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Abstract

Sonny Martin. Development and Validation of a Civil Aircraft Engine
Simulation Model for Advanced Controller Design.
This thesis is concerned with the results of a joint academic and industrial study on the
development of a detailed nonlinear dynamic model of a turbofan jet engine to be used
for research into advanced control strategies for civil turbofan aircraft engines.
The model is representative of a dual shaft engine with variable bleed, variable sta-
tor vanes, turbine cooling, heat transfer, and a duct and exhaust nozzle. A switched,
gain-scheduled, feedback control system incorporating bumpless transfer and antiwindup
functionality has been designed and implemented according to current industrial prac-
tice. This baseline implementation permits realistic transient operation of the simulation
and may act as a reference design for further control work.
The simulation computes a non-iterative solution, by progressing calculations in the
direction of the gas stream flow. Where possible the underlying physics are used and
empirical approximations are avoided so that the model requires minimum data. This
approach also makes a future inclusion of component failure easier to implement.
The simulation is modular in nature so that engine or control modules can be easily
replaced or modified if an improved design becomes available. The Simulink implemen-
tation of the control architecture has been redesigned to permit the addition or removal
of control loops, also during the simulation’s operation, to allow testing of advanced
control strategies. The entire controller can also be easily replaced.
A detailed description of the modeling process, the various simulation issues that arise
with a model of this complexity, and the results of the overall aero-engine system are
presented. The design of the switched, gain-scheduled aero-engine controller with bump-
less transfer and antiwindup which achieves dynamic performance that closely matches
that of a real aero-engine is also discussed.
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1. Introduction

This chapter contains a review of previous work on aero-engine modelling, and a sum-

mary of the novel contributions of this research.

1.1. Overview

Computer simulation is a powerful tool for the mechanical and control system design of

gas turbines. A high fidelity computer simulation can be used as a substitute for a real

engine in many applications. For example, it is possible to simulate critical transients

that must be avoided on the actual plant due to the risk of damage. Turbine engines can

be modelled at various levels of detail, from full 3-D descriptions of the gas path (e.g.

NASA’s NPSS simulation [23]) that can require distributed computers or supercomput-

ers, to simplified algebraic equations [4] and even simple overall transfer functions. It is

generally accepted that a 1-D simulation is sufficient for accurate dynamic performance

modeling and therefore controller design.

This thesis presents a full aero-thermodynamic model of a 2-spool, high-bypass turbofan

engine with an unmixed exhaust together with a switched, gain-scheduled aero-engine

controller with bumpless transfer and anti-windup. The engine simulation in conjunc-

tion with this controller achieves dynamic performance representative of that of a real

aero-engine. Model implementation is in the Matlab-SimulinkR© environment.

The simulation method used in this study is known as an aerothermal transient perfor-

1



1. Introduction

mance model [42]. This method avoids iterative calculations by arranging the component

equations to follow the direction of the gas path and introducing storage volumes be-

tween components to account for the unsteady balance of mass at compressor discharge,

combustion chamber and between the turbines [8]. Relative to an iterative model there

is some loss of accuracy, but this is negligible for the purpose of engine control system

development, particularly if a small time step is used, and is offset by a superior execu-

tion time. If a constant time-step is chosen for numerical integration, then this method

can provide a model with a predictable run-time. If the simulation is designed to run

in realtime then it can also be used with real hardware, although clearly the computer

program outputs have to be generated at least as fast as the predicted physical phenom-

ena for the model to run side-by-side with an engine [17].

Features of the model developed in this study are its modularity, ease of implementation

and adherence to underlying physics. Empirical approximations have been avoided wher-

ever possible with the aim of improving the model’s flexibility and providing physical

justification for the approximations used (as opposed to empirical approximations whose

boundary of validity is often unknown). Most of the model’s implementation details are

provided by initialisation scripts, and therefore tuning the model is a simple matter of

changing script details without the need to extensively modify Simulink modules, i.e.

most variables are dynamically initialised from the Matlab workspace. For example,

the gain schedule is provided by variables in the workspace and the parameters used

for scaling the performance maps of the turbomachinery components (this is performed

online while the simulation runs) are also provided by external scripts. The model is also

compatible with the Real-Time-Workshop, a toolbox available in the Matlab-Simulink

environment that is able to automatically generate a source code in C language from

the Simulink scheme.

The purpose of the model is the development of advanced control strategies, therefore a

2



1. Introduction

baseline controller that closely mirrors industrial practice has been designed to validate

the closed-loop performance properties of the model. The controller has itself a mod-

ular approach, allowing easy extension of the number of parameters regulated by the

controller. The model is provided with a “dashboard” that permits inspection during

the simulation’s progress of significant parameters such as massflow, temperature and

pressure at each engine station.

Full flight-envelope validation of both the model and controller has been performed with

the assistance of Alstom Aerospace, with the exception of engine start-up as this is not

within the scope of the model.

1.2. Background

There are relatively few papers in the literature that deal specifically with civil aircraft

engines [4]. Several papers provide an architecture for simulating gas turbines [1, 5–

8, 16, 34, 40], but most are appropriate only to industrial turbines and few provide

details of implementations suitable for civil aircraft aero-engines [4].

There are also relatively few papers that discuss in detail the architecture and design

of industrially applicable control schemes for civil aircraft engines. Several papers dis-

cussing advanced control of military aircraft engines may be found in the literature

because these engines have more controller inputs and thus require multivariable con-

trollers; some examples are: [11, 22, 30, 35, 44]. A high-level general introduction to

aircraft engine feedback control is contained in [38]. Another useful resource is [34]. The

latter has many useful details regarding engine and actuator dynamics, and provides

detailed performance figures that are backed up directly by industry, but like [38] this

reference also falls short of providing a comprehensive overview of the controller archi-

tecture and practical methods of implementation such as would allow replication of the

design.

3



1. Introduction

The current model has therefore reimplemented from scratch a cascade-type architecture.

The Simulink implementation of this has been completely redesigned into a modular ar-

chitecture that permits to easily add further cascade branches or additional controls to

each branch.

1.3. Contributions of this research

The key contributions are as follows:

• The engine’s fan is modelled as two separate sections (a core section and a duct

section) with different pressure ratios and efficiencies (see figure 1.1). This permits

fan power consumption to be calculated on the basis of pressure ratio rather than

as a simple percentage of total power consumption. Fan power consumption as

a percentage of total varies with altitude and Mach Number and has a signifi-

cant transient effect (see figure 6.22). This detail would be absent with a simpler

representation. The fan absorbs a significant proportion of the power output by

the engine, therefore an accurate model is highly desirable, and keeps the model

consistent with the design objective of remaining true to core physics.

• A nozzle module suitable for an aerothermal model (i.e. that does not require itera-

tive procedures) and a model of the duct (as a nozzle) has also been developed - the

latter is an inherent requirement to accurately calculate fan power consumption.

The conventional approach is to model the nozzle and duct based on empirical

compressible flow charts (Q-curves) and efficiency factors, if at all: in some cases

the turbine exhausts directly to atmospheric pressure [2], neglecting to take into

account the increased pressure at turbine discharge due to nozzle friction.

A duct nozzle is a necessary requirement if fan power consumption is to be cal-

culated as a function of pressure ratio and not simply as a percentage of power

4



1. Introduction

Figure 1.1.: Twin shaft turbofan simulation components.

output. The nozzle module is based on first-principles modelling of flow through

a convergent nozzle.

• Cooling flow is directed from the high pressure compressor into the high pressure

turbine. An accurate representation of this element is important since the total

percentage of engine inlet mass extracted before the combustor may be up to

25% for a high technology aero or industrial engine [36, 42], and cooling flow will

represent a significant proportion of this (see figure 6.20). Cooling is often modelled

simply as a percentage of the engine’s massflow, however the current simulation

uses a relation that, although partly empirical (the calculation of high speed fluid

dynamics is too big an undertaking for the current simulation), is also based on

radius of the cooling air extraction vent and the ratio of the air source pressure (the

high pressure compressor) to that of the sink (the high pressure turbine) [8, 27] -

5



1. Introduction

and thus has a foundation in physics. This expression allows the model to perform

well under a range of conditions, even in the relative absence of data: it is sufficient

to provide one reasonable cooling flow data point; the formula can then be used

to determine the cooling flow of the engine’s entire operational envelope.

