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Abstract

A turbulent cavity flow at Mach 1.5 and 2.5 is modelled to study the flow instability

and the associated aerodynamic noise generation. The short-time averaged Navier-

Stokes equations, coupled with a k − ω turbulence model, are solved to predict the

large-scale time-dependent flow. Values of the cavity wall pressure, drag, streamwise

velocity and density are in good in agreement with past measurements and the

results of other computations. The noise generation physics of the unsteady flow is

addressed by estimating the noise source strength in a Lighthill acoustic analogy.

The time-dependent flow predictions highlighted the upstream and downstream

cavity edges as areas of large flow unsteadiness. The same areas are identified by

the acoustic analogy as the dominant noise source regions in this flow.
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1 Introduction

A numerical investigation is performed on the time-mean and time-dependent

characteristics of the compressible turbulent flow over a rectangular cavity or

enclosure. At certain flow regimes [1], the flow-geometry interaction occur-

ring in a cavity onsets large-scale self-excited instabilities that dominate the

aerodynamic flow field. In this field, the time-dependent pressure is oscilla-

tory along the solid boundaries and generates time-dependent drag. Strong

tonal noise is also generated by the aerodynamic instabilities. The physics of

noise production is based on Lighthill’s acoustic analogy. This study addresses

by numerical investigation the noise source characteristics based on the time-

averaged Lighthill stress tensor distribution, derived from the time-dependent

aerodynamic results. This approach attempts to capture through the acoustic

analogy the aerodynamic noise sources responsible for the sound perceived

in the acoustic far-field. This investigation complements the available litera-

ture on the aerodynamics and near-field acoustics of self-sustained open cavity

flows [2–5], giving some further information on the source strength of the noise

perceived at more than 20 cavity lengths away from the enclosure.

Zhang [6,7] discussed the flow unsteadiness developing over a cavity or enclo-

sure. A turbulent boundary layer approaches the enclosure towards the up-

stream edge (Fig. 1). At this location, the geometry induced flow separation

forms a shear layer. The latter is unstable, developing large-scale self-sustained

instabilities that characterize the unsteady aerodynamic field. Aerodynamic

pressure fluctuations inside the enclosure accompany the observed shear layer

unsteadiness and provide the feed-back for the onset of a stable self-sustained

oscillatory flow regime. The flow instability is responsible for wall pressure
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fluctuations, pressure drag and aerodynamic noise radiation.

In this study, a rectangular enclosure of length to depth ratio 3 is tested

at free stream Mach numbers (M∞) of 1.5 and 2.5. Measurements and past

numerical predictions by Zhang [6,7] are available for comparison. Charwat

et al. [8] identified a ‘closed’ flow regime where the shear layer reattaches to

the central section of the cavity floor, and an ‘open’ flow geometry where the

reattachment point is the downstream edge. The flow geometry considered

here is ‘open’ and approximately two-dimensional (2-D).

Even the simple geometry of a rectangular cavity develops a complex flow pat-

tern that is the object of on-going fundamental research (e.g. Jeng & Payne [9]

and Zhang et al. [10]). Practical applications of related cavity flows include

slotted wall wind tunnels, slotted flumes, bellows-type pipe geometries, gate

slots, spacecraft, and aircraft components. The subject is reviewed by Rock-

well & Naudascher [2], Blake & Powell [3], Colonius [4], Grace [11] and by

Rowley & Williams [12].

In the time-averaged flow, the presence of the shear layer and its rate of

growth, the pressure distribution around the walls, the characteristics of the

in-coming boundary layer and of the re-attached flow downstream of the cavity

all influence the cavity mean drag. A quantitative prediction is attempted of

the salient time-averaged features to estimate the cavity mean drag.

In the time-dependent flow, a qualitative analysis is presented on the convec-

tive amplification of the large-scale instability in the shear layer and of the

accompanying unsteady convected vorticity. The flow-geometry interaction at

the downstream cavity edge dominates the pressure fluctuations throughout

the cavity. Past studies have used the knowledge of such interaction to reduce
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the unsteady aerodynamic loads of a model enclosure [13,14]. This study aims

to relate such flow physics to the sources of the aerodynamic noise perceived

in the acoustic far-field.

Aerodynamic noise is generated as a by-product of the flow instability. Cavity

noise measurements by Block [15] and numerical studies by Hardin & Pope [16]

highlighted the tonal characteristics of the radiated sound field at certain flow

regimes. For the selected test cases the noise characteristic wavelength (λ) is

greater than the cavity characteristic dimension (D). Flow-acoustic interaction

inside the cavity is limited by the size of the enclosure (λ < D) and hence the

unsteady flow can be regarded as a compact noise source. In the acoustic

far-field, at a distance of 20 or more cavity lengths away from the enclosure,

the pressure fluctuation perceived by an observer as aerodynamic noise is the

integral effect of the Lighthill stress tensor field. This can be extracted from

the time-dependent aerodynamic predictions.

The present study focuses on the large-scale turbulent structure in the cavity

responsible for aerodynamic noise generation. Lighthill’s acoustic analogy is

followed to identify the acoustically active regions in the flow field. The physics

of noise generation is addressed as a by-product of the time-dependent flow.

These results contribute to the understanding of cavity noise generation, which

is the basis for developing successful noise control strategies.

