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Abstract. Recently, STM measurements of cleaved, self assembled quantum dots (SAQDs) have
provided important information on the morphology and composition of these buried semiconductor
islands. It is also now becoming possible to use STM techniques to image the electronic charge
density within the SAQDs. At low bias voltages, the tunnelling current measured during cross-
sectional scanning tunnelling spectroscopy (XSTS) experiments contains direct information on the
0D bound electronic states of the cleaved quantum dots.

In this paper we present a numerical simulation of an XSTS experiment. The calculated tun-
nelling currents between an STM tip and the bound states inside a physically realistic model of a
cleaved SAQD are compared to experimental results and qualitative agreement is found.

The calculation of the tunnelling current is split into two stages. First the bound electron states
of the cleaved quantum dot are calculated by exact diagonalisation of the Hamiltonian in a simple
harmonic oscillator basis set. The calculation is performed within the single-band effective mass
approximation including the position dependence of the effective mass and, most crucially, the ef-
fect of the deformations of the cleaved dot structure and the strain field within the system. The
strains and deformations of the heterostructure are found with a continuum, finite element model.
The calculation method is completely general, however, in this paper we apply it to the InGaAs dot
structure reported by Bruls et al [1]. Second, the Tersoff-Hamann approximation [2] is used to cal-
culate the tunnelling probability between the bound electronic states and the STM tip at different tip
positions and bias voltages. The calculated STM signal is compared to experimental data and rea-
sonable agreement is obtained. The method may be used to obtain additional physical information
about the buried SAQDs, for example, details on the lateral variations in the composition.

INTRODUCTION

Self-assembled quantum dots (SAQDs) are fully quantised atom-like systems in the solid
state. Over the past decade there has been a large amount of interest in these structures,
mainly due to the potential for applications, for example in quantum information pro-
cessing and optoelectronic devices. The operating properties of such dot-based devices
depend on the form of the bound states of each individual SAQD which, in turn, depend
on the physical dot structure. Recently, STM images of cleaved quantum dots have been
used to provide detailed physical information on the shape, size and composition profile
of the dots, while cross-sectional scanning tunnelling spectroscopy (XSTS) may be used
to image the bound states within individual SAQDs.

We simulate an XSTS experiment on a cleaved quantum dot and compare the results to
real experimental data. The purpose of this simulation is twofold. First, the experimental
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FIGURE 1. Schematic of the dot model investigated by Bruls et al.

data can be used to directly test methods for the calculation of the bound states. Second,
with a combination of the experimental and simulated results it may be possible to
deduce additional information on the physical structure of the dot from that obtained
with XSTM and other techniques.

The paper is split into two sections. We begin by reporting the first calculation of
the bound electronic states inside a cleaved quantum dot, including the full details of
the dot deformation and the strain field inside the system. The bound wavefunctions
are calculated by exact diagonalisation of the single-band, position dependent effective
mass Hamiltonian in a harmonic oscillator (HO) basis set. In the second section we
use the Tersoff-Hamann approximation [2] to relate the calculated wavefunctions to the
tunnelling currents measured in XSTS experiments. The calculated XSTS images are
then compared to experimental data.

THE BOUND STATES IN A DEFORMED CLEAVED DOT

The dot model

To compare directly with the XSTS experiment we use a dot model with dimensions
and composition identical to those measured by Bruls et al [1] with XSTM. The cal-
culational methods described in this paper are, however, completely general and may
be used to calculate the XSTS signal from cleaved SAQDs of arbitrary shape, size and
composition profile.

The uncleaved Bruls dot (shown by the solid and dashed lines in figure 1) is a square
based, truncated pyramidal IncGa1 � cAs dot with an Indium fraction varying linearly
from c � 0 � 6 at the base of the dot to c � 1 at the top of the dot. The SAQD rests on
a 0.6nm InAs wetting layer and is surrounded by a GaAs matrix. The GaAs cap and
substrate have height 30 nm. The origin of our coordinate system is chosen to be at the
centre of the uncleaved IncGa1 � cAs dot. The z axis is taken to be in the growth direction
and the y direction is perpendicular to the dot/vacuum interface.

