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Toulouse), Allée Camille Soula, F-31400 Toulouse, France

cCNRS; IMFT; F-31400 Toulouse, France

Abstract

The generation of a fully turbulent boundary layer profile is investigated us-
ing analytical and numerical methods over the Reynolds number range 300 ≤
Reθ ≤ 31000. The predictions are validated against reference wind tunnel mea-
surements under zero streamwise pressure gradient. The analytical method is
then tested for a low and moderate adverse pressure gradient. Comparison
against experimental and DNS data show a good predictive ability under a zero
pressure gradient and a moderate adverse pressure gardient, with the numeri-
cal method providing a complete velocity profile through the laminar sub-layer
down to the wall. The application of the method is useful to computational fluid
dynamic practitioners for generating an equilibrium thick turbulent boundary
layer at the computational domain inflow.
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A Integration constant for the outer region velocity profile
B Logarithmic law constant
C Logarithmic law constant for the inner region
C2 Non-dimensional momentum thickness
Cf Skin friction coefficient
cℓ Normalized mixing length at y → δ
Dv Logarithmic law constant for the outer region

F̃ Van Driest near wall damping correction
F Normalized defect velocity, u+

e − u+
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H Shape factor
K Sink flow acceleration parameter
L Flat plate length
ℓ Mixing length
N Number of data points in the experimental velocity profile
p Pressure
Q Potential sink strength
ℜ Real number
Re Reynolds number
T Temperature
u Tangential velocity
uτ Friction velocity
x Tangential distance from the boundary layer leading edge
y Wall-normal distance from the solid wall
α Outer region normalized displacement thickness
β Normalized streamwise pressure gradient

β̃ Non-dimensional free-stream acceleration parameter, β̃ = 2βF1

βc Clauser parameter
δ Boundary layer thickness
δ∗ Boundary layer displacement thickness
ǫ Least squares error
η Outer layer non-dimensional coordinate, η = y/δ
θ Boundary layer momentum thickness
κ von Karman constant, κ = 0.41
λ Local free-stream to leading edge free-stream velocity ratio, ue/u0

µl Laminar or molecular viscosity
ν Kinematic viscosity
Π Wake parameter
ρ Density
τ Tangential shear stress
Subscripts
a Analytical prediction
e Free-stream condition
ex Experimental value
l Laminar component
n Result numerically obtained
s Direct Numerical Simulation value
t Reynolds average (turbulent) component
w Wall condition
0 Leading edge condition
Superscripts
+ Inner layer scaling
(̄) Time average
′ Fluctuation about the time-mean value
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1. Introduction

Computational fluid dynamic simulations of wall bounded flows, such as the
flow over high-lift devices, ailerons, the elevators and the rudder, often use a
turbulent boundary layer inflow to reduce the computational domain size with
respect to a full wing, tailplane or fin simulation. The quality of the numerical
predictions can be significantly affected by how well the boundary layer inflow
is modelled. This paper compares the use of analytical correlations and of an
auxiliary boundary layer numerical method to generate a turbulent boundary
layer inflow for CFD over a wide Reynolds number range.

Computational fluid dynamic simulations of individual airframe components
are commonly used to study the local aerodynamics in details [1, 2, 3]. This
enables to achieve a sufficient level of spatial and temporal refinement around
the specific components to model the onset of self-sustained oscillations, such as
those in cavity flows, edge tones and other fluid-resonant geometries. These flow
instabilities contribute to airframe noise and a good quality inflow prediction is
very important to achieve quantitative predictions of the radiated noise pattern.
For instance, in a cavity, the inflow momentum thickness has a direct influence
on acoustic mode selection [4].

Where the inflow features a fully developed turbulent boundary layer, an an-
alytical profile for the mean velocity can be imposed, derived from the integral
boundary layer parameters as determined from either a larger-scale numerical
simulation or from experiment. A common choice for specifying the bound-
ary layer inflow in aerodynamics is by defining the inflow free-stream velocity
ue, temperature Te, pressure pe, boundary layer thickness δ, momentum thick-
ness based Reynolds number Reθ, shape factor H, and the streamwise pressure
gradient dpe/dx.

An alternative approach to define the mean velocity inflow is by using an
auxiliary numerical simulation of the upstream boundary layer obtained, for
instance, from running two-dimensional companion software by Wilcox [5].

