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Abstract 
Airborne polarimetric Synthetic Aperture Radar (SAR) is used for estimating stem volume of a 

Finnish boreal forest by comparing different empirical models. Its capability for retrieval of 

snow water equivalent is then explored. Fully polarimetric L- and C-band data were acquired 

over a Finnish test site in March and May 1995. The information content was explored 

qualitatively by inspecting polarimetric colour composites, and by applying decomposition 

algorithms to the polarimetric covariance matrices at individual frequencies. Three families of 

quantitative models were fitted to estimate stem volume: 

1) F1P1 models, using a single frequency and a single polarisation; 

2) F2P1 models, using the difference between HV polarisation at C- and L-band related to stem 

volume; 

3) F1P4 models, based on a single frequency and the full polarimetric information, selected by 

stepwise multiple regression with stem volume; 

Stem volume estimates from SAR are compared with digital stem volume data by the Finnish 

Forest Research Institute. Prior information about the stem volume distribution addresses the 

saturation problem of the microwave response. The L-band F1P4 models in March and May 

1995 have the smallest root mean square (rms) errors, around 22 m
3
/ha.  

Three multiple regression models to retrieve snow water equivalent from backscatter are 

presented: 

1) EU model, an explorative, uncorrected multiple regression model; 

2) EC model, an explorative, stem volume corrected multiple regression model; 

3) CC model, a statistically conservative, stem volume corrected multiple regression model. 

The accuracy of snow water equivalent estimates was improved significantly by a simple linear 

correction for stem volume. The statistically conservative CC model showed that only L-band in 

HH polarisation explained a significant (P<0.05) proportion of snow water equivalent (r
2
=0.51). 

The explorative EC model resulted in r
2
=0.68 (P>0.05). 
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Conclusions are: 

1) Decomposition algorithms of the polarimetric covariance matrix result in information on 

scattering mechanisms in the vegetation canopy and on the ground, so being potentially of great 

value for land cover mapping; 

2) Satellite polarimetric SARs, for example those to be flown on Envisat and ALOS, will be able 

to estimate stem volume on continental and global scales; 

3) L-band SAR has a potential for snow cover mapping and run-off prediction. 
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1. Introduction 

Analysis of the carbon budget implies that there is a net carbon sink in the terrestrial biosphere, 

with a substantial contribution being required if the budget is to be brought into balance. This 

contribution could arise from the landmasses of the Northern Hemisphere, although it is not clear 

whether it is associated with an imbalance in production and decomposition in the deciduous 

forests at temperate latitudes or from the boreal forests lying at high northern latitudes. The role 

of boreal forests in the carbon cycle is certainly important, for the CO2, which they take up and 

release may account for up to half of the seasonal variation in this component. Moreover the 

seasonal amplitude of atmospheric CO2 concentrations in northern latitudes has increased with 

time. There is increased metabolic activity of ecosystems in northern latitudes due to a warmer 

drier climate and to higher atmospheric concentrations of CO2, and experiments with 

atmospheric general circulation models indicate a significant climatic warming in the Northern 

Hemisphere at high-latitudes with an associated doubling of atmospheric CO2 concentrations. 

But the ecological implications of such changes are not yet fully understood. In some scenarios 

annual carbon sequestration increases due to a lengthening of the growing season, but in others a 

higher decomposition rate of soil organic matter and increased periods of frost drought lead to a 

decrease. 

 

Remote sensing can in principle provide more reliable estimates for some of the terms 

contributing to the terrestrial carbon budget. Particularly radar remote sensing has the potential 

to estimate boreal forest biomass on continental and global scales. Synthetic Aperture Radar 

(SAR) used for forest monitoring operates at wavelengths of around 5.6 cm (C-band), 24 cm (L-

band) and 50 cm (P-band). The utility of imaging radars for investigating terrestrial ecosystems 

has been reviewed by Kasischke et al. (1997) who concluded, inter alia, that: 

(i) Multichannel radar data, because of their sensitivity to variations in the structure of the 

vegetation canopy and the moisture of the vegetation and ground layers, provide a means to 

classify land-cover patterns and detect changes of land cover; 

(ii) Imaging radars have the capability to estimate woody plant biomass and thereby monitor 

biomass variations in forested ecosystems, best performance being achieved with a cross-

polarised sensor (HV) at a low frequency (L- or better P-band) (although they do note that this 

capability varies depending on the forest type, for example with the SIR-C radar the upper levels 

of sensitivity lie between 100 t·ha
-1

 for complex tropical forest canopies up to 250 t·ha
-1

 for 

simpler forest structures dominated by a single tree species); 

(iii) Spaceborne radars like ERS-1 that have been in continuous operation for several years can 

provide important information on temporally dynamic processes such as changes in the frozen or 

thawed status of vegetation. 
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Rignot et al. (1994b) used repeated overflights over the Tanana river floodplain in Alaska to map 

five vegetation types dominated by white spruce, balsam poplar, black spruce, alder/willow 

shrubs and bog/fen/non-forest vegetation, plus open water. Classification accuracy was 

investigated as a function of frequency and polarisation, and of forest seasonal state (which 

included winter/frozen, winter/thawed, spring/flooded, spring/unflooded, and summer/dry 

conditions). C-band was more useful than L- or P-band for separating forest types and HV the 

best polarisation. The highest classification accuracy was obtained by combining L-HV and C-

HV data acquired in spring as seasonal river flooding receded but before deciduous tree species 

came into leaf. Rignot et al. (1994b) concluded that future spaceborne SAR systems would have 

limited mapping capabilities when used alone, but in combination would be able to resolve forest 

types and to separate non-forest areas. In another study Rignot et al. (1994a) estimated above-

ground dry biomass of forest stands in the Bonanza Creek Experimental Forest, Alaska, from 

radar data gathered in winter, spring and summer. As expected C-band backscatter showed little 

sensitivity to biomass but L- and P-band radar backscatter increased by more than 6 dB as 

biomass increased from 5 to 200 t·ha
-1

. Biomass was predicted from L- and P-band using second-

order polynomial regression, and compared to ground data. At P-band the error in predicted 

biomass was 30% using HV alone, and 20% when HV, HH and VV were used together. At L-

band the corresponding errors were a few percent larger. These errors had components arising 

from the ground data (uncertainties in stand biomass estimates, significant spatial variations in 

biomass within a stand, and unusual stand conditions following natural disturbances) and from 

interactions of the radar signal with the complex canopy structure which caused the biomass 

retrieval curves to be dependent on seasonal and environmental conditions and on observing 

geometry. 

