
 
 

ICSV14  
Cairns • Australia 
9-12 July, 2007 

 
 
 

 

 

 A SELECTIVE OVERVIEW OF HIGH-ORDER FINITE
DIFFERENCE SCHEMES FOR AEROACOUSTIC APPLICATIONS

I. Spisso1 ∗, A. Rona1 †

1Department of Engineering
University of Leicester

Leicester LE1 7RH, United Kingdom
∗
is71@le.ac.uk

†
ar45@le.ac.uk

Abstract

A variety of aeroacoustic problems involve small-amplitude linear wave propagation. High-
order schemes have the accuracy and the low dispersion and dissipation wave propagation
properties that are required to model linear acoustic waves with minimal spatial resolution.
This review presents a selection of high-order finite difference time-explicit schemes for aeroa-
coustic applications. A scheme selection method based on the computational cost for a given
accuracy level is proposed.

1. INTRODUCTION

The growing demand by aerospace, automotive and other industries for accurate and reliable
noise prediction models has prompted the development of new computational aeroacoustic
(CAA) methods. These are used not only as noise prediction tools, but also to evaluate new
approaches for noise reduction and control. Different aeroacoustic problems often exhibit dif-
ferent flow physics. As a result, there is no single algorithm that can be used to simulate all
problems with adequate resolution and accuracy. The quality of CAA predictions are affected
by numerical dispersion and dissipation, the performance of acoustically transparent boundary
conditions, the ability to simulate nonlinearities and to resolve disparate length scales [1, 2].
Any investigator developing a new CAA algorithm or applying an existing method must ensure
that the method adequately addresses the above. Several CAA methods have emerged in last
two decades [2, 3] and the progress on the state of art is documented in the proceedings of four
CAA workshops on benchmark problems [4, 5, 6, 7].
This paper presents a compendium of the spatial discretization performance of selected CAA
algorithms and gives a practical selection method to be used by the CAA predictioner for a
given application, which accounts for the available computational resources.

mailto:is71@le.ac.uk
mailto:ar45@le.ac.uk


ICSV14 • 9–12 July 2007 • Cairns • Australia

2. SPATIAL DISCRETIZATION: NUMERICAL WAVENUMBER AND
GROUP VELOCITY

A general approximation of the first derivative by a (M+N+1) point stencil at the xi node of a
uniform mesh with spacing ∆x can be written as [1]

K
∑

j=−L
cj
∂f

∂x
(xi + j∆x) ≈

1

∆x

M
∑

j=−N
ajf(xi + j∆x) (1)

where L ≤ N and K ≤M . The value of the coefficients cj can be adjusted to achieve the
desired order of accuracy and wave propagation performance. If cj = δij , where δij is the Kro-
neker delta, then the spatial approximation of equation (1) is explicit. If cj 6= 0 for any j 6= i,
equation (1) becomes implicit, or compact, and a matrix has to be inverted to determine the
unknown values of (∂f/∂x)i. Explicit schemes employ large computational stencils for a given
accuracy, while compact schemes use smaller stencils by solving for the spatial derivatives as
independent variables at each grid point. While compact schemes are more accurate than the
same stencil size equivalent explicit schemes, they have two disadvantages: first, a matrix must
be inverted to obtain the spatial derivative at each point; second, the boundary stencil has a large
effect on the stability and accuracy of the scheme [8].
The coefficients aj in an explicit finite-difference central scheme are typically obtained by trun-
cation of a Taylor series. For a 7-point (ST7) and 9-point (ST9) stencil, a 6th and a 8th order
accurate scheme are obtained respectively [9].
The application of the Fourier transform to the approximation of equation (1) with xi replaced
by a continuous variable x yields the effective wavenumber ᾱ∆x of the finite-difference opera-
tor

α∆x = −i

(

∑K

j=−L aje
ijα∆x

∑M

j=−N cjeijα∆x

)

(2)

Figure 1 shows equation (2), plotted for different finite difference schemes over the non-
dimensional wavenumber range 0 ≤ α∆x ≤ π. High order and optimized schemes can have a
nearly exact differentiation down to 3 points per wavelength.
The group velocity of a finite-difference scheme is determined by dᾱ/dα [10]. When dᾱ/dα =

1, the scheme has the same group velocity as the original governing equations and the nu-
merical waves propagate at their correct wave speeds. The schemes becomes dispersive in
the wavenumber range where dᾱ/dα 6= 1. If the right-hand side of equation (1) is a cen-
tral difference (M = N, aj = a−j,−N < j < N) and the left-hand side is symmetric
(K = L, cj = c−j,−N < j < N) then ᾱ is real and the discretization of equation (1) is
non-dissipative, that is, it does not generate any amplitude error [11].
In the next sections, the performance of the selected finite-difference schemes is reviewed based
on the numerical wavenumber and numerical group velocity characteristics. The spatial oper-
ators examined here are a representative sample of those commonly used time-explicit finite-
difference schemes.
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2.1. Explicit central-difference DRP scheme