This paper presents and validates one analytical and one numerical approach
for generating a turbulent boundary layer inflow in CFD. The analytical method
is a variant of the defect law by Coles [6], while the numerical method is de-
rived from matched asymptotic expansions [7]. The analytical approach is then
applied to a boundary layer with adverse pressure gradient.

Section 2.1 details the analytical method used to generate the outer layer
velocity profile in a turbulent boundary layer. Section 2.2 details the numerical
method based on the equilibrium boundary layer model. Section 3 validates both
methods using zero pressure gradient velocity data over the Reynolds number
range 300 ≤ Reθ ≤ 31000. Section 4 extends the validation to the adverse
pressure gradient boundary layer and presents sensitivity analysis on the mixing
length parameter.

3



2. Method description and elements of the mixing length model

2.1. Analytical method

To describe the mean velocity profile in a turbulent boundary layer, similar-
ity solutions are sought in the inner and the outer regions. In the inner region,
the mean streamwise velocity u scales with the wall friction velocity uτ and with
the viscous length scale l = νl/uτ , so that

u

uτ
= f

(
y+

)
(1)

where y+ = yuτ/νl is the inner scaling non-dimensional wall-normal distance.
In outer region, the velocity profile is described by the velocity defect law

ue − u

uτ
= f (η) (2)

where η = y/δ is the outer scaling non-dimensional wall-normal distance, ue

is the free-stream velocity, νl is the laminar kinematic viscosity, y is the wall-
normal distance and δ is the boundary layer thickness, which is taken as the
wall-normal distance at which u = ue.

Based on the existence of an overlap region between the inner and the outer
regions, Coles [6] proposed the following additive law of the wall and law of the
wake in non-dimensional form:

u+ =
1

κ
ln y+ + B +

Π

κ
f (η)

f (η) = 1 − cos (πη) (3)

where u+ = u/uτ is the normalized streamwise velocity, Π is the wake parame-
ter, κ the von Kármán constant, and B the logarithmic law constant.

Coles [6] determined the wake parameter as

Π = κ/2
(
u+

e − κ−1 lnReτ − B
)

(4)

where Reτ = δuτ/νl is the boundary layer Reynolds number and u+
e = ue/uτ

is the normalized free-stream velocity.
Let

f (η) = A1η
2 + A2η

3 (5)

be a cubic polynomial approximation to f (η) in eq. 3. Substituting the bound-
ary conditions

u|y=δ = ue (6)

and
∂u

∂y

∣
∣
∣
∣
y=δ

= 0 (7)
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in eq. 3, with f (η) from eq. 5, gives A1 = 6 [1 + 1/(6Π)] and A2 = −4 [1 + 1/(4Π)],
with Π defined by eq. 4. The law of the wake of eq. 3 then becomes

u+ =

Log-law of the wall
︷ ︸︸ ︷

1

κ
ln y+ + B +

1

k
η2 (1 − η)

︸ ︷︷ ︸

Pure wall flow

+2
Π

κ
η2 (3 − 2η)

︸ ︷︷ ︸

Pure wake component

(8)

Equation 8 is validated over a relatively wide range of momentum thickness
based Reynolds number Reθ = ueθ/νl in section 3. To evaluate eq. 8, the
authors take κ = 0.41 and B = 5.0, as proposed by Coles [6].

2.2. Successive complementary expansion method

The successive complementary expansion method consists in seeking con-
tiguous asymptotic matches between the inner and the outer regions of an in-
compressible turbulent boundary layer. This approach is detailed in Cousteix
& Mauss [7] and this paper only reproduces the key steps that support the
authors’ application to turbulent boundary layers.

2.3. Mixing length model

Across the boundary layer, the local shear stress

τ = µl
∂u

∂y
− ρu′v′ = τl + τt (9)

where u′ and v′ are the time-dependent fluctuations of the streamwise and flow-
normal velocity components and are unknown. To avoid having to resolve these
unknowns, the Reynolds shear stress τt is evaluated using Prandtl’s mixing
length model [8], with the Van Driest [9] near-wall damping correction F̃. This
gives

τt = ρF̃
2
ℓ2

∣
∣
∣
∣

∂u

∂y

∣
∣
∣
∣

(
∂u

∂y

)

(10)

where F̃ = 1 − exp (−y+/26).
In the inner region, ℓ = κy, while in the outer region, ℓ/δ → cℓ as y → δ

and cℓ = 0.085. These two trends can be merged analytically into a single
distribution for the mixing length ℓ across the full boundary layer by the use of
a blending function. Michel et al. [10] used the blending function

