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Abstract

The aim of this paper is to give a novel solution to the full order anti-windup (AW) compensation problem
for stable systems with input saturation. The solution is obtained by “completing the square” in three steps
and requires the solution to a single bounded-real Riccati equation, characterised by the open-loop plant’s
H∞ norm. The Riccati equation plays the role of the LMI’s usually found in anti-windup synthesis, but, in
addition to its obvious numerical advantages, it yields a family of anti-windup compensators with the same
L2 performance. This family of compensators is parameterised by a matrix which is intimately linked with
both the poles of the anti-windup compensator and the robustness properties of the closed-loop saturated
system. Thus, this matrix allows a robust anti-windup problem to be solved in a straightforward and intuitive
manner. The effectiveness of the proposed technique is demonstrated on a simple example.
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1 Introduction

Two of the most frequent problems ecountered by control engineers are model uncertainty and actuator satu-
ration. Input saturation has been tackled in a number of different ways over the years, including the design of
one-shot linear controllers which directly account for saturation ([15, 12]); model predictive control, where the
control constraints are incorporated into the optimisation procedure; and anti-windup techniques, whereby an
existing linear controller - designed for the linear unconstrained plant - is augmented with an additional linear
element which becomes active only when saturation occurs ([8, 3]).

This paper concentrates on the latter methodology: anti-windup compensation. Such a technique is practi-
cally important as it gives a simple, intuitive and potentially computationally efficient way of handling input
constraints, while not restricting the initial linear controller design. The technique complements the existing
controller, preventing a re-design of the baseline control algorithm, yet it has the power to limit performance
degradation during saturation periods. Although such an approach has its roots in industrial control, over the
last twenty years or so, the research community has proposed more systematic AW designs. A full review of
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these designs is beyond the scope of this paper but the interested reader can consult [10, 1, 21, 29, 25, 28] and
references therein for details.

One of the common elements in many of these recent AW techniques is that their synthesis is dependent on a
set of linear matrix inequalities (LMI’s) being feasible ([11, 6, 25, 28, 16]). Although there are several free and
commercial packages available for solving LMI problems, for large and ill-conditioned problems, they are often
prone to numerical errors and, arguably, some design insight is lost. As will be seen later, the method proposed
in this paper eliminates LMI’s from the design process, and instead relies on the solution to a single Riccati
equation of bounded-real type. Such an approach combines the reliable numerical procedures used for Riccati
equation solutions with a degree of flexibility, in the form of a diagonal, positive definite matrix, which is absent
in the corresponding LMI approach.

Another common characteristic of many recent anti-windup techniques is the lack of attention given to robust-
ness. Although robustness to uncertainty has been studied in robust control literature for many years, it is
conspicuously absent from most anti-windup literature. The implicit assumption present in these papers appears
to be that the saturated closed-loop system with anti-windup will inherit similar robustness properties to those of
the nominal linear system. As shown in [23], this is not always the case.

An early attempt to consider robustness in the design of saturated feedback systems was made in [20], although
most of the results contained therein pertained to one-shot constrained control solutions rather than anti-windup
per se. With few exceptions, the main results on robustness analysis of anti-windup systems are contained within
[22], [23], and [4]. The results of [22] consider only static uncertaintes, while those in [4] allow a modification
of the nominal linear closed-loop, leading to the so-called weakened anti-windup problem. We follow the work
of [23] where standard anti-windup is considered, but the uncertainty is allowed to be dynamic, and of the
additive type used in standard linear robust control ([5, 17]. This allows a general and methodical treatment of
uncertainty, and one which is closely linked to that used in practice. It transpires that such a treatment leads to
elegant and intuitive results when approached using the Riccati equation technique advocated in this paper.

The paper is organised as follows. Firstly, the problems we seek to solve are defined and then followed by sec-
tions describing their solutions. Particular attention is devoted to the interplay between the robustness properties
of the anti-windup compensator and a free parameter, the so-called “stability multplier”. The theoretical results
are followed by an academic example in which the strengths of the Riccati-based scheme are demonstrated and
compared with other useful techniques. Finally we draw some brief conclusions.

1.1 Assumptions and Notation

The notation used is standard throughout. The Lp norm of the time-dependent vector y(t) ∈ R
ny is denoted

as ‖y‖p and the induced Lp norm of a possibly nonlinear operator Y : Y1 → Y2 from one Lebesque space to
another, as ‖Y‖i,p. To avoid notational clutter the time variable (t) and the Laplace argument (s) are omitted
if no confusion is believed to arise. The Euclidean norm of the vector y(t) is given by ‖y(t)‖ =

√

y(t)′y(t).
The distance between a vector y(t) and a compact set Y is denoted by dist(y,Y) := infω∈Y ‖y − w‖. Ri×j

represents the space of all the real rational i × j transfer function matrices, and RH∞ the subset which are
analytic in the closed right-half complex plane with supremum on the imagnary axis.
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2 Problem formulation

We consider the stable, FDLTI (finite dimensional linear time invariant) plant

G(s) ∼
{

ẋ = Ax + Bum

y = Cx + Dum

(1)

where x ∈ R
np is the plant state, um ∈ R

m is the plant input (saturated control signal) and y ∈ R
q is the plant

output, which is fed back to the controller. For simplicity disturbances are not considered although they can
easily be accounted for (see [27],[25]) The nominal linear plant transfer function is denoted as:

G(s) ∼
[

A B

C D

]

∈ RH∞ (2)

The need for the global stability assumption will become clear in the proofs later on.

The plant input um is given by the nonlinear saturation function where:

um = sat(u) = [sat(u1), . . . , sat(um)]′

and sat(ui) = sign(ui) min{|ui|, ūi}, where ūi > 0 ∀i ∈ {1, . . . , m}. If there is no saturation present, sat(u) ≡
u, and nominal linear closed-loop dynamics govern the system. It is also convenient to define the deadzone
function, Dz(.), related to the saturation function through the identity

Dz(u) = u − sat(u) (3)

Note that, for all u ∈ U ⊂ R
m where

U := [−ū1, ū1] × . . . × [−ūm, ūm] (4)

it follows that Dz(u) = 0. A charactersitic of the deadzone, central to the results derived here, is that Dz(.) ∈
Sector[0, I], as defined below.

Definition 1 The decentralised nonlinearity N = diag(η1, . . . , ηm) is said to belong to Sector[0, I] if the fol-
lowing inequality holds:

ηi(ui)
2 ≤ ηi(ui)ui ≤ u2

i ∀ i ∈ {1, . . . , m} (5)

This definition will later allow us to formulate an H∞-type optimisation problem using the Circle Criterion.

