
electronic reprint

Journal of

Synchrotron
Radiation

ISSN 0909-0495

Multiple-electron excitation in X-ray absorption: a simple generic model

M. Roy, J. D. Lindsay, S. Louch and S. J. Gurman

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Synchrotron Rad. (2001). 8, 1103–1108 M. Roy et al. � Multiple-electron excitation in X-ray absorption



Multiple-electron excitation in X-ray
absorption: a simple generic model

M. Roy,a* J. D. Lindsay,b S. Loucha and S. J. Gurmana

aDepartment of Physics and Astronomy, University of Leicester,
Leicester LE1 7RH, UK, and bThe Blackett Laboratory, Imperial
College, London SW7 2AZ, UK. E-mail: mr6@leicester.ac.uk

The probability of multiple-electron excitation in X-ray absorption is

calculated using a simple generic model. The model permits

calculations to be made for all atoms with little input data or

computing effort. The high-energy limit of this probability, which

gives the usual EXAFS amplitude reduction factor, is calculated in

the `sudden approximation' using Slater orbitals. Good agreement

with experiment is found. The energy dependence of this probability

is also calculated using a simple model form of perturbing potential

and found to agree well with experiment for rare gas atoms. The

effect on the X-ray absorption coef®cient of including multiple-

electron excitations is also determined and is found to be small, again

in agreement with observation.
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1. Introduction

The theory of X-ray absorption is usually described in one-electron

terms. This theory gives very good results for the X-ray absorption

coef®cient (Gurman, 1983). A one-electron theory also gives good

results for the extended X-ray absorption ®ne structure (EXAFS),

except for the amplitude. However, it is known from studies on the

noble gases (e.g. Bartlett et al., 1992) that 20±30% of X-ray absorp-

tion processes give rise to multiple-electron excitation. This value is

in line with the empirical amplitude reduction factor applied in early

EXAFS analyses. In order to describe such processes, and so obtain a

correct value for the EXAFS amplitude, we need to use a many-body

theory. Such theories are complicated and computationally intensive.

We describe here a simple model which correctly gives the multiple-

excitation probability (and hence the EXAFS amplitude reduction

factor) as a function of photon energy for all atoms with very little

computational effort. We also show why the X-ray absorption coef-

®cient is only very slightly altered by the inclusion of these many-

body effects, despite the high probability of multiple-electron exci-

tation.

In EXAFS studies, multiple-electron excitation on X-ray absorp-

tion (intrinsic losses) is not the only loss process which needs to be

considered. There are also the extrinsic losses suffered by the

photoelectron during its passage through the material. These are

usually described in terms of a mean-free-path factor. We do not

consider such losses here. Strictly, the intrinsic and extrinsic losses

cannot be separated in this simple way, since they may interfere with

one another. This interference is signi®cant at low photoelectron

energies (Hedin, 1989). Since it treats only the intrinsic losses, our

theory completely neglects these interference processes.

We ®rst consider multiple-electron excitation in the limit of high

photon energy, where we use the `sudden approximation' (Schiff,

1968). We need a form for the one-electron wavefunctions of all

atomic states and use the Slater form [the single zeta functions of

Clementi & Roetti (1974), which are themselves ®tted to Hartree±

Fock wavefunctions]. The screening parameters which appear in

these wavefunctions are obtained using a modi®ed form of Slater's

rules. Thus we obtain an accurate representation of the atomic

wavefunctions without the need for large amounts of input data. The

results of the sudden approximation are compared with the values of

the EXAFS amplitude reduction factor S 2
0 derived from many

EXAFS analyses.

We go on to consider the energy dependence of the multiple-

electron excitation probability, using a development of the model

proposed by Thomas (1984). We ®nd that an analytic expression for

the energy-dependent probability can be obtained which is in good

agreement with experimental data from rare gases. This form

provides an energy-dependent form for S 2
0 which could be used in

EXAFS analysis to avoid the need for calculations using a complex

potential.

