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Abstract

We study a quality-ladder model of endogenous growth that produces
stochastic leadership cycles. Over a cycle, industry leaders can innovate
several successive times in the same industry, gradually increasing the
magnitude of their technological lead before being replaced by a new en-
trant. Initially, new leaders are eager to enlarge their lead and do much
of the research, but if they innovate repeatedly, their propensity to invest
in R&D decreases. Eventually they stop doing research altogether, and as
they are overtaken a new cycle starts. The model generates a skewed �rm
size distribution and a deviation from Gibrat�s law that accord with the
empirical evidence. We also consider various policy measures, showing
that in some cases policy should favour R&D by incumbents, not out-
siders, and that stronger patent protection may reduce innovation and
growth.

�We thank Gianni De Fraja, Antonio Minniti, Ludovic Renou and seminar audiences at
Paris and Leicester for helpful comments and discussions.
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1 Introduction

We propose a Schumpeterian model of endogenous growth that endogenously

produces stochastic leadership cycles. In each industry, both the industry leader

and outsiders simultaneously invest in R&D. Initially, new leaders are eager to

enlarge their lead and do much of the research. However, if they are lucky and

innovate repeatedly, after each successive innovation their pro�ts increase and

their share in the R&D done decreases. The process continues until incumbents

stop doing research altogether and are inevitably overtaken. A new cycle then

starts with a new leader.

This model can help reconcile endogenous growth theory with several stylized

facts not accounted for in early contributions. First, it is consistent with ample

empirical evidence that while outsiders are responsible for many innovations,

incumbents account for a sizeable share of the research done and often innovate

repeatedly in the same industry.1 Second, it endogenously produces a skewed

�rm size distribution that resembles the upper tail of the distributions typically

found in empirical work.2 Finally, it implies that as leaders grow bigger and

older, they tend to rest on their laurels and do less R&D. This generates a neg-

ative correlation between the incumbents�size and age and their expected rate

of growth, a deviation from Gibrat�s law con�rmed by the empirical evidence.3

To the best of our knowledge, this is the �rst endogenous growth model

that provides a uni�ed explanation for these stylized facts. Previous models in

which neither leaders nor outsiders are precluded from innovating in the same

industry either generate an �entrenchment-of-monopoly�e¤ect whereby the risk

1Segerstrom and Zolniereck (1999) and Segerstrom (2007) provide a nice summary of the
relevant empirical evidence.

2A wide literature documents the skewness of the �rm size distribution. For an excellent
contribution that provides also a survey of the previous literature, see Cabral and Mata
(2003).

3See, among others, Evans (1987), Hall (1987), Rossi-Hansberg and Wright (2005), and
Clementi and Hopenhayn (2006).
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that the incumbent is replaced decreases with the duration of its leadership, as

in Stein (1997), or predict that the probability that the incumbent is replaced

is constant, as in Segerstrom and Zolnierek (1999) and Segerstrom (2007).

Other models have followed di¤erent routes. Klette and Kortum (2004)

assume that incumbents can grow only by diversi�cation, i.e., innovating in other

industries. In their model, which has subsequently been developed by Lentz

and Mortensen (2005, 2008) and others, incumbents that innovate repeatedly

are active in several industries, but in each of them they lead by only one step.

An alternative approach, followed by Aghion et al. (2001, 2005) and Acemoglu

and Akcigit (2008), among others, posits that in each industry there are two

incumbents, which alone can invest in R&D. These models allow the size of the

leader�s advantage to vary, as we do, but they do not capture the process of �rm

entry and exit, which plays a crucial role in many innovative industries.

Our model sticks more closely to the original papers by Aghion and Howitt

(1992), Segerstrom et al. (1990), and Grossman and Helpman (1991a). The

only change is that incumbents are assumed to be more e¢ cient than outsiders

in conducting research. This assumption seems natural when innovation is cu-

mulative, since innovative technological knowledge that may be useful to search

for the next innovation is often disclosed only partially to outsiders. The as-

sumption has in fact been made by several papers in the growth literature, but

previous contributions have added ancillary assumptions that prevent leadership

cycles.4

Making no special assumptions, we simply focus on the case where innova-

tions are incremental (or non drastic), so that new innovators are constrained by

4Grossman and Helpman (1991b), for instance, assume that the leader�s advantage is small
enough that all the research is conducted by outsiders. In their model, the leader invests in
R&D only if the innovation has been perfectly imitated: in this case, which we rule out in
this paper, Arrow�s e¤ect vanishes, and the leader ends up conducting all the research. Barro
and Sala-i-Martin (1994) assume that the leader has not only an R&D advantage, but also
a �rst-mover advantage. This leads to a preemption equilibrium in which the leader again
conducts all research.
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outside competition in the product market and cannot engage in monopoly pric-

ing.5 Then, for a range of parameter values the leader�s advantage in conducting

research can be exactly o¤set by Arrow�s replacement e¤ect.6 As a result, nei-

ther leaders nor outsiders are precluded from innovating, and leadership cycles

can arise as an equilibrium phenomenon.

In our model�s equilibrium, the probability that an incumbent is replaced

is one when a certain critical lead size is reached, which corresponds to the

maximum �length�of leadership cycles. The economy�s rate of growth depends

only on the pro�ts obtained by incumbents that have reached the maximal lead

size. Intuitively, with constant returns to scale in research all �intermediate�

pro�ts (i.e., the pro�ts obtained by incumbents that enjoy a smaller competitive

advantage) are dissipated in the patent races which they participate in. The

size of these intermediate pro�ts determines only the division of the total R&D

done among the incumbent and outsiders.

The model is tractable enough to yield a simple closed-form solution, so

it could lend itself (in future research) to various extensions. Here we use it

to address several policy issues. We are especially interested in ascertaining

whether policy should favour R&D investment by leaders or by outsiders, a

question that has broad policy implications (for example, in competition policy).

5Segerstrom and Zolnierek (1999) show that with constant returns to R&D and drastic
innovations, in equilibrium either the leader or outsiders may conduct the research, but not
both. To obtain an equilibrium where both the leader and the outsiders simultaneously invest
in R&D, they then posit decreasing returns to R&D at the �rm level (see also Segerstrom,
2007). Here, by contrast, we focus on non drastic innovations, retaining the assumption of
constant returns to scale in research. This assumption is standard in the endogenous growth
literature and seems to be well grounded both empirically and theoretically. For example,
surveying the empirical literature Griliches (1990, p. 1677) notes that

in the major range of the data [...] there is little evidence for diminishing returns,
at least in terms of patents per R&D dollar. That is not surprising, after all. If
there were such diminishing returns, �rms could split themselves into divisions
or separate enterprises and escape them.

At the industry level, by contrast, the existence of decreasing returns to scale in research
is well documented. For simplicity, we make the assumption of constant return also at the
industry level, but this serves only to obtain a closed-form solution.

6That is, leaders have a lower incentive to innovate than outsiders because the incentive
for them is only the incremental pro�t, i. e., the di¤erence over the current pro�t.
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We analyze R&D taxes and subsidies and various patent policies. We show

that the economy�s rate of growth increases when the outsiders�R&D expen-

diture is taxed and the revenue is used to subsidize the leaders�R&D. As for

patent policy, we argue that when patent protection is state-dependent, our

model produces a trickle-down e¤ect, as in Acemoglu and Akcigit (2008): the

incumbents�investment in R&D increases if the level of patent protection in the

early stages of a leadership cycle is reduced. However, in our model this policy

does not a¤ect the equilibrium rate of growth, as the incumbents�greater R&D

investment crowds out the outsiders�on a one-to-one basis.

We consider also the possibility that follow-on innovations may infringe on

the patents that protect previous innovators, as in O�Donoghue and Zweimuller

(2004) and Chu (2009). In this case, successful outsiders must pay a licensing

fee to the old incumbent, but no payment is due if the incumbent innovates

repeatedly. In a leapfrogging equilibrium where incumbents do not invest in

R&D, this form of patent protection is always bad for growth. We show that,

on the contrary, its e¤ect can be positive when leaders can innovate repeatedly.

The rest of the paper is organized as follows. Section 2 outlines the model.

Section 3 derives the conditions that must hold in a steady state equilibrium.

Section 4 characterizes the equilibrium where the total R&D investment is con-

stant over a leadership cycle. Section 5 analyzes several innovation policies.

Section 6 discusses other equilibria, where the total R&D varies over a cycle,

and explains why the equilibrium where total R&D is constant is a natural

focal point. Section 7 summarizes and concludes. Proofs are collected in the

Appendix.
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2 The model

For ease of comparison, we build on the textbook quality-ladder model of Barro

and Sala-i-Martin (2004).