2.1 Standard AW formulation

Characterising the main objective of AW compensation is subjective but the general underlying idea is simple:
we require a fast and smooth return to linear behaviour after saturation ([8], [22]). We term this objective the
true goal of anti-windup compensation. Although many different formulations have arisen (see some of the
references given earlier) few have been able to address successfully the true goal of AW in a general, systematic
and intuitive way.

Figure 1 shows a generic anti-windup configuration, where G(s) is the plant described earlier and K(s) is
the controller which has been designed to stabilise the nominal (un-saturated) plant and achieve some nominal
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Figure 1: Generic Anti-Windup scheme
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Figure 2: Conditioning with M(s)

performance specifications. These are standard assumptions in the anti-windup literature and are required for
the anti-windup problem to make practical sense. Θ(s) is the anti-windup compensator which only becomes
active once saturation has occurred. The compensator has two sets of outputs, ud ∈ R

m and yd ∈ R
q, which are

injected at the controller output and the controller input respectively.

A novel method of representing most AW schemes using a single transfer function M(s) was proposed in [26].
In this work, the anti-windup compensator was parameterised by a transfer function matrix M(s) ∈ RH∞ as
shown in Figure 2. As before, the plant is G(s) and the controller is K(s); the reference is r(t), the plant input
um(t), and the controller output u(t). It was then shown that, using this parameterisation, Figure 2 could be
re-drawn as Figure 3 where the closed-loop AW compensated system is decoupled into three parts: nominal
linear loop, nonlinear loop and disturbance filter. This new decoupled structure provides a useful tool for the
analysis of existing anti-windup schemes and the design of new ones.

From Figure 3, observe that our intuitive objectives for good anti-windup performance can be accomplished if
the map from ulin to yd is made small in some sense. The problem of minimising the L2 gain of Tp : ulin 7→ yd

was considered in [25] and [23] where methods for static, low and full order AW compensation were derived
based on LMI optimisation. One of the main problems with the static and low order schemes is that there is
no guarantee that one of these schemes will globally stabilise the system in question. In contrast, there always
exists a full-order AW compensator which globally stabilises a linear control system with saturation, providing
the plant is open-loop stable. It is this type of compensator which the remainder of the paper will focus on.

Full-order AW compensation is that in which the order of the AW compensator is the same as that of the plant.
From Figure 2, in order for our AW compensator parametrised by M(s) to be full-order, pole-zero cancellations
must occur between M(s) and G(s). In [27] it was suggested that a good choice of M(s) would be a right
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coprime factorization of the plant, G(s) = N(s)M(s)−1, providing a dual representation of anti-windup com-
pensators to that given by [8] (also used by [10] and [2]). Thus, the disturbance filter reduces to N(s) and the
the AW compensator is completely independent of the controller K(s). A suitable representation for M and N ,
without introducing any extra states, is:

[

Θ1

Θ2

]

=

[

M − I

N

]

=











ẋ = (A + BF )x + Bũ

ud = Fx

yd = (C + DF )x + Dũ

(6)

where F is a free parameter and A + BF must be Hurwitz. Thus, the problem of designing a full-order anti-
windup compensator becomes that of choosing an appropriate right coprime factorisation, which in turn reduces
to that of choosing an appropriate state-feedback gain matrix, F .

In the standard AW formulation we do not consider uncertainty and focus on ensuring that linear behaviour is
perturbed as little as possible by any saturation events and that linear behaviour is recovered ([25, 22]). Formally,
the problem we address is encapsulated in the following formulation.

Problem 1 The AW compensator (6), is said to solve the anti-windup problem if the closed loop system in Figure
2 is stable and well-posed and the following hold:

1. If dist(ulin,U) = 0, ∀t ≥ 0, then yd = 0, ∀t ≥ 0 (assuming zero initial conditions for M(s)).

2. If dist(ulin,U) ∈ L2, then yd ∈ L2.

The AW compensator is said to solve strongly the anti-windup problem if, in addition, the following condition is
satisfied:

3. The operator Tp : ulin 7→ yd is well-defined and finite gain L2 stable.

Essentially, a compensator solving this problem would ensure no corrective AW action is taken unless saturation
occurs, assuming zero initial conditions for the compensator, and that an asymptotic recovery of linear behaviour
is guaranteed. The strong version of the problem also guarantees that peformance (measured by the “gain” of
the operator Tp) is also addressed. The first part of the paper solves this problem.
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2.2 Robust AW Formulation

Control engineers rarely have the luxury of dealing with perfect plant models and typically the model, G(s), is
not a true representation of the real system. A better way of describing the true linear plant is

G̃ = G + ∆G (7)

where our plant model G(s) is now accompanied by additive uncertainty ∆G ∈ RH∞. It is well known from the
robust control literature [17] that disregard for uncertainty may have serious consequences for the true closed-
loop system, and control loops which behave acceptably for the nominal plant may suffer dramatic stability and
performance losses when applied to the true, uncertain plant. Recent results in the AW literature [20, 4, 23] seem
to suggest that obtaining robust performance in the face of saturation may be more demanding.

Although there are several ways of representing uncertainty, the additive type given in equation (7) is appealing
because it captures both output-multiplicative and input-multiplicative uncertanties: ∆G = ∆oG or ∆G = G∆i

where ∆o and ∆i are output and input multiplicative uncertainties respectively. The converse is only true if G−1

exists. As we are seeking global results it is necessary that ∆G ∈ RH∞

A key feature of the standard AW formulation, is that it allows the decoupling of nominal linear behaviour from
saturated behaviour. The presence of uncertainty destroys this property and, instead, uncertainty-dependent
coupling is introduced, as illustrated in Figure 4. The block ∆GM couples the “linear loop” with the output
of the nonlinear loop. Although it is obvious that sufficiently small ∆G(s) will not be problematic, for larger
uncertainties potential stability issues may arise. Also note that if the map from ulin to ũ is sufficiently small,
similar robustness properties to the linear system can be expected.

Following [23], robustness is tackled via a small gain approach. The following formal assumption is made:

Assumption 1 The closed-loop linear system is robustly stable: ‖K(I − GK)−1‖∞ = β and ∆G ∈ ∆ where

∆ =

{

∆ ∈ RH∞ : ‖∆‖∞ <
1

β

}

(8)

This assumption guarantees that, in the absence of saturation, the linear system satisfies the small gain condition
for stability.
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From Figure 4, note that

ylin = Gulin + ∆G[ulin − MF(ulin)] = Gulin + ∆̃G(ulin) (9)

where F(ulin) denotes the nonlinear operator from ulin to ũ and ∆̃G is the “modified” uncertainty representing
the effect of saturation on the uncertainty. From the small gain theorem we know that robust stability is obtained
if

‖∆̃G‖i,2 = ‖∆G[I − MF(.)]‖i,2 <
1

β
(10)

Furthermore the level of robust stability will be equal to or better than that of the linear system if

‖Tr‖i,2 = ‖I − MF(.)‖i,2 ≤ 1 (11)

It was shown in [23] (see also [24]) that as the nonlinear operator F(ulin) = 0 for sufficiently small ulin, the
L2 gain of Tr can never be less than unity. Thus nominal robustness is obtained when ‖Tr‖i,2 = 1 and hence
‖∆̃‖i,2 = ‖∆‖∞. Denoting the output of the M block as z∆ it then follows that for robust stability of our
anti-windup system we should attempt to minimise the L2 norm of Tr : ulin 7→ z∆ (as shown in Figure 5). This
motivates the following problem formulation.

