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Direct calculation of the crystal–melt interfacial free energies
for continuous potentials: Application to the Lennard-Jones system

Ruslan L. Davidchack
Department of Mathematics and Computer Science, University of Leicester,
Leicester LE1 7RH, United Kingdom

Brian B. Laird
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

~Received 16 December 2002; accepted 31 January 2003!

Extending to continuous potentials a cleaving wall molecular dynamics simulation method recently
developed for the hard-sphere system@Phys. Rev. Lett.85, 4751~2000!#, we calculate the crystal–
melt interfacial free energies,g, for a Lennard-Jones system as functions of both crystal orientation
and temperature. At the triple point,T* 50.617, the results are consistent with an earlier cleaving
potential calculation by Broughton and Gilmer@J. Chem. Phys.84, 5759 ~1986!#, however, the
greater precision of the current calculation allows us to accurately determine the anisotropy ofg.
From our data we find that, at all temperatures studied,g111,g110,g100. A comparison is made to
the results from our previous hard-sphere calculation and to recent results for Ni by Asta, Hoyt, and
Karma @Phys. Rev. B66 100101~R! ~2002!#. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1563248#
o
-
ly
o

os

al
to
0
s
re
di

a
y
o

na

is
ea
b
in
t

s
a
m
–

rce

nal
the

and

-
s in
he
id
not
n-

he
ng
e
type
nal

fa-
p-
rd

re-
y

nd
d

he
v-
la-
se
I. INTRODUCTION

The magnitude and orientational dependence~anisotro-
py! of the solid–liquid interfacial free energy,g, is a primary
controlling parameter in the kinetics and morphology
crystal growth from the melt,1 especially in the case of den
dritic growth.2 As a consequence, the ability to accurate
measure or predict this quantity for specific materials is
significant technological and scientific importance. For m
materials, the only experimental data forg is extracted indi-
rectly from nucleation data~assuming some level of classic
nucleation theory!.1,3,4 Such indirect measurements tend
underestimate the actual interfacial free energy by 10%–2
and represent orientational averages, so all information a
interfacial anisotropy is lost. Direct experimental measu
ments, usually involving contact angle studies, are quite
ficult and relatively few in number,5 and, with the exception
of a small number of studies on transparent organic m
terials,6,7 are not of sufficient precision to resolve anisotrop
This paucity of reliable direct experimental measurements
technologically useful materials~such as metals! has moti-
vated the development of a variety of novel computatio
methods to determineg via molecular simulation.8–11

The interfacial free energy of a crystal–melt interface
defined1 as the reversible work required to form a unit ar
of interface. In a simulation this can be accomplished
constructing a continuous thermodynamic path from an
tial system consisting of separated bulk crystal and liquid
a final state containing an interface. The value ofg is then
determined by thermodynamic integration12 along that path.
This is a tedious process and care must to be taken to en
that the process is reversible, i.e., integration along the p
in both the forward and backward directions yields the sa
result~no hysteresis!. The first such calculation on a crystal
7650021-9606/2003/118(16)/7651/7/$20.00
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melt interface was performed by Broughton and Gilmer8 on a
system of particles interacting with a Lennard-Jones~LJ! po-
tential ~truncated so that both the potential and the fo
vanish at 2.5s, wheres is the usual LJ diameter!. To perform
the thermodynamic integration they employed exter
cleaving potentials that were slowly turned on to separate
samples. The precise~rather complex! functional forms of
the cleaving potentials were chosen, more or less by trial
error, to minimize hysteresis. The values ofg were deter-
mined to be 0.35~2!, 0.34~2!, and 0.36~2! ~in units of e/s2)
for the @111#, @100#, and @110# crystal orientations, respec
tively. The numbers in parentheses give the uncertaintie
the last digit shown. The main source of this error is t
small amount of hysteresis in the cleaving of the liqu
phase. Unfortunately, the precision of these results was
sufficient to resolve the anisotropy of the interfacial free e
ergy for this system.

