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This paper shows how a frequency-selective filter that is applicable to short trended data

sequences can be implemented via a frequency-domain approach. A filtered sequence

can be obtained by multiplying the Fourier ordinates of the data by the ordinates of the

frequency response of the filter and by applying the inverse Fourier transform to carry

the product back into the time domain. Using this technique, it is possible, within

the constraints of a finite sample, to design an ideal frequency-selective filter that will

preserve all elements within a specified range of frequencies and that will remove all

elements outside it.

Approximations to ideal filters that are implemented in the time domain are

commonly based on truncated versions of the infinite sequences of coefficients derived

from the Fourier transforms of rectangular frequency response functions. An alternative

to truncating an infinite sequence of coefficients is to wrap it around a circle of a

circumference equal in length to the data sequence and to add the overlying coefficients.

The coefficients of the wrapped filter can also be obtained by applying a discrete Fourier

transform to a set of ordinates sampled from the frequency response function. Applying

the coefficients to the data via circular convolution produces results that are identical

to those obtained by a multiplication in the frequency domain, which constitutes a

more efficient approach.
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1. Introduction: The Problem of the Ideal Filter

Recently, business cycle analysts have become interested in extracting, from
macroeconomic indices, data components that fall within specified intervals of the
frequency spectrum. Examples are to be found in the papers of Baxter and King
(1999), Christiano and Fitzgerald (2003) and Iacobucci and Noullez (2005). In par-
ticular, Baxter and King have proposed that, according to the definition of Burns
and Mitchell (1946), the business cycles should comprise cyclical elements with
durations of no less than 18 months and of no more than 8 years.

It is commonly believed that, in the case of finite-length samples, it is impos-
sible to design a filter that will preserve completely all elements within a specified
range of frequencies and that will remove all elements outside it. A filter that would
achieve such an objective is described as an ideal filter.

This belief is based on the fact that, when a (classical) Fourier transform
is applied to a periodic square wave or boxcar function, representing the ideal
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frequency response of the filter, the result is a symmetric doubly-infinite sequence
of filter coefficients. To obtain a practical filter, it seems that one must truncate
the sequence, retaining only a limited number of its central elements (Figure 1).

The truncation gives rise to a filter of which the frequency response has certain
undesirable characteristics. In particular, there is a ripple effect whereby the gain
of the filter fluctuates within the pass band, where it should be constant with a
unit value, and within the stop band, where it should be zero-valued. Within the
stop band, there is a corresponding problem of leakage whereby the truncated filter
transmits elements that ought to be blocked (Figure 2).

The classical approach to these problems, which has been pursued by electrical
engineers, has been to modulate the truncated filter sequence with a so-called win-
dow sequence, which applies a gradual taper to the higher-order filter coefficients.
(A full account of this has been given by Pollock, 1999.) The effect is to suppress
the leakage that would otherwise occur in regions of the stop band that are remote
from the regions where the transitions occur between stop band and pass band. The
detriment of this approach is that it exacerbates the extent of the leakage within
the transition regions (Figure 3).

The purpose of this paper is to show that none of the above-mentioned prob-
lems need afflict the filtering of finite data sequences. It shows that an alternative
to truncating the filter is to wrap the infinite sequence of coefficients around a cir-
cle of a circumference T equal to the length of the data sequence. The overlying
coefficients are added to give the coefficients of the wrapped filter.

It is impractical to perform the operation of filter wrapping in the time domain
by summing the infinite sequences of the overlying coefficients directly. Instead, one
may resort to the equivalent operation of sampling the frequency response function
of the filter at T equally-spaced points. The coefficients of the wrapped filter may be
obtained by applying a discrete Fourier transform to this frequency-domain sample
to carry its effects into the time domain.

The wrapped filter can be applied, via an ordinary convolution, to a periodic
extension of the data sequence. Alternatively, it can be applied, via circular con-
volution, to the ordinary data sequence, with the same results. However, such a
convolution can be realised most effectively via an equivalent modulation in the fre-
quency domain of the Fourier transform of the data, followed by an inverse Fourier
transform to carry the results back to the time domain.

This implementation of an ideal filter is but one instance of a general approach
to the problem of finite-sample filter design, which we shall expound in this paper,
that recognises the finite nature of the data sample at the outset. Other approaches
begin, in effect, with the assumption of a doubly-infinite sample; and then they
makes amends for the fact that the sample is finite by resorting to a variety of
ingenious adaptations.

In order to pursue the circular approach successfully, it is necessary to detrend
the data and to ensure that there are no radical disjunctions in the periodic exten-
sion of the differenced data where the end of one replication of the sequence meets
the beginning of the next replication.

The data can be detrended by differencing. Once the relevant components
have been extracted from the differenced data, the corresponding components of
the trended data can be recovered by a process of anti-differencing, or cumulation,
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Figure 1. The central coefficients of the Fourier transform of the frequency response

of an ideal lowpass filter with a cut-off point at ω = π/2. The sequence of coefficients

extends indefinitely in both directions.
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Figure 2. The frequency response of a filter obtained by applying a 17-point rectangular

window to the coefficients of an ideal lowpass filter with a cut-off point at ω = π/2,

superimposed upon the frequency response of the ideal filter.
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Figure 3. The frequency response of a filter obtained by applying a 17-point Blackman

window to the coefficients of an ideal lowpass filter with a cut-off point at ω = π/2.
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that requires some initial conditions. These are readily available. In the case
of highpass or bandpass filtering, the cumulation process can be avoided. If the
cumulation operator is cancelled with the differencing operator that is embodied
by the filter, then a reduced filter is derived that will deliver the required product
directly.

This paper has a frequency-domain orientation. Reference to the frequency
domain is becoming increasingly common amongst statisticians and econometri-
cians. Thus, for example, Haywood and Tunnicliffe Wilson (1997) and Proietti
(2005) have recently devised modified lowpass filters in reference to their effects in
the frequency domain.

There is clear evidence that the central statistical agencies, which are respon-
sible for producing seasonally adjusted data series and for estimating the tends in
official statistics, are placing increasing emphasis in the frequency domain. Exam-
ples from the U.S. Census Bureau are provided by the recent papers of Findley and
Martin (2003) and of Bell and Martin Bell (2004).

Amongst Europeans, the SEATS–TRAMO program for the canonical analysis
of unobserved components in time series has been influential in fostering a growing
awareness of the frequency domain (see Caporello and Maravall 2004).

