter 9: TTC-SCC scheduler implementations 202

9.7.2 Overview of the scheduler implementation

In the TTC-SCC5 scheduler, the Master is configured to send out two types of

messages: Tick messages and Data messages. As with the TTC-SCC4 scheduler, the

Tick messages are configured to have “empty” data. This, again, means that these

messages are only used to generate the time-reference for the whole network while

processing no data. After a Tick message is sent out to all Slaves at each tick, the

Master can then send its data in its Data message (see Figure 9-8). The TDMA round in

TTC-SCC5 scheduler is calculated in the same way as in TTC-SCC3 scheduler (i.e.

TDMA5 = TDMA3)

Master
Tick Ack1

Time

Master
Tick

Slave
Tick

Ack2 Ack3

Tick interval

TDMA round

Master
Data

Master
Tick Ack4 Ack5 Ack6Master

Data
Master

Tick
Master
Data

Figure 9-8: A TDMA configuration for a seven-node system using TTC-SCC5 scheduler.

Note that the TTC-SCC5 design is adapted mainly from the TTC-SCC3 and TTC-SCC4

schedulers. Therefore, using this scheduler, jitter in the Slave ticks can be significantly

reduced. Moreover, messages sent by a given Slave will be broadcasted to all other

Slaves, allowing a direct communication (and hence reduced message transmission

times) between the Slaves.

To implement this scheduler practically, the Master node will have the following CAN

message Objects (CMOs):

• ‘CMO 0’ which is configured to send Master “Tick” messages.

• ‘CMO 1’ which is configured to send Master “Data” messages.

• ‘CMO 2 – CMO N+1’ which are configured to receive “Ack” messages from N

Slaves.

In the Slave nodes, the same configurations are to be considered. However, in Slave,

‘CMO 0’ is configured to receive “Tick” messages from Master, ‘CMO 1’ is configured

to receive “Data” messages from Master, ‘CMO 2’ is configured to send “Ack”

 Chapter 9: TTC-SCC scheduler implementations 203

messages to all nodes, and ‘CMO 3 – CMO N+1’ are configured to receive “Ack”

messages from the other Slaves. Note that – as with TTC-SCC3 and TTC-SCC4 – each

Slave node in the network is assigned a unique CMO for its Ack message in order to

achieve a Slave-to-Slave communication. Also note that, when this scheduler is used,

the Master Data messages and the Slaves Ack messages should not trigger CAN

interrupts.

9.8 Conclusions

This chapter reviewed a selective set of implementation classes for TTC-SCC

scheduling protocol for multi-processor embedded designs. The various

implementations were based on the architecture described in Section 8.4.3.2 which was

originally developed to provide a predictable software platform for real-time embedded

applications.

It has been made clear that the majority of the TTC-SCC implementations discussed in

this chapter were taken from previous studies carried out in the ESL research group.

Such implementations included: TTC-SCC1, TTC-SCC2, TTC-SCC3 and TTC-SCC4

schedulers. Subsequently, one new implementation was presented which suggests a

useful addition to the range of TTC-SCC schedulers. Such an implementation was

called TTC-SCC5 scheduler. The key feature of this scheduler is that it provides a

reduced jitter characteristic in the message transmission and maintains high resource

efficiency, having the network timing controlled by one of the existing system nodes

without the need for additional hardware as with TTC-SCC4 alternative.

It is essential to highlight that, although jitter due to bit stuffing in CAN hardware can

be minimised by altering the scheduler architecture (as discussed in this chapter), there

can be other possible ways to deal with such a problem. One suggested solution is to

pre-process the transmitted data so as to ensure that CAN bit stuffing mechanism would

always have the minimum effect (Nahas and Pont, 2005; Nahas et al., submitted). For

further reference, Appendix E reviews a wide range of data coding techniques

developed in this project to reduce the impact of CAN bit stuffing on task jitter in S-C

scheduling protocols.

 Chapter 9: TTC-SCC scheduler implementations 204

Like Chapter 5 in the thesis, this chapter provides the basis for the work presented in

Chapter 10 and 11, in which the reviewed TTC-SCC implementations form the testbeds

for assessing the effectiveness of the testing technique introduced in this project for

multi-processor designs.

Chapter 10

Scheduler Test Cases (STCs) for TTC-SCC schedulers

10.1 Introduction

Because of the complexity of multi-processor embedded systems, developing test cases

for such systems is a nontrivial process. The work presented in this thesis attempts to

address this problem (in part) by considering the combination of TTC scheduling

algorithms and S-C scheduling protocols implemented on CAN networks. In more

detail, the study explores the impact of using particular implementations of TTC-SCC

scheduling protocol on the overall timing behaviour of multi-processor embedded

designs by means of scheduler test cases.

Based on the approach discussed for single-processor systems, this chapter begins to

explore ways in which the STC methodology can be extended to assess the behaviour of

multi-processor embedded systems which are based on TTC-SCC scheduler. In

particular, a set of proposed “scheduler test cases” (STCs) is described in this chapter

with the aim to help in distinguishing the behaviour of the selective TTC-SCC scheduler

implementations discussed in Chapter 926.

10.2 The Scheduler Test Cases (STCs) for TTC-SCC protocol

10.2.1 Introduction

This section describes the various STCs developed in this study for TTC-SCC

scheduling protocol. The total number of STCs described here is five. More specifically,

STC A, STC B, STC C and STC D are intended to test the system behaviour under

26 The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 206

normal operating conditions, where STC E was intended to test the system behaviour

during the occurrence of errors.

As in the single-processor systems, each of the STCs presented was intended to address

a particular problem that have the potential to degrade the overall system predictability.

Note that in all test cases presented here, it is assumed that the system consists of one

Master and three Slaves connected via CAN fieldbus (Figure 10-1). The Master Tick

message is used to drive the local time of each of the three Slaves (as discussed in

Section 8.4.3.2).

Slave 3Slave 2Slave 1

CAN bus

Tick message

Master

Figure 10-1: Hardware architecture of the multi-processor system used for the STCs.

10.2.2 STC A (jitter behaviour)

As indicated in Chapter 3, a particular focus of this study is on the impact of

implementation decisions on system predictability which can often be measured by the

levels of jitter. Generally, jitter in multi-processor embedded systems can arise from

different sources, such as delay in network caused by a route consisting of several hops

(Baruah et al., 1999), network protocol (e.g. Ethernet, CAN) (Tindell and Burns, 1994),

and the variations in message transmission times (Nolte et al., 2002).

Remember that in the case of single-processor architectures, the jitter was measured at

the task level. In contrast, people working on multi-processor architectures are often

concerned with the jitter caused by message transmission. Such a jitter can be defined as

the variation in the time taken to transmit a message from one node to another. In many

applications, exchanged data messages are used by the networked processors to adjust

their timing base according to one time reference (Fuhrer et al., 2000). In situations

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 207

where exchanged messages have highly-variable transmission durations (i.e. jitter), this

can result in unpredictable operation of the whole network.

Particularly, in TTC-SCC systems, the timing of the individual nodes is synchronised

by sharing a single clock source between the various processor boards in the system:

this clock is distributed through the Master Tick message (Pont, 2001). If the Master

Tick message varies in length, then the Slave scheduler ticks and, hence, the execution

time of tasks running on the Slave will suffer from jitter. This can be further illustrated

in Figure 10-2.

Tick
message

Tick
message

Tick
message

T T

T T

T-jT+j

Time

Slave Ticks (with jitter)

Slave Ticks (ideal)

Master Tick

Figure 10-2: Impact of Tick message variation on the timing of Slave ticks in TTC-SCC systems.

In a CAN bus, the bit-stuffing mechanism (introduced in Section 8.3.2.6) inserts an

additional bit of opposite polarity when five consecutive bits with the same polarity are

transmitted on the bus (e.g. 11111 or 00000). This is aimed at providing edges to allow

receivers to re-synchronise their internal timing. Whilst providing an effective

mechanism for clock synchronisation in the CAN hardware, such a bit-stuffing

mechanism causes the frame length to become (in part) a complex function of the data

contents.

It is useful to understand the level of message variation that this process may induce.

When using (for example) 8-byte data and standard CAN identifiers, the minimum

message length will be 111 bits (without bit-stuffing) and the maximum message length

will be 135 bits (with the worst-case level of bit-stuffing) (Nolte et al., 2002). This

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 208

translates to a possible variation of approximately 22% of the total message length. For

example, at the maximum CAN baud rate (1 Mbps), the variation in the message length

will be 24 μs27. Once transmission starts, a CAN message cannot be interrupted, and the

variation in transmission times therefore has the potential to have a significant impact

on the predictability of systems using CAN protocol.

Overall, obtaining full synchronisation between the communicating nodes in a multi-

processor embedded design is a key factor to achieve predictability. Therefore, STC A

is developed to assess the jitter levels in the relative timing of Master and Slave ticks in

a TTC-SCC network. As in the single-processor study, results from this STC are

empirical.

In STC A, the system has one task (Master_Task_A) running on the Master node and

a corresponding task (Slave1_Task_A) running on Slave 1 node. Given that

“Master_Task_A” sends random data to “Slave1_Task_A” every time it is called,

jitter test assesses the variation in the time delay between these two communicating

tasks. Please recall that all other Slaves will receive Master data at the same instant over

the CAN link. Also note that the overheads of the Master and the Slave schedulers –

which are based on TTC-Dispatch (5.4) – do not introduce any jitter and, hence, the

jitter observed is only caused by the communication protocol (Nahas et al., 2004) 28.

10.2.3 STC B (Master-to-Slave message latency)

STC B is developed to assess the communication latency between the Master node and

any Slave node in the network. Since such message latency times can be described

mathematically, the output results from this STC are in the form of mathematical

equations. It is worth highlighting that as the complexity of the scheduling algorithm –

27 Note that when the baudrate is below 1 Mbps, jitter levels will be seen higher.
28 In the implementation discussed in (Nahas et al., 2004), the ISR Update function which is called prior
to the tasks is set to have a fixed duration, therefore, no jitter is expected to arise from the “scheduler”
code.

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 209

under test – increases, the use of theoretical (as well as empirical) results can help to

provide more information about the behaviour of the system.

In this test case, the message latency between the Master and Slaves in all TTC-SCC

protocols is calculated. Assume that a given Slave node needs to respond to a switch-

press activity occurred on the Master board by performing some activities. If the switch-

press takes place at arbitrary instants, then STC B evaluates the best-case (minimum)

and the worst-case (maximum) message transmission times between the Master and the

Slave node.

10.2.4 STC C (Slave-to-Master message latency)

STC C is developed to assess the communication latency between any Slave node and

the Master node in the network. Results from this STC are also in the form of

mathematical equations.

In this test case, the message latency between any Slave and the Master in all TTC-SCC

protocols is calculated. Assume that the Master node needs to respond to a switch-press

activity occurred on a given Slave board by performing some activities. If the switch-

press takes place at arbitrary instants, then STC C evaluates the best-case (minimum)

and the worst-case (maximum) message transmission times between the Slave and the

Master node.

10.2.5 STC D (Slave-to-Slave message latency)

STC D is developed to assess the communication latency between Slave ‘X’ and Slave

‘Y’ in the network. Results from this STC are also in the form of mathematical

equations.

In this test case, the message latency between any two Slaves in all TTC-SCC protocols

is calculated. Assume that the Slave ‘Y’ needs to respond to a switch-press activity

occurred on Slave ‘X’ board by performing some activities. If the switch-press takes

place at arbitrary instants, then STC D evaluates the best-case (minimum) and the

worst-case (maximum) message transmission times between Slave ‘X’ and Slave ‘Y’.

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 210

10.2.6 STC E (node-failure detection time)

Having considered that STCs B, C and D assess the behaviour of the TTC-SCC system

under normal conditions, STC E is developed to assess the behaviour of the system

when an error takes place. As discussed in Chapter 8, node failure is a common error in

communication networks that might, in turn, reduce the overall reliability and

predictability of the system. Node failure describes a situation where one or more nodes

do not respond to messages sent from other nodes due to hardware / software error

occurred in the receiving node.

The STC E is developed to assess the behaviour of a TTC-SCC protocol when one of

the Slaves becomes temporarily out of order. The test case evaluates the worst-case time

taken by the network-Master to detect the failure and hence begin to handle it. Results

from this STC are also in the form of mathematical equations.

10.2.7 Memory and network bandwidth requirements

As previously done for single-processor schedulers, the memory requirements were also

reported here as a means for measuring the complexity of the various TTC-SCC

schedulers.

Moreover, in communication network, the utilisation of the available network

bandwidth is a major factor that affects network efficiency. Therefore, the bandwidth

utilisation in each TTC-SCC scheduling protocol was also reported.

Please note that, in the single-processor study, CPU overhead and average power

consumption in each TTC scheduler were measured and reported. In the multi-processor

study, it has been felt that such measurements would have no meaning and therefore no

CPU or power results were reported.

10.3 Conclusions

This chapter began to explore the applicability of the STC technique developed for

single-processor systems in wider embedded architectures. The chapter proposed a set

of Scheduler Test Cases (STCs) to help evaluate multi-processor embedded systems

when the TTC-SCC scheduler implementations reviewed in Chapter 9 are employed.

 Chapter 10: Scheduler Test Cases (STCs) for TTC-SCC schedulers 211

The discussions emphasised that the aim with these STCs was to assess the timing

behaviour of CAN-based networks implemented using TTC-SCC scheduling protocols.

The criteria considered in such an evaluation process included: the levels of jitter in the

relative timing of Master and Slave ticks, message latencies between any two

communicating nodes, and node-failure detection time.

It is important to note that such criteria were selected as key factors which can

somewhat help to assess the predictability of the system as a whole. For example, in S-

C networks, tasks in the receiving nodes are triggered by the arrival of messages sent

from the Master node. Assessing the jitter levels in the transmission time of such

messages allows predicting the time at which tasks in the receivers will execute and

whether or not they can meet their timing constraints. Also testing the ability of the

network to detect and hence deal with a node failure within a short time bound can help

assess the level of predictability in the whole system.

The results obtained from the practical application of the STCs described in this chapter

are provided in the next chapter (Chapter 11).

Chapter 11

Assessing the behaviour of TTC-SCC scheduler

implementations

11.1 Introduction

As in Chapter 7, this chapter provides the output results from the TTC-SCC

implementations (discussed in Chapter 9) when the STCs (described in Chapter 10) are

employed. The aim of this chapter is to explore the effectiveness of the extended STC

technique for multi-processor systems in assessing (and distinguishing) the behaviour of

the various implementation classes for TTC-SCC scheduler.

The chapter also begins by outlining the methodology used to obtain the results

presented later in the chapter29.

11.2 Methodology

11.2.1 Introduction

It is worth highlighting that the key results in the multi-processor study in this thesis are

presented using mathematical equations. Such equations were intended to provide a

description of the behaviour of each TTC-SCC scheduler considered. Using

mathematical approach, as previously noted, was found more meaningful in this

particular study than using only empirical approaches (as in the single-processor study).

This section describes the methodology used to obtain both the experimental and

theoretical results.

29 The work described in this chapter has been adapted from the study presented in the author’s
publication [2] listed in page xvi.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 213

11.2.2 Hardware and software setup

The experimental measurements in this study were conducted using Phytec boards

supporting Infineon C167 microcontrollers. The C167 is a 16-bit microcontroller with a

20 MHz crystal oscillator. The C167 board has additional on-chip support for CAN

protocol. The network nodes (one Master and three Slaves) were connected using a

twisted-pair CAN link. The CAN baudrate used was 1 Mbps, and 8-byte “Tick”

messages were used, with one byte reserved for the Slave ID, while the remaining data

bytes contained random values (see Section 8.4.3). The tick interval used was 4 ms.

Note that Pont (2001) provided a complete set of codes required to implement the TTC-

SCC protocol on 8051 processor hardware. For the 16-bit system considered here, the

8051 design was ported to the C16x family. The Keil C166 compiler was used (Keil

Software, 1998).

11.2.3 Jitter tests

To provide an indication of the timing behaviour of each system, two sets of parameters

were measured: the first one was corresponding to transmission times between

distributed nodes, and the second one was corresponding to the timing jitter.

To present the transmission periods between the Master and Slave nodes, three values

were recorded:

• Worst-case transmission time (WCTT): represented by the longest delay

between the execution of Task A on the Master node and the execution of Task A

on the Slave node.

• Best-case transmission time (BCTT): represented by the shortest delay between

the execution of Task A on the Master node and the execution of Task A on the

Slave node.

• Average transmission time (AVTT): represented by the average delay between

the execution of Task A on the Master node and the execution of Task A on the

Slave node.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 214

As mentioned previously, jitter in multi-processor systems can be represented by the

variation in time between an event in the Master and its corresponding event in the

Slave. To assess the jitter levels, two values were recorded:

• Difference (absolute) jitter: obtained by subtracting the best-case (minimum)

transmission time from the worst-case (maximum) transmission time obtained

from the measurements in the sample set.

• Average jitter: represented by the standard deviation in the measure of average

message transmission time.

Again, note that there can be many other measures to represent the levels of task jitter,

but these measures were felt to be appropriate for this study.

To make transmission delay measurements experimentally, a pin on the Master node

was set high (for a short period) at the start of the “Master_Task_A”. Another pin on

the Slave (initially high) was set low at the start of the “Slave1_Task_A”. The signals

obtained from these two pins were then AND-ed (using a 74LS08N chip: Texas

Instruments, 1988), to give a pulse stream with widths that represent the transmission

delays (Figure 11-1).

Figure 11-1: The method used to measure the transmission time in TTC-SCC schedulers.

These widths were measured using a National Instruments data acquisition card ‘NI

PCI-6035E’ (National Instruments, 2006), used in conjunction with appropriate

software LabVIEW 7.1 (LabVIEW, 2007). In each study, 5000 consecutive pulse

widths were measured and recorded: this, again, was found sufficient for the purpose of

this study.

1st transmission
period

3rd transmission
period

2nd transmission
period

From Master

From Slave

Output pulses

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 215

11.2.4 Message latency calculations

By going back to the STCs description in Chapter 10, the transmission delays must be

calculated between the time at which an activity takes place in one node and the

response to this activity in another node. This means that precise results can be obtained

if the delays are calculated between the time when data is generated in the sending node

and the time when the receiving node begins to handle this data.

Generally, if tasks have long execution durations, the data can be generated at any point

in time during the tick interval. In order to simplify the calculations, it has been

assumed – throughout this study – that all tasks have reasonably short execution times,

thus the data is always generated close to the start of tick interval. Moreover, it has been

assumed that the scheduler overhead time on Master and Slaves are very small and can

hence be neglected. Based on these assumptions, the message latencies will be

calculated between the start of the tick in which data is generated and the tick in which

data is received.

11.2.5 Node-failure detection time calculation

In this study, the error mode in the TTC-SCC scheduler has been represented by node

failure. Such an error occurs when a Slave node fails to respond to messages sent from

the Master or other Slaves in the network.

To assess the behaviour of the scheduler in the event of such an error, it has been

decided to calculate the worst-case time the Master processor would take to detect the

failure and begin to react to it (see STC E). To obtain worst-case scenario, it was

assumed that the Slave fails immediately after it has sent its Ack message to the Master.

The worst-case node-failure detection time will hence be calculated between this failure

time and the start of the tick in which the Master checks the status of this Slave.

11.2.6 Network utilisation tests

Network (i.e. bandwidth) utilisation in each protocol is also reported. The network

utilisation values are represented mathematically as functions of the lengths of the

various messages exchanged in the network (assuming 1 Mbps CAN speed) and the

scheduler tick interval. Note that network utilisation in each scheduler implementation

was presented as the average bandwidth per tick interval.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 216

11.2.7 Memory test

To reflect the scheduler complexity, the CODE and DATA memory values required to

implement each of the described scheduling protocol were recorded. The experimental

methodology described in Section 7.2.5 to obtain memory requirement results was again

used here.

11.3 Results

11.3.1 Applying STC to the TTC-SCC1 scheduler

This section presents the output results from the TTC-SCC1 scheduler.

11.3.1.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)

implemented with the TTC-SCC1 scheduling protocol.

Table 11-1: Task jitter from the TTC-SCC1 scheduler (all values in µs).

 µs

BCTT 162.9

WCTT 173

AVTT 166.3

Diff. Jitter 10.1

Avg. Jitter 1.5

The table shows that the difference and average jitter obtained from the TTC-SCC1

scheduler were 10 µs and 1.5 µs, respectively. This jitter was due to high variation in

Tick message lengths: such a variation was caused by the variation in the number of bits

stuffed by the CAN hardware in random data bytes. Remember that transmission times

here were measured between the Master’s task and Slave’s task (not between the ticks).

However, since Master and Slave schedulers did not vary in time, the jitter observed

was due to CAN bit-stuffing only.

The jitter values presented are seen significant (as will be shown later). Remember that

the CAN baudrate used in this study was set to its maximum value which is 1 Mbps. If

the network is set to run at lower speeds, then such jitter levels would increase, with

having more impact on the timing performance.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 217

11.3.1.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D

implemented with the TTC-SCC1 scheduling protocol.

Given that M is the Master Tick message length, T is the tick interval, TDMA1 is the

Time Division Multiple Access round and N is the number of Slaves, the message

latencies between any two nodes in the network are calculated as follows.

STC B: Master-to-Slave message latency

In the best-case scenario, the data to be transmitted from the Master to a Slave at a

given tick must be ready at the start of the tick interval and, therefore, it has already

been generated in the task(s) executed within the preceding tick interval. The Master

will hence be able to send this data with the Tick message due to transmit in the current

tick. In contrast, in the worst-case scenario, the Master decides to send data to a given

Slave straight after it has sent Tick message to that Slave.

Figure 11-2 shows an example where the Master node wants to communicate with S2

(i.e. Slave number 2). The best-case transmission process is illustrated using the “blue”

colour while the worst-case process is illustrated using the “red” colour.

Master
T ime

Master
Tick

Slave
T ick

TDMA

Data in
Send data

Data out

T M

Slave
Time

Data in
Tick
to
S1

Send data

Data out

TDMA M

Tick
to
S2

Tick
to
S3

Tick
to
S1

Tick
to
S2

Ack
from
S1

Ack
from
S2

Ack
from
S3

Ack
from
S1

Ack
from
S2

Figure 11-2: Master-to-Slave message latency in TTC-SCC1.

The figure clearly shows that in the best-case scenario, the data – generated in the first

tick – can be sent to S2 at the beginning of the second tick (where this tick is allocated

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 218

to exchange data with S2). S2 can then extract the data on arrival of the Master Tick

message. In the worst-case scenario, the Master needs to wait until the tick allocated for

S2 – in the next TDMA round – arrives during which it can send a Tick message with

data allocated for S2. Remember that Slave ticks are always delayed by M, since Slave

scheduler is triggered by the arrival of the Master Tick message.

The equations for the best- and the worst-case message latencies between the Master

and a given Slave are presented in the following table. Note that these equations are

simply derived from the graphical representation illustrated in Figure 11-2.

Table 11-2: Master-to-Slave latency equations in TTC-SCC1.

 Best-case latency Worst-case latency

Master-to-Slave latency T + M TDMA1 + M

STC C: Slave-to-Master message latency

Based on the explanation provided for STC B, the best- and the worst-case message

transmissions can be derived using Figure 11-3. Note that, in this case, although S2

replies its Ack message to the Master in the second tick interval (straight after receiving

the Tick message), the Master will not check the contents of S2 Ack message until the

start of the next tick (just before sending data to S3).

Master
Time

Master
Tick

Slave
Tick

TDMA

Data in
Send data

Data out

2 T
M

Slave
Time

Data in

Tick
to

S1

Send data

Data out

TDMA

M
Tick

to
S2

Tick
to
S3

Tick
to
S1

Tick
to
S2

Ack
from
S1

Ack
from
S2

Ack
from
S3

Ack
from
S1

Ack
from
S2

T

Figure 11-3: Slave-to-Master message latency in TTC-SCC1.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 219

Using the graphical representation illustrated in Figure 11-3, the equations for the best-

and the worst-case message latencies between a given Slave and the Master are

presented in the following table.

Table 11-3: Slave-to-Master latency equations in TTC-SCC1.

 Best-case latency Worst-case latency

Slave-to-Master latency 2T – M TDMA1 + T – M

STC D: Slave-to-Slave message latency

In the Slave-to-Slave communication, the situation is more complicated. To be able to

work out the message latency between any two Slaves in the TTC-SCC1 network, the

shortest distance between their corresponding tick intervals (i.e. the tick intervals in

which Slaves can send their “Ack” messages) must be calculated.

Given that X is the transmitting Slave and Y is the receiving Slave, the distance DXY

between “Ack-X” and “Ack-Y” is calculated as follows:

() ()()TNXYDXY mod−=

Equation 11-1

For example, consider the example shown in Figure 9-1. The distance between Ack-1

and Ack-3, where X = 1 and Y = 3, is calculated as: ((3–1) mod (3)) T = (2 mod (3)) T

= 2T.

In contrast, the distance between Ack-3 and Ack-1, where X = 3 and Y = 1, is calculated

as: ((1-3) mod (3)) T = (-2 mod (3)) T = T. Note that the message latency between any

two communicating Slaves is calculated as a function of DXY. This is further illustrated

in Figure 11-4 below.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 220

Master
T ime

Master
Tick

Slave
Tick

TDMA

Data in

2 T
Slave X
Time

Data in

Tick
to
S1

Data out

TDMA

Tick
to
S2

Tick
to
S3

Tick
to
S1

Tick
to
S3

Ack
from
S1

Ack
from
S2

Ack
from
S3

Ack
from
S1

Ack
from
S2

Slave Y
Time

Ack
from
S1

Ack
from
S2

Ack
from
S3

Ack
from
S1

Ack
from
S2

Slave
Tick

Process data Send data

Data out

Send data
Send data

Process data Send data

T

2 T

Tick
to
S2

Ack
from
S3

Ack
from
S3

Figure 11-4: Slave-to-Slave message latency in TTC-SCC1.

 The figure illustrates the communication process between S1 and S3 in the TTC-SCC1

scheduler. In the best-case scenario (blue colour), S1 sends the data (which was

generated in the preceding tick interval) with its Ack-1 message straight after the Master

Tick message is received. The Master will check the contents of Ack-1 message in the

following tick before it sends a Tick message addresses S2. The data can then be

completely processed and placed in the corresponding CAN data registers for

transmission with the following Tick message intended for S3. The diagram shows that

this process takes time equals to 2T (the distance between Ack-1 and Ack-3) plus one

additional tick interval.

In the worst-case scenario (red colour), the data is generated in S1 after it has already

sent its Ack-1 to the Master. This means that S1 can only send its data after a full

TDMA round. This results in increasing the message latency between S1 and S3 to be

equal to TDMA1 plus the distance between Ack-1 and Ack-3. Note that the process

shown in Figure 11-4 presents the communication between any two Slaves when DXY is

larger than T (i.e. Ack messages for the communicating Slaves are not transmitted in

consecutive tick intervals). When DXY is equal to T, then the communication process in

the described TTC-SCC1 becomes more complicated. This is simply because when the

Master receives data from S1 – as an example – it cannot send it immediately to S2

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 221

since the data intended for S2 has already been configured and placed in the CAN data

registers. This means that the Master always needs to wait for an extra TDMA round so

it can complete processing the data received from S1 and configure the Tick data

message.

The equations for the best- and the worst-case message latencies between the Master

and a give Slave are presented in the following table.

Table 11-4: Slave-to-Slave latency equations in TTC-SCC1.

 Best-case latency Worst-case latency

DXY > T DXY + T DXY + TDMA1
Slave-to-Slave latency

DXY = T 2 T + TDMA1 T + 2 TDMA1

Remember that in TTC-SCC1, TDMA1 = NT. By substituting this value in the equations

shown, the results can be simplified as follows:

Table 11-5: Slave-to-Slave latency equations in TTC-SCC1 (simplified formula).

 Best-case latency Worst-case latency

DXY > T DXY + T DXY + NT
Slave-to-Slave latency

DXY = T (N+2)T (2N+1)T

Note that when the number of Slaves N significantly increases, the message latencies

between the communicating Slaves will also increase by significant factors (except in

the best-case scenario when DXY >T). This implies that the described TTC-SCC1 may

not be the appropriate solution for multi-processor designs with a large number of Slave

nodes connected up in the network.

11.3.1.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-

SCC1 scheduling protocol.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 222

Tick Ack1

Time

Master
Tick

Slave
Tick

Tick Ack2 Tick Ack3 Tick Ack1 Tick

Failure on S1 just after i t
sends its Ack1 message

Failure on S1 is
detected by Master

TDMA T

M

Figure 11-5: Failure detection time in TTC-SCC1.

In TTC-SCC1, the Master node has to wait for a complete TDMA round before the

status of all the Slaves can be checked. Using Figure 11-5, the worst-case failure

detection time for the TTC-SCC1 scheduler is calculated as:

Worst-case failure detection time = TDMA1 + T – M = (N+1) T – M
Equation 11-2

In the example shown in Figure 11-5, the Master would take four Tick intervals (i.e.

TDMA plus one additional tick) to detect a failure on S1. The situation would become

worse if the number of Slave nodes N increases.

11.3.1.4 Network utilisation and memory requirements

Assume that all Ack message lengths are equal, and each one is represented by S, then

the network utilisation in TTC-SCC1 can be calculated as follows:

T
SM

NT
NSNM

TDMA
NSNMnutilisatioNetwork +

=
+

=
+

=
1

Equation 11-3

Remember that the number of Tick messages in each TDMA round was equal to the

number of Slaves. If the length of the Tick message is assumed equal to the length of

Ack message, then Equation 11-3 can be simplified as:

T
MnutilisatioNetwork 2

=

Equation 11-4

Table 11-6 summarises the memory required to implement the TTC-SCC1 scheduler.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 223

Table 11-6: Memory requirements (ROM and RAM) for the TTC-SCC1 scheduler.

ROM requirements

(Bytes)
RAM requirements

(Bytes)

Master 1666 30

Slave 1590 108

11.3.2 Applying STC to the TTC-SCC2 scheduler

This section presents the output results from the TTC-SCC2 scheduler.

11.3.2.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)

implemented with the TTC-SCC2 scheduling protocol.

Table 11-7: Task jitter from the TTC-SCC2 scheduler (all values in µs).

 µs

BCTT 163

WCTT 173.1

AVTT 166

Diff. Jitter 10.1

Avg. Jitter 1.4

The jitter levels in this scheduler implementation are seen similar to those obtained from

TTC-SCC1 scheduler. This is again due to CAN bit-stuffing impact on the Tick

messages which contained random data set.

11.3.2.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D

implemented with the TTC-SCC2 scheduling protocol.

Calculating message latencies in TTC-SCC2 scheduler is not straightforward. This is

because the Master communicates with Slaves in a random way depending on the

specification of the system for which the scheduler is used.

To get on with the calculations, it is important to define two parameters:

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 224

• The distance between successive ticks allocated for a given Slave: this is referred

to as DXX.

• The shortest distance between Ack messages from any two communicating Slaves:

this is referred to as DXY (as in TTC-SCC1).

Given that M is the Master Tick message length, T is the tick interval and TDMA2 is the

Time Division Multiple Access round, the message latencies between any two nodes in

the network are calculated as follows.

STC B: Master-to-Slave message latency

In the best-case scenario, the behavior is exactly the same as observed with TTC-SCC1

scheduler. However, in the worst-case scenario, after data is generated in a given tick,

the Master needs to wait until the following tick in which it can communicate with the

target Slave. This delay does not have to be as long as the TDMA round: instead, it

depends on DXX. The value of DXX must lie between T and TDMA2. For example, if the

Master communicates with the Slave only once in the TDMA round, DXX will be equal

to TDMA2. In contrast, if the Slave is allocated adjacent tick intervals to transmit its

Ack message, then DXX will be equal to T.

Figure 11-6 illustrates the process of Master to Slave 2 communication in the system

shown in Figure 9-4. In the worst-case scenario, data – which is generated immediately

after the Master sent Tick to S2 – can only be sent to S2 in the next tick allocated for

this Slave. In the example shown, this delay is equal to 4T. For S3, where only one tick

in the whole TDMA round is allocated, DXX will be equal to TDMA2, and so on.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 225

Master
Time

Master
Tick

Slave
Tick

TDMA

Data in
Send data

Data out

T M

Slave
Time

Data in
Tick
to
S1

Send data

Data out

Dxx M

Tick
to
S2

Tick
to
S1

Tick
to
S1

Tick
to
S3

Ack
from
S1

Ack
from
S2

Ack
from
S1

Ack
from
S1

Ack
from
S3

Tick
to
S2

Ack
from
S2

Figure 11-6: Master-to-Slave message latency in TTC-SCC1.

A summary of the results is provided in the following table.

Table 11-8: Master-to-Slave latency equations in TTC-SCC2.

 Best-case latency Worst-case latency

Master-to-Slave latency T + M DXX + M

Based on the discussion above, the worst-case Master-to-Slave latency will have the

minimum value of T + M and the maximum value of TDMA2 + M.

STC C: Slave-to-Master message latency

Again, the behavior here is similar to that observed in the TTC-SCC1 scheduler. The

only difference – as in Master-to-Slave communication – is that the TDMA2 term is

replaced by DXX in the equations. A summary of the results is provided in the following

table. Remember that DXX can have a value between T and TDMA.

Table 11-9: Slave-to-Master latency equations in TTC-SCC2.

 Best-case latency Worst-case latency

Slave-to-Master latency 2T – M DXX + T – M

Similarly, the worst-case Slave-to-Master latency will have the minimum value of 2T –

M and the maximum value of TDMA2 + T – M.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 226

STC D: Slave-to-Slave message latency

The situation here is slightly more complicated. Since the communication between

nodes in this scheduler has a random pattern, DXY cannot be calculated as a function of

X and Y (as with TTC-SCC1). For example, the distance between the Slave 1 and Slave

3 cannot be calculated as (3-1)T.

In order to present a general formula for Slave-to-Slave message latency, it is important

to know the “current” and the “next” distance between the Ack message of the sending

Slave and the Ack message of the receiving Slave. The “current” distance is denoted by

DXi Yi, while the “next” distance is denoted by DX(i+1) Y(i+1). For example, consider the

communication between S1 and S2 in the system shown in Figure 9-4. For these two

Slaves, DXi Yi = T and DX(i+1) Y(i+1) = 3T. In the same way, considering S1 and S3, DXi Yi =

T and DX(i+1) Y(i+1)= 4T. Note that the “current” distance must be the shortest distance

between the two communication Slaves and the “next” distance is the one follows it.

Accordingly, the message latencies between any two Slaves depend of both the

“current” and “next” distances. In the best-case scenario, when data is generated in the

previous tick to the current one, the message latency between S1 and S2 can be

calculated as follows.

Table 11-10: Slave-to-Slave latency equations in TTC-SCC2 (best-case scenario).

 Best-case scenario

DXi Yi > T DXi Yi + T
Slave-to-Slave latency

DXi Yi = T DXi Y(i+1) + T

Please note that DXi Yi denotes the distance between the Ack message of the sender and

the consecutive Ack message of the receiver, while DXi Y(i+1) is the distance between the

Ack message of the sender and the one after the next Ack message of the receiver.

Likewise, in the worst-case scenario, when data is generated in the current tick after

Ack message is sent, the message latency between S1 and S2 can be calculated as

follows.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 227

Table 11-11: Slave-to-Slave latency equations in TTC-SCC2 (worst-case scenario).

 Worst-case scenario

DX(i+1) Y(i+1) > T DXi Y(i+1)
Slave-to-Slave latency

DX(i+1) Y(i+1) = T DXi Y(i+2)

Please note that the best-case scenario here does not mean the shortest message latency,

and the worst-case scenario does not mean longest message latency.

The figure shows the message latency between S1 and S2 in the example provided in

Figure 9-4, where DXi Yi = T and DX(i+1) Y(i+1) > T. The figure shows that the best-case

scenario produced longer message latency than in the worst-case scenario.

Master
Time

Master
Tick

Slave
Tick

TDMA

Data in

Dxi y(i+1)
Slave X

Time

Data in

Tick
to
S1

Tick
to
S2

Tick
to
S1

Tick
to
S1

Tick
to
S2

Ack
from
S1

Ack
from
S2

Ack
from
S1

Ack
from
S1

Ack
from
S3

Slave Y
Time

Ack
from
S1

Ack
from
S2

Ack
from
S1

Ack
from
S1

Ack
from
S3

Slave
Tick

Process data

Data out

Send data
Send data

Process data

T

Tick
to
S3

Ack
from
S2

Ack
from
S2

Data in
Send data

Data out

Dxi y(i+1)

Figure 11-7: Slave-to-Slave message latency in TTC-SCC2.

11.3.2.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-

SCC2 scheduling protocol.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 228

Tick Ack1

Time

Master
Tick

Slave
Tick

Tick Ack2 Tick Ack1TickAck1 Tick

Failure on S1 just after it
sends its Ack1 message

Failure on S1 is detected
by Master

Dxx T

M

Figure 11-8: Failure detection time in TTC-SCC2.

In TTC-SCC2, the Master node has to wait until the status of the Slave is next checked.

Using Figure 11-8, the worst-case failure detection time for the TTC-SCC2 scheduler is

calculated as:

Worst-case failure detection time = DXX + T – M
Equation 11-5

In the example shown in Figure 11-8, the Master would take approximately three Tick

intervals to detect a failure on S1. Failure detection time for a given node in TTC-SCC2

scheduler would depend on the number of Slaves in the network, length of the TDMA

round, and the number of ticks – within the TDMA round – used to communicate with

that Slave. In some case, where (for example) TDMA2 is very long and the Slave is only

checked once per TDMA round, detecting failure in such a Slave can be too long. This

can have an important impact on the predictability of many networks.

11.3.2.4 Network utilisation and memory requirements

Assume that all Ack message lengths are equal and, where any Ack message is

represented by S, k is the total number of ticks in the TDMA round, M is the Master

Tick message length, then the network utilisation in TTC-SCC2 can be calculated as

follows:

()
T

SM
kT

SMknutilisatioNetwork +
=

+
=

Equation 11-6

If the length of the Tick message is assumed equal to the length of Ack message, then

Equation 11-6 can be simplified as:

T
MnutilisatioNetwork 2

=

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 229

Equation 11-7

Note that the network utilisation here is exactly similar to that with TTC-SCC1

scheduler. This is because, although the TDMA round is configured differently, each

tick interval can still not handle more than two messages: Master “Tick” and Slave

“Ack”.

Table 11-12 summarises the memory required to implement the TTC-SCC2 scheduler.

Table 11-12: Memory requirements (ROM and RAM) for the TTC-SCC2 scheduler.

ROM requirements

(Bytes)
RAM requirements

(Bytes)

Master 1710 31

Slave 1590 108

11.3.3 Applying STC to the TTC-SCC3 scheduler

This section presents the output results from the TTC-SCC3 scheduler.

11.3.3.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)

implemented with the TTC-SCC3 scheduling protocol.

Table 11-13: Task jitter from the TTC-SCC3 scheduler (all values in µs).

 µs

BCTT 162.9

WCTT 172.9

AVTT 166.2

Diff. Jitter 10

Avg. Jitter 1.5

The jitter levels in this scheduler implementation are seen similar to those obtained from

the previous two schedulers. This is again due to CAN bit-stuffing impact on the Tick

messages which contained random data set.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 230

11.3.3.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D

implemented with the TTC-SCC3 scheduling protocol.

Given that M is the Master Tick message length, T is the tick interval, TDMA3 is the

Time Division Multiple Access round, N is the number of Slaves, and m is the

maximum number of Slaves replying per tick interval, the message latencies between

any two nodes in the network are calculated as follows.

STC B: Master-to-Slave message latency

Basically, the results obtained here are similar to those obtained from the TTC-SCC1

and TTC-SCC2. However, since the TDMA round is shorter in the TTC-SCC3, this

results is a reduced message latency. A summary of the results is provided in the

following table.

Table 11-14: Master-to-Slave latency equations in TTC-SCC3.

 Best-case latency Worst-case latency

Master-to-Slave latency T + M TDMA3 + M

Please note that in the example given in Figure 9-5 (where TDMA3 = T), the Master-to-

Slave latency is fixed and always equal to T + M.

STC C: Slave-to-Master message latency

Again, the equations for the Slave-to-Master message latencies are similar to those

derived before (in TTC-SCC1 and TTC-SCC2). But, again, the message latencies are

expected to be much shorter in the TTC-SCC3 due to the shorter TDMA round. A

summary of the results is provided in the following table.

Table 11-15: Slave-to-Master latency equations in TTC-SCC3.

 Best-case latency Worst-case latency

Slave-to-Master latency 2T – M TDMA3 + T – M

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 231

Also note here that in the example given in Figure 9-5 (where TDMA3 = T), the Slave-

to-Master latency is fixed and always equal to 2T – M.

STC D: Slave-to-Slave message latency

STC D demonstrates a substantial difference between the behaviour of TTC-SCC3

scheduler and the previous schedulers. Since all Slaves are configured to receive Ack

messages sent from other Slaves, Slave to Slave message latency is substantially

reduced. This is further illustrated in Figure 11-9.

Slave
Tick

TDMA

Data in

T
Slave 1
Time

Data in

Data out

TDMA = T

Ack
from all
Slaves

Slave 2
Time

Slave
Tick

Data out

Send data
Send data

T

Ack
from all
Slaves

Ack
from all
Slaves

Ack
from all
Slaves

Ack
from all
Slaves

Ack
from all
Slaves

T

Figure 11-9: Slave-to-Slave message latency in TTC-SCC3.

Assume that S1 wants to send data to S2. In the TTC-SCC3 described, Slave-to-Slave

communication can be made directly without going through the Master. More clearly, in

the best-case scenario, data on S1 must be ready to transmit at the start of the tick (i.e.

data has been generated in the previous tick interval). The data will then be sent out in

the Ack-1 message to all nodes. At the beginning of the following tick, S2 (for which

the data is intended) will check the contents of Ack-1 message and hence extract the

requested data for use in that tick. In the worst-case scenario, where S1 decides to send

the data straight after transmitting Ack-1 message, it has to wait for a full TDMA round

(which is equal to T in the simple implementation shown in the figure) before which it

can send the data out with the next Ack-1 message to all Slaves. Once S2 receives the

Ack-1 message, the scheduler on S2 needs only one tick to process the Ack-1 message

and hence extract the requested data.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 232

Please note that the latencies between Slaves are almost same as the latencies between a

given Slave and the Master. These results are summarised in the following table.

Table 11-16: Slave-to-Slave latency equations in TTC-SCC3.

 Best-case latency Worst-case latency

Slave-to-Slave latency 2T TDMA3 + T

Again note that in the example given in Figure 9-5 (where TDMA3 = T), the Slave-to-

Slave latency is fixed and always equal to 2T.

Please note that a large value of m (the number of Slaves replying per tick) would

require that the tick interval should be extended to accommodate m Ack messages sent

from m Slaves. This increase in the scheduler tick interval may not be appropriate for

some applications where tick interval has to be extremely short. This means that it is

always a trade-off between message latencies and tick interval.

11.3.3.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-

SCC3 scheduling protocol.

The TTC-SCC3 allows the Master node to quickly receive Ack messages from the

Slaves. For example, Figure 11-10 illustrates an example where Slave1 suffers a failure

as soon as it has sent its Ack message. It is assumed here that the TDMA round is

extended across two tick intervals. As a result, the longest possible time for the Master

node to detect a failure on the S1 node is calculated as follows.

Worst-case failure detection time = TDMA3 + T – M = (N/m + 1) T – M
Equation 11-8

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 233

Tick Ack1

Time

Slave
Tick

Ack2 Tick Ack3 Ack4 Tick Ack1 Ack2 Tick

Master
Tick

T

Failure on S1 just after it
sends i ts Ack1 message

Failure on S1 is
detected by Master

TDMA

M

Figure 11-10: Failure detection time in TTC-SCC3.

Remember that TDMA here equals to NT / m. When all Slaves are allowed to reply in

one tick (i.e. N = m), then the worst-case failure detection time becomes equal to 2T –

M. This duration is slightly less than two Tick intervals (which is significantly less than

corresponding time in TTC-SCC1 and TTC-SCC2 for non-trivial networks).

11.3.3.4 Network utilisation and memory requirements

Again, assume that S is the length of any Ack message, then the network utilisation in

TTC-SCC3 can be calculated as follows:

T
mSM

m
NT

NSM
m
N

TDMA

NSM
m
N

nutilisatioNetwork +
=

+

=
+

=
3

Equation 11-9

Remember that the number of Tick messages in each TDMA round was equal to the

number of tick intervals (which is equal to N/m). If the length of the Tick message is

assumed equal to the length of Ack message, then Equation 11-9 can be simplified as:

()
T

MmnutilisatioNetwork +
=

1

Equation 11-10

Table 11-17 summarises the memory required to implement the TTC-SCC3 scheduler.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 234

Table 11-17: Memory requirements (ROM and RAM) for the TTC-SCC3 scheduler.

ROM requirements

(Bytes)
RAM requirements

(Bytes)

Master 1838 33

Slave 1722 116

11.3.4 Applying STC to the TTC-SCC4 scheduler

This section presents the output results from the TTC-SCC4 scheduler.

11.3.4.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)

implemented with the TTC-SCC4 scheduling protocol.

Table 11-18: Task jitter from the TTC-SCC4 scheduler (all values in µs).

 µs

BCTT 99.9

WCTT 102

AVTT 101

Diff. Jitter 2.1

Avg. Jitter 0.6

By configuring the Master Tick messages to be empty of data, the results show that the

impact of CAN bit stuffing has been significantly reduced. Note that – apart from

removing jitter in the data field – all bits in the control fields of CAN messages have

been selected with care so that they do not themselves introduce any variation in the

number of bit stuffing. Such a bit-value selection approach caused the bit-stuffing jitter

in CAN messages to be removed almost completely. However, the residual 2 µs jitter

(which is equal to 2 bit times for the CAN bus at 1 Mbps) has been found to be likely

generated by a clock-drift between the CAN controller and the microcontroller CPU:

this is further discussed in Appendix F.

11.3.4.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D

implemented with the TTC-SCC4 scheduling protocol.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 235

Overall, since the TTC-SCC4 scheduler was developed only to deal with jitter problem

in the TTC-SCC3 scheduler, the results obtained from the STCs A, B and C

implemented with TTC-SCC4 are expected to be similar to those presented in Section

 11.3.3.2. Remember that the TDMA round in TTC-SCC4 is equal to (N+1) T/m, where

N is the original number of Slaves.

However, STC B, C and D assume that Master and Slave should exchange “real” data

between them, therefore the equations for Master-to-Slave and Slave-to-Master shown

for the TTC-SCC3 do not work here anymore. This is again because the Master node in

the TTC-SCC4 scheduler cannot send data to (or respond to data from) Slave nodes. In

order to assess the scheduler behavior when the STCs A, B and C are applied to TTC-

SCC4 (in the same way as with the previous schedulers), it must be assumed here that

the additional Slave node will completely replace the original Master node in processing

data, but will still not be superior to other Slaves. Therefore, Master-to-Slave and Slave-

to-Master message latencies will be identical to Slave-to-Slave message latencies (in the

context discussed here).