ℓ(η) = δcℓ tanh(
κη

cℓ
) (11)

with κ = 0.41. The authors propose an alternative blending function that is
shown in section 3 to give an improved prediction of the turbulent shear stress
profile at the interface between the inner and the outer layer, at low Reynolds
numbers Reτ . This is

ℓ(η) = δ
κη

[1 + (κη/cℓ)
n
]
1/n

(12)

For 2.6 < n < 2.7, the ℓ(η) profile from equation 12 almost matches that
from equation 11.
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2.4. The defect law and the wall sub-layer

2.4.1. Inner region velocity profile

Normalising the local shear stress τ in eq. 10 by ρu2
τ and assuming a mono-

tonic velocity profile gives

τ

τw
=

∂u+

∂y+
+ ℓ+2F̃

2
(

∂u+

∂y+

)2

(13)

where ℓ+ = ℓuτ/νl. In the limit y+ → 0, τ → τw and eq. 13 becomes

1 =
∂u+

∂y+
+ ℓ+2F̃

2
(

∂u+

∂y+

)2

(14)

Equation 14 is a quadratic in ∂u+/∂y+ with root [7]

∂u+

∂y+
=

2

1 +

√

1 + 4
[

ℓ+ (y+) F̃ (y+)
]2

(15)

Integrating equation 15 with respect to y+ with the boundary condition
u+ (x, 0) = 0 gives the inner layer tangential velocity profile that asymptotes to
the log-law of the wall in equation 8 for y+ > 80 with B = 5.28.

2.4.2. Outer region velocity profile

In an equilibrium turbulent boundary layer, a similarity solution for the
outer layer is sought in terms of the velocity defect F ′ (η) = u+

e −u+, under the
local assumption of no boundary layer growth. Expressing τ/τw as a function
of F and η gives [7]

τ+ =
τ

τw
= 1 −

F

F1

+

(
1

F1

+ 2β

)

ηF ′ (16)

where

F =

∫ η

0

F ′ (ξ) dξ; F1 = F (1) ; β = −
δ

uτ

due

dx
(17)

In the outer region, the Reynolds stress component is dominant over the
laminar shear stress, so τ ≃ τt.

From eq. 10, noting that the Van Driest damping constant F̃ → 1 at y+ ≥
100, τ/τw = (ℓ/δ)

2
F ′′2, where F ′′ = dF ′/dη. Substituting for τ/τw in eq. 16,

the similarity solution for the outer region becomes

(
ℓ

δ

)2

F ′′2 = 1 −
F

F1

+

(
1

F1

+ 2β

)

ηF ′ (18)
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2.4.3. Asymptotic matching of the inner and outer profiles

A matching condition is sought for the velocity profiles of the inner and
outer regions, equations 15 and 18. This is obtained from standard asymptotic
analysis [7] by considering eq. 15 in the limit y+ → ∞ and eq. 18 in the limit
η → 0 that give respectively [7]

u+ = κ−1 ln y+ + C (19)

u+
e − u+ = −κ−1 ln η + Dv (20)

Adding eq. 19 to eq. 20 gives [7]

u+
e = κ−1 ln

uτδ

νl
+ C + Dv (21)

Equation 21 can be re-cast as function of the wall skin friction coefficient
Cf = τw/

(
0.5ρu2

e

)
that is imposed as equal in the inner and outer regions and

provides the matching criterion for the two profiles at Reτ = uτδ/νl

√

2

Cf
= κ−1 lnReτ + C + Dv (22)

2.5. Numerical implementation

Expliciting the outer region velocity profile poses several challenges. Equa-
tion 18 is non-linear and is ill-defined at the upper boundary layer limit, at
η → 1, where F ′′ → 0, and at the lower boundary layer limit, at η → 0, where
ℓ/δ → 0 and F ′′ → ∞. To solve the problem, auxiliary approximate solutions
are imposed on the floor of the laminar sub-layer and at the edge of the boundary
layer, as shown in figure 1, so that the edges of the inner and of the outer regions
are modelled analytically while the overlap region is resolved numerically.

