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Abstract

Employing a Bayesian approach, we investigate the impact of inter-
national business cycles on the UK economy in the context of a smooth
transition VAR. We find that British business cycle is asymmetrically
influenced by the US, France and Germany. Overall, positive and neg-
ative shocks generating in the US or France affect the UK in the same
directions of the shock. Yet, a shock emanating from Germany always
exerts negative accumulative effects on the UK. More strikingly, a pos-
itive shock arising from Germany negatively affects UK output growth
more than a negative shock from Germany of the same size. These re-
sults suggest that the appropriate UK economic policy depends upon
the origin, size and direction of the external shocks.

JEL: C11, C32, C52, E32, F42.
Keywords: International business cycle, Bayesian, smooth transi-

tion vector autoregression model.
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1 Introduction

The study of international business cycle linkages is of special importance to
macroeconomic policy research. Numerous studies have sought to identify a
common business cycle across countries (see for instance, Artis and Zhang,
1997, Wynne and Koo, 2000, Inklaar and Haan, 2001). In recent years,
nonlinear multivariate models have become more popular among researchers
for such models can effectively capture the cross-country asymmetric inter-
dependencies (Smith and Summers, 2005, Artis, Galvao and Marcellino,
2007, Chen and Shen, 2007, to mention a few).

The present paper examines the impacts of international business cycles
on the UK economy within the framework of a logistic smooth transition
vector autoregression (LSTVAR) model. In particular, we attempt to char-
acterize the behaviour of the UK output growth under the influence of the
booms and busts in the US, France, and Germany, respectively.

Business cycle linkages between the UK and the three afore mentioned
countries have been examined previously by, for example, Artis and Zhang
(1997), Inklaar and Haan (2001), and Perez, Osborn and Artis (2006). How-
ever, most of the literature focuses on exploring the business cycles syn-
chronization rather than investigating the propagation of different types
of shocks (such as positive and negative or large and small shock) across
countries. Although the US’ effects on the UK economy are investigated in
several studies (for example, Artis, Krolzig and Toro, 2004, Osborn, Perez
and Sensier, 2005, Artis et al. 2007), to our best knowledge, no evidence on
how France and Germany, the two largest continental European economies,
influence the UK business cycles has been documented, except for Artis et
al. (2007), which look into Germany’s impact on the UK business cycles at
one point.

Our approach for the LSTVAR estimation is Bayesian. In particular, we
extend the Bayesian technique in estimating the univariate smooth transi-
tion models introduced in Lubrano (1999a, 1999b) into a multivariate form.
Compared with the available classical estimation techniques which often re-
quire multiple steps and Taylor expansions, our Bayesian method can jointly
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estimate the autoregressive coefficients and the nuisance parameters in the
transition function in one stage. Therefore, our approach is less susceptible
to the sequential testing and inaccurate approximations problems. Fur-
thermore, considering that nonlinear models are generally subject to the
criticism of being too parameter rich, we resort to Bayes Factors for model
selection and model averaging to reward more parsimonious models.1

Our results provide strong evidence of asymmetry in the bivariate re-
lationship across the three country pairs. For all cases, LSTVAR models
receive overwhelming support over the linear models. Additionally, we find
that business cycles in the US, the UK and Germany play important roles
in leading regimes changes, while the changes in France output would not
cause salient nonlinear effect.

Impulse response analysis implies that features of the impact from the
three countries are quite different. Among the three countries, the US’ im-
pact is the most persistent. Observe that he effects from France or Germany
die out in relatively five years, while with a much clearer cyclical pattern, the
impacts of the US growth shocks are still evident after nine years. It is not
surprising to observe that the shocks from the US and France would affect
the UK in the same direction. However, different from Artis et al. (2007),
we find that both the expansion and recession of Germany would thwart the
UK output growth. Most strikingly, we find that a boom in Germany brings
more negative effects to the UK’s economy than a bust in Germany.

Overall, we find that the UK’s economy is sensitive to the fluctuations of
international business cycles in a asymmetric form. Our research nonetheless
suggests that relying on linear models would result in systematic mistakes
in analysis and policy making due to the presence of substantial nonlinear
effect. Furthermore, it goes without saying that pernicious effects on the
UK growth rate exerted by Germany is of intrinsic importance to policy
makers.

The rest of the paper is structured as follows. Section 2 introduces
the LSTVAR model and Bayesian inferences. Section 3 presents empirical
results. Section 4 concludes.