Finally, we calculate the X-ray absorption coef®cient itself,

including multiple-electron excitations, and show why these do not

greatly alter the results obtained, again in agreement with experi-

ment.

We therefore obtain a model description of multiple-electron

processes in X-ray absorption which involves very little computing or

input data and which provides an accurate description of the

observed phenomena.

2. The high-energy limit

2.1. The sudden approximation

When an atom absorbs an X-ray photon, a photoelectron and a

hole in a deep core state are produced. The core-hole/photoelectron

system corresponds to a time-dependent change in potential that is, in

general, extremely complex. This more general case is considered in

the next section. We ®rst consider the limit of extremely high photon

energies. In this limit, the photoelectron has a very high kinetic

energy and leaves the atom very rapidly. The other electrons, which

we shall refer to as passive electrons, then relax under the in¯uence of

the core-hole potential alone. Within this approximation, the passive

electrons experience an abrupt change in Hamiltonian so that there is

a possibility that they too may be excited into the continuum (we

neglect the very weak bound±bound transitions) giving rise to a

multiple-electron excitation. The effect of the core-hole potential on

these electrons can be described in terms of the sudden approxima-

tion (Schiff, 1968).

We describe the wavefunction of the electrons in the atom in

Hartree form, as a single product of one-electron wavefunctions.

Within the sudden approximation, the boundary condition is that the

wavefunction shall be continuous across the abrupt change in

Hamiltonian. The probability that a given passive electron is then not

excited is given by

Pi �  ij 0
i


 ��� ��2
; �1�

where the unprimed wavefunctions relate to the unperturbed atom

and the primed wavefunctions to the atom with a core hole present.

The probability that no passive electrons are excited is then the

product of such terms over all passive electrons. This is the prob-

ability that only one photoelectron is produced. The theory of

EXAFS (Stern, 1988) shows that this is equal to S 2
0, the amplitude

reduction factor for EXAFS. Thus we have

S 2
0 �

Q
i

 ij 0
i


 ��� ��2; �2�

and 1 ÿ S 2
0 is equal to the probability of a multiple-electron excita-

tion occurring. This expression for S 2
0 was ®rst obtained by Rehr et al.

(1978). The proportion of multiple-electron events can be measured
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from the charge distribution of the ions produced by photoionization

(e.g. Carlson et al., 1968). The EXAFS amplitude reduction factor for

very many atoms can be obtained from the many early EXAFS

analyses, where this parameter had to be ®tted to data obtained from

a standard sample with known coordination number (usually a metal

foil).

2.2. Wavefunctions

In order to be able to calculate the multiple-electron probability

we need to know the form of the atomic wavefunctions. Accurate

wavefunctions are available, derived from self-consistent Hartree±

Fock calculations (Clementi & Roetti, 1974). In order to obtain a

generic form, we use wavefunctions of the Slater type, ®tted to these

accurate wavefunctions. These are the single zeta functions of

Clementi & Roetti (1974). Thus we have

 � 2�� �n�1=2

�2n!�1=2
r nÿ1 exp ÿ�r� �Ylm: �3�

The quantity � which appears in these wavefunctions can be written in

terms of a screening factor �,

� � Z ÿ �� �=n; �4�
where we use atomic units, such that r is given in terms of the Bohr

radius. The values of �, obtained from the tables of Clementi & Roetti

(1974), can be ®tted by a modi®ed version of Slater's rules. In this way

we obtain a generic form for the wavefunctions of all electrons in all

atoms. Our modi®cation of Slater's rules is described in Appendix A:

they give a good ®t to the tabulated zeta values and so give good

wavefunctions for the calculation of multiple-electron excitation

probabilities in the high-energy limit.