STC B: Master-to-Slave message latency

Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 c)

STC C: Slave-to-Master message latency

Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 c)

STC D: Slave-to-Slave message latency

Same as Slave-to-Slave message latency in TTC-SCC3 (see Section 11.3.3.2 c)

11.3.4.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-

SCC4 scheduling protocol.

The results here are very similar to those obtained from the TTC-SCC3 scheduler. The

only difference is that the Tick message here is extremely short, therefore the worst-

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 236

case failure detection time for S1 in the example shown in Figure 11-10 is calculated as

follows.

Worst-case failure detection time = TDMA4 + T – MT = ((N+1)/m + 1) T – MT
Equation 11-11

Where N is the original number of Slaves and MT is the Master Tick message length:

this is in order to distinguish it from the ordinary Tick message which contains data in

its data field.

11.3.4.4 Network utilisation and memory requirements

Again, assume that S is the length of any Ack message, and MT is the length of the

Master Tick message, then the network utilisation in TTC-SCC4 can be calculated as

follows:

()

T
mSM

T
m

N

SNM
m

N

nutilisatioNetwork T
T +

=

 +

++

 +

=
1

11

Equation 11-12

Remember that the Tick message is sent from a dedicated Master node, and the number

of Slaves has increased by one: this is where the term (N+1) comes from. The length of

the Master Tick message is assumed shorter than the length of Ack message since it

contains no data, so S cannot be substituted by MT in the equation.

Table 11-19 summarises the memory required to implement the TTC-SCC4 scheduler.

Table 11-19: Memory requirements (ROM and RAM) for the TTC-SCC4 scheduler.

ROM requirements

(Bytes)
RAM requirements

(Bytes)

Master 1768 32

Slave 1722 116

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 237

11.3.5 Applying STC to the TTC-SCC5 scheduler

This section presents the output results from the TTC-SCC5 scheduler.

11.3.5.1 Jitter

This section presents the empirical results obtained from the STC A (jitter test)

implemented with the TTC-SCC5 scheduling protocol.

Table 11-20: Task jitter from the TTC-SCC1 scheduler (all values in µs).

 µs

BCTT 100

WCTT 102.2

AVTT 101.1

Diff. Jitter 2.2

Avg. Jitter 0.6

Jitter results obtained from this scheduler were exactly similar to those obtained from

the TTC-SCC4 scheduler. This is obviously due to the same configuration used for the

Master Tick messages (i.e. no data-bits were sent and control-bits were selected

carefully, thus no CAN bit-stuffing was required).

11.3.5.2 Message latencies

This section presents the results obtained from the STC B, STC C and STC D

implemented with the TTC-SCC5 scheduling protocol.

Given that MT is the Master Tick message length, MD is the Master Data message

length, T is the tick interval, TDMA5 is the Time Division Multiple Access round, N is

the number of Slaves, and m is the maximum number of Slaves replying per tick

interval, the message latencies between any two nodes in the network are calculated as

follows.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 238

STC B: Master-to-Slave message latency

Using TTC-SCC5 protocol, the Master-to-Slave communication process will slightly be

different than that achieved with the TTC-SCC3 and TTC-SCC4. This process is

described here.

By considering the best-case scenario, the data sent from the Master to Slaves is

assumed to be generated in the previous tick. However, this data will be sent with the

Master Data message (not with the Tick message). The recipient Slaves will, therefore,

process the received data in the tick following the tick in which the Master Data

message is received (in the same way the Ack messages are treated by the Master and

by other Slaves: see Figure 11-9). As a result, the best-case transmission time between

the Master and any Slave will be one tick longer than that achieved with the previous S-

C protocols.

Since the Master node is allowed to transmit its Data message every tick, it does not

have to wait for a full TDMA round before it sends its data in the worst-case scenario:

instead, it is able to send its data in the tick following the tick in which the data is

generated. Therefore, the best- and the worst-case transmission latencies will always be

identical in this scheduler. Please remember that the Slave clocks are always delayed –

according to the Master clock – by the value of MT which represents the length of the

Master “empty” Tick message. This is why this term appears in the equations. A

summary of the results is provided in the following table.

Table 11-21: Master-to-Slave latency equations in TTC-SCC5.

 Best-case latency Worst-case latency

Master-to-Slave latency 2T + MT 2T + MT

The results, in the table, show that the Master-to-Slave message latency in this

scheduler is always fixed and equal to 2T + MT.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 239

STC C: Slave-to-Master message latency

The Slave-to-Master communication process is identical to that achieved when the

TTC-SCC3 or TTC-SCC4 is used. Again, remember that the Slave clocks are always

delayed by the value of MT. A summary of the results is provided in the following table.

Table 11-22: Slave-to-Master latency equations in TTC-SCC5.

 Best-case latency Worst-case latency

Slave-to-Master latency 2T – MT TDMA5 + T – MT

STC D: Slave-to-Slave message latency

The latencies between the Slaves in this scheduler are similar to those obtained from the

TTC-SCC3 and the TTC-SCC4. A summary of the results is provided in the following

table.

Table 11-23: Slave-to-Slave latency equations in TTC-SCC5.

 Best-case latency Worst-case latency

Slave-to-Slave latency 2T TDMA5 + T

11.3.5.3 Node-failure detection time

This section presents the results obtained from the STC E implemented with the TTC-

SCC5 scheduling protocol.

Figure 11-11 illustrates an example where S1 suffers a failure as soon as it has sent its

Ack message. If the TDMA round is extended across two tick intervals, the longest

possible time that the Master node takes to detect a failure on the Slave node is

calculated as follows.

Worst-case failure detection time = TDMA5 + T – MT – MD = (N/m + 1) T – MT – MD
Equation 11-13

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 240

Master
Tick Ack1

Time

Slave
Tick

Ack2 Master
Tick Ack3 Ack4 Master

Tick Ack1 Ack2 Master
Tick

Master
Tick

T

Failure on S1 just after i t
sends i ts Ack1 message

Failure on S1 is
detected by Master

TDMA

Master
Data

Master
Data

Master
Data

MT

MD

Figure 11-11: Failure detection time in TTC-SCC5.

As discussed in Section 11.3.3.3, when all Slaves are allowed to reply in one tick (i.e. N

= m), then the worst-case failure detection time becomes equal to 2T – MT – MD.

11.3.5.4 Network utilisation and memory requirements

Again, assume that S is the length of any Ack message, then the network utilisation in

TTC-SCC5 can be calculated as follows:

T
mSMM

m
NT

NSM
m
NM

m
N

nutilisatioNetwork DT
DT ++

=

+

+

=

Equation 11-14

Remember that in each tick, the Master sends Tick message and Data message. The

Master Tick message is assumed shorter that the Data message, since it contains no

data. If the length of the Master Data message is assumed equal to the length of Ack

message, then Equation 11-14 can be simplified as:

()
T

MmMnutilisatioNetwork DT ++
=

1

Equation 11-15

Table 11-24 summarises the memory required to implement the TTC-SCC5 scheduler.

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 241

Table 11-24: Memory requirements (ROM and RAM) for the TTC-SCC5 scheduler.

ROM requirements

(Bytes)
RAM requirements

(Bytes)

Master 1884 34

Slave 1722 116

11.4 Summary of the results

This section summarises the results detailed in the previous sections. The section begins

by summarising and comparing the results which have been obtained empirically. The

jitter column presents the Difference jitter between Master and any Slave in the

network.

Table 11-25: Summary of the empirical results from all TTC-SCC schedulers.

 Memory overhead

Master Slave
Scheduler name

Jitter
(µs) ROM (Bytes) RAM (Bytes)

ROM
(Byte)

RAM
(Byte)

TTC-SCC1 10.1 1666 30 1590 108

TTC-SCC2 10.1 1710 31 1590 108

TTC-SCC3 10 1838 33 1722 116

TTC-SCC4 2.1 1768 32 1722 116

TTC-SCC5 2.2 1884 34 1760 118

It is clear from the results that TTC-SCC4 and TTC-SCC5 – where Tick messages

transmitted from the Master had fixed lengths – jitter was reduced by approximately

80% when compared to the TTC-SCC1, TTC-SCC2 and TTC-SCC3 schedulers. Again,

jitter is an important factor which reveals the predictability level of a system. For

memory requirements, it is clear that Slaves required the same memory overheads in

TTC-SCC1 and TTC-SCC2, and in TTC-SCC3 and TTC-SCC4. This is because the

Slave codes are identical in these cases. In the Master, it can be seen that the memory

overheads increased as the scheduler incorporated more features. For example, TTC-

SCC5 scheduler required the largest amount of memory overheads to be implemented

on the used hardware. However, such increases in memory requirements can still be

seen very small (i.e. approx 12% in the ROM and RAM as compared to the basic TTC-

SCC1 scheduler).

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 242

To provide a practical comparison between the communication behaviour in the various

schedulers considered, a small case study is used. The case study is based on the system

described in Section 11.2.2. In this system, three Slave nodes are connected up in the

network, CAN baudrate is 1 Mbps and the tick interval is 4 ms. Assuming

“standard”CAN messages (i.e. 11-bit identifier), “Tick” and “Ack” messages send

seven “random” data bytes along with the Slave / Group ID byte (except in the Tick-

only message which has no data), then the value of M, MD and S are equal to 135 µs

(with the worst-case level of bit-stuffing) and the value for MT is equal to 47 µs (without

data bytes and any bit-stuffing). The TTC-SCC schedulers used with this small network

has the following configurations:

Table 11-26: TTC-SCC models used in the case study to allow a comparison between
schedulers.

Scheduler name Model
TDMA
(µs)

Comments

TTC-SCC1 Figure 9-1 12 TDMA round consists of three ticks.

TTC-SCC2 Figure 9-2 16
TDMA round consists of four ticks. S1 is
allocated two ticks to send its Ack message,
while S2 and S3 only send their Ack once.

TTC-SCC3 Figure 9-5 4 TDMA = T, m = 3. All Slaves send their Ack
in the same tick

TTC-SCC4 Figure 9-7 4
TDMA = T, m = 4. The number of Slaves
increased by one. Tick message is very short
compared to Slaves Ack messages.

TTC-SCC5 Figure 9-8 4
TDMA = T, m = 3. Tick message is also very
short compared to Master Data and Slaves
Ack messages.

The results obtained from this case study are summarised in the following table. Note

that the following abbreviations are used: M-S (Master-to-Slave), S-M (Slave-to-

Master), S-S (Slave-to-Slave), NFDT (Node-failure detection time), NU (Network

utilisation), BC (Best-case) and WC (Worst-case).

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 243

Table 11-27: Results from the case study used to compare between TTC-SCC schedulers.

M-S1
Latencies

(µs)

S1-M
Latencies

(µs)

S1-S2
Latencies

(µs)
Scheduler

name

BC WC BC WC BC WC

NFDT (S1)
(µs)

NU
(%)

TTC-SCC1 4.135 12.135 7.865 15.865 20 28 15.865 6.75%

TTC-SCC2 4.135 8.135 7.865 11.865 20 24 11.865 6.75%

TTC-SCC3 4.135 4.135 7.865 7.865 8 8 7.865 13.5%

TTC-SCC4 8 8 8 8 8 8 7.953 14.675%

TTC-SCC5 8.047 8.047 7.953 7.953 8 8 7.818 14.675%

The results in the table clearly show how the STCs helped to distinguish the behaviour

of the various TTC-SCC scheduler implementations evaluated in this study. In more

details, it is clear that the TTC-SCC1 – although very simple and efficient – can

produce long delays in communication between nodes, especially when the worst-case

scenario is considered, and needs comparatively long time to detect a possible failure in

a Slave node. The TTC-SCC2 provides an improvement to these parameters while

maintaining high network efficiency. The simple case study used here evaluated the

communication latencies between S1 (which is more frequently checked) and S2 which

is checked once in the TDMA round. If both Slaves are checked only once and the

TDMA round increases, the message latencies would be expected to increase

correspondingly, with the result that TTC-SCC2 may not be a good alternative to TTC-

SCC1 for some systems.

Moving on to the next schedulers, it is clear from the results that in TTC-SCC3, TTC-

SCC4 and TTC-SCC5 – where all Slaves are permitted to transmit their Ack messages

simultaneously – the message latencies and failure detection time have been reduced

significantly. Of course, bandwidth utilisation has increased and would likely increase

more depending on the number of Ack messages allowed to transmit per tick interval.

This can be a major drawback in applications requiring small tick intervals.

Comparing TTC-SCC4 and TTC-SCC5, the results look almost the same. Remember

that TTC-SCC5 was built on TTC-SCC4 and aimed to provide the same level of

performance at lower cost. When comparing TTC-SCC5 with TTC-SCC3, Master-to-

Slave latencies are shorter (almost by half) in the TTC-SCC3 and the network utilisation

 Chapter 11: Assessing the behaviour of TTC-SCC scheduler implementations 244

is slightly less. Apart from those, the performance is similar. Remember that in TTC-

SCC3, jitter levels are quite high as compared to those obtained from the TTC-SCC5.

11.5 Conclusions

This chapter began by describing the methodology used to obtain the results from multi-

processor TTC-SCC implementations considered in this thesis.

The chapter then provided the output results from the application of the STC technique,

detailed in Chapter 10, to the TTC-SCC scheduler implementations described in

Chapter 9. Again, the results suggested that there is no prefect implementation which

can fit all applications. However, according to the features concerned with in this thesis

for multi-processor embedded designs, it can be concluded that the TTC-SCC5

scheduler – developed in this project – can be an attractive solution for a wide range of

applications due to its low-jitter characteristics, short message latencies and node-failure

detection time, and low resource requirements.

Overall, the results presented in this chapter proved – practically – that the use of STC

technique is not limited to simple architectures. Instead, it can be easily adapted to

evaluate the implementations of scheduling systems with more complex software

architectures such as the S-C scheduling protocols considered in this study.

PART E:

DISCUSSION AND CONCLUSIONS

Chapter 12

Discussion

12.1 Introduction

Before concluding this thesis, this chapter discusses the work presented in the previous

chapters and highlights the key findings of this project. The studies detailed in this

thesis were divided mainly into four parts. Following the thesis introduction, the second

part was literature review which consisted of three chapters – according to the covered

topics. The topics discussed were real-time scheduling algorithms, scheduler

implementations and techniques for linking such two system representations in a

systematic way.

Having identified the gaps in previous work in such areas, the third part began to

address these gaps for single-processor embedded systems. The fourth and final part

then considered the work carried out on multi-processor embedded systems. The same

layout is followed in this discussion chapter.

12.2 Literature review

12.2.1 Scheduling algorithms

The literature review began by providing essential background material that is necessary

to understand the context of the work presented in the thesis. This material included

definitions and classifications of the following items: tasks, timing constraints, jitter,

software architectures, schedulers, schedule designs and scheduling algorithms.

It was emphasised that any real-time scheduler incorporates, at its heart, a scheduling

algorithm which has a major responsibility of managing the operation of tasks during

the system run-time. Since it is responsible of satisfying the timing constraints of tasks,

the scheduling algorithm was recognised as the key element that influences system

predictability.

 Chapter 12: Discussion 247

The discussion provided a detailed comparison between time-triggered and event-

triggered software architectures, and co-operative and pre-emptive schedulers. Based on

advantages and disadvantages of these different schemes, it was concluded that systems

which employ a combination of time-triggered architectures and co-operative

schedulers can have a highly-predictable patterns of behaviour compared with other

architectures. Therefore, over many available scheduling algorithms, Time-Triggered

Co-operative (TTC) schedulers were found to be a good match for a wide range of

applications, in which predictability is a key primary concern, such as safety-related

embedded systems.

Problems which might degrade the predictability of TTC schedulers have also been

outlined. These mainly included jitter and task overruns. Sources and possible solutions

to these problems have been discussed in brief, with a particular focus on the impact

that such problems can have on system predictability.

12.2.2 Scheduler implementations

For any project, once the scheduling algorithm has been decided and the task-schedule

designed, the next step to take place in the system development process is to implement

the scheduler using hardware and software resources. In this project, the target

hardware, on which schedulers have been implemented, was based on small (low-cost)

COTS embedded microcontrollers. The main focus was therefore on the process of

implementing the scheduler software on such hardware platforms using ‘C’ language,

being the most suitable language for programming real-time and embedded systems.

Discussions began by emphasising that there can always be a ‘one-to-many’ mapping

between any scheduling algorithm and its practical (software) implementations.

Evidence was provided that this is true in any scheduling algorithm. As noted, one

source of multiple implementations for a give scheduler is the use of “software design

patterns” (to create the scheduler code) which themselves can have a vast range of

possible implementation options. The discussions indicated that the key component

which – in practical use – controls the operational behaviour of an embedded system

incorporating a scheduler is the software implementation (typically represented by the

scheduler source code). It was also made clear that any – even small and by no means

significant – changes in the implementation decisions can have a profound impact on

 Chapter 12: Discussion 248

the overall system behaviour, therefore special consideration must be given to the way

the scheduler code is implemented.

Previous work on scheduler implementations using Ada and C languages was reviewed

using a substantial number of example studies. The chapter then focused on previous

work on TTC scheduler implementations. The key early and recently (by the ESL

research group) work in this area was reviewed in detail. It was shown how researchers

in the ESL group had a great deal of interest in developing embedded systems which are

based on TTC architectures. This was reflected by the number of projects carried out in

this particular area.

Discussions about scheduler implementations concluded by pointing out the key

limitations experienced in this research area. These can be summarised as follows:

• The process of translating between scheduling algorithms and scheduler

implementations, and the impact of using particular implementation decisions on

the actual run-time behaviour of embedded systems, have not been considered in

detail.

• Despite the useful work on TTC algorithms which is still ongoing, the various TTC

implementations developed so far in the ESL group have not been documented,

evaluated and linked using a systematic method. In each of the previous projects,

only one or two features – as to be addressed by the particular scheduler – were

assessed without considering other important features that might affect the user’s

decision when choosing between the various schedulers.

12.2.3 Linking scheduling algorithms and scheduler implementations

Having discussed the relationship between scheduling algorithms and scheduler

implementations, the thesis moved further to review previous work on software

evaluation techniques as a practical means for linking these two system representations.

The aim of this process was to find ways which help ensure that the features specified at

the design stage of a scheduling algorithm are not lost during the scheduler

implementation stage.

 Chapter 12: Discussion 249

In general, two main approaches were recognised as ways for evaluating software

systems, validation and verification. A clear distinction between these two terms was

provided by gathering and comparing numerous definitions from a range of well-

recognised dictionaries and reference books. It was concluded that validation is mainly

used to ensure that the final software product complies with user’s requirements, where

such a confidence cannot be achieved unless a verification – which checks the

conformance of each stage with its previous one – is applied consistently during the

whole development process. As indicated, software verification can be achieved

through static techniques, such as software inspections and formal methods, and/or

dynamic techniques, such as software testing.

The discussions provided, in detail, the advantages and disadvantages of the three

verification techniques outlined. In summary, despite the benefit of using software

inspections and formal methods – especially at the early stages in the development

process, software testing was recognised as the most effective way to provide a

confidence that the implemented software – in many applications – will behave exactly

as the user intended. To ensure more efficiency in testing real-time embedded software

and avoid the necessity for static verification techniques, automated code generation

was suggested as a way to verify that the software – before testing – is error-free and

precisely reflects the specifications defined at the design phase of a project.

The limitations in previous work in the area of testing and test cases were then

highlighted. These can be summarised as follows:

• Previous work on software testing mainly considered techniques for generating test

cases that check the functionality of the software, or its quality attributes.

• Previous work on real-time software testing was based on modelling the properties

of the system using formal methods. This inevitably adds complexity to the

verification process.

• No previous work was found which considered generating test cases to study the

effect of changing some (or all) of the implementation decisions for a given

scheduling algorithm on the overall embedded system behaviour which

incorporates this scheduler. Even very simple algorithms such as TTC have not

been tested in this regard.

 Chapter 12: Discussion 250

• Automated code generation, although useful, cannot provide the user with

information about the possible behaviour patterns the generated scheduler code

may produce after the system is executed. Also, the use of such techniques has not

been evaluated with complex, large-scale TTC scheduler implementations.

12.3 Single-processor study

12.3.1 TTC scheduler implementations

12.3.1.1 Overview

The work on single-processor systems in this thesis began by reviewing a set of

selective implementations for TTC scheduling algorithm which were either developed

previously in the ESL research group or recently in this project. It was emphasised that

the reviewed implementations were selected – according to their features – so that they

represent the full range of TTC scheduler implementations developed so far in the ESL

group. A brief summary of the features of such TTC implementations is provided in this

section.

Note that other examples which were not identified as representative TTC

implementations are reviewed and evaluated later in Appendix C. Figure 12-1

summarises all TTC scheduler implementations documented and evaluated in this

project. Note that those which were classified as “representative” implementations are

shaded to distinguish them from the others.

TTC-
Dispatch

TTC-
Adaptive

TTC-DVS

TTC-SL

Orig TTC-
Dispatch

TTC-ISR

TTC-SD

TTC-TG

TTC-MTI

TTC

Figure 12-1: All TTC scheduler implementations reviewed in this study.

 Chapter 12: Discussion 251

12.3.1.2 TTC-ISR scheduler

The TTC-ISR scheduler discussed in this thesis is a very simple version of the TTC

schedulers used in a wide range of practical systems. It has low resource requirements

and the behaviour is easy to understand (and predict).

However, the TTC-ISR implementation has two main drawbacks. The first drawback is

that it provides no clear separation between the “scheduler” and the “user” (application)

code. One consequence of this is that, if large numbers of tasks are used, the system

requires a large amount of hand coding and can be difficult to maintain. The second

drawback is that, because tasks are called from an “update” function which is linked to

the timer ISR, the system will lose track of any further timer “ticks” which occur during

the execution of (for example) long tasks. This second drawback means that the

scheduler is very fragile in the event of task overruns.

12.3.1.3 TTC Dispatch scheduler

The TTC-Dispatch scheduler addresses both of the TTC-ISR limitations. First, the

scheduler provides a clearer distinction between scheduler and tasks, making the system

always easy to maintain and expand. Secondly, the separation of the implementation

into an “update” and a “dispatch” functions means that the scheduler is more robust in

the event of task overruns.

12.3.1.4 TTC-DVS scheduler

One concern with time-triggered (as opposed to event-triggered) designs is that power

consumption can be increased. As discussed in this thesis, use of Dynamic Voltage

Scaling (DVS) can help to reduce the power consumption in TTC implementations

without jeopardising low-jitter behaviour.

12.3.1.5 TTC-TG scheduler

As noted, a TTC-Dispatch implementation has the ability to tolerate tasks which exceed

their predicted WCET values, however, this ability is limited. In the most severe cases,

an overrun could mean that a high-priority task tries to execute “for ever”, denying

lower-priority tasks access to the CPU. As discussed in this thesis, “task guardians” can

be added to the TTC-Dispatch design so as to provide a more flexible response in the

event of task overruns.

 Chapter 12: Discussion 252

12.3.1.6 TTC-MTI scheduler

A simple TTC implementation based on periodic timer interrupts provides highly-

predictable behaviour for the first task in every tick interval. However, if more than one

task are executed in a tick interval, the release times of later tasks will depend (in many

TTC implementations) on the execution time of earlier tasks. As demonstrated in this

thesis, use of multiple timer interrupts can significantly reduce jitter levels in later tasks.

Note that – because this scheduler is similar to the TTC-ISR scheduler in construction

(in that tasks are called from the ISR) – it has low resource requirements (i.e. less code

memory is required than for the Dispatch scheduler). However, the underlying

architecture means that it cannot support tasks which execute for longer than a single

tick interval.

12.3.1.7 TTC-Adaptive scheduler

To deal with task overrun problem while maintaining low levels of task jitter, this

scheduler has been developed. As previously noted in this thesis, dealing with task

overrun and task release jitter requires knowledge about the task WCETs. In previous

implementations, it was assumed that such values are provided to the scheduler by the

user. The TTC-Adaptive scheduler was developed to offer a flexible implementation in

which the user does not need to estimate the task WCETs during the design stage

which, in many cases, cannot be accurate and may hence cause a significant degradation

in the timing performance of the system.

As discussed in the thesis, the TTC-Adaptive scheduler employs an online measurement

method to calculate the WCET for all tasks over a sufficient period of time. Such values

are then used by the scheduler to adjust the timing of tasks and protect (guard) any task

from overrunning. Since it was adapted from the TTC-MTI scheduler, TTC-Adaptive

scheduler also has low resource requirements, e.g. low code memory is required.

12.3.2 STCs for TTC scheduling algorithm

As previously noted, the aim of this project is to bridge the gap between scheduling

algorithms and scheduler implementations in embedded systems employing TTC

architectures by means of testing. Since testing requires test cases, the work described in

this thesis proposed an effective set of “scheduler test cases” (STCs) to evaluate, and

 Chapter 12: Discussion 253

hence, compare the behaviour of the different TTC scheduler implementations

reviewed.

The technique presented employs four STCs in total, where each of these test cases

attempted to explore the response (behaviour) of the system under different condition.

For example, each test case was intended to investigate the impact of a particular

problem which might be linked to predictability in TTC schedulers. As previously

argued, the main two problems which can have significant impacts on predictability in

TTC systems are task jitter and overruns. Thus, STC A and B were developed to test the

capability of the system to deal with jitter that arises from tasks and schedule

(respectively). STC C investigated the impact of scheduling long tasks on the sequence

and timing behaviour of other tasks in the scheduler, where STC D finally tested how

the system would behave when a major error – such as a task overrun – took place.

In all STCs, except STC D, the sequence of task executions was recorded along with

tick and task jitter. In STC D, the way the system reacts to the task overrun is recorded.

In addition to these results, resource requirements to implement each of the compared

TTC scheduler implementations were also reported. Such measurements were used as

characterising features for each implementation. The aim with this process was to

provide the user with as much information as possible about each scheduler

implementation so that they can either select the most suitable scheduler for their

project or identify which category their existing scheduler belongs to.

12.3.3 Assessing the behaviour of TTC schedulers

The reviewed TTC scheduler implementations outlined in Section 12.3.1 formed the

testbed to examine the effectiveness of the STC technique summarised in Section

 12.3.2. This section provides a brief summary of the results detailed in Chapter 7 when

the STC technique was applied to the target TTC schedulers. In Chapter 7, first, the

experimental methodology used to obtain the required measurements was outlined.

Before presenting the results in each implementation, the way in which the STCs were

employed in that particular implementation was described. Thereafter, results – in terms

of task sequencing, overrun-handling, jitter, CPU, memory and power requirements –

were presented and analysed.

 Chapter 12: Discussion 254

A summary of the results was provided before Chapter 7 was concluded, where the key

results were listed and compared using both a summary table and illustrative graphs.

The graphs clearly show how each scheduler implementation can be superior to the

others in a particular area. For example, TTC-DVS cannot be competed with when

power consumption is the most crucial factor to consider, where this was on the account

of (for example) data and code memory overheads. Likewise, TTC-ISR was so simple

and required less memory overheads than other schedulers but produced extremely high

levels of tick jitter when a long task was scheduled in the system.

The results also show that with TTC-MTI and TTC-Adaptive implementations, the

behaviour of the TTC scheduler has been improved in areas including jitter and code

memory overheads, without compromising CPU, data memory and power consumption

as compared to the majority of schedulers. It is important to highlight that – in addition

to the jitter reduction feature – the two developed implementations provided effective

solutions to the problem of task overruns (this was shown in the summary table but not

in the graphs). Although TTC-TG scheduler provided a complete solution to task

overrun by employing appropriate “tasks guardians”, it did not address other problems

such as jitter which can, in many cases, cause the system behaviour to be entirely

unpredictable.

The study concluded by pointing out that a perfect TTC scheduler which matches the

requirements of every embedded design cannot be found in practice. It was therefore

suggested that the scheduler for a particular application must be selected based on (for

example) its timing, power, CPU and memory constraints.

12.4 Multi-processor study

12.4.1 Network and scheduling protocols

Having completed the work on single-processor embedded designs, the thesis moved on

to consider the various issues which relate to the process of implementing and

evaluating multiple-processor embedded systems. In particular, the thesis began to

investigate how far the STC technique (developed for single-processor-based

schedulers) can be used as the system goes more complicated. Thus, multi-processor

embedded architectures which are based on distributed schedulers were considered.

 Chapter 12: Discussion 255

The study provided by a discussion about the available network and scheduling

protocols which were extensively used (or highly recommended) in the design and

implementation of such systems.

These discussions began by network protocols for multi-processor designs. It provided

the key features of a wide range of protocols with a particular focus on Controller Area

Network (CAN) protocol that was selected to represent the hardware platform for all

implementations considered in this thesis due to a set of recognised features, such as

low-cost, availability and widespread use. CAN was described in a greater detail and

then compared to alternative protocols which included Time-Triggered Protocol (TTP),

FlexRay, RS-485, Local Interconnect Network (LIN) and Ethernet. It was emphasised

that TTP and FlexRay can be competitive solutions to CAN, but their limited

availability and use implies that CAN would remain the most appropriate choice for

many embedded designs.

 The discussions then considered high-level scheduling protocols – which can be used in

conjunction with CAN hardware – to obtain time-triggered network operations (as

opposed to event-triggered behaviour provided by the original CAN). Such protocols

included Time-Triggered CAN (TTCAN) and Shared-Clock (S-C) protocols. Based on

the features of each protocol, it was concluded that S-C schedulers can be a good match

for many embedded designs: mainly due to their simplicity, low-cost and high

predictability.

However, one key issue in the S-C protocol was highlighted: that is the jitter in the

relative timing of Master and Slave ticks caused by bit stuffing mechanism employed in

the CAN hardware upon which the S-C is implemented. To address such a jitter

problem, three new techniques – developed during the course of this project – were

listed. As noted, the techniques proposed were based on generic data coding

approaches. The complete description and evaluation of the techniques are provided

later in Appendices E.

 Chapter 12: Discussion 256

12.4.2 TTC-SCC scheduler implementations

12.4.2.1 Overview

As in the single-processor study, the work on multi-processor systems in this thesis

began by reviewing a set of selective implementation options for TTC-SCC scheduling

protocol which were either developed previously in the ESL research group or recently

in this project. Again, such implementations were identified as representative

implementations of the TTC-SCC scheduler. A brief summary of the features of these

implementations is provided in this section.

12.4.2.2 TTC-SCC1 scheduler

TTC-SCC1 is a simple version of the S-C protocol. It employs a simple TDMA protocol

in which the Master talks to one Slave only in each tick interval. The TDMA round was

therefore proportional to the the number of Slaves connected in the system. The two

major concerns about this implementation, as noted, were the possibility of having long

TDMA round and the lack of support for Slave-to-Slave communication. One

consequence of having long TDMA round in this scheduler (where the Master talks to

each Slave only once in the TDMA) is that a node failure may not be detected as

quickly as required: such behaviour can have a significant impact on system

predictability.

12.4.2.3 TTC-SCC2 scheduler

TTC-SCC2 was developed based on the TTC-SCC1 and intended to offer high

flexibility in the communication between the nodes. Initially, a simple example was

given in which the Master can talk to one particular Slave every other tick interval.

Such a Slave was described as a critical Slave which required to be checked by the

network-Master regularly at high rates. A slightly more complicated example was then

provided in which it was assumed that the Master talks to the critical Slave at any

frequency. The TDMA round for both cases was calculated and it was shown that it was

longer than that in TTC-SCC1.

It was then emphasised that the two examples represented only limited use of this

scheduler. A more general example was therefore given to show how the TDMA round

can have a random pattern. This is entirely based on application requirements.

 Chapter 12: Discussion 257

As with TTC-SCC1, this scheduler suffers lack of support for direct communication

between Slaves, thereby causing the transmission time between any two Slaves

comparatively long. Also the failure detection time of particular Slaves (which are

checked less frequently) can be very long.

12.4.2.4 TTC-SCC3 scheduler

The limitations observed in TTC-SCC1 and TTC-SCC2 were addressed through the

development of a third implementation of the S-C scheduler which was called TTC-

SCC3. Such an implementation allowed each Slave to send its messages to all Slaves in

the network. It also allowed the Master to talk to all (or a group of) Slaves within a

single tick interval, causing a significant reduction in the length of the TDMA round.

The major problem in this and all the previous schedulers, as discussed in detail, is the

high levels of jitter at the release time of Slave tasks due to variations in the length of

Tick messages. As previously noted, such variations are dependent on the nature of the

transmitted data in the Tick messages. If (for example) data sent in the Tick messages

are likely to be random, this can have more impact on the timing of Slave tasks.

12.4.2.5 TTC-SCC4 scheduler

TTC-SCC4 provided an attractive solution to the jitter problem caused by variations in

the transmission time of Tick messages. This was achieved by allocating a separate

node for generating the heartbeat of the network. This node was seen as a “tick-only-

Master” node which processes no data. The Master node in previous implementations

becomes an ordinary Slave node which only sends data messages. Apart from this

feature, the same message configuration – as in TTC-SCC3 – was used with this

scheduler.

The only problem with TTC-SCC4 scheduler is that it required an additional

microcontroller board only to send Tick messages while not being involved in any other

activities. This obviously caused a reduction in the resource efficiency.

 Chapter 12: Discussion 258

12.4.2.6 TTC-SCC5 scheduler

In order to combine the features of TTC-SCC3 and TTC-SCC4 without adding more

cost to the system, the TTC-SCC5 was developed in this project. Simply, such a

scheduler allowed the Master node to send two types of messages consecutively. The

first message was only to trigger the Slave nodes at precisely-fixed intervals, where the

following message was designated for Master data intended for all or some Slaves. The

implementation process of such a scheduler was described. It was pointed out that

although the bandwidth utilisation might be slightly reduced, due to the scheduling of

additional messages in the tick intervals, TTC-SCC5 can provide a highly-predictable

message and task operations compared to all previous implementations.

12.4.3 STCs for TTC-SCC scheduling protocol

As in the single-processor study, an appropriate set of “scheduler test cases” (STCs)

were developed to assess (and distinguish) the behaviour of the TTC-SCC schedulers

outlined in the previous section. The same conditions considered in the process of

developing STCs for single-processor systems were also appreciated here. For example,

the STCs were selected so that they help to discover the various aspects of the TTC-

SCC scheduler when implemented in practical systems.

It was noted that, in such a scheduling protocol, the Master and Slave nodes employ

TTC-Dispatch scheduler to manage the operation of their tasks. The aim with the STCs

was not to assess the behaviour of individual schedulers (as in single-processor study)

but to assess the S-C protocol employed to facilitate the communication between the

individual nodes. Therefore, the communication behaviour of each TTC-SCC scheduler

implementation was considered to be evaluated using test cases that specifically address

the communication latency between any two nodes in the network (STCs B, C and D)

and the time required to detect and handle a temporary node failure (STC E). To help

address the predictability of the system further, a test case (i.e. STC A) was developed

specifically to assess the jitter levels in the transmission time of messages sent from

Master to Slaves. Measurements for such kind of jitter were fairly important since its

levels influence the overall timing accuracy and hence predictability of the whole

network.

 Chapter 12: Discussion 259

12.4.4 Assessing the behaviour of TTC-SCC schedulers

Again, as with single-processor study, the reviewed TTC-SCC scheduler

implementations outlined in Section 12.4.2 formed the testbed to test the effectiveness

of the STC technique summarised in Section 12.4.3. This section provides a brief

summary of the results detailed in Chapter 11 where the STC technique was applied to

the various TTC-SCC schedulers. Chapter 11 began by outlining the methodology used

in obtaining the required results. Next, results were presented for each scheduler. The

results included jitter, Master-to-Slave, Slave-to-Master and Slave-to-Slave latencies,

node-failure detection time, bandwidth utilisation and memory requirements.

A summary of the results was presented at the end of Chapter 11 using a small realistic

case study that helped understand the different behaviour patterns of the evaluated TTC-

SCC schedulers. It was clearly shown that the STC is quite flexible so that it can be

adapted for use in any scheduling algorithm, regardless how complicated the system is.

Of course, the complexity of the test case design process for a particular system would

increase as the system goes more complicated.

12.5 Conclusions

This chapter provided a brief overview of the studies carried out in this PhD research

project and summarised the key obtained results. It began by highlighting the main gaps

identified in the literature review of research areas related to this project. Then, the

approaches proposed to fill these gaps were discussed in summary. For consistency, this

chapter followed the same structure used in presenting the previous chapters.

Chapter 13

Conclusions and future work

13.1 Introduction

Chapter 12 provided a summary of the work carried out in this PhD research project and

discussed the obtained results. Based on such discussions, this chapter draws the overall

thesis conclusions and provides some suggestions for future work in the areas

concerned with in this project.

13.2 Main achievements

As clearly stated in this thesis, the work carried out in this project aimed to bridge the

gap – which was identified but not systematically addressed – between the scheduling

theory and its implementations in practical real-time embedded environments. In order

to tackle this problem, the thesis attempted to address the process of translating between

the two core system-representations, scheduling algorithm and scheduler

implementation, while ensuring highly-predictable system behaviour during this

process.

The importance of each of such system components has been emphasised. However, it

was underlined that, even if the right scheduling algorithm is selected at the design

phase of the system development process, inappropriate decisions at the scheduler

implementation phase can lead to undesirable consequences, not least the inability of

the system to meet its functional and temporal requirements. This means that it is likely

that the system will behave incorrectly during all (or some) of its operating period. The

impact of improper scheduler implementation decisions on the system behaviour have

been discussed in detail.

The studies presented in this thesis mainly considered the process of implementing

Time-Triggered Co-operative (TTC) scheduling algorithm as a simple, low-cost

software architecture for many embedded applications which have severe resource

 Chapter 13: Conclusions and future work 261

constraints and require very high degrees of predictability. In order to link TTC

scheduling algorithm with its practical implementations, the thesis began by

categorising the various TTC scheduler implementations developed in the ESL research

group since 2001. In total, nine different implementations were collected. However,

only six of these were selected for detailed evaluation in this thesis. The particular TTC

implementations were selected in such a way that each implementation would be

expected to demonstrate recognisably different patterns of behaviour during periods of

normal and/or abnormal system operation. This led to a detailed review and evaluation

of only TTC schedulers which are representative of all implementations.

To be able to evaluate TTC schedulers, the thesis suggested that an appropriate

verification method must be applied between the TTC design and implementation stages

to ensure that an implementation matches the original design specification. By

reviewing a number of generic verification techniques, it was decided that only dynamic

verification techniques – namely testing – would be suitable to address this problem

since it facilitates examining the scheduler while it is running on the target hardware.

Therefore, the technique proposed to verify the TTC implementations was based on a

form of testing. However, it was emphasised that the STC technique was not an

ordinary testing method which checks the system against its required functionality.

Instead, the STC was specifically developed to assess the behaviour of TTC scheduler

with regards to a set of parameters that – in one way or another – influence the system

predictability.

The application of STC technique was found to be very effective in both single- and

multi-processor embedded systems due to the following reasons:

• It allowed a systematic classification and documentation of the various scheduler

implementations which have been developed in the ESL research group over the

last eight years.

• It helped identify a small set of “standard” forms of the scheduling algorithm (e.g.

TTC) that can satisfy the requirements of a wide range of time-triggered embedded

applications.

 Chapter 13: Conclusions and future work 262

• It helped understand – practically – the implications of using a particular scheduler

implementation on the overall operational behaviour of system implementing this

scheduler.

• It facilitated a detailed “black-box” comparison between the various scheduler

implementations without the need to access (or attempt to understand) the

underlying scheduler source codes.

• It helped assess the predictability levels of systems incorporating particular

scheduler implementations.

• It provided the facility to help user select the most appropriate scheduler

implementation for a particular project, or alternatively identify which scheduler

implementation has been used in their system. By doing so, the user would be able

to predict how their system is likely to behave in the future or, alternatively, decide

that a different form of system implementation should be employed.

13.3 Limitations and future work

Of course, there are limitations in any research project. This section attempts to identify

the key limitations of the project summarised in this thesis and proposes some ideas to

address some (or all) of them in a future work.

First, it must be noted that this project was concerned with testing the TTC scheduling

algorithm since it represents the simplest form of scheduler that is in widespread use.

This is because all tasks are scheduled in predefined sequence without interruption from

other tasks. As discussed in Chapter 2, TTC scheduler was seen simple and highly-

predictable. This simply means that if a project is to be launched, the designer should

begin by considering the use of such a scheduling algorithm for the system tasks. Only

in cases where the system cannot meet its requirements or achieve the level of

performance expected by implementing TTC scheduler is the scheduler dismissed and

alternative architectures considered.

The ESL research members has suggested that if TTC does not match a particular

application, where task pre-emption is needed to meet hard deadlines, then Time-

Triggered Hybrid (TTH) schedulers – which provide a limited degree of pre-emption –

 Chapter 13: Conclusions and future work 263

would be recommended. Having accepted that, the TTH schedulers need to be evaluated

in a systematic way. As with every other scheduling algorithm, TTH scheduler can have

a wide range of possible implementation options, each with different operational

behaviour (see Section 3.5.3). It would therefore be recommended to extend the STC

technique to be able to document, assess and compare the various implementation

classes of TTH in the same way as with TTC schedulers. For example, a test case would

be required to determine which of the co-operative tasks is to be converted into pre-

emptive, and how such a modification can affect the system behaviour. Similarly, the

STC technique can be extended to evaluate further scheduling algorithms in widespread

use such as Rate Monotonic (RM) and Earliest Deadline First (EDF). One of the

features that can be tested in such algorithms is the ability of the system to deal with

priority inversion problem.

Moreover, the TTC-Adaptive scheduler presented in Chapter 5 can also be extended.

For example, the existing version of this scheduler was found effective with co-

operative tasks. It would be a good idea if the scheduler framework can be modified to

work as a hybrid scheduler. On the other hand, the WCET method implemented in the

TTC-Adaptive scheduler only calculates the WCETs and RTs for all tasks during the

first phase of the system operation (during the calculating mode). It was assumed that

the user had set the duration of the calculating mode long enough to obtain a correct set

of WCET values based on their knowledge about the system characteristics. By doing

so, there might be a possibility that the calculating period was set incorrectly by the user

and thus the actual WCET of all (or some of) the tasks were missed. This means that the

behaviour of the system during the operating mode would be unpredictable. For

example, high jitter might be observed at task release times and task guardians might

detect a task overrun where the task is still within its WCET. In order to avoid such a

scenario, the system can be modified so that the whole calculation process is automated

while the user’s interference is avoided. For example, the scheduler can employ a

permanent run-time WECT measurement method so that whenever the WCET value of

a task is modified the system adapts itself to this change.

Please note that the TTC-Adaptive scheduler was aimed towards a perfect TTC

implementation since it provided effective solutions to jitter and overrun problems.

However, the “perfect” TTC scheduler can be achieved if more features are considered.

 Chapter 13: Conclusions and future work 264

For example, techniques such as DVS can be incorporated in the scheduler framework

to achieve low-power characteristics at zero jitter. Such a modification would require a

substantial amount of underlying work in order to avoid any conflicts between timer

configurations.

For multi-processor systems, there are some future suggestions. First, the range of TTC-

SCC scheduler implementations can be extended to include other possible arrangements

for Master and Slave communication messages. Of course, the implementations

discussed, although useful, represent only a number of the representative

implementation classes for such a scheduler. For example, systems which use dual-

CAN bus can also be added to the range of TTC-SCC schedulers and evaluated. This

might need an addition of new STCs that explore more features related to this system

modification.

Despite the usefulness of the jitter-reduction techniques outlined in Chapter 8, they can

still, in some cases, be outweighed by the increases in the resource requirements (such

as CPU and memory). To achieve similar levels of performance while reducing the

resource overheads, it would be recommended that techniques – such as SBS and EEM

– are implemented in hardware using SoC designs. This has the potential to free the

system from unnecessary overheads and increase the system predictability.

13.4 Conclusions

The work described in this thesis has mainly considered the development and evaluation

of a simple verification technique (STC) aimed at facilitating a meaningful “black-box”

evaluation of time-triggered embedded systems. The practical work began by exploring

the benefit of using the STC technique in a simple TTC scheduling algorithm used in

single-processor embedded architectures. The thesis then explored ways for extending

the technique to allow evaluating the behaviour of more complicated embedded designs:

for example, when multi-processor architectures are considered. The results show that

the proposed technique can have the potential to provide a detailed evaluation of any

embedded software design, when appropriate scheduler test cases are employed.

 Chapter 13: Conclusions and future work 265

Apart from this, the thesis also described a range of highly-predictable time-triggered

scheduler implementations, for both single- and multi-processor systems, and

demonstrated how such new implementations can add very useful features to many real-

time resource-constrained embedded applications. Some other interesting areas which

relate to the work presented in this thesis were also discussed in detail. The thesis

concluded by summarising the key achievements of this project and making useful

suggestions for future research projects in the same areas.

PART F:

APPENDICES

Appendix A

Overview of system development process

Introduction
This appendix describes in detail the various processes involved in software

development with a particular focus on embedded software systems. Sources for this

appendix include (McLaughlin and Moore, 1998; Booch et al., 1999; Pont, 2001; Shaw,

2001; Douglass, 2004; Buttazzo, 2005; Marwedel, 2006; Mwelwa, 2006; Sommerville,

2007).

System requirements
Embedded systems engineering is viewed as a branch of system engineering discipline

where engineers are concerned with all aspects of computer-based development

including hardware, software and process engineering. Therefore, activities such as

specification, design, implementation, validation, deployment and maintenance will all

be involved in the development of an embedded application. A design of any system

usually starts with ideas in people’s head. These ideas need to be captured in

requirements specification documents that specify the basic functions and the desirable

features of the system.

System design process then determines how these functions can be provided by the

system components. The following figure illustrates the life cycle of a system

development process.

Requirement
definition Implementation

System and
Softw are
design

Integration and
Testing

Operation and
Maintenance

Figure A-1: The system development process (adapted from Sommerville, 2007).

For successful design, the system requirements have to be expressed and documented in

a very clear way. Inevitably, there can be numerous ways in which the requirements for

a simple system can be described. The simplest and most obvious way to express the

system requirements is to use a detailed natural language, such as English, French and

Appendix A 268

so on. However, due to limitations caused by (for example) overflexibility and

ambiguity of the natural languages, systems described using this method are likely to be

misunderstood. Furthermore, it is impossible to use the system specification written in a

natural language to derive implementations in a systematic way. Therefore, more

technical ways of representation might be required. Sommerville (2007) notes that using

more specialised notations such as structured natural language, design description

language, graphical notations and mathematical specifications can be more effective

ways for documenting the designed system. For example, structured natural language –

early used in 1980 to describe the requirements for an aircraft system (Heninger, 1980)

– uses standard forms that utilise the advantages of natural languages, such as clarity

and understandability, while removing some of the language limitations. However,

these approaches can still have shortcomings when complex computations are required:

for example, as the complexity of the system increases it is so difficult to specify the

requirements in an unambiguous way when a natural language text is integrated. One

solution to this problem is to use supplementary materials such as tables or graphical

models which add extra information about the system.

System modelling
A widely used systematic approach for documenting system requirements is to use a set

of system models which are basically forms of graphical representations that represent

the system from different perspectives. A system model is developed to provide an

abstract view of the system while deliberately ignoring some system details. Each

system model may cover only one (or sometimes more) particular aspect of the system,

while a combination of different models is needed to provide wider scope of the system.