1As discussed by Koop and Potter (1999a, 1999b), Bayes Factors include an automatic
penalty for more complex models.
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2 Logistic Smooth Transition VAR Model

The vector autoregressive model (VAR) has proven very successful in mod-
eling endogenous relationships among macroeconomic variables without im-
posing restrictions that may be ‘incredible’ in the sense of Sims (1972, 1980).
We therefore model the pairwise business cycle linkages in a reduced form
VAR based on two considerations. First, VAR is ideally suited to the analy-
sis of endogenously determined processes where dynamics are important but
where we have little or no clear economic structure. Second, VAR provides
an atheoretical framework for analysis and allows very rich dynamics.2 Con-
sidering the possible presence of nonlinearities in the cross-country business
cycle linkages, we model the annual growth rates of the two countries of
concern in a bivariate LSTVAR system introduced by Weise (1999).

Let yt = (y1,t, y2,t), where y1,t is the annual real GDP growth rate of
the country other than the UK (the US, France or Germany), y2,t is the
British annual real GDP growth rate. For time t=1,...,T, the cyclical link-
ages between the UK and another country can be expressed in the nonlinear
autoregressive process of order p as follows.

yt = Φ + Σp
h=1Γhyt−h + F (zt)

[
Φz + Σp

h=1Γ
z
hyt−h

]
+ εt, (1)

where εt is a white noise process, that is E(εt) = 0, E(ε′sεt) = Σ for s = t,
and E(ε′sεt) = 0 for s 6= t.

The regime changes are assumed to be captured by the first order logistic
smooth transition function defined by the transition variable zt

F (zt) = [1 + exp {−γ (zt − c) /σ}]−1 (2)

In function (2), the parameter γ (which is non-negative) determines the
speed of the smooth transition. We can see that when γ →∞, the transition
function becomes a Dirac function, then model (1) becomes a two-regime
threshold VAR model along the lines of Tong (1983). When γ = 0, the

2Many studies of co-movements of business cycles among the main industrial countries
(see for example, Norrbin and Schlagenhauf, 1996, Helbling and Bayoumi, 2003) use VAR
for modeling the interrelationships.
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logistic function becomes a constant (equal to 0.5), and the nonlinear model
(1) collapses into a linear VAR(p). The parameter c is the threshold around
which the dynamics of the model change. The value for the parameter σ is
chosen by the researcher and could reasonably be set to one. However, if
we set σ equal to the standard deviation of the process zt, this effectively
normalizes γ such that we can give γ an interpretation in terms of the inverse
of the number of standard deviations of zt. The transition from one extreme
regime to the other is smooth for reasonable values of γ.

The principle underlying the LSTVAR is that as zt increases, moving
from well below some threshold c to well above this threshold, the dynamics
of the vector process yt changes from one regime to another. That is, if zt
is very low - i.e., well into what we will call the lower regime for nominal
purposes - then the process yt may be generated by the VAR model as
follows.

yt = Φ + Σp
h=1Γhyt−h + εt (3)

However, when zt is very high - i.e., well into what we will call the upper
regime - then the process yt may be generated by the VAR given by

yt = Φ1 + Σp
h=1Γ

1
hyt−h + εt (4)

The transition between these two regimes is smooth and governed by a
smooth function of zt denoted by F (zt). The value of F (zt) is bounded by
0 and 1. F (zt) = 0 when zt is very low, and F (zt) = 1 when zt is very high.

Thus we may express the full process as

yt = (1− F (zt))
[
Φ + Σp

h=1Γhyt−h

]
+ F (zt)

[
Φ1 + Σp

h=1Γ
1
hyt−h

]
+ εt (5)

which can equivalently be written as model (1).
Observe that model (1) encompasses a set of models distinguished by

the choice of the transition variable, the order of the autoregressive process,
and whether there exist nonlinear effects.

2.1 Likelihood Function

For notation convenience, we set xt = (1, yt−1, ..., yt−p), and xθ
t = [xt F (zt)xt].

Next we stack the vectors over t as Y = (y
′
1, y

′
2, ..., y

′
T )′,Xθ = (X

θ′
1 , X

θ′
2 , ..., X

θ′
T )′,

B = (Φ,Γ1, ...,Γp,Φz,Γz
1, ...,Γ

z
p)

′, and E = (ε
′
1, ε

′
2, ..., ε

′
T )′.
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Now we can write model (1) in a more compact form as

Y = XθB + E (6)

where the dimensions of Y and E are (T ×2), the dimension of Xθ is (T ×k),
and the dimension of B is 2k, with k = 2(1 + 2p).