Problem 2 The anti-windup compensator (6) is said to solve the robust anti-windup compensator problem with
robustness margin 1/µ if the closed-loop in Figure 4 is well-posed and the following hold:

1. If sat(u) ≡ u, then the system is robustly stable for all ∆ ∈ ∆.

2. If ∆G = 0, then M(s) solves strongly the standard anti-windup problem (Definition 2) for some perfor-
mance level γ.

3. The operator Tr : ulin 7→ z∆ has finite L2 gain, i.e. ‖Tr‖i,2 < µ.

This problem will be addressed in the second part of the paper.

Remark 1: Obviously if µ = 1, we have retained the robustness of the linear system. However, this is not
always possible if the performance level, γ, is to be minimised as well, and thus it might be appropriate to relax
our robustness requirements in order to obtain performance improvement. �
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3 Standard AW Problem Solution (∆G = 0)

The problem of stability and performance is addressed by minimizing the L2 gain of Tp : ulin 7→ yd, or
alternatively finding the minimum γ > 0 such that ‖Tp‖i,2 ≤ γ. The following procedure not only allows
the synthesis of an optimal compensator, but also ensures asymptotic stability and gives a measure of global
performance if the plant G is assumed asymptotically stable. The main result of the section is the following
theorem.

Theorem 1 There exists a full order anti-windup compensator Θ = [Θ′
1 Θ′

2]
′ ∈ R(m+q)×m, as described by

equation (6), which solves Problem 1 if there exist matrices P = P ′ > 0, W = diag(ω1, . . . , ωm) > 0 and a
postive real scalar γ such that the following Riccati equation is satisfied

Ã′P + PÃ + PBR−1B′P + Q̃ = 0 (12)

where

Ã = A + BR−1D′C (13)

Q̃ = C ′(I + DR−1D′)C (14)

R = (γ2I − D′D) > 0 (15)

and
Z = (2W − D′D − γ−2W 2) > 0 (16)

Furthermore, if equation (12) and inequality (16) are satisfied, a suitable Θ achieving ‖Tp‖i,2 < γ is obtained
by calculating the matrix gain F in (6) as follows:

F = −γ2(W−1 − γ−2)R−1(B′P + D′C) (17)

To aid our proof we will need the following property:

Definition 2 Completing the square Given vectors x ∈ R
n, y ∈ R

m, matrices X ∈ R
n×p, Y ∈ R

p×m and
scalar α

(αXx − α−1Y y)′(αXx − α−1Y y) = α2x′X ′Xx + α−2y′Y ′Y y − x′X ′Y y − y′Y ′Xx

Proof: In order to solve strongly the AW compensation problem, it is necessary to meet the conditions stated in
Problem 1. It is easy to observe that the first two conditions are trivially met if internal stability of the closed-loop
compensated system is guaranteed, assuming zero initial conditions for the AW compensator. As will be shown
later, by choosing F as described in Theorem 1, it is possible to guarantee that ‖Tp‖i,2 < γ for any γ > ‖G‖∞,
therefore solving strongly the AW compensation problem.

For algebraic simplicity, we consider the case where D = 0 (the proof when D 6= 0 involves much more algebra
and hence for space reasons is omitted). Note that as Dz(.) ∈ Sector[0, I], it follows that for some matrix
W = diag(ω1, . . . , ωm) > 0

ũ′W (u − ũ) ≥ 0 (18)
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Next assume ∃ v(x) = x′Px > 0, then if

L(x, ulin, ũ, F, W ) :=
d

dt
x′Px + ‖yd‖2 − γ2‖ulin‖2 + 2ũ′W (u − ũ) (19)

is negative definite, it follows that v̇(x) < 0 is a Lyapunov inequality and the closed loop system is stable. Also
notice that if L(x, ulin, ũ, F, W ) < 0, then assuming zero initial conditions, integrating L(.) in the time interval
from 0 to T and taking the limit T → ∞, yields ‖yd‖2 < γ‖ulin‖2 and hence ‖Tp‖i,2 < γ. Thus, if equation
(19) is negative definite, the strong anti-windup problem is solved in the L2 sense.

Expanding (19) and substituting u = ulin − ud gives

L = x′C ′Cx − γ2u′
linulin + ẋ′Px + x′Pẋ − 2ũ′Wud − 2ũ′Wũ + 2ũ′Wulin (20)

This inequality contains several cross-terms in x, ũ, ulin. We now eliminate the cross-product terms in three
steps using Definition 2.

(I) The cross-product terms involving ulin and ũ can be grouped as follows:

−
[

γ2u′
linulin − 2ũ′Wulin

]

= −‖γulin − γ−1Wũ‖2 + γ−2ũ′W 2ũ

Combining the above with (20), a cost function containing no cross-product terms between ulin and ũ is obtained.
Using equation (1) to expand ẋ and noticing from equation (6) that ud = Fx:

L = x′(C ′C + A′P + PA + 2PBF )x + 2ũ′(B′P − WF )x − ũ′(2W − γ−2W 2)ũ − ‖γulin − γ−1Wũ‖2

(II) The cross-product terms involving ũ and x can be grouped, including the extra term γ−2ũ′W 2ũ from (I), as
follows:

−
[

ũ′(2W − γ−2W 2)ũ − 2ũ′(B′P − WF )x
]

=

−‖Z 1

2 ũ − Z− 1

2 (B′P − WF )x)‖2 + x′(B′P − WF )′Z−1(B′P − WF )x

Note that Z = (2W − γ−2W 2) must be positive definite in order to have a well-posed problem, and hence the
condition in equation (16) is imposed. This condition arises from the necessity of making the term

‖Z 1

2 ũ − Z− 1

2 (B′P − WF )x‖2 (21)

positive definite for any pair (ũ, x). It can easily be shown that if Z ≤ 0, this is not always guaranteed. By
replacing this new group of terms, the cost function can be written with no cross-product terms between ũ and
x:

L = x′(C ′C + A′P + PA + 2F ′B′P + PBZ−1B′P − 2PBZ−1WF + F ′WZ−1WF )x

−‖Z 1

2 ũ − Z− 1

2 (B′P − WF )x‖2 − ‖γulin − γ−1Wũ‖2 ≤ 0

(III) The terms involving F and F ′F can be grouped as follows:

F ′WZ−1WF − 2F ′((WZ−1B′P − B′P ) =

‖Z− 1

2 WF − Z
1

2 W−1(WZ−1 − I)B′P‖2 − PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P
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This last step will yield an expression for the matrix gain F . Finally, by using the results given in (III) we obtain
an expression for our cost function (19) as

L(x, ulin, ũ, F, W ) = La + Lb + Lc (22)

where

La = x′(C ′C + A′P + PA + PBZ−1B′P − PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P )x (23)

Lb = ‖(Z− 1

2 WF − Z
1

2 W−1(WZ−1 − I)B′P )x‖2 (24)

Lc = −‖Z 1

2 ũ − Z− 1

2 (B′P − WF )x‖2 − ‖(γulin − γ−1Wũ‖2 (25)

Equation (22) is comprised of three terms. The last term, Lc, is a negative definite quadratic term, and therefore
if the first two terms can be set to zero, then L(.) < 0. Setting the second term, Lb, to zero yields a condition for
the gain matrix F .

(Z− 1

2 WF − Z
1

2 W−1(WZ−1 − I)B′P ) = 0 ⇔ F = (γ−2 − W−1)B′P (26)

where P = P ′ > 0 comes from solving the Ricatti equation which makes the first term La = 0:

C ′C + A′P + PA + PBZ−1B′P − PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P = 0 (27)

which, after some algebraic manipulation, reduces to:

C ′C + A′P + PA + γ−2PBB′P = 0 (28)

These are exactly the conditions given in Theorem 1 with D = 0. Internal stability guarantees that condition (1)
of the anti-windup problem (Problem 1) is satisfied; the finite L2 gain of Tp ensures condition (3) is satisfied, and
hence condition (2) is also satisfied. Well-posedness of the loop is guaranteed by the lack of direct feedthrough
terms i.e. M − I is strictly proper. ��

Remark 2: Notice that the Riccati equation given is of bounded-real type and only has a solution if G(s) is stable
and γ > 0 is such that ‖G‖∞ = γopt ≤ γ. That is, the performance level of the AW compensator is restricted
by the H∞ norm of the open-loop plant. This suggests that optimal anti-windup performance is obtained when
γ = γopt, leaving the designer the task of choosing W > 0. This freedom in choosing W is absent in [23] and
[11] and hence we have recovered freedom in choosing the so-called stability multiplier. �

Remark 3: The poles of AW compensator (6) are the poles of M(s), which are the eigenvalues of the matrix
A + BF where F is given by equation (17). Note that equation (17) contains the “free” parameter, W > 0

which exerts influence over the location of the AW compensator poles. Thus it can be observed that, providing
(A, B) is controllable (it is always stabilisable by virtue of A being Hurwitz), decreasing the size of W will tend
to increase the magnitude of the AW compensator’s poles. This extra freedom in shaping the AW compensator’s
poles is useful for discrete-time implementation when careful attention should be paid to their size relative to
the sampling rate. In the LMI formulation of [23], W did not appear as a free parameter and hence there was
not such direct control over pole magnitude. Note also that the freedom in choosing W allows one to “transfer”
anti-windup action between the compensation signals ud and yd. �

Remark 4: Apart from being diagonal and positive definite, the only restriction on W is given by equation (16).
When D = 0 this simply reduces to (2I − γ2W ) > 0 which always holds for small enough W > 0. When
D 6= 0, the condition on R ensures that D′D < γ2I which in turn means that inequality (16) becomes

Z = 2W − γ2I − γ−2W 2 > 0 (29)



11

Using the Schur complement this holds if






2W W I

W γ2 0

I 0 γ−2






> 0 (30)

from which W can be determined. In the work carried out so far, it has been straightforward to choose W such
that the condition on Z is satisfied. �

4 Robust anti-windup synthesis

4.1 Robustness analysis

Similar to the standard anti-windup problem above, the robust anti-windup problem, eventually reduces to the
choice of a coprime factorisation of G(s) and hence the choice of a matrix F (with the restriction that (A+BF )

is Hurwitz) . From the discussion in Section 2.2 we know that in order to achieve good robustness we need
to minimise ‖Tr‖i,2, which is the map from ulin to z∆. Before the problem is solved formally, it is useful to
examine the problem from a less rigorous perspective and to anticipate the solutions we might expect.

Following similar arguments to those in Section 3, to guarantee that ‖Tr‖i,2 < µ, we consider

L(x, ulin, ũ, F, W ) :=
d

dt
x′Px + ‖z∆‖2 − µ2‖ulin‖2 + 2ũ′W (u − ũ) (31)

If L(.) < 0 it follows that the anti-windup system is internally stable and that ‖Tr‖i,2 < µ indeed holds.

For the sake of illustration, let W = I . Although this restricts the design freedom, it enables the simple illustra-
tion of a class of robust AW compensators (the case when W 6= I will be discussed next). Expanding (31) and
substituting u = ulin − Fx and z∆ = (ulin − Fx − ũ) gives

L = x′(A′P + PA + 2PBF + F ′F )x + 2xPBũ − ũ′ũ − (µ2 − 1)u′
linulin − 2xF ′u′

lin (32)

Eliminating the cross-product terms in three steps, it is possible to obtain conditions which ensure global stability
and some level of robustness robustness as

Ã′P + PÃ + µ−2PBB′P = 0 (33)

and
Z = (1 − µ−2)I > 0 ⇔ µ > 1 (34)

Furthermore, if equations (33) and (34) are satisfied, a suitable AW compensator achieving ‖Tr‖i,2 < µ is
obtained by calculating the matrix gain F as follows:

F = −(1 − µ−2)B′P (35)

Notice that the immediately obvious solution for the Riccati equation in (33) is P = 0, which therfore implies
that F = 0 and hence that our AW compensator takes the form of an internal-model-control (IMC) compensator.
Thus for optimal robustness, the Riccati approach agrees with [23] in advocating the IMC scheme as an optimally
robust solution as µ is not restricted by equation (33) if P = 0 (note from equation (34) that it is possible to
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Figure 6: µ2 and W such that Z = 0

achieve µ = 1 for P = 0). However, there is more freedom in equation (33) because by defining P =: P̃−1 > 0

we could equivalently obtain, from equation (33), the Lyapunov equation

P̃A′ + AP̃ + µ−2BB′ = 0 (36)

which has a positive definite solution, and therefore produces a compensator different from the IMC scheme.