Different system models can be classified into: context models, behavioral models, data

models and object models (see Sommerville, 2007 for more details). Two common

types of models which are generally used to describe the overall behaviour of the

system are known as data-flow and state machine models. A data-flow model is very

important way to show how data flows in the system through a sequence of processing

steps. A state machine model shows events or system states that cause the system to

move from one state to another. Since real-time systems are often driven by events in

the environment, state machine model is widely used in the design of such systems.

Appendix A 269

To describe a system model, an appropriate form of specification language is required.

There is a wide range of specification languages which are available nowadays, e.g.

StateCharts, System Design Language (SDL), Unified Modeling Language (UML),

Java, Verilog Hardware Description Language (VHDL), SystemC and SpecC. Note that

each of these languages has different capabilities and hence provide different

representations of the designed system. As a result, the choice of the language for an

actual design will highly depend on the application domain and the environment in

which the system has to be operated.

However, one of the most widely used specification language in the fields of system and

software engineering is the UML. UML contains a large set of notations and diagram

types that make it a de facto standard modelling language for a broad range of

application domains. One key advantage of UML, compared to other specification

languages, is that it does not require precise knowledge of the system behaviour which

is, in most cases, not available at very early stages of the design process. An early

version of UML (e.g. UML 1.4) was not supporting the modelling of real-time

embedded systems due to a lack of some important features required to model those

systems, e.g. timing and concurrency. However, new versions of UML (e.g. UML 2.0)

have been developed to support the design modelling for embedded systems. UML 2.0

contains various diagram types such as sequence diagrams, state machine diagrams,

activity diagrams, use case diagrams, timing diagrams, object diagrams and some

others. Based on the sets of notations and diagram types provided by UML 2.0, data-

flow diagram – as an example – can be clearly represented using ‘rounded rectangles’

for functional processing, ‘rectangles’ for data stores and ‘labelled arrows’ for data

transfer between different functions. Similarly, state machine diagram can be

represented using ‘rounded rectangles’ for system states, ‘labelled arrows’ for events

that cause transition from one state to another. However, it should be noted that the

UML models can only be viewed as ‘high-level’ representations of the system which

need an executable programming language (e.g. C or C++) to be combined with for

achieving precise, executable system specifications.

Formal specification
Before beginning the actual design process, formal specification techniques can also be

used to add details to a system requirements specification. A formal specification of

Appendix A 270

software is the specification which is expressed in a language whose vocabulary, syntax

and semantics are formally defined: this means that the used specification language

must be based on mathematical concepts. Examples of formal specification languages

are: Larch (Guttag and Homing, 1993), OBJ (Futatsugi et al., 1985), Z (Spivey, 1988),

VDM (Jones, 1989), and B (Wordsworth, 1996). The main advantage of using formal

specifications is that they help to avoid ambiguities in the system requirements

documentation.

System architecture
Once the system requirements have been clearly defined and well documented, the first

step in the design process is to design the overall system architecture. Architecture of a

system basically represents an overview of the system components (i.e. sub-systems)

and the interrelationships between these different components. Since embedded

engineers are concerned with hardware and software design aspects of the system, they

must decide on both the hardware and the software architectures of the intended design.

Douglass (2004) defines architecture as: “the set of strategic design decisions that affect

the structure, behaviour, or functionality of the system as a whole”. In (Sommerville,

2007), it is highlighted that designing the architecture of a system is the process of

creating a basic structural framework which identifies the key components of the system

and the communication between these components. It is also noted that the output of

this design process is a description of the software architecture which provides a high-

level representation of the system. System and software architectures also need

appropriate ways of modelling and documentations. It is widely adopted that

architectures are illustrated graphically using simple block diagrams in which the

system components can be represented by a set of ‘rectangles’ linked to one another by

‘arrows’.

Clear documentations of the software architecture help the developers to consider key

design aspect of the system early in the design process (Sommerville, 2007). Since the

software architecture provides a high-level abstraction of the system, it helps the

developers to establish discussions about the system requirements and begin to predict

how the system will operate after implementation. Determining the most appropriate

architecture is a key part in the design and implementation of a given system. In

Appendix A 271

embedded systems, there are two fundamental software architectures which are

generally used: time-triggered and event-triggered.

System implementation
Once the software architecture is identified, the process of implementing that

architecture should take place. This can be achieved using a lower-level system

representation such as a scheduler or an operating system. A scheduler is a very simple

operating system which organises the operation of real-time tasks and manages the

computational and data resources in the system. The most key part of the scheduler is

the scheduling algorithm which states the set of rules that specify the order in which the

tasks will be executed by the scheduler during the system operating time. Once the

scheduling algorithm has been selected and the schedule designed, the low-level

implementation of the scheduler will take place by generating the scheduler source code

using a software programming language. The scheduler source code is the lower level

representation of the system which should determine the actual behaviour of the system

once run on the target hardware.

Appendix B

Overview of programming languages

Introduction
This appendix provides an overview of the available programming languages used

nowadays in computer science and real-time embedded systems. It discusses the

classification of programming languages and provides a historical background. The

features of ‘C’ language (outlined in Chapter 3) are provided here in a little more detail.

What is a programming language?
Simply, programming as a problem has only arisen since computer machines were first

created. The magnitude of the problem is however relative to the size (and complexity)

of the computer machine used: for example, with using gigantic computers,

programming becomes an equally gigantic problem (Cook, 1999). To program a

computer system, a programming language is required. The latter is seen as the major

way of communication (i.e. interface) between a person who has a problem and the

computer system used to solve his problem. Programming language has been defined in

several ways. For example, American Standard Vocabulary for Information Processing

(ANSVIP, 1970) defined a programming language as “A language used to prepare

computer programs”. The IFIP-ICC Vocabulary of Information Processing (IFIP-ICC,

1966) defined it as “A general term for a defined set of symbolic and rules or

conventions governing the manner and sequence in which the symbols may be combined

into a meaningful communication”. The IFIP-ICC glossary also noted that “An

unambiguous language, intended for expressing programs, is called a

PROGRAMMING LANGUAGE”. Other definitions for a programming language are:

• “A computer tool that allows a programmer to write commands in a format that is

more easily understood or remembered by a person, and in such a way that they

can be translated into codes that the computer can understand and execute.”

(Budlong, 1999).

• “An artificial language for expressing programs.” (ISO, 2001).

Appendix B 273

• “A self-consistent notation for the precise description of computer programs”

(Wizitt, 2001).

• “A standard which specifies how (sort of) human readable text is run on a

computer.” (Sanders, 2007).

• “A precise artificial language for writing programs which can be automatically

translated into machine language.” (Holyer, 2008).

However, it was noted elsewhere (e.g. Sammet, 1969) that standard definitions are

usually too general as they do not reflect the language usage. A more specific definition

for a programming language was given by Sammet as a set of characters and rules (used

to combine the characters), with the following characteristics:

• A programming language requires no knowledge of the machine code by the

programmer, thus the programmer can write a program without much knowledge

about the physical characteristics of the machine on which the program is to be

run.

• A programming language should be machine independent.

• When a program written in a programming language is translated to the machine

code, each statement should explode to generate a large set of machine

instructions.

• A programming language must have problem-oriented notations which are closer

to the specific problem intended to be solved.

It is worth mentioning that a vast number of different programming languages have

already been created, and new languages are still being created every year.

Classification of programming languages
This section provides an overview of the programming language classifications. Sources

for this section include (Sammet, 1969; Booch, 1991; Grogono, 1999; Lambert and

Osborne, 2000; Mitchell, 2003; Calgary, 2005; Davidgould, 2008; Wikipedia, 2008;

Network Dictionary, 2008).

Appendix B 274

In general, programming languages can be divided into programming paradigms and

classified by their intended domain of use. Paradigms include procedural programming,

object-oriented (O-O) programming, functional programming, and logic programming.

Note that some languages combine multiple paradigms. Each of these paradigms is

briefly introduced here.

Procedural programming (or imperative programming) is based on the concept of

decomposing the program into a set of procedures (i.e. series of computational steps).

Examples of procedural languages are: FORTRAN (FORmula TRANslator), Algol

(ALGOrithmic Language), COBOL (COmmon Business Oriented Language), PL/I

(Programming Language I), Pascal, BASIC (Beginner's All-purpose Symbolic

Instruction Code), Modula-2, C and Ada. Object-oriented (O-O) programming is a

method where the program is organised as a cooperative collections of “objects”. This

style of programming was not commonly used in software application development

until the early 1990s, but nowadays most of the modern programming languages

support this type of programming paradigm. Examples of object-oriented languages are:

Simula, Smaltalk, C++, Eiffel and Java. Functional programming treats computation as

the evaluation of mathematical functions. In functional programming, a high order

function can take another function as a parameter or returns a function. An example of

functional languages is LISP (LISt Processor). Finally, logic programming uses

mathematical logic in which the program enables the computer to reason logically. An

example of logic languages is Prolog (PROgramming in LOGic). It is often argued that

languages with support for an object-oriented (O-O) programming style have

advantages over those from earlier generations (Pont, 2003). For example, Jalote (1997)

noted that using O-O helps to represent the problem domain, which makes it easier to

produce and understand designs.

In addition to programming paradigm, the purpose of use is an important characteristic

of a language: it is unlikely to see one language fitting all needs for all purposes

(Sammet, 1969). Programming languages can be divided, according to their purpose,

into general-purpose languages, system programming languages, scripting languages,

domain-specific languages, and concurrent / distributed languages (or a combination of

these). General-purpose language is a type of programming language that is capable of

creating various types of programs for various applications, e.g. C language. There has

Appendix B 275

been an argument that some of the general-purpose languages were designed mainly for

educational purposes (Wirth, 1993). System programming language is a language used

to produce software which services the computer hardware rather than the user, e.g.

Assembly and Embedded C. Scripting language is a language in which programs are a

series of commands that are interpreted and then executed sequentially at run-time

without compilation, e.g. JavaScript (used for web page design). Domain-specific

programming languages are, in contrast to general-purpose languages, designed for a

specific kind of tasks, e.g. Csound (used to create audio files), and GraphViz (used to

create visual representations of directed graphs). Concurrent languages are

programming languages that have abstractions for writing concurrent programs. A

concurrent program is the program that can execute multiple tasks simultaneously,

where these tasks can be in the form of separate programs or a set of processes or

threads created by a single program. Concurrent programming can support distributed

computing, message passing or shared resources. Examples of concurrent programming

languages include Java, Eiffel and Ada.

In his famous book (i.e. “Programming Languages: History and Fundamentals”, 1969),

Jean E. Sammet used the following set of defining categories as a way of classifying

programming languages: [1] procedural and non-procedural languages; [2] problem-

oriented, application-oriented and special purpose languages; [3] problem-defining,

problem describing and problem solving languages; [4] hardware, publication and

reference languages. Sammet however underlined that any programming language can

fall into more than one of these categories simultaneously: for further details see

Sammet (1969).

History of programming languages
It has been argued that studying the history of programming languages is paramount as

it helps developers avoid previously-committed mistakes in the development of new

languages (Wilson and Clark, 2000). It was also pointed out that an unfortunate

tendency in Computer Science is to create new language features without carefully

studying previous work (Grogono, 1999). Most books and articles on the history of

programming languages tend to discuss languages in terms of generations in which

languages are classified by age (Cook, 1999). There are many articles and books which

have discussed the generations of programming languages (e.g. Wexelblat, 1981;

Appendix B 276

Martin and Leben, 1986; Watson, 1989; Zuse, 1995; Flynn, 2001). Pont (2003) provides

a list of widely-used programming languages classified according to their generations

(see Table B-1).

Table B-1: Classification of programming languages by generations

Language generation Example languages

-
First generation language (1GL)
Second generation languages (2GL)
Third generation languages (3GL) “process-oriented’
Fourth generation languages (4GL) ‘object-oriented’

Machine code
Assembly
COBOL, FORTRAN
C, Pascal, Ada 83
C++, Java, Ada 95

A brief history of the most popular programming languages (including the ones

presented in Table B-1) is provided in this section. Sources for this section mainly

include (Wexelblat, 1981; Martin and Leben, 1986; Watson, 1989; Halang and

Stoyenko, 1990; Grogono, 1999; Flynn, 2001; Wikipedia, 2008).

In the 1940s, the first electrically powered digital computers were created. The

computers of the early 1950s used machine language which was quickly superseded by

a second generation of programming languages known as Assembly languages. The

limitations in resources (e.g. computer speed and memory space) enforced programmers

to write their hand-tuned assembly programs. However, it was shortly realised that

programming in assembly required a great deal of intellectual effort and was prone to

error. It is important to note that although many people consider Assembly to be a

standard programming language, some others believe it is too low-level to bring

satisfactory of communication for user, hence excluded (Sammet, 1969).

1950s saw the development of a range of high-level programming languages (some of

which are still in widespread use), e.g. FORTRAN, LISP, and COBOL, and other

languages such as Algol 60 that had a substantial influence on most of the lately

developed programming languages. In 1960s, languages such as APL (A Programming

Language), Simula, BASIC and PL/I were developed. PL/I incorporated the best ideas

from FORTRAN and COBOL. Simula is considered to be the first language designed to

support object-oriented (O-O) programming.

Appendix B 277

The period between late 1960s and late 1970s brought great prosperity to programming

languages most of which are used nowadays. In the mid-1970s, Smalltalk was

introduced with a complete design of an object-oriented language. The programming

language C was developed between 1969 and 1973 as a systems programming

language, and remained popular. In 1972, Prolog was designed as the first logic

programming language. In 1978, ML (Meta-Language) was developed to found

statically-typed functional programming languages in which type checking is performed

during compile-time allowing more efficient program execution. It is important to

highlight that each of these languages originated an entire family of descendants. Some

other key languages which were developed in this period include: Pascal, Forth and

SQL (Structured Query Language).

In 1980s, the C++ was developed as a combined object-oriented and systems

programming language. Around the same time, Ada was developed and standardised by

the United States government as a systems programming language intended for use in

defence systems. One noticeable tendency of language design during the 1980s was the

increased focus on programming large-scale systems through the use of modules, or

large-scale organisational units of code. Therefore, languages such as Modula-2, Ada,

and ML were all extended to support such modular programming in 1980s. Some other

languages that were developed in this period include: Eiffel, PEARL (Practical

Extraction and Report Language) and FL (Function Level).

In mid-1990s, the rapid growth of the Internet created opportunities for new languages

to emerge. For example, PEARL (which is originally a Unix scripting tool first released

in 1987) became widely adopted in dynamic web sites design. Another example is Java

which was commonly used in server-side programming. These language developments

provided no fundamental novelty: instead, they were modifications to existing

languages and paradigms and largely based on the C family of programming languages.

It is difficult to determine which programming languages are most widely used, as there

have been various ways to measure language popularity (see O'Reilly, 2006; Bieman

and Murdock, 2001). Mostly, languages tend to be popular in particular types of

applications. For example, COBOL is a foremost language in business applications

(Carr and Kizior, 2000), FORTRAN is widely used in engineering and science

Appendix B 278

applications (Chapman, 2004), and C is a genuine language for programming embedded

applications and operating systems (Barr, 1999; Pont, 2002; Liberty and Jones, 2004).

Programming languages for embedded and real-time systems
To develop a real-time embedded system, a number of tools and techniques will be

required: the key one is the programming language used to develop the application code

(Burns, 2006). Assembly was the first programming languages used to implement the

software for embedded applications. However, it was argued that the development

environments that used the first generation languages such as Assembly lacked the basic

support for debugging and testing (Halang and Stoyenko, 1990). Therefore, in 1960s,

the need for high-level programming languages to program real-time systems, instead of

continuing to use Assembly language, was agreed among many real-time system

designers due to advantages such as ease of learning, programming, understanding,

debugging, maintaining, documenting, and code portability (see Boulton and Reid,

1969; Sammet, 1969).

The work in this area began by identify the essential requirements for a high-level

language to fulfil the objectives of real-time applications (Opler, 1966). Such

requirements were summarised by Boulton and Reid (1969) as methods of handling

real-time signals and interrupts, and methods of scheduling real-time tasks. Opler

(1966) argued that to achieve such requirements, one can make extensions /

modifications to an existing programming language, where an alternative solution is to

develop new languages dedicated specifically for real-time software. Some success, in

extending existing languages to real-time computing, was achieved using languages

such as FORTRAN (e.g. Jarvis, 1968; Roberts, 1968; Hohmeyer, 1968; Mensh and

Diehl, 1968; Kircher and Turner, 1968) and PL/I (e.g. Boulton and Reid, 1969). Some

other studies, however, attempted to develop new real-time languages but with some

similarity to existing languages, e.g. PROSPRO (Bates, 1968), SPL (Oerter, 1968) and

RTL (Schoeffler and Temple, 1970).

In 1970s, a major concern of many researchers became the programming of real-time

applications which involve concurrent processing. Useful work in this area

demonstrated that, same as before, concurrent programming can be achieved by either

extending available general-purpose languages (e.g. Hansen, 1975; Wirth, 1977) or

Appendix B 279

developing entirely new concurrent-processing languages (e.g. Schutz, 1979). However,

it was noticed that extended general-purpose languages still lacked genuine concurrency

and real-time concepts (Steusloff, 1984). This led to the development of more efficient

concurrent real-time languages such as PEARL (DIN, 1979), ILIAD (Schutz, 1979) and

Ada (Ada, 1980).

Ada is a well-designed and widely used language for implementing real-time systems

(Burns, 2006). Therefore, it is worth mentioning it in greater detail. As previously

noted, Ada is an object-oriented, high-level programming language which was first

developed and adopted by the U.S. Department of Defence (DoD) to implement various

defence mission-critical software applications (Ada, 1980; Baker and Shaw, 1989). Ada

appeared as a standard language in 1983 – when Ada83 was released – and was later

reviewed and improved in 1995 by producing Ada95. Since developed, Ada has gained

a great deal of interest by many real-time and embedded systems developers (see

 Chapter 3 for example studies). It was declared that Ada embodies features which

facilitate the achievement of safety, reliability and predictability in the system

behaviour (Halang and Stoyenko, 1990). Halang and Stoyenko (1990) carried out a

detailed survey on a number of representative real-time programming languages

including Ada, FORTRAN, HALL/S, LTR, PEARL, PL/I and Euclid, and concluded

that Ada and PEARL were the most widely available and used languages among the

others which had been surveyed.

In addition to the previous sets of modified and specialised real-time languages, it was

accepted that universal, procedural programming languages (such as C) can also be used

for real-time programming although they contain just rudimentary real-time features:

this is mainly because such languages are more popular and widely available than

genuine real-time languages (Halang and Stoyenko, 1990). Later generations of object-

oriented (O-O) languages such as C++ and Java also have popularity in embedded

programming (Fisher et al., 2004).

Overview of ‘C’ language
In his famous book “Programming Embedded Systems in C and C++”, Michael Barr

(1999) emphasised that C language has been a constant factor across all embedded

software development due to the following advantages:

Appendix B 280

• It is small and easy to learn.

• Its compilers are available for almost every processor in use today.

• There are so many experienced C programmers around the world.

• It is hardware-independent programming language, a feature which allows the

programmer to concentrate only on the algorithm rather than on the architecture of

the processor on which the program will be running.

Despite this, Barr highlighted that the key advantage of C which made it the favourite

choice for many embedded programmers is its low-level nature that provides the

programmer with the ability to interact easily with the underlying hardware without

sacrificing the benefits of using high-level programming.

In (Grogono, 1999), it was declared that C is based on a small number of primitive

concepts, therefore it is an easy language to learn and program by both skilled and

unskilled programmers. Moreover, Grogono stated that C can be easily compiled to

produce efficient object code.

In a more recent publication, Pont (2002) stated that “C’s strengths for embedded

system greatly outweigh its weaknesses. It may not be an ideal language for developing

embedded systems, but it is unlikely that a ‘perfect’ language will be created”.

According to (Pont, 2002 and 2003), the key features of the C language can be

summarised as follows.

• It is a mid-level language with both high-level features (such as support for

functions and modules) and low-level features (such as access to hardware via

pointers).

• It is very efficient, popular and well understood even by desktop developers who

programmed on C++ or Java.

• It has well-proven compilers available nowadays for every embedded processor

(e.g. 8-, 16-, 32-bit or more).

• Books, training courses, code examples and websites that discuss the use of

language are all widely available.

Appendix B 281

In (Jones, 2002), it was noted that features such as easy access to hardware, low

memory requirements, and efficient run-time performance make the C language popular

and foremost among other languages. In (Brosgol, 2003), it was made clear that C is the

typical choice for programming embedded applications as it is processor-independent,

has low-level features, can be implemented on any architecture, has reasonable run-time

performance, is an international standard, and is familiar to almost all embedded

systems programmers. Fisher et al. (2004) emphasised that, in addition to portability

and low-level features of the language, C’s structured programming drives embedded

programmers to choose C language for their designs. Moreover, it has been clearly

noted that C cannot be competed in producing a compact, efficient code for almost all

processors used today (Ciocarlie and Simon, 2007).

Appendix C

Hardware-based scheduler implementation

approaches

This appendix discusses a range of hardware (or a mix of hardware and software)

techniques used previously to implement scheduling algorithms in practical real-time

embedded systems.

In 1988, Wendorf (1988) considered the practical implementation issues of the Time-

Driven Scheduler (TDS) developed originally by Jensen et al. (1985). Wendorf began

by pointing out that fixed-priority schedulers may not perform well under overload

conditions and the TDS had the potential to improve the performance of real-time

systems under such conditions. TDS is a time-triggered, pre-emptive scheduler in which

each task has a time-varying value function that defines the value of completing task at

a given time. In addition, a “best-effort” (BE) scheduling policy (Locke, 1986) was

designed and integrated into the TDS scheduler framework to maximise the total value

of all completed tasks over a wide range of value functions and workloads. However, as

noted by Wendorf, the practical implementation of the best-effort, time-driven

scheduler and the impact on the computational overhead were not fully addressed.

Therefore, Wendorf discussed the implementation and performance of the BE

scheduling policy on a practical real-time system. Experimentally, it was found that

under overload conditions, more than 80% of the CPU time could be spent by the

scheduler to decide which task to execute next when a single-processor system is used.

It was therefore suggested that all scheduling processes are performed in a dedicated

scheduling processor and was shown that this solution can help to reduce the CPU

overhead of the host processor to less than 2%.

Katcher et al. (1993) presented a methodology to incorporate the costs of scheduler

implementation in fixed-priority scheduling algorithms. In particular, the study provided

a framework to evaluate hardware and software implementation decisions for real-time

applications based on quantitative results about implementation costs such as blocking

Appendix C 283

and overhead30. The proposed methodology was used to compare the real-time

performance, in terms of schedulability, of four generic scheduler implementations of a

fixed-priority algorithm: two time-triggered and two event-triggered. When the different

implementations were applied to two realistic task sets – corresponding to avionics and

inertial navigation applications – different levels of schedulability utilisation were

obtained. This work was described as a first step toward bridging the gap between real-

time scheduling theory and its implementation in real systems.

Later on, Mooney (1999) described one way of implementing a custom run-time

scheduler, which dynamically executes tasks in different orders based on the conditional

execution path, by using a hardware-software co-design. Along with a real-time analysis

tool, the study demonstrated how the suggested implementation helps the system meet

its relative timing, control-flow, and rate constraints.

In (Huajin et al., 2002), implementing the classical Round Robin scheduling algorithm

on Xilinx Field Programmable Gate Array (FPGA) chip using Verilog Hardware

Description Language (VHDL) was discussed. Huajin noted that Round Robin is a very

simple and widely used scheduling algorithm in computer systems where tasks are

placed in a circular queue and executed in order starting from the first task in the queue.

Moreover, it was emphasised that Round Robin algorithm is a time-triggered, pre-

emptive scheduler in which each task in the system is allocated one time unit (quantum)

to execute, and if the task is not completed at the end of the allocated slot the CPU is

pre-empted and the current task is added to the tail of the queue, and so on.

Golatowski et al. (2002) presented a framework (with appropriate tools) to help the

developers select the appropriate algorithm for their real-time application, among

various kinds of dynamic scheduling algorithms (i.e. EDF, LLF), and then choose the

30 Overhead and blocking are implementation costs which are a function of the underlying hardware.
Overhead is the time spent in the kernel performing a service on behalf of a specific task, such as
invoking or terminating it. Blocking, or priority inversion, is time spent, either in the kernel or in an
application task, when a higher priority task is prevented from running (Katcher et al.., 1993).

Appendix C 284

best hardware / software implementation method for the selected scheduler based on the

schedulability analysis of the scheduled task set.

Brinkschulte et al. (2002) considered the design and implementation of a real-time

scheduling algorithm, called Guaranteed Percentage (GP) scheme, in which each thread

is assigned a specific guaranteed percentage of the processor power and the threads are

executed in isolation: i.e. threads have no influence on each others. The study

demonstrated that when compared with Fixed-Priority Pre-emptive (FPP), Earliest

Deadline First (EDF) and Least Laxity First (LLF) scheduling algorithms (all

implemented on a Komodo microcontroller that features a multithreaded Java processor

kernel), the GP scheduling was the only scheme that provided a strict isolation between

threads: such an isolation advantage is required to maximise dependability in real-time

systems. The results also showed that the hardware implementation costs of the GP

scheduler were still reasonable.

Samuelsson et al. (2003) presented a performance comparison between a real-time

kernel implemented in hardware and an equivalent one implemented in software using a

multi-processor hardware platform. The hardware kernel implemented the scheduler,

inter-process communication methods, semaphores and timer.

Cho et al. (2005) described an approach to implement static scheduler in multi-

processor System-on-Chip (SoC). The work introduced efficient hardware and software

scheduler architectures and considered the centralised31 implementation versus

distributed implementation of the schedulers. The trade-offs between both types of

scheduler implementation was investigated according to area- and scheduler-overhead.

In a study carried out by Silva et al. (2005), it was argued that trade-offs between

software and hardware implementations of a system are very important to achieve

31 In centralised implementation, the scheduler is implemented on a single processor, whereas in
distributed implementation the scheduler is implemented over multiple processors with one local
scheduler for each processor.

Appendix C 285

flexibility as well as high-performance. The paper considered the implementation of a

task scheduler for a real-time embedded system, as defined by the Real-Time

Specification for Java (RTSJ), in both hardware and software. The study concluded that,

if hardware implementation is used (using co-processor), task latencies can be reduced

(regardless the number of scheduler tasks in the system) and the system predictability

can be improved. However, such enhancement was at the cost of area-overhead.

Similarly, Vetromille et al. (2006) claimed that distributing the critical operating system

functionalities between hardware and software implementations can have the potential

to improve the overall performance and increase predictability of the real time systems.

Therefore, Vetromille et al. evaluated the process of migrating RTOS scheduler

implementation from software to hardware by considering the pros and cons of three

different scheduler implementations as follows: (i) software using a single processor;

(ii) software partitioned using two processors; and (iii) hardware / software partitioned

using a processor and a dedicated hardware block. It was noticed that scheduler

implementation (iii) always achieves better performance results, but is more complex

and expensive compared to the other approaches due to the complex nature of the

hardware implementation. The study concluded that (ii) and (iii) present the best results

for hard real-time applications, where (i) is suitable for soft real-time systems.

In another study, Baruah (2006) presented sufficient conditions for determining whether

a given periodic task system will meet all deadlines if non-pre-emptive EDF scheduler

implementation is used upon a multi-processor platform. Baruah came to conclude that,

if particular conditions are met, non-pre-emptive EDF scheduler implementations can

provide the level of performance expected from the pre-emptive scheduler alternatives.

Moreover, Baruah made a note that as faster processors become available, non-pre-

emptive scheduling would become more popular in the future.

It can be clearly noticed that the outlined studies on scheduler implementation have not

looked at the various possible ways in which the software of a given scheduler (or

scheduling algorithm) can be implemented in low-cost “commercial of the shelf” COTS

microcontroller platforms, and the impact of the various software implementation

methods on the run-time behaviour of the systems. The studies presented in this thesis

attempt to address such issues.

Appendix D

Additional set of TTC scheduler implementations

TTC-SL scheduler

Introduction

The simplest practical implementation of a TTC scheduler can be created using a

“Super Loop” (sometimes called an “endless loop: Kalinsky, 2001). The particular

implementation discussed in this section has been adapted from that described in detail

elsewhere (Pont, 2001; Kurian and Pont, 2007).

Overview of the scheduler implementation

In Chapter 5, a simple TTC scheduler implementation – using a form of super loop –

was outlined (Listing 5-2). Such a system assumed that each task executed would

always have 4 ms duration, therefore a system with 10 ms tick interval was

implemented using super loop and delay function (see Figure D-1).

Time

System
Tick

Task A

10 ms

Task B Task C

4 ms 4 ms 4 ms

Figure D-1: The task executions resulting from the code in Listing 5-2.

In the case where the scheduled tasks have variable durations, creating a fixed tick

interval is not straightforward. One way of doing that is to use a “Sandwich Delay”

(Pont et al., 2006) placed around the tasks. Briefly, a Sandwich Delay (SD) is a

mechanism – based on a hardware timer – which can be used to ensure that a particular

code section always takes approximately the same period of time to execute. The SD

operates as follows:

• A timer is set to run.

• An activity is performed.

Appendix D 287

• The system waits until the timer reaches a pre-determined count value.

In these circumstances – as long as the timer count is set to a duration that exceeds the

WCET of the sandwiched activity – SD mechanism has the potential to fix the

execution period.

Listing D-1 shows how the tasks in Listing 5-2 can be scheduled – again using a 10 ms

tick interval – if their execution durations are not fixed.

int main(void)
 {
 ...

 while(1)
 {
 // Set up a Timer for sandwich delay
 SANDWICH_DELAY_Start();

 // Add Tasks in the first tick interval
 Task_A();

 // Wait for 10 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(10);
 Task_B();

 // Wait for 20 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(20);
 Task_C();

 // Wait for 30 millisecond sandwich delay
 SANDWICH_DELAY_Wait(30);
 }
 // Should never reach here
 return 1
 }

Listing D-1: A TTC scheduler which executes three periodic tasks with variable durations, in
sequence.

Using the code listing shown, the successive function calls will take place at fixed

intervals, even if these functions have large variations in their durations (Figure D-2).

Time

System
Tick

10 ms

Task B Task CTask A

6 ms 9 ms 4 ms

Figure D-2: The task executions expected from the TTC-SL scheduler code shown in Listing D-1.

Appendix D 288

Original TTC-Dispatch scheduler

Introduction

An early implementation of TTC scheduler, using Dispatch approach, was developed in

the ESL group back in 2001. The architecture of such a scheduler provided the basis for

TTC implementations which were developed later in the group. The particular

implementation discussed in this section has been fully described and documented in

(Pont, 2001).

Overview of the scheduler implementation

As in the TTC-Dispatch scheduler (described in Chapter 5), the implementation

considered in this section is characterised by distinct and well-defined scheduler

functions (see Listing 5-3). The original TTC-Dispatch scheduler is also driven by

periodic interrupts generated from an on-chip timer. When an interrupt occurs, the

processor executes an Update() function (see Listing 5-5). In the Update() function,

the scheduler checks the status of all tasks to see which tasks are due to run and sets

appropriate flags. After these checks are complete, a Dispatch() function (Listing

 5-6) will be called, and the identified tasks (if any) will be executed in sequence. The

Dispatch() function here is also called from an “endless” loop placed in the Main

code (Listing 5-7) and when not executing the Update() and Dispatch() functions,

the system will usually enter a low-power (“idle”) mode.

Again, the scheduler implements a SCH_Add_Task() and a SCH_Delete_Task()

functions for adding or removing tasks during the system run-time. In the Update()

function, the scheduler applies checking on each task’s parameters (i.e. task’s offset and

period) and consequently sets RunMe flag to indicate that the checked task is ready to

execute in the current tick interval.

Code for the original TTC-Dispatch considered in this section is shown in the following

listings.

Appendix D 289

void SCH_Update(void)
 {
 int Index;

 // NOTE: calculations are in *TICKS* (not milliseconds)
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 SCH_tasks_G[Index].RunMe += 1; // Inc. the 'RunMe' flag

 if (SCH_tasks_G[Index].Period)
 {
 // Schedule regular tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period - 1;
 }
 }
 else
 {
 // Not yet ready to run: just decrement the delay
 SCH_tasks_G[Index].Delay -= 1;
 }
 }
 }
 // After interrupt, reset interrupt flag (by writing "1")
 T0IR = 0x01;
 }

Listing D-2: “Update” ISR of the original TTC-Dispatch scheduler.

void SCH_Dispatch_Tasks(void)
 {
 int Index;

 // Dispatches (runs) the next task (if one is ready)
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 if (SCH_tasks_G[Index].RunMe > 0)
 {
 (*SCH_tasks_G[Index].pTask)(); // Run the task

 SCH_tasks_G[Index].RunMe -= 1; // Reset / reduce RunMe flag

 // Periodic tasks will automatically run again
 // - if this is a 'one shot' task, remove it from the array
 if (SCH_tasks_G[Index].Period == 0)
 {
 SCH_Delete_Task(Index);
 }
 }
 }

 // The scheduler enters idle mode at this point
 SCH_Go_To_Sleep();
 }

Listing D-3: Dispatch function of the original TTC-Dispatch scheduler.

Appendix D 290

Adding “Sandwich Delays”

Introduction

The timing performance of the tasks running in the TTC scheduler can be improved by

adding “sandwich delays”. This approach is introduced in this section and will be

referred to as TTC-SD scheduler.

Overview of the scheduler implementation

In Chapter 2, the impact of task placement on “low-priority” tasks running in TTC

schedulers have been considered. One way to reduce the variation in the starting times

of such tasks is to place “Sandwich Delay” (Pont et al., 2006) around tasks which

execute prior to other tasks in the same tick interval.

In the TTC-SD scheduler, sandwich delays are used to provide execution “slots” of

fixed sizes in situations where there is more than one task in a tick interval. To clarify

this, consider the set of tasks shown in Figure D-3. In the figure, the required SD prior

to Task C – for low jitter behaviour – is equal to the WCET of Task A plus the WCET

of Task B. This implies that in the second tick (for example), the scheduler runs Task A

and then waits for the period equals to the WCET of Task B before running Task C.

The figure shows that when SDs are placed around the tasks prior to Task C, the periods

between successive runs of Task C become equal and hence jitter in the release time of

this task is significantly reduced.

Task
A

Task
C

Task C
Period

Task
C

Task
B

t (Ticks)t = 0 1 2

Task C
Period

Task
C

Tick
Interrupt

Idle
ModeSD SD SDTask

A

Figure D-3: Using Sandwich Delays to reduce release jitter in TTC schedulers.

Note that – with this implementation – the WCET for each task is input to the scheduler

through a SCH_Task_WCET() function placed in the Main code. After entering task

parameters, the scheduler employs Calc_Sch_Major_Cycle() and

Calculate_Task_RT() functions to calculate the scheduler major cycle and the

Appendix D 291

required release time for the tasks, respectively. The release time values are stored in

the “Task Array” using the variable SCH_tasks_G[Index].Rls_time.

Code for the TTC-SD scheduler is shown in the following listings.

int main (void)
 {
 ...

 // Add tasks
 // Delay and Period values are in *ticks*
 SCH_Add_Task(Task_A, 0, 1);
 ...

 // Input duration for tasks
 // Values are in *microseconds*
 SCH_Task_WCET(Task_A, 2000);
 ...

 // Calculate the Scheduler Major Cycle
 Calc_Sch_Major_Cycle(SCH_MAX_TASKS);

 // Calculate the required release time for each task
 Calculate_Task_RT();

 // Start the scheduler
 SCH_Start();

 // The scheduler may enter idle mode at this point (if used)
 SCH_Go_To_Sleep();

 return 0;
 }

Listing D-4: “Main” function in the TTC-SD scheduler.

Appendix D 292

void SCH_Dispatch_Tasks(void)
 {
 int Index;
 int Update_required = 0;

 // Delay margin added to compensate for scheduler overhead
 int Delay_Margin ;

 // Set up Timer 1 for sandwich delay
 SANDWICH_DELAY _Start();

 // Need to check for a timer interuppt since this
 // function was last executed (in case idle mode is not being used)

 // Disable timer interrupt
 VICIntEnClr = 0x10;

 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }

 // Re-enable timer interrupts
 VICIntEnable = 0x10;

 while (Update_required)
 {
 // Go through the task array
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 //if(Index>0)
 {
 Delay_Margin = 20*Index;

 // Wait for the required sandwich delay

SANDWICH_DELAY_Wait(SCH_tasks_G[Index].Rls_time+Delay_Margin);
 }

 // The task is due to run
 (*SCH_tasks_G[Index].pTask)(); // Run the task

 if (SCH_tasks_G[Index].Period != 0)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Disable timer interrupt
 VICIntEnClr = 0x10;

 if (Tick_count_G > 0)
 {
 Tick_count_G--;
 Update_required = 1;
 }
 else

Appendix D 293

 {
 Update_required = 0;
 }

 // Re-enable timer interrupts
 VICIntEnable = 0x10;
 }

 // Stop then reset SD Timer
 T1TCR &= ~0x01;
 T1TC = 0;

 // The scheduler may enter idle mode at this point (if used)
 SCH_Go_To_Sleep();
 }

Listing D-5: Dispatch function of the TTC-SD scheduler.

The code presented in Listing D-5 shows that a SD was placed around each scheduled

task, and only when the SD matches the value of the required “release time” of a task

(e.g. SCH_tasks_G[Index].Rls_time) is the task executed. Note that the required

release time of a task is the time between the start of the tick interval and the start time

of the task “slot” plus a little safety margin.

Results

Applying STC to the TTC-SL scheduler

This section discusses the implementation of STCs in the TTC-SL scheduler and

presents the output results from such an implementation.

Implementing the test cases

Implementing STC A and STC B with the TTC-SL scheduler can be straightforward

(and very similar to the example shown in Listing D-1). The following two listings

show how STC C and STC D were implemented, respectively, using a TTC-SL

scheduler.

Appendix D 294

int main(void)
 {
 ...
 while(1)
 {
 // Set up Timer 1 for sandwich delay
 SANDWICH_DELAY_T1_Start();

 // Add Tasks in the first tick interval
 // Task B executes in approx 2 and 1/2 ticks
 Task_B();

 // Wait for 5 millisecond sandwich delay
 // Since Task B exceeds the 5ms tick, the scheduler goes to run the tasks

in Tick 2 straight away
 SANDWICH_DELAY_T1_Wait(5);

 // Add Tasks in the second tick interval
 Task_A();
 Task_C();

 // Wait for 10 millisecond sandwich delay
 SANDWICH_DELAY_T1_Wait(10);

 // Add Tasks in the third tick interval

 // Wait for 15 millisecond sandwich delay
 SANDWICH_DELAY_T1_Wait(15);

 // Add Tasks in the fourth tick interval
 Task_A();
 Task_C();

 // Wait for 20 millisecond sandwich delay
 SANDWICH_DELAY_T1_Wait(20);
 }

 return 1; // Should never reach here ...
 }

Listing D-6: One way of implementing STC C using the TTC-SL scheduler.

Appendix D 295

int main(void)
 {
 ...
 while(1)
 {
 // Set up Timer 1 for sandwich delay
 SANDWICH_DELAY_T1_Start();

 // Add Tasks in the first tick interval
 // Task A executes will overrun for 10 ticks
 Task_A();
 Task_B();

 // Wait for 5 millisecond sandwich delay
 SANDWICH_DELAY_T1_Wait(5);

 for(i=2; i<=20; i++)
 {
 // Add Tasks in the next tick interval
 Task_B();

 // Wait for 5 millisecond sandwich delay
 SANDWICH_DELAY_T1_Wait(i*5);
 }
 }

 return 1; // Should never reach here ...
 }

Listing D-7: One way of implementing STC D using the TTC-SL scheduler.

Task sequencing and overrun behaviour

The sequence behaviour of the TTC-SL scheduler when applying STC A, STC B, STC

C and STC D is summarised in the following table.

Table D-1: Task schedule in TTC-SL scheduler.

STC Scheduler behaviour

A A1

B B1

C C1

D D1b

The results in Table D-1 show that – as would be expected – the TTC-SL scheduler

performs the standard scheduler tests (STC A, STC B and STC C) without problems.

However, when executing STC D, once the overrunning task (Task A) completes, the

scheduler performs all missing executions for Task B (in this case, 10 executions),

before continuing to serve the tasks in the following ticks. This means that the

behaviour of the SL scheduler with STC D is very much similar to that obtained with

the Dispatch scheduler (Section 7.3.2.2) in the sense that the system can “catch up” in

Appendix D 296

the event of error: see Figure D-4. Please note that there can be various other possible

ways to implement the SL scheduler which might not be able to provide such behaviour.

Task
B

t (Ticks)t = 0 10

Task
B

Task
B

20

A2B1A1 B2 B13 B14

13

B15

14

B20

19

Figure D-4: The behaviour of SL scheduler with STC D (D1b schedule class).

Jitter

Table D-2 shows the periods and jitter measurements for the tick and the tasks for STC

A, STC B and STC C when implemented using the TTC-SL scheduler.

Table D-2: Task jitter from the TTC-SL scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 3029.9 2409.1

Max Period 5000.5 5000.5 6953.6 7368.8

Average Period 5000.1 5000.1 4935 4836.8

Diff. Jitter 0.8 0.8 3923.7 4959.7

Test A

Avg. Jitter 0.2 0.2 836.8 900.8

Min Period 4999.8 10000.1 2993.9 2100.8

Max Period 5001 10001.6 7010.1 7873

Average Period 5000.5 10000.9 4923.7 4947.2

Diff. Jitter 1.2 1.5 4016.2 5772.2

Test B

Avg. Jitter 0.3 0.3 1179 1248.6

Min Period 972.5 2991.9 20004.4 2991.6

Max Period 12012.8 17012.8 20004.5 17013.2

Average Period 2416.1 5184.8 20004.5 5344.5

Diff. Jitter 11040.3 14020.9 0.1 14021.6

Test C

Avg. Jitter 2159.7 5093.3 0 5240.2

The jitter values in STCs A and B show that with a Super Loop scheduler, it is difficult

to obtain zero jitter in the release time of the tick, although the tick jitter can still be

very low. Results also show that when the scheduler major cycle had more than one tick

(as in STC B) the ‘tick’ and ‘Task A’ jitter values have slightly increased. It can also be

Appendix D 297

shown that low-priority tasks always suffer high jitter in their release times when they

are scheduled to run later in the tick interval. In situations where a task required

multiple ticks to execute (as in STC C), the resulting tick jitter has significantly

increased. Note that the tick interval in Test C is not fixed to 5 ms as required: instead,

it varies between 12, 2, 1 and 5 ms in each major cycle.

CPU, memory and power requirements

Table D-3 shows the CPU overhead for the TTC-SL scheduler (with STC A). From the

results shown in the table, the TTC-SL scheduler always requires a full CPU load (~

100%). This is since the scheduler does not use the low-power “idle” mode when not

executing tasks: instead, the scheduler waits in a “while” loop.

Table D-3: CPU overhead for the TTC-SL scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 25.01 25.01 100

Table D-4 summarises the memory required to implement STC A using the TTC-SL

scheduler.

Table D-4: Memory requirements (ROM and RAM) for the TTC-SL scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 2264 124

Table D-5 shows the power consumption levels from the STC A and STC B.

Table D-5: Power requirements for the TTC-SL scheduler.

Method
Power consumption

(mW)

Test A 62.1

Test B 65.3

The results in the table demonstrate very high levels of CPU power consumption. This

is again caused by the inefficient use of the processor: that is, when no tasks are

executed, the processor is not sent to sleep (i.e. placed in the low-power “idle” mode).

Appendix D 298

Applying STC to the original TTC-Dispatch scheduler

This section discusses the implementation of STCs in the original TTC-Dispatch

scheduler and presents the output results from such an implementation.

Implementing the test cases

Implementing the STCs is similar to that with the TTC-Dispatch scheduler (Chapter 7).

Task sequencing and overrun behaviour

The sequence behaviour of the original TTC-Dispatch scheduler when applying STC A,

STC B, STC C and STC D is summarised in the following table.

Table D-6: Task schedule in TTC-Dispatch scheduler.

STC Scheduler behaviour

A A1

B B1

C C3

 D D1a

When executing STC A and STC B, the original TTC-Dispatch scheduler behaves in

the same way as the TTC-ISR and the TTC-Dispatch schedulers. When executing STC

C, since the scheduler checks each task in sequence to see if they are due to run, Task

C’s status is tested – after Task B – and the task is executed. The scheduler then enters

the “idle” mode waiting for a timer interrupt. This means that the first execution of Task

A is omitted from the schedule. The system then continues as normal. In STC D, the

scheduler does not have a mechanism which counts the missing ticks, therefore tasks

which are due to run in these ticks are totally ignored.

Jitter

Table D-7 shows the periods and jitter measurements for the tick and the tasks for STC

A, STC B and STC C when implemented using the original TTC-Dispatch scheduler.

Appendix D 299

Table D-7: Task jitter from the original TTC-Dispatch scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 3029.1 2480.5

Max Period 4999.7 4999.7 6953.5 7595.1

Average Period 4999.7 4999.7 4930.99468 4896.26064

Diff. Jitter 0 0 3924.4 5114.6

Test A

Avg. Jitter 0 0 824.6 911.9

Min Period 4999.7 9999.4 2990.1 2099

Max Period 4999.7 9999.5 7011.6 7863.6

Average Period 4999.7 9999.4849 4805.84748 4762.61818

Diff. Jitter 0 0.1 4021.5 5764.6

Test B

Avg. Jitter 0 0 1166.3 1204.7

Min Period 4999.5 4999.2 18991 2994.1

Max Period 4999.9 14999.7 19998.9 17004.8

Average Period 4999.7 7680.33856 19998.49684 5370.11318

Diff. Jitter 0.4 10000.5 1007.9 14010.7

Test C

Avg. Jitter 0.1 4429.8 20.2 5258

The jitter results obtained are similar to those obtained with the TTC-Dispatch

scheduler (Chapter 7). For example, the table shows that Task A has consistently low

(release) jitter levels while the jitter for Task B and Task C – which are of low priorities

– is rather high in STC A and STC B.

However, it is very important to highlight that at any tick, the length of the check

activities – and hence the Update ISR – is a function of the number of scheduled tasks

to run at this tick. This results in varying the length of the ISR function from one tick to

another. One consequence of this variation is that Task A will suffer from jitter in its

release time when the tasks, to be scheduled in-phase with it, change from one tick to

another. The developed STCs (presented in Chapter 6) do not illustrate this difference in

behaviour between the two versions of the Dispatch scheduler.

In order to emphasise this behaviour, a small study was carried out in which a number

of tasks (between one and ten) were scheduled in such a way that the impact of jitter

would be maximised (Listing D-8 to Listing D-11). In this study, the release jitter for

Task A was measured 10 times each with a different set of tasks. For example, in the

Appendix D 300

first experiment, only Task A was added to the system. In the second experiment, Task

A and Task B were added. In the third experiment, Task A, Task B and Task C were

added and so on. This was to explore the impact of the number of scheduled task on the

jitter behaviour of Task A (which is implicitly the top priority task with hardest timing

constraints).