2 Flow Conditions

The geometry and flow conditions describe a longitudinal rectangular cavity

driven by a turbulent shear layer, studied in Zhang [6,7]. The depth of the

4



cavity D is 15mm and the length of the cavity L is 45mm. The geometry is

tested at free stream Mach numbers (M∞) of 1.5 and 2.5. At M∞ = 1.5 the free

stream temperature (T∞), pressure (p∞), density (ρ∞), stagnation tempera-

ture (Ts) and stagnation pressure (ps) are 200K, 53.801kN/m2, 0.9373kg/m3,

288.5K, and 197.51kN/m2 respectively. At M∞ = 2.5 the corresponding values

are 128K, 17.390kN/m2, 0.4701kg/m3, 288.5K, and 297.12kN/m2. A turbulent

boundary layer approaches the enclosure upstream edge. The boundary layer

thickness (δ) and momentum thickness (δ2) are respectively 5mm, 0.417mm at

M∞ = 1.5, and 5mm and 1.290mm at M∞ = 2.5. The flow Reynolds number

(Re) based on the cavity depth is 4.5× 105 in both cases.

Non-dimensional short-time averaged variables (̃ ) are used in the numerical

model. The density (ρ), velocity vector (u), pressure (p), specific enthalpy

(h), turbulent kinetic energy (k), temperature (T ), and dynamic viscosity (µ)

are normalized by the free stream conditions (ρ∞, U∞, T∞, µ∞); the specific

turbulent dissipation rate (ω) by U∞Re/D, and time by D/U∞.

3 Numerical Model

3.1 Aerodynamic model

A combined deterministic and stochastic approach is followed to model the

cavity aerodynamic flow. The flow visualization by Zhang [6] in Fig. 9(a) indi-

cates that the aerodynamic field can be regarded as large-scale time-evolving

structures in a background of random turbulence. These large-scale flow in-

stabilities are obtained from the selective amplification of flow disturbances

in the cavity. The excited modes are the eigenmodes of the cavity flow, as
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shown by the analysis of Bilanin & Covert [17]. The enclosure geometry and

the inlet boundary layer profile are the boundary conditions that determine

the eigenmodes and, more generally, the frequency and wavenumber response

characteristics of the cavity. The observed large-scale structures develop in the

shear layer spanning the cavity open surface and are Kelvin-Helmoltz type

instabilities. They are therefore problem-specific and their initial growth is es-

sentially a deterministic inviscid process. The large-scale instability growth can

be modelled by inviscid instability analysis methods as in Tam & Block [18],

or by a time-dependent numerical solution of the Euler equations as in Zhang

& Edwards [19] and Rona & Dieudonné [20].

Measurements by Zhang [6] show that the large-scale instabilities are gener-

ated at the cavity upstream edge. These are convectively amplified, impinging

against the downstream edge within approximately one fundamental instabil-

ity mode wavelength (λ) from their point of origin. During convection over

the cavity open surface, the small flow perturbations grow to a finite am-

plitude and the modes saturate, displaying convective mode non-linearities.

The large-scale instabilities reach the downstream edge having covered just

one fundamental mode wavelength, which is unlikely to be sufficient to al-

low the dominant instability modes to decay in smaller eddies and establish

a fully developed turbulent flow. The large scale structure can still be read-

ily identified on the trailing edge plate in Zhang [6], at a streamise distance

greater than 6D from the upstream edge. The accompanying wall pressure

measurements in Zhang [6] confirm a power spectral density dominated by

low frequency isolated tones over a lower amplitude broad-band turbulent

contribution, decaying with frequency. Further downstream, away from the

enclosure, the convected instabilities are expected to decay, creating a tur-
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bulent kinetic energy cascade to the higher wavenumbers and the turbulent

kinetic energy is eventually dissipated by viscous stresses in the dissipation

sub-range, at the Kolmogorov length scale. As the flow is supersonic, this

downstream flow regime does not significantly affect the upstream cavity.

A separation of kinetic energy length scales approach is adopted to obtain a

numerical model of the cavity flow. The model exploits the modest energy

transfer (interaction) between the large-scale structure and the background

of fine-scale turbulence in the selected cavity test cases. A time-dependent

prediction of the large-scale structure is performed using an explicit time-

marching finite-volume method. In the numerical model, the grid size does not

allow to resolve directly the small-scale structure in the dissipation sub-range

and the Wilcox [21] k − ω two-equation model is used to provide turbulence

closure.

The large-scale structure fluctuations can be extracted from the flow history

by averaging over a time that is short compared to the characteristic period

of the large eddies in the flow field and long compared to the fluctuations

of the small-scale turbulence. The instantaneous value of any flow variable

f is thus split in a short-time averaged component f̃ and a fluctuation due

to small-scale turbulence f ′′, which is treated as a stochastic variable. This

process is called short-time averaging. For simplicity, terms like ˜ρ′′T ′′ are not

modelled, since, for instance, heat transfer effects mainly depend on the time-

mean temperature gradient.

For steady flow problems, such as the compressible turbulent boundary layer

flow of Mabey & Sawyer [22], the short-time averaged method is identical

to an explicit Reynolds averaged method and converges to a steady state.
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In such fully developed turbulent flow, all kinetic energy length scales are

modelled by the k and ω equations. In the cavity flow, a continuous turbulent

spectrum is not achieved at the downstream edge and the k−ω model covers

a different role than in steady flow problems. First, it models the statistics

of the downstream evolution of the fine-scale turbulence, generated by the

upstream boundary layer. The wavenumber range of these flow features is

above the cavity eigenmodes range. Second, it augments the effects of laminar

viscosity to control the saturation of the enclosure eigenmodes. In the time-

dependent cavity model, the short-time velocity gradient is used to estimate

the turbulent stress tensor, while the mean velocity gradient would be used

for the Reynolds stresses in a time-mean approach. This attempts to filter the

large-scale kinetic energy contribution in the small-scale turbulence model.