The SAQD is cleaved along the line AB in figure 1 exposing a cross-section through
the dot. After cleaving, the remaining part of the dot (shown by the solid line in figure
1) relaxes, and deforms outward into the vacuum. We model this deformation and
calculate the strain field throughout the deformed dot within the continuum elasticity
approximation. This is done with a commercially available, finite element package,
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FIGURE 2. Left: calculated deformation of the dot after cleaving. Right: Strained electron confinement
potential in the cleaved dot (solid line) compared to the confinement potential in an uncleaved dot (dashed
line). Energies are given relative to the GaAs conduction band edge.

Abaqus, which has already been shown to provide an accurate representation of the
strain within a cleaved dot [1]. The strain field affects the band gaps in the dot and
substrate material and hence alters the electron confinement potential, V

�
r � � Vo

�
r ���

Vc
�
r � . The conduction band offset, Vo, is taken to be 0.797 eV between InAs and

GaAs, while the potential step at the dot vacuum interface is set from the electron
affinity of GaAs at 4.07 eV above the GaAs conduction band edge. In the IncGa1 � cAs
material Vo

��� 1 � 178c � 0 � 381c2 [3]. The relation between the strain contribution to the
confinement potential, Vc

�
r � , and the strain is well documented in the literature [5].

Figure 2 shows the calculated deformation of the dot/substrate system after cleaving.
The originally highly strained dot and wetting layer regions relax outward into the
vacuum in order to minimise the strain energy. The right hand figure shows the calculated
V
�
r � relative to the GaAs conduction band edge. This is much deeper in the cleaved dot

(solid line) at the dot/vacuum interface because the material that has deformed outward
is less strained than that in the centre of the uncleaved dot (dotted line).

The position dependent effective masses in the semiconductor material are also af-
fected by the strain field. We take the bulk effective masses in GaAs, InAs and the
vacuum to be 0.067 mo, 0.023 mo and mo respectively and calculate the effective mass in
the IncGa1 � cAs material by linear interpolation. The strained effective masses are then
calculated with first order perturbation theory [5]. Finally, for this particular cleaved dot
with an exposed (110) surface, we assume flat bands at the dot/vacuum interface, as
there are no (110) surface states within the bulk band gap [7].

Calculation method

To calculate the bound energy levels and the electron wavefunctions we use the single-
band effective mass approximation to the Schrödinger equation,� � h̄2

2
∇M

� 1∇ � V
�
r � � Ψ � EΨ � (1)



where M is the effective mass tensor. We have not yet included the effect of the piezo-
electric potential as we expect its effect on the shape of the bound states inside the
cleaved dot to be small [4].

Given the position dependent confinement potentials and effective masses we solve
equation (1) by expanding the exact wavefunction, Ψdot , as a sum of HO functions and
then diagonalising the resultant Hamiltonian matrix. In cylindrical polar co-ordinates,

Ψdot � r � � ∑
i

aiψi
�

lmax

∑
li � � lmax

mmax

∑
mi
� 0

nmax

∑
ni
� 0

alimini

exp
�
iliφ ��
2π

Zmi

�
z � Rnili

�
r � � (2)

where the alimini are expansion coefficients, and we have used Nbs
�

�
2lmax � 1 � � mmax �

1 � � nmax � 1 � basis functions to approximate the full single particle wavefunction inside
the dot. The individual basis functions in equation (2) are given by,

Zmi

�
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2m
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�

π � 1
2

Hmi � � z � zo � λz � e ��� z � zo 	 2λ2
z 
 2

Rnili

�
r � � � ni!λ2

r�
2
�

2 � � li � � ni �� li � � ! �
1
2

e
� 1

4 r2λ2
r
�
rλr � � li � L � li �ni

�
1
2

r2λ2
r � � (3)

where Hmi

�
z � and L � li �ni

�
r � are Hermite and Laguerre polynomials and λz and λr are

the reciprocals of the respective length scales of the HO functions in the parallel and
perpendicular directions. The length scales and the offset parameter, zo, can be chosen
to optimise the rate of convergence of the HO calculation. We choose values of λr,
λz and zo to give the ground harmonic oscillator basis function a similar spatial extent
to the actual localised state within the dot. For the particular cleaved dot investigated,
the values used are: ωo

� 0 � 64 eV, ωz
� 0 � 54 eV, zo

� 0 � 08 nm. We can also alter the
position of the dot/vacuum interface with respect to the origin of the HO functions. With
the values of the parameters chosen, the best convergence is obtained by off-setting the
interface by 3 nm in the y direction. This places the maximum in the HO ground state at
the approximate position of the maximum in the actual ground state of the dot.