2.1 Preferences

The economy is populated by L identical, in�nitely-lived individuals. Time is

continuous. Each individual inelastically supplies one unit of labour and has

linear intertemporal preferences:

u(c(t)) =

Z 1

0

c(t)e�rtdt; (1)

where c(t) is consumption at time t. With linear intertemporal preferences, the

equilibrium rate of interest is �xed and coincides with the rate of time pref-

erence r.7 Each individual maximizes (1) subject to the instantaneous budget

constraint:

c(t) + _a(t) � w(t) + ra(t); (2)

where w(t) is the wage rate and a(t) is the individual�s wealth. Individuals

are risk neutral, so in equilibrium by arbitrage all assets must yield the same

instantaneous expected net rate of return r:

2.2 Final and intermediate goods

There is a unique �nal good in the economy that can be consumed, used to

produce intermediate goods, or used in research. This good is taken as the

numeraire. It is produced in a perfectly competitive market using labour (which

is in �xed supply) and a continuum of intermediate goods ! 2 [0; 1], the quality

of which increases with technical progress. We normalize the quality of all

intermediate goods at time 0 to unity and denote by � > 1 the size of each

7One can easily allow for more general preferences (see footnote 15 below).
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innovation. Thus, the quality of intermediate good ! of vintage j(!; t) is �j(!;t),

where j(!; t) denotes the number of innovations that have been achieved in

industry ! by time t.

The �nal good can be produced according to the following constant-returns

production function:

y(t) =

1Z
0

L1��

24j(!;t)X
k=0

�j(!;t)�kq(j � k; !; t)

35� d!; 0 < � < 1;

where L is labour input, (1��) is the share of labour�s income, and q(j�k; !; t)

denotes the input of the intermediate good of type ! and vintage j � k, so thatPj(!;t)
k=0 �j(!;t)�kq(j � k; !; t) is a quality-adjusted index of composite good !

that combines all past generations of intermediate goods of type !.

Independently of its type ! and vintage j, each unit of intermediate good

can be produced using one unit of �nal good. Producers of intermediate good !

compete in price, so in equilibrium only the latest vintage of intermediate good

! is produced and employed in the production of the �nal good. Normalizing

L to one, the production function of the �nal good can then be re-written as:

y(t) =

1Z
0

h
�j(!;t)q(j; !; t)

i�
d!: (3)

The amount of the �nal good used in the production of intermediate goods is

Q(t) =

Z 1

0

q(j; !; t)d!:

2.3 The R&D sector

In each industry !, there is a sequence of patent races. As soon as innovation j is

achieved, a free-entry, simultaneous-move race to achieve innovation j+1 starts.

Both innovator j and a mass of outsiders can race to achieve innovation j + 1;

that is, outsiders need not duplicate innovation j before starting to search for

innovation j+1. Thus, our model di¤ers from step-by-step models à la Aghion
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et al. (2001). However, we assume that the current leader is more e¢ cient than

outsiders in conducting research.8

The �rms�R&D investment determines the arrival of the innovation accord-

ing to a Poisson stochastic process. The instantaneous probability that a �rm

s = o; `i (where o stands for outsiders and `i for a leader that leads by i steps)

achieves innovation j + 1 in sector ! by time t is

xs(j; !; t) =
Rs(j; !; t)

csgj
; (4)

where Rs(j; !; t) is �rm s�s R&D investment in units of the �nal good and

g � �
�

1�� > 1. The term gj in the denominator of (4) means that research be-

comes increasingly di¢ cult as new innovations arrive, an assumption that serves

to guarantee the existence of a steady state.9 The parameters c`i and co mea-

sure the unit cost of research done by leaders and outsiders, respectively. All

outsiders, including past innovators, have the same R&D cost, but the leader

is more productive: c`i < co. For simplicity, we assume that a leader�s pro-

ductivity in R&D is independent of the size of its lead i: c`i = c`. Relaxing

this assumption complicates the calculations, but does not a¤ect our qualitative

results as long as c`i does not decrease with i too fast.

Notice that the R&D technology (4) exhibits constant returns to scale both

at the �rm level and at the industry level. While the assumption that there are
8With symmetric unit R&D costs, models of step-by-step innovations di¤er radically from

models of leapfrogging. The former implicitly assume that there are no technological spillovers,
so laggards must independently duplicate all past innovations before moving up the quality
ladder. The latter are best suited to describe situations in which all innovative technological
knowledge is publicly disclosed, but patent protection allows only the patent holder to practice
the innovation. The truth probably lies somewhere in between, as technological spillovers are
ubiquitous but typically far from perfect. In step-by-step models, such partial spillovers can
be captured assuming that duplication is easier than innovation. In models of leapfrogging
such as ours, one can instead assume that leaders have an R&D cost advantage over outsiders.
Both modeling strategies essentially capture the same economic e¤ect, and the choice of one
or the other is largely a matter of analytical convenience.

9 In a steady state, the expected waiting time to discovery must be constant. Since g is the
growth factor between successive innovations, as will be seen below, R&D investment grows at
rate g from one race to the next. Then in order for the aggregate hazard rate to be constant
the productivity of R&D must decline at rate g. This requires the knife-edge assumption that
the productivity of R&D expenditure decreases at rate g, which is standard in quality-ladder
endogenous growth models (see e.g. Barro and Sala-i-Martin, 2004).
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constant returns to R&D at the �rm level seems well grounded both empirically

and theoretically,10 the assumption of constant return at the industry level is

made only to obtain a closed-form solution. Later, we shall argue that the

equilibrium we analyze is robust to the introduction of decreasing returns at

the industry level.

R&D projects are independent, so the aggregate hazard rate Xi(j; !; t)

equals the sum of the individual rates:

Xi(j; !; t) = x`i(j; !; t) +XOi
(j; !; t);

where XOi
denotes the outsiders�aggregate hazard rate. The total amount of

�nal good used in research is

R(t) =

Z 1

0

[c`x`i(j; !; t) + coXOi
(j; !; t)] gj(!;t)d!:

2.4 Patent policy

Initially, we assume that each innovation is patentable and there is perfect,

in�nitely-long patent protection, meaning that nobody can imitate an innova-

tion without infringing the patent that covers it. We also assume that no inno-

vation infringes on previous patents, so innovators need not obtain any licence

from previous patent holders to practice their innovations. These assumptions

will be further discussed and relaxed in section 5.

2.5 Equilibrium concept

In our model, the labour market and the �nal good market are perfectly com-

petitive, while �rms may hold market power in the intermediate good markets

and behave strategically in patent races. We assume that perfectly competitive

markets clear at any point in time. When �rms behave strategically, we focus

10See Griliches (1990).
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on Markov Perfect Equilibria (MPE) where strategies depend only on payo¤-

relevant state variables.

2.6 Steady state

As new innovations arrive, the productivity of any one intermediate good jumps

up discretely by a factor g > 1 at random intervals, but since there is a contin-

uum of intermediate goods, by the law of large numbers, the economy can grow

smoothly. A steady state is de�ned as a situation in which:

(i) the output of the �nal good, consumption, aggregate R&D expenditure,

the aggregate output of intermediate goods, and the wage rate all grow at a

constant rate, denoted by ;

(ii) the fraction of industries in which the leader leads by i = 1; 2; ::: steps,

denoted by �i; is constant;

(iii) the average hazard rate and expected waiting time for innovations are

constant.

We are interested in steady state MPE.

3 Equilibrium growth

In this section we derive the conditions that must hold in a steady state MPE,

analyze its stability, and calculate the equilibrium rate of growth as a function

of R&D investments.

3.1 Labour and goods market equilibrium

At any point in time, the wage rate adjusts so as to clear the labour market:

w(t) = (1� �)y(t):

The market clearing condition in the �nal good market is

y(t) = c(t) +Q(t) +R(t);
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and by Walras�law it is equivalent to the labour market equilibrium condition,

as we shall con�rm below.

Now consider the intermediate goods markets. Pro�t maximization by per-

fectly competitive �rms in the �nal good sector implies the following demand

for the last vintage of the intermediate good of type !:

q(j; !; t) =
�

1
1��

p(j; !; t)
1

1��
gj(!;t);

where p(j; !; t) is its price. Notice that the demand for intermediate good ! does

not depend on the prices of the other intermediate goods (this follows from the

linear speci�cation (3)). The demand function has a constant elasticity 1
1�� ,

and each innovation shifts demand up by the constant factor g = �
�

1�� .

Since di¤erent vintages of a given intermediate good ! are perfect substitutes

at constant rates, �rms producing di¤erent vintages can be treated as if all

were producing the same good, measured in e¢ ciency units, but with di¤erent

costs that re�ect the quantity of �nal good needed to make one e¢ ciency unit.

Speci�cally, the e¤ective marginal production cost of vintage k� i, in e¢ ciency

units relative to the last vintage, is �i, since one unit of the intermediate good

of vintage k is as productive as �i units of the good of vintage k � i. With

Bertrand competition, in each intermediate good sector only the current leader

will be active in equilibrium. However, the equilibrium price depends on what

technology is available to its most e¢ cient rival (i.e., the penultimate innovator),

which can supply the next most productive vintage.

