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Abstract

Monte Carlo estimators of sensitivity indices and the marginal density of the price dynamics
are derived for the Hobson-Rogers stochastic volatility model. Our approach is based mainly
upon the Kolmogorov backward equation by making full use of the Markovian property of the
dynamics given the past information. Some numerical examples are presented with a GARCH-
like volatility function and its extension to illustrate the effectiveness of our formulae together
with a clear exhibition of the skewness and the heavy tails of the price dynamics.
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1 Introduction

The Hobson-Rogers stochastic volatility model [12] induces the complete market and the standard
non-arbitrage pricing argument holds true just as in the Black-Scholes market, since no exogenous
source of risk is introduced. This property is a superiority to other popular stochastic volatility
models, such as the Heston model [11] and the SABR model [8]. Meanwhile, similarly to those
stochastic volatility models, the Hobson-Rogers model is still capable of capturing the market
volatility smiles. Due to those fine features, the model has attracted a significant attention from
various aspects. For example, some empirical analyses are performed in Platania and Rogers
[15] and in Foschi and Pascucci [5], while the calibration problems are considered in Foschi and
Pascucci [5] and in Figà-Talamanca and Guerra [3]. The robustness of the model with respect to
the data and the parameters is investigated in Hallulli and Vargiolu [10]. A generalization of the
model is studied in Hubalek, Teichmann and Tompkins [13], while an extension to the framework
of term-structure modeling is proposed in Chiarella and Kwon [2] and its dynamics is applied in
the context of portfolio optimization in Hahn, Putschögl and Sass [9].
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The aim of this study is to derive sensitivity indices of delta and gamma and marginal density
estimation formulae of the price dynamics for the Hobson-Rogers stochastic volatility model. The
importance and usefulness of the delta formula comes from the market completeness, since it
implies the perfect delta-hedge of contingent claims. Meanwhile, our density estimation formula
of logarithmic marginal provides one a convenient way to investigate its distribution skew and
tails. Our approach is based upon the Kolmogorov backward equation by making full use of
the Markovian property of the dynamics rather than the standard Malliavin integration-by-parts
argument. In our framework, the volatility function may consist of two or more arguments so that
the effect of higher-order offset processes (which will be defined below) can be incorporated in
full. This is a major advantage to approaches taken in the existing literature. They impose the
assumption of the volatility function consisting only of the first-order offset process so that the
contingent claim premium is the solution of a three-dimensional Kolmogorov partial differential
equation. Without the assumption, one is required to deal numerically with a higher dimensional
Kolmogorov partial differential equation.

The rest of this paper is organized as follows. Section 2 recalls the Hobson-Rogers stochastic
volatility model and its featuring properties. Section 3 presents main results of this paper. First, by
imposing a mild assumption on the past information, we derive a derivative formula of the price
dynamics (Lemma 3.2), which is a crucial building block for all our results. Two fundamental
sensitivity indices, delta and gamma, are derived in the form of the expectation towards Monte
Carlo simulation (Theorem 3.4 and 3.5). Finally, from the delta formula, we derive the marginal
density estimation formulae of the dynamics and of its logarithm (Theorem 3.8). Some numerical
results are presented in Section 4 to illustrate the effectiveness of our formulae. Finally, Section 5
concludes this study.

2 Preliminaries

Let us begin with general notations which will be used throughout the text. N is the collection
of all positive integers. EQ[·] indicates the expectation taken under a probability measure Q. The
restriction of a probability measure Q to the σ -field F is denoted by Q|F . Leb(·) indicates the
Lebesgue measure. For k ∈ N, ∂k indicates the partial derivative with respect to k-th argument. We
denote by Ck

b the class of k-time continuously differentiable functions with bounded derivatives,
while the subscript c in Ck

c indicates the existence of a compact support. We denote by G (E ) the
σ -field generated by E .

Let us review the Hobson-Rogers stochastic volatility model introduced in [12]. Define a log
asset price dynamics {Zt : t ∈ R} by

Zt := lnSt ,

and offset processes (of order m ∈ {0}∪N) {Y (m)
t : t ∈ [0,+∞)} by

Y (m)
t :=

∫ +∞

0
λe−λ s (Zt −Zt−s)

m ds. (2.1)

2



For σ : Rn 7→ R+, the martingale asset price dynamics {St : t ≥ 0} is formulated via the stochastic
differential equation

dSt = Stσ
(

Y (1)
t , . . . ,Y (n)

t

)
dWt . (2.2)

In what follows, we will call the function σ(·) the volatility function. For ease in notation, we will
write for fixed n ∈ N,

σt := σ
(

Y (1)
t , . . . ,Y (n)

t

)
.