Consider a compressible turbulent flow governed by the short-time averaged

Navier-Stokes equations (Lilley et al. [23]) written in vector form. The turbu-

lent stress tensor is estimated using the k−ω two-equation model of Wilcox [21]:

∂

∂τ
Ũ +∇ ·

(
F̃ i + F̃ t

)
+ S̃ = 0, (1)

where

Ũ =
[
ρ̃, ρ̃ũ, ρ̃

(
ẽs + k̃

)
, ρ̃k̃, ρ̃ω̃

]T
,

F̃ i =
[
ρ̃ũ, ρ̃ũũ+ p̃I, ρ̃ũ

(
h̃s + k̃

)
, ρ̃ũk̃, ρ̃ũω̃

]T
,

F̃ t =
[
0,−

(
τ̃ + t̃

)
,− (q̃ + q̃t)−

(
τ̃ + t̃

)
· ũ− (µ̃l + σ∗µ̃t)∇k̃/Re,

− (µ̃l + σ∗µ̃t)∇k̃/Re,− (µ̃l + σµ̃t)∇ω̃/Re
]T
,

S̃=
[
0, 0, 0, β∗ρ̃k̃ω̃Re− t̃ : ∇ũ, β∗∗ρ̃ω̃2Re− α

(
ω̃/k̃

)
t̃ : ∇ũ

]T
. (2)

The relationship for a perfect gas p̃ = ρ̃T̃ /γM2
∞ completes the governing equa-
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tions. The eddy viscosity (µ̃t), dynamic viscosity (µ̃l), viscous stress tensor (τ̃ ),

turbulent stress tensor
(
t̃
)
, heat flux vectors (q̃, q̃t), specific stagnation energy

(ẽs), and specific internal energy (ẽ) are defined in the following auxiliary re-

lations:

µ̃t = ρ̃k̃/ω̃, (3)

µ̃l = c1
T̃ 3/2

T̃ + c2

, (4)

τ̃ = µ̃l (∇ũ+ ũ∇− 2/3I∇ · ũ) /Re, (5)

t̃= µ̃t (∇ũ+ ũ∇− 2/3I∇ · ũ) /Re− 2/3I ρ̃k̃, (6)

q̃=
1

(γ − 1)M2∞Re
µ̃l
Pr
∇T̃ , (7)

q̃t =
1

(γ − 1)M2∞Re
µ̃t
Prt
∇T̃ , (8)

ẽs = ẽ+ ũ · ũ/2, (9)

ẽ= T̃ /
[
γ (γ − 1)M2

∞
]
. (10)

The constant coefficients (c1, c2) in the non-dimensional form of the Suther-

land law are 1.458 × 10−6
√
T∞/µ∞ and 110.4/T∞ respectively. The Prandtl

number (Pr) and the turbulent Prandtl number (Prt) are 0.71 and 0.90 re-

spectively. The turbulence closure coefficients (α, β∗, β∗∗, σ, σ∗) in the k − ω
model are modified for the effects of compressibility. The details can be found

in Wilcox [21].

A 160 × 200 rectangular grid defines the control volumes for the application

of the conservation laws. A finer 320× 400 grid is also used to assess the grid

size effect on the aerodynamic predictions. The computational domain covers

a flow area of 12D and 5D in the streamwise and normal directions, the unit

cell dimensions (∆y1,∆y2) are (0.075D, 0.025D) and (0.0375D, 0.0125D) for

the 160× 200 and 320× 400 grids respectively.

The Roe [24] flux difference split approximate Riemann method estimates the
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inviscid fluxes
(
F̃ i

)
at the unit volume boundaries. The second-order space

accurate extension is implemented. The MinMod inviscid flux limiter func-

tion is adopted to preserve monotonicity. The inviscid flux components of

the k − ω equations are included as in Rona [25], following the same proce-

dure of Roe. Second-order central difference is used to estimate the turbulent

fluxes
(
F̃ t

)
that are integrated with the inviscid ones in finite-volume form.

This compact integration strategy upgrades the operator split approach by

Zhang [7], enhancing the efficiency of the numerical quadrature in the model.

A multi-step Runge-Kutta explicit time-marching method advances the flow

prediction in time. Non-standard coefficients are used to enhance the scheme

stability. These are b1 = 0.12, b1 = 0.25, b3 = 0.5, and b4 = 1.0. Specifically,

an inviscid simulation is stable up to a Courant number (CFL = c̃∆τ̃ /∆y) of

2.0 (Manna [26]), while the same scheme with two-equation turbulence clo-

sure was tested to be stable at CFL = 0.53. The method is second-order time

accurate. The flow history is advanced with a 0.01 non-dimensional fixed time

step (∆τ̃) over which the flow is short-time averaged. At M∞ = 1.5 this cor-

responds to CFL = 0.27 and CFL = 0.53 for the low and high density grids

respectively. At M∞ = 2.5 the corresponding values are 0.16CFL and 0.32CFL.

The Nyquist Strouhal number [Str = fD/U∞] is 100, which corresponds to a

2.83MHz Nyquist frequency at M∞ = 1.5 and 3.78MHz at M∞ = 2.5.

