
Preprint of a paper to be published in the
European Journal of Operations Research, 2009

A note on ‘Efficient scheduling of periodic information monitoring
requests’

Michael Short1

Embedded Systems Laboratory, University of Leicester,
University Road, Leicester LE1 7RH, UK

Abstract

A recently published paper by Zeng et al. [‘Efficient scheduling of periodic information monitoring

requests’, EJOR 173, pp 583-599] (Zeng et al. 2006) considers the non-preemptive scheduling of

periodic server information requests for mission-critical monitoring applications such as policing

and homeland security. In their paper, it was claimed that the decision version of the considered

Periodic Monitoring (PM) problem was NP-Complete, and several greedy heuristics were

developed to ‘efficiently’ solve the problem. The standard argument of polynomial-time solution

verification was employed in their complexity proof. However, the present note points out that that

the PM problem is actually 2
p – Complete, and verification of a PM solution is coNP-Complete, in

the strong sense. A consequence of these results is that the greedy heuristics proposed by Zeng et al.

are all strongly coNP-Hard, invalidating the authors’ claims of efficiency; since their algorithms are

implemented on-line in a mission-critical application, this clearly needs to be taken into account.

The final contributions of the present note are the description of an efficient algorithm for the

underlying peak server load problem, and showing that equivalence classes in request start times

can be efficiently detected and pruned prior to searching. These former elements - if incorporated

into the original heuristics - can potentially improve stability and efficiency by large orders of

magnitude.

Keywords: Non-preemptive Scheduling, Greedy Heuristics, Periodic Queries, Complexity.

1 Corresponding author:
 Tel: +44 (0)116 252 5052
 Email: mjs61@le.ac.uk (M Short)

1. Introduction

A recently published paper by Zeng et al. [‘Efficient scheduling of periodic information monitoring

requests’, EJOR 173, pp 583-599] (Zeng et al. 2006) considers the scheduling of periodic server

information requests for mission-critical monitoring applications such as homeland security. In their

paper, this problem (the periodic monitoring or PM problem) was formulated as an optimization

problem, with the goal of assigning integer start times to each periodic request such that the peak

server load in any time unit is minimized. Formally, in a PM instance we are given a set N of n

periodic database requests, each characterised by a period pi  + and a server demand di  + to

be scheduled. Each request for information places a load di on the server every time it is serviced,

and each request must be serviced exactly pi time units apart; as soon as a request is ready, it is

immediately serviced (in a non-preemptive fashion) within the same time unit. Given a candidate

solution to PM – i.e. integer start times si for each request – to determine the peak server load (the

objective function) it suffices to consider only a length of the schedule known as the hyperperiod h,

given as follows:

),,(1 npplcmh 

(1)

Where lcm is the least common multiple of the request periods. The similarity been this problem

and other related scheduling problems (primarily in real-time systems) was identified in the

previous paper; in fact it is an identical scheduling model to the non-preemptive version of offset-

free scheduling (Goosens 2003), using Pont’s ‘TTC’ scheduler (Pont 2001). Theorem 1 in the

previous paper claims that the decision version of the PM problem is strongly NP-Complete, and

several polynomial-time greedy heuristics were subsequently developed by the authors to

‘efficiently’ solve the problem. The standard argument of polynomial-time verification was claimed

– without any kind of analysis or support - as part of their complexity proof to show membership of

the PM problem in NP. However, in this note it is argued there is an inconsistency in their

complexity results; it will be shown in Section 2 that PM is actually complete for 2
p, and

verification of a PM solution is strongly coNP-Complete. A consequence of this result is that the

heuristics proposed by Zeng. et al. are in fact strongly coNP-Hard. In order to help ameliorate this

problem, Section 3 of the present note formulates an efficient algorithm (the Largest Congruent

Subset or LCS algorithm) to help overcome this verification problem; for any fixed number of

requests it runs in polynomial-time. This Section also shows how symmetries – in terms of

equivalence classes in the request starting times - can be efficiently pruned from the search. In

combination, these two elements would seem to make the application of the heuristics proposed by

Zeng et al. tractable for low / medium sized problem instances.