Recently, we have developed a modification of t
Broughton and Gilmer approach in which planar cleavi
walls, as opposed to cleavingpotentials, are used to separat
the phases. These walls are constructed out of the same
of particles as present in the system, with a two-dimensio
~2-D! geometry consistent with the symmetry of the inter
cial orientation under study. This method was originally a
plied to the crystal–melt interface of a system of ha
spheres9 and was shown to have sufficient precision to
solve the anisotropy with@111# being the lowest free energ
face, followed by@100# and@110#. The cleaving wall method
is complementary to a method due to Hoyt, Asta, a
Karma10 in which the interfacial free energy is extracte
from the interfacial stiffness, which is determined from t
spectrum of fluctuations in an interfacial position. The clea
ing wall method has an advantage in that it requires simu
tions with an order of magnitude fewer particles than tho
1 © 2003 American Institute of Physics
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required for the fluctuation method (O@104# versusO@105#).
The precision in the raw values of the interfacial free en
gies is greater for the cleaving wall method than in the fl
tuation approach~even considering the far smaller syste
samples!; however, the fluctuation method yields som
what more precise values of the anisotropy parameters s
these are obtained from the anisotropy of the interfacial s
ness, which is far more anisotropic than the interfacial f
energy.

In this work, we extend our cleaving wall approac
to systems of particles interacting with continuous potenti
specifically applying it to the system of truncated LJ partic
considered by Broughton and Gilmer. Our results at the tr
point are consistent with the Broughton and Gilmer c
culation, but are of greater precision, allowing us to reso
the anisotropy, which is found to differ slightly from tha
for the hard-sphere system.9 In addition, we determine the
temperature dependence ofg along the coexistence curve
The magnitude ofg is shown to scale roughly linearl
with the melting temperature~as predicted by the hard
sphere model!.13

II. THE CLEAVING WALL METHOD

The direct determination of the excess free energy of
crystal–fluid interface of a model system within a compu
simulation can be achieved by thermodynamic integrat
along a reversible path beginning with separate crystal
fluid bulk systems prepared at the coexistence conditions
ending with a system containing a crystal–liquid interface
equilibrium with the surrounding bulk phases. The constr
tion of such a path requires the development of a proced
to reversibly cleave a simulation box into two noninteracti
systems. Following the prescription of Broughton a
Gilmer,8 we identify the following steps in the process
creating the crystal–liquid interface~see Fig. 1!.

~1! Step 1: Split the crystal bulk system with a suitab
chosen ‘‘cleaving’’ potential while maintaining the period
boundary conditions.

~2! Step 2: Split the liquid system in a similar way.
~3! Step 3: Juxtapose the cleaved crystal and liquid s

tems by rearranging the boundary conditions while mainta
ing the cleaving potentials.

~4! Step 4: Remove the cleaving potentials from th
combined system.

The interfacial free energy is calculated as the total w
required to perform the above steps divided by the area
the constructed interface. In addition to the coexistence c
ditions, the result will also depend on the orientation of t
crystal with respect to the interfacial plane. We will refer
the plane along which the crystal and liquid systems are s
as thecleaving plane. The location of the cleaving plane i
the crystal system is chosen in the center of the simula
box between two crystal layers, while in the liquid syste
the precise location is arbitrary.

The reversibility and precision of the thermodynamic
tegration process are very sensitive to the choice of clea
potentials. The requirements for the cleaving potential
two-fold: First, the cleaving potential should perturb the s
ownloaded 19 Aug 2013 to 143.210.121.140. This article is copyrighted as indicated in the abstrac
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tem as little as possible. As a consequence, it is desir
that, in step 2, the potential introduces structure into
cleaved liquid that is compatible with the structure of t
crystal layers. Second, the cleaving potential must be str
enough to prevent the particles from crossing the cleav
plane. Otherwise, the rearrangement of the boundary co
tions in step 3 cannot be performed.

Broughton and Gilmer14 carefully designed a set o
cleaving potentials for the truncated LJ system. Howev
their approach for constructing the cleaving potential w
optimized specifically for the LJ system and is not eas
adaptable to a general case. Here we outline an approach
is easily adaptable to systems with different interparticle
teraction potentials and different crystal structures.

