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Direct inversion of the apparent complex-resistivity spectrum

J. Xiang�, N. B. Jones�, D. Cheng‡, and F. S. Schlindwein�

ABSTRACT

Cole–Cole model parameters are widely used to inter-
pret electrical geophysical methods and are obtained by
inverting the induced polarization (IP) spectrum. This
paper presents a direct inversion method for parameter
estimation based on multifold least-squares estimation.
Two algorithms are described that provide optimal pa-
rameter estimation in the least-squares sense. Simula-
tions demonstrate that both algorithms can provide di-
rect apparent spectral parameter inversion for complex
resistivity data. Moreover, the second algorithm is robust
under reasonably high noise.

INTRODUCTION

Spectral induced polarization (IP) is widely used in geolog-
ical surveys (He et al., 1995; He, 1996; Milson, 1996; Luo and
Zhang, 1998). The interpretation of the IP data is often based
on the Cole–Cole model (Cole and Cole, 1941; Luo and Zhang,
1998), under which the frequency behaviour of the complex
IP impedance (or complex resistivity) is approximated by an
equivalent network, as shown in Figure 1 (Major and Silic,
1981).

The impedance of the equivalent network is

Z(ω) = Z(0)
(

1 �m
(

1 � 1
1 + ( jωφ)c

((
. (1)

The complex resistivity expression of the Cole–Cole model
(Luo and Zhang, 1998) is written

φ(ω) = φ0

(
1 �m

(
1 � 1

1 + ( jωφ)c

((
, (2)

where φ(ω) is complex resistivity, φ0 is resistivity at zero fre-
quency (ω = 0), m is limited polarizability (or chargeability),
φ is a time constant, c is frequency dependence, and ω is an-
gular frequency (rad/s). The chargeability 0 �m�1 and the
requirement that the complex resistivity amplitude monotoni-
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cally decreases with increasing frequency restricts c to the range
0 �c�1 (Major and Silic, 1981). Interpretation based on the
Cole–Cole model requires the parameters φ0,m, φ, and c to be
estimated (Luo and Zhang, 1998).

The existing methods of parameter estimation are gener-
ally based on nonlinear iterative inversion (Pelton et al., 1984,
1978; Jaggar and Fell, 1988; Luo and Zhang, 1998). There is a
serious shortcoming to this approach: The convergence of an
iterative inversion to a global minimum is not ensured because
it depends on the initial guess for parameter values. Different
starting values may yield different inversion results.

We propose a new direct inversion technique based on multi-
fold least-squares estimation. The basic procedure is described
by the following sequence. First, use substitution to eliminate
the parameterm from the equations. Second, use least-squares
estimation to express the compound parameter X = φc as a
function of φ0 and c, which is expressed as φc = X(φ0, c). Third,
consider the reduced system of equations for φ0 and c, which
is linear with respect to φ0. Then the secondfold least-squares
estimation can be used to get a solution for φ0 as a function of c.

The final step is to substitute all the estimated parameters
into the equations to get a set of linear equations of X . Both the
coefficients and the unknowns, X , of the linear equations are
functions of c. A square error can be constructed for the least-
squares solution of X as a function of c. Since the parameter
c ∈ (0, 1), the golden section technique is used to search for
the minimum solution c. Finally, the least-squares technique is
used to estimate m.

This inversion technique is based on a straightforward com-
putation that identifies the four parameters simultaneously and
guarantees a unique solution. Moreover, the solution is optimal
in the least-squares sense, and the method can be applied easily
to the case of multiple, linearly additive Cole–Cole models.

DIRECT INVERSION OF THE COLE–COLE MODEL

Consider inverting the Cole–Cole model [equation (2)]. That
is, from experimental data estimate φ0,m, φ, and c.

Assume N + 1 data are obtained as {(ωk, φk) | k= 1, 2, . . . ,

N + 1}, where φk = φ( jωk), k= 1, 2, . . . , N + 1. Rewrite equa-
tion (2) as a set of equations:
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m
(

1 � 1
1 + ( jωkφ)c

(
= φ0 �φk

φ0
, k = 1, 2, . . . , N + 1,

(3)
where φk is complex resistivity at ω = ωk .

To reduce the number of parameters, we divide the kth equa-
tion by the (k+ 1)th equation for k= 1, 2, . . . , N . After some
algebra we get N equations as

ωck �ωck+1

ωck+1 + ( jωkωk+1φ)c
= φk+1 �φk

φ0 �φk+1
, k = 1, 2, . . . , N .