• The traditional scaling formulae for characteristic maps have been reformulated:

because the simulation’s validation requires matching the performance of a target

engine, an alternative formulation can better suit our needs, i.e. matching a map

position to target pressure, temperature and massflow conditions. The advantage

of this scheme is that in these alternative expressions, the map positions and target

values are used directly, making it easy and intuitive to tailor the map scaling to

a target engine. Furthermore, this new expression is suitable for scaling data at

both component inlet and outlet by simply reversing the map and target operating

points (further details are in Chapter 5, Section 5.5).

• A feature of the simulation is the transfer of heat between the gas stream and

the engine components. This is taken into consideration by providing heat storage

modules for each major component. Heat soak has a significant effect upon the

dynamics of the engine, particularly at high altitude where the massflow through

the engine is greatly reduced (see Chapter 3, Section 3.4.2).

• Industry can benefit from this engine model in several ways: the simulation can

be used to implement failure scenarios and because of its modular design based

on scripts and the avoidance of empirical approximations, the model can be easily

adapted to match the performance of specific engines and used as a validation tool.

Indeed, Alstom aerospace has used the model during the course of the past year

to evaluate and refine condition monitoring algorithms. The model was used to

generate many steady state running points at varying thrust settings, altitudes and

6



1. Introduction

mach numbers. This data was used to train a novel detection tool and then inject

various off-normal operating conditions to evaluate the detection algorithms.

A further use, suitable for both industry and academia, is to use the model to

assess and prototype novel control schemes: i.e. as a test bed for control design.

• This model is, to the best of the author’s knowledge, one of the most fully featured

non-proprietary aero-engine models implemented in the Matlab/Simulink environ-

ment. This is a familiar platform for control engineers and the graphical nature

of Simulink makes it easy to tap into the engine’s data streams, without requiring

an understanding of the overall simulation. The modular nature of the simulation

enables modules to be easily removed and replaced should more accurate designs

become available, and the modules themselves can be reused for alternative engine

configurations. Scripts enable the model to start at several operating points, and

run configurable test profiles. The simulations can be paused, saved and resumed

at any time.

• A significant issue during the development of the model was the initialisation of

the simulink elements that have a prior state, e.g. all integrators and single time-

step delays. The model states are saved in the order that they are required by

the simulation, however should the simulation change and elements be added or

removed, this order may no longer be valid because Simulink frequently rearranges

the order of the states when the simulation is recompiled. This requires a manual

rearrangement of intialisation values - which is a matter of some consequence

for a development process that can required hundreds of changes and many tests.

Therefore a new initialisation script was implemented to keep track of model states

via their block address - in this way the states are no longer linked to an order kept

internally by the Simulink compiler but are conveniently linked to the appropriate

block via an address.

7
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• Another useful addition to the simulation is a dashboard (figure 1.2) that allows the

user to view key engine and controller parameters while the simulation is running

and adjust them directly from the dashboard. A submodule of the dashboard

allows the user to adjust the characteristic map scaling parameters in realtime and

view the coordinates of a component’s operating point on both the original and

scaled turbomachinery map. By default map scaling adjustments are reset upon

the next simulation run, but can be retained if required.

Figure 1.2.: Top level of the simulation’s dashboard.
The modules in red allow the user to view and modify key engine and
controller parameters while the simulation is running.

• A switched, gain-scheduled aero-engine controller with bumpless transfer and anti-

windup has been implemented. While the architecture is an industry standard, its

implementation in Simulink has been completely redesigned so that it is now easy

to add additional control loops and organize a hierarchy of controls. This baseline

implementation permits realistic transient operation of the simulation and may act

as a reference design for further control work. This architecture is analyzed and

plots of its performance and tracking are shown.

Tests and key plots of the model’s steady state and dynamic performance were
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1. Introduction

reviewed and approved by industrial control engineers at Alstom Aerospace over

the course of the project, and published in the leading journal of the field: the

ASME Journal of Engineering for Gas Turbines and Power [25]. The overall con-

trol system architecture and results were presented at the 2008 American Control

Conference [24].

In summary, the contents of the thesis will describe the development of a flexi-

ble, feature-rich, fully dynamic model of a relatively generic civil aero engine. The

model is particularly suitable for control system design as it enables proper solu-

tion of the nonlinear differential equations which describe the engine behaviour,

allowing transient behaviour to be simulated accurately. In other available mod-

els, dynamic simulation appears to be approximate in nature (i.e. comprising a

number of steady state “snapshots” rather than true dynamic behaviour) or else

is difficult to enable. In the proposed model, dynamic behaviour is fully catered

for, which thus provides the control system designer accurate and important in-

formation about the closed-loop system’s transient response.

1.4. Structure of the thesis

This dissertation consists of 7 chapters. The contents of each chapter are outlined

below.

1.4.1. Chapter 2: Civil aircraft gas turbines

In this chapter, the basic aero-thermodynamic principles of gas turbines in general,

and of civil aircraft aero-engines in particular, are introduced. This includes the

key phenomenae of surge, surge line displacement and environment effects. Engine
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1. Introduction

performance requirements are also introduced.

1.4.2. Chapter 3: Modular construction of the mathematical

model

Here the architecture of a gas turbine is analyzed in greater detail, presenting the

key equations that can be used to model each component, showing how they can

be put together, and describing the principles of the simulation architecture. The

target aero-engine, a high-bypass separated flow turbofan as used on high subsonic

commercial aircraft, is also discussed.

1.4.3. Chapter 4: Controller specifications, architecture and

design

This chapter describes the design and implementation of the control system for

the gas turbine engine model. The engine controller serves the dual purpose of

assisting with simulating engine transients and also as a benchmark for future

controls development. The architecture is a switched, gain-scheduled, feedback

control system incorporating bumpless transfer and anti-windup functionality.

1.4.4. Chapter 5: Model implementation and simulation

Issues related to the practical implementation of the simulation itself require some

explanation. Here we discuss some of the most important practical aspects of

translating the theory into a simulation architecture, starting with a brief discus-

sion of the simulation environment and simulation initialisation before proceeding

10



1. Introduction

to one of the more elaborate simulation modules: the real-time scaling and imple-

mentation of the turbomachinery characteristic maps.

1.4.5. Chapter 6: Full envelope closed loop model validation

This chapter presents the performance results of some key dynamic and steady-

state tests that validate both the engine performance and that of the controller.

These tests and key plots were reviewed and approved by industrial control engi-

neers at Alstom Aerospace over the course of the project.

1.4.6. Chapter 7: Conclusions

In conclusion, a summary of the main results presented in the dissertation and an

outline of future directions for research in the area of aero-engine simulation, with

particular reference to areas relevant to the discipline of control engineering.

1.5. Summary

This chapter provided an overview of the model’s key features and contributions.

The simulation proceeds by progressing the solution along the direction of the gas

stream. The calculated outputs of each component are used as the input variables

of the component downstream. A key advantage of this method is that the model

has a predictable runtime if a constant time-step of integration is used.

The model is a dual shaft turbofan with a dual section fan, inlet recovery, HPT

cooling, heatsoak, and a core and duct nozle. The implementation is modular and

the implementation of key functionality is via scripts, permitting the model to be

rapidly adapted to new designs.
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2. Civil aircraft gas turbines

In this chapter the basic aero-thermodynamic principles of gas turbines in general

and in particular that of civil aircraft aero-engines are introduced. This includes

the key phenomenae of surge, surge line displacement and environment effects.

Engine performance requirements are also introduced.

2.1. Introduction

Almost all of today’s jet airliners, for reasons of both fuel economy and reduced

noise, are powered by high-bypass turbofans. The engine model developed in this

study has general characteristics and is non-proprietary, however a suitable ref-

erence is the high-bypass CFM 56-5B(3) engine, the most powerful engine in the

CFM 56-5B family. The CFM56-5B is capable of providing up to 32000 lbs of

thrust and is the engine of choice for the A320 family, having been selected to

power nearly 60 percent of the A318/A319/A320/A321 aircraft ordered. Specif-

ically, the CFM 56-5B(3) powers the A321 which has 185 seats and a range of

5,600 Km - a popular medium range aircraft. The A320 family is a leader in the

single-aisle jetliner marketplace and the model is therefore representative of one

the most common type of jet engines flying today.

The engine model discussed in this dissertation used as an initial template a
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2. Civil aircraft gas turbines

Matlab-Simulink model provided by Alstom Aerospace - although very little of

this model now remains, namely the fuel flame temperature lookup table! The

Alstom model simulated the Alstom GTX100 gas turbine, a single shaft turbine

used for power generation. The current model, having undergone a comprehensive

overhaul, is representative of a 2-shaft, high-bypass turbofan engine with an un-

mixed exhaust. It is able to reproduce the characteristic behaviour of a modern

turbofan engine, to include transients, heatsoak, and altitude and frontal velocity

effects. Gas dynamic effects are neglected since their time constants are very fast

(in the range of kHz). Reverse thrust (used on landing) is not included in the

model and neither is start-up. Currently the model is set to initialise at a steady

state point (there is a choice of several).