The monopoly price is pM =
1

�
. If �i >

1

�
, the cost of the leader�s most

e¢ cient competitor is greater than the monopoly price. The leader then is

e¤ectively unconstrained by outside competition and can charge the monopoly

price. If instead �i <
1

�
, the leader�s cumulated cost advantage is too small to

allow it to charge the monopoly price. In the ensuing Bertrand equilibrium, the

leader engages in limit pricing: pL = �
i.
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De�ne m as the minimum lead size that allows the leader to charge the

monopoly price; that is, the minimum value of i such that �i � 1

�
. Accounting

for the integer constraint, m is implicitly given by the inequalities

�m � 1

�
> �m�1:

Then, if i � m, the leader charges the monopoly price and obtains the monopoly

pro�t

�m(j; !; t) = (1� �)�
1+�
1�� gj(!;t);

which is independent of the size of its lead. If i < m, the leader engages in limit

pricing, and its pro�t is:

�i(j; !; t) = (�
i � 1)� 1

1����
i

1�� gj(!;t):

In this case the leader�s pro�t depends on i, the size of its technological advan-

tage. To simplify the notation, denote

�i �
(
(�i � 1)� 1

1����
i

1�� for i = 1; 2; :::;m� 1
(1� �)�

1+�
1�� for i = m;m+ 1; :::

so that �i(j; !; t) = �igj(!;t).

The equilibrium price is independent of j; ! and t, but depends on i, the

number of consecutive innovations achieved by the current leader. This is deter-

mined endogenously, which marks a key di¤erence from standard quality-ladder

models where the current leader never invests in R&D and so i is always equal

to one.

3.2 The patent race equilibrium

With a memory-less discovery process like Poisson, the payo¤ to any �rm that

participates in a patent race does not depend on how much time has passed since

the start of the race, so in a MPE �rms will choose a constant level of R&D

expenditure until someone succeeds and the next race starts. As we proceed, it
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will become clear that in a MPE �rms�strategies must be independent also of

! and j.

Let V1(j; !; t) be the expected value of leading by one step in industry ! at

time t if j innovations have already been made in that industry. This is given

by the following Bellman equation (to simplify the notation, we suppress the

indices ! and t when there is no risk of confusion):

rV1(j) = max
x`1

�
�1(j)�X1V1(j) + x`1V2(j + 1)� c`gjx`1

�
; (5)

where V2(j+1) is the expected value of leading by two steps if j+1 innovations

have been previously achieved. The interpretation of equation (5) is simple.

The right-hand side is the expected �ow value of leading by one step. A one-

step leader earns the �ow pro�t �1(j) and incurs the �ow cost c`gjx`1 until

innovation j + 1 arrives. When innovation j + 1 is achieved, which occurs

with an instantaneous aggregate probability X1, the leader incurs a capital loss

V1(j), but in case it itself succeeds, an event whose probability is x`1 , it obtains

V2(j + 1). That is, V2(j + 1) � V1(j) is the net capital gain obtained by a

one-step leader that innovates again. The leader chooses x`1 to maximize its

present expected pro�ts. Equation (5) states that such maximized pro�ts must

guarantee an expected rate of return on the leader�s asset, V1(j); equal to the

equilibrium interest rate r.

The expected value of leading by two steps, V2(j +1), is in turn determined

by the following Bellman equation

rV2(j + 1) = max
x`2

�
�2(j + 1)�X2V2(j + 1) + x`2V3(j + 2)� c`gj+1x`2

�
;

where V3(j + 2) is the value of leading by three steps, and so on. After m

successive innovations, the leader becomes an unconstrained monopolist in the

product market. This implies that

Vm+1(j +m) = Vm(j +m);
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since a �rm leading by m or more steps will earn monopoly pro�ts, irrespective

of the magnitude of its lead.

Since in a steady state the pro�t earned by a �rm leading by i steps increases

by a constant factor g from one period to the next,11 this property must be

inherited by the value functions. Hence, we must have Vi(j) = gjVi; where

Vi = Vi(0): We can then rewrite the Bellman equations as follows:

rV1 = max
x`1

[�1 �X1V1 + gx`1V2 � c`x`1 ] ;

:::

rVi = max
x`i

[�i �XiVi + gx`iVi+1 � c`x`i ] ; (6)

:::

rVm = max
x`m

[�M �XmVm + gx`mVm � c`x`m ] :

Consider next a generic outsider that participates in a patent race in an

industry where the leader leads by i steps. If it wins, it obtains a one-step

leadership, the value of which is V1. Thus, the expected discounted pro�t of

any individual outsider that invests cogjxoi units of the �nal good to obtain

innovation j + 1 is
xoiV1(j + 1)� cogjxoi

r +Xi
:

By the free entry condition, this cannot be positive,12 and if it is negative then

xoi must vanish (and hence XOi �
P
xoi must also vanish). Since this property

11Here by period we mean the random time interval between two successive innovations.
12The zero-pro�t condition in patent races implies that the increase in the net value of the

individuals�assets must equal aggregate R&D investment:

_a(t) = R(t):

Proprietary technological knowledge is the only asset in our model economy. The return to
holding this asset, ra(t); is the extra-pro�ts earned by �rms holding market power. Aggre-
gating across �rms, this equals

ra(t) = �y(t)�Q(t):
Plugging these equations into the budget constraint (2) one sees that the labour market and
�nal good market equilibrium conditions are equivalent (Walras�law), as was claimed earlier.
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must hold for all i, we have

gV1 � co � 0 and
 

mX
i=1

XOi

!
(gV1 � co) = 0:

A Markov Perfect Equilibrium in the patent race is a list of non-negative

variables (X 1, X 2,..., Xm, x `1; x `2 ,..., x `m , V 1, V 2,..., Vm) with x`i � Xi that

satisfy the Bellman equations (6) and the free entry condition.

Since the variables ! and j do not enter the Bellman equations nor the free

entry condition, in a MPE �rms�strategies cannot depend on ! and j. To see

why this restriction is important, notice that the pro�tability of each innovation

depends on the expected R&D e¤orts in the subsequent patent races. Innova-

tors correctly anticipate such future e¤orts, but the forward-looking nature of

the equilibrium means that expectations could be conditioned on �extraneous�

variables. For example, if �rms expect high levels of R&D e¤ort when j is even

and low levels when j is odd, this may turn out to be a self-ful�lling prophecy

that generates two-period cycles, as in Aghion and Howitt (1992). Firms�ex-

pectations may depend also on !: for example, an arbitrarily large fraction of

industries may be trapped in a no-growth trap (which is itself a degenerate two-

period cycle) where nobody invests for fear that its pro�ts will be terminated

soon by the occurrence of the next innovation, as in Cozzi (2007). We have

nothing to add to the analysis of these phenomena here, so we assume Markov

perfection. By requiring that only variables that directly appear in the Bellman

equations can a¤ect �rms�strategies, this assumption rules out cyclical growth

and the possibility that an indeterminate fraction of industries may be trapped

in a no-growth trap.

The next Lemma provides a useful characterization of the steady state MPE

in terms of a set of inequalities and complementary slackness conditions.

Lemma 1 A list of non-negative variables (X1, X2,..., Xm, x`1; x`2 ,..., x`m , V1,

V2,..., Vm) such that XOi
= Xi � x`i � 0 for i = 1; :::;m is a Markov perfect

15



patent-race equilibrium if and only if they satisfy the free entry condition

gV1 � co � 0 and
 

mX
i=1

XOi

!
(gV1 � co) = 0 (7)

and the following inequalities, with the associated complementary slackness con-

ditions :

gVi+1 � Vi � c` � 0 and x`i (gVi+1 � Vi � c`) = 0 8i = 1; :::;m� 1 (8)

(g � 1)Vm � c` � 0 and x`m [(g � 1)Vm � c`] = 0: (9)

Moreover, in any equilibrium

Vi =
�i

r +XOi

i = 1; 2; :::;m: (10)

With constant returns to scale in R&D, in equilibrium either leaders do not

invest altogether, or they must be indi¤erent between any level of R&D invest-

ment �conditions (8) and (9). These conditions in turn imply that the value of

leading by i steps must equal the expected present value of the corresponding

�ow of pro�ts, �i, where the discount rate r is augmented by the probability

that the current leader is replaced. This is condition (10).

3.3 Stability

Partition the set of industries [0; 1] into m sub-sets {i with i = 1; 2; :::;m, where

the leader leads by 1, 2, ..., and m or more steps, respectively. (Later, we

shall show that no leader ever leads by more than m steps in equilibrium.)