Given the assumptions on the error terms, the likelihood function of the
model can be expressed as

L(B,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2
trΣ−1E′E

}
(7)

Using standard algebraic results, it is possible to show that

E′E = S + (B − B̂)′Xθ′Xθ(B − B̂)

where B̂ = (Xθ′Xθ)−1Xθ′Y , and S = (Y − XθB̂)′(Y − XθB̂). Thus, the
likelihood function can then be rewritten as

L(B,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2
trSΣ−1 − 1

2
tr(B − B̂)′X ′θXθ(B − B̂)Σ−1

}
(8)

Vectorizing model (6), we can transform model (1) into

y = xθb+ e, (9)

where y = vec(Y ), b = vec(B), xθ = In ⊗Xθ, and e = vec(E).
Now, using the relationship between the trace function and the vectoris-

ing operation, we can write the term in the exponent of (7) as

trΣ−1E′E = e′(Σ−1 ⊗ IT )e = s2 + (b− b̂)′V −1(b− b̂) (10)

where s2 = y′MV y,MV = Σ−1 ⊗
(
IT −Xθ(Xθ′Xθ)−1Xθ′

)
, b̂ = vec(B̂) and

V = Σ⊗ (Xθ′Xθ)−1.
Hence, the likelihood function in (7) can also be written as

L(b,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2

[
s2 + (b− b̂)′V −1(b− b̂)

]}
(11)

which has a more familiar Normal form for vector b.
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2.2 Priors

In setting the values for the priors we take into account a number of con-
siderations. It is apparent that the LSTVAR model is highly parameterized
and the degree of parameterizations influences the quality of inference in fi-
nite samples. Priors that are tight around zero (i.e., very informative) tend
to improve estimation in VARs (Ni and Sun, 2003). Also, we use Bayes Fac-
tors for inference on models. As discussed in Strachan and van Dijk (2004),
the Bayes factors are functions of the prior normalizing constants and so the
prior settings can have a strong influence on the posterior model weights.
Generally, less informative priors will tend to penalize more highly param-
eterized models. A final consideration is that we have little understanding
of the behaviour of economic growth beyond anecdotal evidence and how
it can be reasonably modeled. Thus, we face a potential conflict between
our desire to specify uninformative priors for a large number of parameters,
and priors that are informative which would improve the efficiency of esti-
mation. Furthermore, we do not want to completely avoid or prefer the use
of large models a priori. Taking into account these considerations, we elicit
the priors as follows.

To start with, we assume all models to be a priori equally likely. Next,
following Zellner (1971), we specify a standard Jeffreys prior for Σ as

p(Σ) ∝ |Σ|−(n+1)/2

We plan to compute posterior probabilities for model inference. For
these probabilities to be well defined, the priors for any parameters that
change dimensions, i.e. b, must be proper (see Bartlett, 1957 and Strachan
and Van Dijk, 2004 for further discussion). Hence, we assume the prior
for b is Normal with zero mean and covariance matrix V = η−1Ink, where
η is a shrinkage prior distributed as Gamma with mean µη, and degrees
of freedom νη. Note that the prior variance for b depends on η. Large
values of η imply greater shrinkage towards zero which will tend to reduce
the expected frequentist risk of the estimator. However, smaller values of
η will imply a less informative prior. To allow prior for b that is relatively
uninformative, but still allow for a degree of shrinkage, we specify the prior
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of η distributed as G(10, 0.001), where 10 is the mean, and 0.001 is the
degree of freedom.

As explained in Bauwens, Lubrano and Richard (1999), at the point
where γ = 0, the smooth transition function in (2) becomes a constant and,
as a consequence, elements of b become unidentified. While when γ → ∞,
under a flat prior for γ, the posterior is not integrable. Hence, following
the suggestion of Lubrano (1999a, 1999b), we exclude a priori the point
γ = 0 from the support of γ. Specifically, we assume the prior of γ is a
Gamma distribution with mean µγ and degree of freedom νγ . Note that
although the prior for γ excludes zero, as the prior for b is centered on zero,
this restriction does not bias in favor of asymmetry. We define the prior
mean of γ as 1, in line with the starting values of grid search in most of
the classical works (see, for example, Öcal and Osborn, 2000 and Sensier,
Osborn and Öcal, 2002), while our assumption that the degree of freedom of
the prior Gamma distribution is 0.001 is for minimizing the prior’s influence
on posterior computations.