As was demonstrated in our recent calculation of
interfacial free energy for the hard-sphere system,9 the ap-
propriate structure in the interfacial region of the fluid can
easily introduced by the potential of a pair of ‘‘cleavin
walls’’ ~labeled 1 and 2!, made of properly oriented crysta
layers, each interacting only with the particles on the op
site side of the cleaving plane. The wall particles are h
fixed at the crystal lattice sites. When the two walls are
away from the cleaving plane, they do not interact with t
system. Moving the walls closer to the cleaving plane int
duces a cleaving potential whose structure is similar to t
outside the crystal layers of the studied system. When a
uid system interacts with such a cleaving wall, it is expec
to form an interfacial layer structure similar to that at t
crystal–liquid interface. To achieve this, the interaction p

FIG. 1. An illustration of the four-step reversible process of creating
crystal–liquid interface from separate bulk systems. Dashed lines show
location of the cleaving planes and thick solid lines represent the clea
potential. LettersA andB label the crystal and liquid on either side of th
cleaving planes for a better illustration of the boundary conditions re
rangement in step 3. Periodic boundary conditions are assumed o
boundaries of the simulation boxes.
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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tential of the wall particles must be similar to that of th
system particles.

Since interactions in the crystal are usually dominated
the short-range repulsive part of the potential, it is suffici
to choose the interaction potential of the wall particles a
monotonically decreasing functionf(r ) with a relatively
small cut-off radiusr w , which models the repulsive core o
the interparticle potential in the system under investigati
An interaction of the system with each cleaving wall is th
given by

F1~r ;z!5(
j

f~ ur2Rj
~1!1nzu!,

~1!

F2~r ;z!5(
j

f~ ur2Rj
~2!2nzu!,

where Rj
(1,2) are the positions of the particles forming th

walls, n is a unit vector normal to the cleaving plane, andz
measures the distance of the walls to the cleaving plane

Next, we need to ensure that the system on the one
of the cleaving plane interacts only with the wall on the oth
side of the plane. To achieve this, we use the monoto
character of the potentialf(r ) and define the cleaving po
tential as theminimumof the two wall potentials, namely,

F~r ;z!5min~F1 ,F2!, ~2!

which decays to zero away from the cleaving plane, as l
as the potentialf(r ) is chosen to be a positive monoton
cally decreasing function. It is a simple exercise to show t
the vector arguments defined in Eq.~1! combined with the
minimum function defined above guarantees that each
ticle interacts with the proper wall. To remove discontinu
of the gradient ofF at the points whereF15F2 , we slightly
modify the minimum function as follows:

m~x,y!5H x, x<y2d~x1y!,

y, x>y1d~x1y!,

p~x,y!, otherwise,

~3!

with

p~x,y!5
x1y

4
~22d!2

~x2y!2

4d~x1y!
, ~4!

and parameterd characterizing the relative width of the in
terpolation region. We setd50.25 for the present study. Th
cleaving potential is defined as

F~r ;z!5m~F1 ,F2!. ~5!

Even though the crystal system does not require a
tional ordering and, as proposed by Broughton and Gilm
can be cleaved with a short-range repulsive potential c
tered at the cleaving plane, we have found that using
same cleaving potential for both crystal and liquid syste
minimizes the error during the thermodynamic integrat
in step 3.
ownloaded 19 Aug 2013 to 143.210.121.140. This article is copyrighted as indicated in the abstrac
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To calculate the reversible work in steps 1, 2, and 4,
can use the wall positionz as the integration coordinate. Th
reversible work is thus determined by evaluating the integ

w1,2,452E
zi

zf K ]F

]z L dz, ~6!

where the angle brackets denote averaging over a simula
run at a fixed cleaving wall position. In steps 1 and 2, t
initial position of the cleaving walls,zi , is just outside the
range of the interaction potential determined by the cut-
radius r w . The final wall positionzf is determined by the
requirement that the cleaving potential is sufficiently stro
to prevent the particles from crossing the cleaving plane
step 4, the initial and final positions of the walls are revers
Because of the repulsive character of the cleaving poten
the work in steps 1 and 2 is expected to be positive, while
step 4 it is negative.

In step 3, the boundary conditions are gradually re
ranged using a coupling parameterl. The total interaction
energy in step 3 is given by

U~l!5~12l! (
i , j ,AB

u~r i j !1l (
i , j ,AA

u~r i j !

1(
i

F~r i ;zf !, ~7!

where the letters~AB! refer to the boundary conditions wit
crystal–crystal and liquid–liquid interactions across t
cleaving planes, and~AA! refer to the boundary condition
with crystal–liquid interactions~see the diagram!. The last
term represents the cleaving potential at the final wall po
tions in steps 1 and 2. The work done during step 3 is de
mined from the integral

w35E
0

1K ]U

]l L dl, ~8!

where

]U

]l
5 (

i , j ,AA
u~r i j !2 (

i , j ,AB
u~r i j !. ~9!