2. Approximations to the Ideal Filter

The theory underlying the spectral analysis of statistical time series deals prepon-
derantly with sequences that are defined over the entire set of positive and negative
integers. Such a sequence, which may be denoted by y(t) = {yt; t = 0,±1,±2, . . .},
can be described in the frequency domain as a linear combination of trigonometrical
functions of which the frequencies, denominated in radians per sampling interval,
range for zero to the limiting Nyquist value of π.

An infinite sequence generated by a stationary stochastic process is liable to
be expressed as a weighted integral of a non denumerable set of sines and cosines
indexed by a frequency value ω that varies continuously within the interval [0, π].
Since

cos(ωt) =
1
2

(
eiωt + e−iωt

)
and sin(ωt) =

i
2

(
eiωt − e−iωt

)
, (1)

the value generated at time t can also be expressed as a weighted integral over the
interval [−π, π] of a complex exponential function exp{iωt}:

yt =
∫ π

−π

eiωtdZ(ω). (2)

Here, the complex element dZ(ω), which constitutes the stochastic weighting func-
tion, represents the infinitesimal increments of a cumulative function Z(ω) that is
everywhere continuous but nowhere differentiable. The expectation of the squared
modulus of dZ(ω) constitutes an increment of the cumulative spectrum: dF (ω) =
E{dZ(ω)dZ∗(ω)}. In the case of a purely stochastic process, the cumulative spec-
trum F (ω) is an analytic function of which the derivative is f(ω) is described as
the spectral density function or the “spectum”.

A time-invariant linear filter forms a weighted combination of adjacent elements
of the sequence y(t). The filter is defined by the sequence of these weights or
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filter coefficients, which is the impulse response of the filter. Its effect can also be
represented by the manner in which it alters the sinusoidal elements of which y(t)
is composed.

Mapping a (doubly-infinite) cosine sequence y(t) = cos(ωt), of a given fre-
quency ω, through a filter defined by the coefficients {φk} produces the output

x(t) =
∑

k

φk cos(ω[t − k])

=
∑

k

φk cos(ωk) cos(ωt) +
∑

k

φk sin(ωk) sin(ωt)

= α cos(ωt) + β sin(ωt) = λ cos(ωt − θ),

(3)

where α =
∑

k φk cos(ωk), β =
∑

k φk sin(ωk), λ2 = α2 + β2 and θ = tan−1(β/α).
These results follow in view of the trigonometrical identity cos(A − B) =
cos(A) cos(B) + sin(A) sin(B).

The effect of the filter is to alter the amplitude of the cosine via the gain factor
λ and to induce a delay that corresponds to the phase angle θ. It is apparent that,
if the filter is symmetric about the central coefficient φ0, with φ−k = φk, then
β =

∑
k φk sin(ωk) = 0 and, therefore, θ = 0. That is to say, a symmetric filter

that looks equally forward and backwards in time has no phase effect.
The z-transform of the sequence of filter coefficients is the polynomial

φ(z) =
∑

k

φkzk, (4)

wherein z stands for a complex number. Setting z = exp{−iω} = cos(ω) − i sin(ω)
constrains this number to lie on the unit circle in the complex plane. The resulting
function

φ(exp{−iω}) =
∑

k

φk cos(ωk) − i
∑

k

φk sin(ωk)

= α(ω) − iβ(ω)
(5)

is the frequency response function, which is, in general, a periodic complex-valued
function of ω with a period of 2π. In the case of a symmetric filter, it becomes a real-
valued and even function, which is symmetric about ω = 0. When the frequency
response function is defined over the interval [−π, π), or equally over the interval
[0, 2π), it conveys all of the information concerning the gain and the phase effects
of the filter.

For a more concise notation, we may write φ(ω) in place of φ(exp{−iω}). This
allows us to denote the frequency response by

φ(ω) = |φ(ω)|e−iθ(ω), where |φ(ω)| =
√

α2(ω) + β2(ω). (6)

Here, |φ(ω)| denotes the gain the filter at the frequency ω, whereas θ(ω) indicates
the phase effect. In the case of a symmetric filter, there is θ(ω) = 0 and φ(ω) =∑

k φk cos(ωk); and exp{−iθ(ω)} is evaluated as either +1 or −1, according to the
sign of φ(ω).

5



D.S.G. POLLOCK: FINITE-SAMPLE FILTERS

An ideal frequency-selective filter has the effect of nullifying all trigonometric
sequences of which the frequencies fall within the stop band and of preserving,
without alteration, all those of which the frequencies fall within the pass band.

The ideal phase-neutral lowpass filter with a cut-off at frequency ω = α has
the following frequency response over the interval [−π, π]:

φ(ω) =

⎧⎪⎨
⎪⎩

1, if |ω| ∈ (0, α),

1/2, if ω = ±α,

0, otherwise.

(7)

Here, the gain of the filter coincides with its frequency response. The coefficients
of a filter may be obtained via the (inverse) Fourier transform of φ(ω). In the case
of the ideal filter, they are given by the sampled ordinates of a sinc function:

φk =
1
2π

∫ α

−α

eiωkdω =

⎧⎨
⎩

α, if k = 0;

sin(αk)
πk

, if k �= 0 .
(8)

The coefficients constitute a doubly-infinite sequence. Figure 1 shows the central
coefficients of the ideal lowpass filter with a cut-off frequency of α = π/2.

The coefficients of a bandpass filter with a gain of unity within the interval
[α, β] and a gain of zero outside the interval are given by φk = {sin(βk−sin(αk)}/πk
when k �= 0 together with φ0 = β − α. This is just the difference of two lowpass
filters. The sum of the coefficients of a bandpass filter is zero.

In practice, all data sequences are finite, and it is impossible to apply a filter
that has an infinite number of coefficients. However, a practical filter may be
obtained by selecting a limited number of the central coefficients of an ideal infinite-
sample filter. In the case of a truncated filter based on 2q + 1 central coefficients,
the elements of the filtered sequence are given by

xt = φqyt−q + φq−1yt−q+1 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φq−1yt+q−1 + φqyt+q.
(9)

Given a sample y0, y1, . . . , yT−1 of T data points, only T − 2q processed values
xq, xq+1, . . . , xT−q−1 are available, since the filter cannot reach the ends of the
sample, unless it is extrapolated.