 

A problem in the deployment of SAR for forest mapping is the saturation of backscatter at low 

timber volume. Dobson et al. (1992) analysed radar responses to forest biomass at P-, L-, and C-

band and found an approximately linear response of backscatter with increasing biomass 

reaching wavelength dependent saturation levels around 200 t·ha
-1

 for P-band and 100 t·ha
-1

 for 

L-band. In the study of Imhoff (1995) saturation was reached at 100 t·ha
-1

 for P-band, 40 t·ha
-1

 

for L-band and 20 t·ha
-1

 for C-band in coniferous and broadleaf evergreen forests. Luckman et 

al. (1998) found saturation at 60 t·ha
-1

 for L-band in tropical forests. For a boreal forest in 

Canada Ranson et al. (1995) observed saturation at 200 t·ha
-1

 using the ratio of LHV/CHV, with 

a confidence interval of ±20 t·ha
-1

 at the 95% level. In contrast to these published saturation 

limits, Baker and Luckman (1999) found that both C- and L-band backscatter at two Swedish 

test sites saturated at the very lowest biomass. AIRSAR data from Thetford forest in the UK, 

which has some similarity to the Swedish sites in its biophysical characteristics, had shown the 

expected relationship between backscatter and biomass density (Baker et al. 1994) so the 

different behaviour of the Swedish sites may arise from the greater roughness of the ground 

surface or the greater moisture content of the boreal forest. The accuracy of biophysical 

parameters retrieved from SAR depends considerably on vegetation structure and ground 

conditions. 

 

Snow mapping is the second application examined in this paper. Different radars, mainly 

operating at C-band, have been used for this purpose. Guneriussen et al. (1996) observed a 

decrease in ERS-1 backscatter coefficient of 3 dB between dry and wet snow. Koskinen et al. 

(1999) showed that SAR-derived snow cover maps agree well with ground data and are 

correlated with AVHRR reflectance. Koskinen et al. (1997) used multitemporal ERS-1 SAR to 

map areas fully covered with wet snow, partly melted areas and snow-free areas in northern 

Finland. Guneriussen (1997) found that ERS-1 SAR backscatter coefficient decreased linearly as 

a Landsat TM derived snow ratio increased. Baghdadi et al. (1999) propose a radar backscatter 

model that simulates backscatter from a multi-layer snowpack for various snow cover conditions 

and for SAR parameters specific to Radarsat (C-HH). Results for Quebec show negligible errors 
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for wet snow with liquid water content higher than 4%. Below this threshold, the estimation error 

increases rapidly, and 1% is the required minimum. Underestimation of dry snow cover also was 

a problem in the SIR-C/X-SAR project by Albright et al. (1998). A study of airborne C-band 

SAR confirmed that scattering from a shallow dry snow cover (snow water equivalent < 20 cm) 

is undetectable (Bernier and Fortin 1998). Based on SIR-C/X-SAR images, Shi and Dozier 

(1997) presented a classification algorithm for discriminating dry and wet snow using a DEM, 

and a second algorithm for mapping wet snow without requiring a DEM. Shi and Dozier (1995) 

developed an algorithm for retrieving snow wetness from SIR-C/X-SAR based on a first-order 

scattering model and retrieved snow wetness within a confidence interval of 2.5% wetness. A 

modelling study of the response of radar to snow at C- and X-band has been carried out by 

Kendra et al. (1998). JPL-AIRSAR at C-band was used for snow mapping with an accuracy 

exceeding 80% by Shi et al. (1994). Baghdadi et al. (1998) found that airborne C-HV SAR 

backscatter could be used for mapping land-cover types at a test site in Canada, despite the 

presence of wet snow. A snow map derived from ERS-1 SAR has been used for runoff 

modelling during a full period of snowmelt by Baghdadi et al. (1997). Repeat-pass 

interferometric coherence of two ERS-1/2 SAR images has provided a more reliable way of 

discriminating wet snow cover (Strozzi et al. 1999). 

 

Radar response to snow at L-band has rarely been examined. Comparing JERS-1 L-HH with 

ERS-1 C-VV imagery, Pulliainen et al. (1999) show that the radar response to biomass in a 

boreal forest is more sensitive to snow at C-band than at L-band. The literature suggests that C-

VV shows the best relation with snow. C-HV is less sensitive to snow cover and L-band has 

been found robust against snow conditions. 

 

This study is part of the European-funded NOPEX / WINTEX (Northern Hemisphere Climate 

Processes Land Surface Experiment / Winter Experiment) project, in the sub-area of “Land-

surface-atmosphere interactions in a winter-time boreal landscape”. It aimed to help to meet the 

objectives of the International Geosphere-Biosphere Programme (IGBP), the World Climate 

Research Programme (WCRP) and the Human Dimensions of Global Climate Change 

Programme (HDP). The project philosophy is based on the hypothesis that climatic change has 

its largest influence at high latitudes and during winter time. The main objective of NOPEX was 

to study the annual and daily cycles of the regional land-surface budgets of energy, water, and 

CO2 by using mesoscale atmospheric models, field data, and hydrological models including 

dynamics of snow and frozen soils.  