2. Complexity of the PM problem

Consider first the verification of a solution to PM, which will be termed the peak server demand

(PSD) problem. Formally, in the decision version of PSD we have an instance of PM along with an

associated start time si  0
+ for each request, and a bound on the peak server demand b  +.

W.l.o.g., the start times can be assumed to satisfy the following (Goosens 2003; Zeng et al. 2006):

ii psNi  0;

(2)

The question that is asked is as follows: is the peak demand on the server less than or equal to b? In

Appendix 1 of the Zeng et al. paper, it is claimed that “Using the standard polynomial-time

verification argument, we can easily prove that D-PM is in NP”, implying that an instance of PSD

can be solved in polynomial-time. To refute this claim, PSD will now be shown to be coNP-

Complete. Membership of the problem in coNP can be seen as follows: each request in an instance

of PSD can be represented as a congruence of the form:

)mod(ii psx 

(3)

In which x is one of the (multiple) possible solutions to the congruence. A ‘No’ answer for an

instance of PSD results in counter example, i.e. a time interval j in which the server demand is

greater than b. The demand in the jth time instant can be determined in time proportional to n by

summing the demands for each periodic request that is congruent to j, satisfying x = j in (3). If PSD

is polynomially verifiable, then a ‘Yes’ answer would seemingly require a similar certificate (Garey

& Johnson 1979). However, since there seems to be no sub-exponential bound on the length of h

given by (1), this would seem to be unlikely. To show that PSD is in fact coNP-Complete, the

Simultaneous Congruences Problem (SCP) is now introduced. SCP is known to be NP-Complete, in

the strong sense (Baruah et al. 1990).

SIMULTANEOUS CONGRUENCES PROBLEM (SCP)

Instance: A set A of ordered integer pairs {(x1, y1) … (xn, yn)} and a positive integer2 2 < k  n.

Question: Is there a subset A’  A of k ordered pairs, and a positive integer z, such that for all (xi, yi)

 A’, z  xi mod(yi)?

Theorem 1: PSD is strongly coNP-Complete.

Proof: Transformation from the compliment of SCP.

Let  = < (x1, y1) … (xn, yn), k > denote an arbitrary instance of SCP. From this we create a set N of

n requests for an instance of PSD, with a bound b equal to k-1, as follows:

ii

i

ii

ys

d

xp





1

(4)

This transformation can be performed in time proportional to n and is hence polynomial. Next, it is

argued that a positive solution to  exists iff there is a negative answer to PSD. If PSD is negative,

then it implies that during at (at least) one time interval j, the server demand is greater than b. Since

b is 1 less than k, at least k requests must be simultaneously active; this gives a solution to  with a

certificate j. Conversely, if the answer to SCP is positive, then the peak server demand is  b and a

time interval in which k or more requests are simultaneously active does not exist; implying a

negative answer to . It can also be observed that the largest integer resulting from this

transformation is no larger than the largest integer in the original instance; and since SCP is strongly

NP-Complete, the Theorem is proved. �

Given this result, it would seem that a proof of PSD’s polynomial solvability as proposed by Zeng

et al. would constitute a proof that P = coNP, and seems unlikely. Since there also seems to be an

exponential number of possible start times for a PM instance, under the assumption that P  NP it is

also worthwhile investigating exactly where the PM problem lies on the so-called ‘polynomial

hierarchy’ (Garey & Johnson 1979). From (2), it can be seen that the request start times for ‘Yes’

instances of this problem can be encoded in a number of bits that is less than or equal to the request

periods, and hence the size of the problem instance. Given the previous Theorem, the resulting

2 In the case when k  2, the problem can be solved in polynomial time.

request schedule is verifiable in polynomial time by a Turing machine with an oracle for the PSD

problem; the problem resides in 2
p. To show that the problem is complete for this complexity class,

the Periodic Maintenance Scheduling Problem (PMSP) is now introduced. This problem is known

to be 2
p – Complete (Mok et al. 1989; Baruah et al. 1990).