If the coefficients of the truncated bandpass or highpass filter are adjusted
so that they sum to zero, then the z-transform polynomial φ(z) of the coefficient
sequence will contain two roots of unit value. The adjustments may be made
by subtracting

∑
k φk/(2q + 1) from each coefficient. The sum of the adjusted

coefficients is φ(1) = 0, from which it follows that 1 − z is a factor of φ(z), The
condition of symmetry, which is that φ(z) = φ(z−1), implies that 1 − z−1 is also a
factor. Thus, the polynomial contains the factor

(1 − z)(1 − z−1) = −z−1(1 − z)2, (10)

within which ∇2(z) = (1− z)2 corresponds to the square of the difference operator.
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Since it incorporates the factor ∇2(z), the effect of applying the filter to a data
sequence with a linear trend will be to produce an untrended sequence with a zero
mean. The effect of applying it to a sequence with a quadratic trend will be to
produce an untrended sequence with a nonzero mean. Such filters have been used
by Baxter and King (1999) in extracting the business cycle from strongly trended
aggregate economic indices.

It is possible to remove ∇2(z) from φ(z) = ψ(z)∇2(z). Then, the correspond-
ing differencing operator can be applied to the data with the aim of reducing it
to stationarity before applying a reduced filter, of which ψ(z) is the z-transform.
However, when the computations are wholly within the time domain, such an ap-
proach has no practical advantage over the approach that applies the symmetric
filter φ(z) directly to the undifferenced data.

The usual effect of the truncation will be to cause a considerable spectral
leakage. Thus, if the filter is applied to trended data, then it is liable to transmit
some powerful low-frequency elements that will give rise to cycles of high amplitudes
within the filtered output.

An alternative filter that is designed to reach the ends of the sample has been
proposed by Christiano and Fitzgerald, (2003). The filter is described by the equa-
tion

xt = Ay0 + φty0 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φT−1−tyT−1 + ByT−1.
(11)

This equation comprises the entire data sequence y0, . . . , yT−1; and the value of
t determines which of the coefficients of the infinite-sample filter are involved in
producing the current output. Thus, the value of x0 is generated by looking for-
wards to the end of the sample, whereas the value of xT−1 is generated by looking
backwards to the beginning of the sample.

If the process generating the data is stationary, then it is appropriate to set
A = B = 0, which is tantamount to approximating the extra-sample elements by
zeros. In the case of a data sequence that appears to follow a first-order random
walk, it has been proposed to set A and B to the values of the sums of the coefficients
that lie beyond the span of the data on either side. Since the filter coefficients must
sum to zero, it follows that

A = −(
1
2
φ0 + φ1 + · · · + φt) and B = −(

1
2
φ0 + φ1 + · · · + φT−t−1). (12)

The effect is tantamount to extending the sample at either end by constant se-
quences comprising the first and the last sample values respectively. For data that
have the appearance of having been generated by a first-order random walk with a
constant drift, it is appropriate to extract a linear trend before filtering the residual
sequence. In fact, this has proved to be the usual practice in most circumstances.

Christiano and Fitzgerald (1993) have also proposed another time-varying filter
that is intended to be a superior approximation to the ideal bandpass filter. The
coefficients of this filter, which may be denoted by φ

(t)
j and which are determined

for each value of t, are comprised by the equation

xt = φ
(t)
t y0 + · · · + φ

(t)
1 yt−1 + φ

(t)
0 yt

+ φ
(t)
1 yt+1 + · · · + φ

(t)
T−1−tyT−1.

(13)
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Let φ(z) be the z-transform of the coefficients of the ideal infinite-sample filter
and let φ(t)(z) be the z-transform of the finite-sample filter for time t. Setting
z = exp{−iω} gives the frequency response functions of the filters. It is proposed
that the coefficients of the finite-sample filter should be the values that jointly
minimise the function ∫ π

−π

|φ(e−iω) − φ(t)(e−iω)|2f(ω)dω, (14)

where f(ω) is the spectral density function of the process generating the data.
The intention of this criterion is to minimise the discrepancy between the finite-

sample filter and the ideal filter in those regions of the frequency domain, indicated
by the values of f(ω), where it matters most. However, given that a data sequence of
T elements is represented in the frequency domain by a set of complex exponential
functions defined on T frequency values, described as the Fourier frequencies, there
is no cause for assessing the discrepancy at every frequency in the interval [π, π].

Moreover, it is possible to devise an ideal finite-sample filter that eliminates the
discrepancy completely at the T Fourier frequencies. To demonstrate this point, it
is necessary to consider the discrete Fourier transform of the finite data sequence.

3. The Discrete Fourier Transform

The discrete Fourier transform is a one-to-one mapping from a set of T data points
to a set of T coefficients associated with a set of harmonically related trigonometric
functions. The vectors of the ordinates sampled from the trigonometric functions
constitute an orthogonal basis of the T -dimensional space that contains the data
vector.

The inverse Fourier transform, which is a mapping from the coefficients to the
data, gives rise to the following equation, which describes the Fourier synthesis of
the data:

yt =
[T/2]∑
t=0

{
αj cos(ωjt) + βj sin(ωjt)

}
; t = 0, 1, . . . , T − 1. (15)

Here, [T/2] denotes the integer quotient of the division of T by 2. The harmonically
related Fourier frequencies ωj = 2πj/T ; j = 0, . . . , [T/2], which are equally spaced
in the interval [0, π], are integer multiples of the fundamental frequency ω1 = 2π/T ,
which relates to a sinusoidal function that completes a single cycle in the time
spanned by the sample. A stochastic nature is imparted to yt by the coefficients
αj , βj , which are to be regarded as random variables

The temporal index t of the above equation ranges from 0 to T − 1. However,
strictly for analytic purposes, we may regard the data sequence as a single cycle of a
periodic function defined over the entire set of positive and negative integers, which
is described as the periodic extension the data. Considering the periodic extension
does not entail making any assumption that the data have been generated by an
underlying periodic process.

For mathematical convenience, we may express the trigonometric functions of
(15) in terms of complex exponential functions:

cos(ωjt) =
1
2

(
eiωjt + e−iωjt

)
, sin(ωjt) =

i
2

(
eiωjt − e−iωjt

)
. (16)

8
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Then, on defining

ζj = αj + iβj and ζT−j = αj − iβj , (17)

equation (15) can be written as

yt =
T−1∑
j=0

ζje
iωjt =

T−1∑
j=0

ζjW
jt; t = 0, 1, . . . , T − 1, (18)

where W jt = exp{2πjt/T}. Here, W q is a T -period function of q such that W ↑ q =
W ↑ (q mod T ), where the upward arrow signifies exponentiation. The complex
values W 0 = 1, W, W 2, . . . , WT−1, which describe one cycle of the function, are
known as the T roots of unity. Figure 4 shows them inscribed on the circumference
of the unit circle in the case of T = 8.