 // Add tasks in experiment 1 (5 ms ticks)
 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(Task_A, 0, 10);

Listing D-8: Task list used in experiment ‘one’.

 // Add tasks in experiment 2 (5 ms ticks)
 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(Task_A, 0, 10);
 SCH_Add_Task(Task_B, 0, 9);

Listing D-9: Task list used in experiment ‘two’.

 // Add tasks in experiment 3 (5 ms ticks)
 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(Task_A, 0, 10);
 SCH_Add_Task(Task_B, 0, 9);
 SCH_Add_Task(Task_C, 0, 8);

Listing D-10: Task list used in experiment ‘three’.

 // Add tasks in experiment 10 (5 ms ticks)
 // Parameters are <task name>, <offset in ticks>, <period in ticks>
 SCH_Add_Task(Task_A, 0, 10);
 SCH_Add_Task(Task_B, 0, 9);
 SCH_Add_Task(Task_C, 0, 8);
 SCH_Add_Task(Task_D, 0, 7);
 SCH_Add_Task(Task_E, 0, 6);
 SCH_Add_Task(Task_F, 0, 5);
 SCH_Add_Task(Task_G, 0, 4);
 SCH_Add_Task(Task_H, 0, 3);
 SCH_Add_Task(Task_I, 0, 2);
 SCH_Add_Task(Task_J, 0, 1);

Listing D-11: Task list used in experiment ‘ten’.

Appendix D 301

Table D-8: Task A jitter from the original TTC-Dispatch and the TTC-Dispatch
schedulers (all values in µs).

Experiment No.

One Two Three Four Five Six Seven Eight Nine Ten

Min
Period 4999.7 4998.6 4997.7 4996.8 4996.2 4995.8 4995.3 4994.9 4994.5 4994.1

Max
Period 4999.7 5000.8 5000.6 5000.9 5001.2 5001.5 5002.1 5002.4 5002.9 5003.7

Average
Period 4999.7 4999.6 4999.5 4999.7 4999.7 4999.8 4999.6 4999.7 4999.5 4999.7

Diff.
Jitter 0 2.2 2.9 4.1 5 5.7 6.8 7.5 8.4 9.6

Original
TTC-

Dispatch

Avg.
Jitter 0 1.1 1.4 1.6 1.9 2.2 2.6 2.8 3.2 3.6

Min
Period 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7

Max
Period 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7

Average
Period 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7 4999.7

Diff.
Jitter 0 0 0 0 0 0 0 0 0 0

TTC-
Dispatch

Avg.
Jitter 0 0 0 0 0 0 0 0 0 0

By analysing the jitter values of Task A in both schedulers, it was seen that, in the

original TTC-Dispatch scheduler, the jitter levels increased as further tasks were

scheduled to run in the system, while the jitter levels were always constant in the TTC-

Dispatch scheduler.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

Number of scheduled tasks

D
iff

er
en

ce
 ji

tte
r (

µs
)

Original TTC-Dispatch
TTC-Dispatch

Figure D-5: “Task A” release jitter in the original TTC-Dispatch and the TTC-Dispatch schedulers
based on the study shown in Listing D-8 to Listing D-11.

Appendix D 302

The observed behaviour patterns are caused mainly by the architecture of the system.

For example, in the original TTC-Dispatch implementation, the scheduler first

determines – in the Update() function – which tasks are due to execute and sets the

corresponding flags. The system will then execute the flagged tasks from the

Dispatch() function. A consequence of this arrangement – as previously noted – is

that the scheduler overhead (the Update() function duration) will vary depending on

the number of tasks that are to be implemented in a given tick interval. This means that

all tasks (even the first task to be executed which is Task A in this case) will suffer

release jitter.

The TTC-Dispatch implementation (described in Chapter 7) controls the jitter in the

first task by re-arranging the activities performed in the Update() and Dispatch()

functions, as illustrated in Listing 5-5 and Listing 5-6, respectively. In such an

implementation, the Update() function is very short and has a fixed duration: it simply

keeps track of the number of Ticks. The dispatch activities will then be carried out in

the Dispatch() function.

CPU, memory and power requirements

Table D-9 shows the CPU overhead for the original TTC-Dispatch scheduler (with STC

A).

Table D-9: CPU overhead for the original TTC-Dispatch scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 9.9 25.0 39.8

Table D-10 presents the memory required to implement STC A using the original TTC-

Dispatch scheduler.

Table D-10: Memory requirements (ROM and RAM) for the original TTC-Dispatch
scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 4112 324

Appendix D 303

Table D-11 shows the power consumption levels for STC A and STC B when

implemented using the original TTC-Dispatch scheduler.

Table D-11: Power requirements for the original TTC-Dispatch scheduler.

Method
Power consumption

(mW)

Test A 38.9

Test B 35.7

Applying STC to the TTC-SD scheduler

This section discusses the implementation of STCs in the TTC-SD scheduler and

presents the output results from such an implementation.

Implementing the test cases

Implementing the STCs is similar to that with the TTC-Dispatch scheduler (Chapter 7).

Task sequencing and overrun behaviour

The sequence behaviour of the TTC-SD scheduler when applying STC A, STC B, STC

C and STC D is summarised in Table D-12.

Table D-12: Task schedule in TTC-SD scheduler.

STC Scheduler behaviour

A A2

B B2

C C1

D D1b

It can be clearly seen from the table that – like the MTI approach – using the SD

approach helps to reduce the variation in the starting times of tasks running in a TTC

system (as in STC A and STC B). In the STC C and STC D, the system behaves in the

same way as the TTC-Dispatch scheduler (Chapter 7). This is because the SD scheduler

is mainly adapted from the Dispatch scheduler with a little modification.

Appendix D 304

Jitter

Table D-13 shows the periods and jitter measurements for the tick and the tasks for STC

A, STC B and STC C when implemented using the TTC-SD scheduler.

Table D-13: Task jitter from the TTC-SD scheduler (all values in µs).

 Tick Task A Task B Task C

Min Period 4999.7 4999.7 4999 4999

Max Period 4999.7 4999.7 5000.5 5000.5

Average Period 4999.7 4999.7 4999.7 4999.7

Diff. Jitter 0 0 1.5 1.5

Test A

Avg. Jitter 0 0 0.3 0.3

Min Period 4999.7 9999.4 4999 4999

Max Period 4999.7 9999.5 5000.5 5000.5

Average Period 4999.7 9999.5 4999.8 4999.7

Diff. Jitter 0 0.1 1.5 1.5

Test B

Avg. Jitter 0 0 0.4 0.3

Min Period 4999.6 2978.4 19998.9 2978.2

Max Period 4999.9 17020.5 19998.9 17020.6

Average Period 4999.7 5312.2 19998.9 5427.3

Diff. Jitter 0.3 14042.1 0 14042.4

Test C

Avg. Jitter 0 5227.8 0 5328.9

From the values presented in the table, the use of SD mechanism in TTC schedulers can

help the low-priority tasks to execute at fixed intervals. This is clear in the results

obtained from STC A and STC B. However, the results from these STCs still show little

variation (i.e. jitter) in the release times of Tasks B and Task C. This jitter is caused by

variation in time taken to leave the software loop – which is used in the SD mechanism

to check if the required release time for the concerned task is matched – and begin to

execute the task. In Listing D-12, one way of implementing such a SD mechanism is

shown.

Appendix D 305

void SANDWICH_DELAY_T1_Wait(const unsigned int DELAY_MS)
 {
 // The timer is set so that one count equals to one microsecond
 int i = DELAY_MS;

 // Wait for Timer 1 count to reach delay
 while (T1TC < i)
 {
 ;
 }
 }

Listing D-12: An example of “sandwich delay” function used in the TTC-SD scheduler.

CPU, memory and power requirements

Table D-14 shows the CPU overhead for the TTC-SD scheduler (with STC A).

Table D-14: CPU overhead for the TTC-SD scheduler.

 Scheduler time (s): Total time (s): Overhead %

Test A 18.5 25.0 74.0

The CPU overhead results show that the overall processing time required for the TTC-

SD scheduler is equal to 74% of the total run-time. This overhead figure is too large

compared to that obtained from the most of the schedulers considered in this thesis

(which was approximately equal to 39%). The observed increase in processing time is

expected when such a SD approach is used: since the CPU is forced to run in normal

operating mode while waiting for tasks to start their execution. Nonetheless, this CPU

overhead can still be low compared to that required to implement the TTC-SL scheduler

in which the processor is not placed in low-power idle mode under any condition.

Table D-15 presents the memory requirements for implementing the STC A for the

TTC-SD scheduler.

Table D-15: Memory requirements (ROM and RAM) for the TTC-SD scheduler.

Method
ROM requirements

(Bytes)
RAM requirements

(Bytes)

Test A 5344 310

Table D-16 shows the power consumption levels from the STC A and STC B when

implemented using the TTC-MTI scheduler.

Appendix D 306

Table D-16: Power requirements for the TTC-SD scheduler.

Method
Power consumption

(mW)

Test A 54.4

Test B 54.5

The results in the table show that with SD scheduler, the CPU power consumption is

significantly increased. This is, again, because the processor runs in normal operating

mode while the SD is executing. Note that the power consumption levels in STC A and

STC B, when SD is employed, are equal. This is because whether or not Task A is

scheduled, the processor has to operate for the same duration until Task C (the last task

in the list) completes execution (see STC A and STC B in Chapter 6).

In order to eliminate jitter completely from the release time of tasks in a TTC scheduler

while reducing power consumption, the modified sandwich delay mechanism (described

in Section 5.7) which employs “multiple timer interrupts” (MTIs) is recommended.

Appendix E

Techniques for reducing jitter in S-C schedulers

Introduction
This appendix reviews key previous work carried out to reduce jitter in systems using

CAN-based networks including the TTC-SCC scheduling protocol. The main focus

will, however, be on data coding techniques developed in this project to provide simple

and cost-effective solutions to jitter problem in such embedded system architectures.

General jitter-reduction techniques
Generally, there has been a great deal of previous work to address jitter problem in

systems implemented using CAN network. For example, ways for bounding the

response time of CAN messages to reduce the impact of jitter have been explored in a

number of studies (e.g. Tindell et al., 1995; Navet and Song, 1998; Rudiger, 1998). To

reduce clock jitter in CAN systems, many studies proposed techniques which help to

adjust clocks in the communicating processors (e.g. see Verissimo and Rodrigues, 1992;

Rodrigues et al., 1998; Lee and Allan, 2003; Johansson et al., 2005). Barreiros et al.

(2000) and Coutinho et al. (2000) applied ability of genetic algorithms which is a search

technique to manage the schedule of message transmission in order to minimise jitter

levels.

Nonetheless, if data messages are used to drive the local time base of each other node

(as with TTC-SCC protocol), then encoding message data (before transmission) can be

a cost-effective approach to reduce jitter by significant factors whilst maintaining high

resource efficiency.

Data coding techniques

Introduction

 This section describes a range of effective software-based techniques which can be

integrated in TTC-SCC1, TTC-SCC2 and TTC-SCC3 (or any CAN-based) networks for

reducing jitter caused by the underlying network protocol. In this case, the jitter is

observed by bit stuffing mechanism implemented in the CAN hardware for clock

Appendix E 308

synchronisation. The described techniques are based on generic data coding approaches

which can be adapted for use in a wider range of data applications. Such techniques

include: XOR masking, Software Bit Stuffing (SBS), and Eight-to-Eleven Modulation

(EEM). Ways of implementing each of these techniques in practical designs, using

TTC-SCC1 scheduler, are explored and fully documented32.

It must be emphasised that in all these techniques, data “encoding” and “decoding”

activities in the Master and Slave nodes, respectively, are performed in the scheduler

slack time: that is the spare processing time during which the scheduler is in its idle

state (Davis, 1993), see Figure E-1. The reason for this is to avoid any jitter that may be

caused by variations in the execution times of such coding activities which are a

complex function of the original data-bit values. This means that, at any tick interval,

frame that was encoded in the slack time of the previous tick interval is transmitted.

Note that code listings for all techniques are presented in Appendix H.

Tick n Tick n+1

Task
A

Slack time

I
S
R

Task
N

Coding
process

Tick
interval

Time

Idle mode

Figure E-1: Tick structure in all coding techniques considered in this thesis.

Masking data using XOR transformation

Introduction

This section explores the benefits of a method proposed originally by Nolte et al. (2001

and 2002) for reducing the impact of (hardware) bit stuffing in CAN networks.

Modifications to this technique – for achieving better improvement to a wider range of

real-time applications – are then discussed and evaluated.

32 The work described in this appendix has been adapted from the studies presented in the author’s
publications [7] and [9] listed in page xvii.

Appendix E 309

Overview of the technique

When attempting to reduce message-length variations (and hence transmission jitter) to

low levels without imposing large computational or memory overheads, techniques

described by Nolte et al. (2001 and 2002) appear to be attractive. Nolte and colleagues

(2001 and 2002) have described two mechanisms which can be combined to reduce the

impact of bit stuffing in networks employing the CAN protocol. The first approach was

based on a careful selection of message priorities aimed to remove the bit stuffing effect

in the frame header (i.e. Arbitration and Control fields). The second approach they

considered was based on an exclusive-OR (XOR) bit masking applied to the data

section of each CAN frame.

When applying both techniques to a particular set of test data, Nolte and colleges have

found that worst-case number of stuffed bits in CAN messages was reduced from 17 to

4. This is further discussed as follows.

Nolte XOR transformation

By analysing 25000 CAN frames from a real automotive system, Nolte et al. (2001)

found that the probability of having bit value of 1 (or 0) in the data section is not 50% as

usually assumed in traditional models. More specifically, they observed that the

probability of having consecutive bits of the same polarity was high, and that –

therefore – the number of stuffed bits is higher than would be expected with random

data.

To reduce the number of stuffed bits inserted by the CAN hardware, Nolte suggested a

simple encoding scheme based on logical exclusive-OR (i.e. XOR) operation. In this

scheme, the data section of each CAN frame is XOR-ed with alternating ones and zeros

(i.e. 101010…). At the receiving end, the same bit operation is applied again to extract

the original data (see Figure E-2).

 Original frame: 000000111110011000000111 ...
XOR with bit-mask: 101010101010101010101010 ...
 Transmitted frame: 101010010100110010101101 ...

Figure E-2: Encoding process in Nolte XOR masking.

Appendix E 310

When applying such an XOR masking technique to the data set considered in their

study (along with the message-ID selection technique), Nolte et al. found that the worst-

case number of stuffed bits in CAN messages was reduced by approximately 76%.

However, in a more general case, the data transmitted may not have the same

characteristics as those observed by Nolte. Provided that message identifiers were

selected properly, it would not be expected to see a significant reduction in the level of

bit-stuffing if the Nolte (XOR) transformation is applied to a data field containing

random bytes. This is investigated in the next section.

Applying Nolte transformation to general CAN traffic

Overall, the application of an XOR transformation can help to reduce levels of bit

stuffing in frames which are found to contain long sequences of identical bits. In a more

general case, the data transmitted may not have the same pattern. Indeed, if a

completely general CAN message was modelled using random data, then it would not

be expected to see a significant reduction in the level of bit-stuffing when the Nolte

(XOR) transformation is applied.

To illustrate this, 10 million pseudo-random data frames – each with eight data bytes –

were created and analysed using a ‘C’ program. The results from a simple analysis of

these data are presented in Table E-1.

Table E-1: Bit stuffing results from random CAN frames.

No. of frames exposed to
CAN bit stuffing

Maximum number of
stuffed bit

Average number of
stuffed bit

8,932,166 10 2.27

The table shows that – of the 10,000,000 frames – a total of 8,932,166 (around 89%)

would be subject to CAN bit stuffing. In this data set, the maximum number of stuffed

bits (for any frame) was 10 and the average number of stuffed bits (across all frames)

was 2.27.

Table E-2 then illustrates what happens if the Nolte approach is applied to all frames in

the data set.

Appendix E 311

Table E-2: Results from Nolte XOR transformation technique applied to random CAN frames.

Bit-stuffed
frames

Maximum.
stuffed bits

Average
stuffed bits

Reduction in
frames

Reduction in
max bits

Reduction in
average bits

8,931,642 10 2.27 0.006% 0% 0%

In the table, “Reduction in frames” shows the reduction in the number of frames which

are subject to bit stuffing after Nolte XOR transformation is applied: in this case, the

result is small (0.006%). Similarly, the reductions in the maximum number of stuffed

bits (0%) and the average number of stuffed bits (0%) are also small. Overall, it can be

concluded that the direct application of Nolte transformation is having a minimal

improvement on the level of bit stuffing for the random data.

Selective “frame-based” application of Nolte transformation

Using the same study, Table E-3 shows the results obtained in response to a selective

application of the Nolte method. This table uses the same data set used in Table E-1.

This time, however, the frames are tested individually before Nolte XOR transformation

is applied: in situations where – for the whole frame – bit stuffing will not occur, the

frame is transmitted unaltered. Only where bit-stuffing will be applied (to the “raw”

frame) is the frame subject to an XOR transformation. This method will be referred to,

in the remainder of the thesis, as “frame-based XOR transformation”.

Table E-3: Results from frame-based XOR transformation applied to random CAN frames.

Bit-stuffed
frames

Maximum.
stuffed bits

Average
stuffed bits

Reduction in
frames

Reduction in
max bits

Reduction in
average bits

7,927,015 10 2.22 11.25% 0% 2.2%

In this case, it is noted that “Reduction in frames” and reduction in the average number

of stuffed bits are larger after frame-based XOR transformation is applied. However, no

reduction is obtained in the maximum number of stuffed bits.

Selective “byte-based” application of Nolte transformation

Here, Table E-4 shows the results obtained in response to a third implementation of the

Nolte method. This table again uses the same data set. This time, however, each byte

of data in each frame is tested individually before Nolte XOR transformation is applied:

in situations where – for the byte – bit stuffing will not occur, the byte is transmitted

Appendix E 312

unaltered. Only where bit-stuffing will be applied is the byte subject to an XOR

transformation. This method will be referred to, in the remainder of the thesis, as “byte-

based XOR transformation”.

Table E-4: Results from byte-based XOR transformation applied to random CAN frames.

Bit-stuffed
frames

Maximum.
stuffed bits

Average
stuffed bits

Reduction in
frames

Reduction in
max bits

Reduction in
average bits

5,638,654 6 1.39 36.87% 40% 38.77%

In this case, against all the measures made here, it can be noted that there has been a

reduction in the level of bit stuffing. In this case, the “Reduction in frames” is

approximately 37%. The reductions in the maximum and average number of stuffed

bits are at similar levels.

Implementation

From the small study described in the previous sections, the XOR transformation

suggested by Nolte has – as expected – a little impact on the random data set. However,

by applying Nolte transformation selectively (when required) the level of bit stuffing

can be further reduced.

Of course, the study outlined by Nolte was highly artificial, and took no account of (for

example) the need to transmit information about the encoding process to the receiver, to

allow successful decoding of the data stream. In this section, the described XOR

transformation methods are incorporated in the TTC-SCC1 scheduling protocol

described in Chapter 9.

Implementing Nolte XOR transformation

In this method, every byte of the CAN data message (except the Slave ID) is XOR-ed

with the bit pattern 10101010. In this method the maximum data bandwidth of eight

bytes can be used for real data since there is no need to send any encoding information

with the CAN messages.

Appendix E 313

Implementing the frame-based XOR transformation

In this method, each CAN frame is checked and – if a sequence of five identical bits is

detected – the whole frame will be XOR-ed with the bit mask 10101010 ….

To allow decoding, only one bit is required to indicate if the frame is masked or not. To

make best use of the available data bandwidth, one bit in Byte 1 (which otherwise

contains the Slave ID) was used to store the masking information. Appropriate coding

schemes were used to ensure that the bit stuffing was not introduced in the Slave ID

byte (see Figure E-3).

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Slave ID Slave ID Masking
info Slave ID Slave ID Slave ID Slave ID Slave ID

Figure E-3: Layout for Byte 1 in the frame-based XOR transformation.

Implementing the byte-based XOR transformation

In this method, each CAN frame is checked on byte-by-byte basis, and once a byte

contains a sequence of five identical bits is detected, this particular byte will be masked

using Nolte bit-mask (i.e. 10101010).

To hold the masking information, one bit per each byte of data is required. In this case,

where 6 bytes were used for data, six bits were needed. However, it was necessary to

ensure that these 6 bits did not themselves introduce bit stuffing. Therefore – as with

the frame-based method – one bit of the Slave-ID byte was used to store decoding

information, along with 5 bits (and appropriate padding) in the last CAN data byte (see

Figure E-4 to Figure E-6).

Byte 1 Byte 2 --- Byte 7 Byte 8

Slave ID + one bit
for masking info Actual data Masking info

Figure E-4: Layout for data field in the byte-based XOR transformation.

Appendix E 314

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
Opposite to

the
previous bit

Relevant to
data byte 2

Relevant to
data byte 3

Relevant to
data byte 4

Opposite to
Bit 4

Relevant to
data byte 6

Relevant to
data byte 7

Opposite to
Bit 7

Figure E-5: Layout for Byte 8 in the byte-based XOR transformation.

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Slave ID Slave ID Relevant to
data byte 5 Slave ID Slave ID Slave ID Slave ID Slave ID

Figure E-6: Layout for Byte 1 in the byte-based XOR transformation.

For example, if Byte 8 equals to: 01010110 and Byte 1 equals to: 00100010, the

receiving node will know that bytes 2, 4, 5, 6 and 7 were masked. The Slave ID value

was again selected with extra care to avoid exposure to hardware bit-stuffing.

To implement encoding and decoding processes of this method in practice, there can be

two implementation options: (a) offline using lookup table, and (b) online using

function call. Both approaches are explained here.

Lookup table

In this approach, byte checking and required XOR transformation are carried out in a

separate desktop program for all different combinations of bits. Once all bytes are

checked and hence the required bytes are masked, the equivalent codewords are stored

in a one dimensional array that is used as a lookup table. For those bytes which need no

masking, the equivalent codeword in the table will be equal to the original byte value. In

the following table, the first few lines of the lookup table used in the byte-based XOR

transformation are presented. Note that the byte values 8, 9 and 10 remain the same

since they are not subject to XOR transformation.

Appendix E 315

Table E-5: Part of the byte-based XOR lookup table.

Original
Byte
value

Equivalent
codeword
(Decimal)

Equivalent
Codeword
 (Binary)

0 85 01010101

1 84 01010100

2 87 01010111

3 86 01010110

4 81 01010001

5 80 01010000

6 83 01010011

7 82 01010010

8 8 00001000

9 9 00001001

10 10 00001010

The (embedded) Master and Slave codes will then port this lookup table and use it for

encoding and decoding, respectively. However, in the Slave, the decoding function

needs to search for the value – of each received byte – in the table and map it to its

original byte value (which is represented by the array index).

Function call

In this approach, masking the required bytes (in the encoder) and de-masking them (in

the decoder) are performed in the embedded code during the system runtime without

prior information. For example, the Master code needs to check the data bytes and

applies the XOR transformation when required. The receiver code should hence follow

the reverse process to recover the original data bytes.

Software Bit Stuffing (SBS)

Introduction

This section presents an alternative software-based technique, called Software Bit

Stuffing (SBS), which can be used in any CAN-based network to minimise the impact

of the bit stuffing mechanism implemented in the CAN physical layer. It will be

explained how such a technique can be implemented in practical designs, using TTC-

Appendix E 316

SCC1 scheduler, with the aim to reduce the message-length variations (and hence the

transmission jitter) in CAN networks.

Overview of the technique

Although the byte-based XOR transformation was found to reduce the level of message-

length variations, it is impossible to guarantee that all (hardware) bit stuffing will be

avoided through application of this method. This is because in situations where there

are five consecutive bits of the same polarity at the boundary of two adjacent bytes, this

method will not detect this.

To completely eliminate the need for hardware bit stuffing in the CAN data segment,

Software Bit Stuffing (SBS) technique is proposed. SBS operates as follows. Before

transmitting on the CAN bus, the data content of a given frame is checked. If a

sequence of four consecutive identical bits is detected, the algorithm adds an additional

bit, of opposite polarity, afterwards. By doing so, the transmitted frames will have no

bit-sections – in the data field – that will be subject to CAN bit stuffing. Note that the

(software) stuffed bits must be removed at the receiving node (using the reverse

process) to recover the original data.

Note that after completing the bit stuffing process in the sending node, the message is

padded – as necessary – before transmission to ensure that the message length is

independent of the level of (software) bit stuffing. Note that in the hardware bit-stuffing

mechanism used in CAN, no such padding is employed.

Implementation

The previous section described a simple approach to software bit stuffing. This section

describes how such a technique can be implemented on the TTC-SCC1 scheduling

protocol.

The analysis in (Nolte et al., 2001) demonstrates that the worst-case bit stuffing occurs

if the CAN data contains five “0s” followed by four “1s” followed by four “0s”, and so

on. The total number of bits transmitted in the CAN message is therefore calculated as:

Appendix E 317

bitsstuffedofNostuffingbittosubjectbitsofNobitsdtransmitteofNo ... +=

Equation E-1

The number of required stuffed bits is calculated as follows:

1sec.
1..

−
−

=
allowedbitsutiveconofNoMaximum

stuffingbittosubjectbitsofNobitsstuffedofNo

Equation E-2

Note that the maximum number of allowed consecutive bits to transmit is equal to five;

since any sequence contains more than five consecutive identical bits will be broken up

by the CAN physical layer using an opposite polarity bit.

In the software level, to avoid hardware bit stuffing, a maximum of four consecutive

identical bits is allowed to transmit. Remember that in the S-C protocol, one byte is

allocated for Slave ID, where the bits value of this byte are selected carefully such that

(a) they were not subject to CAN bit stuffing, and (b) the last two bits in the Slave ID

had opposite polarities.

Given that Bt is the total number of bits in the data field of the CAN frame, BID is the

number of bits used for Slave ID, Br is the number of bits used for real data (which will

be subject to bit stuffing), and Bs is the number of stuffed bits, by substituting these

parameters in Equation Equation E-1 and above, Bt can be formulated as:

srIDt BBBB ++=

Equation E-3

Using Equation E-2, Bs will be equal to

 −

3
1rB . If this term is substituted in Equation

E-3, then Br can be calculated as:

4
1)(3 −−

= IDt
r

BBB

 Equation E-4

Appendix E 318

If Byr is the number of bytes used for real data, then Br = 8 Byr. By substituting this in

Equation E-4, Byr will be calculated as 5.3 Bytes. This means that the maximum

bandwidth which can be used for transmitting real data is 5 bytes. This implies that the

worst-case number of stuffed bits will be equal to 13.

Note that although the Slave ID byte was not subject to bit stuffing, there is still the

possibility that there will be five consecutive bits of the same polarity at the boundary of

this byte and the first byte in the real data. To avoid this possibility, software bit stuffing

will be applied if the data starts with three identical bits.

After all the necessary message bytes have been checked and the required bits inserted,

the remaining bits in the data section of the CAN message are padded with alternating

ones and zeros (i.e. 1010…). These bits are called compensation bits.

The number of compensation bits required (Bc) can be calculated as follows:

Bc = Bt – BID – (Br + Bs); 0 ≤ Bc ≤ 16
Equation E-5

In the system considered here where BID = 8, Bt = 64 (8 bytes), Br = 40 (5 bytes), and Bs

= 13, there will be at least three compensation bits needed to pad the message for fixing

its length. If the real data are not subject to CAN bit stuffing then the last two “Stuffed

coding” bytes (16 bits) in the data section of the CAN message will be filled with

alternating ones and zeros (see Figure E-7).

Byte 1 Byte 2 – 6 Byte 7 Byte 8
Slave ID Data Stuff coding Stuff coding

Figure E-7: Layout for data field in the software bit stuffing.

Using an example of pseudo-random data, the entire (encoding) process of SBS is

schematically illustrated in Figure E-8. Note that the stuffed bits and the compensation

bits are bolded.

Appendix E 319

Byte 1 Byte 2 -- Byte 6 Byte 7 Byte 8
Slave ID 1111110010001000000111000101111111110010 ---- ---- ---- ----

Slave ID 1110111001000100001001110001011110111101 0010 ---- ---- ----

Slave ID 1110111001000100001001110001011110111101 00101010 10101010

Figure E-8: Encoding process in the software bit stuffing algorithm.

In the same way, reverse (decoding) process must apply in all Slave nodes to extract the

original five data bytes sent in the “Tick” message from the Master.

Eight-to-Eleven Modulation (EEM)

Introduction

In this section, Eight-to-Eleven Modulation (EEM) technique, which can also be used in

CAN-based systems for reducing the impact of bit stuffing, is described. EEM is,

however, found to be more flexible and cost-effective. The flexibility of this method

results from the wide range of implementation options which are available to implement

the algorithm in resource-constrained embedded microcontrollers. An exploration of

various possible ways in which EEM can be implemented in practice, using TTC-SCC1

scheduler, is carried out in this section. Please note that the implementations outlined

here have been viewed as representative of all possible implementations methods.

Overview of the technique

Despite the fact that SBS can help to substantially reduce the jitter levels in CAN

systems, the data encoding / decoding processes can only be performed at run-time

(while the system is in its normal operation) using a function call. Overall, processing

data at run-time may result in increased CPU overheads on the used processor: a fact

which may not be tolerated in many embedded systems that have extremely limited

timing resources.

To reduce the impact of bit stuffing in CAN systems while achieving higher processor

utilisation, an alternative coding technique, which is based on X-to-Y modulation

Software
bit-stuffing

Compensation
(padding)

Transmit frame

Appendix E 320

approach, is proposed. The X-to-Y modulation is a general coding method in which “X”

represents the number of bits in the original data segment and “Y” represents the

number of bits in the encoded data segment. Data stream in some computer applications

need to be encoded to meet particular requirements. One of the popular examples is the

Eight-to-Fourteen Modulation (EFM) used to represent audio data in compact discs

(CDs)33: see Watkinson (2002). Applying the same concept to the transmitted data in

CAN networks, Eight-to-Eleven Modulation (EEM) would be an effective solution to

avoid hardware bit-stuffing. This approach is described here.

EEM is a special case of the X-to-Y modulation approach where “X” equals to 8 (the

number of bits per byte) and “Y” equals to 11. Modulating CAN data bytes using EEM

can help to ensure that the number of consecutive bits of the same polarity does not

exceed four and that, therefore, hardware bit stuffing is no longer applicable. As a

consequence, predictability of CAN message transmission times will increase.

By applying the formula in Equation E-2, where the number of bits subject to bit

stuffing is equal to 8 and the maximum number of consecutive bits allowed is again

equal to 4, the number of required stuffed bits in each byte will be equal to 2.3 (~ 2

bits).

By referring to the analysis provided by Nolte et al. (2001), the worst-case scenario for

one byte would be four ones followed by three zeros (i.e. 11110001). With adding two

33 In digital audio CD systems, data is represented by NRZI in which the presence of alternating ‘1s’ and

‘0s’ at high rates can be so fast that the optical system cannot perceive the data. On the other hand, a jitter

or data locking can be introduced if the data rate is set too low. In order to keep the data rate between

non-too-low and non-too-high frequency ranges, an appropriate coding mechanism is required. For

example, Eight-to-Fourteen Modulation (EFM) technique is widely adopted in CD recording systems. In

EFM, each data byte (8-bit) is converted to an equivalent 14-bit codeword using lookup table. This

conversion ensures that any data word has: [1] No more than 10 zeros between every two ones: this is for

synchronisation; [2] No less than 2 zeros between every 2 ones: this is to reduce frequency and help the

laser to detect the recorded data. For further details, refer to (Watkinson, 2002).

Appendix E 321

stuffed bits as calculated above, the resulting byte becomes: ‘1111000011’ (the stuffed

bits are bolded). This would work only if the boundaries between adjacent bytes are not

taken into consideration. More clearly, in the case where the previous byte to the one

shown above ends with the bit “1”, CAN hardware will detect five consecutive bits (at

the boundaries between this and its preceding byte) and thus insert an additional bit for

synchronisation.

There is no way to avoid this unless if a further bit is padded near the most significant

bits of each byte. Figure E-9 shows one possible way – which has been considered in

this study – for byte encoding. The figure clearly demonstrates that each byte needs to

be represented by (at least) 11-bit codeword. This process is referred to, in this thesis, as

“eight-to-eleven modulation (EEM)”. Note that “SB” in the figure stands for “stuffed

bit”.

Bit 1 SB 1 Bit 2 Bit 3 Bit 4 SB 2 Bit 5 Bit 6 Bit 7 SB 3 Bit 8

Figure E-9: Encoding a data byte in EEM method.

Same as SBS, when EEM was implemented in practice (using the TTC-SCC1

scheduler) the maximum throughput for the real data was equal to 5 bytes (since stuffed

bits require approximately two bytes and one byte is reserved for Slave ID in the S-C

protocol).

If Byr is the number of bytes used for real data, then Br = 8Byr, and Bs = 3 Byr (since 3

bits are required to encode each byte in the EEM). By substituting these terms in

Equation E-3, Byr will be calculated as 5.1 bytes. In another word, the number of bytes

used for real data cannot be more than 5 when EEM is applied.

 Implementation

This section explores possible ways for implementing EEM technique in practice using

the TTC-SCC1 scheduling protocol. The two main approaches considered are: lookup

table and function call. Each of these approaches is discussed in details.

Appendix E 322

Lookup table approaches

As in the EFM data modulation method described previously, the EEM algorithm can

use a lookup table to store the EEM codes for all possible byte values (between 0 and

255). In this approach, EEM codes are computed offline (using a desktop program) and

stored in a one-dimensional array which will then be used by the embedded program.

Note that with 16-bit microcontrollers (as used in this study), array with 16-bit integers

can be a suitable choice to represent the lookup table. However, using 16-bit array can

provide two types of EEM tables: explicit and implicit tables

Explicit EEM table

In the explicit representation, each array element (16-bit) is reserved for one EEM code

(11-bit), and the remaining bits in each element are left unused. Since there are 256

possible byte values, the required array size will be 256 integers. Basically, the array

index here represents the byte value and the array element represents the EEM code. For

example, the byte "0" has the EEM code of "546" (i.e. 01000100010). The first few

lines of the explicit lookup table considered here is shown in the following table.

Table E-6: Part of the explicit EEM lookup table.

Index Array element Binary value

0 546 01000100010

1 547 01000100011

2 548 01000100100

3 549 01000100101

4 554 01000101010

5 555 01000101011

6 556 01000101100

7 557 01000101101

8 562 01000110010

9 563 01000110011

10 564 01000110100

Implicit EEM table

In the implicit representation of the EEM table, each array integer may include bits for

two or three EEM codes (11-bits each). For example, the first array element includes the

Appendix E 323

EEM code of the byte “0”, and five bits from the EEM code of the byte “1”. In this

option, the overall array size is calculated as follows:

).(
).().(

elementarrayperbitsofNo
byteeachforrequiredbitsofNovaluesbytepossibleallofNosizeArray ×

=

Equation E-6

Since the number of all possible byte values is 256, each byte requires 11 bits for

encoding, and the length of each array element is 16 bits, then the size of the EEM array

will be 176 integers. Remember that the explicit EEM table contains 256 integers.

Once the lookup table is generated, it is then used by both the Master ansd Slave nodes.

Note that although the lookup table methods are offline-based, there are still some

processes to be done at runtime. This includes: (1) looking up data from the EEM table,

and (2) placing data in (or extracting from) their corresponding 8-bit CAN registers.

Unlike the process carried out by the encoder, the lookup process in the decoder may

not be straightforward. This study outlines two mechanisms for the lookup process that

the Slave’s program can implement.

Searching element:

The one-dimensional array is the simplest (software) method to represent the EEM

lookup table. If, for example, the explicit lookup table is used in both the Master and

Slave, then the decoder needs to search for the EEM code in the array lines to find its

corresponding byte value (i.e. array index).

There are many methods for looking up a particular value in a sorted array. For

example, Binary Search Algorithm (BSA) is a widely-used searching method in

computer science (Knuth, 1998). It basically rules out half of the data at each search

step for reducing the search time. A binary search finds the median, makes a

comparison to determine whether the desired value comes before or after it, and then

searches the remaining half in the same manner. Note that this algorithm is logarithmic

in which it requires at most (1+log2 N) iterations to return the answer; where N is the

number of records.

Appendix E 324

If the implicit lookup table is used in the Slave, then a direct searching mechanism has

to be applied to determine the original byte values for the receiving EEM codes. In the

design considered in this study, in order to simplify the searching process, the implicit

lookup table was divided into 16 regions (each contains 16 EEM codes stored in 11

array elements). Therefore, the decoder needs to work out in which region a particular

EEM code is stored then performs a search within this region. Overall, searching

mechanisms cause low utilisation of the CPU.

Using reverse array:

In this approach, the EEM table – in the Slave – is implemented in the opposite way: i.e.

the array index represents the EEM value and the array element represents its

corresponding byte value. Since the maximum EEM value is 1501, then the array can

have 1501 elements. But in order to save more memory, unnecessary ranges can, if

possible, be removed. For instance, since the minimum EEM value is 546 then f(546)

can be set to be equal to f(0) to start the table from the minimum EEM code while all

elements with indices less than 546 are entirely removed from the table. This implies

that, in the decoding process, f(x) = f(x – 546). With this option the EEM array can have

956 bytes (i.e. Max – Min = 1501 – 546 + 1) and hence save more memory.

Nonetheless, in order to make a better use of the available memory resources, the EEM

technique can also be implemented using online computational methods where the EEM

code for an input byte value is calculated at runtime using a function call. This approach

is further described here.

Function call approaches

This is an alternative implementation of EEM in which the equivalent EEM code for

each data byte is calculated online without the need to store data in a lookup table. In

this approach, the Master uses an “encode data” function to perform the EEM

conversion and then places the EEM words in the corresponding registers for

transmission with the CAN frame. On the Slave node, a reverse process (decoding)

takes place to extract the original data bytes. This method can be practically

implemented using two approaches: algorithmic and mathematical coding. Both

approaches are described here.

Appendix E 325

Algorithmic coding

In algorithmic coding, a set of logical operations (e.g. SHIFT, AND, OR, etc) are

employed to stuff the three required bits in each byte for generating the equivalent EEM

code. The complete process of this coding method is illustrated in Figure E-10. Note

that “In_index” indicates the bit order in the original byte, while “Out_index” indicates

the bit order in the EEM code.

Start

Stop

If
In_index = 1

Or In_index = 4
Or In_index = 7

EEM [Out_index] = Input_Byte [In_index]

Out_index ++
EEM [Out_index] = ! Input_Byte [In_index]

In_index ++
Out_index ++

If
In_index < 8

Out index = 1
In_index = 1

Yes

Yes

No

No

 Figure E-10: The process of the EEM algorithmic coding.

On the Slave node, the reverse process is applied to take out the stuffed bits and recover

the original byte values. It should be noted that in the offline approaches the desktop

program – used to generate the lookup table – was based on this algorithm.

Appendix E 326

Mathematical coding

The EEM value of a given byte can be calculated using a mathematical formula. To

clarify this, by looking at the EEM values in the explicit lookup table, it can be

observed that as the byte value (array index) increases the equivalent EEM value

increases with a specific trend (Figure E-11). The three graphs show the numerical

EEM values in three ranges: (a) full range, (b) byte values between 0 and 12, and (c)

byte values between 0 and 32. Note that the trend shown in (c) is repeated 8 times in (a).

Mathematical equations for EEM values can be derived directly from the analysis of the

graphs. If the EEM value of a byte x is represented by f(x), then f(x) can be calculated

using Equation E-7:

×

+

×

++= 64

32
4

4
)0()(xxxfxf

Equation E-7

Where f(0) is the initial value which represents the EEM code of the byte “0”, and x

is the floor function of x. Floor function is defined as the largest integer less than or

equal to x. Similarly, on the Slave, the decoding function employs Equation E-8 to

calculate x from the receiving f(x) value.

×

 −

−

×

 −

−−= 16
64

)0()(2
4

)0()()0()(fxffxffxfx

Equation E-8

Appendix E 327

0

200

400

600

800

1000

1200

1400

1600

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Byte va lue

E
E

M
 [B

yt
e]

(a)

530

535

540

545

550

555

560

565

570

575

0 1 2 3 4 5 6 7 8 9 10 11 12

Byte value

E
EM

 [B
yt

e]

(b)

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

0 4 8 12 16 20 24 28 32

Byte value

EE
M

 [B
yt

e}

(c)

Figure E-11: EEM values for different byte ranges: (a) full range, (b) bytes between 0 and 12, (c)
bytes between 0 and 32.

Appendix E 328

In general, online solutions require no excessive memory for storing data. However,

they impose higher CPU overheads on the Master and Slave microcontrollers. One

advantage over the SBS method is that the online implementation of EEM algorithm

can be achieved by both algorithmic and mathematical approaches: in SBS, only

algorithmic coding can be used. Remember that, unlike SBS, EEM coding processes

each byte in the data segment independently.

Summary
In general, the discussions in this appendix suggested that jitter in the transmission

times of data messages caused by bit-stuffing mechanism in CAN protocol can be

reduced significantly using simple coding techniques.

A schematic illustration of the techniques developed in this study, and their possible

implementation methods, is provided in Figure E-12.

Data coding techniques

EEMXOR masking SBS

Function call
Nolte
XOR

masking

Frame-
based
XOR

masking

Byte-
based
XOR

masking

Function
call

Lookup
table

Explicit
table

Implicit
table

Algorithmic
coding

Mathematical
coding

Function
call

Lookup
table

Search
element

Reverse
array

Search
element

Figure E-12: Summary of the coding techniques described in this appendix.

Appendix F

Results from the jitter-reduction techniques

Introduction
This appendix provides the output results from the data coding techniques introduced in

 Appendix E for reducing jitter in multi-processor embedded systems employing TTC-

SCC architecture. The particular system used, as previously noted, is the TTC-SCC1

scheduling protocol as a representative scheduler which utilises the tick messages for

exchanging real data with other nodes. Since TTC-SCC2 and TTC-SCC3 schedulers use

the same configuration for the Master tick messages, they can also benefit from such

techniques to reduce jitter in the timing of their Slave tasks.

The key parameter against which the various techniques are assessed is the release jitter

in Slave tasks. However, the techniques are also weighed up against the required CPU

time and memory overheads.

The experimental methodology used to obtain the results is first outlined34.

Experimental methodology

Hardware setup

In summary, the study used here was based on using two microcontroller nodes: one

represents the Master and the other represents the Slave. Each node was based on a

Phytec board supporting an Infineon C167 microcontroller with oscillator frequency of

20 MHz. The network nodes were connected using a twisted-pair CAN link. The CAN

baudrate was 1 Mbps.

34 The work described in this appendix has been adapted from the studies presented in the author’s
publications [7] and [9] listed in page xvii.

Appendix F 330

Software setup

The data coding techniques discussed in Appendix E were applied to the TTC-SCC1

(described in Chapter 9) to explore their impact on the jitter levels of Slave tasks. The

scheduler tick interval used was 4 ms. The Keil C166 compiler was used.

Jitter measurements

The experimental methodology used to obtain jitter results in this study is similar to that

described in detail in Section 11.2.3. Remember that jitter levels are measured at the

release time of “Slave1_Task_A” (the only task) in the Slave node.

Jitter in each method was measured for systems with 8-, 7- and 6-byte data model to

allow a meaningful comparison with other coding techniques. For example, the 6-byte

data model uses five bytes for real data and one byte for Slave ID. The remaining bytes

would either be unused or hold information about encoding process.

Assessing the CPU and memory loads

Since the focus in this study is on embedded systems with limited-resource

requirements, consideration of the overheads (in terms of memory and CPU

requirements) is important. To do this, the time taken for the encoding and decoding

processes was measured from the microcontroller hardware using LabVIEW

measurement tools. In each process, a pin was set high at the start of the coding function

and low at the end of it. The resulting pulse was then measured which represented the

processing time of the function at a given run. In each case, 1000 samples were

recorded and then averaged. The CPU overhead values were also represented as

percentages of the tick interval used (which is in this case 4 ms).

The memory requirements (ROM and RAM) to implement each technique in the C167

hardware platform used were also reported. In addition to the absolute values of

memory requirements in each method, the results were also presented as percentages of

the available on-chip ROM and RAM resources. Please note that the C167 boards used

have 32 Kbytes ROM and 2 Kbytes RAM. Note that memory results were obtained

from the systems using the maximum available data bandwidth only (i.e. 8-byte model).

Appendix F 331

Data selection

In the studies presented here, the data segment of each message may contain “best-

case”, “worst-case” or “random” values (and the Slave ID). One example of the best-

case scenario is message data which consists of alternating ‘1s’ and ‘0s’ (e.g.

10101010): such data require no bit stuffing. The worst-case situation occurs when the

data are set to be 11111000011110000…, since this causes the maximum level of CAN

bit stuffing (Nolte et al., 2001).

Both best- and worst-case data were used here for comparison purposes. In the case of

random data, pseudo-random values were sent in each data byte. Note that exactly the

same set of “random” data was used in each study. In total 50,000 messages were

transmitted (and measured) in each experiment.

Benchmark measures

Jitter

The jitter levels resulting from the “best-case” and “worst-case” data sets are first

considered. Table F-1 shows these jitter levels from the TTC-SCC1 scheduler. Note that

all results are in microseconds (µs). Remember that 8-byte “Tick” messages were used,

with one byte reserved for the Slave ID.

Table F-1: Task jitter from the TTC-SCC1 scheduler for best-case and worst-case data.

 8-byte

BCTT 161.4

WCTT 163.6

AVTT 162.5

Diff. Jitter 2.2

Best-case data

Avg. Jitter 0.6

BCTT 174.4

WCTT 176.7

AVTT 175.5

Diff. Jitter 2.3

Worst-case data

Avg. Jitter 0.6

Appendix F 332

It might be expected that the jitter levels when fixed data bytes are transmitted in each

CAN frame will be zero. In practice, the difference jitter obtained was found to be

approximately 2μs (equal to 2 bit times for the CAN bus at 1 Mbps). These jitter figures

are approximately equal to 1% of the whole message length.

Without access to the implementation details for the CAN controller (which are not

generally available), the precise cause of these variations cannot be identified.

However, it can be noticed that the CAN controller is asynchronous with respect to the

CPU. This means that the generation of an interrupt by the controller and its servicing

by the CPU takes a period of time which may depend on several factors (for example,

the state of the instruction pipeline in the CPU when the interrupt is generated). The

reported timing values are compatible with this kind of jitter.

The jitter levels resulting from the “random” data set is now considered. Table F-2

shows these jitter levels from the TTC-SCC1 scheduler. Note that all results are in

microseconds (µs). Remember that 8-, 7- and 6- byte data models are used here.

Table F-2: Task jitter from the TTC-SCC1 scheduler for random data.

 8-byte 7-byte 6-byte

BCTT 162.4 151.5 140.7

WCTT 172.6 160.6 148.7

AVTT 166.7 154.4 143.5

Diff. Jitter 10.2 9.1 8.0

Random data

Avg. Jitter 1.5 1.4 1.3

The results clearly show that as the number of data bytes – sent in the CAN message –

increases, the number of bits stuffed by the CAN hardware increases. The maximum

number of stuffed bits, when maximum data bandwidth was used, was found to be 10.