In the end, we assume the prior of the location parameter c as uniformly
distributed between the upper and lower limits of the middle 80% of the
observed transition variables.

2.3 Posteriors Computations

We use Gibbs Sampling to compute the outputs from the posteriors. Condi-
tional upon γ, c, and η, the model is linear. Thus the conditional posterior
distributions of Σ and b and are of standard forms. Combining the likelihood
function (7) and the priors, we obtain the conditional posterior distribution
for Σ as an inverted Wishart with scale matrix E′E and degrees of freedom
T, and the conditional posterior distribution for the vector b as Normal with
mean b and variance V , where V = (V −1 + ηInk)−1, and b = V V −1b̂.

To obtain the conditional posterior for η, we combine the prior and the
likelihood to obtain the expression

p(η|b,Σ, γ, c, y, x) ∝ η
νη+nk−2

2 exp(−
ηνη

2µη
− 1

2
b′bη) (12)

Thus with a Gamma prior, the conditional posterior distribution of η is
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Gamma with degrees of freedom νη = nk + νη, and meanµη =
νηµη

νη+µηb′b .
The posterior distributions for the remaining parameters, γ and c, have

nonstandard forms. However, we can use Metropolis-Hastings algorithms
(Chib and Greenberg, 1995) within Gibbs to estimate γ, and the Griddy
Gibbs sampler (Ritter and Tanner, 1992) to estimate c.

The Gibbs sampling scheme for our posterior computation, therefore,
takes the following form.

1. Initialize (b,Σ, γ, c, η) = (b0,Σ0, γ0, c0, η0);
2. Draw Σ|b, γ, c, η from IW (E′E, T );
3. Draw b|Σ, γ, c, η from N(b, V );
4. Draw γ|b,Σ, c, η through Metropolis-Hastings method;
5. Draw c|b,Σ, γ, η numerically by Griddy Gibbs;
6. Draw η|b,Σ, γ, c from G(µη, νη);
7. Repeat step 2 to 6 for a suitable number of replications.
To avoid the draws from Metropolis-Hastings simulator getting stuck in

a local mode, we try different starting values for the sampler.

2.4 Posterior Model Probabilities

There has been a great deal of work on the theories of business cycles and
even on the asymmetries observed in business cycles. However, there are rel-
atively fewer formal theories on the nonlinear effects in international business
cycle linkages. Thus we have little guidance on how to specify the model
prior to introducing the data. Further, notwithstanding the few studies that
do exist, we do not wish at this stage of the research to impose any restric-
tions implied by particular theories. Our interest is on the existence of the
linkages and the form of the asymmetries. These concerns were important
motivations for considering LSTVAR models. However, we also have reason
to expect that the real data generating process might be nonlinear, yet we
do not wish to exclude the possibility that the model is linear. A linear
model may prove more robust if the asymmetric effect is trivial. Thus, we
include the standard linear VAR in our model set. Furthermore, we can
not confidently pre-specify the driving force of the asymmetric dynamics (if
there is any) nor predetermine the duration of the dynamics, so we allow for
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a range of specifications of zt and lag lengths p.
Bayesian methods provide us a formal method for evaluating the support

for alternative models by comparing posterior model probabilities. These
posterior probabilities can be used to select the best model for further infer-
ence, or to use the information in all or an important subset of the models
to obtain an average of the economic object of inference by Bayesian Model
Averaging. The posterior odds ratio - the ratio of the posterior model proba-
bilities - is proportional to the Bayes factor. Once we know the Bayes factors
and prior probabilities, we can compute the posterior model probabilities.

The Bayes Factor for comparing one model to a second model where
each model is parameterized by ζ = (ζ1, ζ2) and ψ respectively, is

B12 =
∫
`(ζ)p(ζ)d(ζ)∫
`(ψ)p(ψ)d(ψ)

,

where `(.) is the likelihood function and p(.) is the prior density of the
parameters for each model.

If the second model nests within the first at the point ζ2 = ζ∗, then,
subject to further conditions, we can compute the Bayes factor B12 via
the Savage-Dickey density ratio (see, for example, Koop and Potter, 1999a,
Koop, Leon-Gonzales and Strachan, 2006 for further discussion in this class
of models). For the simple example discussed here, the Savage-Dickey den-
sity ratio is:

B12 =
p(ζ2 = ζ∗|Y )
p(ζ2 = ζ∗)

,

where the numerator is the marginal posterior density of ζ2 for the unre-
stricted model evaluated at the point ζ2 = ζ∗, and the denominator is the
prior density of ζ2 also evaluated at the point ζ2 = ζ∗.

