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ABSTRACT 

We examine the behaviour of Dickey Fuller test (DF) in the case of noisy data using 

Monte Carlo simulation. The findings show clearly that the size distortion of DF test 

becomes larger as the noise increases in the data. 
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1. INTRODUCTION 

 Various unit root tests have been employed in empirical work to identify the order of 

integration of economic variables. So far Dickey Fuller (DF) test remains the most 

famous one. A substantial body of research examines the main characteristics of DF 

test and particularly its main shortcomings such as low power, large size distortion 

and sensitivity to the true data generating process (DGP). Diebold and Rudebusch 

(1989a, 1991) and DeJong, Nankervis, Savin, and Whiteman (1992) examine the 

power of DF test when the process has short memory with a unit root close to unity 

and provide strong evidence that DF test has low power when the process is 

fractionally integrated.  

The Size distortion of DF test is also examined heavily in the literature. Perron (1989), 

Hamori and Tokihisa (1997), Montañés and Reyes (1998), Leybourne and Newbold 

(2000), Sen (2001, 2003, 2008) and Kim, Lybourne and Newbold (2004) examine the 

behaviour of DF test in the case of structural breaks. Cheung and Lai (1998), and 

Cook and Manning (2004) examine the influence of the lag selection process using 
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standard information criteria on the size distortion of ADF test. Granger and Hallman 

(1991), Kramer and Davies (2002) examine the robustness of DF test in the case of 

improper transformations of the data. Phillips and Perron (1988), Schwert (1989), 

Agiakloglou and Newbold (1992) analyze the performance of DF test when the 

process that generates the time series contains moving average term. The main 

findings for all these studies show that the distribution of the unit root test statistics is 

different from the distribution proposed by Dickey-Fuller. Accordingly a severe size 

distortion occurs and the power of DF test becomes questionable. 

In this paper, we examine the performance of DF test when the process that 

generates the time series contains noise. The main focus will be on the size distortion 

of DF test as the noise increases in the data. This paper is organized as follows: 

section 2 the motivation, section 3 the full design of Monte Carlo experiment that is 

employed to illustrate the behaviour of DF test and the size distortion that occurs as a 

result of the measurement errors in the data, Section 4 the empirical results and 

section 5 the conclusion. 

 

2. THE MOTIVATION 

The motivation for this study comes from some simple tests on the order of 

integration on Jordanian inflation. Figure 1 shows monthly inflation in Jordan from 

1997 to 2007, if we consider the spectrum for this series it suggests a non-stationary 

process, but as table 1 shows the DF test strongly suggests that the series is 

stationary. In order to check this we then defined the inflation rate over a 12 month 

period, shown in figure 2 and this clearly looks non-stationary and indeed, as table 1 

shows, the DF test strongly suggests non stationarity 

Table 1: Dickey-Fuller tests for stationarity of Jordanian Inflation 

DF Test using (AIC), Exogenous: Constant 

 t-statistics, no. of lags 

INFLATION RATE (H=1 MONTH) **-9.368042(1) 

INFLATION RATE (H=12 MONTH) *-0.899845(12) 

*   The null hypothesis of non-stationarity can't be rejected at (1%,5%,10%) significance  levels. 

**  The null hypothesis of non-stationarity is rejected at (1%, 5%,10%)  significance  levels. 

Of course these two tests are in clear contradiction of each other as, 
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Where t
j  is the rate of inflation at time t over j periods. So if monthly inflation is 

stationary then annual inflation which is simply the sum of monthly inflation must also 
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be stationary. We believe that the explanation for this contradiction lies in the 

presence of measurement error. This is evident in figure 1 as we can clearly see here 

that many months exhibited negative inflation, this is not a phenomenon which is 

observed by Jordanians and hence it would seem to be a problem with the actual 

measurement of the price level. 

If this is the case then we can also show why taking a longer period for the inflation 

calculation would give a more meaningful test statistic. We begin by assuming that 

the true price level in logs is a random walk 

ttt PP 1
**  

But the observed log of the price level is subject to measurement error 

ttt vPP *  

Where both tt vand  are IID noise processes and observed inflation is given by 

jttt
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It is therefore evident that by measuring inflation over a longer period the size of the 

random walk variance grows relative to the size of the measurement error and hence 

measurement error has less effect on measured inflation. 