 

The present study focuses on an evaluation of SAR remote sensing techniques to describe 

aspects of the NOPEX winter-time landscape by investigating the capabilities of SAR for boreal 

forest inventory under snow conditions. The main interest was originally concentrated on the 

mapping of snow properties although this was in fact found to be extremely difficult in forested 

areas (Hallikainen et al. 1997). Two objectives were set: 

 to estimate total forest stem volume from polarimetric SAR and assess its accuracy 

 to study the effects of dry and wet snow on the capabilities of SAR for boreal forest 

inventory. 

 

2. Material and methods 

2.1. Study site 

The test site Pikkarala is the second of four snow test sites from the EMAC95 campaign. It is 

located in the south of Finnish Lapland (Figure 1), bounded by 64°50'38" N 25°39'02" E (upper 

left) and 64°53'45" N 25°48'14" E (lower right). It extends along the left bank of the river 

Oulujoki which flows into the Gulf of Bothnia to the north-west at the city of Oulu. The test site 
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consists of mineral soil, spruce and mires and open bogs, and has a large proportion of 

productive forest land. The most common tree species is pine (Pinus silvestris L.) with spruce 

(Picea abies (L.) Karsten), birch (Betula spp.) and other broad leafed tress as minority. 

 

[insert Figure 1 about here] 

 

2.2. SAR data 

Airborne SAR data were acquired during the European Multi-sensor Airborne Campaign 

(EMAC-94/95) by the EMISAR sensor of the Technical University of Denmark (TUD). 

Characteristics of EMISAR are given in Attema and Wooding (1994). 

 

EMISAR has fully polarimetric capabilities. All images were lowpass filtered, resampled to 5 m 

pixel spacing and radiometrically calibrated. Ground control points from 1:20 000 topographic 

maps were used to geocode the images to the Finnish national grid, with a first-order model and 

nearest neighbour resampling. The backscatter images were averaged over a 20 by 20 pixel 

window for the stem volume estimation. 

 

EMISAR measures the covariance matrix of the target for each pixel. 
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Assuming that targets exhibit reflection symmetry about a plane perpendicular to the line of 

sight, which is likely to be true for natural targets, then the co-polarised and cross-polarised 

terms are uncorrelated (Borgeaud et al. 1987): 
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Thus C has been reduced from a four by four complex matrix to five numbers: three real 

numbers, namely the powers returned in the two co-polarised and one cross-polarised 

configurations, <SHH.SHH*>, <SVV.SVV*> and <SHV.SHV*>, further denoted as HH, VV and HV, 

and one complex number, the cross-correlation of the horizontal and vertical polarisations 

<SHH.SVV*> abbreviated as HHVV*. From the off-diagonal term of the covariance matrix, the 

intensity of HHVV* and the phase  can be determined. These parameters are physically related 

to the scattering order and the dielectric properties of the target. Freeman and Durden (1998) and 

Cloude and Pottier (1996, 1997) make further use of the covariance matrix in their 

decomposition algorithms. 

 

Freeman and Durden (1998) present a three-component scattering model for polarimetric SAR 

data. The covariance matrix is used to attribute backscatter to three basic scattering mechanisms: 

canopy scatter from a cloud of randomly oriented dipoles, double-bounce scatter from a pair of 

orthogonal surfaces with different dielectric constants and Bragg scatter from a moderately 

rough surface. Cloude and Pottier (1996, 1997) propose an entropy-based classification scheme 

for polarimetric SAR data. The derived entropy and an angle  can be used to classify 

polarimetric SAR images into typically nine zones.  is an angle between 0  and 90  according 

to the predominant scattering mechanism, corresponding to surface scattering in the geometrical 
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optics limit ( =0 ), and to successively surface scattering under physical optics, the Bragg 

surface model, dipole scattering, double bounce scattering and dihedral scattering from metallic 

surfaces ( =90 ). The entropy is a smoothly increasing function of scattering order as 

depolarisation increases. For high scattering orders almost random noise is the result, 

corresponding to the entropy approaching unity.  increases with scattering order too, 

approaching 60  in the limit. This is only valid if HV is uncorrelated with HH and VV. For 100 

m pixel spacing this assumption is likely, but it would  probably not be valid for some targets at 

the original high resolution of 3 m (Cloude, personal communication). 

 

2.3. Ground data 

Surrogate forest ground data were provided by the Finnish National Forest Inventory (FNFI), 

Finnish Forest Research Institute (FFRI.). Stem volume was provided by tree species in 

increments of 2 m
3
/ha on a 25 m grid. It is directly related to forest dry biomass by the equation 

(Pulliainen et al. 1994): 

VolcM dB  (1) 

where MB is the biomass in t·ha
-1

, c is a proportionality constant depending on the structural 

forest type and lies in the range 1.4 to 2.1, d is the density of dry wood in t/m
3
 (around 0.4 for 

pine), and Vol is the tree stem volume in m
3
/ha. 

 

FFRI estimated the stem volume from 1992-1993 Landsat 5 Thematic Mapper images and field 

measurements. The techniques are described by Tomppo (1997) and consists of systematic 

clusterwise sampling, feature selection and k nearest neighbour estimation. The total growing 

stock volume in Finnish forests in 1989-94 was 1.94 billion m
3
 with a relative standard error of 

0.6% (Tomppo and Henttonen 1996). The standard error for an area of one million hectares is 

around 1-2%. At a pixel level of 25 m by 25 m the relative standard error of the multi-source 

inventory is as high as 60 %, but decreases rapidly with increasing area (Tomppo 1997).  