The Slater wavefunctions give, for the probability of a given

passive electron remaining unexcited, the expression

Pi � 4��0� �2n�1
= � � �0� �4n�2

; �5�
where, once again, unprimed values relate to the unperturbed atom

and primed values to the atom with a core hole present. Since the

perturbation is due to a deep core hole, Slater's rules give

�0 � � � 1; �6�
unless the passive electron state is either below, the same as or next

above the core-hole state. For hard X-ray excitation, none of these

conditions apply for passive electrons which have an appreciable

probability of excitation. Thus equation (6) corresponds to the

commonly used Z + 1 approximation for the relaxed ®nal states used

when calculating atomic scattering factors in EXAFS.

� is fairly large for all atomic states. Thus we can approximate the

result given in (5) to give

Pi � 1 ÿ 2n� 1

4n2�2
: �7�

Since the energy Ei of the state is approximately given by the square

of � (in atomic units) we see that the probability of excitation of a

passive electron falls off roughly as Eÿ1
i . Thus only weakly bound

passive electrons are likely to be excited, as we would expect. We

actually use the full form, equation (5), in our calculations.

We note that our calculation is appropriate to an isolated atom in

that we take the atomic states to be discrete levels. We can extend the

calculation to include bonding effects in the tight-binding approx-

imation (Roy, 1999). For full bands this extended calculation gives the

same results as the atomic calculation, while for partially ®lled bands

the correction is always less than 10% (Roy et al., 1997). Thus we use

the simpler atomic calculations in our comparison with EXAFS data.

2.3. The EXAFS amplitude reduction factor

We may compare our results with experiment in the form of the

EXAFS amplitude reduction factor S 2
0, which is assumed to be

energy independent, or the high-energy limit of ion charge data in

photoionization.

First of all we note that the amplitude reduction factor will be very

similar for K and L edges of the same element, since it only differs in

the two cases by the excitation probability of the 1s state, which is

very small for X-ray photons.

Using the modi®ed Slater's rules to obtain � and �0 we can easily

calculate P for any orbital and S 2
0 for any atom, using equations (2)

and (5). The values of S 2
0 obtained in this way are shown in Fig. 1. The

calculated amplitude reduction factor has a characteristic depen-

dence on atomic number, essentially following the ionization poten-

tial as we argued it would following equation (7). For Z > 10, the

region of interest for EXAFS, it lies between 0.65 and 0.80. Our

calculated values for S 2
0 are very similar to those calculated (Roy et

al., 1997) using the full tabulated wavefunctions of Clementi & Roetti

(1974). Thus it appears that the Slater wavefunctions, ®tted to the

single zeta function approximations of these wavefunctions, give a

suf®ciently accurate form for the wavefunction.

Fig. 1 also shows values of the amplitude reduction factor obtained

from many EXAFS data analyses (Roy et al., 1997) which used the

real X� scattering potential (and hence required empirical amplitude

factors) in early versions of the data-analysis program EXCURV.

Also shown on Fig. 1 are the results obtained by Carlson (1967) using

Hartree±Fock wavefunctions and some data from ion charge

measurements (Carlson et al., 1968; Holland et al., 1979; Armen et al.,

1985; Bartlett et al., 1992). We note that our results are in fairly good

agreement with the full calculation and essentially always agree with

experiment to within the experimental uncertainties. The poorest

agreement occurs for the 3d and 4d elements: we believe this is due to

the lower accuracy of the single zeta form for these orbitals, which

have two large components in their full form (Clementi & Roetti,

Figure 1
High-energy limit of multiple-electron excitation probability. Solid line:
calculated values for the K edge. Dashed line: calculated values for the L3

edge. Points: calculated values from Carlson et al. (1968). Points with error
bars: experimental data from K-edge EXAFS ®ts (S 2

0). Large points:
experimental data from ion charge measurements.
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1974). There is also a problem when the hole is located in the

outermost orbital (e.g. Ne L edge). This is due to electron correlation

and occurs in all calculations. It is of no signi®cance for X-ray studies,

but is rather a problem for UV photoemission.

Thus we conclude that we can successfully model the high-energy

limit of the multiple-electron excitation probability in a way which

requires little input data or computing.