The DRP (Dispersion-Relation-Preserving) scheme of Tam and Webb [12, 11] is an explicit
scheme with a seven-point central difference stencil,

(

∂f

∂x

)

i

≈

(

∑3

j=1
aj(fi+j − fi−j)

∆x

)

(3)

a2 and a3 are chosen so that equation (3) is accurate to the fourth order while a1 is defined
by an optimization parameter E to minimize the integrated error between ᾱ∆x and α∆x. Fig-
ure 1 shows that this results in an approximation with a better resolution of the high wavenum-
bers as compared to the formally higher order but unoptimized ST7 scheme.
Bogey and Baily [13], using the same theory as Tam, do not minimize the absolute difference
between ᾱ∆x and α∆x but their relative difference. The result is a 9-point, 4th order accurate
scheme with a better high wavenumber performance than the standard ST9, as shown in fig-
ure 1.
The optimized operator of Zingg [14] is also a non-compact seven point stencil. The discretiza-
tion is divided into a central-difference part approximating the derivative and a symmetric part
providing artificial dissipation of spurious numerical waves [14].

2.2. Compact schemes

The optimized "spectral-like" compact scheme of Lele [9] is a pentadiagonal scheme with a
seven-point stencil given by

βDi−2 + ηDi−1 +Di + ηDi+1 + βDi+2 ≈ c
fi+3 − fi−3

∆x
+ b

fi+2 − fi−2

4∆x
+ a

fi+1 − fi−1

2∆x
(4)

where Di denotes the spatial derivative (∂f/∂x)i at the ith mesh node . The coeffi-
cients of the approximation are computed by Lele with three constrains imposed on the nu-
merical wavenumber ᾱ∆x. This scheme is formally fourth-order accurate but has a significant
wavenumber resolution performance. The optimized compact scheme of Lele exhibits the best
wave propagation performance among the schemes in figure 1. It is capable of resolving very
short waves; however this performance is achieved at the price of inverting a pentadiagonal ma-
trix.
The work of Lele spawned an entire family of optimized compact schemes. Among these, the
tridiagonal schemes with a five-point stencil obtained by setting β = 0 and c = 0 in equation (4)
is particularly attractive because of the reduced cost of the matrix inversion [15]. Hixon [8, 16]
derived a new class of compact schemes that obtain high-order accuracy while using an even
shorter stencil. In Hixon’s approach, the derivative operator Di is split into a forward compo-
nent,DF

i , and backward component,DB
i , so thatDi =

1

2
(DF

i +D
B
i ). The compact discretization

then becomes:



ICSV14 • 9–12 July 2007 • Cairns • Australia

aDF
i+1 + (1− a− c)DF

i + cDF
i−1 u

1

∆x
[bfi+1 − (2b− 1)fi − (1− b)fi−1] (5)

cDB
i+1 + (1− a− c)DB

i + aDB
i−1 u

1

∆x
[(1− b)fi+1 + (2b− 1)fi − bfi−1] (6)

The coefficients of Hixon’s six-order scheme are a = 1

2
− 1

2
√
5
, b = 1 − 1

30a
, c = 0.

The stencil is reduced to three points and the tridiagonal matrix is replaced by two bidiagonal
matrices.
Ashcroft and Zhang [17] attempted a wavenumber optimization that uses a Fourier analysis to
determine the coefficients of the biased stencils. Figure 1 shows the ᾱ∆x of the (6/4) optimized
prefactored compact scheme of Ashcroft and Zhang. The first digit refers to the maximum or-
der of accuracy of the scheme, while the second refers to actual order of the optimization. This
scheme sacrifices the formal order of accuracy in favour of wide-band performance that pro-
vides significantly better wave propagation characteristics in the high wavenumber range (−◦
line in figure 1) compared with the classical prefactorization of Hixon (− ∗ − line in the same
figure). The dispersive charateristic of this scheme is shown figure 3; the scheme exhibits a low
dispersion error for α∆x down to almost 1.4, where

∣

∣

dᾱ∆x
dα∆x

− 1
∣

∣ < 0.001.