At the inflow boundary (b1) the mass flux remains constant throughout the

computation and is similar to the upstream boundary condition used by

Bastin [27] for the case of a supersonic uniform stream. In the unsteady cavity

flow, upstream propagating disturbances are present in the boundary layer.

The upstream effect is limited below the sonic line to a distance less than one

boundary layer thickness. This is difficult to quantify, but since the distur-
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bances are damped while propagating from the upstream cavity edge (y1 = 0)

to the inflow boundary (y1 = −3D), the selected boundary condition appears

to be adequate (Rona [25]). Along the solid walls (b2− b6) a no-slip condition

is imposed. At the outflow (b7) all conservative variables are extrapolated as-

suming constant gradients in space (first order extrapolation). Non-reflecting

boundary conditions (Zhang [7]) apply on (b8). Along this latter computa-

tional boundary, the flow is assumed uniform and parallel and the conserva-

tive variables are set equal to their interior values and are constant along the

outgoing Mach wave.

The flow state at the beginning of the computation is described in Fig. 2.

The inflow condition is imposed in the flow field above the cavity. Inside the

cavity, stagnation temperature conditions apply and u = 0. As in Zhang [7],

the flow is perturbed over the cavity open end to facilitate the onset of the

self-sustained unsteady flow regime. This is reached after τ̃ ∼ O (50). The

computation is then extended to τ̃ ∼ O (150) to estimate the time-mean flow

and monitor the aerodynamic pressure on the cavity walls. This corresponds

to approximately 10 shear-layer oscillations at the fundamental mode. The

wall pressure history is predicted at y1 = 0.33D and y1 = 2.33D on the floor

of the enclosure, and at y1 = 3.66D and y1 = 5.66D above the downstream

cavity edge. The sound pressure level at the enclosure walls and the cavity

form drag are also estimated.

3.2 Noise source prediction

Lighthill’s acoustic analogy is used to determine the noise generation from

the predicted unsteady flow. The main contributions to the far-field acoustic

11



radiation are expected from the momentum flux fluctuations in the large-

scale structure. The sources of noise can be found by short-time averaging the

Lighthill [28] governing equation for aerodynamic noise. This equation is

22ρ̃ = ∇ · ∇ · T̃ , (11)

where the tensor T̃ = ρ̃ũũ−
(
τ̃ + t̃

)
+ (p̃− c2

∞ρ̃) I is the short-time averaged

Lighthill stress tensor, t̃ = −ρ̃ũ′′u′′ being the short-time averaged Reynolds

stress tensor. This is derived following the procedure of Lighthill [28] from the

short-time averaged Navier-Stokes equations and is exact.

The above inhomogeneous wave equation separates the linear acoustic field in

the ambient medium at rest on the left hand side of the equation from the non-

linear acoustic sources arising from the unsteady flow. The solution procedure

of Ffowcs Williams and Hawkings is used to integrate equation (11) over the

cavity domain (Zhang et al. [10]). The acoustic density fluctuation perceived

by an observer at x at time t due to a finite volume V (y) of unsteady flow

emitting at the earlier time τ is

ρ (x, t) =
1

4πc2∞

∫

V

∇ · ∇ · T̃ (y, τ)
dV (y)

R∗

+
1

4π

∮

S

(
∇ρ̃+

ρ̃

R
∇R +

∇ · ρ̃ũ
c∞

∇R
)
· ndS (y)

R∗
(12)

where t = τ + R/c∞ is the retarded or reception time, R = |x− y| is the

distance source-observer and R∗ = |x− y| −M∞ · (x− y) is the geometric

scaling factor for acoustic propagation. The surface S bounds the flow domain

V and n is its outward surface normal unit vector.
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In equation (12), R∗ accounts for the convection of the acoustic waves by a

constant Mach number M∞ that approximately models the flow above the

enclosure boundary layer for the purpose of acoustic convection. Other flow-

acoustic interactions within the unsteady flow have not been modelled.

The volume integral in equation (12) operates on the second order Lighthill

stress tensor differential that represents the aerodynamic sound sources from

shearing flow. Specifically, noise is produced by momentum flux accelerations

in the direction of the far-field observer at x. These acoustic quadrupoles were

shown by Lighthill [28] to radiate with an acoustic intensity ∝ U8
∞/c

5
∞. The

surface integral term, evaluated along the cavity solid boundary, models the

contributions to noise by the aerodynamic flow interacting with the enclosure

walls. This first order differential term is a dipole noise source model that

was shown by Curle [29] to give an acoustic intensity ∝ U6
∞/c

3
∞. At subsonic

speeds, the dipole term would be expected to be the dominant contribution

to noise. At the model flow regime, M∞ > 1, the dipole and quadrupole type

contributions would be expected to be similar in magnitude and this study

will focus on the quadrupole type noise sources from T̃ .

The fluctuations in T̃ are estimated from the numerical database of the time-

dependent cavity aerodynamic model. High values of the root-mean-square

value of T̃ in the cavity flow identify the most acoustically active flow regions.

Estimates of T̃ rms are performed between the onset of the self-sustained os-

cillation and τ̃ ∼ O (150).
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4 Time Mean Flow

At M∞ = 1.5, the main time averaged flow features are confined to the en-

closure and to its immediate surroundings. A complex shock containing flow

pattern develops above the enclosure (Fig. 3). The oblique shock above the

upstream cavity edge forms a Mach angle (arcsin (1/M∞)) with the stream-

wise direction. There are no appreciable shock distortions or reflections close

to the top computational boundary b8.