3. The energy dependence of the multiple-electron excitation
probability

In the previous section the sudden approximation was used to

calculate the multiple-electron excitation probability in the limit of

extremely high photon energies. In this section we consider the

photon energy dependence of this probability. The core-hole/photo-

electron system is considered using a spatially and temporally varying

model potential and analyzed using standard time-dependent

perturbation theory. The temporal variation of the perturbation

arises because the photoelectron takes a ®nite time to leave the atom,

this time depending on the size of the atom and the energy of the

photoelectron. This gives rise to an energy dependence of the exci-

tation probability. At very high photoelectron energies, the results of

this calculation should tend to those found using the sudden

approximation, and we use this to normalize our results, so avoiding

much computation.

The problem of multiple-electron excitation in photoionization has

been studied by many authors. Most of these calculations are extre-

mely complex (e.g. Chang & Poe, 1975; Carter & Kelly, 1977) and

computationally intensive. They also require much input data. Here

we seek a simple model which will describe the energy dependence of

the multiple electron probability with reasonable accuracy and with

little input or computation. Such a model has been described in

outline by Thomas (1984) and we use this as the basis of our work.

Following Gadzuk & Sunjic (1975), we ®rst approximate the time-

and position-dependent perturbation V(r, t) due to the core-hole/

photoelectron system as a product of time-dependent and position-

dependent parts,

V r; t� � � V r� � f t� �; �8�

with a time dependence of the form

f t� � � 1 ÿ exp ÿt=t0� �: �9�

t0 is a characteristic time which we write as

t0 � R=v; �10�

where R is a characteristic distance in the atom and represents the

size of the orbital of the passive electron; v is the speed of the

photoelectron. With this form, the passive electron sees the full core-

hole potential V(r) as t ! 1, when the photoelectron has left the

atom.

Time-dependent perturbation theory gives the probability ampli-

tude of a passive electron being excited from an atomic orbital |ii to a

propagating state |ki due to the perturbation V(r, t) as

aik � ijV r� �jk
 � R1
0

exp i Ei ÿ Ek� �t� �
f t� � dt: �11�

Using the form of perturbation given above we can evaluate the

integral if we include a convergence factor exp(ÿ�t) in V(r, t). This

convergence factor physically represents the ®nite core-hole lifetime.

We then ®nd a transition probability

aik
�� ��2� i Vj jkh ij j2

Ei ÿ Ek� �2 1 � t20 Ei ÿ Ek� �2
� � : �12�

In order to obtain the total excitation probability we must sum

over all ®nal states which are accessible, i.e. which obey energy

conservation. Replacing the sum by an integral and introducing a

density of ®nal states we ®nd a total probability

P h- !� � � A
REmax

0

E1=2 i Vj jkh ij j2
EB � E� �2 1 � t20 EB � E� �2

� � dE; �13�

with E the energy of the ®nal state |ki and EB the (positive) binding

energy of the initial passive electron state |ii. Emax is given by energy

conservation as Ep ÿ EB, where Ep is the energy of the primary

photoelectron, equal to h- ! ÿ Eedge. The factor A includes all the

constants.