PERIODIC MAINTENANCE SCHEDULING PROBLEM (PMSP)

Instance: A set C of ordered pairs {(p1, c1) … (pn, cn)}, with each ci representing a maintenance

activity having an integer period pi, positive integer3 1 < k  n.

Question: Is there a mapping of the activities in C to positive integer time slots such that successive

occurrences of each ci are exactly pi time slots apart, and no more than k activities ever collide in a

single slot?

Theorem 2: PM is 2
p - Complete.

Proof: Transformation from PMSP.

Let C = < ((c1, p1) … (cn, pn), k > denote an arbitrary instance of PMSP. From this a set N of n

requests to be scheduled by PM are created, and the bound b is set equal to k:

1


i

ii

d

pp

(5)

Again this transformation can be performed in polynomial time. Next, it is argued that a solution to

M exists iff N can be scheduled by PM. If the answer to this instance of PM is ‘Yes’, this implies

that start times can be assigned to each request in N such that the peak demand is  b, implying that

a maintenance schedule for C - in which no more than k activities occur simultaneously - also exists

with a certificate (s1 … sn). Conversely, if the answer to PM is ‘No’, then a schedule in which the

peak demand is  b does not exist for any combination of request start times, implying that a

maintenance schedule for C - in which no more than k activities occur simultaneously - does not

exist. Since PMSP is 2
p - Complete, the Theorem is proved. �

3 For the special case when k = 1, a PMSP solution becomes polynomially verifiable but the problem remains strongly

NP – Complete.

The consequences of these results are as follows; the greedy heuristics proposed in the Zeng et al.

paper all require the solution of PSD instances multiple times during their operation (Page 590, Step

2.2). Since this is a coNP-Hard problem, this bound also applies to the proposed heuristics. As the

authors’ report that the greedy scheduling policies have been implemented on-line – as part of a

mission critical system serving a major US police force – this clearly must be taken into account.

At this point it is worth mentioning that there are special cases in which PSD can be efficiently

determined. Consider an instance in which all request periods are restricted to be integer powers of

2; PSD for such an instance can be solved in time proportional to the maximum request period, i.e.

in pseudo-polynomial time. However even with such a period restriction, the PM problem remains

strongly NP-Hard. Another potential restriction that may be considered is to place an upper bound

on the choice of periods – say in the interval [1, 50] – however this still results in a length of h that

can potentially approach 1038.

It can be observed then, that the actual time complexity of deciding a given PSD problem instance

is incredibly fragile, being highly susceptible to the choice of request periods; this point is

illustrated further in Section 4. It is worth noting that every problem instance described in the

computational study performed by Zeng et al. was restricted to be either a ‘power two’ or ‘restricted

period’ instance, in all cases resulting in a maximum length of h of 64 time units; this perhaps leads

to the erroneous conclusion that the PM problem resides in NP. Unfortunately, given the nature of

the problem, this is wholly unrepresentative of practical situations. As noted by Zeng et al. (2006),

instances of the PM problem are likely to consist of thousands of client requests – perhaps

distributed over several states or time zones – with vastly differing period requirements ranging

from one or more hours, to perhaps several days (or even weeks). By way of example, suppose time

is represented in hours and users may request information with periods in the interval [1, 1000]. It is

trivial to create instances in which number of requests is < 50, and the length of h exceeds 10100.

Should such an instance be input to the system, it will surely fail.

An alternative approach to brute-force hyperperiod simulation for PSD is to look for a more

efficient formulation to determine the peak server load, and to avoid – as much as possible – the

calls to this procedure. This is the subject of the following Section.