Since the conditional posterior of b is normal, it is easy to incorporate the
estimation of the numerator of the Savage-Dickey density ratio in the Gibbs
sampler. As to the denominator of the Savage-Dickey density ratio, using
the properties of the Gamma distribution and the Normal distribution, we
derive the marginal prior for a sub-vector of b evaluated at zeros as

{(
µη

πνη
)ω/2Γ(

ω + νη

2
)}/[Γ(

νη

2
)]
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where Γ(.) is the Gamma function, and ω is the number of elements in b

being restricted to be zero.
A simple restriction in our application to choose is the point where all

lag coefficients are zero, i.e., Γh = Γz
h = 0, at which point we have the model

with p = 0. This restricted model is useful as it nests within all models.
Once we have the Bayes factor for each model to the zero lag model, via
simple algebra we can back out the posterior probabilities for all models.

Taking a Bayesian approach we have a number of options for obtaining
inference. If a single model has dominant support, we can model the data
generating process via this most preferred model. However, if there is con-
siderable model uncertainty then it would make sense to use Bayesian Model
Averaging and weight features of interest across different models using pos-
terior model probabilities (as suggested by Leamer, 1978).

3 Empirical Application

The data we use are quarterly observations of real GDP for the UK, the
US, France and Germany over the period of 1970:Q1-2004:Q4. All series
are taken from Datastream. For all cases, the first quarter of 1970 is set as
the base time for index purposes. We construct the annual growth rates by
taking the fourth-difference of log real GDP index.3

The growth rates for the four countries are plotted in figure 1. Note that
all the series are stationary and free from seasonal components. The average
annual growth rates for the sample period are: 2.34% for the UK, 3.08% for
the US, 2.49% for France and 2% for Germany. The correlations between
the annual growth rate for the UK and that of the US, France and Germany
are 0.5941, 0.3606 and 0.3693, respectively. Note that the dynamics of
recessions are quite different from those of expansions, a phenomenon which
might imply the presence of asymmetry.

For all countries, we assume the maximum order of the unrestricted
bivariate LSTVAR is 4. Although the driving force of the asymmetry can be
any exogenous or endogenous variables of concern, following the convention,
we simply choose a specific lag of the observed growth rate from our selected

3The jump in German data due to the reunification in 1991 has been corrected.
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countries as the transition variable. However, instead of picking a plausible
lagged growth rate from a particular country, we allow zt to be any of the 16
observations of the lagged (from 1-4) annual growth rates for the UK, the
US, France or Germany. Note that this specification allows for the driving
force of the regimes to be generated within or beyond the two countries
being examined under the bivariate VAR. As we allow the order of the VAR
to vary from one to four, then for each of the three bilateral relationships
we consider a total of 68 models.4

3.1 Posterior Evidence on Alternative Models

We calculate Bayesian posterior model probabilities from the Bayes Factors
comparing the nested models to the unrestricted LSTVAR(4, zt) models.5

The Gibbs Sampler for each of the unrestricted LSTVAR (4, zt) model
is run for 12,000 passes with the first 2,000 discarded. The convergence
of the sequence draws is checked by the Convergence Diagnostic measure
introduced by Geweke (1992). We use the MATLAB program from LeSage’s
Econometrics Toolbox (LeSage, 1999) for the diagnostic.

The posterior probabilities for the top 10 models evaluated at Bayes Fac-
tor are reported in table 1. As we calculate posterior model probabilities
with relatively uninformative priors, we would expect this to reward parsi-
mony and, as such, penalize the nonlinear models. However, there is little
overall evidence for linear models (which, for a given lag length, is the most
parsimonious model). This reinforces the evidence in favor of asymmetry in
the bilateral business cycle linkages between the UK and each of the other
three countries.

Posterior model probabilities reveal that model uncertainty is not a sig-
nificant issue in this data. For France and the UK, we find the bivariate
relationship can be jointly captured by LSTVAR(4, USt−2) and LSTVAR(4,
UKt−2), with posterior probabilities 52.34% and 36.99%, respectively. While

4The total number of models is calculated as 4 (maximum order of the nonlinear VAR)×
4 (choices for zt)× 4 (lags of zt) + 4 (the number of linear VAR models)= 68.