The major engine components included in the model (see figure 2.4 and 2.3) are:

inlet duct, fan (modelled as separate duct and core sections), bypass duct, booster

(low pressure compressor), inter-compressor bleeds, high pressure compressor with

variable stator vanes and cooling bleeds, service bleed valve(s), fuel metering valve

and fuel manifold, combustion chamber, high pressure turbine with cooling, low

pressure turbine (without cooling), discharge nozzle.

The engine sensors included in the model are: ambient temperature, inlet temper-

ature, N1 (LP shaft speed), N2 (HP shaft speed), EGT (exit gas temperature),

P0 (fan inlet pressure), P20 (booster discharge pressure), P30 (HPC discharge

pressure), P50 (HPT discharge pressure), FF (mass flow), variable stator vanes

position sensor, variable bleed valve position, fuel metering valve position, power

lever angle.

The model’s control loops are: max N1, max N2, min N1, min N2, N1 acceleration

(to monitor for engine stall and surge), N2 acceleration, N1 deceleration, N2 decel-
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2. Civil aircraft gas turbines

eration, max EGT1, min HPC pressure ratio, min fuel flow, min idle, ground idle,

approach idle. The control loops are controlled variables only and are fed back

from the engine to the control system (often not directly but as derived parameters,

e.g. shaft acceleration is derived from shaft speed). These controlled variables in

all cases can be considered as scheduled limits. The single control variable is fuel,

which alone regulates the entire engine - with the exception of the bleed and vari-

able stator vanes, which are open loop scheduled solely to avoid, by design, engine

surge conditions. Each control loop consists of a PI controller that ensures the

engine does not exceed an operating limit (e.g. maximum HP shaft acceleration),

under a range of environmental conditions and upon the pilot’s throttle request for

engine acceleration or deceleration. A diagram of the current model’s closed-loop

control system is provided in Fig. 2.1.

1EGT is an indirect measure of HPT inlet temperature, since this is difficult to measure in the harsh
conditions present at the combustor exit. The model however is able to use this value directly.
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2. Civil aircraft gas turbines

Figure 2.1.: Diagram of the current model’s closed-loop system.
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2. Civil aircraft gas turbines

2.2. Gas turbines - an overview

What follows refers specifically to civil aircraft turbine engines, in particular a

dual-shaft turbofan engine. While much of what is discussed is relevant to single-

shaft engines, this should not be assumed unless it is explicitly stated.

The majority of a turbofan’s thrust is provided by a large ducted fan, usually

placed at the engine’s inlet as shown in figures 2.2, 2.3 and 2.4. A turbofan is the

preferred turbine configuration on most civilian jets due to the fact that it is more

efficient to move a large mass of air slowly than a small mass of air more rapidly [3].

This also significantly reduces the noise produced by the engine. Furthermore, the

diameter of a ducted fan is approximately 70% of that of an unshrouded propeller

of equal static thrust [3]. The air stream at the inlet to the engine is “smoothed

out” by the design of the engine inlet duct in such a manner that the velocity of

the air through the fan blades is not greatly affected by the speed of the aircraft.

Air that passes through the fan is split into two streams: flow to the engine inner

section (known as the core) and bypass air. Primary flow is air that passes through

the central part of the engine for combustion, (i.e. into the “core”); secondary flow

is air that is discharged via an annular discharge duct that surrounds the engine

core. The ratio of secondary airflow to primary airflow is known as the bypass

ratio. Mixing characteristics of the secondary flow with the exhaust gases of the

engine depend on the type and length of the duct used and the mixing process

is often assisted to reduce noise - mixing of the hot and cold gas streams is the

greatest source of noise at cruise conditions. Gas stream mixing and engine noise

control is not relevant for our purposes and is therefore not implemented in the

engine model.

Immediately following the fan is the engine’s compressor. The compressor is

made up of stages and each stage consists of rotating vanes, and stationary stators.
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2. Civil aircraft gas turbines

Figure 2.2.: Twin shaft turbofan [36].

As air is drawn deeper through the compressor, its heat and pressure increases.

While the duct section of the engine provides the majority of the engine’s thrust,

it is in the core section that the process of compression, combustion and expansion

occurs. These three processes do not occur in a single component as they do in

a reciprocating engine’s piston chamber, but are instead split amongst the com-

pressor, combustor and turbine respectively. These are shown in diagrams 2.3 and

2.4. Work is provided by the expansion of gas through the turbine - but for this to

occur, a pressure ratio is required, and this is the task of the compressor. The role

of the combustor is to add energy to the gas stream by raising the temperature

prior to expansion, this is achieved via combustion of fuel in the compressed air.

Expansion of the hot working fluid then provides a greater power output from the

turbine and this can be used to both turn the compressor and do additional work
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2. Civil aircraft gas turbines

Figure 2.3.: Twin shaft turbofan schematic.

Figure 2.4.: Twin shaft turbofan simulation components.
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2. Civil aircraft gas turbines

such as rotating the engine’s fan and propelling air out through the bypass duct

to provide thrust. Note that the air passed through the core section adds to the

thrust provided by the fan.

The maximum fuel/air ratio that may be used is limited by the maximum temper-

ature that can be tolerated by the turbine blades. This depends upon thermally

activated creep (elongation) of the highly stressed turbine blades. These are there-

fore usually cooled to permit an increased operating temperature. The cooling air

is extracted from the compressor.

As shown in figure 2.3 each major engine section (the core and duct section) has an

exhaust nozzle. The hot gases leaving the engine exhaust to atmospheric pressure

via a nozzle, with the objective being to produce a high velocity jet (thrust is mass

multiplied by velocity). In most cases, the nozzle is convergent and of fixed flow

area, as is the case for the present model. Variable area nozzles are typically found

on military turbojets. The encasement that follows the duct section of the fan is

also modelled as a nozzle, this is to provide a means of calculating a pressure ratio

over the fan duct section (see also Section 3.4.3).

As can be seen in figures 2.4 and 2.3 the engine’s core section is split into a low

pressure (LP) and high pressure (HP) region. This is because it is very diffi-

cult to achieve a high pressure ratio over the compressor without splitting it into

stages (this is explained further in the following sections after introducing the phe-

nomenum of surge, which is a prerequisite for a more complete discussion). For

now it may suffice to say that the compression of air is divided between two major

compressor components: a low pressure compressor (LPC) and a high pressure

compressor (HPC). The two are on separate shafts but are linked aerodynami-

cally. The low pressure compressor is powered by the low pressure turbine (LPT)

and the two are linked by the low pressure shaft. The high pressure compressor
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is powered by the high pressure turbine (HPT) and the two are similarly linked

via the high pressure shaft. These two shafts are concentric, with the low pressure

shaft rotating inside the hollow high pressure shaft.

Figure 2.3 has an extra element between each turbomachinery component: a

“plenum”, also known as a “storage volume”. This module (discussed further

in Section 3.4.1) is placed between the turbomachinery elements and is a volume

where the mass balance of air flowing in and out is used to calculate the pressure

at that location in the engine.

The two elements “LP spool dynamics” and “HP spool dynamics” are used to cal-

culate the engine’s acceleration or deceleration. Once the engine’s net torque has

been obtained, the angular acceleration of the compressor rotor can be calculated;

it may then be assumed that this will be constant for a small time interval and a

resulting change in speed can be found. This simple process (of Euler integration)

can then be repeated many times to provide a transient running line starting from

some convenient equilibrium running point.

The variable bleed valve (VBV) placed between the compressors and the variable

stator vanes (VSVs) on the high pressure compressor (HPC) are both used to

maintain the engine’s operating point away from regions where a dangerous phe-

nomenum called surge may occur. This is an instantaneous reversal of the flow

of the gas stream that can greatly damage the engine. However before the VBV

and VSV elements can be discussed further it is necessary to discuss surge in more

detail. This will also serve to clarify the reason for a multi-stage compressor and

why the engine is divided into a low pressure and a high pressure region.
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2.2.1. Compressor surge, choking and characteristic maps

Turbine inlet temperature has been previously mentioned as a limiting factor for a

turbine engine. Surge is the other factor that most limits an engine’s performance.