(4)
Taking the reciprocal, equation (4) is equivalent to

ωck+1 + ( jωkωk+1φ)c

ωck �ωck+1
= Rk + jI k, k = 1, 2, . . . , N , (5)

where

Rk + j Ik = φ0 �φk+1

φk+1 �φk
, k = 1, 2, . . . , N . (6)

X(c, φ0) =

N∑
k=1

ωckω
c
k+1(

ωck �ωck+1

(
[
Rk cos

cφ
2

+ Ik sin
cφ
2

�cos
cφ
2

(
ωck+1

ωck �ωck+1

)]

N∑
k=1

(
ωckω

c
k+1

ωck �ωck+1

)2 , (12)

Note that data with repeated φk should be deleted to avoid
ballooning to infinity.

Setting φc = X and separating the real and imaginary parts
of equation (5) yields the following equations:(

Ak X = Bk
Ck X = Ik

, k = 1, 2, . . . , N , (7)

where

Ak =
cos

cφ
2

ωckω
c
k+1

ωck �ωck+1
, Ck =

sin
cφ
2

ωckω
c
k+1

ωck �ωck+1
,

Dk = ωck+1

ωck �ωck+1
(8)

and

Bk = Rk �Dk . (9)

FIG. 1. Equivalent circuit of IP geophysical system

To get the least-squares approximate solution of equa-
tion (7), we have to minimize the square error form S:

min
x
S =

N∑
k=1

(Ak X �Bk)2 +
N∑
k=1

(Ck X �Ik)2. (10)

Setting dS/dX = 0, the minimum point of the strictly positive
S is obtained as

X =

N∑
k=1

(Ak Bk + IkCk)

N∑
k=1

(
A2
k + C2

k
( . (11)

Substituting the expressions for Ak, Bk, and Ck into equa-
tion (11), after some simplification, yields

where X (c, φ0) emphasizes that the least-squares approximate
solution for X depends on both c and φ0.

Next, to estimate φ0 some new notation is convenient.
Denote

φ0 = R0 + j I0 (13)

and

1
φk+1 �φk

= φ k + jφk; φk+1

φk+1 �φk
= φk + jϕk . (14)

Then, from equation (6) the following expressions can be
derived:

Rk = φ k R0 �φk I0 �φk (15)

and

Ik = φ k I0 + φk R0 �ϕk . (16)

Substituting equations (15) and (16) into equation (12)
provides

X = PR0 + QI0 �H, (17)

where

P =

N∑
k=1

ωckω
c
k+1(

ωck �ωck+1

((
cos

cφ
2

φ k + sin
cφ
2

φk

(

N∑
k=1

(
ωckω

c
k+1

ωck �ωck+1

)2 , (18)
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Q =

N∑
k=1

ωckω
c
k+1(

ωck �ωck+1

((
sin
cφ
2

φ k �cos
cφ
2

φk

(

N∑
k=1

(
ωckω

c
k+1

ωck �ωck+1

)2 , (19)

and

H =

N∑
k=1

ωckω
c
k+1(

ωck �ωck+1

(
[

cos
cφ
2

φk + sin
cφ
2

ϕk + cos
cφ
2

(
ωck+1

ωck �ωck+1

)]

N∑
k=1

(
ωckω

c
k+1

ωck �ωck+1

)2 . (20)

Applying equations (17)–(20) to equation (7) produces(
Ak(PR0 + QI 0 �H) = φ k R0 �φk I0 �φk �Dk
Ck(PR0 + QI0 �H) = φ k I0 + φk R0 �ϕk

. (21)

Equation (21) can be expressed in matrix form as

M(c)
(
R0

I0

(
= L(c), (22)

where

M(c) =
(
Ak P �φ k AkQ + φk

Ck P �φk CkQ�φ k

)
k = 1, . . . , N

(23)
and

L(c) =
(
AkH �φk �Dk
CkH �ϕk

)
k = 1, . . . , N . (24)

Here we use M(c) and L(c) to emphasize they depend on c
only. Now the least-squares solution of equation (22) is(

R0

I0

(
= [MT (c)M(c)]�1MT (c)L(c). (25)

Using equation (25), the square error of equation (7) be-
comes

S(c) = (M(c)[MT (c)M(c)]�1MT (c)L(c) �L(c))T

�(M(c)[MT (c)M(c)]�1MT (c)L(c) �L(c)).

(26)

In practice, we can assume that φ0 is a real number. That is,
φ0 = R0 and I0 = 0. Then equation (23) can be replaced by

M(c) =
(
Ak P �φ k

Ck P �φk

)
, k = 1, . . . , N (27)

and

φ0 = R0 = [MT (c)M(c)]�1MT (c)L(c). (28)

To determine c, we minimize S(c). That is,

min
c

{S(c) | 0 < c< 1}. (29)

Since c∈ (0, 1), it lies on a restricted range. So we use the golden
section method to search for the optimal solution (Press et al.,
1986).