5Where the order of the model is 4, and the transition variable zt equals to
USt−1, USt−2, USt−3, USt−4, FRt−1, FRt−2, FRt−3, FRt−4, UKt−1,
UKt−2, UKt−3, UKt−4, GERt−1, GERt−2, GERt−3, GERt−4, respectively.
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model comparison results involving the US and Germany show that a sin-
gle model receives substantial posterior support in each case. For US-UK,
LSTVAR(4, UKt−4) accounts for 90.38% of the posterior probability. For
Germany-UK, the posterior model probability of LSTVAR(4, GERt−3) is
92.68%.

We observe four interesting findings from our model comparison results.
First, the US growth rates play a leading role in triggering the regime
changes for France-UK and a non-negligible role in causing the nonlinear
effects for Germany-UK. Second, the regime changes are governed by the
UK business cycles in the case of US-UK. Third, Germany’s economic per-
formance is important for the regime changes in all cases, in particular, it
plays a deterministic role in the case of Germany-UK. Finally, we find that
the role of France’s growth rate in triggering the regime changes is nearly
negligible in all cases. Observe that even though for France-UK, the non-
linear effects are mainly determined by the growth rates of the US and the
UK.

It is hard to explain the parameters in such big nonlinear models. Yet,
we present the estimated UK equations for the three most preferred models
in table 2, for the smooth transition functions and the impulse response
analysis we are going to report are based on these results.

To better understand the form of the asymmetric affect, we plot the
graphs of the time profile of F (zt) and the corresponding transition functions
over the range of zt for the three most probable models in figures 2-3. For
comparison, we also report the time profiles of F (zt) derived from Bayesian
Model Averaging in figure 4. Observe that for US-UK, the dynamics of
the regime changes remains to be between the upper and lower regimes,
for France-UK, the model is most often in the upper regimes, while for
Germany-UK, more abrupt regime changes can be spotted. From these
figures, we can see that the regime changes are rather smooth in all the three
cases. Thus, it is improper to model the nonlinear effects using functions
that only allow for abrupt changes.
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3.2 Impulse Response Analysis

The nonlinear LSTVAR allows for asymmetries in the behaviour of the busi-
ness cycle linkages. Thus the model provides richer inference on the possible
response paths that account for both the nature of the shocks and the cur-
rent economic environment. In analyzing the response of the UK economy
to the foreign shocks we are interested in how the economy responds taking
into account the magnitude of the shock, whether the shock is positive or
negative and whether UK growth is negative or positive at the time of the
shock. For example, it would seem natural to expect that the response to
a positive growth shock from the US, say, will have a different effect upon
UK’s growth if the UK is currently growing quickly than if the UK is in a
recession.

As discussed in, inter alia, Potter (1995), Koop, Pesaran and Potter
(1996), Koop and Potter (2000), impulse response functions of nonlinear
models are history- and shock- dependent. This contrasts with the tra-
ditional impulse response analysis in a linear VAR in which positive and
negative shocks are treated symmetrically and independent of the current
state of the business cycle. Thus, the traditional methods of computing im-
pulse responses are unable to inform us on nonlinearities in responses (see
Koop et al., 1996 for detailed discussions). We therefore follow these earlier
papers and use generalized impulse response functions (GIRF)6 to measure
the effect of a shock on the asymmetric system.

Following Koop et al. (1996), we examine the GIRF where we have a
shock υt and a history ωt−1 which is defined as follows

GIy(n, υt, ωt−1) = E[yt+n|υt, ωt−1]− E[yt+n|ωt−1] (13)

where n is the number of periods into the future after the time t.
The definition in (13) is the expected response path where the expec-

tation is taken with respect to the distribution of all future shocks, the
distribution of the parameters and, if model averaging is employed, with
respect to the posterior distribution of the models. That is, the impulse

6The term impulse response functions, if without any specific description, also refers
to general impulse response functions hereafter.
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response is the expected deviation of yt+n subject to the shock υt from the
expected value of yt+n without fixed future shocks and conditional only upon
the history at time t, ωt−1.

Estimation of the GIRF for a specific model with given parameters is
detailed in the literature mentioned above. Here, we only outline how we
achieve an estimate that is not conditional upon any parameter values.

We wish to calculate the GIRF for a given shock υt and history ωt−1.
Assume we have the ith draw from the Gibbs sampler of the parameters
in the model which we will denote by θ(i). For each draw we compute
GIy(n, υt, ωt−1|θ(i)) which is simply (13) for a given value of the parameters.
Next assume we have N draws of θ(i) where i = 1, ..., N. Then we can
compute an estimate of (13) from by

ĜIy(n, υt, ωt−1) =
1
N

ΣN
i=1GIy(n, υt, ωt−1|θ(i)).