Next, define a filtration

Ft := F0 ⊗G ({Zs : s ∈ [0, t]})⊗
(
⊗n

m=1G
({

Y (m)
s : s ∈ [0, t]

}))
.

We know from Lemma 3.1 [12] that if {Zt : t ∈ (−∞,0]} is F0-measurable, then the stochastic
process (S,Y (1), · · · ,Y (n)) is Markovian, and that for t ∈ [0,+∞) and for m = 1, . . . ,n,

dY (m)
t = mY (m−1)

t dZt +
m(m−1)

2
Y (m−2)

t d〈Z〉t −λY (m)
t dt, P|F0-a.s. (2.3)

where Y (−1)
· ≡ 0.

Notice that the induced market is complete since no additional source of randomness, other than
{Wt : t ≥ 0} in (2.2), is introduced in the model. This implies that there is a unique preference-free
premium for contingent claims, which can be perfectly replicated by the delta-hedge in view of the
Brownian martingale representation.

In all the existing literature, the volatility function is assumed to consist only of one argument
with the offset process of first order, that is, the form of σ(Y (1)

t ). A practical reason for this
assumption is that even the sole use of the first order offset process may yield a sufficient variety
of volatility skews and smiles, while a more important reason comes from a theoretical point of
view. By the Markovian property, the premium of a European contingent claim

f
(

St ,Y
(1)

t ,T − t
)

:= EP
[
Φ(ST )

∣∣Ft
]

follows the Feynman-Kac formula, where Φ is a suitable function. With the form of σ(Y (1)
t ), the

above f is the solution of the three-dimensional Kolmogorov partial differential equation

0 = (−λy∂2 f −∂3 f )+
(
−1

2
∂2 f +

1
2

s2∂ 2
1 f +

1
2

∂ 2
2 f + s∂1∂2 f

)
σ(y)2,

with the boundary condition f (s,y,0) = Φ(s). In particular, a numerical scheme of this equation is
developed and investigated in Di Francesco and Pascucci [6]. Without the assumption of the single
argument volatility function, the corresponding Kolmogorov partial differential equation would be
too complicated to solve numerically, for example, by the finite difference method.
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3 Main Results

Let us begin with an assumption on the past information.

Standing Assumption 3.1. We assume that given F0, for t ∈ (−∞,0],

∂St

∂S0
=

St

S0
.

The above assumption is not restrictive since it is equivalent in practice that we are given F0 to
having all the past information at hand in the form of deterministic dynamics, which can be freely
thought of as St = S0βt , where {βt : t ∈ (−∞,0]} is independent of S0.

We next derive a derivative formula of the dynamics in the following lemma, which is crucial
for discussions in what follows.

Lemma 3.2. Under Standing Assumption 3.1, we have that for t ∈ (0,+∞),

∂St

∂S0
=

St

S0
, P|F0-a.s.

Proof. First, by differentiating (2.1) at t = 0 with respect to S0, we get

∂Y (m)
0

∂S0
=

∫ +∞

0
λeλ s ∂

∂S0
(lnS0 − lnS−s)

m ds = 0,

where the last equality follows from Assumption 3.1. Next, by differentiating (2.3) with respect to
S0, we obtain a linear stochastic differential equation

d
∂Yt

∂S0
= At

∂Yt

∂S0
dWt +Bt

∂Yt

∂S0
dt, P|F0-a.s.

where
∂Yt

∂S0
:=

(
∂Y (1)

t

∂S0
, . . . ,

∂Y (n)
t

∂S0

)′

,

and where At and Bt are suitable Ft-measurable processes in Rn×n. From the initial conditions
∂Y (m)

0 /∂S0 = 0, it follows that ∂Y (m)
t /∂S0 = 0, P|F0-a.s. Hence, by differentiating (2.2), we get

d
∂St

∂S0
=

∂St

∂S0
σtdWt ,

with the unit initial value. This indeed satisfies (2.2) and thus the proof is complete.

We will use the following notation; for T > 0 and 0 ≤ t1 ≤ t2 ≤ T ,

Lt1,t2 :=
∫ t2

t1
σ−1

s dWs.