 

To predict stem volume from backscatter the digital stem volume map was averaged over a four 

by four window to a 100 m grid. A mask of forested areas was created from the digital stem 

volume map, mixed forest and non-forest pixels being treated as non-forest. The mean stem 

volume is 50.5 m
3
/ha. The type I error probabilities in all statistical analyses are denoted as P. A 

statistical test is considered significant if P<0.05. 

 

For the retrieval of snow water equivalent, snow fork measurements were carried out by the 

Helsinki University of Technology (HUT) at the test site Pikkarala along a track of 9200 m 

length from 64°50.60' N, 25°39.42' E to 64°53.87' N, 25°48.70' E. Over homogeneous areas near 

points 1 km apart. measurements were made of snow depth, permittivity, wetness and density on 

each of five days, 22/3, 4/4, 5/4, 2/5 and 3/5/1995 (Hallikainen et al. 1997). From the processed 

EMISAR data SAR backscatter intensities were averaged over a five by five pixel window onto 

a 25 m grid. Bitmap masks of ten homogeneous areas around the snow fork sampling points 

were delineated and the mean stem volume per area, mean backscatter intensities and mean snow 

parameters under the masks were extracted. 

 

2.4. Stem volume estimation 

The forest pixels were divided into two random samples of 1849 and 5547 pixels. Model 

parameters were estimated from sample 1, and stem volume was predicted from sample 2, 

calculating accuracy statistics at the same time. The root mean square error is defined as 

 
kn

yy
rmse

predobs

2

 (8) 
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where yobs = observed value, ypred = predicted value, n = number of observations, and k = number 

of model parameters. The relative standard error (se), also termed the „relative accuracy‟ by 

Hyyppä et al. (1997), is defined as rms error divided by the mean prediction (Tokola et al. 1996) 

and remarkably this implies that a strong positive bias (overestimation of stem volume) 

decreases se. The four parameters rmse, se, Pearson‟s correlation coefficient (r) and bias were 

calculated from predicted and observed stem volume in m
3
/ha. 

Outliers in the curves were eliminated using the linear relation between standard deviation of 

backscatter and mean stem volume. Stem volume retrieval from the SAR data was carried out 

using three types of models: 

 F1P1 models using one frequency and one polarisation. An exponential model described 

backscatter as a function of stem volume. It provides information on scattering contributions 

to the backscatter (Pulliainen et al. 1996).  
cVolbea0  (7) 

where   a  is the saturation level, b describes the shape of the curve, and c the backscatter at 

zero stem volume compared to the backscatter at saturation. 

Information about forest pixels with high stem volume above the saturation, is obtained from 

sample 1. Stem volume of these pixels is normally distributed for all wavelengths and 

polarisations. Mean Vol and standard deviation Vol of all normal distributions are estimated 

from all pixels above the saturation level. A random sample is drawn from this distribution in 

this case to get a predicted stem volume. To estimate stem volume from the model three cases 

were distinguished: 

1) if cea0  predict 0Vol ; 

2) if cea0  and a0  predict 
b

ac
Vol

0ln
; 

3) if a0  predict ),(~ VolVolNVol . 

 F2P1 models using two frequencies and one polarisation. An exponential curve was fitted to 

the difference of C-HV and L-HV backscatter coefficients (dB) and the stem volume. 
cVolb

LHVCHV ea00  (9) 

 F1P4 models using one frequency and four polarisations, HH, VV, HV and HHVV*. After a 

logarithmic transformation stem volume showed a linear relationships with backscatter 

coefficients for most frequencies and polarisations (in this transformation zero stem volumes 

were substituted by 1 m
3
/ha to avoid infinite values). The Efroymson algorithm of stepwise 

regression model selection (Miller 1984) was used to determine the significant regressors in 

the model.  

 

2.5. Snow parameter retrieval 

Snow water equivalent is the integral of the snow density through the snow pack. The 

backscatter coefficient was corrected for stem volume by linear regressions. Three stepwise 

regressions were carried out: 

 EU model: In the explorative uncorrected (EU) model the equation included backscatter at all 

frequencies and polarisations, without testing their statistical significance. The backscatter 

coefficient was not corrected for variations in stem volume. 

 EC model: The explorative, stem volume corrected (EC) model also includes all frequencies 

and polarisations without statistical tests. 

 CC model: The statistically conservative, stem volume corrected (CC) model uses only 

statistically significant backscatter terms in the equation. 

 

Stem volume correction was based on simple linear regressions of backscatter coefficient and 

total stem volume in the area around the measurement points from the snow experiment. The 
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corrected backscatter coefficient is defined as the residual backscatter (difference between 

measured backscatter and the fitted line). 

 

3. Results 

3.1. Polarimetric covariance matrix 

Figure 2 shows a colour composite of test site Pikkarala for the L-band data acquired by 

EMISAR on 2 May 1995. The image is geocoded to the Finnish national grid, with a superposed 

1 km grid, and red, green and blue correspond to HV-, VV- and HH polarisations. Figure 3 

shows four different representations of the L-band data for an area of interest (7201.00 N, 

3440.00 E to 7196.25 N, 3444.75 E). The information in these four representations is 

complementary, e.g. the airfield in the north-west corner. In Figure 3a the presentation is the 

same as Figure 2, while in Figure 3b red, green and blue are derived from a transformation of 

intensity, hue and saturation, using the intensity and phase of HHVV* (and a constant 

saturation). Agricultural fields appearing green in the HV, VV, HH representation appear bright 

yellow in the HHVV* representation corresponding to a low scattering order with low 

depolarisation but high received power. Black fields in Figure 3a also show a low depolarisation, 

but accompanied by a low intensity, taking a brownish colour in Figure 3b. Over the forested 

area the phase difference has a large variation due to multiple scattering events. 