We use the Slater orbitals as our initial states |ii and propagating

spherical waves (free electron approximation) normalized to unit

amplitude as the ®nal states |ki. Taking the core-hole potential as a

Coulomb potential we then ®nd

i Vj jkh ij j2� B= k2 � �2
ÿ �n � B0= E� EB� �n; �14�

with B and B0 constants. The second form of equation (14) is obtained

by replacing k2/2 by the ®nal-state energy E (we use atomic units) and

�2/2 by the binding energy of the initial state EB . When we substitute

this form into equation (13) the total excitation probability is given by

P h- !� � � A0 REmax

0

E1=2

EB � E� �n�2 1 � t20 EB � E� �2
� � dE: �15�

In the high-energy limit, t0 ! 0 since the velocity of the photo-

electron v ! 1. The integral can then be performed at once

(Gradshteyn & Ryzhik, 1980; 3.241.4). Setting the excitation prob-

ability to P(1) in this limit gives us

P h- !� � � P 1� � � 2nÿ 1� �!
22n nÿ 1� �! n� 1� �!
� �

E
n�1=2
B

� REmax

0

E1=2

EB � E� �n�2 1 � t20 EB � E� �2
� � dE: �16�

P(1) is known from the results of the sudden approximation. Thus

we have only to evaluate the remaining integral. It is this normal-

ization to the high-energy limit which produces much of the simplicity

of our ®nal result.

Equation (16) is obtained using an atomic calculation, with the

initial state of the passive electron an atomic level, not a band. As we

noted in the previous section, full bands give the same result as

atomic levels in the high-energy limit, with partially ®lled bands

changing the result by less than 10%. The integral of (16) remains

®nite as EB goes to zero (as occurs when the passive electron lies at

the Fermi level) so, at worst, including bonding effects (which will

involve an integral over EB) will only alter the energy dependence of

P�h- !�. Such effects are expected to be small (Roy et al., 1997) and so

we continue to use the simpler atomic calculation.

t0 is given by equation (10). We ®x R as the radius at which the

charge density | |2 peaks, which is easily evaluated using the Slater

form. We also calculate the speed of the photoelectron from its

kinetic energy. Thus we ®nd

t 2
0 �

nÿ 1

2

� �2
1

EBEp

: �17�

We substitute this expression into (16) and scale the integration

variable by EB to obtain a dimensionless integral. Thus our ®nal
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result for the probability of exciting a passive photoelectron with a

photon of energy h- ! is

P h- !� � � P 1� � � 2nÿ 1� �!
22n nÿ 1� �! n� 1� �!
� �

�
ZEp=Eb

1

�X ÿ 1�1=2

Xn�2 1 � �2n� 1�=4� �2�EB=Ep�X2
� 	 dX:

�18�

We note that no passive electron can be excited until the energy of

the primary photoelectron is greater than its binding energy, as seems

reasonable. Thus no secondary electrons are excited until an energy

EB above the absorption edge.

The integral may be evaluated analytically [by splitting it into

partial fractions and using Gradshteyn & Ryzhik (1980); 2.216 and

2.225], giving a result in terms of the photon energy and the binding

energies of the core hole and the passive electron. We therefore

obtain a general result for the multiple-electron excitation probability

which involves very little computation or input data. We can compare

the predictions of this model with experimental data obtained for

rare gases: we do this below. The result also gives the energy-

dependent EXAFS amplitude reduction factor which could be used

in data analysis. We also note that equation (18) gives P as a function

of two parameters, the ratio Ep /EB, the ratio of the primary photo-

electron energy to the binding energy of the passive electron, and n,

the principal quantum number of the passive electron orbital. We can

therefore plot a canonical form for P as a function of these two

variables. This is shown in Fig. 2. We note that P has reached

essentially its high-energy limit by a few times EB above the edge,

rising somewhat more slowly for higher values of n. Since only the

outermost electrons give a signi®cant contribution to the total

multiple electron probability, this means that the EXAFS amplitude

reduction factor will reach its full value within a few tens of eV above

the edge, with a slower rise for heavier atoms. The rapid rise accounts

for the success of simple analyses made using a constant value for the

reduction factor.

The results shown in Fig. 2 depend on our value for t0, i.e. the value

we take for R. Values other than the one we use could be tried.

However, they all give a very similar form for P. Thus if we choose R

as the peak in the radial charge density r 2| |2, we merely replace

n ÿ 1 by n and so can still use Fig. 2. If we choose the expectation

value hri we need to replace n ÿ 1 by n + 1/2. Both these models give

a slower rise in P for a given n. Comparison with experimental data

from rare gases (see below) suggests that our present form gives the

best agreement.