By drawing randomly from histories and averaging across these, we are
able to obtain an estimate of GIy(n, υt) which is not conditional upon the
current state of the economy. Furthermore, we report the estimates of
GIy(n, υt, ωt−1) conditional upon some special ωt−1 since we believe these
paths may differ for different histories. To be specific, we are interested in
whether the path of GIy(n, υt, ωt−1) differs when the UK economy exhibits
a positive growth in comparison to a negative growth.

Finally, we report the estimated path of GIy(n, υt, ωt−1) when the shock
υt is a negative one/two standard deviations shock to the US, France or
German economy, as well as when υt is a positive one/two standard devia-
tions shock to the US, France or German economy. In the estimation of the
posterior distributions of these functions, we found that outliers distorted
the posterior means of the GIRFs in some cases. Therefore, we report the
median of the GIRFs instead of the mean.7

Graphs of the median estimates of the GIRFs for the most preferred
model and the BMA results, respectively, are plotted in figures 5-10. In
each figure, we use six graphs to examine general impulses from different
dimensions. In the upper panel of the figure, we display the impact on the

7The mean of the GIRFs with the outliers being dropped share the similar pattern with
the median results. Graphs depicting mean values of GIRF are available upon request.
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UK growth of positive and negative shocks from the other country but where
we have averaged across all the UK histories. The middle panel of the figure
shows the same response of UK growth but the path is conditional upon
the UK’s economy being in expansion at the time of the shock. The lower
panel of the figure presents the corresponding effects when UK’s economy is
in contraction at the time of the shock.

An inspection of all the graphs reveals that the GIRFs plots for the most
preferred model and that of the BMA results appear to be similar for all
the three country pairs, which is in consistent with the model comparison
result earlier reported.

Observing the GIRFs for US-UK plotted in figures 5-6, we see that the
impact of a US shock on the UK is in all cases prominent for the first seven
to eight quarters, after which there remain much smaller cyclical effects.
Finally, the impulse responses die out in about nine years. It is seen that
the cumulative effect of a positive US shock will increase the UK’s output
growth rate, while the cumulative effect of a negative shock from the US
will decrease the UK’s output growth rate.

With respects to France-UK, from figures 7-8, we can see that while there
are strong immediate positive and negative responses to shocks of the same
sign, the cyclical effect is much less pronounced than in the case of US-UK.
Observe that much of the impact takes place in the first six quarters after
the shock. Afterwards, only some smaller cyclical effect remains for another
nine quarters. Overall, the impact from France dies out in five years. Similar
to that of US-UK, we find a positive shock emanating from France would
boost the UK economy, and a negative shock from France would offset the
UK’s growth.

By visual inspection, we can hardly find any nonlinearities in the GIRFs
for US-UK and France-UK. First, the graphs for positive shocks appear to
mirror the graphs for negative shocks. Second, the impacts of shocks of
differing magnitude seem to have proportionate effects. Third, it looks like
that the dynamics of the impulse responses is independent of the status of
the UK’s economy when the shocks hit.

Noticeable nonlinearities in impulse response functions are observed in
the case of Germany-UK. Observing figures 9-10, we find the paths of the
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responses will not just differ given the sign and the magnitude of the shock,
but also given the current state of the UK economy. Surprisingly, we find
that the cumulative effect of any type of innovations in Germany is to slow
down the UK economy. More strikingly, we find a positive shock from Ger-
many brings more negative effect to the UK output growth than a negative
shock. For a given status of the UK economy when the shock from Germany
happens, we can order the shocks by gravity for negatively affecting the UK
growth rate. We find, in descending order of severity, that it is the large
positive shock, the small positive shock, the large negative shock and the
small negative shock. Finally, we observe that when the UK economy is
in recession when the shock happens, the overall setting back effect from
Germany is less than when the UK’s economy is in expansion.

4 Conclusions

In this paper, we investigate bivariate relationships between the UK and
three main industrial countries - the US, France, and Germany - within the
framework of a LSTVAR model. We employ Bayesian methods to develop
an approach to model estimation and evaluation.

The estimation results show that the UK’s business cycles are asymmet-
rically influenced by the other three countries. Overall, it would seem that
the UK benefits from positive shocks emanating from the US and France,
while suffers from negative shocks from these two countries. However, we
also observe that Germany always play a pernicious role in the UK’s econ-
omy. More strikingly, we find that a boom in Germany would bring more
negative impact on the UK than a bust.