In order to solve the robust AW compensation problem, it is necessary to meet the conditions in Problem 2
(and hence Problem 1). It is easy to observe again that the conditions of the standard AW problem are met
if internal stability of the closed-loop compensated system is guaranteed, assuming zero initial conditions for
the AW compensator. By choosing F as described in (35), it is possible to guarantee that ‖Tr‖i,2 < µ for some
µ > 0, therefore solving the robust AW compensation problem. It can be argued that the the strong AW problem,
i.e. ‖Tp‖2 ≤ γ, is better solved when the IMC-like scheme is avoided (see Theorem 2 and proof).

Remark 5: It is not necessary to choose W = I . More generally, the expression for (31) is given as

L = x′(A′P + PA + 2PBF + F ′F )x + 2xPBũ − ũ′(2W − I)ũ − (µ2 − 1)u′
linulin − 2xF ′u′

lin

+ 2ulin(W − I)ũ′ − 2xF ′(W − I)ũ′ < 0 (37)

Completing the square for terms involving ulin, a more general condition on Z is derived as

Z = 2W − µ−2W 2 − I > 0 (38)

As W is diagonal, this implies that µ2 > wi

2wi−1 ∀i ∈ {1 . . .m}. This implies that wi > 0.5 (since µ > 0) and
that the minwi

µ = 1 and occurs at wi = 1 (or W = I). Thus W = I is in fact, the optimally robust solution.
This can be seen in Figure 6. �.

4.2 Robust stability and performance analysis

The main purpose of AW compensation is to improve performance during periods of saturation. Section 2.2
mentioned that the solution to the robust AW problem with the greatest robustness margin (the smallest µ) is
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likely to be IMC-like. In fact, just considering robustness leads to conditions (33) and (35) which do not give
any explicit performance guarantees. The real value of conditions (33) and (35) is when used in conjuction with
performance optimization.

The AW solutions given in [25] performed well but tended to produce large compensation signals and poles,
which are often linked with poor robustness. Although robustness was present, it was not addressed formally.
Later, [23] addressed robust stability and mixed robustness/perfromance optimization problems using LMI for-
mulations. Nevertheless, this formulation lacks some intuition and practicability.

This section will attempt to show that the work in [18], which produces a family of anti-windup compensators,
naturally yields a robust solution where the “stability multiplier” (i.e. W ) is a measure of robustness. It will also
give a method for the synthesis of robust AW compensators with performance guarantees.

The problem of robust stability and performance involves minimizing a mixed L2 gain. By combining the
objective of robust stability with that of performance, it is possible to pose a sensible L2 gain optimization
problem which addresses robustness and performance simultaneously.

Theorem 2 Let Assumption 1 be satisfied, then there exists a full order robust anti-windup compensator Θ =

[Θ′
1 Θ′

2]
′ ∈ R(m+q)×m, as described by equation (6) which solves Problem 2 with robustness margin 1/µ if

there exist a matrix P = P ′ > 0 and postive real scalars ωp and γ such that the following Riccati equation is
satisfied

Ã′P + PÃ + PBR−1B′P + Q̃ = 0 (39)

where

Ã = A + BR−1D′C (40)

Q̃ = C ′(I + DR−1D′)C (41)

R = (γ2I − D′D) > 0 (42)

and

Z = (ωp − γ−2)(ω−1
p I − D′D) > 0 (43)

Furthermore, if equation (39) is satisfied, a suitable Θ is obtained by calculating the matrix gain F as:

F = −γ2R−1(ωp − γ−2)(B′P + D′C) (44)

and the robustness margin is given as 1/µ = 1/γ
√

ωp.

Before we give a formal proof of this theorem, it is instructive to consider the relationship between the standard
AW solution and robustness. For simplicity assume G(s) is strictly proper (D = 0), then it follows that for
simultaneous performance and robustness optimisation we would like to ensure

∥

∥

∥

∥

∥

W
1

2

p yd

z∆

∥

∥

∥

∥

∥

2

≤ µ‖ulin‖2 (45)

where Wp > 0 is a matrix which weights the performance variable, yd, to allow a trade-off between performance
and robustness. From the results given in section 4.1, a sufficient condition for this to hold can be easily derived
and is given by

A′P + PA + µ−2PBB′P + C ′WpC = 0 (46)

F = −(Ŵ−1 − µ−2)B′P (47)
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where Ŵ is the extra parameter introduced by the Circle Criterion formulation and the sector bound definition.
Next assume that Wp = Iωp > 0, then defining Pw := Pω−1

p > 0 allows us to write equation (46) as

ωp(A
′Pw + PwA + µ−2ωpPwBB′Pw + C ′C) = 0 (48)

Next, defining γ := µ/
√

ωp yields (as ωp > 0)

A′Pw + PwA + γ−2PwBB′Pw + C ′C = 0 (49)

Similarly we obtain F as

F = −(Ŵ−1 − µ−2)B′Pwωp = −(Ŵ−1ωp − γ−2)B′Pw (50)

Notice that equations (49) and (50) are of exactly the same form as (12) and (17) with Pw playing the role of P

and Ŵ−1ωp = W−1.

µ = γ
√

ωp ≤ γ‖
√

WŴ−1‖ (51)

Thus for small ωp, or equivalently large W we have greater robustness (as small µ corresponds to greater robust-
ness margin, 1

µ
). Thus in the standard AW problem, the choice of W is directly linked to the robustness of the

system and must be chosen large to increase robustness.

Proof of Theorem 2: To satisfy the robustness and performance AW problem we need to ensure that both the
standard AW problem, i.e. ‖Tp‖i,2 < γ for some γ > 0, and the robust AW problem, i.e. ‖Tr‖i,2 < µ for some
µ > 0, are satisfied while also requiring internal stability and well-posedness. In order to achieve this we would
like to ensure that

∥

∥

∥

∥

∥

√
ωpyd

z∆

∥

∥

∥

∥

∥

i,2

≤ µ‖ulin‖2 (52)

If this inequality is satisfied it ensures that both ‖Tr‖i,2 < µ and ‖Tp‖i,2 < γ = µ√
ωp

. To guarantee inequality
(52) holds and to ensure internal stability, as before, it suffices that

L(x, ulin, ũ, F, W ) :=
d

dt
x′Px + ωpy

′
dyd + z′z − µ2u′

linulin + 2ũ′W (u − ũ) < 0 (53)

The remainder of the proof is given for the general case when D 6= 0. Although it is possible to give a simpler
proof when D = 0, the simplicity obscures the cross terms which require more care in removing.

First note that we can “absorb” ωp into the plant’s C and D matrices:

‖√ωpyd‖2 = ‖√ωp[(C + DF )x + Dũ]‖2 = ‖(Cw + DwF )x + Dwũ‖2

where Cw =
√

ωpC and Dw =
√

ωpD.