3.1. Multiple electron probabilities in rare gases

Experimental data on the photon energy dependence of the

multiple-electron excitation probability is available for the rare gases.

In Fig. 3 we show a comparison between our results, obtained using

equation (18), and the value of P(1) obtained as in x2, and the

experimental data of Armen et al. (1985) for the K edge of argon. The

argon K edge lies at 3203 eV and we have taken the binding energy of

the n = 3 state (the passive electron) as 15 eV, the ®rst ionization

potential of argon. This is probably a little low, since the core hole will

lower the 3sp energy somewhat (a relaxation shift). In the energy

range of the data, only the 3s and 3p passive electrons can be excited.

We note that the sudden approximation gives a good estimate of the

high-energy end of the data, as is clear from Fig. 1 also. The shape of

the energy variation is also well reproduced, although the rise is a

little too rapid in the calculated values. The data for the K edge of

neon (Carlson & Krause, 1965) is similarly well described (Roy,

1999). In the case of the neon L edge (Bartlett et al., 1992) and the

argon M edge (Holland et al., 1979) the energy dependence is accu-

rately reproduced (Lindsay, 2000) by equation (18) but the limit

P(1) is poorly calculated by the sudden approximation owing to

problems with electron correlation noted in x2.

The use of the experimental binding energy rather than that given

by the screening coef®cient calls for some comment. We ®nd much

better agreement with experiment, for all rare gases, using the former.

It appears that, although the single Slater orbital gives a good

representation of the overall wavefunction [and hence good values

for P(1)], it does not give accurate values for the binding energies,

�2/2 normally being considerably larger than EB . Nor does it give a

good representation of the energy dependence of the matrix elements

(Roy, 1999). The use of experimental energies, which are easily

accessible for all levels as the X-ray edge energies, appears to solve

both these problems.

In Fig. 4 we plot the K-edge EXAFS amplitude reduction factor

S 2
0 = 1 ÿ P�h- !� for silicon, copper and silver, calculated using this

model. The energy dependence agrees with the commonly held view

Figure 2
Canonical form for the energy-dependent multiple-electron probability P(Ep).
Ep is the primary photoelectron energy, Ep = h- ! ÿ Eedge, EB the binding
energy, and n the principal quantum number, of the initial state of the passive
electron. Solid line: n = 2; dotted line: n = 3; short dashed line: n = 4; long
dashed line: n = 5.

Figure 3
Multiple-electron excitation probability for the K edge of argon. Line:
calculation; points: data of Armen et al. (1985).
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that S 2
0 reaches almost its full magnitude within at most a couple of

hundred volts of the edge. The model results also agree closely with

those calculated using the local density approximation (LDA) (Roy,

1999; Roy & Gurman, 2001). The LDA calculation is known to give

good results for the EXAFS amplitude reduction factor and so we

may say that our model will also.

We may also note that the integrand of (16) gives the probability

that a passive electron will be excited to an energy E [the primary

photoelectron will then have an energy Ep ÿ (E + EB)]. Thus the

integrand can be used to predict the secondary electron spectrum in

X-ray photoemission. We (Roy, 1999) ®nd reasonable agreement with

the experimental data (Carlson, 1967) for this spectrum.

4. The X-ray absorption coef®cient

We have noted that a one-electron calculation gives good results for

the X-ray absorption coef®cient (Gurman, 1983). We have also noted

that 20±30% of X-ray absorption events give rise to multiple-electron

excitation. We now try to show how these two points may be resolved.

If we take Thomas' (1984) model at face value then there is no

problem. In this model the photoelectron is emitted before it interacts

with the passive electrons, so the absorption process is described

solely in one-electron terms. However, this is physically untenable:

one-electron and multiple-electron processes form different channels

for the excitation of the atom and must be considered as separate

processes.