As a purely atheoretical study, this paper only describes the behaviour
of the linkages between the UK and each of the other three countries. For
a better understanding of the forms and sources of these linkages, further
investigations (for examples, on the transmission channels) which are beyond
our current research are called for.
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Table 2: Estimated parameters for the most preferred models

US-UK FR-UK GER-UK
η 8.9416 (3.4356) 17.7540 (6.0606) 15.6150 (5.1681)
c 0.0353 (0.0103) 0.0097 (0.0056) 0.0378 (0.0050)
γ 0.9886 (0.3812) 2.7632 (1.4184) 6.5763 (3.7615)

lower regime
Φ 0.0058 (0.0244) 0.0183 (0.0080) 0.0138 (0.0035)

Γ1,1 1.0682 (0.1833) 0.5870 (0.2198) 0.8401 (0.1487)
Γ2,1 0.7063 (0.1913) 0.5491 (0.1743) 0.5352 (0.1419)
Γ1,2 0.0867 (0.2200) 0.0757 (0.2246) 0.1233 (0.1686)
Γ2,2 0.0250 (0.1954) -0.0275 (0.1684) 0.0343 (0.1551)
Γ1,3 -0.2249 (0.2223) -0.4639 (0.2379) -0.1322 (0.3041)
Γ2,3 0.3403 (0.1975) 0.3824 (0.1697) 0.3026 (0.1480)
Γ1,4 -0.1364 (0.1948) -0.3274 (0.2209) -0.3537 (0.1477)
Γ2,4 0.0748 (0.3669) -0.1476 (0.1539) -0.0572 (0.1305)

upper regime
Φ1 0.0280 (0.0724) -0.0010 (0.0105) 0.0499 (0.0404)
Γ1

1,1 0.1948 (0.3747) 0.4036 (0.2478) -0.2431 (0.2850)
Γ1

2,1 -0.1739 (0.3531) 0.2292 (0.2082) 0.0808 (0.2565)
Γ1

1,2 0.0603 (0.4005) 0.1724 (0.2599) 0.0359 (0.2918)
Γ1

2,2 -0.3365 (0.3568) -0.0735 (0.2237) 0.2225 (0.2631)
Γ1

1,3 -0.0867 (0.4138) 0.0456 (0.2570) -0.2639 (0.3687)
Γ1

2,3 0.0886 (0.3877) -0.2466 (0.2300) -0.0758 (0.2437)
Γ1

1,4 -0.1776 (0.4054) 0.3180 (0.2502) -0.5306 (0.2856)
Γ1

2,4 -0.9271 (0.4002) -0.0724 (0.2038) -0.6705 (0.2598)
Notes:

*Standard errors are in parenthesis.

** The first subscript indicates the country, where 1 denotes the country other than the

UK, 2 denotes UK. The second subscript denotes the lag length of the variable.

***The superscript 1 indicates the parameter is of the upper regime.
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Figure 2   
Time Profiles of  Smooth Transition Functions ___ Most Preferred Models 
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Figure 3    
Smooth Transition Functions  
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Figure 4    
Time Profiles of Smooth Transition Functions __ BMA results 
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Figure 5 
General Impulse Response Functions ___ Most Preferred Models 
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Notes:  
Solid line is for the impulse response function when the shock equal to the standard deviation of the US growth rates. Dashed 
line is for the impulse response function when the shock equal to two times the standard deviation of the US growth rates. 
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Figure 6 
General Impulse Response Functions ___ BMA 
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Notes:  
See notes in figure 5. 
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Figure 7 
General Impulse Response Functions ___ Most Preferred Model 
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Notes:  
Solid line is for the impulse response function when the shock equal to the standard deviation of  France’s growth rates. Dashed 
line is for the impulse response function when the shock equal to two times the standard deviation of France’s growth rates. 
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Figure 8 
General Impulse Response Functions ___ BMA 
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Notes:  
See notes in figure 7. 
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Figure 9 
General Impulse Response Functions ___ Most Preferred Model 
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Notes:  
Solid line is for the impulse response function when the shock equal to the standard deviation of  Germany’s growth rates. 
Dashed line is for the impulse response function when the shock equal to two times the standard deviation of Germany’s growth 
rates. 
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Figure 10 
General Impulse Response Functions ___BMA 
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Notes:  
See notes in figure 9. 
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