Let f (η) = F (η) /F (1). On the floor of the laminar sub-layer, imposing
η = 0 and ℓ = κy, as in section 2.3, eq. 18 becomes

[κηF1f
′′ (η)]

2
= 1 − f (η) + (1 + 2βF1) ηf ′ (η) (23)

with the boundary condition f (0) = 0. Let introduce the term

β̃ = 2βF1 (24)

This term allows the model to account for the presence of non-zero pressure
gradients if β 6= 0.

In a zero pressure gradient boundary layer, β = 0 by eq. 17, for which eq. 23
has the explicit solution

f (η) =
η2

4α2
−

η ln η

α
+ A η; f ′ (η) =

η

2α2
−

1 + log η

α
+ A; f ′′ (η) =

1

2α2
−

1

αη

with α = F1κ. The integration constant A is determined by evaluating f ′ (η)
at η = ǫ0 on the floor of the laminar sub-layer. In a non-zero pressure gradient

7



���������������������
���������������������
���������������������
���������������������

inner region

outer region
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logarithmic

boundary layerln y, ln η u = ue
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ln y+

analytical solution η = 1 − ǫ1

η = 1

y+
0 = ǫ0 × Reτ

f ′(η)

numerical integration of eq. (15)

numerical integration of eq. (18)

Figure 1: Boundary layer decks.

boundary layer, β̃ηf ′ → 0 as η → 0. The term β has a weak influence approach-
ing the wall, hence the zero pressure gradient profile is used on the floor of the
laminar sub-layer for all β.

At the edge of the boundary layer, at η = 1, eq. 18 becomes

[ℓ1F1f
′′ (η)]

2
= 1 − f (η) +

(

1 + β̃
)

ηf ′ (η) (25)

with the boundary conditions f (1) = 1, f ′ (1) = 0, f ′′ (1) = 0 and ℓ1 evaluated
from eq. 12 at η = 1. Cousteix [11] proposed the solution for eq. 25

f (η) = 1 −
(1 − η)

3

3
; f ′ (η) = (1 − η)

2
; f ′′ (η) = −2 + 2η (26)

for β = 0, that has the attractive property of being independent from F1 and
ℓ1 and is the solution used in this work. The same solution is used for β 6= 0,
as β̃ηf ′ (η) = 0 by the boundary condition f ′ (1) = 0 in eq. 25.

An additional difficulty is introduced from β 6= 0. The term βF1 is infact
unknown a priori since F1 can be evaluated from the solution of the problem
only if β is initially fixed. As F1 is a problem output, eq. 24 can be solved using
a standard Newton-Raphson method. Let guess a value for β̃, the relative value
of the pressure gradient β of the problem can be determinated by iterating

β(β̃n + ∆β̃n) = β(β̃n) +
dβ

dβ̃
∆β̃n = βtarget =⇒ ∆β̃n = 2F1(βtarget − β(β̃n))

(27)
until convergence.
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Reθ Reτ u+
e Π 100 × ǫ Symbol (Reτ )n (u+

e )n 100 × ǫn
300 145 18.25 0.228 1.33 ◦ 142 18.54 2.12
697 335 20.25 0.219 1.35 ∗ 315 20.77 3.31
1003 460 21.5 0.317 1.78 △ 446 21.66 2.39
1430 640 22.4 0.336 1.38 · 627 22.51 2.77
2900 1192 24.33 0.421 1.02 ⊳ 1240 24.17 2.48
3654 1365 25.38 0.568 0.72 × 1551 24.71 2.44
5200 2000 26 0.505 1.62 ⊲ 2185 25.54 2.38
12633 4436 28.62 0.643 0.71 � 5188 27.65 2.51
13000 4770 28 0.480 0.99 3 5335 27.72 1.84
22845 8000 30.15 0.662 1.01 + 9258 29.06 2.34
31000 13030 30 0.388 2.05 ⋆ 12845 29.79 1.86

Table 1: Experimental velocity profiles.

DNS βc Reθ Reτ u+
s Π 100 × ǫ Symbol (Reτ )n (u+

e )n 100 × ǫn
ZPG1 0 422 222 19.54 0.298 0.39 ▽ 220 19.8 1.33
ZPG2 0 588 272 20.45 0.385 0.32 C 270 20.5 0.25

Table 2: DNS velocity profiles at zero pressure gradient. Right-hand side of the table : n = 4
in equation 12.