Using the exponential notation, the Fourier transform and its inverse can be
denoted by

ζj =
1
T

T−1∑
t=0

yte
−iωjtdt ←→ yt =

T−1∑
j=0

ζje
iωjt. (19)

For a matrix representation of these transforms, one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
(20)

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

ζ = T−1/2Uy ←→ y = T 1/2Ūζ. (21)

where y = [y0, y1, . . . yT−1]′ and ζ = [ζ0, ζ1, . . . ζT−1]′ are the vectors of the data
and of their spectral ordinates, respectively.

Observe that, under the assumption that the data are generated by a stationary
stochastic process, the limiting form of equation (18), as T → ∞, is equation (2).

4. The Ideal Finite-Sample Filter

In terms of the frequency domain, the process of filtering a finite data sequence
consists of altering the values of the spectral ordinates within the vector ζ =
[ζ0, ζ1, . . . , ζT−1]′. These ordinates, which correspond to the Fourier frequencies

ωj = 2πj/T ; j = 0, 1, 2, . . . , T − 1, (22)

may be envisaged as a set of spikes erected on the circumference of the unit circle
in the complex plane at locations that are indicated by the T roots of unity

W j = exp{−iωj} = cos(ωj) − i sin(ωj); j = 0, 1, 2, . . . , T − 1. (23)

9
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Figure 4. The 8th roots of unity. The diagram on the left represents the frequency

response of the ideal half-band lowpass filter at the Fourier frequencies corresponding to

the angles ωj = 2πj/8; j = 0, 1, . . . , 7. Unit responses are represented by black dots,

zero responses by circles and the responses at the transition points by encircled dots. The

diagram on the right shows the values of the cosine function at those angles.

The frequency response at ωj , determined in accordance with the ideal speci-
fication of (7), is

λj = φ(ωj) =
∞∑

k=−∞
φkW jk. (24)

Since W q is a T -periodic function, it follows that

λj =
{ ∞∑

q=−∞
φqT

}
+

{ ∞∑
q=−∞

φqT+1

}
W j + · · · +

{ ∞∑
q=−∞

φqT+T−1

}
W j(T−1)

= φ◦
0 + φ◦

1W
j + · · · + φ◦

T−1W
j(T−1), for j = 0, 1, 2, . . . , T − 1.

(25)
These equations serve to determine the circular filter coefficients φ◦

0, φ
◦
1, . . . , φ

◦
T−1.

Let φ◦ = [φ◦
0, φ

◦
1, . . . , φ

◦
T−1]

′ be the vector of the coefficients of a circular filter
and let λ = [λ0, λ1, . . . , λT−1]′ be the vector of the values of the frequency response
at the Fourier frequencies. Then, in terms of the matrices of (20), the mapping
from φ◦ to λ and the corresponding inverse mapping can be represented by

λ = T−1/2Uφ◦ ←→ φ◦ = T 1/2Ūλ. (26)

The filtering operation can be performed by multiplying the spectral ordinates
within the vector ζ by the weights within λ. The resulting vector may be trans-
formed from the frequency domain to the time domain to produce the filtered
output.

Let Λ = diag{λ0, λ1, . . . , λT−1} be the diagonal matrix of the weights. Then,
with reference to (21), it can be see that the weighted values of the spectral ordinates

10
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are given by the vector
Λζ = T−1/2ΛUy. (27)

Subjecting this vector to the inverse Fourier transform gives the filtered output

x = T 1/2ŪΛζ = {ŪΛU}y = Φ◦y, (28)

where Φ◦ = ŪΛU is the matrix of the filtering operation in the time domain. The
next section is devoted to revealing the nature of this matrix and of the associated
time-domain filtering operation.

5. Filtering via Circular Convolution

Consider the following matrix equation:

⎡
⎢⎣

1 0 0 0
0 W 0 0
0 0 W 2 0
0 0 0 W 3

⎤
⎥⎦

⎡
⎢⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤
⎥⎦

=

⎡
⎢⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤
⎥⎦

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ =

⎡
⎢⎣

1 1 1 1
W W 2 W 3 1
W 2 W 4 W 6 1
W 3 W 6 W 9 1

⎤
⎥⎦

(29)

The first equality can be represented in summary notation by

DU = UK. (30)

This example is readily generalised to encompass matrices of any order.
In general, K = [e1, e2, . . . , eT−1, e0] is a circulant matrix operator that is

formed from the identity matrix I = [e0, e1, e2, . . . , eT−1] by moving the leading
vector to the back of the array, whereas D = diag{1, W, W 2, . . . , WT−1} is a diago-
nal matrix containing the roots of unity. The remaining matrix U is in accordance
with the definitions of (20).

The following conditions hold for the circulant operator:

(i) K−q = KT−q,

(ii) K0 = KT = I,

(iii) K ′ = KT−1 = K−1.

(31)

From (30), it follows that

(i) K = ŪDU = UD̄Ū ,

(ii) K ′ = K−1 = UDŪ = ŪD̄U,

(iii) D = UKŪ,

(iv) D̄ = ŪKU,

(32)

11
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where D̄ = diag{1, WT−1, WT−2, . . . , W} is both the complex conjugate and the
inverse of D. More extensive accounts of this algebra have been given by Pollock
(1999), (2002).

Recall that Λ = diag{λ0, λ1, . . . , λT−1} is a diagonal matrix containing values
sampled at equal intervals from the frequency response function of a linear filter.
Let ι = [1, 1, . . . , 1]′ be the summation vector of order T , and observe that Λι =
λ = [λ0, λ1, . . . , λT−1]′ and that T−1/2ι = Ue0, where e0 = [1, 0, . . . , 0]′. In terms
of this notation, the second equation of (26) can be written as

φ◦ = ŪΛUe0 = Φ◦e0. (33)

Premultiplying by the circulant operator K = ŪDU gives

Kφ◦ = ŪD(UŪ)ΛUe0

= Ū(DΛ)Ue0

= ŪΛ(DU)e0

= ŪΛU(Ke0)
= ŪΛUe1.