Before proceeding to the presentation of main results, let us summarize all assumptions to be
imposed on the volatility function σ(·). Note that unlike in all the existing literature, we do not
impose assumptions on the volatility function to consists only of one argument nor to be smooth.
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Standing Assumption 3.3. The volatility function σ : Rn 7→ R takes values in a positive compact
set, that is, there exist constants a > 0 and b ∈ [a,+∞) such that σ(·) ∈ [a,b].

It is straightforward that the above assumption guarantees
∫ T

0 σ−2
t dt < +∞, P|F0-a.s., and

EP[
∫ T

0 Stdt|F0] < +∞.

3.1 Delta

We first consider the sensitivity of the European premium with respect to S0, that is, Delta. The
technique in the proof is well known (see, for example, Gikhman and Skorokhod [7]), and has al-
ready been applied to the sensitivity analysis in Cass and Friz [1] and Takeuchi [17]. As mentioned
earlier, this sensitivity index is of particular importance in the sense that in the induced complete
market, the contingent claim can be perfectly replicated by the delta-hedge.

Theorem 3.4. For Φ : R 7→ R such that EP[|Φ(ST )|2] < +∞, we have

∂
∂S0

EP
[
Φ(ST )

∣∣F0
]
=

1
S0T

EP
[
Φ(ST )L0,T

∣∣F0
]
.

Proof. First, assume that Φ ∈C2
b(R;R). Define

u(t,x) := EP
[
Φ(ST−t)

∣∣S0 = x,F0
]
.

Due to Φ ∈C2
b(R;R), the Ito formula reads

du(t,St) = ∂1u(t,St)dt +∂2u(t,St)dSt +
1
2

∂ 2
2 u(t,St)d〈S〉t

=
[

∂1u(t,St)+
1
2

∂ 2
2 u(t,St)S2

t σ2
t

]
dt +∂2u(t,St)σtStdWt .

By the Markov property of (S,Y (1), . . . ,Y (n)) and the time-homogeneity of σ(·), we have

EP
[
Φ(ST−t)

∣∣S0 = x,F0
]
= EP

[
Φ(ST )

∣∣∣St = x,
{

Y (m)
t

}
m=1,...,n

,F0

]
,

and for s ∈ [0, t],

EP [u(t,St)|Fs] = EP

[
EP

[
Φ(ST )

∣∣∣St ,
{

Y (m)
t

}
m=1,...,n

,F0

]
|Fs

]
= EP

[
Φ(ST )

∣∣∣Ss,
{

Y (m)
s

}
m=1,...,n

,F0

]
= u(s,Ss).

Hence, we get, for each t ∈ (0,T ],

∂1u(t,St)+
1
2

∂ 2
2 u(t,St)S2

t σ2
t = 0, P|F0-a.s.
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It then follows that

Φ(ST ) = EP
[
Φ(ST )

∣∣F0
]
+

∫ T

0
∂2u(s,Ss)σsSsdWs

= EP
[
Φ(ST )

∣∣F0
]
+S0

∫ T

0

∂
∂S0

u(s,Ss)σsdWs, P|F0-a.s., (3.1)

where the last equality holds by Lemma 3.2.
Next, it follows from Standing Assumption 3.3 that EP[L2

0,T |F0] < +∞. Hence, by the Ito-
Wiener isometry, we have

EP
[
Φ(ST )L0,T

∣∣F0
]
= S0EP

[∫ T

0

∂
∂S0

u(t,St)dt
∣∣∣F0

]
= S0

∫ T

0
EP

[
∂

∂S0
u(t,St)

∣∣∣F0

]
dt

= S0

∫ T

0

∂
∂S0

EP

[
u(t,St)

∣∣∣F0

]
dt

= S0T
∂

∂S0
EP

[
Φ(ST )

∣∣F0
]
,

where the first line to the second is verified by the Fubini theorem with the differentiability of
u(t, ·), where the second to the third is verified by the dominated convergence theorem with the as-
sumption EP[|Φ(ST )|2] < +∞ and with the Cauchy-Schwartz inequality, and where the last equal-
ity holds by the Markov property of (S,Y (1), . . . ,Y (n)).

Finally, the smoothness assumption of Φ can be removed by standard density arguments, which
completes the proof.

3.2 Gamma

We next derive a Monte Carlo formula for Gamma, that is, the delta of the delta. From a theoretical
point of view, this index is not very important due to the perfect delta-hedge, while it is still of great
importance in practical discretization situations. Moreover, for its derivation, we follow the time
interval separation technique again of [1] and [17], which may be of independent interest.