3. Improved algorithms for PM

3.1 Tackling the PSD problem

It can be seen from (1) that the length of the hyperperiod that needs to be examined is potentially

proportional to the product of the request periods, a largely undesirable situation. The basis for a

new algorithm starts from a single observation; as mentioned in Section 1, when requests become

due they are immediately serviced in a non-preemptive fashion. Therefore, in a system with n

requests, there is a maximum of 2n possible combinations of request phasings that may occur in any

single time unit; over the hyperperiod, the actual combinations that will appear clearly depends on

the request start times. For almost all instances of the unrestricted PSD problem, it is clear that 2n

<< h; this forms the basis for the LCS algorithm. According to the linear congruence theorem, two

requests will occur simultaneously in some time interval in h iff:

),gcd(|)(jiji ppss 

(6)

That is, if the relative start times of the requests divides the greatest common divisor (gcd) of the

request periods. Suppose now that we wish to consider the congruence of a set M of m requests.

According to the generalised Chinese remainder theorem (Knuth 1973), (6) can be extended such

that a set of m requests will occur simultaneously in some time interval in h iff:

),gcd(|)(;;, jiji ppssjiMji 

(7)

That is, if each pair wise combination of requests in the set M satisfies (6) simultaneously.

Equations (6) and (7) form the basis for the LCS algorithm. A congruent subset is defined as a set T

 N s.t. equation (7) holds. Let |T| be the cardinality of the subset, i.e. the number of requests it

contains, and let (T) refer to the magnitude of the subset:





Ti

idT)(

(8)

The purpose of the LCS algorithm is to search for the congruent subset of requests with the largest

magnitude, given an instance of PSD. Central to the proposed algorithm is the notion of a phase

matrix . This is an n-by-n matrix that contains all pairwise request phasing information, encoded in

binary format. For all elements i,j, j > i, a ‘1’ is placed in the ijth element of the matrix indicating a

phasing of requests i and j, and a ‘0’ indicating otherwise. The matrix is ‘0’ both on and below the

diagonal, and can be generated by repeated application of the gcd algorithm and Equation (7) to

each pair wise combination of requests in the set. Let each row of this matrix be referred to as a

‘phase code’, and represented as an n-bit long binary string; the phase code Pj corresponds to the jth

row of the phase matrix .

The LCS algorithm operates as a depth-first search of all possible request phasings, employing

simple bounding heuristics to help prune the search. The inputs to the algorithm are a set of n

periodic requests with start times, and the output of the algorithm is the determined peak demand.

The first step is the generation of the phase matrix. The initial incumbent solution value b is set to

the maximum of the largest single or pair-wise congruent request demand. The algorithm then

begins to recursively search for congruent subsets of requests; the main elements of the algorithm

are shown in Figure 1.

Each node of the search tree represents a subset T of congruent requests; the depth of recursion

corresponds to |T|. The incumbent is updated whenever a subset with (T) > b is found. Each node

has associated with it its own phase code P. Since only proper congruent subsets can be expanded

as child nodes in the search, the ith request can only be added into the current subset T to form a new

child node with subset T’ if the ith bit of P is set to a ‘1’. To generate the new phase code in the

child node, a logical AND is performed between P’ and Pi, the ith row of the phase matrix. This

effectively applies equation (7) in one single operation, and the only bits that will subsequently be

set to ‘1’ in P thus correspond to requests that are properly congruent with all requests in T. When

an empty phase code is encountered, the algorithm begins to backtrack since either a leaf node has

been reached or - since bits are cleared by the algorithm after the corresponding child node has been

explored – no further child nodes exist.