 

[insert Figures 2 and 3 about here] 

 

Figure 3c shows the basic scattering mechanisms using the decomposition of Freeman and 

Durden (1998), and that of Cloude and Pottier (1996, 1997). In the Freeman and Durden 

decomposition the pink and yellow forests emerge as red as a consequence of the high volume 

scattering in the crowns, agricultural fields are dominated by surface scattering and appear green 

(the direction of ploughing has an effect on the radar illumination of these fields) and man-made 

targets such as buildings cause double-bounce scattering and appear blue. In the Cloude and 

Pottier decomposition water and very smooth surfaces have a low entropy corresponding to a 

high degree of order while scattering from a cloud of particles, like water droplets in leaves in a 

forest or vegetation with highly anisotropic scattering elements, have a high entropy 

corresponding to a high degree of disorder so that forest appears bright and agricultural land 

dark. Forest cause multiple scattering events in the crown volume, resulting in high disorder or 

entropy of the backscattered waves, and ultimately in forests appearing bright,  values around 

45  being characteristic of high entropy vegetation scattering. Agricultural fields appear from 

green to dark blue, due to lower or higher  respectively. Low  indicates some surface 

scattering mechanism, which is often combined with low entropy resulting in dark green, while 

dark blue indicates high  and low entropy pointing to multiple scattering events provided for 

example by isolated dielectric dihedral scatterers. The Cloude decomposition yields 

complementary information compared to the other representations in Figure 3 and the 

decomposition parameters entropy and  may be useful for discrimination between forest and 

non-forest. After this descriptive and qualitative inspection of the images, a more quantitative 

analysis of the data concludes the study. 

 

3.2. Backscatter and stem volume 

A model from Ranson et al. (1997) uses a linear relationship between the cube root of stem 

volume and the backscatter coefficient. This model is less intuitive than the exponential model 

but does not saturate at high stem volume. The cube root model has been tested for the Pikkarala 

data and resulted in smaller rms errors than the exponential model, but the error structure 
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revealed that it tended towards overestimation of low stem volume and underestimation of high 

stem volume. The focus here lies on the exponential models. 

 

3.2.1. F1P1 models 

Figure 4 shows the F1P1 models in March 1995, and Figure 5 in May 1995. For L-band L-HV 

(March) is most closely related to stem volume. For C-band C-HH and C-HV backscatter show 

strong relations to stem volume in March but not in May. Snowmelt can explain the increase in 

backscatter for C-HV and C-HH between March and May for pixels with low stem volume. 

From visual observations it is known that in March the tree crowns in areas with high stem 

volume (>50 m
3
/ha) were partly covered with relatively dry snow, whereas they were snow-free 

in areas with lower stem volume, while in May all tree crowns were snow-free. There is little 

difference in C-band between March and May in areas of high stem volume, because scattering 

in C-band occurs mainly in the crown. The dry snow in the tree crowns in March has a very low 

dielectric constant and does not change C-band backscatter much. In May the thickness of the 

snow layer on the ground varied substantially depending on the stem volume. In areas with high 

stem volume the thickness of the snow layer was up to 35cm, whereas in areas of low stem 

volume the thickness was less than 10 cm and non-forested areas were mostly snow free. 

Consequently C-band backscatter in areas with low stem volume is stronger (Figure 5), because 

a larger proportion of the ground contributes to it, and wet soil has a high dielectric constant. 

Figure 6 shows the differences in backscatter between the March and May acquisitions. L-band 

shows a consistent difference in backscatter between March and May but is related to stem 

volume at both dates (Figure 5). 

 

[insert Figure 4, 5and 6 about here] 

 

The accuracy assessment in Table 1 shows that L-HV has the smallest rms error, and its 

predictions are highly correlated with the observations (rMarch=0.63, rMay=0.68). Predictions 

derived from a normal distribution for pixels where the radar signal has saturated are shown as 

„plus‟ symbols. Rms error increased non-linearly for high stem volume above a frequency and 

polarisation dependent threshold (around 70 m
3
/ha for L-HV). L-HH gives similar results. 

 

[insert Table 1 about here] 

 

The saturation of the backscatter signal limits the applicability of SAR radiometry to forest 

biomass estimation. The number of pixels within the predictable range is determined by the 

saturation parameter,   a , and the intersection with the backscatter axis, cea . In this study, as 

in many others (section 1), curves in C-band generally saturate more quickly than in L-band.  

 

3.2.2. F2P1 models 

Figure 7 shows the relationship between the C–HV and L–HV difference and stem volume in 

March and May. In test site Pikkarala only the May acquisition shows a relationship to stem 

volume (Figure 7). Saturation of this model is reached at higher stem volume than for the F1P1 

models. A comparison of stem volume predictions with observations for sample 2 reveals a 

higher rms error, but the lowest bias of all models (Table 1). The stem volume dependent 

dynamic changes in C-HV backscatter from March to May and from dry to wet snow conditions 

change the scatterplot significantly (Figure 7). 

 

[insert Figure 7 about here] 
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3.2.3. F1P4 models 

The stepwise regressor selection resulted in the four linear models: 

L-band, March:  0

*

00 03.012.01917.043.3)log( HHVVVVHVVol  

L-band, May:  0

*

000 05.003.011.003.071.2)log( HHVVVVHVHHVol  

C-band, March:  0

*

000 03.008.016.014.055.3)log( HHVVVVHVHHVol  

C-band, May:  000 03.023.011.085.3)log( VVHVHHVol  

The signs of the regressors in these equations are consistent for all polarisations in L-band and 

for all except VV polarisation in C-band. C-band backscatter for the May acquisition shows the 

strongest underestimation of high stem volume. The results of the accuracy assessment in Table 

1 confirm that it shows the worst fit of the four F1P4 models, having the highest rms error, 

highest bias and lowest correlation coefficient. As temperatures rise above zero and snowmelt 

begins, the F1P4 model in C-band loses accuracy (Table 1). However, polarimetric SAR at L-

band can be used to map stem volume regardless of snow cover. The rms errors of the L-band 

F1P4 models in March and May are only slightly different (21.6 and 22.1 m
3
/ha). Although the 

F1P4 model is still biased the use of the full polarimetric information reduces the rms error 

(Table 1). 