To examine the influence of the noisy data on the size distortion and the empirical 

power of DF test more completely, we now turn to a formal Monte Carlo Simulation. 

 

3. Monte Carlo Analysis/ Experiment Design 

The Monte Carlo experiment begins with Data Generating Process. The steps of data 

generating are as follows:- 

Step one:  Generate a data set using the simplest model of time series which is a 

non-stationary normal random walk. So the first data set ( ) is a random walk 

process without a drift and it is generated by an AR (1) model of the form:- 
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   =  + ,   t= 1, 2, ……., T                      Eq.   (1) 

Where,   

 1 

0x  = 0 (the initial value)  

   = Random disturbance is generated from normal distribution with zero mean and                

          constant variance ( 2 ) equals one, i.e.  ~ N(0,1). 

 

Step two: Create noises in the data set ( ) by adding random disturbances with zero 

mean and fixed variance and create a measured variable y. 

y t =  + t ,     t= 1, 2, ……., T                             Eq.   (2) 

Where we may vary the variance of this error to investigate the effects of different 

levels of measurement error relative to the random walk component, 

      t ~ N(0,0), N(0,0.5), N(0,1), N(0,1.5), N(0,2), N(0,3), N(0,4), N(0,5), N(0,6), and  N(0,7).    

 We consider the following samples sizes T= 25, 50, 100, 150, and 200 observations 

and we perform 50,000 replications for each sample size and for each variance.  We 

chose 50,000 replications on the grounds that for each sample size using variance 

zero ( t ~ N(0,0))  we needed 50,000 replications to exactly replicate the standard 

Dickey Fuller critical values. 

In order to show the size distortion of DF test as noise increases in the data, we 

calculate   the    percentage   of rejection   of   the   null   hypothesis at 5% level of 

significance using the normal critical values of DF test with constant model1.  

 

4. Empirical Results 

In table 2 we show clearly that the percentage of rejection of the null   hypothesis at 

5% level of significance increases dramatically as the noise increases in the data. 

The null hypothesis of non stationrity is rejected more often in favour of the alternative 

(the stationarity).  

                                                           

1
 DF test asymptotic critical values at 5% level of significance under sample sizes  (25, 50, 100, 150, and 

200) are as follows: -2.99%, -2.92%, -2.89%, -2.88% and -2.88%. 
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The benchmark case in this experiment is the one where the variance equals zero (no 

noise embedded) and both generated data sets ( ) and (y t ) are equal. The 

percentage of rejection of the null hypothesis for all samples' sizes is exactly 5% (see 

table 2) which means that DF test is able to identify the truth about the unit root using 

the normal critical values (95%) of the time. When the noise increases, from variance 

0.5 till variance 7, the size distortion becomes larger and the percentage of rejection 

increases dramatically which means that DF test provide misleading results using the 

same normal critical values. 

The results also show that the size distortion becomes larger when the sample size 

increases even at lower variances which implies that even very large samples 

containing measurement error will give incorrect inference. Figure 3 demonstrates 

that under sample size 50, 100, 150 and 200 the percentage of the rejection of the 

null hypothesis increases faster than the case of sample size 25. The influence of the 

noise appears more quickly when the sample size is big, for example the percentage 

of rejection reaches 100% at variance six for both sample size 150 and 200 and at 

variance seven for sample size 100 while in the case of sample 25 we need to add 

more noises to reach 100%.   

It is crystal clear that the distribution of the t-statistic when the data set contains 

noises is different from the distribution proposed by Dickey Fuller where the process 

is a pure random walk. In this paper we propose a new set of critical values that can 

be used as an indication to identify the unit root in noisy data. The proposed critical 

values in table 3 are derived from the distribution of t-statistic values across the 

replications. The critical values at 1%, 5% and 10% are calculated as the first and fifth 

and tenth percentile of the t-statistic distribution.  As a benchmark, the critical values 

at variance zero equal exactly the asymptomatic critical values under the DF test. It is 

obvious that the critical values become bigger (in absolute values) when the noise 

increases in the data and this mean that the new t-statistic distribution will have 

heavier and fatter tails than normal fat tails. 