[UŪ = I]
[DΛ = ΛD]
[DU = UK]
[Ke0 = e1]

(34)

More generally, there is Kqφ◦ = ŪΛUeq. Letting q = 0, 1, . . . , T − 1 and gathering
the resulting vectors in a matrix array creates the following circulant matrix:

Φ◦ = [φ◦, Kφ◦, K2φ◦, . . . , KT−1φ◦] = ŪΛU. (35)

This is the symmetric real-valued circulant matrix of which the general form is
adequately represented by the case where T = 4:

Φ◦ =

⎡
⎢⎣

φ◦
0 φ◦

1 φ◦
2 φ◦

1

φ◦
1 φ◦

0 φ◦
1 φ◦

2

φ◦
2 φ◦

1 φ◦
0 φ◦

1

φ◦
1 φ◦

2 φ◦
1 φ◦

0

⎤
⎥⎦ . (36)

To summarise these results, we observe that the factorisation K = ŪDU of
the circulant operator indicates that

Φ◦ = φ◦(K) = Ūφ◦(D)U = ŪΛU, (37)

where Φ◦ = φ◦(K) is obtained by replacing z by K in the z-transform φ◦(z) =
φ◦

0 + φ◦
1z + φ◦

2z
2 + · · · + φ◦

T−1z
T−1 and Λ = φ◦(D) is obtained by replacing z by

D. Moreover, the jth diagonal element of φ◦(D) is just φ◦(W j) = φ(W j); which is
to say that it is an ordinate of the frequency response sampled at the jth Fourier
frequency ωj = 2πj/T . Thus, the coefficients of the wrapped filter are obtained
by carrying into the time domain, via the inverse Fourier transform, a sample of T
ordinates of the frequency response function.

Applying the filter matrix Φ◦ to the data vector y = [y0, y1, . . . , yT−1]′ gives

x = Φ◦y = ŪΛUy. (38)

12
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This equation indicates that there are two ways of forming the filtered vector x.
The first way is via the circular convolution in the time domain of the vector φ◦

of the filter coefficients and the vector y of the data. To elucidate this operation,
define the circulant data matrix Y = [y, Ky, K2y, . . . , KT−1y] and observe that
circulant matrices commute in multiplication. It follows that

Φ◦y = Φ◦Y e0 = Y Φ◦e0 = Y φ◦. (39)

This expression manifests a symmetry that puts the data vector y and the filter
vector φ◦ on an equal footing.

The second way of obtaining the filtered output is via the Fourier transform
and its inverse. First, the discrete Fourier transform is applied to the data vector to
carry it into the frequency domain. Then a differential weighting is applied to the
elements of the resulting vector ζ = Uy to give Λζ = ΛUy. (In the case of the ideal
frequency-selective filter of (7), the weights, which are the diagonal elements of Λ,
are units in the pass band and zeros in the stop band; and there are ordinates with
a value one half on the points of transition.) Finally, the filtered vector x = ŪΛUy
is obtained by applying the inverse Fourier transform.

6. The Finite-Sample Frequency Response

It should be emphasised that φ(z) and φ◦(z) are distinct functions of which, in
general, the values coincide only at the roots of unity. Strictly speaking, these are
the only points for which the latter function is defined. Nevertheless, there may
be some interest in discovering the values that φ◦(z) would deliver if its argument
were free to travel around the unit circle.

Figure 5 is designed to satisfy such curiosity. Here, it can be seen that, within
the stop band, the function φ◦(ω) is zero-valued only at the Fourier frequencies.
Since the data are compounded from sinusoidal functions with Fourier frequencies,
this is enough to eliminate from the sample all elements that fall within the stop
band and to preserve all that fall within the pass band.

This explains the seeming paradox whereby we are able to achieve a perfect
frequency selection via a finite filter. In theory, we do have a doubly infinite se-
quence at our disposal in the form of the periodic extension of the data. Applying
a wrapped filter to a finite data sequence by circular convolution is equivalent to
applying an infinite, unwrapped filter to its periodic extension by ordinary linear
convolution.

In Figure 5, the transition between the pass band and the stop band occurs at
a Fourier frequency. This feature is also appropriate to other filters that one can
design, which have a more gradual transition with a mid point that also falls on
a Fourier frequency. Figure 6 shows that it is possible, nevertheless, to make an
abrupt transition within the space between two adjacent frequencies. The formulae
for the filter coefficients in both cases are given in the appendix.

The method of filter design that we are pursuing in this paper allows consid-
erable flexibility in specifying the form of the frequency response function. Often,
there is an advantage in departing from the ideal specification so as to allow a
more gradual transition between the pass band and the stop band. However, for

13
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0 π/2−π/2 π−π

Figure 5. The frequency response of the 16-point wrapped filter defined over the interval

[−π, π). The values at the Fourier frequencies are marked by circles and dots. (Note

that, when the horizontal axis is wrapped around the circumference of the unit circle, the

points at π and −π coincide. Therefore, only one of them is included in the interval.)
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Figure 6. The frequency response of the 17-point wrapped filter defined over the interval

[−π, π). The values at the Fourier frequencies are marked by circles.

freely specified responses, it may be difficult to find analytic expressions for the
corresponding filter coefficients.

In the case of the ideal function, the coefficients of the wrapped filter are
readily available. In the appendix, the coefficients are found of the lowpass filter
that is obtained by sampling the following periodic frequency response function at
T Fourier points ωj = 2πj/T that lie in the interval [−π, π):

φ(ω) =

⎧⎪⎨
⎪⎩

1, if ω ∈ (−ωd, ωd),

1/2, if ω = ±ωd,

0, for ω elsewhere in [−π, π).

(40)

Here, ±ωd = ±dω1 = ±2πd/T are the points of discontinuity. The filter coefficients

14
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are given by

φ◦
d(k) =

⎧⎪⎪⎨
⎪⎪⎩

2d

T
, if k = 0

cos(ω1k/2) sin(dω1k)
T sin(ω1k/2)

, for k = 1, . . . , [T/2],
(41)

where ω1 = 2π/T and where [T/2] is the integral part of T/2.
One might wish to construct a wrapped filter according to the more general

bandpass specification:

φ(ω) =

⎧⎪⎨
⎪⎩

1, if |ω| ∈ (−ωa, ωb),

1/2, if ω = ±ωa,±ωb,

0, for ω elsewhere in [−π, π),

(42)

where ωa = aω1 and ωb = bω1. For the ideal filter, this can be achieved by
subtracting one filter from another to create

φ◦
[a,b](t) = φ◦

b(t) − φ◦
a(t)

=
cos(ω1t/2){sin(bω1t) − sin(aω1t)}

T sin(ω1t/2)

= 2 cos(gω1t)
cos(ω1t/2) sin(dω1t)

T sin(ω1t/2)
.