 

3.3. Retrieval of snow water equivalent from SAR 

Visual interpretation of the relationships between backscatter, stem volume and snow cover 

indicated the following trends in the data (Figure 8): 

 At L-band backscatter is consistently greater in May than in March (red vs. blue points). In 

May snow water equivalent was less than in March (size of the points). 

 The typical increase of L-band backscatter with stem volume was not lost through changing 

snow properties. 

 For C-band no consistent trend between March and May was observed. The greater snow 

water equivalent apparently reduces the backscatter in stands with low stem volume. 

 The lower the stem volume the greater the variation in backscatter caused by different snow 

water equivalent. 

Numerical analyses revealed the following regression equation for the EU model: 
000000 32.111.168.113.194.001.137.0 CHVCVVCHHLHVLVVLHHSW  

where SW is the snow water equivalent (g/cm
2
) and the 

0
 are the backscatter coefficients (dB) 

for each frequency and polarisation. This model explains only 34% of the variance of snow 

water equivalent (r
2
=0.34). The results of the explorative model after correction for stem volume 

variation (EC model, see Table 2) are shown in Figure 9. The EC model explains 68% of the 

variance of snow water equivalent (r
2
=0.68): 

000000 73.146.127.254.254.115.037.41 CHVcCVVcCHHcLHVcLVVcLHHcSW  

where 
0
 are now the corrected backscatter coefficients (dB) for each frequency and polarisation. 

 

[insert Table 2  and Figure 8 about here] 

 

Statistical tests of the slope parameters of the EC model revealed that only the corrected L-HH 

backscatter was significant. This is the only term included in the CC model: 
014.214.26 LHHcSW  

In the CC model (r
2 

= 0.51) the corrected L-HH backscatter coefficient for SW=0 is 12.2 dB, 

and as SW rises the backscatter drops to –16.8 dB. 

 

[insert Figure 9 about here] 
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L-HH is identified by the CC model as the only backscatter component, which is statistically 

related to snow water equivalent. L-band is known to penetrate dry snow, and has therefore not 

been considered for snow mapping before. The relation to snow water equivalent is due to the 

fact that the snow layer was slightly wet in March and even wetter in May, the decrease of L-HH 

backscatter coefficient with increasing snow water equivalent being caused by increasing 

attenuation in the snow layer (the attenuation increases with wetness and depth of the snow 

layer, and depth is related to snow water equivalent). This hypothesis was tested by a linear 

regression of L-HH backscatter on stem volume, snow wetness (% weight) and snow water 

equivalent. The results show that stem volume (P<0.001) and snow wetness (P=0.011) explain 

93% of the variance of L-HH backscatter (r
2
=0.93) but that snow water equivalent is not 

contributing significantly to this (P>0.05). 

Further investigations have been carried out on the relation between snow and C-band 

backscatter. Three multiple linear regressions between C-HH, C-VV and C-HV backscatter and 

stem volume, snow wetness (% weight) and snow water equivalent were calculated. 93% of the 

variance of C-VV (r
2
=0.93) and 88% of C-HV (r

2
=0.88) could be explained by stem volume, but 

there was no significant influence from the two snow variables (P>0.05). But stem volume, snow 

wetness and snow water equivalent (all P<0.05) explained 80% of the variance of C-HH 

backscatter (r
2
=0.80). However prediction of snow water equivalent from stem volume corrected 

C-HH backscatter was impossible because the slope of the regression line was not significant 

(P>0.05). The difficulties to find statistically significant relationships could be overcome by 

increasing the sample size. The analysis here should be seen as an exploratory assessment of the 

potential usefulness of airborne polarimetric SAR for snow studies, the explanation of 51% to 

68% of the variance of snow water equivalent justifying further research into the use of L-band 

SAR for the mapping of wet snow. 

 

4. Discussion 

4.1. Stem volume 

Monitoring of boreal forests on continental or global scales requires remote sensing techniques. 

Stem volume can be estimated from quad-polarised L-band SAR with reasonable accuracy. At 

the Finnish test site Pikkarala, which represents a low biomass high latitude boreal forest, there 

was a consistent relationship between L-HV and L-HH backscatter and stem volume at both 

acquisition dates. The saturation of the signal implied that even for L-HV 11%-15% of pixels 

were outside the dynamic range of the model. C-band only shows a dependence on stem volume 

in March, but not in May.  

 

Comparing the backscatter coefficients from March and May, wavelength- and polarisation-

dependent shifts of the dynamic range and the saturation level were observed due to effects of 

changing conditions of the targets. The snowmelt resulted in snow-free areas and areas with wet, 

dense snow in May. At L-band a consistent shift by about 4 dB was observed (Figure 6), but at 

C-band only the backscatter of some plots with low stem volume changed markedly. This is 

explained by the wavelength-dependence of the dominant scattering mechanism and the change 

in snow cover in the tree crowns and on the ground. 