An unsteady shear layer forms downstream of the upstream cavity edge. Its

time averaged centreline position, defined as y2 at which ū1 = 0.5, varies in

the streamwise direction. The time averaged density local minimum ahead of

the cavity downstream edge indicates the maximum in momentum transfer

normal to the cavity open top surface. At the cavity downstream edge, the

contour packing indicates mean flow impingement on the forward facing wall

close to y2 = 0.

The time averaged axial velocity contours in Fig. 4(a) and 4(b) indicate a

varying shear layer growth rate in the streamwise direction. Within 1D from

the upstream cavity edge the shear layer develops as a free shear layer. Further

downstream its growth rate is increased due to the presence of a stationary

vortex at about y1 = 2D inside the cavity. The vortex streamwise location

is indicated by the maximum in the back flow velocity (−ū1) close to the

cavity floor. The presence of the solid walls limits the mass entrainment in

the sheared flow which is displaced outwards and the shear layer growth is

reduced. The ū1 = 0 contour starting at the upstream cavity edge re-attaches

on the downstream wall close to y2 = 0, indicating a stagnation point. The
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time averaged displacement thickness
(
δ̄1

)
and momentum thickness

(
δ̄2

)
of

the re-attached flow above the downstream cavity edge are about twice the

upstream values of 0.857mm and 0.384mm. The result from using the 320×400

computational mesh shown in Fig. 4(b) indicate that the time averaged flow

prediction is almost grid independent.

The time averaged pressure on the upstream wall (Fig. 5) is predicted as a

nearly constant value of p̄w ∼ 1.11p∞. On the cavity floor a local minimum is

reached at about y1 = 2D, below the stationary vortex. The time averaged wall

pressure than increases monotonically towards the downstream bottom cavity

corner, where the fluid is nearly at rest (p̄w = 1.32p∞). On the downstream

wall, p̄w has two maxima at y2 = −1.0D and y2 ∼ 0.0D, where the flow

stagnates and p̄w = 1.32p∞ at both locations.

At M∞ = 2.5 a re-compression shock exists ahead of at the cavity downstream

edge (Fig. 6). Its intensity is higher than at M∞ = 1.5. The shear layer time

averaged centreline position is more constant in the streamwise direction than

at the lower Mach number. This suggests a more uniform shear layer growth up

to y1 = 2D, which is confirmed by the time averaged axial velocity predictions

in Fig. 7. The displacement and momentum thickness above the downstream

cavity edge are approximately 1.5 times the upstream values of 1.353mm and

0.332mm.

The time averaged pressure around the cavity perimeter in Fig. 8 shows a trend

similar to the prediction at M∞ = 1.5. The time averaged pressure maximum

at the cavity downstream edge (stagnation point) is more pronounced, due

to the higher free stream Mach number. Similar results are given in Jeng &

Payne [9] and in Zhang et al. [14], showing similar levels of agreement with
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the experiments of Zhang [6].

The measured time averaged cavity pressure drag coefficients (CD) are 0.049

and 0.037 at M∞ = 1.5 and M∞ = 2.5 respectively. The predicted values are

0.055 and 0.030. The agreement is generally good.

5 Unsteady Flow

5.1 Self-excited instability

The unsteady open cavity flow at M∞ = 1.5 is visualized in a selection of

numerical interferograms/contours in Figs. 9(b) & (d). The phase-matched

result from holographic interferometry by Zhang [6] is given for comparison

in Figs. 9(a) & (c).

The in-coming turbulent boundary layer separates at the upstream cavity

edge, forming a free shear layer. This is responsive to the unsteady pressure

and vorticity field inside the enclosure and develops Kelvin-Helmholtz type

instabilities. The unsteady modes saturate within a short distance from the

upstream cavity edge and a rolled-up vortex is formed as shown in Figs. 9(a)

& (b). The vortex is convected downstream by the shear flow.

The upstream cavity edge shock is unsteady and its location and strength are

affected by the shear layer normal displacement beneath it [30]. When the

shear layer is displaced in the positive normal direction, the shock is displaced

upstream and has greater strength as shown in Figs. 9(c) & (d). Conversely

the shock strength decreases when the shear layer displaces towards the cavity

floor.

16



Mass and momentum exchange between the free stream and the enclosed

flow occurs across the open cavity top boundary. Unsteady mass ejection and

entrainment at the downstream cavity edge are highlighted in Figs. 9(a) & (b)

and Figs. 9(c) & (d) respectively. During the mass ejection phase, a vortex

leaves the cavity and is convected downstream, parallel to the free stream.

The convected vorticity leaves the computational domain without producing

noticeable vorticity wave reflections in the subsonic section of the boundary

layer.

The interaction of the unsteady velocity and vorticity fields at the downstream

cavity edge generates an excess unsteady pressure field within the cavity and

acts on the shear layer at the upstream edge, exciting it and providing the

feed-back to maintain self-sustained flow oscillations. The numerical results

indicate that the numerical model has captured this essential time-dependent

feature of the unsteady flow.

At M∞ = 2.5 the shear layer flow-normal oscillation is the most prominent

flow feature (Fig. 10). This drives the self-sustained flow instability. A complex

shock pattern develops above the enclosure, which is dependent on the shear

layer vertical displacement. These transient compressible flow features can be

explained by analogy with a supersonic flow past a wavy wall. At M∞ = 2.5

the dominant mode phase speed is approximately O (0.5U∞), therefore giving

a relative flow Mach number of approximately 1.25. Regions of shear layer

maximum concavity display compressive shocks with a (π/4) Mach angle,

close to the shear layer. This indicates a M̃ = 1.5 local Mach number. Ex-

pansion waves are generated above regions of shear layer maximum convexity.