3. COMPARISONS IN WAVENUMBER SPACE

In Figure 1 it can be observed that ᾱ∆x approximates adequately α∆x only over a limited
range of long waves. For convenience, the maximum resolvable wavenumber will be denoted
by ᾱnw. Using a criterion of |ᾱ∆x − α∆x| < 0.05, a list of ᾱnw∆x for the selected cen-
tral difference schemes is given in table 1. The resolution of the spatial discretization, from
ᾱnw∆x, is represented by the minimum points-per-wavenumber (Res. ppw) needed to reason-
ably resolve a propagating wave whose minimum is given by (2π/ᾱnw∆x). An alternative
criterion to determinate the resolution threshold ᾱpse∆x is to impose that the phase speed error
is
∣

∣

dᾱ∆x
dα∆x

− 1
∣

∣ < 0.001. Table 1 present also the value of the stencil size (Nst) of each scheme,
the maximum effective wavenumber ᾱmax∆x, and the number of operation (adds + multiplies)
for a single point spatial differentiation.
It is noted that at high frequencies (α∆x > 1.2) ᾱ begins to differ from α. An important conse-
quence of this discrepancy is numerical dispersion. The short waves are highly dispersive and
propagate with a phase speed quite different from the physical wave speed of the original partial
differential equation. These short waves can cause spurious high-frequencies oscillations and
can lead to instabilities [18]. Spurious waves can be generated by solutions discontinuities, solid
surfaces, computational domain boundaries, grid interfaces and other irregularities. To improve
the quality of the prediction these spurious waves are removed by filtering [14, 9, 10, 19, 20].

4. COMPUTATIONAL EFFICIENCY

Higher-order and optimized scheme achieve lower errors than low-order schemes for a given
mesh size, but at an increased computational expense. Therefore, a method to select an ap-
propriate scheme for a given application that requires a certain level of accuracy is sought [18].
Colonius and Lele [2] provide a single version of such a selection method that does not consider
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the memory requirements and the parallelization efficiency. While the error in a solution may
be measured in various ways (phase error, amplitude error, overall error from various norms),
the method selector considers the error in the modified wavenumber, consistent with previous
work [2]. The wavenumber is proportional to the minimum number of point per wavelength
Res (ppw). When scaled with the computational cost per node, ppw is a measure of the total
"cost"of computing a spatial derivative for a particular wavelength. The computational total cost
of computing once the spatial gradients of a wave of wavenumber α to a given level of accuracy
is given by C ∝ Nopppw

2ᾱmax∆x, where ppw is the number of point per wavelenght used to
resolve α.
In figure 4 it is shown the error in the modified wavenumber versus the estimated cost of the
schemes examined. Using figure 4, it is possible to ascertain which scheme has the lowest error
for a given cost, and how many grid points per wavelength should be used with that scheme to
achieve that accuracy. Also, for a given error tolerance, the plot shows which scheme has the
lowest cost. For example, for a normalized cost of 2, the lowest error (around 0.1%) is obtained
with the optimized prefactored compact schemes of Ashcroft and Zhang, which has a slightly
better performance than the prefactored sixth order scheme of Hixon. For the same cost the two
schemes have the same minimum number of points per wavelenght (≈ 3) but Hixon’s scheme
has globally a lower phase speed error.

5. CONCLUSION

This paper examined a selection of high-order finite-difference algorithms for CAA and re-
viewed their main characteristics. A scheme selection method, based on the computational cost
for a given accuracy level, was proposed, following the work of Colonius [2]. It is concluded
that the combination of the filtered sixth order compact scheme of Hixon [8] with the 4-6 al-
ternate Low Dispersion and Dissipation Runge-Kutta (LDDRK) [16, 21, 22] scheme is a good
starting choice for aeroacoustic problems in the near-incompressible regime, as it gives the best
compromise between computational cost and a dispersion and dissipation error.
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Table 1. Properties of the schemes.

Spatial Discretization Nst Nop ᾱmax∆x ᾱnw∆x Res. (ppw) ᾱpse∆x Res.(ppw)
ST7 7 8 1.59 0.97 6.5 0.53 11.8
ST9 9 11 1.73 1.18 5.3 0.73 8.6
Tam DPR 7 8 1.64 1.16 5.4 0.43 14.6
Bo. and Ba. DPR 9 11 1.86 1.54 4.1 0.5 12.5
Zingg non-compact 7 18 1.61 1.05 5.9 0.66 9.52
compact Lele 7 17 2.63 2.51 2.5 0.94 6.68
compact Hixon 5 9 1.99 1.35 4.6 0.8 7.85
opt. precomp. Ashcroft 5 9 2.09 1.66 3.8 0.67 9.37
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Figure 1. Dispersive characteristics of eight finite-difference schemes. Real part of numerical wavenum-
ber versus exact wavenumber.
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Figure 2. Non dimensional group velocity.
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