CPU and memory requirements

CPU and memory requirements in the TTC-SCC1 before employing any coding

technique are presented in Table F-3. Of course, there are no encoding and decoding

processes in the original system, therefore, the CPU and memory overheads are equal to

zero.

Appendix F 333

Table F-3: CPU and memory requirements for the TTC-SCC1 scheduler.

 Encoding Decoding

 Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

CPU overhead (ms) 0 0% 0 0%

Data overhead (Byte) 0 0% 0 0%

Code overhead (Byte) 0 0% 0 0%

Nolte XOR transformation

Jitter

The jitter levels from Nolte XOR transformation are presented in Table F-4. Note that

all results are in microseconds (µs).

Table F-4: Jitter results from Nolte XOR transformation.

 8-byte 7-byte 6-byte

BCTT 162.4 151.4 140.6

WCTT 172.5 160.4 148.6

AVTT 166.6 154.6 143.4

Diff. Jitter 10.1 9 8

Avg. Jitter 1.4 1.3 1.3

Overall, jitter levels were not reduced as a result of applying Nolte XOR transformation

to the random data set considered in this study (compare with the benchmark results

presented Table F-2).

CPU and memory requirements

To implement this method in the microcontroller hardware considered in this study,

encoding and decoding processes required little amounts of the CPU time. Table F-5

shows the implementation costs of the Nolte method in terms of CPU and memory

overheads.

Appendix F 334

Table F-5: Implementation costs of the Nolte XOR transformation.

 Encoding Decoding

 Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

CPU overhead (ms) 0.0158 0.4% 0.0157 0.4%

Data overhead (Byte) 0 0% 0 0%

Code overhead (Byte) 32 0.1% 24 0.1%

 The CPU overhead figures shown in the table are equal to 0.4% from the total CPU

time available in each scheduler tick interval. The memory requirements to implement

this technique were negligible as compared against the available memory resources.

Frame-based XOR transformation

Jitter

The jitter results from the frame-based XOR transformation are shown in Table F-6.

Note that all results are in microseconds (µs).

Table F-6: Jitter results from frame-based XOR transformation.

 8-byte 7-byte 6-byte

BCTT 167.9 157.8 147.1

WCTT 177.9 166.9 155.1

AVTT 171.8 161 149.5

Diff. Jitter 10 9.1 8

Avg. Jitter 1.5 1.4 1.3

As expected, the jitter levels were not improved when the frame-based XOR

transformation was applied to random CAN traffic. This is because masking the whole

frame (when at least one long sequence of identical bit is detected) had no potential to

reduce the number of stuffed bits in that frame. In such a case, the masked frame would

also be of random data pattern and as a result the CAN bit-stuffing would be expected

to remain at the same level. Frame-based XOR transformation may only fit particular

applications that contain few numbers of long sequences in each of their data frames.

CPU and memory requirements

Table F-7 shows the CPU and the memory overheads of implementing this method on

the used microcontroller hardware.

Appendix F 335

Table F-7: Implementation costs of the frame-based XOR transformation.

 Encoding Decoding

 Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

CPU overhead (ms) 0.2457 6.1% 0.0144 0.4%

Data overhead (Byte) 8 0.4% 0 0%

Code overhead (Byte) 338 1% 36 0.1%

Byte-based XOR transformation

Jitter

Table F-8 shows the jitter levels obtained from the byte-based XOR transformation.

Remember that in this method, the maximum number of bytes that can be used for real

data (including Slave ID) is 7 as one byte is used to store information for decoding.

Note that all results are in microseconds (µs).

Table F-8: Jitter results from byte-based Nolte XOR transformation.

 7-byte 6-byte

BCTT 165 155.8

WCTT 172.1 162.9

AVTT 167.1 157.84

Diff. Jitter 7.1 7.1

Avg. Jitter 1.2 1.1

It can be clearly seen from the results that the application of Nolte XOR transformation

to particular bytes – when required – has helped to reduce the jitter levels from 9 µs

down to 7 µs when the maximum available data bandwidth was used. This reduction in

jitter is approximately equal to 20%.

CPU and memory requirements

In both lookup table and function call implementation methods for the byte-based XOR

transformation, jitter values are at the same level. However, each approach required

different implementation costs. Table F-9 shows the CPU and memory overheads of

implementing each method on the microcontroller hardware used.

Appendix F 336

Table F-9: Implementation costs of the byte-based XOR transformation.

 Encoding Decoding

 Absolute value: Percentage value: Absolute value: Percentage value:

CPU overhead (ms) 0.0537 1.3% 0.4 10%

Data overhead (Byte) 512 25% 512 25%

Lookup table
Code overhead (Byte) 152 0.5% 104 0.3%

CPU overhead (ms) 0.2896 7.2% 0.0218 0.5%

Data overhead (Byte) 3 0.1% 0 0%

Function call
Code overhead (Byte) 244 0.7% 70 0.2%

Note that the decoding process in the function call method was found much faster than

encoding. This is because the encoding process involved checking each byte (bit by bit)

to see if hardware bit-stuffing will occur: this process took more time than the

corresponding checking routine during decoding (which only required testing of a single

bit flag). Also note that in the lookup table approach, the required CPU time increased

by approximately 10% in the Slave node, and the data memory increased by 25% in

both Master and Slave nodes. However, the CPU overhead for the encoding process was

seen reduced significantly. The reason why the CPU overhead in the decoding process

increased by a large factor is that each received byte must be checked and if it is masked

then the Slave will search in the lookup table for its corresponding value. The duration

of this search process entirely depends on the combination of the byte values received.

Software bit stuffing (SBS)

Jitter

The task jitter which resulted from the use of SBS is presented in Table F-10. Note that

all results are in microseconds (µs).

Appendix F 337

Table F-10: Jitter results from the SBS technique.

 6-byte

BCTT 161.2

WCTT 166.2

AVTT 162.72

Diff. Jitter 5

Avg. Jitter 0.8

The values in the table show that, in practical implementations used in this study, SBS

can reduce the jitter on the Slave task from 8 µs to 5 µs (when the same number of real

data bytes is used, in this case 6). This reduction is approximately equal to 40% which

is significant in many applications that require high levels of predictability.

CPU and memory requirements

The memory and CPU overheads imposed by SBS on the used microcontroller

hardware are presented in Table F-11.

Table F-11: Implementation costs of the SBS technique.

 Encoding Decoding

 Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

CPU overhead (ms) 0.44831 11.2% 0.4232 10.6%

Data overhead (Byte) 0 0% 0 0%

Code overhead (Byte) 250 0.8% 150 0.5%

The SBS technique required approximately 11% of the tick interval to perform the

encoding or decoding process. Although this figure is higher than that required in the

previous technique (by approximately 4%), it is still very small in comparison with the

available time resources. Remember that with SBS, the reduction in jitter was two times

that obtained from the byte-based XOR masking.

Eight-to-Eleven Modulation (EEM)

Jitter

The task jitter which resulted from the use of EEM is presented in Table F-12. Note that

all results are in microseconds (µs).

Appendix F 338

Table F-12: Jitter results from the EEM technique.

 6-byte

BCTT 163.4

WCTT 168.5

AVTT 165

Diff. Jitter 5.1

Avg. Jitter 0.9

By looking at the results in the table, it is noticeable that – like SBS – when the message

data section is encoded using the EEM technique, the jitter is reduced by approximately

40% on the microcontroller platform used in this study.

CPU and memory requirements

The memory and CPU overheads imposed by EEM on the used microcontroller

hardware are presented in the following tables.

Table F-13: CPU overhead in all EEM methods (values are in ms).

 Encoding Decoding

EEM
approach

Coding
Method

Absolute
value:

Percentage
value: Absolute

value:
Percentage

value:

BSA 0.36 9%
Explicit table 0.08

2% Reverse

Array 0.07 1.75%
Lookup

table

Implicit table 0.16 4% Search
Element 0.49 12.25%

Algorithmic
coding

0.42 10.5% --- 0.40 10%
Function call

Mathematical
coding

0.10 2.5% --- 0.16 4%

Appendix F 339

Table F-14: Memory overhead in the encoding process in all EEM methods (values are in
Bytes).

Encoding
EEM approach Coding Method

Data Code

 Absolute value: Percentage value: Absolute value: Percentage value:

Explicit table 522 25.5% 172 0.5%

Lookup table

Implicit table 362 17.7% 364 1.1%

Algorithmic
coding

10 0.5% 266 0.8%
Function call

Mathematical
coding

10 0.5% 206 0.6%

Table F-15: Memory overhead in the decoding process in all EEM methods (values are in
Bytes).

Decoding EEM
approach

Coding
Method Data Code

 Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

BSA 522 25.5% 266 0.8%
Explicit table Reverse

Array 1922 93.8% 164 0.5%
Lookup

table

Implicit table Search
Element 362 17.7% 480 1.5%

Algorithmic
coding

--- 10 0.5% 218 0.7%
Function call

Mathematical
coding

--- 10 0.5% 182 0.6%

The tables demonstrate how much processing time and memory each implementation

method of the EEM technique required when implemented on the used C167 hardware.

As a general observation, searching elements in the decoder requires quite a long time

to recover the original byte (~12% of the used tick interval). Alternatively, a reverse

lookup table can be implemented and used to save time but on the account of the used

data memory (data memory required is too large). Another observation is that the

mathematical coding can provide little CPU overhead and small amounts of memory

requirements. Combinations of encoding and decoding methods can be used as

Appendix F 340

appropriate. Indeed, it must be reported that there is no “best” solution as the selection

of the most appropriate implementation is highly dependent on the available resources

of the Master and Slave microcontrollers adopted.

Summary of the results
Based on the results presented in this appendix using TTC-SCC1 scheduling protocol

and random data messages, it was shown that Nolte XOR transformation and the

selective frame-based XOR transformation did not help to reduce the jitter levels. For

the frame-based technique, only one bit was required to indicate if the frame was

masked or not.

The selective byte-based XOR transformation technique provided a minimum jitter of 7

µs on the C167 microcontrollers used (at 1 Mbps CAN baudrate). This means that the

method had the potential to reduce the number of stuffed bits in the data section of a

CAN frame by approximately 20% in practical implementations. For this method, one

bit per (real) data byte was required to indicate if a byte was masked or not. For

example, when 6 “real” data bytes were transmitted, six bits were needed for the

encoding data: however, to insure that these six bits do not themselves introduce bit

stuffing, one byte (including appropriate padding) was used along with one bit from the

Slave ID byte. This caused a loss of 12.5% of the available CAN message bandwidth.

When SBS and EEM coding schemes were applied, the minimum jitter was equal to 5

µs. this means that such techniques had the potential to reduce the levels of jitter in a

CAN-based system by approximately 40%. However, for both techniques, up to 5 bytes

of “real” data were allowed to transmit in a CAN message. This is because, in SBS, up

to 13 (software) stuffed bits were required plus 3 bits for padding, to ensure that the

stuffed bits are not themselves subject to hardware bit stuffing. In EEM, 15 bits in total

were required to convert the real data bytes into their equivalent codewords to avoid

hardware bit stuffing. As a consequence, a loss of 25% of the CAN message bandwidth

was caused in both techniques. Figure F-1 summarises the jitter results in all techniques

and compares them with those obtained from the original scheduler (without any coding

scheme employed).

Appendix F 341

10.2
9.1

8

10.1
9

8

10
9.1

8
7.1 7.1

5 5.1

0

2

4

6

8

10

12

8-byte 7-byte 6-byte

Di
ff.

 ji
tte

r (
µs

)

Original Nolte XOR Frame-based XOR Byte-based XOR SBS EEM

Figure F-1: Jitter results from all coding techniques on C167 platform.

With regards to jitter results, it is worth emphasising that – in C167 microcontrollers – 2

µs (i.e. ±1 bit time for the CAN bus at 1 Mbps) of the jitter values were likely related to

clock synchronisation between the CAN controller and the CPU. If this is taken into

account, then the remaining 3 µs jitter – in the case of SBS and EEM – are likely to be

generated from the control fields of the CAN frame which cannot be fully controlled by

the software designers. For example, the CRC field, tailed to the CAN message,

contains a 15-bit codeword which is calculated as a function of the bit contents in all

fields including the data field. Such 15 bits can, in the worst-case scenario, induce three

(hardware) stuffed bits (Nolte et al., 2001). If this proves to be correct, then SBS and

EEM techniques had the capability to provide the maximum reduction of jitter which

could be possible at the software layer.

The message overhead (bandwidth) required to implement each technique is illustrated

in Figure F-2. Note that the results are in “number of bits”.

Appendix F 342

0
2
4
6
8

10
12
14
16

Nolte XOR Frame-based
XOR

Byte-based
XOR

SBS EEM

0 1
5

13
15

3

3
1

6-byte model

Encoding bits Padding bits

0
2
4
6
8

10
12
14
16

Nolte XOR Frame-based
XOR

Byte-based
XOR

SBS EEM

0 1

6

3

7-byte model

Encoding bits Padding bits

 Figure F-2: Message overheads in all coding techniques.

The results can be summarised as follows. In the 7-byte model, the frame-based XOR

masking had a 1-bit overhead while the byte-based XOR masking had a 9-bit overhead

(6 bits for encoding information and 3 bits for appropriate padding). In the 6-byte

model, the frame-based XOR masking (again) had an overhead of 1 bit, the byte-based

XOR masking had an overhead of 8 bits, while the overheads for the SBS and EEM

were 16 bits.

Guidelines for selecting a suitable method
This section attempts to provide general rules for selecting the most suitable data coding

technique for a particular project. It is assumed here that the designer has decided to

improve the overall performance of their existing design implemented on CAN

Appendix F 343

protocol, and not to upgrade the hardware network using a more predictable solution

(such as FlexRay).

• If the CAN data messages are likely to contain long sequences of ones and zeros –

as in the data set observed by Nolte et al. – then the direct application of Nolte

(XOR) transformation can significantly reduce the effect of bit stuffing and,

therefore, be a suitable solution.

• If the CAN data are likely to have random characteristics (with any degree of

randomness), then the designer needs to know the maximum tolerated jitter. If (for

example) the standing jitter levels are quite high for the system to tolerate, but a

reduction of up to 20% can help, then the selective byte-based XOR masking

method can be a good option. Note that this method requires little CPU and

memory overheads, but imposes 12.5% loss of the data bandwidth.

• In the case where 20% reduction in jitter is not sufficient, then the designer needs

to select between SBS and EEM methods.

• If the CPU time is very limited, then the explicit lookup table (with reverse array in

the decoder) can be a good solution. However, if the available data memory is very

limited, then the online mathematical coding will be the best option. Designers can

also chose to implement the implicit lookup table in the encoder for reducing the

data memory overhead (compared to explicit table).

• If the CPU time is flexible but the data memory is very limited, then the user can

chose one of these methods (in this order): SBS, EEM mathematical coding, or

EEM algorithmic coding. Among these methods, the EEM mathematical can be the

best in terms of CPU overhead.

• Combinations between the encoding and decoding implementations can also by

applicable depending on the available resources of individual nodes.

Appendix F 344

Using alternative microcontroller hardware

Introduction

To avoid presenting results which are symptomatic of any particular hardware platform,

a comparative study was carried out in which the XOR masking and SBS techniques

were also applied to two other CPU families: “8051” (8-bit) and “ARM7” (32-bit).

In the 8-bit system, each node was based on a Phytec board supporting an Infineon 8051

microcontroller with a 10 MHz crystal oscillator. The C515C is based on the 8051

architecture with additional on-chip support for features such as CAN (Siemens, 1997).

In the 32-bit system, each node was based on a Keil MCB2100 board, supporting a

Philips LPC2129 microcontroller with an ARM7 core. The oscillator frequency was 12

MHz and, through use of the on-chip PLL, the CPU frequency was 60 MHz.

Benchmark measures

Table F-16 shows jitter results from the TTC-SCC1 scheduler on the C515C (8051-

based), and ARM7 microcontrollers when the best-case and worst-case data are

transmitted. Note that all results are in microseconds (µs).

Table F-16: Task jitter from the TTC-SCC1 scheduler for best-case and worst-case data
on 8051 and ARM.

 8051 ARM

BCTT 220.3 114.5

WCTT 222.8 115.6

AVTT 221.6 115.1

Diff. Jitter 2.5 1.1

Best-case data

Avg. Jitter 0.6 0.3

BCTT 231.3 127.6

WCTT 233.9 128.6

AVTT 232.6 128.1

Diff. Jitter 2.6 1.0

Worst-case data

Avg. Jitter 0.6 0.3

It was shown that, like the C167 which is also based on Infineon board, the difference

jitter in both the best- and the worst-case data was 2.5μs (approximately equal to 2 bit

Appendix F 345

times for the CAN bus at 1 Mbps). For the ARM processor, the corresponding value

was 1μs (1 bit time). These jitter figures are approximately equal to 1% of the whole

message length in all cases. By looking at the results presented, it can also be noted that

– as the CPU performance increases (e.g. ARM) – the level of difference jitter is found

to fall.

The jitter levels resulting from the “random” data set on the 8051 and ARM

microcontrollers are shown in Table F-17. Note that all results are in microseconds (µs).

Remember that 8-, 7- and 6- byte data models are used here.

Table F-17: Task jitter from the TTC-SCC1 scheduler for random data on 8051 and
ARM.

 8-byte 7-byte 6-byte

BCTT 221.4 208.3 197.2

WCTT 231.6 217.3 205.4

AVTT 225.3 212.0 200.1

Diff. Jitter 10.2 9 8.2

8051

Random data

Avg. Jitter 1.5 1.4 1.4

BCTT 114.6 103.5 92.6

WCTT 123.6 111.6 99.9

AVTT 117.3 105.9 94.9

Diff. Jitter 9.0 8.1 7.3

ARM

Random data

Avg. Jitter 1.4 1.3 1.3

The results show that the jitter levels from the 8051 processor were very similar to those

obtained from the C167 alternative. However, it can be clearly seen that the jitter levels

from the ARM processor was less by approximately one bit time. This can again be due

to the way the CAN controller in such hardware synchronises its timing with the

microcontroller CPU.

CPU and memory requirements in the TTC-SCC1 before employing any coding

technique are presented in Table F-18. Of course, there are no encoding and decoding

processes in the original system, therefore, the CPU overhead is equal to zero. Please

note that – unlike the previous sections – the memory overheads by the “whole”

software program in each technique were recorded. This is to allow a meaningful

Appendix F 346

comparison with the original system. Also note that the table shows the results as

percentages of the available on-chip ROM and RAM resources. For example, the

C515C boards used have 64 Kbytes ROM and 256 bytes RAM (Siemens, 1997), and the

ARM boards have 128 Kbytes ROM and 16 Kbytes RAM (Philips, 2004).

Table F-18: CPU and memory requirements for the TTC-SCC1 scheduler on 8051 and
ARM.

 Encoding Decoding

 Absolute value: Percentage value: Absolute value: Percentage value:

CPU overhead (ms) 0 0% 0 0%

Data overhead (Byte) 52 20.3% 102 39.8%

8051

Code overhead (Byte) 1582 2.4% 1434 2.2%

CPU overhead (ms) 0 0% 0 0%

Data overhead (Byte) 448 2.7% 512 3.1%

ARM

Code overhead (Byte) 11408 8.7% 10208 7.8%

Jitter results from all techniques

The jitter results obtained from the 8051 and ARM microcontrollers are shown in the

following tables. Note that all values presented are in microseconds (µs).

Table F-19: Jitter results from 8 byte methods (7 data bytes + Slave ID) using 8051 and
ARM.

Platform

Nolte XOR
transformation

Frame-based
XOR

transformation

Byte-based XOR
transformation

SBS

BCTT 221.5 221.9 ---- ----

WCTT 231.7 232.0 ---- ----

AVTT 225.4 225.2 ---- ----

Diff. Jitter 10.2 10.1 ---- ----

C515

Avg. Jitter 1.5 1.5 ---- ----

BCTT 114.7 114.6 ---- ----

WCTT 123.7 123.5 ---- ----

AVTT 117.3 117.2 ---- ----

Diff. Jitter 9.0 8.9 ---- ----

ARM

Avg. Jitter 1.4 1.4 ---- ----

Appendix F 347

Table F-20: Jitter results from 7 byte methods (6 data bytes + Slave ID + encoding
information) using 8051 and ARM.

Platform

Nolte XOR
transformation

Frame-based
XOR

transformation

Byte-based XOR
transformation

SBS

BCTT 208.4 208.8 221.9 ----

WCTT 217.4 218.0 229.0 ----

AVTT 212.1 211.8 224.1 ----

Diff. Jitter 9 9.2 7.1 ----

C515

Avg. Jitter 1.4 1.4 1.1 ----

BCTT 103.4 103.7 114.6 ----

WCTT 111.5 111.6 120.7 ----

AVTT 105.8 105.8 116.2 ----

Diff. Jitter 8.1 7.9 6.1 ----

ARM

Avg. Jitter 1.3 1.4 1.1 ----

Table F-21: Jitter results from 6 byte methods (5 data bytes + Slave ID + encoding
information) using 8051 and ARM.

Platform

Nolte XOR
transformation

Frame-based
XOR

transformation

Byte-based XOR
transformation

SBS

BCTT 197.6 197.8 208.1 220.3

WCTT 205.8 205.9 215.2 225.4

AVTT 200.5 200.4 210.4 222.0

Diff. Jitter 8.2 8.1 7.1 5.1

C515

Avg. Jitter 1.4 1.3 1.1 0.8

BCTT 92.6 92.7 103.6 115.2

WCTT 99.7 99.6 109.5 119.3

AVTT 94.6 94.6 104.9 116.3

Diff. Jitter 7.1 6.9 5.9 4.1

ARM

Avg. Jitter 1.3 1.2 1.0 0.7

The results show that the minimum level of jitter obtained from the byte-based XOR

transformation – when using 8-bit C515C Infineon boards – was approximately 7 µs

(this is similar to the figure obtained from the equivalent C167 boards). When 32-bit

ARM boards were used, the minimum jitter was approximately 6 µs. When the SBS

method was applied, the jitter levels were further reduced. For example, with the 8-bit

Appendix F 348

boards, the minimum jitter approached was around 5 µs whereas with the 32-bit boards

it came down to 4 µs.

Table F-22: CPU overhead from all techniques on 8051 and ARM (values are in ms).

Encoding
process

Decoding
process

 Platform Method

Absolute
value:

Percentage
value:

Absolute
value:

Percentage
value:

Nolte XOR
transformation

0.039 1% 0.039 1%

Frame-based XOR
transformation

0.9019 22.5% 0.0471 1.2%

Byte-based XOR
transformation
(function call)

1.4932 37.3% 0.1134 2.8%

8051

SBS 2.9798 74.5% 2.6016 65%

Nolte XOR
transformation

0.0121 0.3% 0.0121 0.3%

Frame-based XOR
transformation

0.1328 3.3% 0.0115 0.3%

Byte-based XOR
transformation
(function call)

0.1244 3.1% 0.0175 0.4%

ARM

SBS 0.1585 4% 0.1608 4%

From the table, it can be seen that the byte-based XOR encoding process took

approximately 1.5 ms (37% of the 4ms tick interval used) and 0.1 ms (3%) on 8- and

32-bit microcontrollers, respectively. Also, it can be seen that the durations of the SBS

encoding processes, on 8- and 32-bit microcontrollers, were 3 ms (74%: this is too

large) and 0.16 ms (4%), respectively. The bit de-stuffing processes (on the Slaves)

imposed similar CPU loads.

Appendix F 349

Table F-23: Memory overheads from all techniques on 8051 and ARM.

Master Slave

ROM RAM ROM RAM Platform

Absolute % Absolute % Absolute % Absolute %

Nolte XOR
transformation

1590 2.4 52.6 20.5 1442 2.2 102 39.3

Frame-based XOR
transformation

1788 2.7 60 23.4 1461 2.2 102 39.8

Byte-based XOR
transformation
(function call)

1780 2.7 55 21.5 1482 2.3 103 40.2

8051

SBS 1848 2.8 60 23.4 1547 2.4 110 43

Nolte XOR
transformation

11456 8.7 448 2.7 10304 7.9 512 3.1

Frame-based XOR
transformation

12240 9.3 640 3.9 10320 7.9 512 3.1

Byte-based XOR
transformation
(function call)

11776 9 576 3.5 10288 7.8 512 3.1

ARM

SBS 11856 9 480 2.9 10528 8 528 3.2

As can be seen from this table, the absolute values for memory requirements increase on

the more powerful processors. For example, to implement the byte-based XOR

encoding and decoding on the 32-bit processors, an additional 368 and 80 code bytes

would be required (respectively). Similarly, to implement SBS on this processor, an

additional 484 code bytes are required for coding and an extra 320 code bytes would be

required for decoding.

Comparison between results in all platforms

The following figures summarise the jitter results obtained from the XOR masking and

SBS techniques in all microcontroller platforms considered. For meaningful

comparisons, the results from 8-, 7- and 6-byte models are illustrated.

The figures clearly show how the application of the byte-based XOR masking and SBS

techniques have the capability to reduce the task jitter by significant factors. They also

show that, as the processor’s speed increases, jitter levels are likely to decrease in all

Appendix F 350

cases. The results suggest that the application of the EEM technique would provide the

same levels of jitter reduction – as with SBS – in 8051 and ARM microcontroller

hardware. Of course, this would be on the account of the CPU and memory overheads

imposed by practical implementation of such a method.

10.2 10.110.1 10
9 8.9

0
1
2
3
4
5
6
7
8
9

10
11

Nolte XOR Frame-based XOR

Di
ff.

 ji
tte

r (
µs

)

8051 C167 ARM

Figure F-3: Jitter results from all techniques on all platforms (8-byte models).

9 9.2

7.1

9 9.1

7.1
8.1 7.9

6.1

0
1
2
3
4
5
6
7
8
9

10
11

Nolte XOR Frame-based XOR Byte-based XOR

Di
ff.

 ji
tte

r (
μs

)

8051 C167 ARM

Figure F-4: Jitter results from all techniques on all platforms (7-byte models).

Appendix F 351

8.2 8.1
7.1

5.1

8 8
7.1

5

7.1 6.9
5.9

4.1

0
1
2
3
4
5
6
7
8
9

10
11

Nolte XOR Frame-based XOR Byte-based XOR SBS

Di
ff.

 ji
tte

r (
µs

)

8051 C167 ARM

Figure F-5: Jitter results from all techniques on all platforms (6-byte models).

Appendix G

Adaptive Cruise Control (ACC) system: a case study

Introduction
As in Appendix F, the data coding techniques discussed can significantly reduce the

levels of hardware bit stuffing. However, it only makes sense to employ such techniques

in a particular application if the gains (from the reductions in jitter levels) are not

outweighed by the losses that result from the implementation costs (e.g. CPU, memory

resources and CAN bandwidth).

In order to begin to address this matter, a detailed case study was carried out in which

the Software Bit Stuffing (SBS) technique was applied to an Adaptive Cruise Control

(ACC) system developed for use in passenger vehicles. The study was based on using a

realistic “hardware in the loop” (HIL) testbed facility35.

ACC system

HIL testbed

The HIL testbed employed in this study has been previously described in detail (e.g.

Short et al. 2004a; Short et al. 2004b; Short et al. 2004c; Short and Pont, 2005).

Briefly, the simulation consists of a real-time representation of a motor vehicle

travelling down a three-lane motorway, under realistic traffic conditions. It enables

different system architectures to be assessed and quantitatively compared in a variety of

realistic and repeatable scenarios. In this appendix, HIL simulator is used to represent

an automotive Adaptive Cruise Control (ACC) system.

35 The work described in this chapter has been adapted from the study presented in the author’s
publication [5] listed in page xvii.

Appendix G 353

ACC system

Adaptive Cruise Control (ACC) is a relatively new technological development in the

automotive field which was claimed to reduce driver fatigue and the rate of auto

accidents whilst increasing fuel efficiency (Stanton, 1997). The main system function

of ACC is to control the speed of the host vehicle using information about:

• The distance between the subject vehicle and any forward vehicles.

• The motion of the subject vehicle.

• Driver commands.

Based upon the information acquired, the controller sends commands to the vehicle

throttle and brakes to either regulate the vehicle speed to a given set value, or maintain a

safe distance to a leading vehicle (if the speed of the vehicle in front is slower than the

set value). It also sends status information to the driver.

Figure G-1: An overview of the operation of the ACC.

The system under consideration in this study is a Type 2b ACC system: such a system

has an automatic gearbox and active braking. Vehicle acceleration is limited to 2.0

m/s2, deceleration to 3.0 m/s2 in order to comply with ISO standards (ISO 15622, 2003).

Figure G-1 shows the principle of operation. The controller that has been implemented

is based of a modified version of that presented by Yi et al. (2000) and is shown in

schematic form in Figure G-2 (see Short et al. 2004a; Short et al. 2004b; Short et al.

2004c).

Appendix G 354

Figure G-2: The ACC implementation: adapted from Yi et al. (2000)

This ACC system has been used as an example of a distributed embedded control

system which can be based on TTC-SCC architecture (the architecture used was that

provided in TTC-SCC1 scheduler). The aim of this study is to demonstrate the effect of

the developed SBS technique on the real-time performance of the ACC application.

System implementation

Overview

The ACC testbed was based on Infineon C167CS microcontrollers (one per node)

running at a 20 MHz oscillator frequency. Each microcontroller had two on-chip CAN

interfaces. In total 10 nodes were used. All nodes were connected using twisted-pair

CAN links running at 500 kbaud. The system is schematically illustrated in Figure G-3.

In this case study, SBS technique was applied to the ACC system to explore the impact

on the real-time behaviour.

Appendix G 355

Figure G-3: The 10-nodes ACC implementation

Three systems

One consequence of the use of the SBS methods is that a limit is placed on the amount

of user data that may be transferred in each CAN frame, since the encoding process

requires two data bytes (see Appendix E).

The original system design had to be altered to accommodate the reduced data payload.

This, in turn, resulted in a reduction in the sampling rate of the system traction

controller. To enable a meaningful comparison, measurements were also taken for an

uncompensated implementation using this reduced sampling rate.

To summarise, the three sets of results were obtained. These are labelled as follows:

• Original: the original 8-byte system with no SBS.

• Uncompensated: a 6-byte system with no SBS.

• Compensated: a 6-byte system with SBS.

Experimental methodology

Jitter measurements

To obtain jitter measurements, the latency between Master and Slave clock ticks was

recorded for a period of 10,000 samples for each system. The experimental

methodology used here is very similar to that described in Chapter 11. However, here,

the delay was measured between the Master ISR and the Slave ISR. This implies that

Appendix G 356

the “worst-case transmission time” (WCTT) here was represented by the longest delay

between the occurrence of a clock Tick on the Master node and the corresponding Tick

on the Slaves. Apart from this, the same methodology outlined in Chapter 11 was used.

Note that the jitter values presented here reflect the impact of bit-stuffing only.

Jerk and IAE measurement

To provide an indication of the control performance of each system, the maximum

positive and negative vehicle ‘jerk’ (rate of change of acceleration) was recorded over a

300 second test period in which the ACC system was put through a series of typical

manoeuvres. The jerk was averaged over a 1-second time period in accordance with

ISO test specifications (ISO, 2003).

In addition to measuring the vehicle ‘jerk’, the performance of the vehicle while

executing speed, and time-gap control was recorded. The Integral of Absolute Error

(IAE) criterion was used to provide the performance measure in this case, as defined in

Equation G-1. The IAE represents the error between the measured speed (or time-gap)

and the reference one, with the test duration, T, equal to 300 seconds.

dtteIAE
T

∫=
0

)(

Equation G-1

Each velocity test was for a speed setpoint of 70 MPH. Each distance test was

performed whilst following a lead vehicle at 50 MPH (distance setpoint of 33.53 m for

1.5 s headway).

Results

System performance

Using the experimental methodology outlined in the previous section, the results

obtained from the described ACC case study are presented in the following table.

Appendix G 357

Table G-1: Results from the 10-node ACC study

Test Original Uncompensated Compensated

IAE Velocity 1.64 1.68 1.53

IAE Distance 11.60 11.84 10.98

Ave. Jitter (µs) 3.66 3.83 2.40

Diff. Jitter (µs) 23.53 24.03 11.20

WCTT (µs) 339.17 339.57 310.77

Max Pos Jerk (m/s3) 2.24 2.39 2.37

Max Neg Jerk (m/s3) -1.81 -1.75 -1.60

Note that each of the three tests was repeated three times, and the results obtained were

averaged. Note that the IAE measurements are “unit less” values, and are best viewed as

a performance measure (the lower the better).

It can be seen from the results that the measured WCTT, average and difference jitter

have all been reduced considerably by the compensation technique. For example, the

overall reduction in the difference jitter was approximately 50%. When comparing the

control behaviour of the compensated system to that of the original system, it can be

seen that the performance has improved in all areas, except in the case of positive jerk.

When comparing the uncompensated system to the original system, it is clear that the

control performance of the uncompensated system is comparatively poor: this is a direct

consequence of the 25% reduction in the data bandwidth of the network. However,

when the compensated and uncompensated systems (with the same bandwidth

restrictions) are compared, the use of compensation is seen to improve performance in

all areas (including positive jerk).

The following tables show the results of jitter, IAE distance and velocity, and jerk from

the three versions of the ACC system considered in this study.

Appendix G 358

0

5

10

15

20

25

Original
Uncompensated

Compensated

3.66
3.83

2.4

24.03 24.03

11.2
Jit

te
r L

ev
el

s (
us

)

Average Jitter Difference Jitter

Figure G-4: Jitter levels for all systems.

10

10.4

10.8

11.2

11.6

12

Original
Uncompensated

Compensated

11.6
11.84

10.98

IA
E

Di
st

an
ce

Figure G-5: IAE distance for all systems.

Appendix G 359

1.45

1.5

1.55

1.6

1.65

1.7

Original
Uncompensated

Compensated

1.64

1.68

1.53IA
E

Ve
lo

ci
ty

Figure G-6: IAE velocity for all systems.

0

0.5

1

1.5

2

2.5

Original
Uncompensated

Compensated

2.24 2.39
2.37

1.81
1.75

1.6

M
ax

 Je
rk

 (m
/

s3
)

Positive Jerk Negative Jerk

Figure G-7: Positive and negative jerk for all systems.

Memory and CPU requirements

The bit stuffing (SBS encoding) operation took an average of 0.7 ms on the C167

processors used, and the corresponding de-stuffing (SBS decoding) operation had an

average duration of 0.6 ms. The extra RAM required by the SBS technique was 72 bytes

and 56 bytes for the Master and Slave, respectively. The corresponding ROM (data

memory) increases were found to be 1,317 and 985 bytes respectively, for the Master

and Slave. Please note that the C167 boards used in this study have 256 kBytes ROM

and 256 kBytes RAM (PhyCORE, 2003). The overall increases in memory do not,

therefore, represent large percentages of the available resources.

Appendix H

Selective code listings

TTC-MTI scheduler

IRQ Wrapper

/*--*-
 IRQ Wrapper (v1.00)
-*--*/
 .text
 .arm
 .code 32

/* ------ Global function prototypes -------------------------------*/
 .global IRQ_Wrapper

/* ------ LPC2106 Timer 1 Interrupt Register Address ---------------*/
 .equ T1IR, 0xE0008000

 .equ Mode_USR, 0x10
 .equ Mode_FIQ, 0x11
 .equ Mode_IRQ, 0x12
 .equ Mode_SVC, 0x13
 .equ Mode_ABT, 0x17
 .equ Mode_UND, 0x1B
 .equ Mode_SYS, 0x1F

 .equ I_Bit, 0x80 /* when I bit is set, IRQ is disabled */
 .equ F_Bit, 0x40 /* when F bit is set, FIQ is disabled */

/*--*-
 void IRQ_Wrapper (void)
-*--*/
IRQ_Wrapper:
/* Save regs and create stack frame */
 MOV R12,R13
 STMDB R13!,{R0-R12,R14}
 MOV R11,R12

 /* Check if Timer 1 Match Register 0 generated interrupt */
 LDR R2,=T1IR
 LDR R3,[R2]
 STR R3,[R2]
 AND R4,R3,#0xf
 CMP R4,#1

 /* If T1IR = 1 call SCH_Tick_Update */
 BLEQ SCH_Tick_Update
 CMP R4,#1
 BEQ IRQ_End_If

 /* Else call SCH_Task_Update */
 BL SCH_Task_Update

IRQ_End_If:

/* Restore registers from stack frame */
 LDMDB R11,{R0-R11,R13,R14}

/* Load return address register with pointer to Dispatch */
 MSR CPSR_c, #Mode_SYS
 LDR R14,=mTask

Appendix H 361

 LDR R14,[R14]
 LDR R13,=StackP
 LDR R13,[R13]
 MSR CPSR_c, #Mode_FIQ|I_Bit|F_Bit

/* Load return address register with pointer to Task */
 LDR R8,=cTask
 LDR R8,[r8]

/* Return from Interrupt */
 SUBS PC,R8,#0

Main code

/*--*-
 Main.C (v1.00)
-*--*/

#include "Main.h"
#include "system_init.h"
#include "Sch_2100.h"
#include "tasks.h"
#include "task_RT.h"
#include "mc_cal.h"

/*--*-
 int main (void)
-*--*/
int main (void)
 {
 // Set up PLL, VPB divider and MAM (disabled)
 System_Init();

 // Set up the scheduler
 SCH_Init(5);

 // Prepare for the 'Flash_LED' task
 LED_FLASH_Init();

 // Add tasks
 // Delay and Period values are in *ticks*
 SCH_Add_Task(Task_A, 0, 1);
 SCH_Add_Task(Task_B, 0, 1);
 SCH_Add_Task(Task_C, 0, 1);

 // Input duration for tasks
 // Values are in *microseconds*
 SCH_Task_WCET(Task_A, 2000);
 SCH_Task_WCET(Task_B, 1000);
 SCH_Task_WCET(Task_C, 1000);

 // Calculate the Scheduler Major Cycle
 Calc_Sch_Major_Cycle(SCH_MAX_TASKS);

 // Calculate the required release time for each task
 Calculate_Task_RT();

 // Start the scheduler
 SCH_Start();

 // The scheduler may enter idle mode at this point (if used)
 SCH_Go_To_Sleep();

 return 0;
 }

Appendix H 362

Scheduler code

/*--*-
 sch_2100.H (v1.00)
-*--*/

#ifndef _SCH_2100_H
#define _SCH_2100_H

#include "main.h"
#include "lpc21xx.h"

// ------ Public function prototypes -------------------------------

void SCH_Init(const int);
void SCH_Start(void);
void SCH_Update (void);

// ------ Public data type declarations ----------------------------

// Total memory per task is >>> bytes
typedef struct
 {
 // Pointer to the task (must be a 'void (void)' function)
 void (*pTask) (void);

 // Delay (ticks) until the function will (next) be run
 // - see SCH_Add_Task() for further details
 tWord Delay;

 // Interval (ticks) between subsequent runs.
 // - see SCH_Add_Task() for further details
 tWord Period;

 // Incremented (by scheduler) when task is due to execute
 tWord RunMe;

 // Task worst case execution time (in microseconds): the longest time required by
the processor to execute the task
 tWord wcet;

 // Task release time (in microseconds): the time at which can execute with no
jitter
 tWord Rls_time;

 } sTask;

// ------ Public function prototypes -------------------------------

// Core scheduler functions
void SCH_Dispatch_Tasks(void);
tByte SCH_Add_Task(void (*) (void), const tWord, const tWord);
tByte SCH_Task_WCET(void (*) (void), const tWord);
int SCH_Delete_Task(const tByte);
void SCH_Go_To_Sleep(void);

// ------ Public constants ---

// The maximum number of tasks required at any one time
// during the execution of the program
//
// MUST BE ADJUSTED FOR EACH NEW PROJECT
#define SCH_MAX_TASKS (3)

#endif

/*--*-
 sch_2100.c (v1.00)
-*--*/

#include "sch_2100.h"

Appendix H 363

// ------ Public variable definitions ------------------------------

// Used to report errors, if required
tByte Error_code_G;

// Current task index
tByte Index_G;

// The current mode
tByte Mode_G;

long StackP;

// Pointer to the task (must be a 'void (void)' function)
void (*cTask) (void);
void (*mTask) (void);

// ------ Private variable definitions ------------------------------

// The array of tasks (see Sch2100.H)
sTask SCH_tasks_G[SCH_MAX_TASKS];

tByte runme[SCH_MAX_TASKS + 1];

// ------ Private function prototypes ------------------------------

void SCH_Tick_Update(void);
void SCH_Task_Update(void);
void SCH_End_Task(void);
void SCH_Task_Overrun_Update(void);

/*--*-
 SCH_Init()

 Scheduler initialisation function. Prepares scheduler
 data structures and sets up timer interrupts at required rate.

 You must call this function before using the scheduler.
-*--*/
void SCH_Init(const int TICK_LEN_mS)
 {
 tByte i;

 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i);
 }

 // Reset the global error variable
 // - SCH_Delete_Task() will generate an error code,
 // (because the task array is empty)
 Error_code_G = 0;

 // Initialise the mode to calculating mode
 mTask = SCH_Go_To_Sleep;

 /*---
 Timer 1
 --*/

 // Set prescaler to 0
 T1PR = (PCLK / 1000000) - 1;

 // Setup Match Register 0 - tick in ms multiples
 T1MR0 = ((1000) * TICK_LEN_mS) - 1;

 // Interrupt on match, and automatically restart counter
 T1MCR = 0x03;

 // Set Timer 1 to FIQ
 VICIntSelect = 0x20;

 // Enable Timer 1 interrupt
 VICIntEnable |= 0x20;

Appendix H 364

 // Enable Timer 1 to operate in idle mode
 PCONP |= 0x04;
 }

/*--*-
 SCH_Start()

 Starts the scheduler, by enabling interrupts.

 NOTE: Usually called after all regular tasks are added,
 to keep the tasks synchronised.

 NOTE: ONLY THE SCHEDULER INTERRUPT SHOULD BE ENABLED!!!
-*--*/
void SCH_Start(void)
 {
 T1TCR |= 0x01; // Counter enable (Timer Counter Register)
 StackP = (int) sp;
 }

/*--*-
 SCH_Tick_Update()

 This is the scheduler ISR. It is called at a rate
 determined by the timer settings in the 'init' function.
-*--*/
void SCH_Tick_Update(void)
 {
 tByte i = 0;
 tByte Index;

 // Set tick jitter pin to 1
 IOSET0 = Tick_Jitter_pin;
 // Set tick jitter pin to 0
 IOCLR0 = Tick_Jitter_pin;

 // Go through the task array
 for (Index = 0; Index < SCH_MAX_TASKS ; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // indicate the task is to be run
 runme[i++] = Index;

 if (SCH_tasks_G[Index].Period != 0)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Indicate no more tasks in runme queue
 runme[i] = SCH_MAX_TASKS;

 /* If there are tasks in current tick interval */
 if (runme[0] != SCH_MAX_TASKS)
 {
 // Setup Match Register 1 - interrupt in uS from tick
 T1MR1 = SCH_tasks_G[runme[0]].Rls_time + 100*(runme[0]+1);

 // Interrupt on match 1
 T1MCR |= 0x08;
 }

 // Return to sleep

Appendix H 365

 cTask = SCH_Go_To_Sleep;

 // Reset the task index
 Index_G = 0;
 }

/*--*-
 SCH_Task_Update()
-*--*/
void SCH_Task_Update(void)
{

 // Run task after this function
 cTask = SCH_tasks_G[runme[Index_G]].pTask;

 // Setup Match Register 1 - for the next task
 T1MR1 = SCH_tasks_G[runme[Index_G+1] % SCH_MAX_TASKS].Rls_time +
100*(runme[Index_G]+2);

 Index_G++;

 // Disable Interrupt on match 1
 T1MCR &= 0xFFFFFFF7;

 // Enable Interrupt on match 1
 T1MCR |= (1 & (tLong) (runme[Index_G] != SCH_MAX_TASKS)) << 3;

//if(Index_G == 2){IOSET0 = Task_Jitter_pin;
// IOCLR0 = Task_Jitter_pin;}

}

/*--*-
 SCH_Add_Task()

 Causes a task (function) to be executed at regular intervals
 or after a user-defined delay
-*--*/
tByte SCH_Add_Task(void (* pFunction)(),
 const tWord DELAY,
 const tWord PERIOD)
 {
 tByte Index = 0;

 // First find a gap in the array (if there is one)
 while ((SCH_tasks_G[Index].pTask != 0) && (Index < SCH_MAX_TASKS))
 {
 Index++;
 }

 // Have we reached the end of the list?
 if (Index == SCH_MAX_TASKS)
 {
 // Task list is full
 //
 // Set the global error variable
 Error_code_G = ERROR_SCH_TOO_MANY_TASKS;

 // Also return an error code
 return SCH_MAX_TASKS;
 }

 // If we're here, there is a space in the task array
 SCH_tasks_G[Index].pTask = pFunction;
 SCH_tasks_G[Index].Delay = DELAY + 1;
 SCH_tasks_G[Index].Period = PERIOD;
 SCH_tasks_G[Index].Rls_time = 0;

 return Index; // return position of task (to allow later deletion)
 }

/*--*-
 SCH_Task_WCET()

Appendix H 366

-*--*/

tByte SCH_Task_WCET(void (* pFunction)(),
 const tWord WCET)
 {
 tByte Index = 0;

 for (Index=0; Index<SCH_MAX_TASKS; Index++)
 {
 if(SCH_tasks_G[Index].pTask == pFunction)
 {
 SCH_tasks_G[Index].wcet = WCET;
 break;
 }
 }

 return Index; // return position of task (to allow later deletion)

 }

/*--*-
 SCH_Delete_Task()

 RETURN VALUE: RETURN_ERROR or RETURN_NORMAL
-*--*/
int SCH_Delete_Task(const tByte TASK_INDEX)
 {
 int Return_code;

 if (SCH_tasks_G[TASK_INDEX].pTask == 0)
 {
 // No task at this location...
 //
 // Set the global error variable
 Error_code_G = ERROR_SCH_CANNOT_DELETE_TASK;

 // ...also return an error code
 Return_code = RETURN_ERROR;
 }
 else
 {
 Return_code = RETURN_NORMAL;
 }

 SCH_tasks_G[TASK_INDEX].pTask = 0x0000;
 SCH_tasks_G[TASK_INDEX].Delay = 0;
 SCH_tasks_G[TASK_INDEX].Period = 0;

 return Return_code; // return status
 }

/*--*-
 SCH_Go_To_Sleep()
-*--*/
void SCH_Go_To_Sleep()
 {
 PCON = 1;
 }

Major cycle and task RT calculations

/*--*-
 MC_Cal.H (v1.00)
-*--*/

#include "main.h"

// Scheduler major cycle
tWord SCH_Major_Cycle_G;

Appendix H 367

// Function prototype
tWord Calc_Sch_Major_Cycle(tWord);
tWord LCM2Numbers(tWord, tWord);

/*--*-
 MC_Cal.C (v1.00)
-*--*/
#include "mc_cal.h"
#include "sch_2100.h"

// The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

// Calculate the scheduler major cycle

tWord Calc_Sch_Major_Cycle(tWord n)
 {
 tWord i;

 SCH_Major_Cycle_G = SCH_tasks_G[0].Period;

 for(i = 1; i < n; i++)
 {
 SCH_Major_Cycle_G = LCM2Numbers(SCH_Major_Cycle_G, SCH_tasks_G[i].Period);
 }//end of for(i..

 return SCH_Major_Cycle_G;

 }//end of function CalcTestPeriod(int n)

/*--*-
 LCM2Numbers()
-*--*/

tWord LCM2Numbers(tWord n1,tWord n2)
{
 //calc the LCM of any two numbers
 tWord LCM,product,temp;

 product=n1*n2;

 do
 {
 if (n1 < n2)
 {
 temp=n1;
 n1=n2;
 n2=temp;
 }//end of if(n1...

 else
 {
 }//end of else-->if(n1...
 n1=n1%n2;

 }while (n1);

 // now n2 contains the GCD of the two numbers
 LCM= product/n2;

 return LCM;

}//end of function LCM2Numbers(....