Surge is a complex aerodynamic phenomenon - far too complex to be simulated

in this model (it would require a full 3-D finite-element simulation of the engine

and its core components), so what has to be done is to provide some means of

establishing a condition of surge, although surge itself is not explicitly simulated.

The task is to then ensure that the engine model does not approach operating con-

ditions where surge occurs. Therefore surge is a forbidden region of the engine’s

operating regime and, as previously mentioned, the dedicated function of certain

engine elements, e.g. variable bleed valves (VBVs) and compressor variable stator

vanes (VSVs) is to keep the engine operating point away from surge. This is par-

ticularly an issue during engine transients (sudden deviations from steady state

operation), such as rapid accelerations or decelerations.

Surge and compressor maps are intimately linked and a discussion of surge will

serve to introduce the principles required to understand compressor maps. Each

compressor’s operating characteristics can be represented by a “compressor map”.

This element will be discussed further in a few paragraphs (and in detail in section

3.4.3) but for now suffice it to mention that surge can be avoided by plotting a

“surge line” on the compressor map as a means of establishing a forbidden oper-

ating region.

Surging is associated with a sudden drop in delivery pressure, and with violent

aerodynamic pulsation which is transmitted throughout the entire engine. First

consider figure 2.5: this is a plot of mass flow versus pressure ratio for a compressor

rotating at constant speed and is called a “compressor characteristic curve”. To

explain this figure, imagine that a valve, placed in the delivery line of a compressor
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Figure 2.5.: Compressor characteristic curve [36].

running at constant speed is slowly opened. What is plotted above is the variation

of the pressure ratio across the fan with mass flow.

When the valve is shut and the mass flow is zero the pressure ratio will have some

value A, corresponding to the centrifugal pressure head produced by the action of

the impeller on the air trapped between the vanes. As the valve is opened and

flow commences, the diffuser begins to contribute its quota of pressure rise and

the pressure ratio increases. At some point B, where the efficiency approaches its

maximum value, the pressure ratio will reach a maximum, and any further increase

in mass flow will result in a fall of pressure ratio. For mass flows that greatly ex-

ceed the design mass flow, the air angles will be widely different from the vane

angles, breakaway of the air will occur, and efficiency will fall off rapidly. In this

hypothetical case the pressure ratio drops to unity at C, when the valve is fully

opened and all the power is absorbed in overcoming internal frictional resistance.

At some point B where the fan efficiency approaches its maximum value, the pres-

sure ratio will also reach a maximum, and any further increase in mass flow will

result in a fall of pressure ratio.
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The above plot could in theory be obtained for a fan considered in isolation - with

the exception of, in direction of increasing mass flow, points after E. However in

practice, and particularly in the case of multiple rows of compressors, most of the

curve between A and B will not be feasible due to surging. Suppose that the

compressor is operating at some point D on the part of the characteristic hav-

ing positive slope, then a decrease in mass flow will be accompanied by a fall in

delivery pressure. If the pressure of the air downstream of the compressor does

not fall quickly enough, the air will tend to reverse its direction and flow back in

the direction of the resulting pressure gradient, which causes the pressure ratio to

rapidly drop. This reversed airflow means that the pressure downstream of the

compressor will fall until the compressor is able to recover ordinary operation and

correct mass flow direction will resume - until the cycle of events reoccurs and

the airflow is again reversed. This succession of events repeats itself at a high

frequency. Surging may not occur immediately upon movement of the operating

point to the left of B in Fig. 2.5, because the pressure downstream of the com-

pressor may be made to fall at a greater rate than the delivery pressure. Sooner

or later, as the mass flow is reduced, the reverse will apply and the conditions are

inherently unstable between A and B. However as long as the operating point is

on the part of the characteristic map having a negative slope, decrease of mass

flow is accompanied by a rise in delivery pressure and stable operation is assured.

In a gas turbine, the actual point at which surging occurs depends upon the mass

flow through the components downstream of the compressor (the combustor and

turbines) and the way in which this mass flow varies during transients over the

range of operating conditions.

Returning now to consider the hypothetical constant speed curve ABC in Fig. 2.5,

there is an additional limitation to the operating range, this time between B and C.
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As the mass flow increases and the pressure decreases, the density is reduced and

the radial component of velocity must increase [10]. At constant rotational speed

this must mean an increase in resultant velocity and hence in angle of incidence at

the diffuser vane leading edge. Sooner or later, at some point E say, the position

is reached where no further increase in mass flow can be obtained and choking is

said to have occurred. This point represents the maximum delivery obtainable at

the particular rotational speed for which the curve is drawn. Other curves may be

obtained for different speeds, so that the actual variation of pressure ratio over the

complete range of mass flow and rotational speed will be shown by curves such as

those in Fig. 2.5. The left-hand extremities of the constant speed curves may be

joined up to form what is known as the surge line, while the right-hand extremities

represent the points where choking occurs.

The performance of a compressor may be specified by curves of delivery pressure

and temperature plotted against mass flow for various fixed values of rotational

speed. Charts of multiple compressor characteristics such as those in figure 2.6,

superimposed at different speeds, are often simply called “compressor maps”. Note

that these characteristics are also dependent upon other variables such as the con-

ditions of pressure and temperature at entry to the compressor and the physical

properties of the working fluid.
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Figure 2.6.: Axial compressor characteristics [36].
Note:
m
√
T01/p01 : non-dimensional mass flow; p02/p01 : stagnation pressure ratio;

N
√
T01 : shaft speed (relative to design value).

By using dimensional analysis [42] the variables involved may be combined to form
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a smaller and more manageable number of dimensionless groups. These charac-

teristic curves can then be plotted on a non-dimensional basis, i.e. stagnation

pressure ratio and isentropic2 efficiency η against the non-dimensional mass flow

m
√

Tinlet/Pinlet (2.1)

for fixed values of the non-dimensional speed

N
/

√

Tinlet (2.2)

where m is the massflow, Tinlet and Pinlet are the temperature and pressure at the

inlet respectively and N is the shaft speed.

The use of these parameters is specific to gas turbines and can be somewhat con-

fusing. For example “non-dimensional” mass flow, as it is known in the gas turbine

literature, does in fact have dimensions (e.g. mass flow, m ·
√

T/P , has units of

[kg ·
√

K/Pa]), and is accordingly also called a “quasi-dimensionless” group. A full

discussion of these parameter groups and their derivation via the “Buckingham PI

theorem” is beyond the scope of this thesis and for further details the reader is

referred to [42].

It can be seen that at high rotational speeds the constant speed lines become very

steep. The surge point is normally reached before the curves reach a maximum

value, and hence the design operation point, which is always near the peak of the

characteristic, would ideally be kept very near the surge line. Consequently the

range of stable operation of axial compressors is narrow.

The temperature ratio is a simple function of the pressure ratio and isentropic

efficiency, therefore the form of the curves for temperature ratio will be similar to

2Adiabatic and reversible.

26



2. Civil aircraft gas turbines

those in Fig. 2.6(a) when plotted on the same basis; there is no need to give a

separate diagram here. From these two sets of curves the isentropic efficiency may

be plotted as in Fig. 2.6(b) or, alternatively, contour lines for various values of the

efficiency may be superimposed upon Fig. 2.6(a).

The efficiency at a given speed varies with mass flow in a similar manner to the

pressure ratio, but the maximum value is approximately the same at all speeds.

To avoid surge it is desirable to keep the flow axial velocity approximately con-

stant throughout the compressor. With density increasing as the flow progresses

through the machine, it is therefore necessary to reduce the flow area by decreasing

the blade height. When the machine is running below design speed, the density in

the rear compressor stages will be far from the design value, resulting in incorrect

axial velocities which will cause blade stalling and compressor surge. Manufactur-

ers have used several methods to overcome this problem: Rolls-Royce and Pratt

and Whitney have used multi-spool configurations, whereas General Electric has

favoured the use of variable stator blades. Another possibility is the use of blow-off

valves (these are discussed later), and on advanced engines it is sometimes neces-

sary to include all these schemes (as is the case in our model).