The measure of {i is the fraction of industries in which the leader leads by i

steps, which we denote by �i. As new innovations arrive, the sets {i change

continuously. The out�ow from state i is the probability that someone innovates,

Xi; the in�ow is, for i > 1, the probability that the leader innovates in state

i � 1 (and also in state m for i = m) and, for i = 1, the probability that an
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outsider innovates in any state. Hence we have:

_�1 = �1XO1
+ �2XO2

+ :::+ �mXOm
� �1X1

:::

_�i = �i�1x`i�1 � �iXi i = 2; :::;m� 1 (11)

::::::

_�m = �m�1x`m�1 + �mx`m � �mXm

In a steady state, the �i�s are constant:

_�i = 0 for i = 1; 2; :::;m:

This system provides m� 1 independent equations, as the �rst equation can be

obtained from the others. Together with the adding-up condition
mP
i=1

�i = 1,

these equations can be solved to get:

�1 =
1

1 +
x`1
X2
+

x`1x`2
X2X3

:::+
x`1:::x`m�1

X2:::Xm�1(Xm�x`m )

�i =
x`1:::x`i�1
X2:::Xi

�1 i = 2; :::;m� 1 (12)

�m =
x`1:::x`m�1

X2:::Xm�1(Xm � x`m)
�1:

Since in our model there is no capital accumulation, and strategic variables

such as prices and R&D investments can immediately jump to their equilibrium

values, only the �is adjust gradually after any parameter change, or starting

from arbitrarily given initial conditions. The next result guarantees the stability

of this adjustment process for any possible MPE of the patent race:

Lemma 2 The dynamical system (11) is globally stable.

3.4 The growth rate

Now we calculate the equilibrium rate of growth as a function of R&D invest-

ments. Since the equilibrium price depends only on i, substituting (4) into (3)
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we get:

y(t) =

1Z
0

h
�j(!;t)�

1
1�� gj(!;t)p(j; !; t)�

1
1��

i�
d!

= �
�

1��

mX
i=1

24p� �
1��

i

Z
{i

gj(!;t)d!

35 :
By the law of large numbers, the probability that the leader has an i-step

advantage is the same across industries. Hence, the variable gj(!;t) will be

identically distributed over any subset {i, implying:Z
{i

gj(!;t)d! = �i

1Z
0

gj(!;t)d!:

Substituting into the preceding expression we get:

y(t) = �
�

1��

 
mX
i=1

�ip
� �
1��

i

!
G(t); (13)

where G(t) �
1R
0

gj(!;t)d! is an intermediate good aggregate quality index that

increases over time with technical progress.

Since the term
Pm

i=1 �ip
� �
1��

i is constant in a steady state, equation (13)

implies that the rate of growth of output is the rate of growth of the average

quality of the intermediate goods, G(t). To calculate it, notice that in an in-

dustry where the leader has an i-step advantage, j(!; t) jumps up to the next

higher integer with a constant instantaneous probability Xi. Hence:

_G(t) =

1Z
0

h
gj(!;t)+1 � gj(!;t)

i
X(j + 1; !; t)d!:

Proceeding as before, we obtain

_G(t) =
mX
i=1

24(g � 1)Xi Z
{i

gj(!;t)d!

35
=

mX
i=1

24(g � 1)�iXi 1Z
0

gj(!;t)d!

35
= (g � 1)XG:
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where X =
mP
i=1

�iXi. It follows that the economy�s rate of growth is

 = (g � 1)X: (14)

In what follows we shall assume that the �transversality�condition

r >  (15)

holds; if this inequality is violated, the utility u is unbounded (Barro and Sala-

i-Martin, 2004).

4 Leadership cycles

In this and the following section we focus on the equilibrium where the total

R&D e¤ort in an industry is constant over a leadership cycle, i.e., Xi is inde-

pendent of i:

Xi = X for all i = 1; 2; :::;m; (16)

however, the division of X between the leader and outsiders can vary with i.

Condition (16) may be viewed as imposing a strong form of Markov perfection,

so we call the equilibria that satisfy (16) Strong MPE (SMPE). After char-

acterizing the unique SMPE, we discuss condition (16) more fully in section

6.

To avoid proliferation of cases, before proceeding we impose some parameter

restrictions that guarantee the existence of an equilibrium with positive R&D

investment by outsiders. First, we rule out persistent leadership equilibria where

only leaders invest in R&D. Lemma 3 shows that these equilibria emerge if the

leader�s R&D advantage is large enough:

Lemma 3 If coc` >
g
g�1 , there is no MPE in which outsiders invest in R&D.

Thus, we assume:13

13For a discussion of the special case co
c`
= g

g�1 , see Segerstrom and Zolnierek (1999).
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co
c`
<

g

g � 1 : (17)

Second, we assume that innovation is su¢ ciently pro�table that some research

is conducted at equilibrium:
�1
r
>
co
g
: (18)

If this inequality is violated, the economy stagnates inde�nitely.

To state our characterization result we need some more de�nitions. Let

us recursively calculate the solution to (8), taken as an equality, starting from

V1 =
co
g . We obtain:

~Vi �
co + c`(g + g

2 + :::+ gi�1)

gi
:

~Vi increases with co, c` and i and decreases with g. It is also useful to note the

following Lemma:

Lemma 4 The ratio
�i
~Vi
is either decreasing, or �rst increasing and then de-

creasing in i.

Finally, de�ne

i� = arg max
i=1;2;:::;m

�
�i
~Vi

�
:

We are now ready to state:

Proposition 1 There is a unique Strong Markov Perfect Equilibrium outcome.

In equilibrium, outsiders and all leaders `i with i < i� invest in R&D simulta-

neously, whereas `i� does not invest, so no leader ever leads by more than i�

steps. The aggregate R&D e¤ort is:

X =
�i�

~Vi�
� r; (19)
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and the leaders�R&D e¤orts are

x`i =
�i�

~Vi�
� �i
~Vi

for i � i�; (20)

so that Vi = ~Vi for i � i�.

The variable i� can be thought of as the maximum �length� of leadership

cycles. When i� = 1, leadership cycles are degenerate, and the SMPE ac-

tually reproduces the familiar leapfrogging equilibrium. Obviously, i� cannot

be greater than one when innovations are drastic, i.e., m = 1. This con�rms

that with drastic innovations there is no equilibrium in which the leader and

outsiders simultaneously invest in R&D �a point made by Segerstrom and Zol-

nierek (1999). However, when innovations are non drastic (m � 2) there always

exists a non empty region of parameters values where leadership cycles are non

degenerate. From the de�nition of i� it follows immediately that for any given

m � 2, a necessary and su¢ cient condition for i� to be greater than one is

g�1
g�2��1 <

co
c`
< g

g�1 . More generally, we have (the proof is in the Appendix):

Corollary 1. The maximum length of leadership cycles, i�, increases with co
c`

and approaches m as co
c`
goes to g

g�1 .

The intuitive reason why both the leader and outsiders can simultaneously

invest in R&D is as follows. Leaders are more e¢ cient than outsiders in con-

ducting research. With non drastic innovations, they also obtain greater pro�ts

than outsiders if they innovate repeatedly, as they are less severely constrained

by outside competition in the product market. However, leaders have a lower

incentive to innovate since only the incremental pro�t (i.e., the di¤erence over

the current pro�t) matters for them. This is Arrow�s replacement e¤ect.

In our model, the magnitute of Arrow�s e¤ect is endogenous, as it depends

on the division of the total R&D among the leader and outsiders. Thus, if the

leader�s cost advantage is neither too large nor too small, it can be exaclty o¤set
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by Arrow�s e¤ect. However, if the leader innovates repeatedly, its pro�ts increase

and thus Arrow�s e¤ect tends to strengthen, reducing the leader�s incentive to

invest in R&D. As a result, the leader�s share in the total R&D done must

decrease. This is proved formally in the following:

Corollary 2. In the SMPE, x`i�1 > x`i for i � i�.

The Corollary follows immediately from (20) noting that
�i
~Vi
increases with i for

i � i� (this follows by Lemma 4 and the de�nition of i�). After i� successive

innovations Arrow�s e¤ect becomes so strong as to prevail over the R&D cost

e¤ect. The leader then stops investing in R&D altogether and is overtaken with

probability one, and a new cycle starts.

The model is consistent with the empirical evidence that while a signi�cant

share of innovations is achieved by outsiders, incumbents account for much of

the research done and often innovate repeatedly in the same industry. Scherer

(1980), for instance, discusses survey evidence that industry leaders make sig-

ni�cant R&D investment to improve their existing products. By innovating

repeatedly over time, these incumbents may obtain a large competitive advan-

tage over outsiders. Segerstrom (2007) amply documents the phenomenon.

A remarkable property of the equilibrium is that the hazard rate X depends

only on the pro�t accruing to leaders that lead by i� steps and is independent

of whatever pro�ts leaders may earn before. This seems surprising at �rst, since

the incentive to innovate should re�ect the expected present value of all pro�ts

earned over an innovator�s life cycle. The intuitive explanation is that with

constant returns to scale in research all �intermediate�pro�ts (i.e., the pro�ts

obtained by incumbents that lead by less than i� steps) are dissipated in the

patent races which they participate in.