Unsteady mass entrainment and ejection occurs also at M∞ = 2.5, the phase

sequence in Figs. 9 and 10 being identical. Convected vortical structures are
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generated at the downstream cavity edge by shear layer ‘clipping’ at the end

of the mass ejection phase (Neary & Stephanoff [31]).

5.2 Pressure fluctuation

The self-sustained characteristic of the flow instability is evident in the nor-

malized short-time averaged wall pressure history predictions (Figs. 11 and

12). Self-sustained oscillations are obtained after a τ̃ = 50 initial period dur-

ing which the starting transients are allowed to decay below the numerical

noise level. The instability is dominated by phase-locked cavity modes of con-

stant amplitude. At M∞ = 1.5 the pressure power spectral density measured

at (2.33D,−1D) peaks at Strouhal numbers (Str) 0.093, 0.208 (dominant

mode), and 0.323. At M∞ = 2.5 the corresponding values are 0.092, 0.179,

and 0.264 (dominant mode). At the same location, the predicted values are

0.094, 0.192, and 0.369 at M∞ = 1.5 and 0.090, 0.176, and 0.262 at M∞ = 2.5.

The agreement is generally good.

The pressure history predicted by the numerical method at (0.33D,−1D),

(2.33D,−1D), (5.66D, 0D), and (7.66D, 0D) indicates that the fluctuation of

largest amplitude occurs inside the enclosure in the neighbourhood of the sec-

ond transducer (2.33D,−1D), close to the downstream wall. A more accurate

quantification of the unsteady pressure loading on the cavity perimeter is per-

formed by estimating the sound pressure level (SPL) along the walls (Fig. 13).

The highest levels are predicted at the downstream cavity corner and edge

and are ∼ 182dB re 20µPa at M∞ = 1.5. This is higher but still comparable

with 171.5 dB measured by Zhang [7] at (2.33D,−1D). At these locations,

the unsteady mass impingement and ejection results in alternating phases of
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high speed flow past the edge and of shear flow stagnating on the downstream

wall. At the downstream corner, the unsteady recirculation is responsible for

the predicted pressure unsteadiness. The downstream wall is clearly a region

of significant flow unsteadiness in the cavity aerodynamic field. The shear flow

interaction with the geometry, resulting in the observed unsteady mass and

momentum exchange between the enclosure and the free stream, is the driving

mechanism for the unsteady aerodynamic pressure field.

A second SPL maximum of ∼ 178dB re 20µPa is predicted at the upstream

cavity edge. The fluctuation amplitude is adequate to locally excite the shear

layer, triggering convectively amplified modes at the observed Strouhal num-

bers. The predicted unsteady aerodynamic pressure is therefore the link to

close the feed-back loop to maintain the self-excited flow instability. On the

upstream bulkhead (y1 < 0) the upstream propagating disturbances are con-

fined to the boundary layer, below the sonic line. Consequently, the wall pres-

sure fluctuation is damped in the upstream direction, its magnitude being

reduced below 120dB re 20µPa by y1 ∼ −0.6D. At M∞ = 2.5 the numerical

method predicts the same trend for wall SPL as at the lower Mach number,

the fluctuation amplitude being O (10dB re 20µPa) lower throughout. These

results are in general agreement with the numerical predictions by Jeng &

Payne [9].

5.3 Aerodynamic noise sources

The physics of aerodynamic noise production from compressible turbulent non-

uniform flows is complex. In this study, some characteristics of this process

are disclosed, which relate to the large-scale flow instability.
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The unsteady pressure predictions highlight the flow region at the downstream

cavity edge as potentially the most unsteady. The accelerating fluid in the

direction of the observer produces aerodynamic sound, as described by the

application of the Lighthill solution by Proudman [32]. Estimating the root-

mean-square of the streamwise and normal flow velocities therefore gives some

description of the noise production physics at the downstream cavity edge.

The prediction at M∞ = 1.5 in Fig. 14(a) shows that (ũ1)rms, normalized as

in Section 2, is maximum at the downstream cavity edge and is 0.272. The

region of maximum (ũ1)rms extends mainly in the streamwise direction. This

suggests that a noise source of streamwise longitudinal and lateral quadrupole

type is present at this location in the aerodynamic field. A second localized

(ũ1)rms maximum is located at the upstream edge.

The root-mean-square normal velocity near-field is mainly related to the shear

layer normal displacement. Two regions of maximum (ũ2)rms are shown in

Fig. 14(b) along the y2 = 0 line at approximately 0.5D and 2D from the

upstream edge. The region closest to the upstream edge is where a vortex

is periodically rolled up. This region is localized and (ũ2)rms decays rapidly

with distance from its point of maximum value. The other region occurs where

the shear layer normal displacement is maximum. These indicate that noise

sources of the normal longitudinal quadrupole type are present at (0.5D, 0D)

and (2D, 0D) in the aerodynamic field. Their strength are expected to be

less then the streamwise longitudinal quadrupole sources, since the associated

(ũ2)rms maximum is 0.175.