The axial flow compressor itself consists of a series of stages, each of which has

its own characteristic: stage characteristics are similar to the overall characteristic

but have much lower pressure ratios. The mass flow through the compressor is

limited by choking in the various stages - under some conditions this will occur

in the early stages and under others in the rear stages. Off-design characteristics

are summarised in figure 2.7. We have noted that if an axial flow compressor is

designed for a constant axial velocity through all stages, the annulus area must

progressively decrease as the flow proceeds through the compressor, because of the

increasing density. The annulus area required for each stage will be determined
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Figure 2.7.: Phenomena at off-design operation [36].
Note:
m
√
T01/p01 : non-dimensional mass flow; p02/p01 : stagnation pressure ratio.

at the engine design point therefore at any other operating condition this fixed

area will result in a variation of axial velocity through the compressor. When the

compressor is run at a speed lower than design, the temperature rise and pressure

ratio will be lower than the design value and the effect of this reduction in density

will be to increase the axial velocity in the rear stages, where choking will even-

tually occur and limit the mass flow. Thus at low speeds the mass flow will be

determined by choking of the rear stages, as indicated in Fig. 2.7. As the speed

is increased, the density in the stages is increased to the design value and the

rear stages of the compressor can pass all the flow provided by the early stages.

Eventually, however, choking will start to occur at the inlet; the vertical constant

speed line in Fig. 2.7 is due to choking at the inlet of the compressor.
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2.2.2. Surge control

Following the previous introduction to surge, the use of a staged compressor can

now be introduced. Surge avoidance is the reason for the compressor’s division into

a low pressure and high pressure element, and is also the reason for the presence

of a variable bleed valve (VBV) between these two elements, and the presence of

variable stator vanes (VSVs) in the HP compressor.

First consider equilibrium conditions, i.e. a compressor running at constant speed.As

a compressor’s design pressure ratio is increased, the difference in flow density be-

tween design and off-design conditions will be increased, and the probability of

blades stalling due to incorrect axial velocities is much higher. The effects of

increased axial velocity towards the rear of the compressor can be alleviated by

means of blow-off, where air is discharged from the compressor at some inter-

mediate stage through a valve to reduce the mass flow through the later stages.

Blow-off is wasteful, but is sometimes necessary to prevent the engine running line

intersecting the surge line. A more satisfactory solution is to use a twin-spool

compressor.

In the common twin-spool configuration the low pressure (LP) compressor is driven

by a low pressure turbine and the high pressure (HP) compressor by a high pres-

sure turbine. The speeds of the two spools are mechanically independent but have

a strong aerodynamic coupling that serves to maintain compatibility of flow when

the gas turbine is not operating at the design point. Off design performance can

also be addressed by using several rows of variable stators (VSVs) at the front of

the compressor - the effect is to decrease the axial velocity and mass flow for a

given rotational speed. At low rotational speeds this delays stalling of the first few

stages and choking in the last stages. Therefore one of the major benefits is an

overall improvement in the surge margin at low engine speeds, which is particularly
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Figure 2.8.: Transient trajectories on compressor characteristic map [36].
Note:
m
√
T01/p01 : non-dimensional mass flow; p02/p01 : stagnation pressure ratio;

T03/T01 : ratio of outlet to inlet temperature.

important during starting and at idle speeds.

Surge however presents an even greater problem during engine acceleration: figure

2.8 shows the transient trajectory of the engine’s operating point on a compressor

characteristic map. Upon engine acceleration there is an initial movement towards

surge. This is due to the rise in temperature that follows an increase in fuel flow,

before the rotor has had time to increase its speed, thereby increasing mass flow.In

addition, many high performance axial compressors exhibit a deleterious kink in

the surge line at low rotational speeds (see figure 2.9). Therefore surge is less of

a problem at high rotational speeds and with most modern compressors surge is

likely to be encountered at low values of non-dimensional speed. In figure 2.9 a

running line intersecting the surge line at low speed and at the kink is visible. To

overcome this problem it is necessary to lower the running line locally in dangerous

regions of operation. This figure also shows the effect of a variable area exhaust
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Figure 2.9.: Effect of blow-off and increased nozzle area [36].
Note:
m
√
T01/p01 : non-dimensional mass flow; p02/p01 : stagnation pressure ratio.

nozzle - this can also be used to lower the engine’s operating point, however the

current model uses a fixed area nozzle as variable area nozzles are mostly found on

military turbojet engines. Note that on figure 2.8 during deceleration the operating

point is moving away from surge and the turbine inlet temperature decreases; the

only problem that may occur is a “flame out” of the combustion chamber because

of very weak mixtures. This can be overcome by scheduling the metering of fuel

flow as a function of rotor speed to prevent too rapid a reduction in fuel flow.

In summary, if the compressor’s running line intersects the surge line at equilib-

rium conditions it will not be possible to bring the engine up to full power without

taking remedial action. However even when the engine’s equilibrium operation

is clear of the surge line, if the running line approaches it too closely then the

compressor may surge upon rapid acceleration. Therefore too rapid an increase in
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fuel flow would cause the compressor to surge, resulting in very high temperatures

that could destroy the turbine, and an abrupt decrease in fuel flow would result in

a “flame out” of the combustion chamber. The provision of the correct fuel flow

during engine transients is the responsibility of the designer of the fuel control

system.

The shape of the transient running line will be determined by both the choice of

a limiting turbine inlet temperature (which could well be placed some 50K higher

than the design point value) and the location of the surge line. If the equilibrium

running line intersects the surge line, either blow off or variable geometry can be

used to lower the running line, but it should be noted that neither would have much

effect on the transient running line. Consequently the provision of fuel controls the

correct operation of the engine during transients, and this fuel scheduling is the

task of the engine control system. Note that the engine rate of acceleration will

be slowed down by blow-off via the variable bleed valve, because of the consequent

reduction in mass flow through the turbine.

2.3. Gas turbine performance

The performance of a twin-shaft engine can be assessed in terms of either its low

pressure (LP) or high pressure (HP) rotor speeds. This is justified because it is

necessary to satisfy compatibility of flow between the shafts. This compatibility

requirement gives rise to a strong aerodynamic coupling, which determines the

ratio of the rotor speeds, even though the rotors are mechanically independent of

each other. Because of the fixed relation between the speeds of the two shafts, for

fixed geometry engines, the variation of turbine inlet temperature and fuel flow

could be plotted versus either N1 (LP shaft speed) or N2 (HP shaft speed), but
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because of the rapid variation of both with N2, the latter may be more suitable as

abscissa.

It should be noted that although the HP shaft speed will always be higher than the

LP shaft speed and the HP turbine blades are at a higher temperature, they may

not be the mechanically critical components of the engine because the LP turbine

blades are substantially longer and therefore suffer stronger rotational stresses.

From the previous discussion of surge, it is clear that transient behaviour is critical

for aircraft engines: the prime requirement for civil aircraft is for a rapid thrust

response to cope with an aborted landing. An in-depth understanding of the aero-

engine dynamic behaviour at the design stage is therefore essential for the design

and development of control systems.

Requirements for improved performance have led to multi-shaft rotor systems (e.g.

Rolls-Royce uses three shafts on its engines, GE uses two), variable geometry in

the compressor and use of blow-off valves - all of which complicate the prediction

of both steady-state and transient performance. The acceleration of gas turbines is

obviously dependent on such factors as the polar moment of inertia (a measure of

resistance to torsional stresses) of the rotor system and the maximum temperature

that the turbine blades can withstand for short periods, however the limiting factor

for engine acceleration is usually the proximity of the surge line to the equilibrium

running line. This is particularly critical at the start of acceleration from low

speeds. Clearly, given the considerations above, a twin-shaft engine will respond

quite differently to a single shaft engine.
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2.3.1. The engine environment - variation of thrust with

rotational speed, forward speed and altitude

Gas turbine performance depends significantly upon external pressure, tempera-

ture, and the speed (measured as a Mach number) at which the engine is travelling.

Although it is convenient to express the engine’s performance in terms of non-

dimensional engine speed, it is actual mechanical speed that is limited by turbine

stresses and which must be governed by an engine controller. The strong depen-

dence of thrust upon engine speed indicates that accurate control is essential. The

situation is very serious in the case of overspeed: centrifugal stresses increase with

the square of the speed, and there is also a rapid increase in turbine inlet tem-

perature. Typically an increase in rotor speed of only some 2% above the design

limit (this is called engine overspeed) may result in an increase in T41 (turbine

inlet temperature) of some 50◦ Kelvin. Since blade life is determined by thermally

activated creep, the time for which high speeds and high temperatures are permit-

ted must be strictly controlled. This is achieved by “rating” the engine for several

operation regimes, each with a strict time constraint of maximum duration. The

maximum permissible speed is normally restricted to periods of less than 5 minutes

- this value is used for the engine take-off rating. The climb rating is obtained with

a small reduction in fuel flow and hence rotor speed, and can usually be maintained

for 30 minutes. The cruise rating requires a further reduction in fuel flow, resulting

in stress and temperature conditions that permit unrestricted indefinite operation.