 

The lowest rms error of all examined models was found for the L-band F1P4 models in March 

(rmse=21.6 m
3
/ha) and May (rmse=22.1 m

3
/ha). The F2P1 suggested by Ranson et al. (1995) 

were very sensitive to snow. The true rms error of stem volume retrieval from polarimetric SAR 

is likely to be smaller than the values stated here, because the surrogate ground data are estimates 

from Landsat TM5 imagery and sparse field sample plot data. Standwise instead of pixelwise 

stem volume estimation would further reduce the rms error. Nevertheless, the estimates are more 

accurate than from multi-temporal ERS-1 SAR (Pulliainen et al. 1996), Landsat TM (Tokola et 
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al. 1996, Hyyppä et al. (1997), and SPOT (Tokola et al. 1996). This partly reflects the higher 

resolution of EMISAR compared to spaceborne platforms. At other test sites in Finland 

Pulliainen et al. (1996) obtained rms errors in the range of 87 - 98 m
3
/ha (se=0.45 - 0.56) and 

bias between 0 and 7 m
3
/ha for standwise stem volume estimation from 23 multitemporal ERS-1 

C-VV SAR, images, sample plot information and a semi-empirical backscatter model. Hyyppä et 

al. (1997) describe a comparison of different remote sensing methods from the literature with 

their own study of stem volume estimation using data from the helicopter-borne ranging 

scatterometer instrument HUTSCAT. Hyyppä et al. (1997) found that their C-band HUTSCAT 

ranging scatterometer-based stand level estimates that employ tree height were more accurate 

(rmse=31.3 m
3
/ha, se=0.27) than aerial photography (rmse=55.6 m

3
/ha, se=0.29) and Landsat TM 

(rmse=84.2 m
3
/ha, se=0.45), but less accurate than ocular field inventory (rmse=30 m

3
/ha, 

se=0.16). Tokola et al. (1996) use Landsat TM, Landsat MSS and SPOT imagery to estimate 

total stem volume at four Finnish test sites with pixel spacings of 20 m and 50 m respectively, 

with rms errors between 69 and 95 m
3
/ha, se in the range of 0.62 to 0.85, and bias between -3.7 

and 1.1 m
3
/ha. The rms error found in this study is smaller, but se is greater than that from 

HUTSCAT, aerial photography and ocular field inventory (Hyyppä et al. 1997). This is caused 

by the fact that the mean stem volume at test site Pikkarala is smaller than that at the test site by 

Hyyppä et al. (1997). 

 

A method of tackling the saturation problem was developed. The use of prior information about 

the stem volume distribution of pixels above the saturation level proved to be a useful method to 

avoid severe underestimation of high stem volume.  

 

Despite the limitations of SAR discussed here, it provides a reliable data source for estimating 

carbon pools in boreal forests because cloud cover and low sun angles do not impede imaging. 

Because of the saturation of the signal for high stem volume, SAR is particularly useful for 

mapping sparse and young boreal forests with low stem volume.  

 

The availability of fully polarimetric SAR is still restricted to airborne sensors and the SIR-C 

mission, which did not cover the boreal region. The launch of Envisat (although twin and not 

quad polarised) will provide the first spaceborne multi-polarised SAR sensor. For improved stem 

volume retrieval, the Japanese ALOS mission will be important. ALOS will carry the first 

operational dual-polarised L-band SAR with an experimental fully polarimetric mode. 

 

4.2. Snow water equivalent 

Mapping snow cover is important for hydrological purposes such as assessing snow water 

equivalent, validation or calibration of hydrological models, run-off prediction and flood 

warning systems or the inventory of water resources. When the radar illuminates a snow covered 

area, three scattering mechanisms can be distinguished: 

 scattering at the air-snow surface;  

 scattering in the snow layer; and 

 scattering at the snow-soil boundary. 

To understand the scattering behaviour of snow layers cloud models have been used. Volume 

scattering is related to the proportion of the sizes of the ice crystals to the wavelength. For dry 

snow e’’ is very low and the relative permittivity e’ds is related to snow density and a constant 

(e’i of pure ice = 3.15). e’ds under natural conditions is in the range of 1.4 – 2.0. For these 

parameters most of the incident radiation passes through the boundary. The power reflection 

from the snow-soil surface is somewhat smaller than from an air-soil surface. The backscatter 

intensity of dry snow is insensitive to surface roughness of the snow surface. The C-band HH 

backscatter coefficient has been observed to increase in an exponential function for increasing 

SW of dry snow. At L-band under laboratory conditions dry snow causes less than –20 dB 
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backscatter for the incidence angle range of EMISAR. Dry snow is difficult to discriminate from 

a completely snow-free area. Conditions are different for wet snow: Surface roughness changes 

the backscatter depending on the incidence-angle. The ground contribution becomes less 

important than for dry snow. For incidence angles above 20 degrees volume scattering is the 

dominant scattering mechanism. C-HV responds less to wet snow than HH and VV. L-HH does 

not show differences between wet and dry snow, but C-HH does (about 5 dB in the incidence 

angle range discussed here). Longer wavelengths are less sensitive to snow wetness, but have a 

higher detectable range. C-band sensors may thus be expected to have better capabilities to 

detect the pure presence of wet snow, but longer wavelengths should be better at quantitatively 

estimating SW. 

 

At the test site Pikkarala, snow was drier in March 1995 (0.2-0.5 % liquid water) than in May 

(>0.8 %). Snow wetness (cv=0.81), snow depth (cv=0.75) and stem volume (cv=0.82) varied 

more between the snow sampling plots than snow density (cv=0.10). In a previous study of this 

data by Hallikainen et al. (1997) correlations between snow wetness (vol%) and radar 

backscatter coefficients (dB) were positive (0.52 < r < 0.75) for low and negative ( 0.97 < r < 

0.83) for high liquid water content at all wavelengths and polarisations. Hallikainen et al. 

(1997) averaged the backscatter coefficient in square areas of one and nine hectares around the 

snow fork sampling points. These findings were not confirmed in this study, using visually 

homogeneous areas instead of squares, and averaging the intensities rather than the backscatter 

coefficients. 