Note that this procedure depends upon the interface
ing flat on average; i.e., the interface is generally ‘‘rough’’ o
a short time scale, but the fluctuations in the interfacial p
sition should average to a nearly planar surface. With
preparation procedure described above, this condition is
ily satisfied for the system sizes used.

III. RESULTS FOR TRUNCATED LENNARD-JONES
POTENTIAL

In order to have direct comparison with the results
Broughton and Gilmer,14 we have used the same modific
tion of the Lennard-Jones potential, namely15
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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utLJ~r !55
4eF S s

r D 12

2S s

r D 6G1C1 , r<2.3s,

C2S s

r D 12

1C3S s

r D 6

1C4S r

s D 2

1C5 , 2.3s,r ,2.5s,

0, 2.5s<r ,

~10!
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tia
where C150.016 132e, C253136.6e, C35268.069e, C4

520.083 312e, and C550.746 89e. ~Note: the sign ofC4

was incorrectly reported as positive in the Broughton a
Gilmer original publication.! This potential has a continuou
first derivative and a small discontinuity in its second deriv
tive at r 52.3s.

To achieve optimal performance of the simulation at
stages of the cleaving process, we use a cell-assisted
evaluation method.16 The simulation region is subdivide
into cells with edge sizes just exceeding the interatomic
teraction range. When atoms are assigned to cells accor
to their current position, only interactions between atoms
the same cell or in immediately adjacent cells needs to
considered. Such a method is particularly useful in step
where interaction forces must be computed for two differ
boundary conditions@see Eq.~7!#. With the cell-assisted
method the additional computational effort is limited to t
cell layers immediately adjacent to the cleaving plan
~Note: the cell subdivision is carried out in such a way th
the cell boundary coincides with the cleaving plane.!

Since the insertion of the exteral cleaving potenti
~‘‘walls’’ ! breaks the translational symmetry of the syst
Hamiltonian, and linear momentum is no longer strictly co
served. This leads to a problem for long runs in that
crystal, taken as a whole, can drift relative to the cleav
plane. To prevent this, we immobilize the innermost tw
crystal layers by assigning them an infinite mass. In the d
collection runs these fixed planes were about 20 crystal
ers away from the nearest crystal–melt interface, and sh
not have a significant effect on the interfacial properties.
check this, we have performed smaller simulations with
identical cross-sectional area, but fewer crystal layers~where
the interface is about 12–14 crystal layers distant from
fixed planes! and obtain results identical, within simulatio
error, to the larger systems.

For the present study, we calculateg at both the triple
point temperature ofT* [kBT/e50.617 ~as determined by
Broughton and Gilmer17!, and at higher temperature
(kBT/e51.0 and 1.5!. The crystal–liquid coexistence param
eters at these temperatures are summarized in Table I.@Note
the slightly negative pressure atkBT/e50.617. We have

TABLE I. Coexistence conditions for the modified Lennard-Jones poten
of Eq. ~10!.

T, kBe21 rc , s23 r l , s23 P, es23

0.617 0.945 0.828 20.02
1.0 1.005 0.923 4.95
1.5 1.074 1.003 12.9
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found thatkBT/e50.618 is a better estimate of the trip
point temperature for the modified LJ potential of Eq.~10!.
However, to have a direct comparison with the results of R
17, we have calculated interfacial free energy at the low
temperature.# The parameters are obtained by monitori
long simulation runs of the crystal–liquid interfacial sy
tems. If the initial conditions are shifted from those at coe
istence, such a system equilibrates itself through melti
freezing at the interfaces. During the runs, the press
tensor profiles18 are monitored and the simulation box re
caled, if necessary, to remove any stress in the bulk crys
The equations of motion are integrated using the veloc
Verlet algorithm19 with the step sizesDt50.005, 0.004, and
0.003@in units of (ms2/e)1/2, wherem is the particle mass#,
for the simulations at temperaturesT* 50.617, 1.0, and 1.5
respectively.