After the optimal c (denoted c�) is obtained, equation (25)
[or equation (28) in the real case] provides the best estimate of

φ0; X = φc can be obtained by equation (11). The estimation of
φ follows easily.

Finally, equation (3) can be used to estimate m. Since m is
real and m> 0, equation (3) can be rewritten as

m
((((1 � 1

1 + ( jωkφ)c

((((=
((((φ0 �φk

φ0

((((, k = 1, 2, . . . , N+1.

(30)

Now, for this set of real equations the technique used in equa-
tions (7)–(11) can be used again for obtaining a least-squares
solution as

m =

N+1∑
k=1

(((( ( jωkφ)c

1 + ( jωkφ)c

((((
((((
(

φ0 �φk

φ0

(((((
N+1∑
k=1

(((( ( jωkφ)c

1 + ( jωkφ)c

((((
2

. (31)

ALGORITHMS AND NUMERICAL EXAMPLES

Algorithm 1

Summarizing the discussion in the last section, an algorithm
can be obtained as follows. First, use equation (14) to get
φ k, φk, φk, and ϕk, k= 1, . . . , N . Second, apply the golden sec-
tion algorithm (or any alternative minimization method to find
optimal c) to choose c1, c2. Third, use equations (8)–(10) to get
Ak(c1), Ak(c2),Ck(c1),Ck(c2), Dk(c1), and Dk(c2), k= 1, . . . ,

N + 1, respectively. Fourth, use equations (18)–(20) to get
P(c1), P(c2), Q(c1), Q(c2), H(c1), and H(c2), respectively. Fi-
fth, use equations (22) [or (24)] and (23) to construct
M(c1),M(c2)and L(c1), L(c2), respectively.

The sixth and final step in this algorithm is to use equa-
tion (26) to calculate S(c1) and S(c2) and to compare them
to decide if a convergence criterion for the solution has been
satisfied. If |c1 �c2| < ε for a given 0 < ε � 1 , stop. Otherwise,
use the golden section algorithm to choose a new point and set
new c1, c2. Then go back to step 3.

We have written a Matlab program that performs this algo-
rithm. The following example illustrates the accuracy of the
approximation.
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Example 1.—Use a set of given parameters as in Luo and
Zhang (1998):

c= 0.25, φ0 = 25, φ= 100, m= 0.5.

Take the sampling frequencies as

ωk = 2k�13, k = 1, 2, . . . , 20,

that is, from ω = 2�12 to ω = 2+7 rad/s. Use equation (2) to get
synthetic data values of φk = φ( jωk). Then invert the data set.
The results using the above algorithm are shown in Tables 1
and 2 (where c is the estimated value and Ec% is the relative
error, etc.).

McInnes (personal communication, 2000) points out that the
above algorithm is sensitive to noise in the observed appar-
ent complex resistivity data. Motivated by this observation, we
modified the performance criterion S to optimize c. Let S be
the real square error of the estimation

S(c) =
N+1∑
k=1

|φ̂ (ωk) �φc (ωk)|2. (32)

Algorithm 2

We modified algorithm 1 as follows. Using c, φ0(c), andφ(c),
we estimatedm(c) first. Then we used the estimated parameters
and Cole–Cole model to calculate the model response φc(ωk).
Equation (32) can be used to calculate the model response
misfit. Finally, a single-variable minimization algorithm can be
used to find the best estimation of c.

To perform this refined new algorithm, you repeat the first
five steps for algorithm 1. As the sixth step, use equations (28),
(17), and (31) to find φ0, φ, and m, respectively. For the sup-
posed c, the corresponding model is built. As the seventh and
final step, use equation (32) to calculate S(c1) and S(c2). Com-
pare them to decide if a convergence criterion for the solution
has been satisfied. That is, if |c1 �c2| < ε for a given 0 < ε � 1,
stop. Otherwise use the golden section algorithm to choose a
new point and set new c1, c2. Then go back to step 3.

It is likely that the direct Cole–Cole inversion function S(c)
will have multiple local minima with some data sets. Then the
interval (0, 1] can be divided into several subintervals, and the
algorithm can be used over each subinterval to find the real
minimum.

The algorithm is described by Figure 2, which consists of two
essential parts. The first is the multifold, least-squares estima-
tion, which uses the assumed parameter c and the field data

Table 1. Estimation for parameters with different accuracy.

ε C Ec (%) φ0 Eφ0 (%) φ Eφ (%) m Em (%)

0.01 0.2528 1.327 24.887 0.491 92.391 7.61 0.4971 0.589
0.001 0.2498 <0.0001 25.009 0.03 100.572 0.572 0.5002 0.042
0.0004 0.25 <0.0001 25 <0.0001 100 <0.0001 0.5 <0.0001

Table 2. Estimation for parameters with random measurement error.