Theorem 3.5. Fix T ′ ∈ (0,T ), and let Φ : R 7→ R be such that EP[|Φ(ST )|2] < +∞. Then, we have

∂ 2

∂S2
0
EP

[
Φ(ST )

∣∣F0
]
=

1
S2

0T ′ (T −T ′)
EP

[
Φ(ST )L0,T ′LT ′,T

∣∣F0
]
− 1

S0

∂
∂S0

EP
[
Φ(ST )

∣∣F0
]
.

Proof. As in the proof of Theorem 3.4, we can first impose the assumption Φ ∈C3
b , which is to be

removed later by a density argument. By (3.1), we have that

EP
[
Φ(ST )

∣∣FT ′
]
= EP

[
Φ(ST )

∣∣F0
]
+S0

∫ T ′

0

∂
∂S0

u(s,Ss)σsdWs, P|F0-a.s.

6



By differentiating this, we get

EP

[
∂

∂S0
Φ(ST )

∣∣∣FT ′

]
= EP

[
∂

∂S0
Φ(ST )

∣∣∣F0

]
+

∫ T ′

0

∂
∂S0

u(s,Ss)σsdWs +S0

∫ T ′

0

∂ 2

∂S2
0

u(s,Ss)σsdWs, P|F0-a.s.,

where the passages to the limit hold by the dominated convergence theorem with the twice-
differentiability of Φ. By the Ito-Wiener isometry, we get

EP

[
EP

[
∂

∂S0
Φ(ST )

∣∣∣FT ′

]
L0,T ′

∣∣∣F0

]
= EP

[∫ T ′

0

∂
∂S0

u(s,Ss)ds
∣∣∣F0

]
+EP

[∫ T ′

0

∂ 2

∂S2
0

u(s,Ss)ds
∣∣∣F0

]
= T ′ ∂

∂S0
EP

[
Φ(ST )

∣∣F0
]
+S0T ′ ∂ 2

∂S2
0
EP

[
Φ(ST )

∣∣F0
]
,

where the last equality holds by the Fubini theorem, by the dominated convergence theorem, and
by the Markov property of (S,Y (1), . . . ,Y (n)). Finally, the above left hand side proceeds

EP

[
EP

[
∂

∂S0
Φ(ST )

∣∣∣FT ′

]
L0,T ′

∣∣∣F0

]
= EP

[
∂

∂S0
EP

[
Φ(ST )

∣∣FT ′
]

L0,T ′

∣∣∣F0

]
= EP

[
∂ST ′

∂S0

∂
∂ST ′

EP
[
Φ(ST )

∣∣FT ′
]

L0,T ′

∣∣∣F0

]
=

1
S0 (T −T ′)

EP
[
EP

[
Φ(ST )LT ′,T

∣∣FT ′
]

L0,T ′
∣∣F0

]
=

1
S0 (T −T ′)

EP
[
Φ(ST )L0,T ′LT ′,T

∣∣F0
]
,

where the third equality holds by Lemma 3.2 and Theorem 3.4. The proof is complete.

Remark 3.6. In the above formula, the choice of the time separation point T ′ ∈ (0,T ) is arbitrary.
It is a natural guess that the former part L0,T ′ is very unstable if T ′ is extremely close to zero, while
setting T ′ very close to T makes the latter component LT ′,T instead very volatile. It seems that this
conjecture is correct, as will be seen numerically in Section 4.

Remark 3.7. One might have wondered if the standard Malliavin integration-by-parts argument
leads to the above formulae. To see why not, observe first that for u ∈ [0,T ],

DuST = ST

[
σu +

∫ T

0
DuσsdWs −

∫ T

0
σsDuσsds

]
, P|F0-a.s.

Clearly, this approach does not yield the same Greeks formulae, unless Duσ· ≡ 0, P|F0-a.s., while
such an assumption is evidently unrealistic. It is indeed not very difficult to imagine that the
derivation by means of the Malliavin integration-by-parts ends up with very intricate ones.
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3.3 Density Estimation

The marginal distribution of the dynamics has been investigated in the form of its Laplace trans-
form in Sekine [16] with a linear volatility function σ(y) = αy, α > 0. Without such a convenient
choice of the volatility function, it seems very difficult to discuss such explicit information of the
marginal distribution.

Here, we take a different approach of unbiased density estimation, again without imposing any
specific structures on the volatility function. Our key tool is the delta formula of Theorem 3.4.

Theorem 3.8. A density function pP(x|F0) of ST at x > 0 under the probability measure P|F0 is
given by

pP(x|F0) =
1

xT
EP

[
1(ST > x)L0,T

∣∣F0
]
.