If we consider separate channels, then the measured X-ray

absorption coef®cient is a sum of one-electron and multiple-electron

processes. In the latter, only the sum of the ®nal energies of the two

excited electrons is ®xed. We can therefore write the total absorption

coef®cient �(!) as

� h- !� � � 1 ÿP
aik
�� ��2h i

�1 h
- !� � � P

aik
�� ��2�1 h

- !ÿ Eik� �: �19�

The ®rst term is the one-electron channel. In the second term we have

the probability of exciting a passive electron to a ®nal state |ki
multiplying the absorption coef®cient appropriate to a photoelectron

of diminished ®nal energy, summed over all available ®nal states.

Equation (19) looks physically reasonable and can also be derived

using a many-body theory of photon absorption.

We now expand the one-electron absorption coef®cient which

appears in the second term about the photon energy h- !. We then ®nd

� h- !� � � �1 h
- !� � � d�1

dE h- !
�� X

aik
�� ��2

Eik; �20�

so that the absorption coef®cient is equal to the one-electron value

plus a correction term. The one-electron absorption coef®cient may

be fairly accurately described by a power law form

�1 h
- !� � � �1 h

- !e� � Ee=E� �n; �21�
with n about 3 or 4 (this is a slightly simpli®ed version of the standard

Victoreen form) and h- !e the energy of the edge. When we substitute

this form into equation (20) we ®nd

� h- !� � � �1 h
- !� � 1 ÿ n

P
aik
�� ��2Eik=h

- !
h i

: �22�

Now, |aik|
2 is only large for small values of Eik: according to equations

(12) and (13) it is effectively the slope of the plot of P(h- !). Thus the

factor Eik/h- ! is very small, of the order of the ratio of the binding

energy of the passive electron to that of the core electron. For the

argon K-edge data used above, this ratio is 15/3200. Also, the sum

rises from zero in a manner very similar to that shown by P(h- !). [The

sum is actually given by equation (16) with the power n + 2 replaced

by n + 1 in the denominator: Fig. 2 shows that this change has little

effect.] We therefore expect to see very little change in the X-ray

absorption coef®cient when multiple-electron excitations become

energetically allowed: just a very weak kink as is actually observed

(e.g. Deutsch & Hart, 1986; Filipponi, 1995). Such small changes may

be expected, since both the one-electron and the many-body calcu-

lations of the X-ray absorption coef®cient obey the same sum rule,

the Thomas±Reiche±Kuhn sum rule.

5. Conclusions

We have described a simple generic model for many-body effects in

X-ray absorption. Our major purpose has been to provide a theory

which gives the probability of multiple-electron excitation, and hence

the EXAFS amplitude reduction factor, in a form which requires

little computing or input data. We achieved this by the use of Slater

orbitals, with the screening constants ®tted to modern wavefunction

results (Clementi & Roetti, 1974) and so calculated using a modi®ed

form of Slater's rules. For the energy dependence we have used a

development of the model originally proposed by Thomas (1984)

which gives an analytic result for the energy-dependent probability,

normalized to the high-energy limit calculated in the sudden

approximation.

The results obtained using this model agree well with experimental

data, both for the standard EXAFS amplitude reduction factor S 2
0

(which is assumed constant, so is given by the high-energy limit) and

for the energy-dependent probability as measured for rare gases.

One possible application of our results is in EXAFS data analysis.

At present the major data-analysis codes use complex potentials

derived from the local density approximation (the Hedin±Lundqvist

potential). This gives good results for the amplitude reduction in the

energy region of interest for EXAFS (photoelectron energies up to

about 1 keV), although this is largely fortuitous (Roy & Gurman,

1999, 2001). However, use of this potential involves calculating the

photoelectron scattering using a complex potential. It may be more

convenient to calculate the EXAFS spectrum using a real potential,

such as the energy-dependent Hara potential which is known to give

good results (Woolfson et al., 1982) with the intrinsic losses described

by S 2
0 included using this model, which requires very little input data.