To see this point more clearly, recall that with constant returns to scale in

research incumbents are indi¤erent between any amount of R&D investment as
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long as i < i� (equation (8)). Imagine, then, an hypothetical outsider that, after

having innovated for the �rst time, keeps investing in R&D at an arbitrarily large

rate so as to achieve the subsequent i� � 1 innovations almost instantaneously,

and then stops investing. The expected present pro�t guaranteed by such a

strategy is
gi

�
�i�

X + r
;

i.e., the discounted pro�t of leading by i� steps until somebody else innovates.

Intermediate pro�ts do not matter here, as they are earned for arbitrarily short

periods of time. On the other hand, the e¤ective unit R&D cost of achieving

i� consecutive innovations (the �rst as an outsider and the others, in in�nitely

rapid succession, as a leader) is14

Ci� � co + c`(g + g2 + :::+ gi
��1):

The standard zero-pro�t condition in a patent race with free entry then becomes

gi
�
�i�

X + r
= Ci� :

Noting that Ci� = gi
� ~Vi� , one sees immediately that this condition is equivalent

to (19). Of course, in equilibrium incumbents do not follow the hypothetical

strategy described above, but their payo¤must be the same as if they did, since

they must be indi¤erent between any amount of R&D investment.

Another remarkable property of the leadership cycle dynamics is that, in in-

novative industries, the quality-adjusted price stays constant after each succes-

sive innovation by the leader, but jumps down when an outsider innovates. This

implies that the leader alone bene�ts from technical progress, reaping higher and

14The total discounted cost is

co +
x`1gc`

x`1 + r
+

x`1x`2g
2c`�

x`1 + r
� �
x`2 + r

� + :::+ x`1:::x`i��1g
i��1c`�

x`1 + r
�
:::
�
x`i��1 + r

� :
Letting the x`i go to in�nity, the expression in the text follows.
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higher pro�ts, as long as it continues to innovate. But when it is replaced by

a new entrant, the cumulated bene�ts from all its past innovations eventually

accrue to consumers. With a continuum of industries, however, this e¤ect is

smoothed out in the aggregate, so consumption grows smoothly.15

The model endogenously generates �rms heterogeneity, as incumbents may

lead by di¤erent numbers of steps. More precisely, the modal lead size is 1, and

greater leads are less frequent:

Corollary 3. In the SMPE, �1 > �2 > ::: > �i� > 0 = �i�+1 = ::: = �m:

This follows immediately from (12) and Corollary 2. Measuring �rm size by its

market value, it appears that the �rm size distribution depends not only on the

distribution of i but also on the distribution of j, the number of innovations

achieved in sector ! by time t, since Vi(j; !; t) = Vigj(!;t). The variable j(!; t)

is distributed identically across sectors, with density

e�Xt(Xt)j

j!
;

which eventually decreases with j. Taken together, this observation and Corol-

lary 3 imply a skewed �rm size distribution, which again is consistent with

empirical evidence.16

15 It is now easy to see that the assumption of a linear utility function can be relaxed without
a¤ecting the main results. For example, with a concave instantaneous utility function like

u(c) =

Z 1

0

�
c(t)1�� � 1
1� �

�
e��tdt;

where � is the rate of time preference and 1=� is the intertemporal elasticity of substitution,
the Euler equation

 =
_c(t)

c(t)
=
r � �
�

provides an increasing relationship between the interest rate and the economy�s rate of growth
. Proposition 1 provides another, decreasing relationship �which can be obtained by plugging
(19) into (14). These two equations can then be simultaneously solved to determine the
equilibrium interest rate and growth rate.
16See, for instance, the classical work of Steindl (1965), or the more recent contribution

by Cabral and Mata (2003). One must caution, however, that in real world much of �rm
heterogeneity seems to be associated with di¤erences in productivity across �rms that are
active in the same industry, whereas in our model only incumbents are active.
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While other models can explain these �rst stylized facts, a speci�c prediction

of ours is the negative correlation between �rm size (or age) and growth. To

see how this emerges in our model, notice that both �rm size (measured again

by its value Vi) and �rm average time from birth (i.e., from its �rst innovation)

are positively correlated with i. The negative correlation with the growth rate

then follows by the next result:

Corollary 4. An incumbent �rm�s expected rate of growth decreases with the

size of its lead, i.

The proof is simple: the expected rate of growth of a �rm�s value is

x`ig
~Vi+1 � ~Vi
~Vi

:

This decreases with i because both
~Vi+1
~Vi

and x`i decrease with i. Corollary 4

means that Gibrat�s law does not hold in our model, and the pattern of deviation

seems consistent with empirical evidence: see for instance Hall (1987), Evans

(1987) and, more recently, Rossi-Hansberg and Wright (2005) and Clementi and

Hopenhayn (2006).

5 Innovation policy and growth

In this section we use the model to address several policy issues. We are espe-

cially interested in ascertaining whether policy should favour R&D investment

by leaders or by outsiders. Although we focus on R&D taxes and subsidies

and on certain speci�c patent policies, this question may have broader policy

implications (for example, in competition policy).

5.1 Backward patent protection

In the baseline model we have assumed that nobody can imitate an innovation

without infringing the patent that covers it (complete backward protection).
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In real life, backward protection is limited both in length and in breadth. To

avoid the technical di¢ culties of modeling a �nite patent life in continuous

time, we continue to assume that patent life is in�nite,17 focusing on patent

breadth. Following Gilbert and Shapiro (1990), we model patent breadth as a

cap on the price that the patent-holder is allowed to charge.18 This captures

the notion that when imitation is, to some extent, tolerated, the leader faces

stronger competitive pressure from outsiders.

The pro�t accruing to a leader `i that faces a price cap p̂i < min[�
i; 1� ] is

�̂i = (p̂i � 1)�
1

1�� p̂
� 1
1��

i :

One can then distinguish between two cases. Backward patent protection is

uniform when the ratio between the pro�t collected by the patent-holder, �̂i,

and the pro�t with complete protection, �i, is constant:

�̂i = ��i for all i with � 2 [0; 1]:

In this case, the policy-maker chooses �, and the p̂is then are uniquely deter-

mined. Backward protection is state-dependent when the policy-maker chooses

the prices p̂i independently of each other, so that the strength of protection can

depend on the size of the leader�s technological advantage, as in Acemoglu and

Akcigit (2008).

In both cases, the equilibrium is still given by Proposition 1 after replac-

ing the �is with the �̂is. It follows immediately that with uniform patents,

strengthening backward protection (i.e., increasing �) always increases X, and

hence the economy�s rate of growth.19 Since X increases faster than � while

17To circumvent these di¢ culties, one could model patent life as a constant probability that
the patent expires, as in Acemoglu and Akcigit (2008). However, this requires the additional
assumption that the patents covering all past innovations expire when the patent on the latest
innovation does.
18For a discussion of alternative interpretations of patent breadth see Denicolò (1996).
19However, strengthening backward patent protection clearly worsens static e¢ ciency. Here

we do not analyze the optimal resolution to the trade o¤ between static and dynamic e¢ ciency,
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the x`is are proportional to �, it follows also that strengthening backward pro-

tection decreases the share of R&D done by leaders. Thus, in this case the

growth-enhancing policy favours outsiders more than leaders.

The case of state-dependent patents is di¤erent. Since the equilibrium total

R&D e¤ort X depends only on �i� , only changes in p̂i� a¤ect the economy�s

rate of growth, and the qualitative e¤ect is the same as for uniform patents.

A decrease in any p̂i with i < i� now has no e¤ect on the rate of growth (as

long as i� does not change). However, such a decrease reduces �̂i and hence

increases x`i , as is clear from (20). This trickle-down e¤ect, which has been �rst

identi�ed by Acemoglu and Akcigit (2008), is due to Arrow�s replacement e¤ect:

all else equal, the lower is the leader�s current pro�t, the greater is its incentive

to innovate. Di¤erently from Acemoglu and Akcigit, however, in our model such

greater R&D investment by leader `i (when i < i�) is exactly o¤set by lower

R&D investment by outsiders. This crowding-out e¤ect, which operates on a

one-to-one basis, means that reducing patent protection granted to leaders that

lead by less than i� steps has no impact on growth.20

5.2 Forward protection

The baseline model assumes that no innovation infringes on previous patents,

so innovators need not obtain any licence from previous patent holders to prac-

tice their innovations (no forward patent protection). The patent literature has

highlighted the possibility that granting some forward protection may be de-

sirable when innovation is cumulative and intertemporal externalities arise (see

Scotchmer, 2004, for an excellent discussion). Thus, let us now assume that

as it inevitably requires an estimate of the elasticity of the supply of inventions, which is
notoriously di¢ cult and controversial. In our framework, the analysis is further complicated
by the model�s transitional dynamics.
20However, it can impact social welfare. More precisely, there are three e¤ects of lower

p̂i�s on welfare. First, lower prices directly improve static allocative e¢ ciency. However, by
increasing the share of R&D done by leaders, they increase the fraction of industries in which
the leader leads by more than i steps, which is bad for allocative e¢ ciency. Finally, the
increase in the share of R&D done by leaders improves aggregate R&D e¢ ciency.
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innovation j in industry ! infringes on the patent covering innovation j � 1 in

that industry (but, for simplicity, not on that covering innovation j � 2). This

implies that any successful outsider must pay a licensing fee to the previous

incumbent, whereas no payment is due if the leader innovates repeatedly.