01 procedure LCS(N, n)
02 {
03 b := max(di), i  N; // Set initial incumbent
04 FOR i := 1 TO n-1 DO // Generate each row of the phase matrix
05 Pi = {0};
06 FOR j := (i + 1) TO n DO
07 IF (si – sj) mod (gcd(pi, pj)) = ‘0’ // Test for congruence
08 Pij = ‘1’;
09 b := max(b, (di + dj)); // Update incumbent
10 END IF
11 END FOR
12 END FOR
13 FOR i: = 1 TO (n - 2) DO
14 Expand(i, 0, Pi); // Expand each request

15 END FOR
16 RETURN(b); // Return incumbent
17 }

18 procedure Expand(i, T’, P’)
19 {
20 P := P’ & Pi; // Generate new phase code
21 j := i + 1; // Set initial request to check
22 T := T’ + i; // Add request i to the set
23 b := max(b, (T)); // Update incumbent
24 WHILE P  {0} AND ((T) + bup) > b DO
25 {
26 IF (Pj = '1') // Test for request j’s congruence with T
27 {
28 Expand(j, T, P); // Expand the new child node
29 Pj := '0'; // Mark the node as visited
30 }
31 j:= j + 1; // Try the next request
32 }
33 END WHILE
34 }

Figure 1. LCS Algorithm

The pruning rule that is implemented simply prevents the expansion of child nodes which cannot

possibly lead to a value greater than the current incumbent. This simple procedure works as follows;

suppose the current node represents a subset T, and that a proper child node corresponding to the jth

request is about to be expanded. An upper bound bup on the best possible value that can be achieved

by such an expansion is as follows:





n

ji
iup db

(9)

This bound expresses the fact that the best possible situation - in which all requests corresponding

to unexplored branches - are congruent to T. If this value is not greater than b, then the node need

not be expanded. Moreover, since the search progresses in a depth-first, left-to-right search, the

current node can be considered fathomed; this bound can only be non-increasing for all child nodes

greater than j. This fathoming rule, along with the fact that the algorithm can be implemented

entirely using (fast) integer arithmetic, leads to a very efficient formulation. It can be seen that with

a set of n requests, there are exactly 0.5 n x n-1 combinations of request pairings. To generate the

matrix, each pair requires an application of the gcd calculation and application of (7). If the periods

in question can be encoded in n bits, the gcd algorithm has quadratic time complexity O(n2) (Knuth

1973). Thus the computation of the phase matrix runs in time polynomial. Moving now onto the

main body of the algorithm, it can be seen from its formulation that in the worst case it is

exponential in the number of requests n, with complexity O(2n). However, running time of the

algorithm is clearly independent of the choice of periods; for any fixed n, |2n| is constant; LCS

therefore constitutes a polynomial-time algorithm for the search version of PSD for fixed n. As will

be demonstrated, for values of n  60, the algorithm is extremely fast, and also predicable; a key

requirement for a mission-critical, on-line setting. As LCS is intended to be embedded in a PM

search algorithm, certain elements (such as the pairwise request gcd’s) may be memoized to further

speed execution. Since the depth of recursion is limited by n, the space requirement is polynomial in

this input, and LCS can be implemented using O(n2) bits. Attention is now turned to the problem of

symmetry in the choice of start times.

3.2 Breaking Symmetries

Symmetry, in the current context, occurs when two sets of request start times S and S’ results in

identical periodic behaviour in a schedule. In such cases, the peak demand value for both schedules

is identical. Obviously, to reduce the search space it is wished to only consider one set of start

times. Previous work in the area of offset-free scheduling by Goossens (2003) has shown that in

most periodic task systems in which one is free to assign start times, many classes of equivalent

offset combinations exist. It is clear from the proofs developed in this previous work (specifically

Theorem 9) that this can also be shown to hold for the PM problem. The main results of Goosens

(2003) can be adapted to the current context as follows: let p’ be the phase capacity of a request,

which is used to place an upper bound on the choice of its start time, such that if start times for

request i are selected in the range 0  si < p’ then all (and only) redundant configurations of start

times will be removed from the search. Since the evaluation of each start time configuration in the

search space requires the solution of a coNP-Hard problem, this clearly has many benefits. For the

first request, w.l.o.g. the start time for request 1 can be fixed at zero, i.e. p1’ = 1; this follows from

Theorem 6 in (Goosens, 2003). For all remaining requests, 1 < i  n, pi’ can be calculated as the lcm

of the pairwise gcd’s between request i’s period, and all request periods j less than i:

ijpppplcmp jiii )),gcd()...,(gcd(' 1

(10)

The correctness of (10) trivially follows from Theorem 10 in Goosens (2003), and the basic

numerical properties of gcd and lcm. Application of (10) can clearly be performed in polynomial

time before searching begins.