/*--*-
 Task_RT.H (v1.00)
-*--*/

#include "main.h"

// Function prototype
void Calculate_Task_RT(void);

/*--*-
Task_RT.C (v1.00)
-*--*/

Appendix H 368

#include "task_rt.h"
#include "sch_2100.h"
#include "mc_cal.h"

// The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

void Calculate_Task_RT(void)
 {
 tWord Index, k, Temp_Rls_time=0, Ticks ;
 tWord Task_Schedule[SCH_MAX_TASKS][SCH_Major_Cycle_G] ; // adjust to be
larger than or equal to major cycle

 // Fill the array Task_Schedule[] which contains information about the task
schedule
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 //SCH_tasks_G[Index].Rls_time = 0;

 // check higher-periority tasks in each tick
 for (Ticks = 0; Ticks < SCH_Major_Cycle_G; Ticks++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 // Don't run the task at this stage; instead set a flag

 Task_Schedule[Index][Ticks] = 1;

 if (SCH_tasks_G[Index].Period)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 else
 {
 Task_Schedule[Index][Ticks] = 0;
 }
 }
 } // end for (Index ...)
 } // end for (Runs ...)

 // Calculate the RT required for each task

 for (Index = 1; Index < SCH_MAX_TASKS; Index++)
 {

 for (Ticks = 0; Ticks < SCH_Major_Cycle_G; Ticks++)
 {
 Temp_Rls_time = 0;

 if (Task_Schedule[Index][Ticks] == 1)
 {
 for (k = 0; k < Index ; k++)
 {
 if (Task_Schedule[k][Ticks] == 1)
 {
 Temp_Rls_time += SCH_tasks_G[k].wcet;

 // store the maximum (release) time before the current task

 if((SCH_tasks_G[Index].Rls_time < Temp_Rls_time))
 {

Appendix H 369

 SCH_tasks_G[Index].Rls_time = Temp_Rls_time;

 }

 } // end if()
 } // end for(k)
 } // end if(Task)
 } // end for(j)

 //SCH_tasks_G[Index].Rls_time *= (PCLK / 1000000U);
 } // end for(Index)

 }

/*--*-
 Task_RT.H (v1.00)
-*--*/

#include "main.h"

// Function prototype
void Calculate_Task_RT(void);

/*--*-
Task_RT.C (v1.00)
-*--*/

#include "task_rt.h"
#include "sch_2100.h"
#include "mc_cal.h"

// The array of tasks (see Sch51.C)
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

void Calculate_Task_RT(void)
 {
 tWord Index, k, Temp_Rls_time=0, Ticks ;
 tWord Task_Schedule[SCH_MAX_TASKS][SCH_Major_Cycle_G] ; // adjust to be
larger than or equal to major cycle

 // Fill the array Task_Schedule[] which contains information about the task
schedule
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 //SCH_tasks_G[Index].Rls_time = 0;

 // check higher-periority tasks in each tick
 for (Ticks = 0; Ticks < SCH_Major_Cycle_G; Ticks++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 // Don't run the task at this stage; instead set a flag

 Task_Schedule[Index][Ticks] = 1;

 if (SCH_tasks_G[Index].Period)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 else

Appendix H 370

 {
 Task_Schedule[Index][Ticks] = 0;
 }
 }
 } // end for (Index ...)
 } // end for (Runs ...)

 // Calculate the RT required for each task

 for (Index = 1; Index < SCH_MAX_TASKS; Index++)
 {

 for (Ticks = 0; Ticks < SCH_Major_Cycle_G; Ticks++)
 {
 Temp_Rls_time = 0;

 if (Task_Schedule[Index][Ticks] == 1)
 {
 for (k = 0; k < Index ; k++)
 {
 if (Task_Schedule[k][Ticks] == 1)
 {
 Temp_Rls_time += SCH_tasks_G[k].wcet;

 // store the maximum (release) time before the current task

 if((SCH_tasks_G[Index].Rls_time < Temp_Rls_time))
 {
 SCH_tasks_G[Index].Rls_time = Temp_Rls_time;

 }

 } // end if()
 } // end for(k)
 } // end if(Task)
 } // end for(j)

 //SCH_tasks_G[Index].Rls_time *= (PCLK / 1000000U);
 } // end for(Index)

 }

TTC-SCC1 scheduler

Master code

// ------ Public variable definitions ------------------------------

// Four bytes of data (plus ID information) are sent
tByte Tick_message_data_G[NUMBER_OF_SLAVES][8];
tByte Ack_message_data_G[NUMBER_OF_SLAVES][4];

// ------ Public variable declarations -----------------------------

// The array of tasks (see Sch51.c)
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

// The error code variable (see Sch51.c)
extern tByte Error_code_G;

long int Tick_count_G;
// ------ Private variable definitions -----------------------------

static tByte Slave_index_G = 0;
static bit First_ack_G = 1;

// ------ Private function prototypes ------------------------------

static void SCC_A_MASTER_Send_Tick_Message(const tByte);
static bit SCC_A_MASTER_Process_Ack(const tByte);
static void SCC_A_MASTER_Shut_Down_the_Network(void);

Appendix H 371

static void SCC_A_MASTER_Enter_Safe_State(void);
static tByte SCC_A_MASTER_Start_Slave(const tByte); // reentrant;

// ------ Private constants --

// Slave IDs may be any NON-ZERO tByte value (all must be different)
// NOTE: Do *not* use ID 0x00 (used to start slaves)
static const tByte MAIN_SLAVE_IDs[NUMBER_OF_SLAVES] = {0x02};

// If there are no backup nodes, this array should be identical
// to the array MAIN_SLAVE_IDs[] - see above.
static const tByte BACKUP_SLAVE_IDs[NUMBER_OF_SLAVES] = {0x02};

#define NO_NETWORK_ERROR (1)
#define NETWORK_ERROR (0)

// ------ Private variables --

// Current slave IDs (Slave or Backup)
static tByte Current_Slave_IDs_G[NUMBER_OF_SLAVES] = {0};

/*--*-

 SCC_A_MASTER_Update_T6

 This is the scheduler ISR. It is called at a rate determined by
 the timer settings in SCC_A_MASTER_Init_T6(). This version is
 triggered by Timer 6 interrupts: timer is automatically reloaded.

-*--*/

void SCC_A_MASTER_Update_T6(void) interrupt INTERRUPT_Timer_6_Overflow
 {
 tByte Previous_slave_index;
 bit Slave_replied_correctly;

 // Clear T6 interrupt request flag
 T6IR = 0;

 // Default
 Network_error_pin = NO_NETWORK_ERROR;

 // Keep track of the current slave
 Previous_slave_index = Slave_index_G; // First value of prev slave is 0...

 if (++Slave_index_G >= NUMBER_OF_SLAVES)
 {
 Slave_index_G = 0;
 }

 // Check that the appropriate slave responded to the previous message:
 // (if it did, store the data sent by this slave)
 if (SCC_A_MASTER_Process_Ack(Previous_slave_index) == RETURN_ERROR)
 {
 Error_code_G = ERROR_SCH_LOST_SLAVE;
 Network_error_pin = NETWORK_ERROR;

 // If we have lost contact with a slave, we attempt to
 // switch to a backup device (if one is available)
 if (Current_Slave_IDs_G[Slave_index_G] != BACKUP_SLAVE_IDs[Slave_index_G])
 {
 // There is a backup available: switch to backup and try again
 Current_Slave_IDs_G[Slave_index_G] = BACKUP_SLAVE_IDs[Slave_index_G];
 }
 else
 {
 // There is no backup available (or we are already using it)
 // Try main device.
 Current_Slave_IDs_G[Slave_index_G] = MAIN_SLAVE_IDs[Slave_index_G];
 }

 // Try to connect to the slave

Appendix H 372

 Slave_replied_correctly =
SCC_A_MASTER_Start_Slave(Current_Slave_IDs_G[Slave_index_G]);

 if (!Slave_replied_correctly)
 {
 // No backup available (or backup failed too) - we shut down
 // OTHER BEHAVIOUR MAY BE MORE APPROPRIATE IN YOUR APPLICATION
 SCC_A_MASTER_Shut_Down_the_Network();
 }
 }

 // Send 'tick' message to all connected slaves
 // (sends one data byte to the current slave)
 SCC_A_MASTER_Send_Tick_Message(Slave_index_G);

 // Check the last error codes on the CAN bus via the status register
 if ((C1CSR & 0x0700) != 0)
 {
 Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
 Network_error_pin = NETWORK_ERROR;

 // See Infineon C167CR manual for error code details
 CAN_error_pin0 = ((C1CSR & 0x0100) == 0);
 CAN_error_pin1 = ((C1CSR & 0x0200) == 0);
 CAN_error_pin2 = ((C1CSR & 0x0400) == 0);
 }
 else
 {
 CAN_error_pin0 = 1;
 CAN_error_pin1 = 1;
 CAN_error_pin2 = 1;
 }

 Tick_count_G++;

 }

/*--*-

 SCC_A_MASTER_Send_Tick_Message()

 This function sends a tick message, over the CAN network.
 The receipt of this message will cause an interrupt to be generated
 in the slave(s): this invoke the scheduler 'update' function
 in the slave(s).

-*--*/
void SCC_A_MASTER_Send_Tick_Message(const tByte SLAVE_INDEX)
 {

 // Find the slave ID for this slave
 // ALL SLAVES MUST HAVE A UNIQUE (non-zero) ID
 tByte Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];
 CAN_OBJ[0].Data[0] = Slave_ID;

 // Fill the data fields
 CAN_OBJ[0].Data[1] = Tick_message_data_G[0][1];
 CAN_OBJ[0].Data[2] = Tick_message_data_G[0][2];
 CAN_OBJ[0].Data[3] = Tick_message_data_G[0][3];
 CAN_OBJ[0].Data[4] = Tick_message_data_G[0][4];
 CAN_OBJ[0].Data[5] = Tick_message_data_G[0][5];
 CAN_OBJ[0].Data[6] = Tick_message_data_G[0][6];
 CAN_OBJ[0].Data[7] = Tick_message_data_G[0][7];

 // Send the message on the CAN bus
 CAN_OBJ[0].MCR = 0xEFFF; // Set TXRQ
 }

/*--*-

 SCC_A_MASTER_Process_Ack()

 Make sure the slave (SLAVE_ID) has acknowledged the previous
 message that was sent. If it has, extract the message data

Appendix H 373

 from the USART hardware: if not, call the appropriate error
 handler.

 PARAMS: The index of the slave.

 RETURNS: RETURN_NORMAL - Ack received (data in Ack_message_data_G)
 RETURN_ERROR - No ack received (-> no data)

-*--*/

bit SCC_A_MASTER_Process_Ack(const tByte SLAVE_INDEX)
{
 tByte Ack_ID, Slave_ID;

 // First time this is called there is no ack tick to check
 // - we simply return 'OK'
 if (First_ack_G)
 {
 First_ack_G = 0;
 return RETURN_NORMAL;
 }

 // Is the NEWDAT flag set?
 if ((CAN_OBJ[1].MCR & 0x0300) == 0x0200)
 {
 // An Ack message was received
 // - Extract the data
 Ack_ID = CAN_OBJ[1].Data[0]; // Get data byte 0

 Ack_message_data_G[SLAVE_INDEX][0] = CAN_OBJ[1].Data[1];
 Ack_message_data_G[SLAVE_INDEX][1] = CAN_OBJ[1].Data[2];
 Ack_message_data_G[SLAVE_INDEX][2] = CAN_OBJ[1].Data[3];
 Ack_message_data_G[SLAVE_INDEX][3] = CAN_OBJ[1].Data[4];

 CAN_OBJ[1].MCR = 0xFDFF; // Clear NEWDAT flag

 // Find the slave ID for this slave
 Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];

 if (Ack_ID == Slave_ID)
 {
 return RETURN_NORMAL;
 }
 }

 // No message, or ID incorrect
 return RETURN_NORMAL;
}

// ------ Public variable definitions ------------------------------

// The array of tasks
sTask SCH_tasks_G[SCH_MAX_TASKS];

extern long int Tick_count_G;

extern tByte Tick_message_data_G[NUMBER_OF_SLAVES][8];

// Used to display the error code
// See Main.H for details of error codes
// See Port.H for details of the error port
tByte Error_code_G = 0;

// ------ Private function prototypes ------------------------------

void SCH_Go_To_Sleep(void);

// ------ Private variables --

// Keeps track of time since last error was recorded (see below)
static tWord Error_tick_count_G;

// The code of the last error (reset after ~1 minute)

Appendix H 374

static tByte Last_error_code_G;

/*--*-

 SCH_Dispatch_Tasks()

 This is the 'dispatcher' function. When a task (function)
 is due to run, SCH_Dispatch_Tasks() will run it.
 This function must be called (repeatedly) from the main loop.

-*--*/
void SCH_Dispatch_Tasks(void)
 {
 tByte Index;
 bit Update_again = 0;

 do {
 // NOTE: calculations are in *TICKS* (not milliseconds)
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 (*SCH_tasks_G[Index].pTask)(); // Run the task

 if (SCH_tasks_G[Index].Period)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Disable Timer 6 interrupt
 T6IE = 0;

 if (--Tick_count_G > 0)
 {
 Update_again = 1;
 }
 else
 {
 Update_again = 0;
 }

 // Re-enable Timer 6 interrupt
 T6IE = 1;

 } while (Update_again);

// Fill the message data with random bytes

 for (i=1; i <= 7; i++)
 {
 Tick_message_data_G[0][i] = (tByte) (rand() % 255); // random data
 }

//--
// Encoding process – for jitter reduction - is carried out here

Encode_data();

//--

 // Report system status
 SCH_Report_Status();

Appendix H 375

Slave code

// ------ Public variable definitions ------------------------------

// Data sent from the master to this slave
tByte Tick_message_data_G[8];

tByte Dummy_tick_data_G[8]; // dummy array

// Data sent from this slave to the master
// - data may be sent on, by the master, to another slave
tByte Ack_message_data_G[4] = {'1','1','1','1'};

// ------ Public variable declarations -----------------------------

// The array of tasks (see Sch51.c)
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

// The error code variable (see Sch51.c)
extern tByte Error_code_G;

long int Tick_count_G;

// ------ Private function prototypes ------------------------------
static void SCC_A_SLAVE_Enter_Safe_State(void);

static void SCC_A_SLAVE_Send_Ack_Message_To_Master(void);
static tByte SCC_A_SLAVE_Process_Tick_Message(void);

static void SCC_A_SLAVE_Watchdog_Init(void);
static void SCC_A_SLAVE_Watchdog_Refresh(void);

// ------ Private constants --

// Each slave (and backup) must have a unique (non-zero) ID
#define SLAVE_ID 0x02

#define NO_NETWORK_ERROR (1)
#define NETWORK_ERROR (0)

/*--*-

 SCC_A_SLAVE_Update

 This is the scheduler ISR. It is called at a rate
 determined by the timer settings in SCC_A_SLAVE_Init().

 This Slave is triggered by CAN interrupts.

-*--*/
void SCC_A_SLAVE_Update(void) interrupt INTERRUPT_CAN_C167CR
 {
// tByte Index;
 tWord uwIntID;
 tWord i;

 // *** DON'T NEED THIS ***
 uwIntID = C1IR & 0x00ff;

 if ((uwIntID & 0x00ff) != 3)
 {
 // Only interested in Message Object 1 Interrupt
 return;
 }

 RECV_LED_pin = 0;

 // Reset this when tick is received
 Network_error_pin = NO_NETWORK_ERROR;

 // Check tick data - send ack if necessary
 // NOTE: 'START' message will only be sent after a 'time out'

Appendix H 376

 if (SCC_A_SLAVE_Process_Tick_Message() == SLAVE_ID)
 {
 SCC_A_SLAVE_Send_Ack_Message_To_Master();

 // Feed the watchdog ONLY when a *relevant* message is received
 // (noise on the bus, etc, will not stop the watchdog...)
 //
 // START messages will NOT refresh the slave
 // - Must talk to every slave at regular intervals
 SCC_A_SLAVE_Watchdog_Refresh();
 }

 // Check the last error codes on the CAN bus via the status register
 if ((C1CSR & 0x0700) != 0)
 {
 Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
 Network_error_pin = NETWORK_ERROR;

 // See Infineon C167CR manual for error code details
 CAN_error_pin0 = ((C1CSR & 0x0100) == 0);
 CAN_error_pin1 = ((C1CSR & 0x0200) == 0);
 CAN_error_pin2 = ((C1CSR & 0x0400) == 0);
 }
 else
 {
 CAN_error_pin0 = 1;
 CAN_error_pin1 = 1;
 CAN_error_pin2 = 1;
 }

 Tick_count_G++;

 for(i=0; i<700; i++);
 RECV_LED_pin = 1;
 }

/*--*-

 SCC_A_SLAVE_Process_Tick_Message()

 The ticks messages are crucial to the operation of this shared-clock
 scheduler: the arrival of a tick message (at regular intervals)
 invokes the 'Update' ISR, that drives the scheduler.

 The tick messages themselves may contain data. These data are
 extracted in this function.

-*--*/
tByte SCC_A_SLAVE_Process_Tick_Message(void)
 {
 tByte Tick_ID;

 if ((CAN_OBJ[0].MCR & 0x0c00) == 0x0800) // if MSGLST set
 {
 // Indicates that the CAN controller has stored a new
 // message into this object, while NEWDAT was still set,
 // i.e. the previously stored message is lost.

 // We simply IGNORE this here and reset the flag
 CAN_OBJ[0].MCR = 0xf7ff; // reset MSGLST
 }

 // The first byte is the ID of the slave for which the data are
 // intended
 Tick_ID = CAN_OBJ[0].Data[0]; // Get data byte 0 (Slave ID)

 if (Tick_ID == SLAVE_ID)
 {
 // Only if there is a match do we need to copy these fields
 Tick_message_data_G[0] = CAN_OBJ[0].Data[0];
 Tick_message_data_G[1] = CAN_OBJ[0].Data[1];
 Tick_message_data_G[2] = CAN_OBJ[0].Data[2];
 Tick_message_data_G[3] = CAN_OBJ[0].Data[3];
 Tick_message_data_G[4] = CAN_OBJ[0].Data[4];
 Tick_message_data_G[5] = CAN_OBJ[0].Data[5];
 Tick_message_data_G[6] = CAN_OBJ[0].Data[6];

Appendix H 377

 Tick_message_data_G[7] = CAN_OBJ[0].Data[7];
 }

 else
 {
 // Must do same processing to avoid jitter
 Dummy_tick_data_G[0] = CAN_OBJ[0].Data[0];
 Dummy_tick_data_G[1] = CAN_OBJ[0].Data[1];
 Dummy_tick_data_G[2] = CAN_OBJ[0].Data[2];
 Dummy_tick_data_G[3] = CAN_OBJ[0].Data[3];
 Dummy_tick_data_G[4] = CAN_OBJ[0].Data[4];
 Dummy_tick_data_G[5] = CAN_OBJ[0].Data[5];
 Dummy_tick_data_G[6] = CAN_OBJ[0].Data[6];
 Dummy_tick_data_G[7] = CAN_OBJ[0].Data[7];
 }
 CAN_OBJ[0].MCR = 0xFDFD; // Reset NEWDAT and INTPND

 return Tick_ID;
 }

/*--*-

 SCC_A_SLAVE_Send_Ack_Message_To_Master()

 Slave must send and 'Acknowledge' message to the master, after
 tick messages are received. NOTE: Only tick messages specifically
 addressed to this slave should be acknowledged.

 The acknowledge message serves two purposes:
 [1] It confirms to the master that this slave is alive & well.
 [2] It provides a means of sending data to the master and - hence
 - to other slaves.

 NOTE: Data transfer between slaves is NOT permitted!

-*--*/
void SCC_A_SLAVE_Send_Ack_Message_To_Master(void)
 {
 // First byte of message must be slave ID
 CAN_OBJ[1].Data[0] = SLAVE_ID; // data byte 0

 CAN_OBJ[1].Data[1] = Ack_message_data_G[0];
 CAN_OBJ[1].Data[2] = Ack_message_data_G[1];
 CAN_OBJ[1].Data[3] = Ack_message_data_G[2];
 CAN_OBJ[1].Data[4] = Ack_message_data_G[3];

 // Send the message on the CAN bus
 CAN_OBJ[1].MCR = 0xE7FF; // Set TXRQ (send message)
 }

// The array of tasks
sTask SCH_tasks_G[SCH_MAX_TASKS];

// Used to display the error code
// See Main.H for details of error codes
// See Port.H for details of the error port
tByte Error_code_G = 0;

extern long int Tick_count_G;

// ------ Private function prototypes ------------------------------

void SCH_Go_To_Sleep(void);

// ------ Private variables --

// Keeps track of time since last error was recorded (see below)
static tWord Error_tick_count_G;

// The code of the last error (reset after ~1 minute)
static tByte Last_error_code_G;

// ------ Private constants ---

Appendix H 378

#define NO_NETWORK_ERROR (1)
#define NETWORK_ERROR (0)

/*--*-

 SCH_Dispatch_Tasks()

 This is the 'dispatcher' function. When a task (function)
 is due to run, SCH_Dispatch_Tasks() will run it.
 This function must be called (repeatedly) from the main loop.

-*--*/
void SCH_Dispatch_Tasks(void)
 {
 tByte Index;
 bit Update_again = 0;

 do {
 // NOTE: calculations are in *TICKS* (not milliseconds)
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run
 (*SCH_tasks_G[Index].pTask)(); // Run the task

 if (SCH_tasks_G[Index].Period)
 {
 // Schedule period tasks to run again
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 else
 {
 // Delete one-shot tasks
 SCH_tasks_G[Index].pTask = 0;
 }
 }
 }
 }

 // Check the last error codes on the CAN bus via the status register
 if ((C1CSR & 0x0700) != 0)
 {
 Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
 Network_error_pin = NETWORK_ERROR;

 // See Infineon C167CR manual for error code details
 CAN_error_pin0 = ((C1CSR & 0x0100) == 0);
 CAN_error_pin1 = ((C1CSR & 0x0200) == 0);
 CAN_error_pin2 = ((C1CSR & 0x0400) == 0);
 }
 else
 {
 CAN_error_pin0 = 1;
 CAN_error_pin1 = 1;
 CAN_error_pin2 = 1;
 }

 // Disable interrupts
 //ET2 = 0;

 if (--Tick_count_G > 0)
 {
 Update_again = 1;
 }
 else
 {
 Update_again = 0;

Appendix H 379

 }

 //ET2 = 1;

 } while (Update_again);

//--
// Decoding process – to recover original data - is carried out here

 Decode_Data();
//--

 // Report system status
 SCH_Report_Status();

Data coding techniques

Nolte XOR masking

Master code

// XOR all data bytes (except the Slave ID) with Nolte bit mask
 for (i=1; i <= 7; i++)
 {
 Tick_message_data_G[0][i] ^= 0x55;
 }

Slave code

for (i=1; i <= 7; i++)
 {
 Tick_message_data_G[i] ^= 0x55; // random data
 }

Frame-based XOR masking

Master code

if(Data_Config() == YES)
 {
 for (i=1; i <= 7; i++)
 {
 Tick_message_data_G[i] ^= 0x55; // random data
 }

 // send 0010 0000 to indicate that the frame has been masked
 Tick_message_data_G[0][0] = 0x20;
 }

tByte Data_Config(void)
{
 Consec_Bits = 0;
 Tick_message_data_G[0][0] = 0;

 frame = Tick_message_data_G[0][7];
 Prev_bit = frame & 0x1;
 z = 2;
 if (Check_Bit_Stuff(8,5) == NO)

Appendix H 380

 {
 frame = Tick_message_data_G[0][6];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 frame = Tick_message_data_G[0][5];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 frame = Tick_message_data_G[0][4];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 frame = Tick_message_data_G[0][3];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 frame = Tick_message_data_G[0][2];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 frame = Tick_message_data_G[0][1];
 Prev_bit = Last_Bit;
 z = 1;
 if (Check_Bit_Stuff(8,5) == NO)
 {
 return NO;
 }
 else {return YES;}
 }
 else {return YES;}
 }
 else {return YES;}
 }
 else {return YES;}
 }
 else {return YES;}
 }
 else {return YES;}
 }
 else {return YES;}
}

tByte Check_Bit_Stuff(tByte frame_size, tByte CONSEC_BITS)
{
 tByte FRAME1;
 tByte k;

 Stuff_bits=0;

 for (k=z; k <= frame_size; k++)
 {

 FRAME1 = frame >> (k-1);

 Curr_bit = FRAME1 & 0x1;

 if (Curr_bit == Prev_bit)
 {
 Consec_Bits ++;
 }
 else
 {
 Consec_Bits = 0;
 Prev_bit = Curr_bit;
 }

 if (Consec_Bits == (CONSEC_BITS-1))

Appendix H 381

 {
 Stuff_bits ++;
 Consec_Bits = 0;
 }
 }

 Last_Bit = Prev_bit;

 if(Stuff_bits > 0) {return YES;}

 else {return NO;}

}

Slave code

if (Tick_message_data_G[0] >> 5 == 1)
 {
 for(i=1; i<=7; i++)
 {
 Tick_message_data_G[i] ^= 0x55;
 }
 }

Byte-based XOR masking

Online (function call)

Master code

Data_Config();

void Data_Config(void)
{
 tByte i ;

 Tick_message_data_G[0][0] = 0;
 Tick_message_data_G[0][7] = 0;

 for(i=1; i <= NO_OF_BYTES; i++)
 {
 frame = Tick_message_data_G[0][i];
 if (Check_Bit_Stuff(8,5) == YES)
 {
 Tick_message_data_G[0][i] ^= 0x55;
 if(i==4)
 {
 Tick_message_data_G[0][0] |= (0x01<<5); // 0010 0000
 }
 else
 {
 Tick_message_data_G[0][7] |= (0x01<<(7-i));
 }
 }
 }

// bit no 1 in byte7 must oppose last bit in byte6
// bit no 5 in byte7 must oppose bit no 4 in this byte
// last bit in byte7 must oppose bit no 7 in this byte

 Tick_message_data_G[0][7] |= (!(Tick_message_data_G[0][6]&0x01)<<7)
 |(!((Tick_message_data_G[0][7]>>4)&0x01)<<3)
 |(!((Tick_message_data_G[0][7]>>1)&0x01));

Appendix H 382

}

/***
Check_Bit_Stuff()

This function goes through the frame bit-by-bit. Whenever it finds
consecutive 1s or 0s, it returns YES, otherwise returns NO.

Note that this function requires two values: the frame size and the number of
consecutive bits to check for. (e.g. 4 or 5)

**/

tByte Check_Bit_Stuff(tByte frame_size, tByte CONSEC_BITS)
{

 tByte frame1;
 bit Curr;
 bit Prev;
 tWord Consec_Bits;
 tWord k;

 Consec_Bits = 0; // Number of consecutive bits
 k=1;
 Stuff_bits=0;

 Prev = frame & 0x1;

 for (k=2; k <= frame_size; k++)
 {

 frame1 = frame >> (k-1);

 Curr = frame1 & 0x1;

 if (Curr == Prev)
 {
 Consec_Bits ++;
 }
 else
 {
 Consec_Bits = 0;
 Prev = Curr;
 }

 if (Consec_Bits == (CONSEC_BITS-1))

 {
 Stuff_bits++;

 Consec_Bits = 0;
 }
 }

 if(Stuff_bits > 0)
 {
 return YES;
 }

 return NO;

}

Slave code

Data_Config();

Appendix H 383

void Data_Config(void)
{

 tByte i;
 for(i=1; i<= NO_OF_BYTES; i++)
 {
 if(i == 4)
 {
 if (((Tick_message_data_G[0]>>5) & 0x01) == 1)
 {
 Ti ck_message_data_G[4] ^= 0x55;
 }
 }

 else
 {
 if ((Tick_message_data_G[7]>>(7-i)) & 0x01 == 1)
 {
 Tick_message_data_G[i] ^= 0x55;
 }
 }
 }
}

Software Bit Stuffing (SBS)

Master code

Encode_Data();

void Encode_Data(void)
{
tByte i;

// Consecutive bits counter
tByte Consec_Bits=0;

// Bit status flags
bit Prev_Bit=0;
bit Current_Bit=0;

// Pointers for input data
tByte In_Bit_No=0;
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Bit_No=0;
tByte Out_Byte_No=0;

// Initialise the consec bits counter
Consec_Bits=0;

// Initialise the previous bit (i.e. from Slave ID) - can be modified?
Prev_Bit=0;

// Reset the output data buffers
for(i=0; i<7; i++)
{
Tick_data_after_stuffing[i] = 0;

}
// Begin the bit stuffing
for(In_Byte_No=0;In_Byte_No<CAN_BYTES_USED_FOR_DATA;In_Byte_No++)
 {
 // Loop through the input bits in this byte

Appendix H 384

 for(In_Bit_No=0;In_Bit_No<8;In_Bit_No++)
 {
 // Loop through each bit
 Current_Bit=(Tick_message_data_G[0][In_Byte_No]>>(7-In_Bit_No))&0x01;

 // See if current bit is same as previous bit
 if(Current_Bit==Prev_Bit)
 {
 // It is
 Consec_Bits++;
 }
 // Otherwise we are OK
 else
 {
 // Reset counter
 Consec_Bits=0;
 Prev_Bit=Current_Bit;
 }

 // Now we copy the data as normal here
 Tick_data_after_stuffing[Out_Byte_No]|=((tByte)(Current_Bit)<<(7-
Out_Bit_No));

 // Increment and check for roll-over
 if(++Out_Bit_No>7)
 {
 // Reset bit counter
 Out_Bit_No=0;
 // Increment byte counter
 Out_Byte_No++;
 }

 // Are we at bit limit?
 if(Consec_Bits==CONSECUTIVE_BIT_LIMIT)
 {
 // Yes-Insert stuff bit

Tick_data_after_stuffing[Out_Byte_No]|=((tByte)(!Current_Bit)<<(7-Out_Bit_No));

 // Increment and check for roll-over
 if(++Out_Bit_No>7)
 {
 // Reset bit counter
 Out_Bit_No=0;
 // Increment byte counter
 Out_Byte_No++;
 }

 // Reset bit counter
 Prev_Bit=!Current_Bit;
 Consec_Bits=0;
 }
 }
 }
// We have now finished doing the bit stuffing
// Begin the compensation stage now
for(Out_Byte_No=Out_Byte_No;Out_Byte_No<CAN_NUM_DATA_BYTES-1;Out_Byte_No++)
 {
 // Add compensation bits to all remaining bytes
 for(Out_Bit_No=Out_Bit_No;Out_Bit_No<8;Out_Bit_No++)
 {
 // Toggle the last bit we sent
 Current_Bit=!Current_Bit;
 Tick_data_after_stuffing[Out_Byte_No]|=((tByte)(Current_Bit)<<(7-
Out_Bit_No));
 }
 // Remember to set Out_Bit_No equal to zero here!
 Out_Bit_No=0;
 }

}

Appendix H 385

Slave code

Decode_Data();

void Decode_Data(void)
{
// Consecutive bits counter
tByte Consec_Bits=0;

// Bit status flags
bit Prev_Bit=0;
bit Current_Bit=0;

// Pointers for input data
tByte In_Bit_No=0;
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Bit_No=0;
tByte Out_Byte_No=0;

// Initialise the consec bits counter
Consec_Bits=0;

// Initialise the previous bit (i.e. from Slave ID) - can be modified?
Prev_Bit=0;

// Init pointers
Out_Bit_No=0;
Out_Byte_No=0;
In_Bit_No=0;
In_Byte_No=0;

// Scan through until we have decoded all usefull information
while(Out_Byte_No<CAN_BYTES_USED_FOR_DATA)
 {
 // Loop through each bit
 Current_Bit=(Tick_data_before_destuffing[In_Byte_No]>>(7-
In_Bit_No))&0x01;

 // See if current bit is same as previous bit
 if(Current_Bit==Prev_Bit)
 {
 // It is
 Consec_Bits++;
 }

 // Otherwise we are OK
 else
 {
 // Reset counter
 Consec_Bits=0;
 Prev_Bit=Current_Bit;
 }

 // Are we at bit limit?
 if(Consec_Bits==CONSECUTIVE_BIT_LIMIT)
 {
 // Yes-remove stuff bit
 // Increment and check for roll-over
 if(++In_Bit_No>7)
 {
 // Reset bit counter
 In_Bit_No=0;
 // Increment byte counter
 In_Byte_No++;
 }
 // Reset counter
 Prev_Bit=!Current_Bit;
 Consec_Bits=0;
 }

Appendix H 386

 // Now we copy the data as normal here
 Tick_message_data_G[Out_Byte_No]|=((tByte)(Current_Bit)<<(7-
 Out_Bit_No));

 // Increment and check for roll-over
 if(++In_Bit_No>7)
 {
 // Reset bit counter
 In_Bit_No=0;
 // Increment byte counter
 In_Byte_No++;
 }

 // Increment and check for roll-over
 if(++Out_Bit_No>7)
 {
 // Reset bit counter
 Out_Bit_No=0;
 // Increment byte counter
 Out_Byte_No++;
 }
 }
}

Eight-to-Eleven Modulation (EEM)

Explicit lookup table

Master code

// Important definitions

#define CAN_BYTES_USED_FOR_DATA (5)
#define CAN_NUM_DATA_BYTES (8)

#define NO_INPUT_BYTES (5)
#define NO_INPUT_BITS (11)
#define NO_OUTPUT_BITS (8)
#define DIFF_IO_BITS (NO_INPUT_BITS - NO_OUTPUT_BITS)

// Original data message
tByte Tick_message_data_G[NUMBER_OF_SLAVES][CAN_BYTES_USED_FOR_DATA];

// Encoded data message
tByte Tick_data_after_EEM_encoding[CAN_NUM_DATA_BYTES-1];

/*--*-

 SCC_A_MASTER_Send_Tick_Message()

 This function sends a tick message, over the CAN network.
 The receipt of this message will cause an interrupt to be generated
 in the slave(s): this invoke the scheduler 'update' function
 in the slave(s).

-*--*/
void SCC_A_MASTER_Send_Tick_Message(const tByte SLAVE_INDEX)
 {

 // Find the slave ID for this slave
 // ALL SLAVES MUST HAVE A UNIQUE (non-zero) ID
 tByte Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];
 CAN_OBJ[0].Data[0] = Slave_ID;

 // Fill the data fields
 CAN_OBJ[0].Data[1] = Tick_data_after_EEM_encoding[0];

Appendix H 387

 CAN_OBJ[0].Data[2] = Tick_data_after_EEM_encoding[1];
 CAN_OBJ[0].Data[3] = Tick_data_after_EEM_encoding[2];
 CAN_OBJ[0].Data[4] = Tick_data_after_EEM_encoding[3];
 CAN_OBJ[0].Data[5] = Tick_data_after_EEM_encoding[4];
 CAN_OBJ[0].Data[6] = Tick_data_after_EEM_encoding[5];
 CAN_OBJ[0].Data[7] = Tick_data_after_EEM_encoding[6];

 // Send the message on the CAN bus
 CAN_OBJ[0].MCR = 0xEFFF; // Set TXRQ
 }

void Encode_data(void)
{
tByte i;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data

tByte Out_Byte_No=0;

// Convert each tick message byte to its equivalent 11-bit EEM code using the EEM_table
(see EEM_table.H)
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
EEM_data[i] = EEM_Code[Tick_message_data_G[0][i]];
}

// Reset the output data buffers
for(i=0; i<CAN_NUM_DATA_BYTES-1; i++)
{
Tick_data_after_EEM_encoding[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the encoded CAN data bytes for transmission

 for (In_Byte_No=0; In_Byte_No<NO_INPUT_BYTES; In_Byte_No++)
 {

 //
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >>
 RS_Index) & (0x7FF >> RS_Index));

 Out_Byte_No++;

 if (RS_Index > NO_OUTPUT_BITS)
 {
 RS_Index -= NO_OUTPUT_BITS;
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >>
 RS_Index) & (0x7FF >> RS_Index));

 Out_Byte_No++;
 }

 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] <<
 (NO_OUTPUT_BITS-RS_Index)) & (0x7FF << (NO_OUTPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

}

Appendix H 388

Slave code (Binary Search Algorithm)

// Important definitions

#define CAN_BYTES_USED_FOR_DATA (5)
#define CAN_NUM_DATA_BYTES (8)

#define NO_INPUT_BYTES (5)
#define NO_INPUT_BITS (11)
#define NO_OUTPUT_BITS (8)
#define DIFF_IO_BITS (NO_INPUT_BITS - NO_OUTPUT_BITS)

// Data sent from the master to this slave
tByte Tick_data_before_EEM_decoding[CAN_NUM_DATA_BYTES-1];
tByte Tick_message_data_G[NUMBER_OF_SLAVES][CAN_BYTES_USED_FOR_DATA];

/*--*-

 SCC_A_SLAVE_Process_Tick_Message()

 The ticks messages are crucial to the operation of this shared-clock
 scheduler: the arrival of a tick message (at regular intervals)
 invokes the 'Update' ISR, that drives the scheduler.

 The tick messages themselves may contain data. These data are
 extracted in this function.

-*--*/
tByte SCC_A_SLAVE_Process_Tick_Message(void)
 {
 tByte Tick_ID;

 if ((CAN_OBJ[0].MCR & 0x0c00) == 0x0800) // if MSGLST set
 {
 // Indicates that the CAN controller has stored a new
 // message into this object, while NEWDAT was still set,
 // i.e. the previously stored message is lost.

 // We simply IGNORE this here and reset the flag
 CAN_OBJ[0].MCR = 0xf7ff; // reset MSGLST
 }

 // The first byte is the ID of the slave for which the data are
 // intended
 Tick_ID = CAN_OBJ[0].Data[0]; // Get data byte 0 (Slave ID)

 if (Tick_ID == SLAVE_ID)
 {
 // Only if there is a match do we need to copy these fields
 Tick_data_before_EEM_decoding[0] = CAN_OBJ[0].Data[1];
 Tick_data_before_EEM_decoding[1] = CAN_OBJ[0].Data[2];
 Tick_data_before_EEM_decoding[2] = CAN_OBJ[0].Data[3];
 Tick_data_before_EEM_decoding[3] = CAN_OBJ[0].Data[4];
 Tick_data_before_EEM_decoding[4] = CAN_OBJ[0].Data[5];
 Tick_data_before_EEM_decoding[5] = CAN_OBJ[0].Data[6];
 Tick_data_before_EEM_decoding[6] = CAN_OBJ[0].Data[7];
 }

 else
 {
 // Must do same processing to avoid jitter
 Dummy_tick_data_G[1] = CAN_OBJ[0].Data[1];
 Dummy_tick_data_G[2] = CAN_OBJ[0].Data[2];
 Dummy_tick_data_G[3] = CAN_OBJ[0].Data[3];
 Dummy_tick_data_G[4] = CAN_OBJ[0].Data[4];
 Dummy_tick_data_G[5] = CAN_OBJ[0].Data[5];
 Dummy_tick_data_G[6] = CAN_OBJ[0].Data[6];
 Dummy_tick_data_G[7] = CAN_OBJ[0].Data[7];
 }
 CAN_OBJ[0].MCR = 0xFDFD; // Reset NEWDAT and INTPND

Appendix H 389

 return Tick_ID;
 }

void Decode_data(void)
{
tWord i;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Reset the EEM_data
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
EEM_data[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the decoded CAN data bytes

 for (Out_Byte_No=0; Out_Byte_No<CAN_BYTES_USED_FOR_DATA; Out_Byte_No++)
 {

 //
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
 RS_Index) & 0x7FF);

 In_Byte_No ++;

 if (RS_Index > NO_INPUT_BITS)
 {
 RS_Index -= NO_INPUT_BITS;
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
 RS_Index)& 0x7FF);// & (0xFF << RS_Index));

 In_Byte_No++;
 }

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] >>
 (NO_INPUT_BITS-RS_Index))& 0x7FF);// & (0xFF >> (NO_INPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

 // Recover the original byte using binary search algorithm

 for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
 {
 Tick_message_data_G[0][i] = binarySearch(EEM_Code, EEM_data[i],
 ARR_MIN_INDEX, ARR_MAX_INDEX);
 }

}

/*---
 binarySearch(a, value)

The search begins by examining the value in the center of the list; because the values
are sorted, it then knows whether the value occurs before or after the centre value,
and searches through the correct half in the same way.

Appendix H 390

This function determines the 'index' of a given value in a sorted list 'a' between
indices 'left' and 'right'
---*/

tByte binarySearch(tWord* a, tWord value, tWord left, tWord right)
{
 tByte mid=0;

 if (right < left) {return 0;}

 mid = (left + right)/2;

 if (value > a[mid]) {return binarySearch(a, value, mid+1, right);}

 else if (value < a[mid]) {return binarySearch(a, value, left, mid-1);}
 else {return mid;}
}

Slave code (reverse array)

void Decode_data(void)
{
tWord i;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Reset the EEM_data
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
EEM_data[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the decoded CAN data bytes

 for (Out_Byte_No=0; Out_Byte_No<CAN_BYTES_USED_FOR_DATA; Out_Byte_No++)
 {

 //
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] << RS_Index)
& 0x7FF);

 In_Byte_No ++;

 if (RS_Index > NO_INPUT_BITS)
 {
 RS_Index -= NO_INPUT_BITS;
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
RS_Index)& 0x7FF);// & (0xFF << RS_Index));

 In_Byte_No++;
 }

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] >>
(NO_INPUT_BITS-RS_Index))& 0x7FF);// & (0xFF >> (NO_INPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 // Recover the original CAN data byte using the EEM reverse table
 for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
 {
 Tick_message_data_G[0][i] = Byte_Value[EEM_data[i]-546];
 }

Appendix H 391

 }

}

Implicit lookup table

Master code

void Encode_data(void)
{
tByte i, Input_Byte;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Convert each tick message byte to its equivalent 11-bit EEM code using the EEM_table
(see EEM_table.H)
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{

Input_Byte = Tick_message_data_G[0][i];

// Use EEM_Code function to find the EEM code for the input bytes
EEM_data[i] = EEM_Code(i, Input_Byte);

}

// Reset the output data buffers
for(i=0; i<CAN_NUM_DATA_BYTES-1; i++)
{
Tick_data_after_EEM_encoding[i] = 0;
}

// Using the EEM data, produce the encoded CAN data bytes for transmission

RS_Index = DIFF_IO_BITS;

 for (In_Byte_No=0; In_Byte_No<NO_INPUT_BYTES; In_Byte_No++)
 {

 //
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >> RS_Index)
& (0x7FF >> RS_Index));

 Out_Byte_No++;

 if (RS_Index > NO_OUTPUT_BITS)
 {
 RS_Index -= NO_OUTPUT_BITS;
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >>
RS_Index) & (0x7FF >> RS_Index));

 Out_Byte_No++;
 }

 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] <<
(NO_OUTPUT_BITS-RS_Index)) & (0x7FF << (NO_OUTPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

}

Appendix H 392

/*---
 EEM_Code()

 This function finds the equivalent EEM code for an input BYTE
---*/

tWord EEM_Code (tByte i, tByte BYTE)
{

tByte Array_Index = (BYTE*11)/16; // determine the no of the array element in
 // which the EEM code is stored
tByte EEM_Start = (BYTE*11)%16;// determine the location of the first
 // bit of the EEM code in the array element

// if the EEM code start after 6 bits from left, then the code is split within two
array elements
if(EEM_Start > 5)
 {
 EEM_data[i] = EEM_ARRAY[Array_Index] << (11 - (16 - EEM_Start));
 EEM_data[i] |= EEM_ARRAY[Array_Index+1] >> (16 - (11 - (16 - EEM_Start)));
 }

// if not, then the code is stored in one array element
else
 {
 EEM_data[i] = EEM_ARRAY[Array_Index] >> ((16 - EEM_Start) - 11);
 }

 // filter the data by taking only the 11 LSB
 EEM_data[i] &= 0x7FF;

return EEM_data[i];
}

Slave code (search element)

void Decode_data(void)
{
tWord i, Array_Start;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Variables for searching element
tByte EEM_Start = 0;
tByte Array_Index = 0;
tWord eem_data = 0;

// This is to test the slave decoding
/*Tick_data_before_EEM_decoding[0]=0x67;
Tick_data_before_EEM_decoding[1]=0x4c;
Tick_data_before_EEM_decoding[2]=0xca;
Tick_data_before_EEM_decoding[3]=0x6e;
Tick_data_before_EEM_decoding[4]=0x25;
Tick_data_before_EEM_decoding[5]=0x27;
Tick_data_before_EEM_decoding[6]=0x56;
*/

// Reset the EEM_data
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{

Appendix H 393

EEM_data[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the decoded CAN data bytes

 for (Out_Byte_No=0; Out_Byte_No<CAN_BYTES_USED_FOR_DATA; Out_Byte_No++)
 {

 //
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] << RS_Index)
& 0x7FF);

 In_Byte_No ++;

 if (RS_Index > NO_INPUT_BITS)
 {
 RS_Index -= NO_INPUT_BITS;
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
RS_Index)& 0x7FF);// & (0xFF << RS_Index));

 In_Byte_No++;
 }

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] >>
(NO_INPUT_BITS-RS_Index))& 0x7FF);// & (0xFF >> (NO_INPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 // Determine the range to save time

 if (EEM_data[Out_Byte_No] < 578) {Array_Start = 0 ;}
 else if (EEM_data[Out_Byte_No] < 647) {Array_Start = 11 ;}
 else if (EEM_data[Out_Byte_No] < 706) {Array_Start = 22 ;}
 else if (EEM_data[Out_Byte_No] < 802) {Array_Start = 33 ;}
 else if (EEM_data[Out_Byte_No] < 834) {Array_Start = 44 ;}
 else if (EEM_data[Out_Byte_No] < 930) {Array_Start = 55 ;}
 else if (EEM_data[Out_Byte_No] < 962) {Array_Start = 66 ;}
 else if (EEM_data[Out_Byte_No] < 1058) {Array_Start = 77 ;}
 else if (EEM_data[Out_Byte_No] < 1090) {Array_Start = 88 ;}
 else if (EEM_data[Out_Byte_No] < 1186) {Array_Start = 99 ;}
 else if (EEM_data[Out_Byte_No] < 1218) {Array_Start = 110 ;}
 else if (EEM_data[Out_Byte_No] < 1314) {Array_Start = 121 ;}
 else if (EEM_data[Out_Byte_No] < 1346) {Array_Start = 132 ;}
 else if (EEM_data[Out_Byte_No] < 1442) {Array_Start = 143 ;}
 else if (EEM_data[Out_Byte_No] < 1474) {Array_Start = 154 ;}
 else {Array_Start = 165;}

 // Recover the original CAN data byte using the EEM table

 EEM_Start=0;
 Array_Index = Array_Start;

 for (i=0; i<16; i++)
 {

 EEM_Start = (i*11) % 16;

 // if the EEM code start after 6 bits from left, then the code is split within
two array elements
 if(EEM_Start > 5)
 {
 eem_data = EEM_ARRAY[Array_Index] << (11 - (16 - EEM_Start));
 eem_data |= EEM_ARRAY[++Array_Index] >> (16 - (11 - (16 - EEM_Start)));
 }

 // if not, then the code is stored in one array element
 else
 {
 eem_data = EEM_ARRAY[Array_Index] >> ((16 - EEM_Start) - 11);

Appendix H 394

 }

 // filter the data by taking only the 11 LSB
 eem_data &= 0x7FF;

 // Now check if the current EEV value (in the table) matches the received
EEM word

 if (EEM_data[Out_Byte_No] == eem_data)
 {
 Tick_message_data_G[0][Out_Byte_No] = i + (Array_Start/11) * 16;
 // (Array_Start/11) is the array division in which the EEM code is located.