2.3.2. Ambient temperature effects

While the deleterious effects of engine overspeed will not be immediately noticed

by the user, the effect of ambient temperature is important, and noticeable, to both
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the manufacturer and the user. A change in ambient temperature will modify the

engine’s operating point and this has a number of consequences. As an example of

this, consider that when an engine is running at its maximum mechanical speed,

an increase in ambient temperature will result in an effective performance loss that

is equivalent to a decrease in mechanical speed. This occurs because the actual

mass flow entering the engine is reduced as ambient temperature increases due

to the decrease in air density. Furthermore, for a given mechanical speed, the

turbine inlet temperature will be higher than that reached with a cooler ambient

temperature. Therefore to prevent the maximum turbine inlet temperature being

exceeded on a hot day, the engine speed would have to be reduced, giving a further

reduction in thrust.

2.3.3. Ambient pressure effect

Thrust changes in near direct proportion to the ambient pressure. No change in

engine operating point occurs, but the mass flow is reduced as the ambient pressure

is reduced.

2.3.4. Altitude effect

Both pressure and temperature drop with increasing altitude. While a temper-

ature drop is beneficial, because thrust is dependent upon the first power of the

pressure, the decrease in thrust due to the decrease in ambient pressure more than

outweighs the increase in thrust due to the reduction in inlet temperature.

In summary, a worst case scenario is an airport located at high altitude and in the

tropics (e.g. Mexico City)! Such a situation may require a significant reduction

in payload. The role of the engine’s control system is therefore to ensure that the
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engine operates under a large range of environmental conditions without exceeding

the engine’s operating limits, e.g. the HPT inlet temperature, or entering a condi-

tion of surge. As mentioned in the section above, these limits may not be fixed and

which limit caps the engine’s operation will also depend upon the environmental

conditions. This is further discussed in Section 4.1.

The role of the controller will be discussed further in the following chapters, and

will be analysed in detail in Chapter 5.

2.4. Summary

This chapter discusses the engine’s design reference and introduces key character-

istics of gas turbine engines in general and turbofans in particular.

The key engine limitations of surge and HPT inlet are discussed along with the

use of blow-off and control schemes to keep the engine within its multiple op-

erating limits. The effect of the environment on the engine and the need for a

gain-scheduled control scheme to maintain the engine within its multiple operat-

ing limits was introduced. Engine performance requirements were outlined.

The purpose of this chapter was to foster a basic understanding of a gas turbine

as relevant to this project - and the reason it needs to be controlled.
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mathematical model

Here the architecture of a gas turbine is analyzed in greater detail, presenting

the key equations that can be used to model each component - and how these

elements can be put together: the principles of the simulation architecture. The

target aero-engine, a high-bypass separated flow turbofan as used on high subsonic

commercial aircraft is also discussed.

3.1. Gas turbine architecture

A gas turbine engine is a highly complex non-linear system requiring an accurate

dynamic model for controller design and evaluation. For the purpose of develop-

ment and testing of advanced aero-engine controllers, a full aero-thermodynamic

simulation of a jet engine has been developed and implemented in the Matlab-

Simulink R© environment. The plant controlled is a generic high-bypass separated

flow turbofan. This has been found to be the optimum configuration for high

subsonic commercial aircraft [36]. The model is therefore representative of the jet

engine of a mid-range aircraft, such as the highly successful Airbus A320 family.

The model has two shafts, variable bleeds and stator vanes, actuator dynamics,
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heatsoak dynamics, cooled turbines, a model of the duct, and a fixed convergent

exhaust nozzle. It has been developed in a modular fashion so as to permit the

easy implementation of failure scenarios and adaptation to multiple engine config-

urations. The model, in its current implementation, develops a maximum thrust

of above 30000 lbf (133 kN) and has been validated, in collaboration with the

industrial partner, via comparison with steady state and dynamic data for a com-

parable engine.

A turbofan’s airflow is split into two main sections (as shown in Fig. 3.1). The

outer, “duct” or “bypass” airflow is accelerated by a fan situated at the front of the

engine. This section provides most of the engine’s thrust by moving a large mass

of air at a relatively low speed. The inner or “core” section provides the power to

drive the fan. Airflow through this section is compressed via two sequential com-

pressors: a low pressure (LP) compressor and a high pressure (HP) compressor.

The high pressure flow at the exit of the high pressure compressor is in part com-

busted, expands through the HP turbine (this powers the HP compressor), and

then flows into the LP turbine (this powers the LP compressor and the fan). A

further expansion to atmospheric pressure is via a fixed convergent nozzle placed

at the rear of the LP turbine. The shaft connecting the fan, LP compressor and LP

turbine is called the “low pressure shaft”, and similarly the shaft connecting the

HP compressor and the HP turbine is known as the “high pressure shaft”. These

two shafts are concentric - the LP shaft extends beyond and rotates within the

HP shaft. Figure 3.1 outlines how these turbofan components are interconnected.

The variable bleed valve placed between the low pressure compressor (LPC) and

the high pressure compressor (HPC) improves the surge characteristics [16, 34]

by purging air directly into the duct. For the same reason the HPC module is

provided with a simple model of variable stator vanes (VSVs). The operation of
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both these components is open loop scheduled with corrected shaft speed.

Figure 3.1.: The main components of a turbofan engine.

3.2. Overview of the aero-engine simulation

The simulation uses “lumped” elements: the engine components are simplified

to volumeless elements, thereby reducing the partial differential equations that

describe their distributed properties to ordinary differential equations that describe

the evolution of key properties over time. The aim is to derive a set of explicit,

first order differential equations that can be solved using an integration algorithm

to accurately describe the dynamic characteristics of the modelled components.

The unsteady mass balance between components is taken into account via storage

volumes (plena).
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Simulation of a gas turbine’s components requires the application of the following

thermodynamic conservation laws or continuity equations:

– conservation of mass (basic physical principle)

– conservation of energy (first law of thermodynamics)

– conservation of momentum (Newton’s second law)

Additionally, relationships describing heat transfer processes and fluid mechanics

must also be applied. Finally, shaft dynamics are added by making mechanical

connections between the component models. Engine acceleration is provided by

integrating the shafts’ power imbalance over time.

There currently exist several approaches to modeling gas turbines: the most accu-

rate are iterative models based on thermodynamic conservation laws and continuity

equations. An engine equilibrium point is calculated (this is the component match-

ing phase) and from this all engine parameters are derived via an iterative solution

of the system of equations (initial guesses are usually provided). These models

assume as constant the mass flow for the required matching of the compressors

and turbines.

The type of model presented here, called an “aerothermal transient performance

model” [42] or “aero-thermodynamic model” [8] avoids iteration by arranging the

equations to follow the direction of the gas path, and introducing storage volumes

between components to account for the unsteady balance of mass at fan and com-

pressor discharge, combustion chamber, between the turbines, and between the

turbines and nozzle [8]. This is the most accurate of the many non-iterative mod-

els used for modeling engine performance transient parameters [42]. Other models

are more suitable for flight simulators where lower accuracy is permissible - these

generally use transfer functions relating fuel flow and parameter outputs [42].

Relative to iterative models all other approaches suffer from some loss of accuracy,
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but in the case of the aerothermal model considered here this is negligible for the

purpose of engine control system development, particularly if a small time step is

used. This loss is also offset by a superior execution time. The size of the volumes

(plena) included between the turbomachinery is important [42], as they have their

own time constant [8] and this will affect the maximum permissible time step.

Clearly the update time step should stay below the plena time constant. For small

plenum volumes there is a very steep rate of change in pressure for any variation

in mass influx or efflux. Should the time step of the system be large, this would

lead to situations whereby the system would respond to large changes in pressure

rather than to the gradual change that would occur for a smaller sample time. An

unphysical situation would arise when these changes in pressure would result in

the engine exceeding the pressure ratio boundaries of the compressor or turbine

maps either downstream or upstream of the plenum. From this perspective, the

smallest possible time step is desirable, however one should also consider that the

turbomachinery characteristic maps are in themselves approximations, and an ex-

tremely small time step will thus not necessarily improve the simulation accuracy

in practice, although it will indeed improve the solution accuracy.