 

Stem volume is known to mask the effects of snow to some degree (Hallikainen et al. 1997), as 

was confirmed by this study (Figure 8). Based on HUTSCAT airborne ranging scatterometer 

measurements, the average C-band transmissivity through a boreal (coniferous) forest canopy at 

an incidence angle of 23  is 0.87 for a stem volume of 50 m
3
/ha and 0.76 for 100 m

3
/ha 

respectively (Pulliainen 1994). These values are valid for both horizontal and vertical 

polarisations and they include the effects of small gaps in the forest. At an incidence angle of 50  

as for EMISAR the transmissivity is lower. Recently, the transmissivity has also been 

determined using airborne microwave radiometer measurements and the result for C-band with 

vertical polarisation at an incidence angle of 45  was 0.90 for stem volumes of 50 m
3
/ha and 100 

m
3
/ha (Kruopis et al. 1999). At L-band the transmissivity is very likely to be greater than 0.90, 

although no experimental data are available. Thus the effect of stem volume on the backscatter 

coefficient of snow covered terrain is moderate, but it does have to be accounted for since the 

dynamic range of the backscatter coefficient itself is only a few dB. The linear correction of 

backscatter coefficients for stem volume used in the EC model increases the proportion of 

explained variance of snow water equivalent by 30%. Despite the lack of statistical significance 

in the EC model, it shows what may be achievable in the future. Additional studies of snow 

covered forests would be required to validate the findings of this study. Further research on L-

band SAR and snow covered forests is justified by the strong interactions between stem volume 

and snow at C-band which make it hard to explain the observed backscatter. Archived JERS-1 

data could be used to validate the empirical relationship found here for spaceborne platforms. 
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Tables 

 

Table 1. Accuracy assessment of stem volume predicted from the F1P1 model for 100 m pixel 

spacing. Pearson‟s correlation coefficient r between observations and predictions, root mean square 

error (rmse), relative standard error (se) and bias. Negative bias means underestimation. 

model acquisition 

date 

band and 

polarisation 

r rmse 

(m
3
/ha) 

se 

(%) 

bias 

(m
3
/ha) 

F1P1 March C-HH 

 

0.26 41.5 62 16.3 

F1P1 March C-HV 

 

0.55 32.0 54 9.1 

F1P1 March C-VV 

 

0.57 31.9 56 6.2 

F1P1 March L-HH 

 

0.54 32.6 55 8.4 

F1P1 March L-HV 

 

0.63 29.1 51 6.2 

F1P1 March L-VV 

 

- - - - 

F1P1 May  C-HH 

 

0.23 43.7 65 16.3 

F1P1 May  C-HV 

 

0.47 34.6 57 10.5 

F1P1 May  C-VV 

 

- - - - 

F1P1 May  L-HH 

 

0.62 30.8 57 3.6 

F1P1 May  L-HV 

 

0.68 27.5 50 4.3 

F1P1 May  L-VV 

 

- - - - 

F2P1 May  C-HV -  

L-HV 

 

0.65 32.3 66 -1.4 

F1P4 March C-HH, VV, 

HV, HHVV
*
 

0.71 24.5 43 6.6 

F1P4 March L-VV, HV, 

HHVV
*
 

0.78 21.6 39 4.3 

F1P4 May  C-HH, VV, 

HV 

0.58 29.0 48 10.2 

F1P4 May  L-HH, VV, 

HV, HHVV
*
 

0.77 22.1 39 6.0 

 



 

 

 

Table 2. Intercept a, slope b, and coefficient of determination r
2
 of the correction of backscatter 

coefficients for stem volume by linear regressions. 

band and 

polarisation 

a b r
2
 

L-HH 

 

-14.848 0.0974 59% 

L-VV 

 

-15.166 0.0417 13% 

L-HV 

 

-23.776 0.1351 48% 

C-HH 

 

-12.399 0.0678 45% 

C-VV 

 

-13.396 0.0729 69% 

C-HV 

 

-20.454 0.1193 79% 
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Figure 1. Map of Finland indicating the location of the test site Pikkarala. 

 



 

 

 
 

Figure 2. L-Band EMISAR image of the test site Pikkarala acquired on 2 May 1995 and geocoded 

to the Finnish national grid. The grid spacing is 1 km and red, green and blue correspond to HV-, 

VV- and HH-Polarisations. 
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Figure 3. Four representations of the L-Band EMISAR data over part of the test site Pikkarala, 

acquired on 2 May 1995. Each image is geocoded to the Finnish national grid, with corner 

coordinates 7201.00 N, 3440.00 E upper left and 7196.25 N, 3444.75 E lower right. The grid 

spacing is 1 km.  

a) Red, green and blue correspond to HV-, VV- and HH-polarisations. 

b) Red, green and blue correspond to intensity and phase obtained from HHVV* as intensity and 

hue. 

c) Freeman decomposition. Red, green and blue correspond to power attributed to volume, surface 

and double-bounce scattering. 

d) Cloude decomposition. Red, green and blue correspond to entropy and  as intensity and hue. 
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Figure 4. Scatterplots of backscatter coefficients and stem volume with fitted F1P1 models in 

March 1995. 
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Figure 5. Scatterplots of backscatter coefficients and stem volume with fitted F1P1 models in May 

1995. 
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Figure 6. Temporal differences of backscatter coefficients (dB) between March and May. An 

increase corresponds to a positive sign. 
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Figure 7. Scatterplots of difference between C-HV and L-HV backscatter coefficients for March 

and May acquisitions and stem volume, with the fitted F2P1 model for May. 
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Figure 8. Scatterplots of backscatter coefficients (dB) and stem volume (vol, m
3
/ha) for all 

frequencies and polarisations. The size of the data points increases with the measured snow water 

equivalent at the sampling point by snow fork measurements. Blue = March, red = May. 
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Figure 9. Scatterplots of snow water equivalent (SW) derived from snow fork measurements (HUT) 

vs. backscatter coefficients corrected for stem volume. Single regression lines. 

 