We take the size of the licensing fee as our policy variable.21 More precisely,

we assume that the licensing fee to be paid by innovator j is �gj , where � is set

by policy (e.g., by the courts in case of patent infringement), whereas the term

gj guarantees that the fee is a constant share of the value of the innovation �a

necessary condition for the existence of a steady state.22

With forward patent protection, the Bellman equation for leader `i becomes

rVi = max
x`i

[�i �XiVi + �XOi
+ gx`iVi+1 � c`x`i ] ;

since the current leader obtains a payment of �gj when it is replaced. Likewise,

the free entry condition becomes

gV1 � �� co � 0;

since a successful outsider that obtains innovation j must pay the licensing fee

�gj . Lemma 3 continues to hold with co+ � replacing co, so condition (17) now

becomes
co + �

c`
<

g

g � 1 :

This places an upper bound on �: when � exceeds this threshold, outsiders do

not invest in R&D. Focusing on values of � that lie strictly below the threshold,

21 In a model of variable innovation size, O�Donoghue and Zweimuller (2004) posit that the
policymaker sets the size of the innovation beyond which there is no patent infringement.
Another di¤erence between their analysis and ours is that in case of infringement they allow
the successive patent holders to collude, whereas we assume that after paying the licensing
fee, the latest innovator continues to compete against the penultimate one.
22Like backward protection, forward patent protection could be state-dependent in our

model, in which case � would depend on i. However, this complicates the analysis considerably,
since the free-entry condition would now depend on i. Therefore, we leave this extension for
future work. See Acemoglu and Akcigit (2008) for an analysis of state-dependent forward
patent protection in a di¤erent framework.
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it follows as in Proposition 1 that in equilibrium outsiders must invest in R&D,

so the free entry condition must hold as an equality:

V1 =
co + �

g
(� V̂1):

Since conditions (8) do not change, we can again calculate the solution to (8)

recursively, obtaining now

V̂i = ~Vi +
�

gi
:

Finally, equations (10) now become

Vi =
�i + �XOi

r +XOi

:

From the above discussion it is clear that Proposition 1 continues to hold

with the following changes (the structure of the proof is identical to that of

Proposition 1 and thus the proof is omitted).

Proposition 2 For each 0 � � < g
g�1c` � co there is a unique Strong Markov

Perfect Equilibrium outcome. In equilibrium,

X =
�i� � rV̂i�
V̂i� � �

;

where now

i� = arg max
i=1;2;:::;m

"
�i � rV̂i
V̂i � �

#
:

Leader `i� does not invest, so no leader ever leads by more than i� steps. For

i � i� the leaders�R&D e¤orts are

x`i =
�i� � rV̂i�
V̂i� � �

� �i � rV̂i
V̂i � �

;

so that Vi = V̂i for i = 1; :::; i�.

Using Proposition 2, we can easily trace out the e¤ects of an increase in

forward patent protection �. It can be checked that increasing � increases the

29



length of leadership cycles i� and the share of R&D conducted by leaders. The

e¤ect on the growth rate, however, is ambiguous. To be precise, we have

Corollary 4. An increase in forward protection � increases the economy�s rate

of growth if and only if
X

X + r
>

1

gi�
; (21)

or, in terms of exogenous variables only, if and only if

�i�

~Vi�
>

r

1� g�i� :

When i� = 1, condition (21) can never be met. In other words, in the familiar

leapfrogging equilibrium granting forward patent protection is always bad for

innovation and growth.23 The economic intuition is simple: each innovator

obtains �g when it is replaced by the occurrence of the next innovation, but it

must pay the licensing fee � when it succeeds. The net e¤ect on the incentive

to innovate is unambiguously negative because the two payments are the same

in magnitude, except that the later term is higher because of growth of the

economy, but must be discounted. The transversality condition (15) implies that

discounting prevails over growth, so the e¤ect of granting forward protection is

negative.

When i� > 1, however, increasing � can be good for growth. The intuitive

reason is that in equilibrium the incentive to innovate is the same as if a new

leader reached the subsequent i� � 1 innovations instantaneously, as we have

seen above. When such leader is eventually replaced, it now obtains �gi
�
, but

this payo¤ is discounted only for one period (as the length of the other i� � 1

periods is arbitrarily small). This magni�es the positive e¤ect of � on growth,

23This result accords with O�Donoghue and Zweimuller (2004). They actually �nd that
forward protection can be good for growth if it facilitates collusion. Ruling out collusion,
however, the e¤ect is unambiguously negative in their model.
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without changing the negative e¤ect. As a result, the net e¤ect can now be

positive even if the transversality condition holds. The greater is the maximum

length of leadership cycles, the more likely the e¤ect of forward protection on

growth is positive.

5.3 R&D policy

Consider now R&D policy. We analyze a balanced-budget policy move: the

policymaker taxes R&D expenditures by the leaders at rate � and uses the

revenue to subsidize R&D expenditures by outsiders at rate �. When � and �

are negative, the leaders�R&D is subsidized, the outsiders�taxed.

The e¤ective unit R&D costs of leaders and outsiders then become c0` =

c`(1 + �) and c0o = co(1� �). The government budget constraint is

�c`

i�X
i=1

�ix`i = �co

 
X �

i�X
i=1

�ix`i

!
:

Notice that R&D taxes and subsidies a¤ect only the unit R&D costs. Hence,

replacing c` and co with c0` and c
0
o, respectively, all of our results hold verbatim.

Consider, then, the e¤ect of an increase in � on the economy�s rate of growth,

assuming that
co(1� �)
c`(1 + �)

<
g

g � 1
so that Proposition 1 applies. We have:

Proposition 3 Taxing R&D expenditure by leaders to subsidize R&D expendi-

ture by outsiders reduces the economy�s rate of growth.

Proposition 3 suggests that R&D policy should favour leaders, not out-

siders.24 This objective could be achieved also with other policy tools, such

as competition policy.

24While reducing � is good for growth, it is however bad for allocative e¢ ciency. The reason
is that decreasing � increases the x`i s, increasing the fraction of industries in which the leader
leads by more than one step, and hence prices are higher. However, the increase in the share
of R&D done by the leaders improves aggregate R&D e¢ ciency.
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6 Indeterminacy and equilibrium selection

So far we have focused on the unique SMPE, where the total R&D e¤ort Xi

is independent of the size of the incumbent�s lead i. Dropping condition (16),

however, other MPE may arise. In this section we demonstrate that there is a

continuum of MPE and discuss the source of this indeterminacy. We also argue

that all the MPE exhibit a pattern of leadership cycling, but the SMPE is the

most natural solution.

To illustrate the indeterminacy, let us focus on the case of �quasi-drastic�

innovations, where it takes a two-step lead to engage in monopoly pricing (that

is, m = 2). Then, one can easily see that there exists a continuum of MPE. In

all of these equilibria, we have x`2 = 0; XO1 =
g�1
co
� r � 0 and XO2 = X2 =

g2�M
co+gc`

� r � 0. However, x`1 can range from 0 to 1; and, correspondingly,

X = �1X1 + �2X2 can range from XO1
to 2XO2

. (The reason why X stays

�nite in the limit is that �1 tends to zero, and �1X1 tends to XO2).
25

A similar problem arises when m > 2, but now several variables (i.e., all the

x`i�s for i < m) can be indeterminate for certain parameter values. In all MPE,

however, the outsiders�aggregate R&D e¤ort is fully determined.26 Hence, the

indeterminacy arises only when, with constant returns to R&D, both leaders

and outsiders simultaneously invest in R&D.

Mathematically, the reason why multiple MPE equilibria exist is that for

each i < m the model has two unknowns, XOi and x`i , but while there is a

25To show that these are, indeed, MPE�s, it su¢ ces to set V1 =
co
g
and V2 =

co+gc`
g2

and

check that all the necessary and su¢ cient conditions in Lemma 1 hold. In particular, V1 =
co
g

implies that outsiders are indi¤erent between investing and not; V2 =
co+gc`
g2

then implies

that condition (8) holds as an equality for `1, so `1 too is indi¤erent between investing in R&D
or not. Thus, x`1 can take any non-negative value. For example, the familiar leapfrogging
solution where x`1 = 0 is an MPE. As x`1 increases, �2 increases and hence X = �1X1+�2X2
can change without impairing the equilibrium conditions. Thus, we have a continuum of MPE.
26That is, greater investment in R&D by leaders does not crowd out investment by outsiders.