Because the model incorporates numerous component maps, the tradeoff between

solution accuracy and time step is not readily quantifiable analytically, and deter-

mination of an overall limiting time step is not easy. Plenum size is therefore a

limiting factor to the permissible time step and solution accuracy needs to be care-

fully tested should very small volumes be used. This is however likely to become an

issue only when simulating multi-stage turbomachinery in a stage-by-stage fashion

(this is not the case for the present simulation as the model uses “lumped” com-

ponents). A practical way of testing for this is to repeatedly halve the time-step

until no difference in solution accuracy is noticed for an engine rapid transient
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such as would occur during a pilot slam request 1. A good, conservative, constant

time-step for the current simulation is 10−4 seconds. This works comfortably even

with basic Euler numerical integration (Matlab ode1).

Other simulation methods, such as the iterative “thermodynamic matching model”

presented in [16] and also discussed in [42] are much slower and usually do not have

a predictable run time as the solution time to convergence may vary. Furthermore,

the iterative method produces noise on the output parameters, due to solutions

at each time step falling at random places within the permitted tolerance band.

This noise may prevent assessment of system stability due to the perturbations

produced [42]. For real-time applications, in order to reduce the computational

time, techniques based on a linearisation of the model have often been adopted

[8, 17, 36]. However simulations based on linearised models should be used only in

the neighborhood of the working point about which the linearisation has been car-

ried out and are therefore particularly unsuitable for aero-engine simulation as an

aero-engine will be expected to undergo a large variation in operating conditions.

In summary, calculations in the current model are performed in a sequential man-

ner and in the direction of the gas flow, thus allowing for a direct non-iterative

calculation of the engine cycle and performance. Once atmospheric conditions,

namely altitude, Mach Number, temperature deviation from the International

Standard Atmosphere (ISA), and the value of the control variables, e.g. fuel flow

and other control parameters that are open loop scheduled (e.g. bleed valve po-

sition) have been specified, then the operating point follows by propagating the

calculations along the engine’s direction of flow. A few notable exceptions are ad-

dressed via use of Simulink “memory blocks” (more details are in Section 5.6) - this

is so that thermodynamic properties can be based on a component’s mean temper-

1A pilot slam request is an abrupt acceleration from ground idle to maximum thrust. This is a standard
test of engine transient performance.
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ature and the compressors can be provided with pressure data from downstream

components.

3.3. Comparison with current state-of-the-art engine

simulation models

The two reference state-of-the-art models openly available are GasTurb [19] and

GSP [28]. GSP has been in development at the Netherland’s National Aerospace

Laboratory (NLR) since the seventies. GasTurb is developed by a gas turbine

expert previously at MTU aerospace and has been available since 1995.

Both are licensed programs but GasTurb provides a limited version for free, while

GSP enables all features but disables saving in the free version. These models are

advanced gas turbine simulations but are closed-source systems. They are pro-

vided as compiled code, i.e. the design is open to customisation only to the degree

permitted by the developers. The customisation options provided - without ad-

ditional involvement of the model developers - are however insufficient for control

design or implementing failure scenarios, as will be clarified below.

Both GSP and GasTurb are iterative models: a deviation from the design point

is calculated by solving a set of non-linear differential equations. The equations

are determined by the mass balance, the heat balance (GSP only), the equation

for conservation of momentum and the power (energy) balance for all compo-

nents. In the case of a transient simulation, the differential equations also include

time-derivatives. Then, in each time step, dynamic effects are calculated and the

solution represents a quasi-steady state operating point.

GasTurb omits heatsoak. It is stated explicitly in its manual that some param-

eters (fuel flow is specifically mentioned), will not be correctly calculated for a
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transient simulation. This fact alone immediately rules out its use for control de-

sign purposes. GSP on the other hand states that it does incorporate heatsoak but

surprisingly then adds that “Volume and heat soakage effects may be calculated

for each gas path component but often are relatively small and therefore disabled”.

This contrasts starkly with the gas turbine literature ([42],[36]) that clearly states

that heatsoak is significant. GSP’s statement would benefit from further clarifi-

cation as to the frame of reference (e.g. are large transients explicitly disallowed

in the simulation?) but this is not discussed further in the GSP manual, so this

point is left unclear.

What is however clear is that heatsoak is indeed significant ([42],[36]). This is

also affirmed by the GasTurb manual: “The simplifications have the consequence

that the calculated value for certain parameters, especially fuel flow, are not re-

alistic during transients (this is because the considerable amount of heat that is

exchanged between the gas and the components is not considered)”.

Modules of both these models cannot be replaced by the user without direct in-

volvement of the developers. GasTurb does includes a limited form of control -

this is implemented as a “black box” containing PID controllers with adjustable

gains, but the architecture is not clarified or open to inspection or further adjust-

ment. Due to the lack of heatsoak the control system can only be used for rough

control of a transient simulation, i.e. to approximately maintain the engine within

physically realistic operating conditions.

With regards to a control scheme GSP’s manual states that “For detailed models

of complex control systems, usually custom components are required. Also for

accurate transient simulation of modern multi-spool jet engine (e.g. turbofan en-

gines) control systems, controlling both gas generator and fan rotor speeds, custom

components are required”. Later it is further stated that: “Custom components
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are provided in separate custom libraries and require additional coding. Using

the GSP component developers package, custom components can easily be derived

from the standard component models using object inheritance. NLR has a large

number of custom libraries available, developed for detailed performance analysis

of specific engine designs and engine control systems. New custom libraries are

usually developed at NLR. For advanced use of GSP, custom components can be

developed outside NLR using the additional GSP Component developers package.

Contact NLR for additional information on Custom components or the new GSP

component developers package.”.

Many key parameters of the these simulations are inaccessible. For example Gas-

Turb’s most recent version 11 (which was not available until the latest stages of

our current work) enumerates as a new development that the gas stream parame-

ters are now accessible. This fact alone should serve to highlight the rather closed

nature of these simulations.

By comparison, the model herein discussed permits access to all and any param-

eters, heatsoak is included, a reference control architecture is implemented and is

fully open to inspection. GasTurb allows implementation of a flight envelope via a

fixed number of 49 points that must start at ground level. The current simulation

can perform transient simulation without limit of operation starting from any op-

erating point of a previously saved test case. The control system can be inspected,

modified, and completely replaced should the user so desire - as can indeed all

components.

The non-iterative nature of the current model also means that the simulation can

run at a predictable and constant speed by using a constant time step. Indeed

the simulation may run side-by-side with a real engine if required and a suitably

powerful computer is provided (this should be possible on any reasonably powerful
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dual core machine produced within the last few years).

3.4. Component models

Each modular component can be viewed as an operator, the purpose of which is

to compute the thermodynamic state of the fluid (typically mass flow ẇ [kg s−1],

total temperature and pressure) at the outlet of the module based on the inlet

conditions and some additional parameters. Each component model relies on the

equations for mass, momentum and energy balances and on empirical information

derived from rig tests or advanced CFD 2 calculations, e.g. compressor and turbine

characteristic maps. The stagnation conditions at the engine inlet are computed

with Saint-Venant-Wantzel relations [36] as a function of altitude, variation from

ISA day temperature and Mach Number. This accounts for ram recovery 3 at the

engine’s inlet.

The thermodynamic properties of the air stream and combustion gases will vary

due to the range of environmental and operating conditions at which the engine

must operate. This makes an accurate evaluation of the gas stream’s thermody-

namic properties highly desirable for an aero-engine. Lookup tables may be used

(tables containing the values of the specific heats have been published in many

works [1, 3]) or, as in the present case, algebraic curve-fitting expressions [42] may

be used. Therefore, in the present work the working fluids are not considered as

perfect gases of constant specific heats, as this is mainly appropriate for prelimi-

nary design calculations [36]. This has the advantage of both improved accuracy

and preserves a computational architecture that allows for complex scenarios to

be simulated e.g. ingestion of water vapour and dramatic changes in inlet temper-

2Computational fluid dynamics.
3Ram recovery is a measure of the conversion of high velocity air at the duct inlet to static pressure
around the engine’s inlet.
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ature. The specific heat at constant pressure, cp, was derived from the polynomial

fits provided in [42] and is temperature and fuel-air-ratio (FAR) dependent. The

gas constant, R, is temperature independent and FAR dependent. The ratio of

specific heats, γ, is temperature and FAR dependent and can be expressed as a

function of the specific heat capacity, cp, and the gas constant R. It should be

noted that for formulae using cp and γ it is most accurate to base these values on

the mean temperature for each component, i.e. the arithmetic mean of the inlet

and outlet values [42].

3.4.1. Plena

Because turbomachinery, compressor and turbine units are considered as volume-

less elements, a plenum is placed at the compressor outlet in order to take into

account the unsteady mass balance at compressor discharge, within the combustion

chamber, and between the turbines and the low pressure turbine and the nozzle.