4. Computational study and summary

This Section describes a series of computational studies that were performed to illustrate the

fragility and complexity problems outlined in Section 2, and gauge the efficiency of the proposed

LCS algorithm. In each of the tests described in this section, a ‘typical’ desktop PC setup was

employed to perform the assessments. The hardware used was standard off-the-shelf office

computing equipment. The PC was based around an Intel® Core-2 Duo® processor running at 2.13

GHz, with 1 GB of RAM. The operating system employed was Windows® XP, and all software

was written in C++ using the Borland® C++ Builder package, and compiled to favor speed. Timing

measurements were taken using the Pentium® performance counter.

The first results to be reported consider the effects of period selection on running times for both

approaches to determine PSD. In order to keep the value of h tractable, the number of requests

restricted to 10 with periods selected in the interval [1, 100]. In total 1,000 different representative

request sets were generated as follows; periods were randomly generated, and request start times

were then randomly assigned according to (10). Demands were then assigned in the interval [10,

1000]. The resulting sets of requests were then sorted in order of non-increasing d (to improve the

efficiency of the bounding rule) and used as input to both the LCS and hyperperiod simulation

algorithms. The resulting computation times for each are shown in Figures 2 and 3. A summary of

the results is given in Table I.

Table I. Comparative results (s)

 LCS Hyperperiod
Min 0.0000023 0.0000218
Max 0.0000385 1007.2945080
Ave 0.0000066 188.4035393

0

100

200

300

400

500

600

700

800

900

1000

1100

0 200 400 600 800

Test No

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Figure 2. Hyperperiod simulation computation times

0

0.00001

0.00002

0.00003

0.00004

0 200 400 600 800

Test No

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Figure 3. LCS algorithm computation times

It can be seen from Table I that in all cases, the LCS method was significantly faster than basic

hyperperiod simulation for solving PSD. As can also be seen from the results, LCS is extremely

robust in terms of the request parameters; in comparison, hyperperiod simulation sees huge

fluctuations in computation time as these parameters vary, in some cases taking in excess of 16

minutes to solve even these vastly restricted instances. In order to gauge the effects symmetry on

the heuristics proposed by Zeng et al. (2006), the relative size of the heuristic search spaces (r) with

and without symmetry breaking was calculated as given by (11) and recorded for each instance.

100
'









Ni
i

Ni
i

p

p
r

(11)

It was found that the average relative size of the search space was 39.6 %, with the worst at 100.0 %

(indicating a fully harmonic instance). These figures indicate the general effectiveness of the

symmetry breaking technique4. A number of tests were then performed to gauge the increase in

execution time of the LCS algorithm as the number of requests in the input set was increased. The

4 It should be noted that when symmetry breaking is applied before exhaustive search, these figures are exponentially

smaller, since the sum of terms in (11) can be replaced by product of terms.

restriction on request periods was lifted for these tests, being generated in the interval [1, 1000].

Starting from n = 5, the number of requests was increased in steps of 5 up to and including n = 60

requests. At each step, 1000 sets of requests were randomly generated and used as input to LCS.

The resulting computation times (c) and relative sizes (r) are given in Table II, with computation

times smoothed and shown graphically in Figure 4.