Moreover, a density function qP(x|F0) of ln(ST /S0) at x ∈ R under P|F0 is given by

qP(x|F0) =
1
T

EP
[
1(ST > S0ex)L0,T

∣∣F0
]
. (3.2)

Proof. Due to Assumption 3.3, we can define a probability measure Q|F0 via the Radon-Nikodym
derivative

dQ
dP

∣∣∣
Ft

:=
St

S0
, t ∈ [0,T ], P|F0-a.s.

Let Φ(y) be in C∞
c (R;R) such that Φ(y) = 0 if y < x−h and Φ(y) = 1 if y > x + h, for h > 0. In

view of Lemma 3.2, the delta formula of Theorem 3.4 can be rewritten as

EQ
[
Φ′(ST )

∣∣F0
]
=

1
S0T

EP
[
Φ(ST )L0,T

∣∣F0
]
.

By standard approximation arguments, letting h ↓ 0 yields a density function pQ of ST at x > 0
under Q|F0 as

pQ(x|F0) =
1

S0T
EP

[
1(ST > x)L0,T

∣∣F0
]
.

Then, for g ∈Cb(R+;R), we have

EQ
[
g(ST )

∣∣F0
]
= EP

[
dQ
dP

∣∣∣
FT

g(ST )
∣∣∣F0

]
= EP

[
ST

S0
g(ST )

∣∣∣F0

]
=

∫ +∞

0
g(x)

x
S0

pP(x|F0)dx,

which yields the first formula. Finally, the identity qP(x|F0) = S0ex pP(S0ex|F0) leads directly to
the second formula. The proof is complete.

Remark 3.9. For two reasons, the above density estimation formulae outperforms the standard
kernel density estimation, for example,

q̂h
P(x|F0) :=

1
h
EP

[
K

(
x− ln(ST /S0)

h

)∣∣F0

]
,
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where K is a suitable kernel and where h is the bandwidth. First, the kernel density estimation is
only asymptotically unbiased as h ↓ 0, while in reality h can never be taken zero. On the other hand,
our density estimators are intrinsically unbiased. Second, in the kernel density estimation, Monte
Carlo summands provide almost no contribution to the convergence of Monte Carlo simulation
unless realizations are very close to x; this problem turns out to be very serious when we set the
bandwidth h to be extremely small. In our formulae, meanwhile, all the Monte Carlo realizations
with ST > S0ex (or with ST > x for the estimation of pP) make an equal contribution. We can see
that the probability of the event ST > S0ex should not be very small unless x is extremely large.
For such an extreme case, it would be an effective approach to make use of the importance sam-
pling variance reduction method by transforming the probability measure so that the realizations
of ln(ST /S0) tend to generate larger values.

The following result is a direct consequence of the above density formula and should be useful
in particular for the investigation of the tail probabilities.

Corollary 3.10. For −∞ ≤ a < b < +∞, we have

P
(
ln(ST /S0) ∈ (a,b]

∣∣F0
)

=
1
T

EP
[
Leb((−∞, ln(ST /S0)]∩ (a,b])L0,T

∣∣F0
]
.

Proof. This is straightforward by∫ b

a
qP(x|F0)dx =

1
T

EP

[∫ b

a
1(ST > S0ex)dxL0,T

∣∣F0

]
,

where the Fubini theorem is applied.

Remark 3.11. A similar superiority in the density estimation holds in this probability estimation.
The Monte Carlo summands of our formula is zero only when ln(ST /S0) < a, while in the standard
probability estimator EP[1(ln(ST /S0) ∈ (a,b])|F0], the summands are zero unless ln(ST /S0) ∈
(a,b]. It is not easy to adjust the probability measure transformation in a way that many realizations
of ln(ST /S0) fall in the interval (a,b] for the importance sampling variance reduction. One possible
approach is the use of adaptive Monte Carlo variance reduction with stochastic approximation.
(See, for example, Kawai [14].)