Expanding (53) and substituting u = ulin − ud and yd = (Cw + DwF )x + Dwũ gives:

L = ẋ′Px + x′Pẋ + x′(Cw + DwF )′(Cw + DwF )x + x′F ′Fx − (µ2 − 1)u′
linulin − ũ′(2W − I − D′

wDw)ũ

−2x′F ′ulin + 2ũ(W − I)ulin − 2x′F ′(W − I)ũ + 2x′(Cw + DwF )′Dwũ (54)

As before, the cross-product terms are eliminated in three steps.
(I) The cross-product terms involving ulin, ũ and x are grouped as follows:
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−
[

(µ2 − 1)u′
linulin + 2x′F ′ulin − 2ũ(W − I)ulin

]

=

−‖(µ2 − 1)
1

2 ulin − (µ2 − 1)−
1

2 ((W − I)ũ − Fx)‖2 + (ũ′(W − I) − x′F )(µ2 − 1)−1((W − I)ũ − Fx)

Combining the above and equation (54), a cost function containing no cross-product terms between ulin, ũ and
x is obtained:

L = x′(A′P + PA + 2PBF + (Cw + DwF )′(Cw + DwF ) + µ̃F ′F )x − ũ′µ̃Zũ + 2x′(Cw + DwF )′Dwũ

+ 2x′PBũ − 2x′F ′µ̃(W − I)ũ − ‖(µ2 − 1)
1

2 ulin + (µ2 − 1)−
1

2 ((W − I)ũ − Fx)‖2 (55)

where Z = 2W − W 2µ−2 − I − µ̃−1D′
wDw

∗ and µ̃ = 1 − (µ2 − 1)−1 = µ2

µ2−1

(II) The cross-product terms involving ũ and x are grouped as follows:

− [ũ′µ̃Zũ − 2x′(PB + (Cw + DwF )′Dw − F ′µ̃(W − I))ũ] =

−‖µ̃ 1

2 Z
1

2 ũ − µ̃− 1

2 Z− 1

2 (B′P + D′
w(Cw + DwF ) − µ̃(W − I)F )x‖2

+x′(PB + (Cw + DwF )′Dw − F ′µ̃(W − I))µ̃−1Z−1(B′P + D′
w(Cw + DwF ) − µ̃(W − I)F )x

By replacing this group of terms, the cost function can be written with no cross-product terms between ũ and x,
viz:

L = x′(A′P + PA + C ′
w(I + Dwµ̃−1Z−1D′

w)Cw + 2C ′
wDwµ̃−1Z−1B′P + PBµ̃−1Z−1B′P

+ F ′(µ̃ + µ̃(W − I)Z−1(W − I) + D′
w(I + Dwµ̃−1Z−1D′

w)Dw − 2D′
wDwZ−1(W − I))F

+ 2PB(I + µ̃−1Z−1D′
wDw − Z−1(W − I))F + 2C ′

wDw(I + Dwµ̃−1Z−1D′
w − Z−1(W − I))F )x

− ‖(µ2 − 1)
1

2 ulin + (µ2 − 1)−
1

2 ((W − I)ũ − Fx)‖2

− ‖Z 1

2 ũ − Z− 1

2 (B′P + D′
w(Cw + DwF ) − µ̃(W − I)F )x‖2 (56)

(III) The terms involving F and F ′F are grouped.. Before grouping terms, it is possible to reduce them by using
the definitions for µ̃ and Z. Although some algebra is involved, it is easy to note that:

I + µ̃−1Z−1D′
wDw − Z−1(W − I) = Z−1(W − W 2µ−2)

µ̃ + D′
wDw + µ̃(W − I)Z−1(W − I) − 2D′

wDwZ−1(W − I) + D′
wDwµ̃−1Z−1D′

wDw = µ̃H

where

H = W 2µ−2 + (W − W 2µ−2)Z−1(W − W 2µ−2)

The problem of grouping terms invloving F is now reduced to:

F ′µ̃HF + 2F ′(W − W 2µ−2)Z−1(B′P + D′
wCw) =

‖µ̃ 1

2 H
1

2 F + µ̃
−1

2 H
−1

2 (W − W 2µ−2)(B′P + D′
wCw)‖2

−(PB + C ′
wDw)Z−1(W − W 2µ−2)µ̃−1H−1(W − W 2µ−2)Z−1(B′P + D′

wCw)

Using the matrix inversion lemma:

H−1 = W−2µ2 − W−2µ2(W − W 2µ−2)µ̃R−1(W − W 2µ−2)W−2µ2

∗This reduces to the Z given in Theorem 2 when W = I - see later in the proof.
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where R = µ2I − D′
wDw. Now define the matrix Q as follows:

Q = Z−1(W − W 2µ−2)µ̃−1H−1(W − W 2µ−2)Z−1 = R−1(W − W 2µ−2)W−2µ2(W − W 2µ−2)Z−1

such that the following equality holds:

µ̃−1Z−1 − Q = R−1

Finally, by using the results given in III an expression for the cost function (53) is given by

L(x, ulin, ũ, F, W ) = La + Lb + Lc (57)

where

La = x′[A′P + PA + PB(µ̃−1Z−1 − Q)B′P + C ′
w(I + Dw(µ̃−1Z−1 − Q)D′

w)Cw

+ 2C ′
wDw(µ̃−1Z−1 − Q)B′P ]x (58)

Lb = x′(‖µ̃ 1

2 H
1

2 F + µ̃
−1

2 H
−1

2 (W − W 2µ−2)Z−1(B′P + D′
wCw)‖2)x (59)

Lc = −‖(µ2 − 1)
1

2 ulin + (µ2 − 1)
−1

2 ((w − I)ũ − Fx)‖2

−‖Z 1

2 ũ − Z
−1

2 (B′P + D′
w(Cw + DwF ) − µ̃(W − I)F )x‖2 (60)

As before the negative quadratic terms can be ignored and the second term, Lb, set to zero in order to obtain a
stabilizing matrix gain F .

µ̃
1

2 H
1

2 F + µ̃
−1

2 H
−1

2 (W − W 2µ−2)Z−1(B′P + D′
wCw) (61)

F = −µ̃−1H−1(W − W 2µ−2)(B′P + D′
wCw)

which after some simplifications yields:

F = −µ2(W−1 − µ−2)R−1(B′P + D′
wCw) (62)

where P = P ′ > 0 comes from solving the Ricatti equation which makes the first term La = 0, viz:

A′P + PA + C ′
wDwR−1B′P + PBR−1D′

wCw + PBR−1B′P + C ′
w(I + DwR−1D′

w)Cw (63)

Subsituting for Cw and Dw transforms equation (62) into

F = −µ2ω−1
p (W−1ωp − µ−2ωp)(µ

2ω−1
p I − D′D)−1(B′P−1

w + D′C) (64)

= γ2(W−1ωp − γ−2I)(γ2I − D′D)(B′Pw + D′C) (65)

where γ = µ
√

ω−1
p . Redefining R = (γ2I −D′D) and setting W = I (as it is a free parameter) the expressions

for F and Z given in Theorem 2 can be obtained. We can apply a similar strategy to equation (63) to obtain

A′Pw + PwA + C ′DR−1B′Pw + PwBR−1D′C + PwBR−1B′Pw + C ′(I + DR−1D′)C (66)

where Pw = Pω−1
p plays the role of P .