3. The zero pressure gradient boundary layer

3.1. Analytical, numerical and experimental velocity profiles

The analytical and numerical methods for predicting a boundary layer mean
turbulent velocity profile are tested against a range of streamwise velocity mea-
surements of zero pressure gradient boundary layers [12, 13, 14, 15] over the
range 300 ≤ Reθ ≤ 31000. Table 1 lists the values of u+

e , Reτ and Π at each
Reθ of the experimental velocity traverse records [12, 13, 14, 15]. The values
of u+

e and Reτ are the ones reported in experiment [12, 13, 14, 15] while Π has
been obtained by fitting eq. 8 using the least squares fit. The normalized mean
streamwise velocity u+ is plotted against the normalized wall-normal distance
y+ in figure 2 for different Reynolds numbers. The symbols used in figure 2
are measured values [12, 13, 14, 15] at different Reθ, labelled as in table 1.
The continuous lines show the fitted analytical profiles for the outer layer. For
clarity, an incremental shift of u+ = 2.5 is applied to all curves.

3.2. Analytical, numerical and Direct Numerical Simulation velocity profiles

The normalized mean streamwise velocity u+ profiles from the analytical
method are further tested against Direct Numerical Simulations of zero pressure
gradients boundary layers at two different Reθ. The parameters of the DNS
work [16] are in table 2. The values of u+

s and Reτ are the ones reported in the
numerical work while Π has been obtained by fitting eq. 8 using the least squares
fit. The two analytical profiles at Reθ = 422 (red dashed line) and Reθ = 588
(blue dashdotted line) are shown in between the experimental profiles in figure 3
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Figure 2: Turbulent boundary layer profiles from experimental data fitted to eq. 8. Symbols
as in table 1.

to assess the quality of the analytical fit with DNS as compared to experiments.

3.3. Discussion on the velocity profiles

The quality of the predictions is quantified by evaluating the mean square
percentage error ǫ for each profile

ǫ =

√
√
√
√ 1

N

N∑

i=1

(
u+

a − u+
ex

u+
ex

)2

(28)

where u+
a is the predicted value and u+

ex is the corresponding experimental
value for a given y+

i in a discretized velocity profile of N points. Similarly,
the value u+

s is used in expression 28 for the comparison with direct numerical
simulations instead of u+

ex. The mean square percentage error ǫ obtained at
different Reθ with u+

a evaluated from equation 8 is reported in table 1. The
maximum ǫ is 2.05% at Reθ = 31000. Such error enables the use of eq. 8
to predict the mean streamwise velocity of boundary layers in many common
engineering applications, where an error margin of 5% is often acceptable. The
experimental data seem to be randomly distributed about the fitted curve with
no underlying trend, suggesting that the curve fit has captured most of the u+

dependence on δ, ue, uτ , and Reθ.
Figure 4 compares velocity profiles obtained using the successive comple-

mentary expansion method of section 2.2 against the same experimental data of
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Figure 3: Turbulent boundary layer profiles from experimental and DNS data fitted to eq. 8.
Symbols as in table 1.

figure 2. In this application of the successive complementary expansion method,
n = 4 was used for the numerical prediction of the mixing length in eq. 12. The
symbols used in figure 2 are measured values [12, 13, 14, 15] at different Reθ,
labelled as in table 1. The continuous lines show the normalized numerical ve-
locity profiles. For clarity, the same incremental shift of u+ = 2.5 as in figure 2
is applied to all curves. The origin of the ordinate of figure 4 refers to the
Reθ = 300 profile. Figure 4 shows that the complementary expansion method
of section 2.2 produces a full velocity profile down to the wall. In the outer
layer, the complementary expansion method captures the Reynolds number de-
pendent transition between the log-law and the constant free-stream velocity
for most of the curves. The free-stream velocity at Reθ = 22845, 12663 and
3654 appear to be under-predicted. This is confirmed by the corresponding
numerical mean square percentage error, ǫn, which is computed by evaluating
u+

a in eq. 28 using the successive complementary expansion method. The ǫn at
Reθ = 22845, 12663 and 3654 are higher than at some of the other Reynolds
numbers, due to the difference in the normalized free-stream velocity between
experiment and prediction. Figure 5 captures the good agreement of the pro-
files obtained from the successive complementary expansion method against the
DNS profiles. Whereas, in general, the error from the numerical velocity profile
is higher than that from the analytical profile, it is within the range for which
the predictions can be used for engineering accurate predictions.