(43)

Here, 2d = b − a is the width of the pass band (measured in terms of a number of
sampled points) and g = (a + b)/2 is the index of its centre. The final expression
follows from the identity sin(A + B) − sin(A − B) = 2 cos A sinB. The expression
can be interpreted as the result of shifting a lowpass filter with a cut-off frequency
at the point d so that its centre is moved from 0 to the point g. The technique of
frequency shifting is not confined to the ideal frequency response. It can be applied
to any frequency response function.

7. Filtering Trended Sequences

The problems of filtering a trended data sequence may be overcome by reducing
it to stationarity by differencing. The differenced sequence can be filtered and, if
necessary, it can be reinflated thereafter to obtain an estimate of a trended data
component. If one is seeking to estimate a stationary component of a nonstationary
sequence, then the reinflation can be avoided.

The matrix that takes the p-th (backward) difference of a vector of order T is
given by

∇p
T = (I − LT )p, (44)

where LT = [e1, e2, . . . , eT−1, 0] is the matrix lag operator that is formed from
the identity matrix IT = [e0, e1, e2, . . . , eT−1] by deleting the leading vector and
appending a zero vector to the end of the array.
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The differencing matrix may be partitioned such that ∇p
T = [Q∗, Q]′, where Q′

∗
has p rows. The inverse matrix is partitioned conformably to give ∇−p

T = [S∗, S].
It follows that

[S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (45)

and that [
Q′

∗
Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Id 0
0 IT−d

]
. (46)

When the difference operator is applied to the data vector y, the first p elements
of the product, which are in g∗, are not true differences and they are liable to be
discarded:

∇p
T y =

[
Q′

∗
Q′

]
y =

[
g∗
g

]
. (47)

However, if the elements of g∗ are available, then the vector y can be recovered
from g = Q′y via the equation

y = S∗g∗ + Sg. (48)

The columns of the matrix S∗ provide a basis for the set of polynomials of degree
p− 1 defined over the integer values t = 0, 1, . . . , T − 1. Therefore, S∗g∗ is a vector
of polynomial ordinates, whilst g∗ can be regarded as a vector of p polynomial
parameters.

Taking differences via the backward-looking operator ∇p induces a phase lag.
This is reflected in the indexing of the elements of transformed data vector when
it is written with Q′

∗y = g∗ = [g0, . . . , gp−1]′ and Q′y = g = [gp, . . . , gT−1]′. The
summation operator, on the other hand, reverses the phase lag by inserting the
elements of S∗g∗ = [y0, . . . , yp−1]′ at the head of the recovered data vector and by
moving the other elements forwards in time.

For an example of the differencing operator, we may consider the case where
the degree of differencing is p = 2 and the length of the data sequence is T = 5.
Then, there is

∇2
5 =

[
Q′

∗
Q′

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤
⎥⎥⎥⎥⎦ . (49)

A trended data sequence may be filtered as follows. First, the data is reduced
to stationarity by differencing it an appropriate number of times. (We rarely need
to difference the data more than twice.) Next, the relevant filters are applied
to the differenced data to isolate its components. Finally, the components of the
differenced data may be integrated, with an appropriate choice of initial conditions,
to provide estimates of the components of the original trended sequence.

The initial conditions will be determined according to a criterion that assumes
different forms depending on whether the component to be extracted is trended or
non-trended. A trended component will contain the zero-frequency Fourier element,
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which is a constant vector, together with other elements of adjacent frequencies in
the vicinity of the zero. We presume that there can be only one trended component.
The remaining components will comprise fluctuations around mean values of zero.

In accordance with this categorisation, we can represent the generic decompo-
sition of the data vector as

y = x + h, (50)

where x is the trend component and h is the complementary detrended component,
which might be subject to further decompositions. The differenced data would be

Q′y = Q′x + Q′h

= d + k = g.
(51)

The vectors d and k require to be cumulated to form

x = S∗d∗ + Sd and h = S∗k∗ + Sk. (52)

However, given the adding-up constraint that is posed by (50), the initial conditions
within d∗ and k∗ must be equivalent.

The initial conditions should be chosen so as to ensure that the trend is aligned
with the data as closely as possible or, equivalently, that the deviations of the
trend from the data are minimised. This entails minimising the quadratic norm
h′h = (y − x)′(y − x). The criterion for finding k∗ is, therefore,

Minimise (S∗k∗ + Sk)′(S∗k∗ + Sk) with respect to k∗. (53)

The solution for the starting values is

k∗ = −(S′
∗S∗)−1S′

∗Sk. (54)

The equivalent criterion for finding d∗ is

Minimise (y − S∗d∗ − Sd)′(y − S∗d∗ − Sd) with respect to d∗. (55)

The solution for the starting values is

d∗ = (S′
∗S∗)−1S′

∗(y − Sd). (56)

In terms of the notation

P∗ = S∗(S′
∗S∗)−1S′

∗, (57)

the equations of (52) can be written as

x = P∗y + (I − P∗)Sd, and h = (I − P∗)Sk. (58)

Since (I −P∗)ι = 0, where ι = [1, 1, . . . , 1]′ is the summation vector, it follows that
ι′h = 0, which is to say that the detrended data has a mean of zero. Then, given
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that S(d + k) = Sg and that (I − P∗)Sg = (I − P∗)(Sg + S∗g) = (I − P∗)y, since
(I − P∗)S∗ = 0, it follows that

x + h = (I − P∗)S(d + k) + P∗y

= (I − P∗)y + P∗y = y,
(59)

which is to say that the sum of the estimated components is the original data
vector, in accordance with (50). In practice, it is redundant to compute both x and
h. Only one of them is required, since the other can be found by subtracting from
y.

In extracting the stationary component h contained within a trended data
sequence y, the business of reinflating the filtered sequence can be avoided, thereby
dispensing with the initial conditions. The highpass filter that would serve to
extract k = Q′h from g = Q′y will contain an implicit differencing operator, which
serves to nullify the low-frequency elements of the data. If the filter is symmetric,
then it will embody at least a twofold differencing operator. The need for reinflation
can be avoided by cancelling the inflating summation operator with the differencing
factors within the filter.