At each of the three temperatures, we calculate the in
facial free energy for three crystal orientations:@100#, @110#,
and@111#. For step 1, the crystal system is prepared by pl
ing particles in the ideal crystal configuration with rando
initial velocities and running the simulation for 5000 tim
steps, rescaling the velocities every 1000 steps to reach
equilibrium state at the specified temperature. The sca
factor is determined from the value of the average kine
energy per particle during the preceding 1000 steps. The
(Lx ,Ly ,Lz) and number of particles (Nc) for systems with
different orientations are as follows:

• @100#: Lx5Ly59a, Lz520a, Nc56480;

• @110#: Lx56&a'8.5a, Ly59a,
Lz512&a'17a, Nc55184;

• @111#: Lx55.5&a'7.8a, Ly53A6a'57.3a,
Lz512)a'20.8a, Nc54752;

wherea5(4/rc)
1/3 is the size of the fcc unit cell, approxi

mately equal to 1.618s, 1.585s, and 1.550s, for the tem-
peraturesT* 50.617, 1.0, and 1.5, respectively. These siz
correspond to 162, 108, and 132 particles per crystal la
for the @100#, @110#, and @111# interfaces, respectively. Th
total area of the crystal–liquid interface that is formed af
step 4 is equal toA52LxLy .

To form the liquid system for step 2, we start with a
ideal crystal block of exactly the same size and number
particles as in step 1, and then remove particles at rando
reduce the density fromrc to r l . Thus, the number of par
ticles in the liquid system is equal to the nearest integer
Ncr l /rc . The equilibration run of 10 000 steps is then pe
formed, which is sufficient to reach the equilibrium liqu
state with the given temperature and density. The veloci
are scaled in the same manner as in step 1.

l

t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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Next the cleaving walls are introduced into the crys
and liquid systems. The cleaving wall is constructed from
single crystal layer for the@100# and @111# orientations and
from two layers for the@110# orientation~this was necessar
to prevent atoms from crossing through this non-clo
packed face!. As discussed in the previous section, the cle
ing potentialf(r ) is constructed from the repulsive core
the LJ potential, which we define using a standa
Weeks–Chandler–Anderson23 splitting:

f~r !5H 4eF S s

r D 12

2S s

r D 6G1e, r ,r w521/6s,

0, r w<r .

~11!

In steps 1 and 2 the cleaving potential is gradually int
duced by changing the value ofz in Eq. ~5! from zi to zf ,
typically in increments of 0.02s ~see Fig. 2!, with the initial
system state for the new value ofz being the final state from
the previousz value. In our simulations, the initialz value,zi

is 1.1s ~which is large enough to ensure that the walls do
interact with any particles in the system so that the inser
work is zero!, and the final value,zf , varies from 0.50 to
0.64 depending upon the orientation and temperature of
interfacial system—this is chosen to be large enough that
two sides are permanently separated. At eachz an equilibra-
tion run of 3000 steps is followed by 25 000 steps used
calculate the average value and statistical error of]F/]z. As
in the initial equilibration runs, the velocities are rescal
every 1000 steps to retain a constant value of the temp
ture. For an illustration of the method we show in Fig. 2 t
thermodynamic integration integrand for steps 1, 2, and 4
the @111# interface atT* 50.617 ~using zf50.62). For that
same interface and temperature, the integrand for step
shown in Fig. 3 with an inset highlighting the region
maximum hysteresis error. The integrals in Eqs.~6! and ~8!

FIG. 2. Integrand for thermodynamic integration in steps 1~diamonds!, 2
~open circles!, and 4~solid dots! for the @111# interface atT* 50.617. The
error bars, indicated by vertical lines over each symbol, are two stan
deviations.
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are calculated using the trapezoidal rule. The results are s
marized in Table II. To test system size effects, we ha
repeated the calculations for systems that are about hal
interfacial area and a third shorter~e.g., 6a36a312a for
@100#!. The values of the integrands for the smaller syste
were within the error bars of those for the larger systems

Even though the relative statistical accuracy that can
achieved for a given duration of the simulation run is abo
the same for all temperatures and orientations~approxi-
mately 0.5%!, we see that the relative error range in Table
increases with the temperature, especially for the@111# ori-
entation. This increase is due to the observation that rev
ibility ~as measured by the lack of hysteresis! of the thermo-
dynamic integration process for the LJ system is m
difficult to achieve for higher temperatures.