4 Numerical Illustration

Let us first compare the convergence of our Greeks formulae in Monte Carlo simulation to that of
finite difference estimation, that is,

(Delta) :=
EP

[
Φ(ST )

∣∣(1+ ε)S0,F0
]
−EP

[
Φ(ST )

∣∣(1− ε)S0,F0
]

2εS0
,

(Gamma) :=
EP

[
Φ(ST )

∣∣(1+ ε)S0,F0
]
−EP

[
Φ(ST )

∣∣S0,F0
]
+EP

[
Φ(ST )

∣∣(1− ε)S0,F0
]

(εS0)2 ,
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with a slight abuse of notation. We fix T = 1, S0 = 100, and λ = 5 in (2.3). Here, we only take into
account [−T,0) of the past information. This restriction does not affect numerical results much
so long as the decay rate λ is set sufficiently high. We set the past dynamics {St : t ∈ [−T,0]} in
a suitable manner such that Y (1)

0 = 0. The next important setup is the volatility function. We use
the one considered in [12, 4, 10] with the form of σ1(y1) := η1(1 +η2y2

1)
1/2 ∧N with some large

constant N and positive η1, η2. Clearly, this is designed in the spirit of the discrete-time ARCH and
GARCH to express the market consensus that large movements of the asset price dynamics in the
past induce higher future volatility. To clearly illustrate the effectiveness of our Greeks formulae,
we provide the variance ratio, defined by (vratio) := VarP(Finite Difference)/VarP(Formula).

0 5000 10000 15000 20000 25000 30000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Formula

Finite Difference

0 5000 10000 15000 20000 25000 30000

−0.4

−0.2

0.0

0.2

0.4

Formula

Finite Difference

Delta (vratio=210) Gamma (T ′ = T/2, vratio=220,178)

Figure 1: Monte Carlo convergence with Φ(x) = (x−S0)+ and ε =1e-2.

As mentioned in Remark 3.6, let us present how the choice of the time separation point T ′ ∈
(0,T ) changes the variance of the gamma estimator. Results should be different for different
setups, while as Table 1 indicates, we conjecture that T ′ should better be chosen to be somewhere
in the fairly middle of the interval.

T ′ 0.1T 0.2T 0.3T 0.4T 0.5T 0.6T 0.7T 0.8T 0.9T
vratio (e+3) 271 216 189 182 195 356 378 427 667

Table 1: Variance of the gamma estimator with different time separation points.

We are next concerned with the density qP(x|F0) of ln(ST /S0). Together with the aforemen-
tioned volatility function σ1, we also examine its extension with the form of σ2(y1,y2,y3) :=
η1(1+max(0,η2y2

1 +η3y3))1/2 ∧N, with a positive η3, to illustrate that our framework may work
with the volatility function of two or more arguments. By using the third-order offset process
{Y (3)

t : t ≥ 0}, we intend to reflect the trend of price dynamics and to express the well known nega-
tive correlation between volatility and price dynamics. We present in Figure 2 the results of density
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estimation for the both volatility functions σ1 and σ2 based upon 3e+4 Monte Carlo realizations
of ln(ST /S0). For clear illustration, we indicate by ◦ the normalized histogram of ln(ST /S0) based
upon the same 3e+4 realizations. In the middle figures we plot the implied volatility smile induced
by the obtained densities, while we give QQ-plot in the bottom figures to visualize the heavy tails
of the densities. As clearly indicated in the volatility smile and the QQ-plot, the introduction
of the third-order offset process fattens the left marginal tail. Let us finally add to mention that
our formula is capable of working with various forms of the volatility function. For example, an
EGARCH-like formulation σ3(y) = η1 exp(η2y2)∧N can yield similar forms of volatility smile
and skew.

5 Conclusion

In this paper, we have derived Greeks formulae, of delta and gamma, and marginal density esti-
mation formulae on the Hobson-Rogers stochastic volatility model. In principle, our approach is
based upon the Kolmogorov backward equation by making full use of the Markovian property of
the dynamics rather than the standard Malliavin integration-by-parts argument. Unlike the Kol-
mogorov partial differential equation approach in the existing literature, the volatility function in
our framework may easily consist of two or more arguments so that the effect of higher-order off-
set processes can be incorporated in full. Our density estimation formula of logarithmic marginal
provides one a convenient way to investigate distribution skew and tails. Numerical results indi-
cate the effectiveness of our formulae and that the model can well create the skewness and the
heavy tails of the marginal of the price dynamics. Finally, future research includes further numer-
ical investigation with various volatility functions and parameter calibration to market data via an
effective use of our density estimation formulae.
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Figure 2: Estimated Density (top), induced implied volatility curve (middle), and QQ-plot (bot-
tom); the three figures on the left are of σ1(y) = 0.2(1 + 100y2)1/2 ∧N, while those on the right
are of σ2(y1,y2,y3) = 0.2(1+max(0,100y2

1 +5y3))1/2 ∧N.
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