We may begin by considering the symmetric version of the twofold differencing
operator, which is to be applied to the data at the outset. This is

N(z) = z−1 − 2 + z = z−1(1 − z)2

= z−1∇2(z).
(60)

The matrix version of the operator is obtained by setting z = LT and z−1 = L′
T ,

which gives
N(LT ) = NT = LT − 2IT + L′

T . (61)

The first and the final rows of this matrix do not deliver true differences. Therefore,
they are liable to be deleted, with the effect that the two end points are lost from
the twice-differenced data. Deleting the rows e′0NT and e′T−1NT from NT gives
the matrix Q′, which can also be obtained by from ∇2

T = (IT − LT )2 by deleting
the matrix Q′

∗, which comprises the first two rows e′0∇2
T and e′1∇2

T . In the case of
T = 5 there is

N5 =

⎡
⎣Q′

−1

Q′

Q+1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎦ . (62)

On deleting the first and last elements of the vector NT y, which are Q′
−1y = e′1∇2

T y
and Q+1y, respectively, we get Q′y = [q1, . . . , qT−2]′.

The vector Q′y of differenced data is to be used both in the procedure that
reinflates the filtered sequence and it the present procedure that avoids doing so.
However, in the absence of reinflation, the missing elements are not restored to the
filtered vector, nor is there any accompanying phase alteration.
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The loss of the two elements from either end of the (centrally) twice-differenced
data can be overcome by supplementing the original data vector y with two extrap-
olated end points y−1 and yT . Alternatively, the differenced data may be supple-
mented by attributing appropriate values to q0 and qT−1. These could be zeros or
some combination of the adjacent values. In either case, we will obtain a vector of
order T denoted by q = [q0, q1, . . . qT−1]′.

In describing the method for implementing a highpass filter, let Λ be the matrix
which selects the appropriate ordinates of the Fourier transform γ = Uq of the
twice differenced data. These ordinates must be reinflated to compensate for the
differencing operation, which has the frequency response

f(ω) = 2 − 2 cos(ω). (63)

The response of the anti-differencing operation is 1/f(ω); and γ is reinflated by
pre-multiplying by the diagonal matrix

V = diag{v0, v1, . . . , vT−1}, (64)

comprising the values vj = 1/f(ωj); j = 0, . . . , T − 1, where ωj = 2πj/T .
Let H = V Λ be the matrix that is is applied to γ = Uq to generate the Fourier

ordinates of the filtered vector. The resulting vector is transformed to the time
domain to give

h = ŪHγ = ŪHUq. (65)

It will be see that f(ω) is zero-valued when ω = 0 and that 1/f(ω) is un-
bounded in the neighbourhood of ω = 0. Therefore, a frequency-domain reinflation
is available only when there are no nonzero Fourier ordinates in this neighbourhood.
That is to say, it can work only in conjunction with highpass or bandpass filtering.
However, it is straightforward to construct a lowpass filter that complements the
highpass filter. The low-frequency trend component that is complementary to h is

x = y − h = y − ŪHUq. (66)

8. Filtering in Practice

The previous sections of this paper have provided some alternative frequency-
domain methods for filtering trended and non-trended sequences. The fine details
of how these methods should be applied in practice will depend upon the precise
characteristics of the data sequences. The choice of an appropriate method is also
liable to reflect the underlying purpose of the analysis.

It might be the intention to isolate a composite trend-cycle component in order
to depict the underlying growth trajectory of the economy. Alternatively, a pure
business cycle component might be sought that is devoid of any trend. Another
purpose that can be served by these methods is to provide a seasonally-adjusted
sequence by removing from the data the sinusoidal elements that have frequencies
in the vicinity of the fundamental seasonal frequency and its harmonics.

A program has been written in conjunction with this paper that is capable of
serving all of these purposes. The program is designed to extract components of
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Figure 7. The logarithms of the monthly data on retail sales in U.S.A. for the
years 1954 to 1964, together with an interpolated trend.
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Figure 8. The periodogram of residuals obtained by fitting a linear trend through
the logarithmic sales data of Figure 7.
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Figure 9. The seasonal fluctuations of the data of Figure 7, which are virtually
identical to the deviatsions of the data from the interpolated trend.
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the data that lie within well-defined frequency bands and to do so without altering
the relative amplitudes of the sinusoidal elements of which they are composed.
However, it should be emphasised that the methods of frequency-domain filtering
can be applied more flexibly to give differential weightings to these elements. By
such means, a frequency-domain method is capable of mimicking the effects of any
time-domain filter that has a well-defined frequency response function.

When the objective is that of extracting a trend-cycle component, there are
three alternative approaches, which are liable to generate results that are virtually
identical. Two of these methods have already been expounded in the previous
section. They differ in the manner in which they effect the cumulation of a filtered
version of a differenced sequence, obtained by applying a differencing operator to
the original trended data sequence.

The third method depends upon removing the trend from the data by interpo-
lating a polynomial function and by applying the filter to the residual sequence. A
lowpass filter can be applied to this sequence to extract the cycles, whereafter the
result can be added to the polynomial function to create the trend-cycle component.

Each of the foregoing methods depends for its success upon an adequate de-
trending of the data. It is necessary to avoid any radical disjunctions in the periodic
extension of the data sequence where the end of one replication of the sample joins
the beginning of the next. The same disjunction will arise when the data sequence
is mapped onto the circumference of a circle, at the point where the head of the
sequence joins the tail.

The traditional means of avoiding disjunctions has been by tapering the ends of
the mean-adjusted data sequence so that they both decline to zero. (see Bloomfield
1976, for example.) The disadvantage of this recourse is that it tends to falsify the
data at the ends of the sequence. This is particularly inconvenient if, as is often
the case in economics, attention is liable to be focussed of the most recent data.

The difficulty can be overcome by extrapolating the data at both ends via an
interpolated polynomial, of which the degree should be equal to the order of the
differencing to which the data will be subjected subsequently. The polynomial can
be fitted to the data by a weighted least-squares regression that gives large weights
to the points close to the ends in order to ensure that it passes though their midst.

Tapered versions of the residual sequence that have been reflected around the
endpoints of the sample can be added to the extrapolated branches of the polyno-
mial. Alternatively, if the data show strong seasonal fluctuations, then a tapered
sequence based on successive repetitions of the ultimate seasonal cycle can be added
to the upper branch, and a similar sequence based one the the first cycle can be
added to the lower branch. After the augmented data have been filtered, the ex-
trapolations can be discarded.

The method of extrapolation will prevent the end of the sample from being
joined directly to its beginning. When the data are supplemented by extrapolations,
the circularity of the filter will effect only the furthest points the extrapolation,
which will usually be discarded after the filtering has taken place.