The difference between the normalized free-stream velocity from experiment
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Figure 4: Turbulent boundary layer profiles fitted by the complementary expansion method
(n = 4). Symbols as in table 1.
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expansion method (n = 4).
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Figure 6: Outer layer profile fitted by the complementary expansion method. Reθ = 22845.
(+) experiment, (−) successive complementary expansion method.

and from the successive complementary expansion method is further investi-
gated in figure 6, where the outer layer portion of the predicted velocity profile
at Reθ = 22845 is re-plotted on a larger scale. The continuous black line is
the numerical prediction obtained by matching the experimental value of Reθ

in the matched complementary expansion, the red dash-dot line is obtained by
matching the experimental value of Reτ and the dashed blue line shows the
predicted profile with a matched normalized free-stream velocity u+

e . Matching
the experimental Reynolds numbers seems to give similar profiles irrespective of
whether the target Reynolds number is defined with respect to the outer scaling
variables ueθ/νl or the inner scaling variables uτδ/νl. Fitting the outer profile
by imposing the normalized free-stream velocity u+

e seems to over-predict the
boundary layer thickness, leading to a coarser agreement with experiment com-
pared to the numerical predictions obtained by matching the profile Reynolds
number.

This paper has not attempted to predict the time-averaged velocity profiles
of boundary layers at Reτ < 300 using the matched complementary expansion
method. In this method, u+

e is obtained by matching the outer region velocity
profile to the inner region velocity profile in the logarithmic layer. At Reτ < 140,
an overlap region in the form of a logarithmic layer is no longer present, which
prevents the method form evaluating u+

e . Here the matched complementary
expansion method in its present formulation has reached its lower Reτ applica-
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Figure 7: Normalized mixing length ℓ/ (δF1) versus normalized distance from the wall η. (◦)
experiment [17] at Reτ = 1540, (−−) matched complementary expansion at Reτ = 1000
with F1 = 3.1479 from eq. 11, (−) matched complementary expansion at Reτ = 1000 with
F1 = 3.1044 from eq. 12 (n = 4).

bility limit.

3.4. The shear stress profile

Figure 7 compares the normalized mixing length distribution across a zero-
pressure gradient boundary layer with ℓ (η) obtained from measurements at
Reτ = 1540 by Klebanoff [17], reported in Hinze [18]. The ℓ (η) distribution
from equation 11 is shown by the continuous line while the dashed line shows
the distribution from equation 12 with n = 4. At this Reynolds number, there
appears to be a good improvement in the predicted mixing length using the
new formulation. No effort has been made to further optimize n ∈ ℜ by adding
decimal digits. Figure 8 shows the profile of the normalized eddy viscosity
νt/ (uτF1δ) across the same zero pressure gradient boundary layer of figure 7,

where νt = F̃
2
ℓ |∂u/∂y|. The symbols are from the same experiment [17] as in

figure 7 (open circles) to which further measurements by Townsend [19] at Reτ =
2775 have been added (open squares). Using the mixing length model of Michel
et al. [10], eq. 11, under-predicts the eddy viscosity, as shown by the continuous
line, whereas a better fit is achieved by using eq. 12. As a numerical experiment,
the target Reynolds number in the successive complementary expansion method
was varied over the range 1000 ≤ Reτ ≤ 2775 and was found to have very little
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Figure 8: Normalized eddy viscosity νt

uτ δ F1
versus normalized distance from the wall η. (◦)

experiment [17] at Reτ = 1540, (2) experiment [19] at Reτ = 2775, (−−) matched comple-
mentary expansion at Reτ = 1000 with F1 = 3.1479 from eq. 11, (−) matched complementary
expansion at Reτ = 1000 with F1 = 3.1044 from eq. 12 (n = 4).

effect on the predicted normalized νt, which is also the trend in experiment [17,
19].

4. Adverse pressure gradient boundary layer

4.1. Analytical, numerical and Direct Numerical Simulation results

The methods presented in section 2 are now tested against direct numerical
simulation data in order to assess the accuracy for the predictions of non-zero
pressure gradients boundary layer mean turbulent velocity profiles. Let consider
the Clauser parameter

βc =
δ1

uτ

dp

dx
(29)

The values in table 3 are the ones reported in the numerical work [16] for a
low adverse pressure gradient (APG1, βc = 0.24) and a moderate (APG2, βc =
0.65) adverse pressure gradient, respectively. Again, Π has been obtained by
fitting eq. 8 using the least squares fit. Results are plotted in figure 3 where the
analytical mean velocity profiles for the low adverse pressure gradient (magenta
dashed line), the moderate adverse pressure gradient (dashed line) and the zero
pressure gradient (blue dashdotted line) are shown in between the experimental
zero pressure gradient profiles. The curve fit captures most of the u+ dependence
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Figure 9: Adverse pressure gradient turbulent boundary layer profiles fitted to eq. 8. Symbols
as in table 3.