The unsteadiness in the M∞ = 2.5 flow (Fig. 15) is proportionally lower than

at M∞ = 1.5, as also indicated by the SPL predictions in Section 5.2. At the
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higher Mach number, a (ũ1)rms maximum of 0.223 is located at approximately

y1 = 2D on the y2 = 0 line. The surrounding region of high (ũ1)rms is elongated

in the streamwise direction and results from the combined effect of the periodic

shear layer oscillation and of a normal velocity gradient being present across

the shear layer. A localized maximum is also visible above the downstream

edge and is related to the shear layer clipping and periodic vortex shedding.

The (ũ2)rms contours also indicate a maximum at this location, highlighting

this region as an important noise source also at M∞ = 2.5.

The time averaged characteristics of the aerodynamic noise source near-field

are now considered. The short-time root-mean-square Lighthill stress tensor
(
T̃ rms

)
is estimated in the computational domain (Figs. 16 and 17).

At both Mach numbers, the contributions from T̃11 to far-field cavity noise

are dominant, which is what would be expected from a predominantly lon-

gitudinal oscillation. According to Pierce [33], this streamwise longitudinal

quadrupole type noise source is expected to give a cos2 θ far-field directivity

pattern, modified by the effects of source convection. The highest values occur

close to the downstream cavity edge, in agreement with the (ũ1)rms predic-

tions. The nature of this noise source is also confirmed, this being a momentum

flux fluctuation (ρ̃ũũ) in the direction of the observer. The physical process

generating such fluctuation is associated with the periodic mass entrainment

and ejection occurring at this location. Another area of high
(
T̃11

)
rms

is near

the upstream cavity edge and is probably associated to the fluctuations in mo-

mentum flux during the vortex roll up. The fluid flow entrainment increases

the shear layer thickness, producing a localized
(
T̃11

)
rms

.

The lateral quadrupole type source contribution to the far-field noise is gen-
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erated in the shear layer (Figs. 16(b) and 17(b)). At M∞ = 1.5, the maximum
(
T̃12

)
rms

is 0.130. This is located close to the upstream cavity edge where a lo-

calized large (ũ2)rms was identified in Fig. 14(b). Here the fluctuations in fluid

momentum flux are driven by the unsteady vorticity field which is character-

ized by vortex roll up. The convected vortex generates a moving bow shock

above the cavity the intensity of which decreases in the streamwise direction,

while the shear layer thickens. This limits the area of high
(
T̃12

)
rms

to the

initial portion of the shear layer, 0D ≤ y1 ≤ 1D. At M∞ = 2.5, the observed

instability mode does not involve regular vortex shedding from the upstream

cavity edge and a region of high
(
T̃12

)
rms

is where the shear layer displace-

ment is maximum. The interaction between the unsteady shear layer and the

downstream cavity edge is responsible for the localized
(
T̃12

)
rms

maximum.

Minor contributions to far-field noise are from aeroacoustic sources of the

transverse longitudinal quadrupole type, as shown in Figs. 16(c) and 17(c).

These are generated by the unsteady flow in the neighbourhood of the nor-

mal downstream cavity wall where fluid is periodically accelerated into the

clockwise cavity flow recirculation.

All regions of high
(
T̃ rms

)
are located inside the cavity or in its immediate

surroundings, clear from all open flow boundaries (Figs. 16 and 17). Around

the open flow boundary perimeter,
(
T̃ rms

)
is largest in the subsonic part of

the boundary layer at the outflow, where convected vortices leave the com-

putational domain. At M∞ = 1.5, the average
(
T̃11

)
rms

across the boundary

layer is 0.06 of the near-field maximum. At M∞ = 2.5, it is 0.03. Similar re-

sults are produced for the lateral and normal longitudinal quadrupole source

fields. This confirms that the computational domain size selected for this study

covers the most acoustically active flow regions for the selected test cases.
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6 Conclusions

A numerical investigation was performed on the time-mean and time-dependent

characteristics of supersonic open cavity flows at M∞ = 1.5 and M∞ = 2.5.

An enhanced computational fluid dynamic method was adopted to further the

analysis by Zhang [7] and address cavity noise generation.

The time-mean flow predictions highlighted the importance of the stationary

vortex at y1 ∼ 2D inside the cavity in determining the drag coefficient. The low

pressure in the vortex core displaces the shear layer towards the enclosure half-

depth, entraining mass and momentum and increasing the time-mean shear

layer thickness. The entrained momentum is responsible for the time-mean

high pressure on the downstream wall, giving positive time-mean drag. The

wall pressure distribution was found in good agreement with measurements at

both Mach numbers. Zhang et al. [13] show that significant reductions in CD

can be achieved when the downstream cavity corner is modified by a ramp

and the stationary vortex is suppressed.

The time-mean growth rate of the shear layer and its normal displacement

along the cavity open boundary vary in the streamwise direction, leading to

a complex wave pattern above the enclosure. These time-mean streamwise

shear layer oscillations might lead to a variable phase velocity and convective

non-linearities in the downstream propagating instability modes, affecting the

dominant mode Strouhal number and its kinetic energy transfer to higher

harmonics. Further analysis is required on this topic.

On time-dependent flow, the model reproduces the essential physics of the

large-scale structure observed in experiment. At M∞ = 1.5, self-sustained
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shear layer oscillations combine with periodic vortex shedding from the cavity

leading edge. The interaction of the convected instabilities with the down-

stream cavity corner results in alternating phases of localized mass impinge-

ment and ejection that are visualized in the compressible flow. At M∞ = 2.5,

vortex free shear layer oscillations are predicted, in agreement with experi-

ment.