In many cases, such extrapolations have proved to be unnecessary. However,
due care must be exercised in cases where the data are subject to significant seasonal
fluctuations, which can be of an amplitude that equals or exceeds that of the secular
or business-cycle fluctuations that one might wish to uncover. In that case, it may
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necessary either to deseaonalise the data in advance or else to take steps to ensure
that it contains an integral number of seasonal cycles.

Consider a seasonally fluctuating sequence that spans an integral number of
years. When this is subjected to the centralised twofold differencing operator, it
will loose an observation from each end. Then, the data will no longer span those
years.

There are two way of overcoming the detriment. Either the sequence can be
further shortened so that there is once more an integral number of years, or else the
two lost points can be replaced by appropriate estimates. It is usually sufficient to
use as estimates the points from the corresponding seasons in the adjacent years.

Example. The techniques expounded in this paper can be explored within the
above-mentioned computer program that has be devised in order to test and to
illustrate them. A data sequence that demands to handled with care is provided by
the 144 monthly observations on retail sales in the US from 1954 to 1964, which were
recorded in the paper of Shiskin, Young and Musgrave (1967) that presented the
X-11 program of the U.S. Census Bureau. This program, which was based on the
Henderson (1916) filter, is intended for seasonal adjustment and trend estimation.

Figure 7 show the logarithms of the data and Figure 8 shows the periodogram
of the residuals from fitting a linear trend. The periodogram has a prominent spike
at the seasonal frequency of π/6 and at the harmonic frequencies of π/3, π/2, 2π/3,
5π/6 and π. With the exception of the interval (2π/3, 5π/6), which does contain one
significant ordinate, the interstices between these seasonal frequencies are virtual
dead spaces. The presence of some nonzero ordinates in the interval [0, π/6), which
covers the trend frequencies, indicates that the log-linear detrending is inadequate.

The trend that is portrayed in Figure 7 is based on the Fourier ordinates of the
twice-differenced data that lie in the interval [0, π/6). To avoid some distortionary
end effects, the sample has been extrapolated for a short distance in the manner
described above.

Figure 9 shows a sequence of seasonal fluctuations that has been synthesised
from a selection of the Fourier ordinates of the differenced date. The ordinates
correspond to the seasonal frequency and its harmonics and to the two frequency
points immediately above 2π/3. The periodogram of Figure 8 has provided the
necessary guidance in selecting these frequencies.

The differenced seasonal vector, synthesised from these elements, amy be de-
noted by k. The vector h of the seasonal fluctuations is obtained by cumulating k
via the formula h = S∗k∗+Sk of (52), wherein k∗ is calculated according to (54). It
transpires that this synthesised seasonal vector, which is represented by Figure 9, it
virtually indistinguishable from the vector of the residuals obtained by subtracting
the trend vector x of Figure 7 from the corresponding data vector y.

The Programs

The program that has been written for the purposes of this paper is available on
request from the author. There are versions both for the Macintosh computer and
for Microsoft Windows. The Windows version of the program is also available at
the following web address:

http://www.le.ac.uk/users/dsgp1/
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Appendix: The Wrapped Coefficients of the Ideal Lowpass Filter

Let the sample size be T , and consider a set of T frequency-domain ordinates
sampled, at the Fourier frequencies ωj = 2πj/T that fall within the interval [−π, π),
from a boxcar function, centred on ω0 = 0. If the cut-off points are at ±ωd =
±dω1 = ±2πd/T , then the ordinates of the sample will be

(A.1) λj =

⎧⎪⎨
⎪⎩

1, if j ∈ {1 − d, . . . , d − 1},
1/2, if j = ±d,

0, otherwise.

Their (discrete) Fourier transform is the sequence of the coefficients

(A.2) φ◦
k =

1
T

∑
j

λje
iωjk,

defined for k = 0, 1, . . . , T − 1.
The ordinates λd = λ−d = 1/2 cause some inconvenience in evaluating this

transform. To overcome this, we may begin by evaluating the function

(A.3) S+(z) = z1−d + · · · + z−1 + 1 + z + · · · + zd,

where z = eiω, together with the function S−(z) = z−1S+(z). Then we may
form the symmetric function φ◦(z) = {S−(z)+S+(z)}/(2T ), wherafter we may set
ω = ωk = 2πk/T = kω1 to obtain the kth coefficient.

First, consider

(A.4)
S+(z) = z1−d(1 + z + · · · + z2d−1)

= z1−d (1 − z2d)
1 − z

.

Multiplying top and bottom by z−1/2 gives

(A.5)
S+(z) = z(1/2)−d (1 − z2d)

z−1/2 − z1/2

= z1/2 (z−d − zd)
z−1/2 − z1/2

.

Then, by setting z = eiω, we get

(A.6) S+(eiω) = eiω/2 (eiωd − e−iωd)
eiω/2 − e−iω/2

= eiω/2 sin(ωd)
sin(ω/2)

.

When ω = ωk = kω1, this becomes

(A.7) S+(k) = eiω1k/2 sin(dω1k)
sin(ω1k/2)

,
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which is the Dirichlet function multiplied by a complex exponential that owes its
presence to the non-symmetric nature of S+(z). There is also

(A.8) S−(k) = e−iω1k/2 sin(dω1k)
sin(ω1k/2)

,

Therefore, for k �= 0, there is

(A.9) φ◦(k) =
1

2T
{S−(k) + S+(k)} =

cos(ω1k/2) sin(dω1k)
T sin(ω1k/2)

,

whereas for k = 0 there is φ◦
0 = 2d/T , which comes from setting z = e0 = 1 in the

expression for S+(z) of (A.3) and in the analogous expression for S−(z).
Setting d = T/4 in (A.9) gives the wrapped version of the lowpass half band

filter that is the subject of Section 2 of the paper.
In an alternative specification of the ideal filter, the cut-off points fall between

Fourier frequencies. Then, the ordinates sampled from the frequency response
function are

(A.10) λj =

{
1, if j ∈ {1 − d, . . . , d − 1},

0, otherwise.

In place of {S−(z) + S+(z)}/2, there is

(A.11)
S(z) = z1−d + · · · z−1 + 1 + z + · · · zd−1

=
z(1/2)−d − zd−1/2

z−1/2 − z1/2
.

Then, for k = 0, there is φ◦
0 = (2d − 1)/T , whereas, for k �= 0, the formula is

(A.12) φ◦(k) =
sin([d − 1/2]ω1k)

T sin(ω1k/2)
.
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