This property depends on the assumption of linear utility: with a concave instantaneous utility
function there would be the indirect crowding out caused by the increase in the equilibrium
interest rate associated with the increase in X (a general equilibrium e¤ect).
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separate equilibrium condition for each leader `i, there is only one free-entry

condition for all outsiders, since the reward to a successful outsider is always

V1. This implies that there are not enough equilibrium conditions to pin down

a unique equilibrium.

From an economic point of view, the indeterminacy is due to the forward-

looking nature of the equilibrium. This creates the possibility of self-ful�lling

prophecies conditioned on extraneous variables, as discussed in subsection 3.2.

By focusing on MPE, we have ruled out the possibility that the equilibrium may

be conditioned on t, j or !. But in our framework i is a payo¤-relevant state

variable, so the MPE can depend on i.

However, we contend that there are good reasons to focus on the (unique)

SMPE, and that, at any rate, all the MPE exhibit a pattern of leadership cycling.

One reason why the SMPE is more likely to prevail is that the other MPE are

implicitly based on �over-pessimistic�or �over-optimistic�expectations. To see

why, consider for instance the leapfrogging solution where X1 = X = g�1
co
� r

and x`1 = 0. This is always a MPE. The intuitive reason is that if XO2 is

expected to be su¢ ciently large, V2 will be small enough that gV2 � V1 � c`

is negative. This makes it optimal for `1 not to invest in R&D and supports

the leapfrogging solution as a MPE. In a Strong MPE, however, XO2 cannot

be expected to be larger than X = g�1
co
� r,27 so the leapfrogging solution can

satisfy condition (16) only for a certain range of parameter values (to be precise,

when co
c`
< g�1

g�2��1 ). From this viewpoint, the role of condition (16) is to rule

out over-pessimistic (as well as over-optimistic) beliefs that are conditioned on

the payo¤ relevant variable i, and thus are not ruled out by Markov perfection,

but are economically arbitrary.

Another reason for focusing on SMPE is based on the idea that the equi-

27Notice that condition (16) requires not only that the aggregate R&D e¤ort Xi is inde-
pendent of i for values of i that are actually reached in equilibrium, but also for those values
of i that cannot ever be reached because x`s = 0 for some s < i.
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librium should be robust to the introduction of a small degree of decreasing

returns into the R&D technology at the industry level. To see why this robust-

ness criterion yields condition (16), assume that the instantaneous probability

of success by a generic �rm s is
xs
Xi
h(Xi), where h(:) is an increasing and con-

cave function that represents the aggregate probability of success. The case of

constant returns corresponds to h(Xi) = Xi. With this R&D technology, the

free-entry condition by outsiders requires that
xoi
Xi
h(Xi)V1(j)� cogj�1xoi

r + h(Xi)

is non-positive and is zero if outsiders invest in R&D. Thus, in a free entry

equilibrium the following condition must hold:

h(Xi)

Xi
=

co
gV1

:

Since the right-hand side of this equation is constant, Xi must be independent

of i. This property holds for any concave function h(Xi), and hence it must

hold also in the equilibrium that is the limit of the decreasing returns equilibria

as h(Xi)! Xi.

In any case, the next Proposition shows that in all MPE leaders necessarily

stop investing in R&D altogether after a �nite number of successive innovations

that cannot be greater than m, so all MPE exhibit a pattern of leadership

cycling:

Proposition 4 In any MPE, x`i = 0 for some i � m: Thus, no leader ever

leads by more than m steps.

7 Conclusion

We have analyzed a tractable quality-ladder model of endogenous growth where

the latest innovator is more e¢ cient than any outsider in conducting the re-

search for the next innovation. The model generates a rich set of predictions
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that can help reconcile theory and empirical evidence. It generates stochastic

leadership cycles where both the industry leader and outsiders simultaneously

invest in R&D in the same industry. Leaders can innovate several successive

times, but their share in the total R&D done decreases as the size of their

technological lead increases. This dynamics endogenously generates a skewed

�rms size distribution and implies a deviation from Gibrat�s law that is con-

�rmed by the empirical evidence. We have also used the model to analyze the

e¤ect of various patent and R&D policies on growth, showing that in some cases

the growth-enhancing policy must favour R&D investment by the leader, not

outsiders.

To isolate the source of these new predictions, we have retained the same

basic modelling structure as �rst-generation quality-ladder models, assuming

only that leaders have an R&D cost advantage over outsiders. But we believe

that leadership cycles can be reproduced in the many models that have extended

early Schumpeterian theories of endogenous growth in all sorts of ways. For

example, scale e¤ects can be eliminated as in Segerstrom (2007). By modeling

innovations of variable size, one could account for an additional important source

of �rms heterogeneity (Minniti et al., 2009). Assuming that competition is

less intense than Bertrand competition, one could produce equilibria in which

not only incumbents can innovate repeatedly, but they are also displaced only

gradually when they stop innovating, as in Denicolò and Zanchettin (2009).

It would also be interesting to complement our policy analysis by studying

the e¤ect of R&D and patent policy on social welfare, not only on growth. This

requires �nding the optimal resolution to the trade o¤ between static and dy-

namic e¢ ciency, which depends on the elasticity of the supply of inventions.

To address this issue, it is therefore essential to allow for decreasing returns to

R&D at the industry level, which however complicates the analysis. An addi-

tional complication is the model�s transitional dynamics. Although analytical
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results seem to be out of reach, it should be possible to calibrate the model and

solve for the optimal policy numerically. This analysis is left for future work.
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Appendix

Proof of Lemma 1. Su¢ ciency is obvious, so we focus on necessity. Notice

that for all i = 1; 2; :::;m � 1 the maximand in the Bellman equation can be

rewritten as

�i � (XOi + x`i)Vi + gx`iVi+1 � c`x`i ;

and hence is linear in x`i for any given XOi
. As a consequence, the following

inequality must hold

gVi+1 � Vi � c` � 0;

for otherwise Vi is unbounded, which cannot happen equilibrium. Moreover, x`i

can be positive only if condition gVi+1�Vi�c` � 0 holds as an equality, whence

the complementary slackness conditions

x`i (gVi+1 � Vi � c`) = 0

follow. This proves equation (8).

For i = m, the analogous condition is

(g � 1)Vm � c` � 0;

with the associated complementary slackness condition x`m [(g � 1)Vm � c`] =

0, whence (9) follows.

Finally, from the complementary slackness conditions it follows immediately

that the system of Bellman equations (6) reduces to

rV1 = �1 �XO1
V1

rV2 = �2 �XO2
V2

:::

rVm = �M �XOm
Vm:
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These equations then can be solved to get (10). �

Proof of Lemma 2. Neglecting the �rst dynamic equation, which is implied

by the others, the dynamical system becomes

_�2 = (1� �2 � �3 � :::� �m)x`1 � �2X2

_�3 = �2x`2 � �3X3

:::

_�m = �m�1x`m�1 � �mXm

where we have used the fact that x`m = 0 (see Proposition 1 below). The Lemma

could be proved by applying the Routh-Hurwitz conditions to the characteristic

equation of the associated autonomous system, but since this mechanical proof

is very tedious we provide a more intuitive proof. This starts from the obser-

vation that since _�i � 0 when �i = 0, none of the �is can become negative.

Moreover, since �2+ :::+�m = 1��1, all the �i are necessarily bounded, so the

characteristic equation cannot have roots with positive real parts. To complete

the proof, it then su¢ ces to show that there cannot be zero or imaginary roots.

To show this, notice that the characteristic polynomial Cm is recursively de�ned

as C2 = �+ (X2 + x`1) and

Ci+1(�) = (�+Xi+1)Ci(�) + x`ix`i�1 :::x`1 :

This implies that all the coe¢ cients of the characteristic polynomial are strictly

positive. As is well know, this su¢ ces to rule out zero or imaginary roots,

implying that all roots of the characteristic equation have negative real parts.

�

Proof of Lemma 3. Suppose to the contrary that outsiders invest in R&D.

By (8), this requires that

V1 =
co
g
:
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Clearly, in equilibrium we must have V2 � V1, since a �rm leading by two steps

can always mimic a �rm leading by one step only. This condition implies

gV2 � V1 � c` � (g � 1)V1 � c`

=
g � 1
g
co � c`:

It follows that co
c`
> g

g�1 implies that gV2 � V1 � c` > 0. But this violates (8).