An unsteady aerodynamic pressure field in the cavity is predicted in the nu-

merical simulation. The physical mechanism generating aerodynamic pressure

fluctuations is addressed and the downstream cavity edge is identified as a crit-

ical area of aerodynamic pressure and flow instability. The predicted SPL at

this location is ∼ 182dB re 20µPa at M∞ = 1.5. This is the highest level of un-

steady aerodynamic pressure loading predicted around the enclosure perimeter

and it could represent a design constraint in practical engineering applications.

At the upstream cavity edge, the unsteady pressure perturbs the shear layer,

closing the feed-back loop for phase-locked self-sustained oscillations. Here

the predicted SPL ∼ 178dB re 20µPa at M∞ = 1.5 is of the right order of

magnitude to provide such interaction between the aerodynamic pressure field

and the shear flow.

The aeroacoustic investigation focused on (i) the location and quantification

of the sources of aerodynamic noise in the cavity flow and (ii) addressing the

physics of noise production to improve its current understanding towards its

suppression.

The cavity flow was found to be an acoustically compact source in that all

regions of large contributions to the acoustic radiation are located inside the

enclosure or in its immediate surroundings. The unsteady shear layer plays
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a dominant role in the acoustic radiation: the momentum flux fluctuation

due to the self-sustained instability is the dominant cavity noise generating

mechanism. Longitudinal quadrupole type sources were predicted along the

shear layer which reflect the aerodynamic fluctuation being predominantly of

the longitudinal type.

Areas of high acoustic source strength
(
T̃ rms

)
are the neighbourhood of the

cavity edges. The vortex roll up near the upstream edge and the unsteady mass

exchange near the downstream edge provide the fluctuations in momentum

flux for noise generation. Thus, modifications to the edge geometry could

prove effective to reduce both cavity drag and the radiated noise.
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Nomenclature

c Speed of sound

CD Drag coefficient, (2/D)
∫D
0

(
p̃w|y1=3 − p̃w|y1=0

)
dy2

e Specific internal energy

I Identity matrix
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u1 Streamwise velocity

u2 Normal velocity

t Retarded time

t Turbulent stress tensor

Tij ijth component of Lighthill’s stress tensor

T Lighthill’s stress tensor

U Conservative variable vector

y1 Streamwise coordinate

y2 Normal coordinate

γ Ratio of specific heats, Cp/Cv

µl Dynamic viscosity

µt Eddy viscosity

ω Specific dissipation rate of turbulent kinetic energy

τ Time

τ Viscous stress tensor

22 Wave operator, 22 = ∂2/∂t2 − c2
∞∇2

( )i Inviscid component

( )rms Root-mean-square value

( )s Stagnation value

( )T Transpose operator

( )t Turbulent component

( )w Wall boundary value

( )∞ Free stream value

(̃ ) Non-dimensional short-time averaged value
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(̄ ) Non-dimensional time averaged value
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(a)

(b)

Fig. 3. M∞ = 1.5 cavity flow. Time averaged density contours, ρ̄min = 0.67,

ρ̄max = 1.12, ∆ρ̄ = 0.03. (a) 160× 200 computational mesh, (b) 320× 400 compu-

tational mesh.

(a)

(b)

Fig. 4. M∞ = 1.5 cavity flow. Time averaged streamwise velocity contours,

(ū1)min = −0.32, (ū1)max = 1.02, ∆ū1 = 0.08. (a) 160 × 200 computational mesh,

(b) 320× 400 computational mesh.
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Fig. 6. M∞ = 2.5 cavity flow. Time averaged density contours, ρ̄min = 0.42,

ρ̄max = 1.10, ∆ρ̄ = 0.03.
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Fig. 7. M∞ = 2.5 cavity flow. Time averaged axial velocity contours,

(ū1)min = −0.31, (ū1)max = 1.01, ∆ū1 = 0.08.
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Fig. 8. M∞ = 2.5 cavity flow time averaged pressure. (a) approaching surface,

(b) upstream wall, (c) floor, (d) downstream wall. (−) computation, (◦) measure-

ment [7].
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(d)

(a)

(b)

(c)

Fig. 9. M∞ = 1.5 cavity holographic interferograms. Mass ejection [34] (a) and

prediction (b), mass entrainment [23] (c) and prediction (d). ∆ρ̃ = 0.03.
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(a)

(b)

(c)

(d)

Fig. 10. M∞ = 2.5 cavity holographic interferograms. Mass ejection [34] (a) and

prediction (b), mass entrainment [34] (c) and prediction (d). ∆ρ̃ = 0.03.
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Fig. 11. M∞ = 1.5 short-time averaged pressure history.
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Fig. 12. M∞ = 2.5 short-time averaged pressure history.
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Fig. 13. Sound pressure level on the cavity walls. (−) M∞ = 1.5, (−−) M∞ = 2.5.
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(a)

(b)

Fig. 14. M∞ = 1.5 cavity short-time root mean square velocity contours.

(a) streamwise component, [(ũ1)rms]max = 0.272, (b) normal component,

[(ũ2)rms]max = 0.175. ∆ũrms = 0.03.

(a)

(b)

Fig. 15. M∞ = 2.5 cavity short-time root mean square velocity contours.

(a) streamwise component, [(ũ1)rms]max = 0.223, (b) normal component,

[(ũ2)rms]max = 0.094. ∆ũrms = 0.03.
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Fig. 16. M∞ = 1.5 cavity root mean square T̃ contours. (a)
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,
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= 0.083. ∆T̃ rms = 0.01.
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Fig. 17. M∞ = 2.5 cavity root mean square T̃ contours. (a)
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