 

5. Conclusion 

The main objective of this experiment is to prove that the rejection of the null 

hypothesis of unit root under DF test in some cases should not be taken without 

further investigation.  

We prove by Monte Carlo simulation that the size distortion of DF test becomes larger 

as the noise increases in the data and faster as the sample size becomes bigger. 

We believe that DF normal critical values can be misleading and implausible when 

the data set contains noise. Instead the proposed critical values (table 3) can be more 

reliable in identifying the truth about unit root properties. 
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Figure (1) 
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Figure (3) 
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Table 2 

REPLICATIONS 
=50,000 

THE PERCENTAGE OF REJECTION OF THE NULL HYPOTHESIS OF UNIT ROOT 
AT 5% LEVEL OF SIGNIFICANCE 

SAMPLE SIZES = 25, 50, 100, 150, AND 200 

25 
t-statistic<-2.99 

50 
t-statistic<-2.92 

100 
t-statistic<-2.89 

150 
t-statistic<-2.88 

200 
t-statistic<-2.88 

VARIANCE = 0 5.04% 4.79% 5.01% 5.02% 4.96% 

VARIANCE = 0.5 9.90% 10.89% 11.73% 11.82% 11.85% 

VARIANCE = 1 25.10% 31.77% 34.92% 36.59% 36.67% 

VARIANCE = 1.5 44.00% 55.92% 61.39% 63.48% 63.86% 

VARIANCE = 2 60.00% 74.08% 79.38% 81.23% 81.96% 

VARIANCE = 3 79.47% 92.35% 95.27% 96.10% 96.43% 

VARIANCE = 4 88.78% 97.90% 99.11% 99.46% 99.54% 

VARIANCE = 5 93.18% 99.44% 99.87% 99.94% 99.96% 

VARIANCE = 6 95.23% 99.86% 99.98% 100.00% 100.00% 

VARIANCE = 7 96.45% 99.96% 100% 100.00% 100.00% 
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Table 3 

REPLICATIONS 
=50,000 

THE CRITICAL VALUES FOR 
ALL SAMPLES’ SIZES 

25 50 100 150 200 

CRITICAL VALUES 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

VARIANCE = 0 -3.77 -2.99 -2.63 -3.56 -2.90 -2.59 -3.49 -2.89 -2.58 -3.48 -2.88 -2.57 -3.46 -2.88 -2.57 

VARIANCE = 0.5 -4.21 -3.36 -2.98 -4.02 -3.33 -2.97 -4.00 -3.34 -2.98 -4.02 -3.32 -2.97 -4.00 -3.32 -2.97 

VARIANCE = 1 -5.08 -4.15 -3.69 -5.12 -4.27 -3.83 -5.29 -4.41 -3.94 -5.36 -4.44 -3.97 -5.40 -4.45 -4.00 

VARIANCE = 1.5 -5.77 -4.80 -4.33 -6.12 -5.18 -4.70 -6.58 -5.57 -5.02 -6.78 -5.71 -5.13 -6.94 -5.79 -5.21 

VARIANCE = 2 -6.29 -5.26 -4.80 -6.87 -5.91 -5.41 -7.63 -6.57 -5.99 -8.05 -6.87 -6.24 -8.35 -7.06 -6.40 

VARIANCE = 3 -6.87 -5.84 -5.36 -7.80 -6.84 -6.36 -9.09 -8.04 -7.45 -9.87 -8.68 -8.03 -10.47 -9.13 -8.42 

VARIANCE = 4 -7.18 -6.16 -5.67 -8.34 -7.40 -6.91 -9.98 -8.97 -8.41 -11.03 -9.92 -9.29 -11.88 -10.62 -9.92 

VARIANCE = 5 -7.36 -6.36 -5.86 -8.70 -7.75 -7.28 -10.52 -9.56 -9.05 -11.80 -10.76 -10.18 -12.83 -11.66 -11.01 

VARIANCE = 6 -7.50 -6.49 -5.99 -8.93 -7.98 -7.52 -10.91 -9.99 -9.49 -12.32 -11.35 -10.81 -13.51 -12.41 -11.82 

VARIANCE = 7 -7.59 -6.57 -6.07 -9.11 -8.15 -7.70 -11.19 -10.30 -9.81 -12.72 -11.77 -11.26 -13.98 -12.95 -12.41 

 