 // (Array_Start/11) *
16 determines the index of the first element in the division.
 break;
 }

 }

 }

}

Algorithmic coding

Master code

void Encode_data(void)
{
tByte i, Current_Bit, Next_Bit;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;
tByte In_Bit_No=0;

// Pointers for output data
tByte Out_Byte_No=0;
tByte Out_Bit_No=0;

// Convert each tick message byte to its equivalent 11-bit EEM code
// Note that the number of input bits = 8, and the output bits = 11

for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
 Out_Bit_No=0;

 for(In_Bit_No=0; In_Bit_No<8; In_Bit_No++)
 {
 Current_Bit = (Tick_message_data_G[0][i] >> (7-In_Bit_No)) & 0x01;
 EEM_data[i] |= Current_Bit <<(10-Out_Bit_No);

 if((In_Bit_No==0) ||(In_Bit_No==3)||(In_Bit_No==6))
 {

 // Stuff the opposite bit afterward
 Next_Bit = !Current_Bit;
 Out_Bit_No++;

 EEM_data[i] |= Next_Bit <<(10-Out_Bit_No);

 }

 Out_Bit_No++;
 }

Appendix H 395

}

// Reset the output data buffers
for(i=0; i<CAN_NUM_DATA_BYTES-1; i++)
{
Tick_data_after_EEM_encoding[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the encoded CAN data bytes for transmission
// Note that the number of input bits = 11, and the output bits = 8

 for (In_Byte_No=0; In_Byte_No<NO_INPUT_BYTES; In_Byte_No++)
 {

 //
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >> RS_Index)
& (0x7FF >> RS_Index));

 Out_Byte_No++;

 if (RS_Index > NO_OUTPUT_BITS)
 {
 RS_Index -= NO_OUTPUT_BITS;
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >>
RS_Index) & (0x7FF >> RS_Index));

 Out_Byte_No++;
 }

 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] <<
(NO_OUTPUT_BITS-RS_Index)) & (0x7FF << (NO_OUTPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

}

Slave code

void Decode_data(void)
{
tWord i, Current_Bit;//Array_Start;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;
tByte In_Bit_No=0;

// Pointers for output data
tByte Out_Byte_No=0;
tByte Out_Bit_No=0;

// Reset the EEM_data
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
EEM_data[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the decoded CAN data bytes

 for (Out_Byte_No=0; Out_Byte_No<CAN_BYTES_USED_FOR_DATA; Out_Byte_No++)
 {

Appendix H 396

 //
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] << RS_Index)
& 0x7FF);

 In_Byte_No ++;

 if (RS_Index > NO_INPUT_BITS)
 {
 RS_Index -= NO_INPUT_BITS;
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
RS_Index)& 0x7FF);// & (0xFF << RS_Index));

 In_Byte_No++;
 }

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] >>
(NO_INPUT_BITS-RS_Index))& 0x7FF);// & (0xFF >> (NO_INPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

 // Recover the original CAN data byte by removing the stuff-bits
 for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
 {
 Out_Bit_No=0;

 for(In_Bit_No=0; In_Bit_No<11; In_Bit_No++)
 {
 Current_Bit = (EEM_data[i] >> (10-In_Bit_No)) & 0x01;

 if (!((In_Bit_No==1) ||(In_Bit_No==5)||(In_Bit_No==9)))
 {

 Tick_message_data_G[0][i] |= Current_Bit <<(7-Out_Bit_No);
 Out_Bit_No++;

 }
 }
 }

}

Mathematical coding

Master code

void Encode_data(void)
{
tByte i;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Convert each tick message byte to its equivalent 11-bit EEM code using the EEM
mathematical equation
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{

// The used equation is derived from the lookup table values
// f(x) = f(0) + x + 4*floor(x/4) + 64*floor(x/32)

EEM_data[i] = 546 + Tick_message_data_G[0][i] + ((Tick_message_data_G[0][i]/4)*4) +
((Tick_message_data_G[0][i]/32)*64);

}

Appendix H 397

// Reset the output data buffers
for(i=0; i<CAN_NUM_DATA_BYTES-1; i++)
{
Tick_data_after_EEM_encoding[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the encoded CAN data bytes for transmission

 for (In_Byte_No=0; In_Byte_No<NO_INPUT_BYTES; In_Byte_No++)
 {

 //
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >> RS_Index)
& (0x7FF >> RS_Index));

 Out_Byte_No++;

 if (RS_Index > NO_OUTPUT_BITS)
 {
 RS_Index -= NO_OUTPUT_BITS;
 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] >>
RS_Index) & (0x7FF >> RS_Index));

 Out_Byte_No++;
 }

 Tick_data_after_EEM_encoding[Out_Byte_No] |= ((EEM_data[In_Byte_No] <<
(NO_OUTPUT_BITS-RS_Index)) & (0x7FF << (NO_OUTPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 }

}

Slave code

void Decode_data(void)
{

tByte i;
tByte RS_Index; // right shift index

// Pointers for input data
tByte In_Byte_No=0;

// Pointers for output data
tByte Out_Byte_No=0;

// Reset the EEM_data
for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
{
EEM_data[i] = 0;
}

RS_Index = DIFF_IO_BITS;

// Using the EEM data, produce the decoded CAN data bytes

 for (Out_Byte_No=0; Out_Byte_No<CAN_BYTES_USED_FOR_DATA; Out_Byte_No++)
 {

 //

Appendix H 398

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] << RS_Index)
& 0x7FF);

 In_Byte_No ++;

 if (RS_Index > NO_INPUT_BITS)
 {
 RS_Index -= NO_INPUT_BITS;
 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] <<
RS_Index)& 0x7FF);// & (0xFF << RS_Index));

 In_Byte_No++;
 }

 EEM_data[Out_Byte_No] |= ((Tick_data_before_EEM_decoding[In_Byte_No] >>
(NO_INPUT_BITS-RS_Index))& 0x7FF);// & (0xFF >> (NO_INPUT_BITS-RS_Index)));

 RS_Index += DIFF_IO_BITS;

 // Recover the original CAN data byte using the EEM table
 for (i=0; i<CAN_BYTES_USED_FOR_DATA ; i++)
 {

 // The encoder equation is used here in reverse way to calculate the
value of each byte
 // x = f(x) - f(0) - 2*floor[(f(x)-f(0))/4] - 16*floor[(f(x)-f(0))/64]
 Tick_message_data_G[0][i] = EEM_data[i] - 546 - ((EEM_data[i]-546)/4)*2 -
((EEM_data[i]-546)/64)*16;
 }

 }

}

Appendix I

Bibliography

Ackerman, A.F., Buchwald, L.S. and Lewski, F.H. (1989) “Software inspections: an effective
verification process”, IEEE Software, Vol. 6 (3), pp. 31-36.

Ada (1980) “Reference Manual for the Ada Programming Language”, proposed standard
document, U.S. Department of Defense.

Albert, A. (2004) “Comparison of event-triggered and time-triggered concepts with regard to
distributed control systems,” in Proceedings of Embedded World, Nurnberg, Germany, 17-19
Feb, 2004, pp. 235-252.

Ali, W. (2004) “Embedded Systems”, Programmers Heaven.com (Last accessed: October 2008)
http://www.programmersheaven.com/search/Download.asp?FileID=35032

Allworth, S.T. (1981) “An Introduction to Real-Time Software Design”, Macmillan, London.

ANSVIP (1970) “American National Standard Vocabulary for Information Processing”,
American National Standards Institute, Inc., 1430 Broadway, New York, N.Y.

Apneseth, C (2006) “Embedded system technology in ABB”, ABB Corporate Research, ABB
AS, Billingstad, Norway.

ARM (2001) "ARM7TDMI technical reference manual".

Arons, T., Elster, E., Murphy, T. and Singerman, E. (2006) “Embedded Software Validation:
Applying Formal Techniques for Coverage and Test Generation”,
Seventh International Workshop on Microprocessor Test and Verification, MTV '06, 4-5 Dec.
2006, pp. 45-51.

Ashling Microsystems (2007) “LPC2000 Evaluation and Development Kits datasheet”,
available online (Last accessed: October 2008)
http://www.ashling.com/pdf_datasheets/DS266-EvKit2000.pdf

Audsley, N., Burns, A., Richardson, M.F. and Wellings, A.J. (1991) “Hard real-time
scheduling: The deadline- monotonic approach”, In Proceedings of the 8th Workshop on
Real-Time Operating Systems and Software.

Avrunin, G.S., Corbett, J.C. and Dillon, L.K. (1998) “Analyzing partially-implemented real-
time systems”, IEEE Transactions on Software Engineering, Vol. 24 (8), pp.602-614.

Axelson, J. (1994) “The Microcontroller Idea Book: Circuits, Programs & Applications
Featuring the 8052-Basic Single-Chip Computer”, Lakeview Research.

Ayavoo, D., Pont, M.J. and Parker, S. (2004) "Using simulation to support the design of
distributed embedded control systems: A case study", In: Koelmans, A., Bystrov, A. and Pont,

http://www.programmersheaven.com/search/Download.asp?FileID=35032
http://www.ashling.com/pdf_datasheets/DS266-EvKit2000.pdf

Appendix I 400

M.J. (Eds.) Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October 2004),
pp. 54-65. Published by University of Newcastle upon Tyne.

Ayavoo, D., Pont, M.J., Fang, J., Short, M. and Parker, S. (2005) "A 'Hardware-in-the Loop'
testbed representing the operation of a cruise-control system in a passenger car", In:
Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the
Second UK Embedded Forum (Birmingham, UK, October 2005), pp. 60-90. Published by
University of Newcastle upon Tyne.

Ayavoo, D., Pont, M.J. and Parker, S. (2006) “Does a ‘simulation first’ approach reduce the
effort involved in the development of distributed embedded control systems?”, 6th UKACC
International Control Conference, Glasgow, Scotland, 2006.

Ayavoo, D. (2006) “The Development of Reliable X-by-Wire Systems: Assessing The
Effectiveness of a ‘Simulation First’ Approach”, PhD thesis, Department of Engineering,
University of Leicester, UK.

Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (2007) "Two novel shared-clock scheduling
algorithms for use with CAN-based distributed systems", Microprocessors and Microsystems,
Vol. 31(5), pp. 326-334.

Bai, X., Tsai, W.T., Paul, R., Feng, K. and Yu, L. (2002) “Scenario-based modeling and its
applications”, Proceedings of the Seventh International Workshop on Object-Oriented Real-
Time Dependable Systems, 2002 (WORDS 2002), 7-9 Jan. 2002, pp. 253-260.

Bailey, C.M., Fyfe, E., Vardanega, T. and Wellings, A.J. (1993) “The use of preemptive
priority-based scheduling for space applications”, Proceedings of Real-Time Systems
Symposium, 1-3 December 1993, pp. 253-257.

Baker, T.P. and Shaw, A. (1989) “The cyclic executive model and Ada. Real-Time Systems”,
Vol. 1 (1), pp. 7-25.

Baker, T. and Pazy, O. (1991) “Real-time features for Ada 9X”, Proceedings of the 12th Real-
Time Systems Symposium, 4-6 December 1991, pp. 172-180.

Balarin, F., Hsieh, H., Jurecska, A., Lavagno, L. and Sangiovanni-Vincentelli, A. (1996)
“Formal verication of embedded systems based on CFSM networks”, In Proceedings of the
33th ACM/IEEE Design Automation Conference, pp. 568-571, June 1996.

Bannatyne, R. (1998) “Time triggered protocol-fault tolerant serial communications for real-
time embedded systems”, WESCON/98 Conference Proceedings, Anaheim, CA, USA, pp.
86-91.

Bannatyne, R. (2004) “MPC5500 Family of New Generation Embedded Controllers”, Micro
Control Journal, available online (Last accessed: October 2008)
http://www.mcjournal.com/articles/arc109/MPC5500.pdf

Barnett, R.H., O'Cull, L. and Cox, S. (2003) “Embedded C Programming and the Atmel Avr”,
Thomson Delmar Learning.

Barr, M. (1999) “Programming Embedded Systems in C and C++”, O'Reilly Media.

http://www.mcjournal.com/articles/arc109/MPC5500.pdf

Appendix I 401

Barr, M. and Massa, A. (2006) “Programming Embedded Systems: With C and GNU
Development Tools”, O'Reilly Media.

Barreiros, J., Costa, E., Fonseca, J. and Coutinho, F. (2000) “Jitter reduction in a real-time
message transmission system using genetic algorithms”, Proceedings of the CEC 2000 –
Conference of Evolutionary Computation, USA, July 2000.

Baruah, S., Buttazzo, G., Gorinsky, S. and Lipari, G. (1999) “Scheduling periodic task systems
to minimize output jitter”, The Sixth International Conference on Real-Time Computing
Systems and Applications, 1999, RTCSA '99, pp. 62-69.

Baruah S.K. (2006) “The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors”,
Real-Time Systems, Vol. 32, pp. 9-20.

Bass, L, Clements, P and Kazman, R. (2003) “Software Architecture in Practice”, Addison-
Wesley.

Bate, I.J. (1998), “Scheduling and Timing Analysis for Safety Critical Real-Time Systems”,
PhD thesis, Department of Computer Science, University of York.

Bates, D.G. (1968) “PROSPRO/1800”, IEEE Transactions on Industrial Electronics and Control
Instrumentation, Vol. 15, pp. 70-75.

Bates, I. (2000) “Introduction to scheduling and timing analysis”, in The Use of Ada in Real-
Time System, IEE Conference Publication 00/034.

Beck, K (2001) “Extreme Programming Explained: Embrace Change”, Addison-Wesley.

Becker, L.B. and Gergeleit, M. (2001). “Execution Environment for Dynamically Scheduling
Real-Time Tasks”. RTSS 2001, 22nd IEEE Real-Time Systems Symposium.

Becker, L.B., Nett, E., Schemmer, S. and Gergeleit, M. (2003). “Robust scheduling in team-
robotics”. 11th International Workshop on Parallel and Distributed Real-Time Systems, Nice,
France.

Bell, C. G. and Newell, A. (1971) “Computer Structures: Readings and Examples”, McGraw-
Hill Book Company, New York. Chapter 5: The DEC PDP-8, pp. 120-136.

Bellis, M. “Inventors of the Modern Computer: Intel 4004 - The World's First Single Chip
Microprocessor”, About Website. (Last accessed: October 2008)
http://inventors.about.com/library/weekly/aa092998.htm

Bennett, S. (1994), “Real-time Computer Control: An introduction”, Prentice Hall.

Bernat, G. and Burns, A. (2001) “Implementing a Flexible Scheduler in Ada”, Proceedings of
Reliable Software Technologies—Ada Europe 2001.

Bieman, J.M., and Murdock, V. (2001) “Finding code on the World Wide Web: a preliminary
investigation”, Proceedings First IEEE International Workshop on Source Code Analysis and
Manipulation, pp. 73-78.

http://inventors.about.com/library/weekly/aa092998.htm

Appendix I 402

Bloomfield, R., Cazin, J., Craigen, D., Juristo, N., Kesseler, E. and Voas, J. (2004) “Validation,
verification and certification of embedded systems”, National Aerospace Laboratory (NLR),
The Netherlands.

Boehm, B. W. (1981) “Software Engineering Economics”, Prentice-Hall.

Bolton, W. (2000) “Microprocessor Systems”, Longman.

Booch, G. (1991) “Object Oriented Design with Applications”, Benjamin / Cummings.

Booch, J. Rumbaugh, and I. Jacobson (1999) “The Unified Modeling Language User Guide”,
Addison Wesley, 1999.

Borger, M., Klein, M. and Weiderman, N. (1988) “A testbed for investigating real-time Ada
issues”, ACM SIGAda Ada Letters, Special edition: International Workshop on Real-Time
Ada Issues, Vol. VIII (7), pp. 7-11.

Bosch (1991) “CAN Specification Version 2.0”, Robert Bosch GmbH.

Boulton, P.I.P. and Reid, P.A. (1969) “A Process-Control Language”, IEEE Transactions on
Computers, Vol. 18 (11), pp. 1049-1053.

Bowen, J. (1993) “Formal methods in safety-critical standards”, Proceedings of Software
Engineering Standards Symposium, 30 Aug.-3 Sept. 1993, pp. 168-177.

Bowen, J. and Hinchey, M. (1995) “Seven More Myths of Formal Methods”, IEEE Software,
Vol. 12 (4), pp. 34-41.

Bradley, S., Henderson, W., Kendall, D., Robson, A. and Hawkes, S. (1996) “A formal design
and implementation method for real-time embedded systems”,
Proceedings of the 22nd EUROMICRO Conference EUROMICRO 96 'Beyond 2000:
Hardware and Software Design Strategies', 2-5 Sept. 1996, pp. 77-84.

Brinkschulte, U., Kreuzinger, J., Pfeffer, M. and Ungerer, T. (2002) “A scheduling technique
providing a strict isolation of real-time threads”, Proceedings of the Seventh International
Workshop on Object-Oriented Real-Time Dependable Systems, 2002. (WORDS 2002). 7-9
Jan 2002, pp. 334-340.

Broadfoot, G.H. and Broadfoot, P.J. (2003) “Academia and industry meet: some experiences of
formal methods in practice”, Tenth Asia-Pacific Software Engineering Conference, 2003, pp.
49-58.

Brosgol, B.J. (2003) “Ada and Java: real-time advantages”, Embedded.com, WWW website
(Last accessed: October 2008)
http://www.embedded.com/columns/technicalinsights/16100316?_requestid=169704

Brosgol, B. and Ruiz, J. (2007) “Ada enhances embedded-systems development”,
Embedded.com, WWW website (Last accessed: October 2008)
http://www.embedded.com/columns/technicalinsights/196800175?_requestid=167577

Broster, I. (2003) “Flexibility in dependable real-time communication”, PhD thesis, University
of York, York, U.K.

http://www.embedded.com/columns/technicalinsights/16100316?_requestid=169704
http://www.embedded.com/columns/technicalinsights/196800175?_requestid=167577

Appendix I 403

Broster, I. and Burns, A. (2001) “Timely use of the CAN protocol in critical hard real-time
systems with faults”, In Proceedings of the 13th Euromicro Conference on Real-Time
Systems (ECRTS 2001), Delft, The Netherlands, Jun. 13–15, 2001, pp. 95-102.

Brown, J.F. (1994) “Embedded Systems Programming in C and Assembly”, Kluwer Academic
Publishers.

Budlong, M. (1999) “Teach Yourself COBOL in 21 days”, Sams.

Burns, A. and Wellings, A.J. (1987) “Real-time Ada issues”, ACM SIGAda Ada Letters, Vol.
VII (6), pp. 43-46.

Burns, A. (1991) “Scheduling hard real-time systems: a review”, Software Engineering Journal,
Vol. 6 (3), pp. 116-128.

Burns, A. (1999) “The Ravenscar Profile”, ACM Ada Letters.

Burns, A. (2001) “Non-Preemptive Dispatching and Locking Policies”, Ada Letters.

Burns, A. and Wellings, A.J. (2002) “Accessing delay queues”, In Proceedings of IRTAW11,
Ada Letters, Vol. XX1I (4), pp. 72-76.

Burns, A. and Wellings, A.J. (2003) “Task attribute-based scheduling - extending Ada's support
for scheduling”, In T. Vardenega, editor, Proceedings of the 12th International Real-Time Ada
Workshop, Vol. XXIII, pp. 36-41. ACM Ada Letters.

Burns, A. Harbour, M.G. and Wellings, A.J. (2003a) “A round robin scheduling policy for
Ada”, In Reliable Software Technologies, Proceedings of the Ada Europe Conference, Vol.
LNCS 2655, pp. 334-343. Lecture Notes on Computer Science, Springer Verlag, 2003.

Burns, A., Wellings, A.J. and Vardanega, T. (2003b) “Report of session: Flexible scheduling in
Ada”, In Proceedings of IRTAW 12, Ada Letters, Vol. XXIII (4), pp. 32-25.

Burns, A., Wellings, A.J. and Taft, T. (2004) “Supporting Deadlines and EDF Scheduling in
Ada”, Proceedings of Reliable Software Technologies - Ada Europe 2004.

Burns, A., and Wellings, A.J. (2005) “Programming Execution-Time Servers in Ada 2005”,
27th IEEE International Real-Time Systems Symposium, 2006. RTSS '06, Dec. 2006, pp. 47-
56.

Burns, A. (2006) “Real-Time Languages”, Network of Excellence on Embedded Systems
Design, WWW website (Last accessed: October 2008) http://www.artist-
embedded.org/artist/Real-Time-Languages.html

Burns, A. and Wellings, A.J. (2006) “Programming Execution-Time Servers in Ada 2005”, 27th
IEEE International Real-Time Systems Symposium (RTSS '06), December 2006, pp. 47-56.

Burns, A. and Wellings, A.J. (2007a) “Concurrent and Real-time Programming in Ada 2005”,
Cambriage University Press.

Burns, A. and Wellings, A.J. (2007b) “Programming Execution-Time Servers and Supporting
EDF Scheduling in Ada 2005”, Handbook of Real-Time and Embedded Systems, Chapman
and Hall/CRC.

http://www.artist

Appendix I 404

Buttazzo, G. (2005), “Hard real-time computing systems: predictable scheduling algorithms and
applications”, Second Edition, Springer.

Byteflight (2008) “Byteflight homepage”, WWW website (Last accessed: October 2008)
http://www.byteflight.com/links/index.html

Calgary (2005) “Calgary Ecommerce Services – Glossary”, WWW website (Last accessed:
October 2008) http://www.calgary-ecommerce-services.com/glossary.html

Carr, D. and Kizior, R.J. (2000) “The case for continued Cobol education”, IEEE Software, Vol.
17 (2), pp. 33-36.

Chakravarty, D. and Cannon, C. (1994) “PowerPC: Concepts, Architecture, and Design”, J.
Ranade workstation series, McGraw-Hill.

Chandrasekharan, M., Dasarathy, B. and Kishimoto, Z. (1985) “Requirements-Based Testing of
Real-Time Systems: Modeling for Testability”, IEEE Computer, Vol. 18, pp. 71-80.

Chapman, S.J (2004) “Fortran 90/95 for Scientists and Engineers”, McGraw-Hill Science
Engineering.

Cheng, B. and Jeffery, R. (1996) “Comparing inspection strategies for software requirement
specifications”, Proceedings of the 1996 Australian Software Engineering Conference, 1996,
14-18 July 1996, pp. 203-211.

Cho, Y., Yoo, S., Choi, K., Zergainoh, N.E. and Jerraya, A. (2005) “Scheduler implementation
in MPSoC Design”, In: Asia South Pacific Design Automation Conference (ASPDAC’05),
pp. 151-156.

Cho, Y., Zergainoh, N-E., Yoo, S., Jerraya, A.A. and Choi, K. (2007) “Scheduling with accurate
communication delay model and scheduler implementation for multiprocessor system-on-
chip”, Design Automation for Embedded Systems, Vol. 11 (2-3), pp. 167-191.

Chow, P. (1989) “The MIPS-X RISC Microprocessor”, Springer.

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. (2000) “Non-functional requirements in
software engineering”, Kluwer Academic Publishers.

CiA (2008) “CAN in Automation”, WWW website (Last accessed: October 2008)
http://www.can-cia.de/

Ciocarlie, H. and Simon, L. (2007) “Definition of a High Level Language for Real-Time
Distributed Systems Programming”, EUROCON 2007 The International Conference on
“Computer as a Tool”, Warsaw, September 9-12.

CISCO (2008) “Ethernet Technologies”, available online (Last accessed: October 2008)
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Ethernet.html

Clarke, D. and Lee, I. (1997) “Automatic Generation of Tests for Timing Constraints from
Requirements”, In Proceedings of the Third International Workshop on Object-Oriented Real-
Time Dependable Systems, Newport Beach, Califomia, Feb. 1997.

http://www.byteflight.com/links/index.html
http://www.calgary-ecommerce-services.com/glossary.html
http://www.can-cia.de/
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Ethernet.html

Appendix I 405

Clarke, E., Garlan, D., Krogh, B., Simmons, R. and Wing, J. (2000) “Verification Tools for
Embedded Systems”, Carnegie Mellon University.

Cobb, R.H. and Mills, H.D. (1990) “Engineering software under statistical quality control”,
IEEE Software, Vol. 7 (6), pp. 45-54.

Comhill, D. and Sha, L. (1987) “Priority Inversion in Ada”, ACM SIGAda Ada Letters Vol. VII
(7), pp. 30-32.

Cook, D. (1999) “Evolution of Programming Languages and Why a Language is Not Enough to
Solve Our Problems”, Software Technology Support Center, available online (Last accessed:
October 2008) http://www.stsc.hill.af.mil/crosstalk/1999/12/cook.asp

Cooling, J.E. (1991) “Software design for real time systems”, Chapman and Hall.

Cornhilll, D., Sha, L. and Lehoczky, J.P. (1987) “Limitations of Ada for real-time scheduling”,
Proceedings of the first international workshop on Real-time Ada issues, Morehampstead,
Devon, United Kingdom, pp. 33-39.

Cortes, L.A., Eles, P. and Peng, Z. (2000) “Verification of embedded systems using a Petri net
based representation”, Proceedings of the 13th International Symposium on System Synthesis,
2000. 20-22 Sept. 2000, pp. 149-155.

Cortes, L.A., Eles, P. and Peng, Z. (2001) “Hierarchical modeling and verification of embedded
systems”, Proceedings of the Euromicro Symposium on Digital Systems, Design, 2001. 4-6
Sept. 2001, pp. 63-70.

Cottet, F. and David, L. (1999), “A solution to the time jitter removal in deadline based
scheduling of real-time applications”, 5th IEEE Real-Time Technology and Applications
Symposium - WIP, Vancouver, Canada, pp. 33-38.

Cottet, F. (2002) “Scheduling in Real-time Systems”, Wiley.

Coutinho, F. M., Fonseca, J., Barreiros, J. and Costa, E. (2000) “Using Genetic Algorithms to
Reduce Jitter in Control Variables Transmitted over CAN”, In Proceedings of the 7th
International CAN Conference, 2000.

Crocker, D. and Carlton, J. (2007) “Verification of C Programs Using Automated Reasoning”,
Fifth IEEE International Conference on Software Engineering and Formal Methods, SEFM
2007, 10-14 Sept. 2007, pp. 7-14.

Cross II, J.H., Morrison, K.I., May, C.H. and Kathryn C. Waddel, K.C. (1989) “A Graphically
Oriented Specification Language for Automatic Code Generation”, Department of Computer
Science and Engineering, Auburn University, December, 1988.

Cunning, S.J. and Rozenblit, J.W. (1999) “Automatic test case generation from requirements
specifications for real-time embedded systems”, Proceedings of the 1999 IEEE International
Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference, 12-15 Oct.
1999, Vol. 5, pp.784–789.

Currit, P.A., Dyer, M., and Mills, H.D. (1986) "Certifying the reliability of software", IEEE
Transactions on Software Engineering, Vol. 12, pp. 3-11.

http://www.stsc.hill.af.mil/crosstalk/1999/12/cook.asp

Appendix I 406

Dai, H. and Scott, C.K. (1995) “AVAT, a CASE tool for software verification and validation”,
Proceedings of the Seventh International Workshop on Computer-Aided Software
Engineering, 10-14 July 1995, pp. 358-367.

Davidgould (2008) “Davidgould – Glossary”, WWW website (Last accessed: October 2008)
http://www.davidgould.com/Glossary/Glossary.htm

Davis, R.I. (1993) “Approximate Slack Stealing Algorithms for Fixed Priority Preemptive
Systems”, Technical Report YCS 217, Department of Computer Science, University of York,
November 1993.

Davis, R., Punnekkat, S., Audsley, N. and Burns, A. (1995) “Flexible scheduling for adaptable
real-time systems”, Proceedings of Real-Time Technology and Applications Symposium, 15-
17 May 1995, pp. 230-239.

Dewar, R.B.K. (2006) “Safety-critical design for secure systems: The languages, tools and
methods needed to build error-free-software”, WWW website (Last accessed: October 2008)
http://www.embedded.com/columns/technicalinsights/190400498?_requestid=177701

DIN (1979) “Programming language PEARL”, Part 1. Basic PEARL, Part 2: Full PEARL,
Deutsches Institut für Normung (DIN) German Standards Institute, Berlin, DIN 66253, 1979
(in English).

Do, H. and Rothermel, G. (2006) “On the Use of Mutation Faults in Empirical Assessments of
Test Case Prioritization Techniques”, IEEE Transactions on
Software Engineering, Vol. 32 (9), pp. 733-752.

Domaratsky, Y. and Perevozchikov, M. (2000). “Highly Dependable Time-Triggered Operating
System”, Dedicated Systems Magazine, Vol. 4, pp. 77-80.

Donnelly, B. and Cosgrove, J. (2004) “Achieving microsecond accuracy with 32 bit
microcontrollers using the controller area network (CAN)”, In Proceedings of Irish Signals
and Systems Conference, Belfast, U.K., Jun./Jul. 2004, pp. 508-513.

Douglass, B., P. (2004) “Real Time UML: Advances in The UML for Real-Time Systems”,
Addison-Wesley.

Dyer, M. and Mills, H.D. (1981) "The Cleanroom approach to reliable software development, "
in Proc. Validation Methods Research for Fault-Tolerant Avionics and Control Systems Sub-
Working-Group Meeting: Production of Reliable Flight-Crucial Software, Research Triangle
Institute, NC, Nov. 2-4, 1981.

Dyer, M. (1982) "Cleanroom software development method", IBM Federal Systems Division,
Bethesda, MD, Oct. 14, 1982.

Dyer, M. (1992) “Verification based inspection”, Proceedings of the Twenty-Fifth Hawaii
International Conference on System Sciences, 1992, Vol. 2, pp. 418-427.

Ebenau, R.G. and Strauss, S.H. (1994) “Software Inspection, Process”, McGraw-Hill.

Edwards, T., Pont, M.J., Scotson, P. and Crumpler, S. (2004) "A test-bed for evaluating and
comparing designs for embedded control systems", In: Koelmans, A., Bystrov, A. and Pont,

http://www.davidgould.com/Glossary/Glossary.htm
http://www.embedded.com/columns/technicalinsights/190400498?_requestid=177701

Appendix I 407

M.J. (Eds.) Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October 2004),
pp. 106-126. Published by University of Newcastle upon Tyne.

Egan-Krieger, G.V., Stein, T. and Rahn, J. (1994) “Object Oriented device control using the
CAN bus”, Nuclear Instruments and Methods in Physics Research, North-Holland, A 352, pp.
204-206, 1994.

Eggermont, L. (2002) “Embedded Systems Roadmap 2002”, STW Technology Foundation,
2002, (Last accessed: October 2008)
http://www.stw.nl/Programmas/Progress/ESroadmap.htm

Ekelin, C. and Jonsson, J. (2001) “Evaluation of search heuristics for embedded system
scheduling problems”, In Proc. Int. Conf. Principles and Practice of Constraint
Programming, Paphos, Cyprus, pp. 640-654.

Engblom, J., Ermedahl, A., Sjoedin, M., Gustafsson, J. and Hansson, H. (2001). “Worst-Case
Execution-Time Analysis for Embedded Real-Time Systems”. Journal of Software Tools for
Technology Transfer.

En-Nouaary , A., Dssouli, R., Khendek, F. and Elqortobi, A. (1998) “Timed Test Cases
Generation Based on State Characterisation Technique”, In 19th IEEE Real-Time Systems
Symposium (RTSS'Y8), Madrid, Spain, December, 2-4 1998.

En-Nouaary, A., Khendek, F. and Dssouli, R. (1999) “Fault Coverage in Testing Real-Time
Systems”, In 6th International Conference on Real-Time Systems Computing Systems and
Applications (RTCSA'YY), Hong Kong, December, 13-15 1999.

En-Nouaary, A., Dssouli, R. and Khendek, F. (2002) “Timed Wp-method: testing real-time
systems”, IEEE Transactions on Software Engineering, Vol. 28 (11), pp. 1023- 1038.

ESD (2006) “2006 – Embedded Systems Design – State of Embedded Market Survey”,
Embedded.com, WWW website (Last accessed: October 2008)
http://www.embedded.com/columns/survey

ESL (2008) “Embedded Systems Laboratory - Publications”, The University of Leicester,
Department of Engineering, WWW website (Last accessed: October 2008)
http://www.le.ac.uk/eg/embedded/publications.htm

Eswaran, A., Rowe, A. and Rajkumar, R. (2005) “Nano-RK: An Energy-Aware Resource-
Centric Operating System for Sensor Networks”, Proceedings of the 26th IEEE Real-Time
Systems Symposium, December 2005.

Fagan, M. (1976) “Design and code inspections to reduce errors in program development”, IBM
System Journal, vol. 15 (3).

Fagan, M.E. (1986) “Advances in software inspections”, IEEE Transactions on Software
Engineering, Vol. 12 (7), pp. 744-751.

Farsi, M., Ratcliff, K. and Barbusa, M. (1999) “An Overview of Controller Area Network”,
Computing and Control Engineering Journal, June 1999.

Farsi, M. and Barbosa, M. (2000) “CANopen Implementation, applications to industrial
networks”, Research Studies Press Ltd, England.

http://www.stw.nl/Programmas/Progress/ESroadmap.htm
http://www.embedded.com/columns/survey
http://www.le.ac.uk/eg/embedded/publications.htm

Appendix I 408

Fisher, J.A., Faraboschi, P. and Young, C. (2004) “Embedded Computing: A VLIW Approach
to Architecture, Compilers and Tools”, Morgan Kaufmann.

FlexRay (2004) “FlexRay Communications System Protocol Specification Version 2.0”,
FlexRay Consortium, 2004.

Flynn, I.M. (2001) “Generations, Languages”, Macmillan Science Library: Computer Sciences,
WWW website (Last accessed: October 2008)
http://www.bookrags.com/research/generations-languages-csci-01/

Fredriksson, L.B. (1994) “Controller Area Networks and the protocol CAN for machine control
systems”, Mechatronics, Vol.4 (2), pp. 159-192.

Fuhrer, D., Mao, H. and Poore, J.H. (1992) “OS/2 cleanroom environment: a progress report on
a cleanroom tools development project”, Proceedings of the Twenty-Fifth Hawaii
International Conference on System Sciences, 1992, Vol. 2, pp. 449-458.

Fuhrer, T., Muller, B., Dieterle, W., Hartwich, F., Hugel, R. and Walther, M. (2000) “Time
Triggered Communication on CAN”, In Proceedings of the 7th International CAN
Conference, 2000.

Futatsugi, K., Goguen, J.A. and Jouannaud, J.P (1985) "Principles of OBJ2", Conference
Record of the 12th Annual ACM Symposium on Principles of Programming Languages,
ACM 1985, pp. 52-66.

Ganssle, J. (1992) “The art of programming embedded systems”, Academic Press, San Diego,
USA.

Gargantini, A., Riccobene, E. and Scandurra, P. (2008) “A model-driven validation &
verification environment for embedded systems”, International Symposium on Industrial
Embedded Systems, SIES 200, 11-13 June 2008, pp. 241-244.

GCSSDT (1995) “Glossary of Computerized System and Software Development Terminology”,
available online (Last accessed: October 2008)
http://www.nthanalytics.com/doc/1995%20software%20validation%20glossary.pdf

Gendy, A. and Pont, M.J. (2007) “Towards a generic 'single-path programming' solution with
reduced power consumption”, Proceedings of the ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in Engineering Conference
(IDETC/CIE 2007), September 4-7, 2007, Las Vegas, Nevada, USA.

Gendy, A.K. and Pont, M.J. (2008) “Automatically configuring time-triggered schedulers for
use with resource-constrained, single-processor embedded systems”, IEEE Transactions on
Industrial Informatics, Vol. 4 (1), pp. 37-46.

Gerber, R., Hong, S., and Saksena, M. (1995) “Guaranteeing real-time requirements with
resource-based calibration of periodic processes”, IEEE Transactions on Software
Engineering, Vol. 21 (7), pp. 579-592.

Gergeleit, M. and Nett, E. (2002). “Scheduling Transient Overload with the TAFT Scheduler”.
GI/ITG specialized group of operating systems, Berlin.

Gilb, T., and Graham, D. (1993) “Software inspections”, Addison-Wesley.

http://www.bookrags.com/research/generations-languages-csci-01/
http://www.nthanalytics.com/doc/1995%20software%20validation%20glossary.pdf

Appendix I 409

Golatowski, F., Hildebrandt, J., Blumenthal, J. and Timmermann, D. (2002) “Framework for
validation, test and analysis of real-time scheduling algorithms and scheduler
implementations”, Proceeding of the 13th IEEE International Workshop on Rapid System
Prototyping, 1-3 July 2002, pp. 146-152.

Goodenough, J. B. and Sha, L. (1988) “The priority ceiling protocol: A method for minimizing
the blocking of high priority Ada tasks”, in Proc. 2nd ACM Int. Workshop Real-Time Ada
Issues, 1988.

Graaf, B., Lormans, M. and Toetenel, H. (2003) “Embedded software engineering: The state of
the practice”, IEEE Software, Vol. 20 (6), pp. 61-69.

Grady, R.B. (1992) “Practical Software Metrics for Project Management and Process
Improvement”, Prentice Hall.

Grady, R.B. and Van Slack, T. (1994) “Key lessons in achieving widespread inspection use”,
IEEE Software, Vol. 11 (4), pp. 46-57.

Grogono, P. (1999) “The Evolution of Programming Languages”, Course Notes, Department of
Computer Science, Concordia University, Montreal, Quebec, Canada.

Gulliver, S.R. and Ghinea, G. (2007) “The Perceptual Influence of Multimedia Delay and
Jitter”, 2007 IEEE International Conference on Multimedia and Expo, 2-5 July 2007, pp.
2214-2217.

Guttag, J. and Homing, J. (1993) “Larch: Languages and Tools for Formal Specification”,
Springer-Verlag.

Halang, W.A. and Stoyenko, A.D. (1990) “Comparative evaluation of high-level real-time
programming languages”, Real-Time Systems, Vol. 2 (4), pp. 365-382.

Hall, E.C. (2000) “From the farm to pioneering with digital control computers: an
autobiography”, Annals of the History of Computing, IEEE Vol. 22 (2), pp. 22-31.

Hansen, P.B. (1975) “The programming language Concurrent Pascal”, IEEE Transactions on
Software Engineering, Vol. 1 (2), pp. 199-207.

Harjumaa, L. and Tervonen, I. (1998) “A WWW-based tool for software inspection”,
Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 6-9 Jan
1998, Vol. 3, pp. 379-388.

Hartwich, F., Muller, B., Fuhrer, T., Hugel, R. and GmbH, R.B. (2002). "Timing in the TTCAN
network", Proceedings of the 8th International CAN Conference.

Hedenetz, B. and Belschner, R. (1998), “Brake-By-Wire Without Mechanical Backup ByUsing
A TTP-Communication Network”, (Last accessed: October 2008)
http://www.vmars.tuwien.ac.at/projects/xbywire/projects/new-BBW.html

Heninger, K.L. (1980) “Specifying Software Requirements for Complex Systems: New
Techniques and Their Application”, IEEE Transactions on Software Engineering, Vol. 6 (1),
pp. 2-13.

http://www.vmars.tuwien.ac.at/projects/xbywire/projects/new-BBW.html

Appendix I 410

Hessel, A. (2007) “Model-Based Test Case Generation for Real-Time Systems”, PhD thesis,
Department of Information Technology, Uppsala University, Sweden.

Hevner, A.R. Becker, S.A. and Pedowitz, L.B. (1992) “Integrated CASE for cleanroom
development”, IEEE Software, Vol. 9 (2), pp. 69-76.

Hohmeyer, R.E. (1968) “CDC 1700 FORTRAN for process control”, IEEE Transactions on
Industrial Electronics and Control Instrumentation, Vol. 15, pp. 67-70.

Holyer, I (2008) “Dictionary of Computer Science”, Department of Computer Science,
University of Bristol, UK, WWW website (Last accessed: October 2008)
http://www.cs.bris.ac.uk/Teaching/Resources/COMS11200/jargon.html

Holzmann, G.J. (1997) “Design and validation of computer protocols”, IEEE Transactions on
on Software Engineering, Vol. 23 (5), pp. 279-295.

Hong, S. (1995) “Scheduling Algorithm of Data Sampling Times in the Integrated
Communication and Control Systems”, IEEE Transactions on Control Systems Technology,
Vol. 3 (2), pp. 225-230.

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. and Chen, C. (1994) “Formal Approach
to Scenario Analysis”, IEEE Software, Vol. 11, pp. 33-41.

Hsia, P., Kung, D. and Sell, C. (1997) “Software Requirements and Acceptance Testing”,
Annals of Software Engineering, Vol. 3, pp. 291-317.

Hsieh, C-C. and Hsu, P-L. (2005) “The event-triggered network control structure for CAN-
based motion system”,Proceeding of the 2005 IEEE conference on Control Applications,
Toronto, Canada, August 28 – 31, 2005.

Huajin, S., Deyuan, G, Shengbing, Z. and Danghui, W. (2002) “Design fast round robin
scheduler in FPGA”, IEEE 2002 International Conference on Communications, Circuits and
Systems and West Sino Expositions, 29 June – 1 July 2002, Vol. 2, pp.1257-1261.

Huang, H.W. (2004) “PIC Microcontroller: An Introduction to Software & Hardware
Interfacing”, Thomson Delmar Learning.

Hughes, Z.M. and Pont, M.J. (2004) “Design and test of a task guardian for use in TTCS
embedded systems”. In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the
UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp. 16-25. Published by
University of Newcastle upon Tyne.

Hughes, Z.M., Pont, M.J. and Ong, H.L.R. (2005) "The PH Processor: A soft embedded core for
use in university research and teaching". In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R.
and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum (Birmingham, UK,
October 2005), pp. 224-245. Published by University of Newcastle upon Tyne.

Hughes, Z.M. and Pont, M.J. (in press) “Reducing the impact of task overruns in resource-
constrained embedded systems in which a time-triggered software architecture is employed”,
Trans Institute of Measurement and Control.

http://www.cs.bris.ac.uk/Teaching/Resources/COMS11200/jargon.html

Appendix I 411

IEEE Std (1990) “IEEE Standard Glossary of Software Engineering Terminology”, The
Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY
10017-2394, USA.

IFIP-ICC (1966) “The IFIP-ICC Vocabulary of Information Processing”, North-Holland Pub.
Co., Amsterdam.

Ince, D (1987) “the automatic generation of test data”, The Computer Journal, Vol. 30 (1), pp.
63-69.

Infineon (2000) “C167CR Derivatives 16-Bit Single-Chip Microcontroller”, Infineon
Technologies.

ISO (2001) “ISO 5127 Information and documentation –Vocabulary”, International
Organisation for Standardisation (ISO).

ISO 15622 (2003) “Adaptive Cruise Control Systems – Performance Requirements And Test
Procedures”, International Standards Organisation, Geneva, Switzerland.

Jackson, A. and Hoffman, D. (1994) “Inspecting Module Interface Specifications”. Software
Testing, Verification and Reliability, Vol. 4 (2), pp. 101-117.

Jalote, P. (1997) “An integrated approach to software engineering”, Springer-Verlag.

Jarvis, P.H. (1968) “Some experiences with process control languages,” IEEE Transactions on
Industrial Electronics and Control Instrumentation, Vol. 15, pp. 54-56.

Jensen, E.D., Locke, C.D. and Tokuda, H. (1985) “A time-driven scheduling model for real-
time operating systems”, In Proceedings of Real-Time Systems Symposium, December 1985,
pp. 112-122.

Jerri, A.J. (1977), “The Shannon sampling theorem: its various extensions and applications a
tutorial review”, Proc. of the IEEE, Vol. 65, pp. 1565-1596.

Johansson, K.H., Törngren, M. and Nielsen, L. (2005) "Vehicle applications of controller area
network", In D. Hristu-Varsakelis and W. S. Levine, Ed., "Handbook of Networked and
Embedded Control Systems", Springer.

Jones, C.B. (1989) “Systematic Software Development using VDM”, Prentice Hall.

Jones, M. (1997) “What really happened on Mars?”, WWW website (Last accessed: October
2008) http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

Jones, N. (2002) “Introduction to MISRA C”, Embedded.com, WWW website (Last accessed:
October 2008) http://www.embedded.com/columns/beginerscorner/9900659

Kalinsky, D. (2001) “ Context switch, Embedded Systems Programming”, Vol. 14(1), 94-105.

Kamal, R. (2003) “Embedded Systems: Architecture, Programming and Design”, McGraw-Hill.

Katcher, D., Arakawa, H. and Strosnider, J. (1993) “Engineering and analysis of fixed priority
schedulers”, IEEE Transactions on Software Engineering, Vol. 19 (9), pp. 920-934.

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://www.embedded.com/columns/beginerscorner/9900659

Appendix I 412

Kazman, R., Klein, M. and Clements, P. (2000) “ATAM: Method for architecture evaluation”,
CMU/SEI, 2000.

Kelly, J.C., Sherif, J.S. and Hops, J. (1992) “An Analysis of Defect Densities Found During
Software Inspections”, Journal of Systems Software, Vol. 17, pp. 111-117.

Key, S.A., Pont, M.J. and Edwards, S. (2003) “Implementing low-cost TTCS systems using
assembly language”, In: Henney, K. and Schutz, D. (Eds) Proceedings of the Eighth
European conference on Pattern Languages of Programs (EuroPLoP 2003), Germany, June,
pp. 667-690, Published by Universitätsverlag Konstanz.