The proof is completed by noting that internal stability, which is guaranteed by choosing F as stipulated and the
solution to the Riccati equation in (63), ensures conditions (1) and (3) (and hence condition (2)) of the standard
anti-windup problem. This guarantees condition (1) of the robust anti-windup problem, while condition (3) is
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satisfied through Assumption 1. Well-posedness of the system is trivially guaranteed by the absence of direct
feedthourgh terms in the nonlinear loop. ��.

Remark 6: As µ = γ
√

ωp it follows that by choosing ωp small, we have a better robustness margin and choosing
ωp large gives a worse robustness margin. Also, a small ωp causes our feedback matrix F to become small and
hence approach the IMC solution; a large ωp creates large compensator poles. It is interesting to compare the
conditions in Theorems 1 and 2. Note that W−1 in Theorem 1 is essentially equivalent to ωp in Theorem 2.
Therefore, choosing W in Theorem 1 large implies greater robust stability and choosing it small implies worse
robust stability. Thus the choice of the “stability multplier”, W , plays a central role in the robustness of the anti-
windup compensator. Alternatively, in the standard AW solution, W can be seen as the “robustness weighting
matrix”: choosing W large (and therefore ωp small) increases the robustness of the design. This gives some
theoretical justification for the robustness of the schemes tested in [7]. �

Remark 7: It is not necessary to choose Wp = ωpI in robust anti-windup synthesis. We have made this choice in
Theorem 2 to enable clear expressions for robustness to be given, although this is not a requirement in general.
With Wp chosen as a more general positive definite (normally diagonal) matrix, it is possible to increase the
flexibility in the design and draw the same general conclusions, although the robustness margin will not be as
explicit as that given in Theorem 2. �

Remark 8: The main difference between the solutions to the standard and robust AW problems are the conditions
imposed on the solution by the different expressions for Z in inequalities (16) and (43). These inequalities impose
different conditions on the free parameter, W or ωp. They also give rise to different extreme solutions. This is
perhaps most easily seen for D = 0. In this case inequalities (16) and (43) become

Znom := 2W − γ−2W 2 ⇒ 2γ2I > W (67)

Zrob := (ωp − γ−2)ω−1
p ⇒ γ2 > ω−1

p (68)

So when W is as large as possible, that is W ≈ 2γ2I , it follows that from equation (17) F is nonzero, and hence,
not IMC-like. Conversely, when ωp is as small as possible and ω−1

p ≈ γ2, it follows from equation (44) that
F ≈ 0 and hence, the IMC solution is recovered. Thus, as expected from the results of [23], the optimal robust
AW scheme (i.e. when ωp is as small as possible), results in the IMC scheme. It is also interesting to note that
inequality (43) ensures that inequality (16) holds; the converse is only true if ‖D‖ is “small”. �

5 Example

In this section, the effectiveness of the results are shown through an example taken from the literature. This
example, a missile auto-pilot introduced by [13], was also used in [25] and [14]. The plant is a simplified model
of the dynamics of the roll-yaw channels of a bank-to-turn misile:

Ap =







−0.818 −0.999 0.349

80.29 −0.579 0.009

−2734 0.05621 −2.10






,

Bp =







0.147 0.012

−194.4 37.61

−2716 −1093






, Bpd =







0 0

0 0

0 0







Cp =

[

1 0 0

0 1 0

]

, Dp = Dpd =

[

0 0

0 0

]
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A nominal linear LQG/LTR controller yields excellent nominal closed-loop time and frequency responses and is
given by

[

Ac Bc Bcr

Cc Dc Dcr

]

=







Ac1 Bc1 0 0

0 0 −I I

Cc1 0 0 0






(69)

where

Ac1 =















−0.29 −107.8 6.67 −2.58 −0.4

107.68 −97.81 63.95 −4.52 −5.35

−6.72 64.82 −54.19 −40.79 5.11

3.21 2.1 29.56 −631.15 429.89

0.36 −3.39 3.09 −460.03 −0.74















,

Bc1 =















2.28 0.48

−40.75 2.13

18.47 −0.22

−2.07 −44.68

−0.98 −1.18















, Cc1 =

[

0.86 8.54 −1.71 43.91 1.12

2.17 39.91 −18.39 −8.51 1.03

]

The actuators have saturation limits of ±8 in both channels. Figure 7 shows the nominal linear response of the
missile for a pulse reference r = [ 6 −6 ] applied for 16 seconds. Notice the excellent response and decou-
pling. However, observe that the control signal strays outside the set U = {(8, 8), (−8, 8), (−8,−8), (8,−8)}for
a considerable period of time. This suggests that the system with saturated actuators might have poor perfor-
mance and could even become unstable. Figure 8 shows the system with saturation (but no AW); clearly the
saturation has caused a loss in coupling and gives rise to large overshoots. To limit the degradation caused by
saturation, an AW compensator designed using Theorem 1 is introduced. As the anti-windup compensator is
designed using the bounded real Riccati equation associated with the open-loop system, the optimal value of γ

is ‖G(s)‖∞ = γ ≈ 379, leaving the designer the task of choosing W . Choosing W as W = 10I2×2 yielded the
following value of F :

F =

[

4.8324 31.0935 0.9470

−0.1224 −0.6860 −0.0004

]

(70)

Figure 9 shows the missile response with the full order AW compensation proposed in Theorem 1. Notice the
improvement over the uncompensated response: the saturated system follows the linear response closely and
the return to nominal linear dynamics is swift. Also, observe how the control signal of the compensated system
returns to linear behaviour faster than the uncompensated system. After saturation i.e. when u− sat(u) = 0, the
system displays additional dynamics introduced by the AW compensator. This suggests that the poles of the AW
compensator must be fast and well damped.