Table II. Effects of increasing request numbers (s)

n Worst c Ave c Ave r Worst r
5 0.0000017 0.0000013 5.0 98.4
10 0.0000391 0.0000063 13.6 84.4
15 0.0002108 0.0000111 25.2 84.8
20 0.0004312 0.0000336 31.9 87.5
25 0.0009067 0.0001115 37.9 85.2
30 0.0024535 0.0002995 42.9 86.0
35 0.0109658 0.0015746 47.2 85.2
40 0.0255350 0.0042588 50.7 85.1
45 0.0522661 0.0086182 53.8 88.0
50 0.0814180 0.0168891 56.5 91.5
55 0.1119380 0.0318693 58.9 92.0
60 0.1407680 0.0533591 61.0 91.8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

5 10 15 20 25 30 35 40 45 50 55 60

Number of Requests

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Worst

Ave

Figure 4. Effects of increasing request numbers

It can be seen from Table II that as the number of requests increases, the worst case computation

time reflects the exponential in n; however, even given this complexity rise the worst case recorded

for n = 60 was still well under a second, providing evidence of the efficiency of the algorithm

formulation and the effectiveness of the pruning rule. The average relative search space size

increases with n, however significant average-case reductions are still evident. From these results,

LCS would seem to be an effective subroutine to assist in quickly obtaining (heuristic) solutions to

low / medium sized PM problem instances, with symmetry breaking further increasing the

efficiency. In comparison, it can be extrapolated from the results shown in Table I and the

calculated lengths of h that in the average case, hyperperiod simulation is completely intractable for

periods in the interval [1, 1000] for most instances with n  15.

The results and analysis presented in this short paper indicate the need for validating any

assumptions – regardless of how ‘obvious’ they may seem – regarding the membership (or

otherwise) of problems in particular complexity classes. In this particular case, it seems that a

possibly incorrect assumption of the membership of a problem in NP could directly lead to

unpredictable behaviour, possibly even run-time failures, of a mission critical information server

application. Although techniques have been introduced in this note that may somewhat alleviate the

problems for low to medium n, given the complexity of the problem it is unlikely that it can be

solved - even heuristically - for arbitrarily large instances.

As a final note, the author notes that in such cases the earliest deadline first algorithm may be an

attractive option; it is known to be optimal among the non-idling, non-preemptive scheduling

algorithms such as those considered in this note (Jeffay et al. 1990). If the peak server demand is

related to some form of required ‘efficiency’ setting for the server (required CPU speed, for

example), then under non-preemptive EDF the optimum settings for an arbitrary PM instance may

be determined in pseudo polynomial-time. Such a procedure could be achieved through binary

search for a minimal efficiency setting to maintain feasibility of the request set, using the sufficient

condition for feasibility derived by Jeffey et al. (1990). Given the optimality of EDF, it is easily

seen that such a solution is likely to be no worse (and in many cases significantly better) than an

optimal solution to the current formulation of the PM problem.

References

Baruah, S.K., Rosier, L.E. and Howell, R.R., 1990. Algorithms and Complexity concerning the
preemptive scheduling of periodic tasks on one processor, Real-Time Systems, Vol. 2, No. 4, pp.
301-324.

Garey, M.R. and Johnson, D.S., 1979. Computers and Intractability: A guide to the Theory of NP-
Completeness, W.H. Freeman & Co Ltd, April 1979.

Goosens, J., 2003. Scheduling of Offset Free Systems, Real-Time Systems, Vol. 24, No. 2, pp. 239-
258.

Jeffay, K., Stanat, D.F. and Martel, C.U., (1991). On non-preemptive scheduling of periodic and
sporadic tasks, In Proceedings of the 12th IEEE Symposium on Real-Time Systems, pp. 129-139.

Knuth, D.E., 1973. The Art of Computer Programming, Vol. 2: Semi numerical Algorithms,
Addison-Wesley, Reading, Mass., 2nd edition, 1973.

Mok, A., Rosier, L., Tulchinsky, I. and Varvel, D., 1989. Algorithms and complexity of the periodic
maintenance problem, Microprocessing and Microprogramming, Vol. 27, No. 1-5, pp. 657-664.

Pont, M.J., 2001. Patterns For Time Triggered Embedded Systems, ACM Press / Addison Wesley,
2001.

Zeng, D.D., Dror, M. and Chen, H., 2006. Efficient scheduling of periodic information monitoring
requests. European Journal of Operational Research, 173, pp. 583-599.