To diagonalise the Hamiltonian and solve for the exact single particle states we must
calculate the matrix elements of the Hamiltonian operator (from eqn. (1)) between
individual HO states,

H ji
����� h̄2

2m
�

xy

dψ
�

j

dr
dψi

dr
� h̄2

2m
�

z

dψ
�

j

dz
dψi

dz
� ψ

�

jψi � h̄2lil j

2m
�

xyr2 � V ��� rdrdzdφ � (4)

Where we have integrated by parts to avoid terms containing the derivatives of the com-
ponents of the effective mass tensor, which in this particular model must be evaluated
numerically. Further details on the calculation method used are reported elsewhere [6].

Once the individual matrix elements have been calculated we diagonalise the Hamil-
tonian with the LAPACK library standard linear algebra routines. We optimise the com-
puter time for the calculation by using the reflection symmetry of the cleaved dot to
block diagonalise the Hamiltonian into 2 blocks. Each block may then be diagonalised
separately reducing the total time needed for the diagonalisation by a factor of 4.



0

0.05

0.1

0.15

0.2

0.25

-4 -2 0 2 4 6 8 1012

|Ψ
|2  (

ar
bi

tr
ar

y 
un

its
)

y (nm)

0

0.05

0.1

0.15

0.2

0.25

-6 -4 -2 0 2 4 6

|Ψ
|2  (

ar
bi

tr
ar

y 
un

its
)

z (nm)

FIGURE 3. Comparison between the ground state charge densities in the cleaved dot (solid line) and
original dot (dashed line). Left: variation in the charge density with y at x � 0 and z � 0. Right: variation
in the charge density with z at x � 0 and y � 2 � 8 nm.

Results

With 21168 HO functions in the expansion of the cleaved dot wavefunctions, we find
4 bound states within the dot at -0.272 eV, -0.175 eV, -0.102 eV and -0.072 eV. These
energies are converged roughly to within 0.5 meV of the exact bound state energies.
To obtain results within 1% of the true energies we still need to include approximately
10000 states in the expansion. This compares unfavourably with a calculation of the
states of the original uncleaved dot in which the convergence of the calculation with a
HO basis set is rapid: The ground state energy in the uncleaved dot (-0.225 eV) can be
converged to within 1% with only 24 HO functions [6]. This indicates that HO functions
are not the optimum basis for investigating this particular system.

The unintuitive result that the ground state is more tightly bound in the cleaved dot
is explained by the deepening of the potential due to the deformation of the dot into
the vacuum (see figure 2). The shape of V

�
r � also explains the poor convergence. It

is energetically favourable for the maximum in the charge density to be close to the
dot/vacuum interface where the potential is deepest, however the energies of the bound
states are sensitive to the tails of the wavefunctions extending into the vacuum. This
behaviour can be seen by examining the charge density (figure 3). The maximum in the
ground state charge density is at x � 0 and z � 0 at the centre of the dot, but at y � 2 � 8
nm. This is closer to the interface than was expected before a detailed calculation of the
confinement potential in the deformed cleaved SAQD (see figure 2). The left hand plot
of figure 3 shows this behaviour: The charge density is appreciable at the edge of the
dot but then decays abruptly into the vacuum region. In comparison, the charge density
in the uncleaved dot shows a much smoother variation with y. From the right hand plot
we can see that the charge density in the cleaved dot is slightly more symmetric about
z � 0, than in the original dot. This is because the deformation of the dot tends to even
out the variations in strain as a function of z.

Figure 4 shows the variation of the bound state charge densities in the xz plane. The
excited states all have nodes in the x direction. States 2 and 3 also have nodes in the y
direction. The wavefunctions inside the cleaved SAQD are very different to those in the
original dot. The overall variation in the charge density, especially in the xz plane is not
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FIGURE 4. Bound state charge densities in the xz plane, plotted at y � 1 nm from the interface. Ground
state (top left). Excited states: 1st (top right), 2nd (bottom left), 3rd (bottom right).

overly sensitive to the number of basis states included in the calculation.