This contradiction establishes that when co
c`
> g

g�1 there is no equilibrium in

which outsiders invest in R&D. �

Proof of Lemma 4. For simplicity we treat i as a continuous variable. Direct

calculation shows that the derivative of the ratio
�i
~Vi
with respect to i has the

same sign as

H = (1� �)
�
co
c`
(g � 1)� g

�
+ gi � �g i

� :

When i = 0, H reduces to (1��)
�
co
c`
� 1
�
(g� 1) and hence is positive. Thus,

the ratio �i
~Vi
initially increases with i. But

dH

di
=
�
gi � g i

�

�
log g < 0, implying

that �i~Vi is quasi-concave in i if i is treated as a continuous variable. The Lemma

then follows immediately. �

Proof of Proposition 1. To prove the proposition, we show that the list of

variables

X =
�i�

~Vi�
� r;

x`
i
=

�i�

~Vi�
� �i
~Vi
for i = 1; :::; i�

x`
i
= 0 for i = i�; :::;m

Vi = ~Vi for i = 1; :::; i�

Vi =
�i
�i�

~Vi� for i = i�; :::;m

satis�es the conditions stated in Lemma 1; condition (16) is obviously met.
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Notice �rst of all that since by de�nition of i� we have �i�
~Vi�
� ~�1

~V1
, it follows

X � ~�1
~V1
� r > 0

where the last inequality holds by condition (18). Next, it is clear that x`
i
� 0

for all i = 1; :::;m, again by de�nition of i�. Finally, notice that

XOi =
�i
~Vi
� r � ~�1

~V1
� r > 0 for i = 1; :::; i�;

by quasi-concavity of �i~Vi and (17), while obviouslyXOi = X > 0 for i = i�; :::;m.

Thus, all R&D investments are non negative.

By construction, at the candidate equilibrium the outsiders�zero-pro�t con-

dition (7) and condition (8) for i = 1; :::; i� � 1 hold as an equality. It is also

immediate to check that condition (10), which becomes

Vi =
�i

r + �i
~Vi
� r =

~Vi;

is met for i = 1; :::; i�. Thus, it remains to check conditions (8) for i = i�; :::;m�

1, condition (9), and condition (10) for i = i� + 1; :::;m.

Since XOi
= �i�

~Vi�
� r for i = i�; :::;m, condition (10) is immediate. Next, we

show that conditions (8) hold as strict inequalities. It su¢ ces to show that

gVi+1 � Vi < g ~Vi+1 � ~Vi = c`

when i = i�; :::;m� 1. At the candidate equilibrium, this inequality becomes

~Vi�

�
g
�i+1
�i�

� �i
�i�

�
< g ~Vi+1 � ~Vi;

which rewrites as

g

 
�i+1
�i�

�
~Vi+1
~Vi�

!
<
�i
�i�

�
~Vi
~Vi�
;

or

g�i+1

 
~Vi+1
�i+1

�
~Vi�

�i�

!
> �i

 
~Vi
�i
�
~Vi�

�i�

!
:
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This inequality always holds since g > 1, �i+1 > �i; and
~Vi+1
�i+1

>
~Vi
�i
by quasi-

concavity of �i~Vi (see the proof of Lemma 4) and the fact that i � i
�.

Finally, consider condition (9). We must show that

(g � 1)�m
�i�

~Vi� < c`:

Notice �rst of all that

(g � 1) ~Vm < c`;

since this inequality rewrites as

1�
�
g � (g � 1) co

c`

�
g�m < 1

which is obviously true when co
c`
< g

g�1 . Since

�m
�i�

~Vi� � ~Vm

by de�nition of i�, if it clear that condition (14) also holds as a strict inequality.

This completes the proof that the candidate equilibrium is, indeed, a Strong

MPE.

Now we turn to uniqueness. Proposition 4 below shows that in any MPE,

x`m = 0. Denote by �{ the smallest integer such that x`�{ = 0. Proposition 1

implies also that outsiders must do some research, so condition V1 = ~V1 =
co
g

must hold. One can then iteratively solve conditions (8), which must then hold

as equalities for i = 1; :::;�{� 1, obtaining

Vi = ~Vi for i = 1; :::;�{:

Since x`�{ = 0, equation (10) at i = �{ yields:

X�{ =
��{
~V�{
� r:

Then, in a SMPE we must have

Xi =
��{
~V�{
� r
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for all i = 1; :::;m. Now suppose that there is an equilibrium in which �{ 6= i�.

We show that this assumption leads to a contradiction.

We must distinguish between two cases. If �{ > i�, then Vi� = ~Vi� . Equation

(10) at i = i� gives

XOi� =
�i�

~Vi�
� r > Xi� ;

which is impossible as it would imply x`i� < 0. If �{ < i
�, since XO�{+1 � X�{+1 =

��{
~V�{
� r, from equation (10) we obtain the following inequality

V
�{+1

� ��{+1
��{

~V�{:

On the other hand by quasi-concavity of �i~Vi and �{ < i
� we get

��{
~V�{
<
��{+1
~V�{+1

:

Combining these two inequalities we �nally get

V
�{+1

> ~V�{+1;

violating condition (8) for i = �{.

This contradiction shows that �{ must be equal to i�, which implies that the

equilibrium is unique. �

Proof of Corollary 1. Again, we treat i as a continuous variable. The ratio

�i
~Vi
achieves its maximum at i� where

H = (1� �)
�
co
c`
(g � 1)� g

�
+ gi � �g i

� = 0:

Since dH
di =

�
gi � g i

�

�
log g < 0, by implicit di¤erentiation we have that @i�

@ coc`

has the same sign as @H
@ coc`

= (1��)(g�1) > 0. Next, notice that when co
c`
! g

g�1 ,

H ! gi � �g i
� , so equation H = 0 becomes

g
1��
� i� =

1

�
;

42



or

�i
�
=
1

�
;

which implies i� = m by the de�nition of m: �

Proof of Proposition 3. Suppose for the time being that a change in � does

not change i�. Since R&D policy does not a¤ect the �is, we have

sign
�
dX

d�

�
= sign

"
�d

~Vi�

d�

#
:

Now ~Vi� is given by

~Vi� =
co(1� �) + c`(1 + �)(g + g2 + :::+ gi

��1)

gi�
:

To proceed, we now show that in equilibriumPi�

i=1 �ix`i
X

= 1� �1;

i.e., the share of R&D conducted by leaders is equal to the share of industries

in which the leader leads by more than one step. To show this, notice that

x`i� = 0, so from (12) we getPi�

i=1 �ix`i
X

= �1
x`1
X
+ �2

x`2
X
+ :::+ �i��1

x`i��1
X

:

From (12) one gets also �i+1 =
x`i
X �i, so the above equation rewrites asPi�

i=1 �ix`i
X

= �2 + �3 + :::+ �i�

= 1� �1:

Using this result, the government�s budget constraint can be rewritten as

� =
c`
co

1� �1
�1

� :

Totally di¤erentiating ~Vi� with respect to � , taking into account that s is given

by the above expression, we get

d ~Vi�

d�
=
c`g

�i�

�1

�h
�1

�
1 + g + :::+ gi

��1
�
� 1
i
+
t

�1

d�1
d�

�
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The term inside square brackets is positive since

�1 =
1

1 +
x`1
X
+
x`1x`2
X2

+ :::+
x`1:::x`i��1
Xi��1

� 1

i�

and
�
1 + g + :::+ gi

��1� � i�, whence it is clear that
�1

�
1 + g + :::+ gi

��1
�
� 1;

with a strict inequality if i� � 2. The second term inside curly brackets is also

obviously positive, since an increase in � with a corresponding increase in �

raises the leaders�R&D cost and reduces the outsiders�, and this must increase

the share of R&D done by outsiders. Thus, the direct e¤ect of an increase in �

on the rate of growth, holding i� constant, is negative.

To complete the proof, notice that X depends on � also through i�, as i�

jumps down at certain critical points where

�i�

~Vi�
=
�i��1
~Vi��1

as � increases. Thus, X is di¤erentiable with respect to � only piecewise. But X

is continuous in � at those critical points. As a result, if the partial derivative of

~Vi� with respect to � holding i� constant is positive, as it indeed is, the aggregate

hazard rate is necessarily monotonically decreasing in � . �

Proof of Proposition 4. We �rst show that in equilibrium outsiders invest in

R&D. Assume to the contrary that they do not. Then, from (10) we get

V1 =
�1
r
:

Given inequality (18), this implies

V1 >
co
g
;

which however violates the free entry condition (7). This contradiction proves

the claim. Next we show that there is no equilibrium in which outsiders and
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all leaders `i with i = 1; :::;m simultaneously invest in R&D. (This generalizes

a result originally obtained by Segerstrom and Zolnierek (1999), who showed

that when m = 1 there is no equilibrium in which the leader and outsiders

simultaneously invest in R&D.) To show this, notice that x`m > 0 implies

Vm = c`
g�1 by condition (9). Similarly, under the assumption that x`i > 0

for all i = 1; 2; :::m � 1 one can solve the complementary slackness conditions

in (8) recursively, obtaining V1 = V2 = ::: = Vm = c`
g�1 . On the other hand, if

outsiders�s R&D investment is positive, one must have V1 = co
g : But equations

V1 =
c`
g�1 and V1 =

co
g cannot simultaneously hold if

co
c`
< g

g�1 : Since outsiders

invest in R&D, there is at least an i such that x`i = 0, whence the result

immediately follows. �
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