There are two sources of potential hysteresis in the fo
step process of creating an interface. The first one is ass
ated with the liquid ordering transition that occurs either
the end of step 2, or at the beginning of step 3. For low
temperatures, the hysteresis can be essentially eliminate
increasing the duration of the equilibration runs near
point of transition. However, the hysteresis for higher te
peratures is more persistent, especially in the case of
@111# orientation. This may be due to a particular choice
the cleaving potential. More research is necessary to el
date the origin of the hysteresis and ways to eliminate it.

rd

FIG. 3. Integrand for thermodynamic integration in step 3 for the@111#
interface atT* 50.617. The inset shows a magnification of the region p
marily affected by hysteresis, reflected by the larger than average error

TABLE II. Interfacial free energy~in units of es22) for the truncated
Lennard-Jones potential for selected temperatures and crystal orienta
Numbers in parentheses indicate the estimated error on the last dig~s!
shown.

T* 50.617 1.0 1.5

g100 0.371~3! 0.562~6! 0.84~2!
g110 0.360~3! 0.543~6! 0.82~2!
g111 0.347~3! 0.508~8! 0.75~3!
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Interfacial free energy anisotropy parameters for the truncated Lennard-Jones at three di
temperatures. For reference, the same quantities for the hard-sphere system~Ref. 9! are also included. Numbers
in parentheses reflect estimated error in the last digit~s! shown.

g0 e1 e2

g1002g110

g0

g1002g111

g0

Lennard Jones T* 50.617 0.360(2)e/s2 0.093~17! 20.011~4! 0.03~1! 0.07~1!
T* 51.0 0.539(4)e/s2 0.13~3! 20.022~9! 0.035~15! 0.10~2!
T* 51.5 0.808(13)e/s2 0.15~6! 20.03~2! 0.025~3! 0.11~3!

Hard spheres~Ref. 9! 0.617(6)kT/s2 0.07~3! 20.044~12! 20.032~22! 0.065~22!
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The second source of hysteresis is the fluctuation in
interface position at the end of step 4. When the cleav
potential is removed from the interfacial system in step 4,
position of the interface is no longer tied to the cleavi
plane. Because the system contains two interfaces, they
change their position without disturbing system equilibriu
by the process of melting at one interface and simultane
freezing at the other interface. The difficulty in verifying th
reversibility of step 4 is that the mobility of the interface
causes the reverse process to follow a slightly different th
modynamic integration path. To deal with this problem,
try the reverse step 4 process on the interfacial systems
several equilibration runs of various duration and select
one with the path closest to the forward process. The dif
ence in the calculated work during the forward and reve
processes is accounted for in the estimate of the error ra
given in Table II.

IV. ANALYSIS AND SUMMARY

The error bars on the calculations described above
small enough to resolve the anisotropy in the interfacial f
energy for the Lennard-Jones system. While we have de
minedg only for the @100#, @110#, and@111# directions, it is
possible to extract from these data some information a
the full angular dependence of the free energy. Defining
orientation unit vectorn̂ as the unit vector perpendicular t
the interfacial plane, one defines an orientation depend
interfacial free energyg(n̂), which can be parametrized b
an expansion in terms of cubic harmonics. One such exp
sion, due to Fehlner and Vosko,20 has been recently applie
to the interfacial free energy of Ni/Cu alloys by Astaet al.21

In terms of the Cartesian components ofn̂5$n1 ,n2 ,n3%, this
expansion~truncated at sixth-order! is

g~ n̂!5g0F11e1S (
i 51

3

ni
42

3

5D
1e2S (

i 51

3

ni
4166n1

2n2
2n3

22
17

7 D G , ~12!

whereg0 is the orientationally averaged interfacial free e
ergy ande1 and e2 are expansion coefficients. This param
etrization has an advantage over the so-called ‘‘Kubic H
monic’’ expansion22 that has been used recently
parametrize free energy anisotropy in metals10,11 in that the
expansion terms are orthogonal.21 For the orientations stud
ied here this expansion becomes
 143.210.121.140. This article is copyrighted as indicated in the abstrac
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e
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g1005g0F11
2

5
e11

4

7
e2G ,

g1105g0F12
1

10
e12

13

14
e2G , ~13!

g1115g0F12
4

15
e11

64

63
e2G .