THE XSTS SIGNAL

Calculation method

In the XSTS experiment the STM tip is held at a fixed position above the cleaved dot
while the variation of tunnelling current with tip bias, VB, is measured. At low VB the
electrons tunnel from the tip into the 0D bound states of the dot. By scanning the STM
tip over the exposed surface of the cleaved dot the spatial variation in tunnelling current
can be measured, this is related to the spatial variation of the bound states inside the dot.
The measured current, I, is directly proportional to the tunnelling probability between
the tip and dot states. In the Tersoff-Hamann approximation [2] we approximate the tip
wavefunction by a decaying spherical wave, then,

I � ∑
n

����
� Ψdot

n
exp
� � ktip � r � rtip � �� r � rtip � dr

����
2

ftip
�
E f � En � gtip

�
E f � En � � (5)

Where Ψdot
n is the nth excited state of the cleaved dot, of energy En. The wavevector of

the decaying tip wavefunction is ktip
� � 2mo

�
Vvac � En � � 1 
 2 � h̄, ftip is the Fermi occupa-

tion function of the STM tip, gtip is the tip density of states and Vvac is the height of the
potential step at the dot/vacuum interface. To obtain equation (5) we have assumed the
dot states are unoccupied and used the fact the 0D bound states have a delta function
density of states. The actual and simulated experiments were performed at room tem-
perature, which we assume to be 290K. Altering the tip bias voltage experimentally is
equivalent to altering the position of the tip Fermi level, E f in this model. E f is measured
relative to the ground state of the dot. At low VB, or alternatively, low E f , the tunnelling
is directly into the dot ground state. As E f is increased the total observed current picks
up contributions in turn from tunnelling into each of the excited states of the dot.



In this approximation, the tip wavefunction decays rapidly away from the position
of the STM tip. This makes the calculated tunnelling current sensitive to the tails of
the bound states extending into the vacuum. In this area, where the magnitude of the
wavefunctions are small, there is a significant amount of noise in the calculated results.
To average out some of the noise, we impose a muffin tin radius of 0.5 nm around the
tip in which we assume the tip wavefunction to be constant. Physically this corresponds
to the dimensions of the STM tip. In a more accurate model we could solve for the
wavefunctions inside this region, possibly as an expansion of spherical Bessel functions.

In this model we ignore the tip induced band bending. Calculations with a 1D model
indicate that the band bending over the region of the dot can be approximated by a
constant offset in the band edges. This has no effect on the charge densities, but makes
the relation between E f and the experimentally applied bias voltage unclear.

Results

In both the experimental and simulated XSTS scans the STM tip is scanned parallel
to the deformed dot surface at a distance of 0.6nm from the exposed surface. In this
paper we compare calculated results with experimental line scans along x at z � 0
measured at two different bias voltages. To directly compare the experiment and theory
we have scaled each of the calculated tunnelling currents by a constant factor and added a
constant background. In general, as E f is increased we see an evolution in the calculated
XSTS signals similar to that observed experimentally as VB is raised.

On the left hand side of figure 5 we can see that the experimental and calculated
tunnelling currents have similar shape when the tunnelling is primarily into the dot
ground state. The experimental FWHM is 9.9

�
0.9 nm, compared to a calculated result

of 11.1 nm. The broad shoulders on the calculated curve come from the contribution to
the signal from tunnelling into the 1st excited state within the dot.

At larger VB (right hand side of figure 5) we also obtain similar results to the experi-
mental scans. The separation between the lobes of the charge density is approximately
11.7 nm (experimental) and 11.1 (calculated). The separation between the minima in the
charge density is approximately 9.3 nm (experimental) and 7.7 (calculated). The ratio
between the heights of the central peak and the lobes is similar in both cases.

In conclusion, we have described a method for interpreting the results of XSTS
measurements based on the calculated electron wavefunctions within cleaved SAQDs
in which the qualitative agreement between experiment and theory is promising. By
including such effects as the tip induced band bending, the position dependence of ktip,
and the piezoelectric potential in this model, we may be able to obtain better quantitative
agreement with experiment. The experimental scans can then be fitted with different dot
models to obtain additional information on the physical structure of the dot.
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FIGURE 5. Calculated and experimental XSTS signals 0.6 nm from the interface, along x at z � 0. Left
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� 0 � 9 V (top), calculated result
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