Note that the Riccati based synthesis described in Theorem 1 gives, for a given value of γ (and therefore P > 0),
a family of gains, F , and therefore anti-windup compensators, parameterised by the diagonal matrix W > 0.
Observe from equation (6) that the poles of the anti-windup compensator and the sizes of the compensation
signals yd and ud are functions of W . Increasing the size of F (and thus decreasing the size of W ) leads to larger
poles (faster dynamics) and a large compensation signal ud. The flexibility in W is useful for implementation
as it allows the designer to limit the magnitude of the compensator poles to ensure that they are compatible with
the sampling frequency. The possibility of closely relating the size of the stability multiplier with the systems
poles is not present in th LMI formulation of the problem. Figure 10 shows time simulations for different values
of W with a fixed sampling rate of 10−3sec.
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Figure 7: Nominal linear resposne
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Figure 8: Saturated system with no AW compensation

Now consider the real nominal open-loop plant G̃(s) = G(s)∆act(s) consisting of the nominal plant G(s) plus
unmodelled dynamics ∆act(s) = diag(δact(s), δact(s)) where ∆act(s) represents unmodelled actuator dynamics
of the form:

δact(s) =
ω2

n

s2 + 2ζωns + ω2
n

where ωn is the undamped natural frequency and ζ is the damping constant. Assuming a “worst case” sce-
nario (from looking at the frequency response of the closed-loop transfer function) and setting these con-
stants to 30rad/sec and 0.049 respectively, the actuators have a resonant peak and very large phase shifts
near the crossover frequency. This input-multiplicative uncertainty can be modelled as an additive uncertainty
∆G(s) = G(s)[∆act(s)−I]. It can be verfied using the small gain theorem that under this uncertainty the system
is robustly stable as ‖K(I − GK)−1∆G‖∞ < 1. The nominal (un-saturated) closed loop response, including
uncertainties, is shown in Figure 11 and it is clear that stability has been maintained and that linear performance
in the face of this uncertainty is remarkably good. However, introducing saturation as well as the uncertainty
leads to the system entering a very high amplitude limit cycle (Figure 12).

In order to show the advantages of the Riccati based design method proposed in this paper, it will be compared
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Figure 9: Saturated system with full-order AW compensation using Theorem 1

against the static, low-order and robust full-order LMI methods proposed in [23, 25, 23]. Consider the uncertain,
saturated, AW compensated closed-loop system. Firstly, static and low-order compensators are designed using
the LMI method described in [25], to give:

Θstatic =

[

Θ1

Θ2

]

=











−0.9992 −0.0039

0.0173 −0.6921

−0.0112 −0.5573

−0.2022 −0.3408











Θloword = F1Θ1 + F2Θ2 = F1

[

−1.6973 5.1136

3.5044 81.5261

]

+ F2

[

−7.2807 −356.3648

−113.6640 53.0146

]

where the low-pass filters are chosen to be F1 = diag( 2
s+2 , 1) and F2 = I2

From Figures 13 and 14 it is evident that both the static and low-order compensators just manage to maintain
stability in the presence of uncertainty, but the system’s tracking and decoupling properties are lost. This rein-
forces the need for robust AW compensation schemes which can deal with a wide range of uncertainties in a
systematic way. Using the approach of [23], a “robust” LMI based AW compensator was obtained by choosing
weights Wp = I (performance) and Wr = 0.001I (robustness) to give the matrix gain:

F =

[

0.1181 0.8070 0.0240

−0.0035 −0.0172 −0.0002

]

(71)

The robust full-order compensator synthesis of [23] will be compared against the synthesis method proposed
in this paper. Figure 15 shows the response of the full-order LMI based AW compensator proposed in [23].
Surprisingly, its performance is worse than that of the static or low-order compensators. This may be due to the
fact that in such a scheme, robustness is achieved by reducing the magnitude of the poles of the compensator.
This, in turn, reduces the system’s performance. Although this is the ever present trade-off in robust control, the
lack of real freedom in the LMI synthesis method compromises more performance than necessary.

Figure 15 shows the response of the full-order Riccati based AW compenstor proposed in Theorem 2. Although
the response is far from ideal, it is definitely stable and yields overshoots around two orders of magnitude lower
than the LMI-based compensator. Although the robust Riccati-based compensator has faster dynamics, it is
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Figure 10: Full order compensation using Theorem 1 for different values of W , γ = 378 and a sampling rate of
10−3sec

clearly preferable to the LMI compensator. This is actually achieved by using Theorem 1, which can be seen
as a weighted version of Theorem 2, and setting W = diag[20, 0.1] and γ = 500. Notice that the freedom in
choosing γ or W is especially useful and is almost absent in the LMI formulations. In other words, the so called
stability multiplier (W ) and the performance index γ capture in a more efficient way the trade-offs that exist
between robustness and performance when designing AW cmpensators in the presence of uncetainties.

Remark 9: The example in this section has provided a simple illustration of the application of the algorithms
developed in this paper. It has been demonstrated how the link between the free parameter W and the AW
compensator’s closed-loop poles is useful for practical situations. The other strength of the Riccati technique
when compared to the LMI techniques is its numerical superiority. Although the robust design algorithm of
Theorem 2 has an LMI counterpart given in [23, 24], for large and complex problems, LMI’s can become
unreliable and unwieldy. Unfortunately, a comprehensive discussion of such an example is beyond the scope of
the current paper but AW compensators based on the Riccati techniques proposed here have recently been tested
on a model of an experimental aircraft; these results are due to be reported in [19].
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Figure 11: Uncertain Unsaturated system
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Figure 12: Uncertain Saturated system

6 Conclusions

This paper has presented an alternative solution to the full-order AW problem with performance and robustness
guarantees. The solution given is novel in the sense that most other full-order AW design techniques which
ensure stability and performance involve LMI’s (see [6] for a general treatment): here we simply require the
solution to a bounded real type of Riccati equation. The solution is also believed to be more intuitive in the
way that the free parameter, W > 0, is clearly linked to the poles of the anti-windup compensator, which has
important practical relevance.

The paper has also been successful in incorporating robustness into the AW problem and the results obtained have
uncovered the close relationship that exists between robust stability and the free parameter W , or the “stability
multiplier”. An important feature of designing full-order compensators using Riccati equations is that freedom
in choosing W allows the designer to reflect the relative importance of the input channels. Such is the case of
the auto-pilot-missile example, where even though both channels have saturation limits, only the second tends to
exceeds these limits.

Another important feature is the direct freedom the designer has in choosing γ. Although optimal peformance
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Figure 13: Uncertain Saturated system + Static AW compensator
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Figure 14: Uncertain Saturated system + Low-order AW compensator

is always desired, sometimes it is neccessary to compromise performance in order to achieve robust stability. In
the LMI fomulation given in [23], such a trade-off is hidden within the optimisation.

It is interesting to note how the design of AW compensators is completely independent from the controller K(s)

if no uncertainties are present. However, when uncertainties are introduced, this is no longer the case and a small
adjustment of the linear loop may enhance robustness of the saturated closed-loop plant. Recently the weakened
AW problem has been proposed in [4]. This attempts to improve robustness at the expense of adjusting the linear
loop, which has the potential to achieve greater robust stability (see also [9]).
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