Using our values forg for the @100#, @110#, and@111# orien-
tations one can solve for the three parametersg0 , e1 , and
e2 :

g05
10g100116g11019g111

35
,

e15
35g10028g110227g111

22g0
, ~14!

e25
3

22g0
~g10024g11013g111!.

The anisotropy parameters for the Lennard-Jones sys
studied here, as well as those for the hard-sphere sys
calculated from the data from our earlier calculation,9 are
summarized in Table III. Also included in Table III are th
values of (g1002g110)/g0 and (g1002g111)/g0 , which also
serve to quantify the anisotropy. The error bars ing0 are
smaller than those for the raw interfacial free energies si
g0 represents a weighted average of similar numbers—a
cess that decreases statistical error. The anisotropy pa
eters represent differential quantities involving differenc
between similar numbers~which magnifies relative error! so
the relative error bars for those quantities are larger than
the raw data. This is in contrast to the fluctuation metho21

where the relative error in the interfacial free energy is lar
than in the current study~despite the much larger systems!,
but the anisotropy parameters are more precisely determ
due to the fact that in that method the anisotropy is de
mined from the anisotropy in the interfacial stiffness, whi
is far greater than that of the interfacial free energy itself

From the anisotropy parameters given in Table III, t
trend is observed that the anisotropy parameters increas
magnitude with increasing temperature, withe1 becoming
more positive ande2 becoming more negative. In compar
son with the hard-sphere values, the value ofe2 approaches
the hard-sphere value asT gets larger, but the value ofe1 ,
which is atT* 50.617 quite close to the hard-sphere valu
diverges away from the hard-sphere value asT increases. Of
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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course, in the limit of high temperatures, the Lennard-Jo
system approaches an inverse 12th power repulsive pote
not the hard-sphere potential, so one would expect the h
temperature behavior of the anisotropy to approach tha
the former potential. This implies that any perturbati
theory for the interfacial free energy with a hard-sphere r
erence potential will not be adequate to predict anisotro
and that a study of the anisotropy for a variety of differe
possible repulsive potentials would be very useful.

In recent work,13 we have pointed out that the interfaci
free energy for simple systems with face-centered cubic~fcc!
crystal structures can be quantitatively described by a h
sphere model. It is useful to check this hypothesis here, s
the LJ system is a standard molecular model that freezes
fcc crystal, and since the interfacial free energy was de
mined in this study directly and not indirectly from nucl
ation data. The hard-sphere model predicts

g0~HS!50.617kT/s2, ~15!

wheres2 is the hard-sphere diameter. For our Lennard-Jo
system we can define an effective~temperature-dependen!
hard-sphere diameter using the Barker–Hender
criterion23 from liquid-state perturbation theory,

seff5E
0

`

$12exp@2ur~r !/kT#%dr,

whereur(r ) is the repulsive part of the potential, which w
define in the Week–Chandler–Anderson sense23 as the full
potential truncated~and shifted! to zero beyond the mini-
mum of the attractive well. This procedure yields values
seff of 1.032s, 1.016s, and 1.000s, for T* 50.617, 1.0, and
1.5, respectively. Inserting these values into Eq.~15! yields
predicted values ofg0 ~in units of e/s2) of 0.36, 0.60, and
0.93, for T* 50.617, 1.0, and 1.5, respectively. The agre
ment with the values listed for LJ in Table III is excellent
the lower temperature, but overestimates the actual valu
several percent at the higher temperatures. This agree
gives more evidence to support the general hypothesis13 that
the interfacial free energy of close packed systems is larg
determined by packing considerations, not energy.

It is interesting to note that the anisotropy parameterse1

and e2 for the truncated LJ potential at the triple point (T*
ownloaded 19 Aug 2013 to 143.210.121.140. This article is copyrighted as indicated in the abstrac
s
ial,
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50.617 and essentially zero pressure! are identical to those
calculated21 for Ni at 1.00 atm~also essentially zero pres
sure!. The fact that the parameters areexactly the same for
these two~essentially! zero pressure systems is, given t
error bars, probably coincidental; however, the data d
show that the anisotropy for Ni is better modelled by a
potential than by a hard-sphere potential. More study is
quired to determine the exact role that details of the poten
play in determining interfacial anisotropy.
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