DNS βc Reθ Reτ u+
s Π 100 × ǫ Symbol (Reτ )n (u+

e )n 100 × ǫn
APG1 0.24 606 251 20.60 0.385 0.30 ∗ 250 21 1.9
APG2 0.65 681 251 21.70 0.455 1.99 ▽ 250 22.3 2.7

Table 3: DNS velocity profiles at low (APG1) and moderate (APG2) adverse pressure
gradient.Right-hand side of the table : n = 24 in equation 12.

on δ, ue, uτ , and Reθ. The profiles obtained by the asymptotic calculation are
further investigated in sections 4.2 and 4.3.

4.2. Determination of Reτ

Evaluation of the non dimensional parameter Reτ from DNS data is non
trivial. That coincides with the value of y+ if one of the following is verified:

1. the velocity profile u+ is zero with respect to y+,

2. the turbulent shear stress (eq. 16) τ+ = 0,

3. the non-dimensional turbulent viscosity is zero.

The two first definitions provide the same value of Rτ . The nondimensional
turbulent viscosity is given by

τ+

du+

dy+

= Reτ
νt

uτδ
(30)
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.

It is numerically equivalent to the edge of the boundary layer when τ+ → 0

and du+

dy+ → 0. In figure 10 is shown the function τ+/du+

dy+ , obtained from the

DNS computations of [16]. A hump in the region Rτ ∈ [250, 300] leads to
an overestimation of the Rτ value with respect to the definition 1 and 2. The
authors finally remark that the DNS computational domain is approximately as
large as the maximum value of y+ in figure 10, therefore the hump could be a
boundary effect of the numerical domain.

4.3. Sensitivity analysis on n

Figure 11 shows the turbulent velocity profiles in presence of a low (figure 11
(a)) and a moderate (figure 11 (b)) adverse pressure gradient, according to
table 3. For the asymptotic calculation, two values of the constant n in the
mixing length model are tested. These are n = 24 and n = 4. Both cases seem
to show weak dependence of factor n on the velocity profile. However, a deeper
analysis on the nondimensional shear stress and the non dimensional turbulent
viscosity shows that increasing n improves the agreement between DNS results
and the asymptotic approach. A slope mismatch between the asymptotic and
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the DNS profile remains, regardless of the n value. To this extent, an inproved
multi-parameter mixing length model could be designed to better fit the non
dimensional turbulent shear stress.

5. Conclusions

Numerical and analytical methods for obtaining the time-mean velocity pro-
files of a turbulent boundary layer are presented and validated against experi-
mental data and direct numerical simulation results.

The analytical method is an extension to the law of the wake by Coles [6]
that matches both the free stream velocity and the velocity gradient at the
boundary layer edge. The method is shown to predict the outer region of tur-
bulent boundary layers rather well for zero streamwise pressure gradient test
cases over the Reynolds number range 300 ≤ Reθ ≤ 31000, with a maximum
mean square percentage error of 2.05%.

The authors propose a modification to the successive complementary expan-
sion numerical method in Cousteix & Mauss [7], with a new blending function
for the mixing length in the outer region. Comparison against experimental
data shows that the new blending function improves the prediction of the mix-
ing length and of the eddy viscosity in outer region of a zero pressure gradient
boundary layer. The new method is validated against experimental and di-
rect numerical simulation velocity profile data over the Reynolds number range
300 ≤ Reθ ≤ 31000 under zero streamwise pressure gradient and found to
achieve engineering accurate predictions. The new blending function introduces
an additional adjustable parameter n ∈ ℜ in the model that can undergo a more
extensive calibration over a wider experimental data-set to further improve the
predictions. The results of the asymptotic and numerical results in the presence
of adverse pressure gradient show a good prediction of the velocity profiles. In
the asymptotic formulation, the proposed mixing length model provides good
agreement on velocity profile. A mismatch of the turbulent viscosity in the log-
layer at low Rτ suggests however an improvement of the mixing length model
to a multi parameter formulation.
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