Measure noise
level (%) Estimated c Estimated φ0 Estimated φ Estimated m

10�2 0.2502 24.9988 100.2814 0.4998
10�1 0.2508 24.9732 99.0512 0.499

1 0.2764 23.8827 75.7240 0.4572

to estimate φ0(c), m(c), and φ(c). Part 2 is the golden section
algorithm.

To represent the accuracy of the approximation, we use a
square error criterion. That is, let p(n) and q(n), n = 1,

2, . . . , N , be the field data and the theoretical data obtained
from the Cole–Cole model, respectively. Then the square er-
ror is defined as Es =

∑N
n=1 |p(n) �q(n)|2, which is the same

error criterion minimized by Jaggar and Fell (1988) to estimate
their model parameters.

Using algorithm 2, we revisit example 1. When there is no
measurement noise, the parameters can be recovered precisely
without visible error (within Matlab’s precision for long vari-
ables, that is, ε < 0.000015). When white noise is added to the
complex resistivities, the values of estimated parameters will
change. The algorithm is said to be robust if this sensitivity of
the parameters to measurement noise is small. Table 2 illus-
trates the robustness of the algorithm.

A relative noise level of 10�2% represents a 0.1 mrad IP
phase error for the first harmonics, which is good-quality data
for typical dipole–dipole surveys (S. McInnes, personal com-
munication, 2000). From Table 2 one can see that the robustness
of algorithm 2 is adequate for practical use.

The range of frequencies used affects the accuracy of the
approximation. In the example above, if we narrow the range of
frequencies to N = 12 and ω = 2k, k= �6, �5, . . . , 5, the range
of the frequency, in hertz, is 2.49 �10�3 < f < 5.1. Then the
related estimation is obtained as in Table 3, which shows the
accuracy is still acceptable.

FIELD DATA INVERSION

Jaggar and Fell (1988) report N = 19 data values, but high-
frequency data values have large uncertainty. Table 4 shows
the results estimated via algorithm 2 by using the first N = 12,

FIG. 2. Flow chart of algorithm 2.
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13, . . . , 17 data values. The best-fit model suggested by Jaggar
and Fell (1988), data size 19 on Table 4, is compared with the
models found with our methods in Table 5.

Another advantage of our algorithm is that it does not need
an initial guess. Table 6 shows that the ridge regression method
adopted by Jaggar and Fell (1988) clearly depends on the initial
guess. It might only find a local minimum. Table 6 shows three
models (N -13, N -16, N -17) provide better estimation than the
J-F model, even over all 19 sampling data points.

If we ignore the last two outlier data values, then the model
errors over the set of N = 12–17 reliable data values are shown
in Table 7. So from both Tables 6 and 7 we can see that model
N-16 seems to best fit the field data. We therefore can choose
N -16 as our finally accepted model. Figures 3 and 4 compare
the field data with the theoretical data.

CONCLUSION

A direct inversion technique for the Cole–Cole model was
presented. The method is based on a multifold least-squares
estimation combined with an optimal searching technique. Two
step-by-step algorithms were derived and described via several
numerical examples. The advantages of the final new approach
are

1) the estimation is optimal in the least-squares sense,
2) the existence of a solution is guaranteed,
3) the algorithm is straightforward and simple,
4) no iterative operator intervention is required, and
5) amplitude and phase can be fit simultaneously.

Using the field data provided by Jaggar and Fell (1988), our
algorithm has been verified and a detailed comparison with
their existing algorithm has been completed. The results show
the advantages of the new algorithm.
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Table 3. Parameter estimation with a narrower frequency range.

Measure noise
level (%) Estimated c Estimated φ0 Estimated φ Estimated m

0 0.25 25 100 0.5
10�2 0.2491 25.053 102.6495 0.5014
10�1 0.2472 25.1652 108.8144 0.5042

1 0.2374 23.6537 48.3621 0.4820

Table 4. Estimated parameters via field data.

Data size N Estimated c Estimated φ0 Estimated φ Estimated m

12 0.6896 21.9901 0.0013 0.1235
13 0.6702 21.994 0.0010 0.1343
14 0.6812 21.992 0.0013 0.1223
15 0.6824 21.9902 0.0012 0.1226
16 0.6502 21.9907 0.0009 0.1341
17 0.6502 21.9907 0.0008 0.1373
19 0.691 21.90 0.001165 0.128

ments that showed us the lack of robustness in the previous
version of the algorithm. That challenged us to improve the
technique presented here.
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