Key, S. and Pont, M.J. (2004) “Implementing PID control systems using resource-limited
embedded processors”. In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of
the UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp. 76-92. Published by
University of Newcastle upon Tyne.

Kim, N., Ryu, M., Hong, S. and Shin, H. (1999) “Experimental Assessment of the Period
Calibration Method: A Case Study”, Real-Time Systems, Vol. 17 (1), pp. 41-64.

Kim, T.H., Hwang, I.S., Jang, M.S., Kang, S.W., Lee, J.Y. and Lee, S.B. (1998) “Test case
generation of a protocol by a fault coverage analysis”, Proceedings of the Twelfth
International Conference on Information Networking, 1998 (ICOIN-12), 21-23 Jan 1998, pp.
690-695.

Kircher, O. and Turner, E.B. (1968) “On-line MISSIL”, IEEE Transactions on Industrial
Electronics and Control Instrumentation, Vol. 15, pp. 80-84.

Kirner, R. and Puschner, P. (2003). “Discussion of Misconceptions about Worst-Case
Execution-Time Analysis”. 3rd Euromicro International Workshop on WCET Analysis.

Knuth, D. (1998) “The Art of Computer Programming”, Addison-Wesley.

Koch, B. (1999) “The Theory of Task Scheduling in Real-Time Systems: Compilation and
Systematization of the Main Results”, Studies thesis, University of Hamburg.

Konrad, S., Cheng, B.H. C. and Campbell, L.A. (2004) “Object analysis patterns for embedded
systems”, IEEE Transactions on Software Engineering, Vol. 30 (12), pp. 970- 992.

Kontak, R.E. (1988) “Applicability of Ada tasking for avionics executives”, Proceedings of the
IEEE 1988 National Aerospace and Electronics Conference (NAECON), 23-27 May, Vol. 2,
pp. 739-746.

Kopetz, H. (1991a) “Event-triggered versus time-triggered real-time systems”, In: Proceedings
of the InternationalWorkshop on Operating Systems of the 90s and Beyond, London, UK,
Springer-Verlag, pp. 87-101.

Kopetz, H. (1991b), “Event-triggered versus time-triggered real-time systems”, Technical
Report 8/91, Technical University of Vienna, Austria.

Kopetz, H. (1997) “Real-time systems: Design principles for distributed embedded
applications”, Kluwer Academic.

Appendix I 413

Kopetz, H. (2001) “A Comparison of TTP/C and FlexRay”, Real-Time Systems Group, Vienna
University of Technology.

Kravetz, M. and Franke, H. (2001) “Implementation of a Multi-Queue Scheduler for Linux”,
IBM Linux Technology Center, Version 0.2, April 2001.

Krishnan, R. (2005) “Future of Embedded Systems Technology”, Published by BBC Research
Group, WWW website (Last accessed: October 2008)
http://www.bccresearch.com/report/IFT016B.html

Kühnel, C. (2006) “AVR RISC Microcontroller Handbook”, Newnes.

Kurian, S. and Pont, M.J. (2005) “Building reliable embedded systems using Abstract Patterns,
Patterns, and Pattern Implementation Examples”, In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 36-59. Published by University of Newcastle upon
Tyne.

Kurian, S. and Pont, M.J. (2006a) “Evaluating and improving pattern-based software designs for
resource-constrained embedded systems”, In: C. Guedes Soares & E. Zio (Eds), “Safety and
Reliability for Managing Risk: Proceedings of the 15th European Safety and Reliabilty
Conference (ESREL 2006), Estoril, Portugal, 18-22 September 2006”, Vol. 2, pp. 1417-1423.
Published by Taylor and Francis, London.

Kurian, S. and Pont, M.J. (2006b) “Restructuring a pattern language which supports time-
triggered co-operative software architectures in resource-constrained embedded systems”,
Paper presented at the 11th European Conference on Pattern Languages of Programs
(EuroPLoP 2006), Germany, July 2006.

Kurian, S. and Pont, M.J. (2007) “Maintenance and evolution of resource-constrained
embedded systems created using design patterns”, Journal of Systems and Software, Vol. 80
(1), pp. 32-41.

Labrosse, J.J. (2000) “Embedded Systems Building Blocks: Complete and Ready-to-use
Modules in C”, Focal Press.

LabVIEW (2007) “LabVIEW 7.1 Documentation Resources”, WWW website (Last accessed:
October 2008) http://digital.ni.com/public.nsf/allkb/06572E936282C0E486256EB0006B70B4

Lambert, K.A. and Osborne, M. (2000) “Java: A Framework for Program Design and Data
Structures”, Brooks / Cole.

Laplante, P.A. (2004) “Real-time Systems Design and Analysis”, Wiley-IEEE.

Laria, G (2005) “Architectural Evaluation and Assessment”, CRMPA.

Larsen, K.G., Pettersson, P. and Yi, W. (1997) “UPPAAL in a Nutshell”, Int. Journal on
Software Tools for Technology Transfer, Vol. 1 (1–2), pp. 134-52.

Larsen, K.G., Mikucionis, M. and Nielsen, B. (2005) “Online testing of real-time systems using
Uppaal”, In J. Gabowski and B. Nielsen, editors, Proc. 4, International Workshop on Formal
Approaches to Testing of Software 2004 (FATES’04), Vol. 3395 of Lecture Notes in
Computer Science, pp. 79-94. Springer–Verlag, 2005.

http://www.bccresearch.com/report/IFT016B.html
http://digital.ni.com/public.nsf/allkb/06572E936282C0E486256EB0006B70B4

Appendix I 414

Lee, D and Allan, G. (2003). "Fault-tolerant clock synchronisation with microsecond-precision
for CAN networked systems", International CAN Conference, Munich, Germany, October
2003.

Leen, G., Heffernan, D. and Dunne, A. (1999) “Digital networks in the automotive vehicle”,
Computing and Control, Vol. 10 (6), pp. 257-266.

Leen, G. and Heffernan, D. (2001) “Time-Triggered Controller Area Network”, Computing and
Control Engineering Journal, December 2001, Vol. 12, (6).

Leen, G. and Heffernan, D. (2002) “TTCAN: a new time-triggered controller area network”,
Microprocessors and Microsystems, Vol. 26 (2), pp. 77-94.

LeGrand, S. (1988) “Ada task scheduling: A focused Ada investigation”, technical report
published in NASA Technical Reports Server (NTRS), NASA, U.S.

Leung J.Y.T. and Whitehead, J. (1982) “On the Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks”, Performance Evaluation, Vol. 2, pp. 237-250.

Liberty, J. and Jones, B. (2004) “Teach Yourself C++ in 21 Days”, Sams.

Lin, K.J. and Herkert, A. (1996), “Jitter Control in Time-Triggered Systems”, Proceedings of
the 29th Hawaii International Conference on System Sciences, Maui, Hawaii, pp. 451-459.

Linger, R.C. (1994) “Cleanroom process model”, IEEE Software, Vol. 11 (2), pp. 50-58.

Litterick, M. and Brenner, M. (2005). "Utilizing Vera functional coverage in theverification of a
protocol engine for the FlexRay automotive communication system", The fourteenth Annual
Conference of Synopsys Users Group (SNUG) Europe, Munich, Germany.

Liu, C.L. and Layland, J.W. (1973), “Scheduling algorithms for multi-programming in a hard
real-time environment”, Journal of the AVM 20, Vol. 1, pp. 40-61.

Liu, J.W.S. (2000), “Real-time systems”, Prentice Hall.

Liu, S., Asuka, M., Komaya, K. and Nakamura, Y. (1998) “An approach to specifying and
verifying safety-critical systems with practical formal method SOFL”,
Proceedings of the Fourth IEEE International Conference on Engineering of Complex
Computer Systems, 1998, ICECCS '98,10-14 Aug. 1998, pp. 100-114.

Liu, Z., Gu, N. and Yang, G. (2005) “An automate test case generation approach: using match
technique”, The Fifth International Conference on Computer and Information Technology,
CIT 2005, 21-23 Sept. 2005, pp. 922-926.

Locke, C.D. (1986) “Best-effort decision making for real-time scheduling”, PhD thesis,
Department of Computer Science, Carnegie Mellon University, USA.

Locke, C.D., Vogel, D.R. and Mesler, T.J. (1991) “Building a Predictable Avionics Platform in
Ada: A Case Study”, Proceedings of IEEE Real Time Systems Symposium. pp. 181-189.

Locke, C.D. (1992), “Software architecture for hard real-time applications: cyclic executives vs.
fixed priority executives”, Real-Time Systems, Vol. 4, pp. 37-52.

Appendix I 415

Lutz, R.R. (1993) “Analysing software requirements errors in safety-critical embedded
systems”, Proc. RE’93, San Diego CA: IEEE Computer Society Press.

Maaita, A. and Pont, M.J. (2005) “Using 'planned pre-emption' to reduce levels of task jitter in a
time-triggered hybrid scheduler”. In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and
Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum (Birmingham, UK,
October 2005), pp. 18-35. Published by University of Newcastle upon Tyne

Marsh, P. (2003) “Models of control”, IEE Electronics Systems and Software, Vol. 1 (6), pp.
16-19.

Marti, P., Fuertes, J.M., Ramamritham, K. and Fohler, G. (2001a), “Jitter Compensation for
Real-Time Control Systems”, 22nd IEEE Real-Time Systems Symposium (RTSS'01),
London, England, pp. 39-48.

Marti, P., Fuertes, J.M., Villa, R. and Fohler, G. (2001b), “On Real-Time Control Tasks
Schedulability”, European Control Conference (ECC01), Porto, Portugal, pp. 2227-2232.

Marti, P. (2002), “Analysis and design of real-time control systems with varying control timing
constraints”, PhD thesis, Automatic Control Department, Technical University of Catalonia.

Martin, J. and Leben, J. (1986) “Fourth Generation Languages Volume 1: Principles”, Prentice
Hall.

Marwedel, P (2006) “Embedded system design”, Springer.

McCormick, F. (1987) “Scheduling difficulties of Ada in the hard real-time environment”,
Proceedings of the first international workshop on Real-time Ada issues, Morehampstead,
Devon, United Kingdom, pp. 49 – 50.

McElhone , C. and Burns, A. (2000) “Scheduling Optional Computations for Adaptive Real-
Time Systems”, Journal of Systems Architectures.

McLaughlin, M. and Moore, A. (1998) “Real-Time Extensions to UML”, Published by Dr
Dobb’s Potral, The Word for Software development, WWW website (Last accessed: October
2008) http://www.ddj.com/184410749

Mensh, M. and Diehl, W. (1968) “Extended FORTRAN for process control”, IEEE
Transactions on Industrial Electronics and Control Instrumentation, Vol. 15, pp. 75-79.

Mills, H.D., Dyer, M. and Linger, R.C. (1987) “Cleanroom Software Engineering”, IEEE
Software, Vol. 4 (5), pp. 19-25.

Misbauddin, S. and Al-Holou, N. (2003) “Efficient data communication techniques for
controller area network (CAN) protocol”, ACS/IEEE International Conference on Computer
Systems and Applications, 2003, Book of Abstracts, pp. 22.

Mitchell, J.C. (2003) “Concepts in Programming Languages”, Cambridge University Press.

Mok, A.K. (1983) “Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment”, Ph.D Thesis, MIT, USA.

http://www.ddj.com/184410749

Appendix I 416

Mooney, V., Sakamoto, T. and De Micheli, G. (1997) “Run-time scheduler synthesis for
hardware-software systems and application to robot control design”, Proceedings of the Fifth
International Workshop on Hardware/Software Codesign, (CODES/CASHE '97), 24-26
March 1997, pp. 95-99.

Mooney, V.J. (1999) “Path-based edge activation for dynamic run-time scheduling”, System
Synthesis, 1999. Proceedings of the 12th International Symposium on 10-12 Nov. 1999, pp.
30-36

Muller, B., Hartwich, F., Fuehrer, T., Hugel, R., Weiler, H. and Bosch R (2002) “Fault-tolerant
TTCAN networks”, Proceedings of the 8th International CAN Conference (iCC), 2002.

Munoz, C.U. (1988) “An approach to software product testing”, IEEE Transactions on Software
Engineering, Vol. 14 (11), pp. 1589-1596.

Murray, C.J. (2002) “Time-triggered protocol gains aerospace mileage”, EE Times, WWW
website (Last accessed: October 2008) http://www.eetimes.com/story/OEG20020912S0061

Mwelwa, C. and Pont, M.J. (2003) “Two new patterns to support the development of reliable
embedded systems”, Paper presented at VikingPLoP 2003 (Bergen, Norway, September
2003).

Mwelwa C., Pont M.J. and Ward D. (2003) “Towards a CASE Tool to Support the
Development of Reliable Embedded Systems Using Design Patterns”, In: Bruel, J-M [Ed.]
Proceedings of the 1st International Workshop on Quality of Service in Component-Based
Software Engineering, June 20th 2003, Toulouse, France, Published by Cepadues-Editions,
Toulouse.

Mwelwa, C., Pont, M.J. and Ward, D. (2004) “Code generation supported by a pattern-based
design methodology”, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the
UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp. 36-55. Published by
University of Newcastle upon Tyne

Mwelwa, C., Pont, M.J. and Ward, D. (2005) "Developing reliable embedded systems using a
pattern-based code generation tool: A case study". In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 177-193. Published by University of Newcastle upon
Tyne.

Mwelwa, C. (2006) “Development and Assessment of a Tool to Support Pattern-Based Code
Generation of Time-Triggered (TT) Embedded Systems”, PhD thesis, Department of
Engineering, University of Leicester, UK.

Mwelwa, C., Athaide, K., Mearns, D., Pont, M.J. and Ward, D. (2006) “Rapid software
development for reliable embedded systems using a pattern-based code generation tool”,
Paper presented at the Society of Automotive Engineers (SAE) World Congress, Detroit,
Michigan, USA, April 2006. SAE document number: 2006-01-1457. Appears in: Society of
Automotive Engineers (Ed.) “In-vehicle software and hardware systems”, Published by
Society of Automotive Engineers.

Mwelwa, C., Athaide, K., Mearns, D., Pont, M.J. and Ward, D. (2007) "Rapid software
development for reliable embedded systems using a pattern-based code generation tool". SAE

http://www.eetimes.com/story/OEG20020912S0061

Appendix I 417

Transactions: Journal of Passenger Cars (Electronic and Electrical Systems), Vol. 115 (7), pp.
795-803.

Nahas, M., Pont, M.J. and Jain, A. (2004) “Reducing task jitter in shared-clock embedded
systems using CAN”, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the
UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp. 184-194. Published by
University of Newcastle upon Tyne.

Nahas, M. and Pont, M.J. (2005) “Using XOR operations to reduce variations in the
transmission time of CAN messages: A pilot study”. In: Koelmans, A., Bystrov, A., Pont,
M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 4-17. Published by University of Newcastle upon
Tyne.

Nahas, M., Short, M. and Pont, M. J. (2005) “The impact of bit stuffing on the real-time
performance of a distributed control system”, Proceeding of the 10th International CAN
conference iCC (Rome, Italy, March 2005), pp. 10-1 to10-7.

Nahas, M., Short, M. and Pont, M. J. (submitted) “Reducing message-length variations in
resource-constrained embedded systems implemented using the CAN protocol”, Submitted
for a journal.

 National Instruments (2006) “Low-Cost E Series Multifunction DAQ – 12 or 16-Bit, 200 kS/s,
16 Analog Inputs”, available online (Last accessed: October 2008)
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf

Navet, N. and Song, Y.Q. (1998) “Design of reliable real time applications distributed over
CAN (controller area network)”, Proceedings of INCOM’98, IFAC Symposium on
Information Control in Manufacturing, Metz 22–24 June, 1998, pp. 391-396.

Nett, E., Streich, H., Bizzarri, P., Bondavalli, A. and Tarini, F. (1996). “Adaptive Software
Fault Tolerance Policies with Dynamic Real-Time Guarantees”. WORDS 96, IEEE Second
Int. Workshop on Object oriented Real-time Dependable Systems, Laguna Beach, California,
U.S.A.

Network Dictionary (2008) “Concurrent programming”, WWW website (Last accessed:
October 2008) http://wiki.networkdictionary.com/index.php/Concurrent_programming

Nghiem, T., Pappas, G.J., Alur, R. and Girard, A. (2006) “Time-triggered implementations of
dynamic controllers”, Proceedings of the 6th ACM & IEEE International conference on
Embedded software, Seoul, Korea, pp. 2-11.

Nielsen, B. and Skou, A. (2003) “Automated test generation from timed automata”,
International Journal on Software Tools for Technology Transfer, pp. 1023–1038.

Nielsen, M., Havelund, K., Wagner, K.R. and George, C. (1988) “The RAISE Language,
Method and Tools”, Proceedings of the Europe Symposium on VDM, pp. 376-405.

Nissanke, N. (1997) “Real-time Systems”, Prentice-Hall.

NIST (2007) “The National Institute of Standards and Technology”, WWW website (Last
accessed: October 2008) http://www.nist.gov/

http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf
http://wiki.networkdictionary.com/index.php/Concurrent_programming
http://www.nist.gov/

Appendix I 418

Nolte, T., Hansson, H., Norström, C. and Punnekkat, S. (2001) “Using Bit-stuffing Distributions
in CAN Analysis”, IEEE/IEE Real-Time Embedded Systems Workshop (Satellite of the IEEE
Real-Time Systems Symposium) London.

Nolte, T., Hansson, H. and Norstrom, C. (2002), “Minimizing CAN response-time jitter by
message manipulation”, IEEE Real Time Technology and Applications Symposium 2002, pp.
197-206.

Nolte, T. (2003), “Reducing Pessimism and Increasing Flexibility in the Controller Area
Network”, PhD thesis, Department of Computer Science and Engineering, Malardalen
University, Vasteras, SWEDEN.

Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., and George, J.F. (1991) “Electronic
meeting systems to support group”, Communications of the ACM, July 1991, pp. 42-61.

Obermaisser, R (2004) “Event-Triggered and Time-Triggered Control Paradigms”, Kluwer
Academic.

Oerter, G.W. (1968) “A new implementation of decision tables for a process control language”,
IEEE Transactions on Industrial Electronics and Control Instrumentation, Vol. 15, pp. 57-61.

Offutt, J. and Liu, S. (1999) “Generating test data from SOFL specifications”, The Journal of
Systems and Software, Vol. 49 (1), pp. 49-62.

O'Halloran, C. (2000) “Issues for the automatic generation of safety critical software”, The 15th
IEEE International Conference on Automated Software Engineering, Grenoble, France.

Ong, C.K., Hong, D., Cheng, K.T.T. and Wang, L.C. (2004), “Jitter spectral extraction for
multi-gigahertz signal”, Asia and South Pacific Design Automation Conference (ASP-DAC
'04), pp. 298-303.

Opler, A. (1966) “Requirements for real-time languages”, Communications of the ACM, Vol. 9
(3), pp. 196-199.

O'Reilly, T. (2006) “Programming Language Trends”, WWW website (Last accessed: October
2008) http://radar.oreilly.com/archives/2006/08/programming-language-trends.html

 Pamas, D.L. (1994) “Inspection of safety-critical software using program-function tables”,
CRL Report No. 288, McMaster University, Hamilton, Canada, 1994.

Pazul, K. (1999) “Controller Area Network (CAN) Basics”, Microchip Technology Inc.
Preliminary DS00713A-page 1 AN713.

Phatrapornnant, T. and Pont, M.J. (2004a) “The application of dynamic voltage scaling in
embedded systems employing a TTCS software architecture: A case study”, Proceedings of
the IEE / ACM Postgraduate Seminar on “System-On-Chip Design, Test and Technology”,
Loughborough, UK, 15 September 2004. Published by IEE. ISBN: 0 86341 460 5 (ISSN:
0537-9989), pp. 3-8.

Phatrapornnant, T. and Pont, M.J. (2004b) “The application of dynamic voltage scaling in
embedded systems employing a TTCS software architecture: A case study”, Proceedings of
the IEE / ACM Postgraduate Seminar on “System-On-Chip Design, Test and Technology”,

http://radar.oreilly.com/archives/2006/08/programming-language-trends.html

Appendix I 419

Loughborough, UK, 15 September 2004. Published by IEE. ISBN: 0 86341 460 5 (ISSN:
0537-9989), pp. 3-8.

Phatrapornnant, T. and Pont, M.J. (2006), “Reducing jitter in embedded systems employing a
time-triggered software architecture and dynamic voltage scaling”, IEEE Transactions on
Computers, Vol. 55 (2), pp. 113-124.

Phatrapornnant, T. (2007) “Reducing Jitter in Embedded Systems Employing a Time-Triggered
Software Architecture and Dynamic Voltage Scaling”, PhD thesis, Department of
Engineering, University of Leicester, UK.

Philips (1996) “P8x592 8-bit microcontroller with on-chip CAN, datasheet”, Philips
Semiconductor.

Philips (2004) “LPC2119/2129/2194/2292/2294 microcontrollers user manual”, Philips
Semiconductor.

Philips Semiconductors (2003) “LPC2106/2105/2104 USER MANUAL”, available online (Last
accessed: October 2008)
http://www.standardics.nxp.com/products/lpc2000/datasheet/lpc2104.lpc2105.lpc2106.pdf

PhyCORE-167 (2003) “QuickStart Instructions”, Phytec Technology.

Poledna, S. and Kroiss, G. (1998) “The Time-Triggered Communication Protocol TTP™/C”,
Real-Time Magazine, available online (Last accessed: October 2008) http://www.realtime-
info.be

Pont, M.J. (2001) “Patterns for time-triggered embedded systems: Building reliable applications
with the 8051 family of microcontrollers”, ACM Press / Addison-Wesley.

Pont, M.J. (2002) “Embedded C”, Addison-Wesley.

Pont, M.J. (2003) “An object-oriented approach to software development for embedded systems
implemented using C”, Transactions of the Institute of Measurement and Control, Vol. 25 (3),
pp. 217-238.

Pont, M.J. and Mwelwa, C. (2003) “Developing reliable embedded systems using 8051 and
ARM processors: Towards a new pattern language”, Paper presented at Viking PLoP 2003
(Bergen, Norway, September 2003).

Pont, M.J. and Ong, H.L.R. (2003) “Using watchdog timers to improve the reliability of TTCS
embedded systems”, in Hruby, P. and Soressen, K. E. [Eds.]Proceedings of the First Nordic
Conference on Pattern Languages of Programs, September, 2002, pp.159-200. Published by
Micrsoft Business Solutions.

Pont, M.J., Norman, A.J., Mwelwa, C. and Edwards, T. (2003) “Prototyping time-triggered
embedded systems using PC hardware”. Paper presented at EuroPLoP 2003 (Germany, June
2003).

Pont, M.J. and Banner, M.P. (2004) “Designing embedded systems using patterns: A case
study”, Journal of Systems and Software, Vol. 71 (3), pp. 201-213.

http://www.standardics.nxp.com/products/lpc2000/datasheet/lpc2104.lpc2105.lpc2106.pdf
http://www.realtime

Appendix I 420

Pont, M.J., Kurian, S. and Bautista-Quintero, R. (2006) “Meeting real-time constraints using
‘Sandwich Delays’”, In: Zdun, U. and Hvatum, L. (Eds) Proceedings of the Eleventh
European conference on Pattern Languages of Programs (EuroPLoP '06), Germany, July
2006: pp. 67-77. Published by Universitätsverlag Konstanz.

Pont, M.J., Kurian, S., Wang, H. and Phatrapornnant, T. (2007) “Selecting an appropriate
scheduler for use with time-triggered embedded systems”, Paper presented at the twelfth
European Conference on Pattern Languages of Programs (EuroPLoP 2007).

Pop, P., Eles, P. and Peng, Z. (2004) “Analysis and Synthesis of Distributed Real-Time
Embedded Systems”, Springer.

Porter, A.A., Votta, L.G. Jr. and Basili, V.R. (1995) “Comparing detection methods for software
requirements inspections: a replicated experiment”, IEEE Transactions on Software
Engineering, Vol. 21 (6), pp. 563-575.

Poston, R.T. (1986) “The Automatic Test Case Data Generator”, Proceedings of the 4th Annual
Pacific Northwest Software Quality Assurance Conference, Sept. 1986, pp. 168-176.

Powell, D. (2002) “Deriving verification conditions and program assertions to support software
inspection”, Ninth Asia-Pacific Software Engineering Conference, 2002, 4-6 Dec. 2002, pp.
447-456.

Pringsulaka, P. and Daengdej, J. (2006) “Coverall algorithm for test case reduction”, IEEE
Aerospace Conference, 4-11 March 2006, pp. 8-15.

Profeta III, J.A., Andrianos, N.P., Bing, Yu, Johnson, B.W., DeLong, T.A., Guaspart, D. and
Jamsck, D. (1996) “Safety-critical systems built with COTS”, IEEE Computer, Vol. 29
(11), pp. 54-60.

Punnekkat, S., Hansson, H. and Norström, C. (2000) “Response Time Analysis under Errors for
CAN”, Proceedings of RTAS’2000- 6th IEEE Real-Time Technology and Applications
Symposium, pp. 258-265, June 2000.

Puschner, P. (2002). “Is WCET Analysis a Non-Problem? - Towards New Software and
Hardware Architectures”. 2nd Intl. Workshop on Worst Case Execution Time Analysis,
Vienna, Austria.

Rao, M.V.P, Shet, K.C, Balakrishna, R. and Roopa, K. (2008) “Development of Scheduler for
Real Time and Embedded System Domain”, 22nd International Conference on Advanced
Information Networking and Applications - Workshops, 25-28 March 2008, AINAW, pp. 1-6.

Ravikumar, C. P. (2004) “Multiprocessor architectures for embedded system-on-chip
applications”, VLSI Design, 2004. Proceedings of the 17th International Conference, pp. 512-
519.

Rayadurgam, S. (2001) “Automated test-data generation from formal models of software”,
Proceedings of the 16th Annual International Conference on Automated Software
Engineering, 2001 (ASE 2001), 26-29 Nov. 2001, pp. 438.

Real, J. and Wellings, A.J. (1999a) “The Ceiling Protocol in Multi-moded Real-Time Systems
Reliable Software Technologies”, Ada-Europe 99, Lecture Notes in Computer Science.

Appendix I 421

Real, J. and Wellings, A.J. (1999b) “Implementing Mode Changes and Shared Resources in
Ada”, Proceedings of the11th Euromicro Conference on Real-Time Systems
1999.

Redmill, F. (1992) “Computers in safety-critical applications”, Computing & Control
Engineering Journal, Vol. 3 (4), pp.178-182.

Ribeiro, O.R. and Fernandes, J.M. (2007) “Translating Synchronous Petri Nets into PROMELA
for Verifying Behavioural Properties”, International Symposium on Industrial Embedded
Systems, SIES '07, 4-6 July 2007, pp. 266-273.

Roberts, B.C (1968) “FORTRAN IV in a process control environment”, IEEE Transactions on
Industrial Electronics and Control Instrumentation, Vol. 15, pp. 61-63.

Rodrigues, L., Guimarães, M. and Rufino, J. (1998) “Fault-Tolerant Clock Synchronization in
CAN”, Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain,
December 2-4, 1998.

Rodriguez-Navas, G., Barranco, M. and Proenza, J. (2003) “Harmonizing Dependability and
Real Time in CAN Networks” Proceedings of the 2nd International Workshop on Real-Time
LANs in the Internet Age (RTLIA), 2003.

Roscoe, A.W. (1994) “Model checking CSP”, In A.W. Roscoe, editor, A Classical Mind:
Essays in Honour of C.A.R. Hoare, pp. 353-378, Prentice Hall.

RTS (2008) “Real-Time Systems Research Group - Publications”, The University of York,
Department of Computer Science, WWW website (Last accessed: October 2008)
http://www.cs.york.ac.uk/rts/papers_db_all.php#2008

Rudiger, R. (1998) “Evaluating the temporal behaviour of CAN based systems by means of a
cost functional”, Proceedings of the Fifth International CAN Conference, San Jose, CA, USA,
November, 1998, pp. 10.09-10.26.

Rushby, J. (2001) “A Comparison of Bus Architectures for Safety-Critical Embedded Systems”,
Computer Science Laboratory Technical Report, SRI International, 2001.

Ryan, C., Heffernan, D. and Leen, G. (2004) “Clock synchronisation on multiple TTCAN
network channels”, Microprocessors and Microsystems Journal, Vol. 28 (3), pp. 95-146.

Sachitanand, N.N. (2002). “Embedded systems - A new high growth area”. The Hindu.
Bangalore.

Samek, M. (2002) “Practical Statecharts in C/C++: Quantum Programming for Embedded
Systems”, CMP Books.

Sammet, J.E. (1969) “Programming languages: history and fundamentals”, Prentice-Hall.

Samuelsson, T., Åkerholm, M., Nygren, P., Stärner, J. and Lindh, L. (2003) “A Comparison of
Multiprocessor Real-Time Operating Systems Implemented in Hardware and Software”, In:
International Workshop on Advanced Real-Time Operating System Services (ARTOSS’03),
2003.

http://www.cs.york.ac.uk/rts/papers_db_all.php#2008

Appendix I 422

Sanders, J. (2007) “Simple Glossary”, WWW website (Last accessed: October 2007)
http://www-xray.ast.cam.ac.uk/~jss/lecture/computing/notes/out/glossary/

Sandström, K. and Norström, C. (2002) “Managing complex temporal requirements in real-time
control systems”, 9th IEEE Conf. Engineering of Computer-Based Systems, IEEE, Sweden.

Sanfridson, M. (2000) “Timing problems in distributed real-time computer control systems”.
Technical Report, Mechatronics Lab, Department of Machine Design, Royal Institute of
Technology, Stockholm, Sweden.

Schatz, B., Hain, T., Houdek, F., Prenninger, W., Rappl, M., Romberg, J., Slotosch, O.,
Strecker, M. and Wisspeintner, A. (2003) “CASE tools for embedded systems”, Technical
University of Munich, Munich.

Scheler, F. and Schröder-Preikschat, W. (2006) “Time-Triggered vs. Event-Triggered: A matter
of configuration?”, GI/ITG Workshop on Non-Functional Properties of Embedded Systems
(NFPES), March 27 – 29, 2006, Nürnberg, Germany.

Schoeffler, J.D. and Temple, R.H. (1970) “A real-time language for industrial process control”,
Proceedings of the IEEE, Vol. 58 (1), pp. 98-111.

Schutz, H.A. (1979) “On the Design of a Language for Programming Real-Time Concurrent
Processes”, IEEE Transactions on Software Engineering, Vol. 5 (3), pp. 248-255.

Selby, R.W., Basili, V.R. and Baker, F.T. (1987) "Cleanroom Software Development: An
Empirical Evaluation", IEEE Transactions on Software Engineering, Vol. 13 (9), pp. 1027-
1037.

Sevillano, J.L., Pascual, A., Jiménez, G. and Civit-Balcells, A. (1998) “Analysis of channel
utilization for controller area networks”, Computer Communications, Vol. 21 (16), pp. 1446-
1451.

Sha, L. and Goodenough, J.B. (1990) “Real-time scheduling theory and Ada”, Computer, Vol.
23 (4), pp. 53-62.

Sha, L., Rajkumar, R. and Lehoczky, J.P. (1990), “Priority inheritance protocols: an approach to
real-timesynchronization”, IEEE Transactions on Computers, Vol. 39 (9), pp. 1175-1185.

Shandle, J. (2003) “CAN: Network for Thousands of Applications outside Automotive”,
techonline, WWW website (Last accessed: October 2008)
http://www.techonline.com/showArticle.jhtml?articleID=192200347&queryText=CAN
%3A+Network+for+Thousands+of+Applications+outside+Automotive

Shaw, A.C. (2001) “Real-time systems and software”, New York, John Wiley & Sons Inc.

Shere, K.D. and Carlson, R.A. (1994) “A methodology for design, test, and evaluation of real-
time systems”, Computer, Vol. 27 (2), pp. 35-48.

Shi, H., Peleska, J., and Kouvaras, M. (1999) “Combining methods for the analysis of a fault-
tolerant system”, Proceedings of the 1999 Pacific Rim International Symposium on
Dependable Computing, 16-17 Dec. 1999, pp. 135-142.

http://www-xray.ast.cam.ac.uk/~jss/lecture/computing/notes/out/glossary/
http://www.techonline.com/showArticle.jhtml?articleID=192200347&queryText=CAN

Appendix I 423

 Short, M., Pont, M.J. and Huang, Q. (2004a) “Simulation Of Vehicle Longitudinal Dynamics”,
Technical report ESL 04/01, Embedded Systems Laboratory, University of Leicester, 2004.

Short, M., Pont, M.J. and Huang, Q. (2004b) “Simulation Of Motorway Traffic Flows”,
Technical report ESL 04/02, Embedded Systems Laboratory, University of Leicester, 2004.

Short, M., Pont, M.J. and Huang, Q. (2004c) “Development Of A Hardware-In-The-Loop Test
Facility For Distributed Embedded Systems”, Technical report ESL 04/03, Embedded
Systems Laboratory, University of Leicester, 2004.

Short, M. and Pont, M.J. (2005) "Hardware in the loop simulation of embedded automotive
control systems", In Proceedings of the 8th IEEE International Conference on Intelligent
Transportation Systems (IEEE ITSC 2005) held in Vienna, Austria, 13-16 September 2005,
pp. 226-231.

Short, M.J., Fang, J., Pont, M.J. and Rajabzadeh, A. (2006) "Assessing the impact of
redundancy on the performance of a brake-by-wire system", Paper presented at the Society of
Automotive Engineers (SAE) World Congress, Detroit, Michigan, USA, April 2006. SAE
document number: 2006-01-0836. Appears in: Pimental, J.R. (Ed.) "Safety-critical automotive
systems", Published by Society of Automotive Engineers.

Short, M. and Pont, M.J. (2007) “Fault-Tolerant Time-Triggered Communication Using CAN”,
IEEE Transactions on Industrial Informatics, Vol. 3 (2), pp. 13-142.

Short, M.J., Fang, J., Pont, M.J. and Rajabzadeh, A. (2007) "Assessing the impact of
redundancy on the performance of a brake-by-wire system", SAE Transactions: Journal of
Passenger Cars (Electronic and Electrical Systems), Vol. 115 (7), pp. 331-338.

Short, M. and Pont, M.J. (2008) “Assessment of high-integrity embedded automotive control
systems using Hardware-in-the-Loop simulation”, Journal of Systems and Software, Vol. 81
(7), pp. 1163-1183.

Sickle, T.V. (1997) “Reusable Software Components: Object-Oriented Embedded Systems
Programming in C”, Prentice Hall.

Siemens (1996), “C167 Derivatives: 16-Bit CMOS Single-Chip microcontroller”, User’s
Manual Version 2.0.

Siemens (1997) “C515C 8-bit CMOS microcontroller, user’s manual”, Siemens.

Silva, E.T., Jr., Wehrmeister, M.A., Becker, L.B., Wagner, F.R. and Pereira, C.E. (2005)
“Design exploration in HW/SW co-design of real-time object-oriented embedded systems: the
scheduler object”, 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, 2005, WORDS 2005, 2-4 Feb. 2005, pp. 378-385.

Singh, H., Conrad, M. and Sadeghipour, S. (1997) “Test case design based on Z and the
classification-tree method”, Proceedings of the First IEEE International Conference on
Formal Engineering Methods, 1997, 12-14 Nov 1997, pp. 81-90.

Sommerville, I. (2007) “Software engineering”, 8th edition, Harlow: Addison-Wesley.

Spangler, A. (1996) “Cleanroom software engineering-plan your work and work your plan in
small increments”, IEEE Potentials, Vol. 15 (4), pp. 29-32.

Appendix I 424

Specks, J.W. and Rajnak, A. (2000) “LIN — Protocol, Development Tools, and Software
Interfaces for Local Interconnect Networks in Vehicles”, In Proceedings of the 9th
International Conference on Electronic Systems for Vehicles, Baden-Baden, Germany, 2000.

Spivey, J. M. (1988) “The Z Notation: A Reference Manual”, Prentice Hall International.

Springintveld, J., Vaadranger, F. and Dargenio, P. (1997) “Testing Timed Automata”, Technical
Report CTIT97-17, University of Twente, Amesterdam, 1997.

Stankovic, J.A. (1988) “Misconceptions about real-time computing”, IEEE Computers, Vol. 21
(10).

Stavely, A.M. (1999) “High-quality software through semiformal specification and
verification”, Proceedings of the 12th Conference on Software Engineering Education and
Training, 1999. 22-24 March 1999, pp. 145-155.

Steusloff, H.U. (1984) “Advanced real time languages for distributed industrial process
control”, IEEE Computer, pp. 37-46.

STG (2008) “Software Testing Glossary”, WWW website (Last accessed: October 2008)
http://www.aptest.com/glossary.html

STING (1996) “STING software engineering glossary”, WWW website (Last accessed: October
2008) http://www.apl.jhu.edu/Notes/Hausler/web/glossary.html

STMicroelectronics (2002) “AN1278 Application Note, LIN Solutions”, WWW website (Last
accessed: October 2008) http://www.st.com/stonline/products/literature/an/8130.pdf

Storey, N. (1996) “Safety-critical computer systems”, Harlow, Addison-Wesley.

Stothert, A. and MacLeod, I. (1998) “Effect of Timing Jitter on Distributed Computer Control
System Performance”. Proceedings of DCCS’98 – 15th IFAC Workshop on Distributed
Computer Control Systems, September 1998.

Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E. and Leroy, P. (2007) “Ada 2005
Reference Manual: Language and Standard Libraries”, Springer.

Tai, K. C. (1993) “Predicate-Based Test Generation for Computer Programs”, Proceedings of
the 15th Interactional Conference on Software Engineering (ICSE), May 1993, pp. 267-276.

Tanenbaum, A.S. (1995), “Distributed Operating Systems”, Prentice Hall

TechFest (1999) “TechFest Ethernet Technical Summary”, available online (Last accessed:
October 2008) http://www.techfest.com/networking/lan/ethernet5.htm

Texas Instruments (1988) “SN5408, SN54LS08, SN54S08SN7408, SN74LS08, SN74S08
Quadruple 2-Input Positive-AND Gates”, available online (Last accessed: October 2008)
74LS08 Datasheet, available on: http://www.cs.amherst.edu/~sfkaplan/courses/spring-
2002/cs14/74LS08-datasheet.pdf

Thomesse, J.P. (1998) “A review of the fieldbuses”, Annual Reviews in Control, Vol. 22, pp.
35-45.

http://www.aptest.com/glossary.html
http://www.apl.jhu.edu/Notes/Hausler/web/glossary.html
http://www.st.com/stonline/products/literature/an/8130.pdf
http://www.techfest.com/networking/lan/ethernet5.htm
http://www.cs.amherst.edu/~sfkaplan/courses/spring

Appendix I 425

Tindell, K., Burns, A., and Wellings, A. (1992) “Allocating hard real-time tasks: An NP-hard
problem made easy”, Real-Time Systems, Vol. 4 (2), pp. 145-165.

Tindell, K.W. and Burns, A. (1994) “Guaranteed message latencies for distributed safety-
critical hard real-time control networks”, Technical Report YCS229, Dept. of Computer
Science, University of York, June 1994.

Tindell, K.W., Hansson, H. and Wellings, A.J. (1994) “Analysing Real-Time Communications:
Controller Area Network (CAN)”, Proceedings of RTSS’94 - 15th IEEE Real-Time Systems
Symposium, pp. 259–265, December 1994.

Tindell, K.W., Burns, A. and A.J. Wellings, A.J. (1995) “Calculating Controller Area Network
(CAN) Message Response Times”, Control Engineering Practice, Vol. 3 (8), pp. 1163-1169.

Torngren, M. (1998), “Fundamentals of implementing real-time control applications in
distributed computer systems”, Real-Time Systems, Vol. 14, pp. 219-250.

Tran, E. (1999) “Verification/Validation/Certification”, Carnegie Mellon University,
Dependable Embedded Systems, Spring 1999, available online (Last accessed: October 2008)
http://www.ece.cmu.edu/~koopman/des_s99/verification/

Tsai, W.T., Yu, L., Liu, X.X., Saimi, A. and Xiao, Y. (2003) “Scenario-based test case
generation for state-based embedded systems”, Conference Proceedings of the 2003 IEEE
International Performance, Computing, and Communications Conference, 2003, 9-11 April
2003, pp. 335-342.

TTA-Group (2007) “The Cross-Industry Consortium for Time-Triggered Systems”, WWW
website (Last accessed: October 2008) http://www.ttagroup.org/index.htm

TTTech (2008) “Time-Triggered Technology - TTP”, WWW website (Last accessed: October
2008) http://www.tttech.com/solutions/ttp/

Turski, K. (1994) “A global time system for CAN networks”, In Proceedings of the 1st
International CAN Conference, 1994, pp. 31-36.

Vallerio, K.S. and Jha, N.K. (2003) “Task graph extraction for embedded system synthesis”,
Proceedings of the 16th International Conference on VLSI Design concurrently with the 2nd
International Conference on Embedded Systems Design, pp. 480-486.

Vardanega, T. (1996) “Tool support for the construction of statically analysable hard real-time
Ada systems”, 17th IEEE Real-Time Systems Symposium, 4-6 December 1996, pp. 129-135.

Verissimo, P. and Rodrigues, L. (1992) “A posteriori Agreement for Fault-Tolerant Clock
Synchronization on Broadcast Networks”, the 22nd International Symposium on Fault-
Tolerant Computing, Boston, USA, July, 1992.

Vetromille, M., Ost, L., Marcon, C.A.M., Reif, C., Hessel, F. (2006) “RTOS Scheduler
Implementation in Hardware and Software for Real Time Applications”, Seventeenth IEEE
International Workshop on Rapid System Prototyping, 14-16 June 2006, pp. 163-168.

Walls, C. (2005) “Embedded Software: The Works”, Newnes.

http://www.ece.cmu.edu/~koopman/des_s99/verification/
http://www.ttagroup.org/index.htm
http://www.tttech.com/solutions/ttp/

Appendix I 426

Wang, B. and Lin, Z.H. (2001) “Formal verification of embedded SoC”, Proceedings of the 4th
International Conference on ASIC, 23-25 Oct. 2001, pp.769-772.

Wang, F. (2004) “Formal verification of timed systems: a survey and perspective”,
Proceedings of the IEEE, Vol. 92 (8), pp. 1283-1305.

Wang, H., Pont, M.J. and Kurian, S. (2007) “Patterns which help to avoid conflicts over shared
resources in time-triggered embedded systems which employ a pre-emptive scheduler”, Paper
presented at the 12th European Conference on Pattern Languages of Programs (EuroPLoP
2007).

Ward, N.J. (1991) “The static analysis of a safety-critical avionics control systems”, Air
Transport safety: Proceedings of the Safety and Reliability Society Spring Conference, In:
Corbyn D.E. and Bray, N.P. (Eds.)

Watkinson, J. (2002) “Introduction to Digital Audio”, Focal Press.

Watson, D. (1989) “High Level Languages and Their Compilers”, Addison-Wesley.

Wavecrest (2001), “Understanding Jitter: Getting Started”, Wavecrest Corporation.

Wellings, A.J. (2003) “Is Java augmented with the RTSJ a better realtime systems
implementation technology than Ada 95?”, In Proceedings of IRTAW12, Ada Letters, Vol.
XXIII (4), pp. 16-21.

Wellings, A.J. and Burns, A. (2007a) “Beyond Ada 2005: allocating tasks to processors in SMP
systems”, Proceedings of IRTAW 13, Ada Letters, Vol. XXVII (2).

Wellings, A.J. and Burns, A. (2007b) “A framework for real-time utilities for Ada 2005”,
Proceedings of IRTAW 13, Ada Letters, Vol. XXVII (2).

Wendorf, J.W. (1988) “Implementation and evaluation of a time-driven scheduling processor”,
IEEE Real-Time Systems Symposium, December 1988, pp.172-180.

Wexelblat, L. (1981) “History of Programming Languages”, Academic Press.

Whalen, M.W. and Heimdahl, M.P.E. (1999) “On the requirements of high-integrity code
generation”, Proceedings of the 4th High Assurance in Systems Engineering Workshop,
Washington DC.

Wheeler, D.A., Brykczynski, B. and Meeson, R.N.Jr. (1996) “Software Inspection: And
Industry Best Practice”, IEEE Computer Society Press.

White, L.J. and Sahay, P.N. (1985) “A Computer System for Generating Test Data using the
Domain Strategy”, Proceedings of SOETFADUI - 2nd Conference on Software Development
Tools, Techniques and Altematives, 1985, pp. 38-45.

Wikipedia (2008) “Programming Language” WWW website (Last accessed: October 2008)
http://en.wikipedia.org/wiki/Programming_language

Wilson, L.B. and Clark, R.G. (2000) “Comparative Programming Languages”, Addison-
Wesley.

http://en.wikipedia.org/wiki/Programming_language

Appendix I 427

Wirth, N. (1977) “Modula - A programming language for modular multiprogramming”,
Software - Practice and Experience, Vol. 7, pp. 3-35.

Wirth, N (1993) “Recollections about the development of Pascal”, Proceedings of the 2nd ACM
SIGPLAN conference on history of programming languages, pp. 333-342.

Wizitt (2001) “T223 – A Glossary of Terms (Block 2)”, Wizard Information Technology
Training (Wizitt), WWW website (Last accessed: October 2008)
http://wizitt.com/t223/glossary/glossary2.htm

Wordsworth, J. (1996) “Software Engineering with B”, Addison-Wesley.

Xu , J. and Parnas, D.L. (1990) “Scheduling processes with release times, deadlines, precedence
and exclusion relations“, IEEE Transactions on Software Engineering, Vol. 16 (3), pp. 360-
369.

Xu , J. and Parnas, D.L. (1993) “On satisfying timing constraints in hard - real - time systems”,
IEEE Transactions on Software Engineering, Vol. 19 (1), pp. 70-84.

Xu, J. (2003) “On Inspection and Verification of Software with Timing Requirements”, IEEE
Transactions on Software Engineering, Vol. 29 (8), pp. 705-720.

Yi, K., Cho, Y., Lee, S., Lee, J. and Ryoo, N. (2000) “A Throttle/Brake Control Law for
Vehicle Intelligent Cruise Control”, Seoul 2000 FISITA World Automotive Congress, June
12-15, Seoul, Korea.

Zerzelidis, A., Burns, A. and Wellings, A.J. (2007) “Correcting the EDF protocol in Ada 2005”,
Proceedings of IRTAW 13, Ada Letters, Vol. XXVII (2).

Zuberi, K.M. and Shin, K.G. (1995) "Non-Preemptive Scheduling of Messages on Controller
Area Network for Real-Time Control Applications", In Proceedings of Real-Time Technology
and Applications Symposium, pp. 240-249.

Zurell, K. (2000) “C programming for embedded systems”, CMP Books.

Zuse, K (1995) “A Brief History of Programming Languages”, Byte.com, WWW website (Last
accessed: October 2008) http://www.byte.com/art/9509/sec7/art19.htm

http://wizitt.com/t223/glossary/glossary2.htm
http://www.byte.com/art/9509/sec7/art19.htm