The extrinsic losses also need to be included, but this can be

performed in terms of the standard mean-free-path term.
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Figure 4
Calculated K-edge EXAFS amplitude reduction factor S 2

0 = 1 ÿ P(Ep).
Dashed line: silicon; solid line: copper; dotted line: silver.
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APPENDIX A
Modi®ed Slater's rules

The wavefunctions used in these model calculations were the single

zeta functions of Clementi & Roetti (1974), which are the best

approximation to full Hartree±Fock wavefunctions when the simple

Slater form [equation (3)] is assumed. In order to avoid much input

data, the parameter � which appears in the formula was written in

terms of a screening parameter � [equation (4)] which was itself

calculated using a modi®ed version of Slater's rules.

Slater's rules in their original form were proposed in 1930 (Slater,

1930) on the basis of ®tting to some of the earliest calculated wave-

functions. Since that date, wavefunction calculations have been

improved and extended, requiring some modi®cation to the rules. We

have kept to the spirit of the original rules, but modi®ed them to give

the best ®t to the screening factors derived from the single zeta

functions of Clementi & Roetti (1974).

Slater (1930) ®rst divided the electrons into groups: 1s, (2s 2p),

(3s 3p), 3d, (4s 4p) etc. The contribution of each electron to the

screening factor was then given by:

(a) Nothing from any shell outside the one considered.

(b) An amount 0.35 from each other electron in the group

considered, except in the 1s group where 0.30 is used.

(c) If the shell considered is an s, p shell, an amount 0.85 from each

electron with principal quantum number less by one and an amount

1.00 from each electron still further in; but if the shell is a d or f, an

amount 1.00 from every electron inside it.

Slater also used an effective principal quantum number n* instead

of n in equation (3) for all n > 3.

In order to obtain a best ®t to the single zeta functions of Clementi

& Roetti (1974), we need to modify the rules, principally by including

a small screening effect from electrons outside the shell considered:

without this contribution deep shells become underscreened and

their contribution to S 2
0 too high (Roy et al., 1997). Thus we use the

same grouping of levels but with the following rules:

(a) For every electron outside the group considered, an amount 0.1

electron for s or p electrons, nothing for d or f electrons.

(b) For every other electron in the group considered, 0.33 electron,

except for 1s where 0.30 is used.

(c) For electrons in groups inside that considered. Electrons with

the same principal quantum number as the group considered

contribute 0.45 if s or p; 0.1 if d or f. For electrons with a principal

quantum number less by one than that considered: 0.9 electrons for

every d or f electron and an amount 1.00 ÿ 0.2(n ÿ 2) for every s and

p electron (n is the principal quantum number of the passive electron

under consideration), if the group considered is s or p; 0.55 electrons

for every d or f electron and 1.00 for every s or p electron, if the group

considered is a d or f electron. Electrons with a principal quantum

number more than one less than that of the group considered, a

contribution of 1.00 per electron.

The complex form of our rule (c) replaces Slater's effective prin-

cipal quantum numbers and also more accurately describes the

differences between s, p and d, f electrons. These three rules give a

good description of the screening of all electrons: three examples are

shown in Fig. 5. For these three examples the rules may be written

algebraically as

2sp : � � 1:0N1s � 0:33 N2sp ÿ 1
ÿ �� 0:1 N3sp � N4sp � . . .

ÿ �
;

3d : � � 1:0 N1s � N2sp

ÿ �� 0:45N3sp � 0:33 N3d ÿ 1� �;
5sp : � � 1:0 N1s � N2sp � N3sp � N3d

ÿ �� 0:4N4sp

� 0:9N4d � 0:33 N5sp ÿ 1
ÿ �

: �23�

In order to calculate the screening coef®cients � and �0, for atoms

without and with a core hole, we simply use the appropriate occu-

pancies. It is then clear from equation (23) that, as long as the core

hole is much deeper than the passive electron, �0 = � + 1 as noted in

equation (6). Since only the least-bound passive electrons contribute

signi®cantly to S 2
0 [equation (7)], this is always the case for hard

X-rays, the only case of interest for EXAFS.
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