Mass conservation implies:

w =

∫

(ẇin − ẇout) · dt+ w0, (3.1)

where w is the mass present in the casing, ẇ represents gas stream mass flow

[kg s−1] and w0 is the initial value of the mass present in the plenum. Pressure

inside the plenum is then calculated via the ideal gas law:

pout = w · T · R̄
V

, (3.2)

where R̄ is the specific gas constant of the gas stream [J kg−1 K−1]. Each plenum

also includes a module to calculate the heat soak of the component upstream. If
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this was not included the plenum’s outlet temperature would be equal to the inlet

temperature. Energy accumulation due to transient effects such as volume packing

[42] is neglected. Pressure losses are also not considered although these are easily

implemented if desired [19, 36].

Table 3.1.: Summary of the plenum module’s variables and parameters

model parameter description units

Inputs

Tin temperature of inlet air [K]
ẇin mass flow of inlet air [kg · s−1]
ẇout mass flow of outlet air [kg · s−1]

Outputs

Tout temperature of outlet air [K]
pin pressure at inlet [Pa]
pout pressure at outlet [Pa]

Boundary conditions

T10 previous turbomachinery compo-
nent inlet air temperature

[K]

T0 initial plenum inlet air tempera-
ture

[K]

M0 initial plenum mass [kg]

Dynamic states

M plenum mass [kg]
Tm average metal temperature of pre-

vious turbomachinery component
and plenum casing

[K]

Constant parameters:

- lookup tables for converting between temperature and specific enthalpy
- reference values for calculation of pressure drop
- volume of plenum
- heatsoak design point time constant and heat transfer coefficient
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3.4.2. Heat soakage

Each turbomachinery component includes heat transfer effects, such as the heat

transfer to turbine blades and casings. Only convective heat transfer is considered

based on simplified equations for turbulent flow over a flat plate and assuming a

constant Prandtl number [45].

By considering a lump of metal (e.g. a blade) in a hot gas flow a simple, first order

heat soak equation can be developed. The time constant, τ , can be calculated

from the heat transfer coefficient and the mass and specific heat capacity of the

metal. The heat transfer coefficient is calculated for the design point conditions

and modified at off-design conditions depending on mass flow and temperature, as

both alter the flow’s Reynold 4 number. It has been demonstrated that heat soak

effects play an important role in determining a gas turbine’s dynamic performance

[17], yet they are extremely difficult to predict in the absence of good test data.

In the absence of such data, the heat soak released upon an abrupt deceleration

of an industrial engine [29] was scaled down for the current model. The time con-

stant was similarly reduced. The overall heat soak quantity was then distributed

amongst the components according to their mass and temperatures. Key equa-

tions for the implementation of a heatsoak module follow. The most fundamental

equation is Newton’s law of cooling:

q = h̄A ·∆T = h̄A
(

Tm − T̄ ) , (3.3)

4The Reynolds number is used to characterize different flow regimes, such as laminar or turbulent
flow: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is char-
acterized by smooth, constant fluid motion, while turbulent flow occurs at high Reynolds numbers
and is dominated by inertial forces, which tend to produce random eddies, vortices and other flow
instabilities. These flow characteristics affect heat transfer.
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where q is the heat flow [W ], h̄ is the average heat transfer coefficient over the

surface [W m−2 K−1], Tm is the component average temperature, T̄ is the gas

stream’s mean temperature and A is the heat transfer area [m2]. The heat trans-

fer coefficient is temperature and flow dependent, and this dependency can be

approximated with the following relationship [15]:

Y ∝ T 0.23ẇ0.8, (3.4)

where ẇ is mass flow rate and

Y = h̄A (3.5)

In experimental conditions the easiest parameter to measure will be the time con-

stant τ . This can be obtained by rapidly increasing or decreasing the gas stream

temperature from a starting condition with the gas and metal mass in thermody-

namic equilibrium at a known temperature:

dTm

dt
= − q

Mcpm
, (3.6)

where Tm is the metal temperature, M is the metal mass and cpm is the metal

specific heat capacity. The two equations (3.6) and (3.3) above can be combined

to give:

dTm

dt
= − h̄A(Tm − T̄ )

Mcpm
(3.7)

Since the time constant is

τ =
Mcpm
h̄A

, (3.8)

it then follows that

dTm

dt
= −1

τ
∆T (3.9)

50



3. Modular construction of the mathematical model

Therefore the time constant of the system can be experimentally determined. Once

this is known, for a system of similar mass and area the following equations can

be applied:

Yd = h̄A =
1

τd
Mcpm, (3.10)

where Yd is the value of Y established under the experimental conditions Td, ẇd,

and τd. From this it follows that:

q = Y ·∆T = ∆T ·Yd ·
τd
τ

= ∆T ·Yd ·
(

τ

τd

)−1

= ∆T ·Yd ·
[

(

T̄

Td

)−0.23(
ẇ

ẇd

)−0.8
]−1

(3.11)

This is because:

τ = τd

[

(

T̄

Td

)−0.23(
ẇ

ẇd

)−0.8
]

(3.12)

This last relationship arises from the following considerations: since

τ =
Mcpm
h̄A

≈ k

h̄
, (3.13)

where k is a constant and from (3.4):

h̄ ≈ k1 · TA
d · ẇB

d (3.14)

it then follows that:

τd =

(

k

k1

)

· T−A
d · ẇ−B

d = k∗
d · T−A

d · ẇ−B
d (3.15)

Considering a new time constant τ at different temperature and massflow condi-

tions:

τ = k∗ · T−A · ẇ−B (3.16)
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and therefore:

τ

τd
=

k∗ · T−A · ẇ−B

k∗
d · T−A

d · ẇ−B
d

(3.17)

and if

k∗
d = k∗, (3.18)

which holds for components of similar geometries [45], then:

τ

τd
=

T−A · ẇ−B

T−A
d · ẇ−B

d

=

(

T

Td

)−A(
ẇ

ẇd

)−B

(3.19)

Therefore if Yd and τd have been established experimentally, then the formula (3.11)

can be applied to get the heat transferred q [W ], over a range of temperatures and

massflows. This heat can then be added or subtracted to the enthalpy of the gas

stream.
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Table 3.3.: Summary of the heatsoak module’s variables and parameters

model parameter description units

Inputs

Taverage average temperature 5 [K]
ẇaverage average massflow 6 [kg · s−1]

Outputs

Q heat transferred to or from from
the gas stream

[W]

Boundary conditions

T0 initial plenum inlet air tempera-
ture

[K]

T10 previous turbomachinery compo-
nent inlet air temperature

[K]

Dynamic states

Tm average metal temperature of pre-
vious turbomachinery component
and plenum casing

[K]

Constant parameters:

- lookup tables for converting between temperature and specific enthalpy
- heatsoak design point time constant and heat transfer coefficient

5this is the average of the input and output temperature of the component for which the heatsoak is
calculated e.g. the HPT input and output temperature.

6this is the average of the input and output massflow of the component for which the heatsoak is
calculated e.g. the HPT input and output massflow, the two can differ due to an increase in air
pressure, caused by a change in engine operating point.
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3.4.3. Fan and compressors

The fan placed at the front of the turbofan provides the majority of the engine’s

thrust. The fan simulation module is divided into two sections: a core and a duct

section. The ratio between the duct and core massflows is known as the bypass

ratio (BPR):

BPR =
ẇduct

ẇcore

(3.20)

Each section is modelled via a characteristic map that describes the steady state

performance of the component. The performance can be specified by curves of

delivery pressure and temperature, plotted against mass flow for various fixed val-

ues of rotational speed. These characteristic curves are however dependent upon

other variables such as the conditions of pressure and temperature at entry and the

physical properties of the working fluid. By using dimensional analysis, the vari-

ables involved may be combined to form a smaller and more manageable number of

dimensionless groups and these characteristic curves can then be plotted on a non-

dimensional basis, i.e. stagnation pressure ratio and isentropic efficiency ηi against

the non-dimensional mass flow rate ẇc for fixed values of the non-dimensional speed

(n/
√
θ) [42].

The fan’s corrected massflow is provided by the characteristic map once the fan’s

pressure ratio and corrected shaft speed have been provided. Applying the con-

servation equations, the temperature increase over the fan is described by:

Tout = Tin ·
[

1 +
1

ηi
·
(

π
γ−1
γ − 1

)

]

, (3.21)

where π is the pressure ratio over the core or duct section of the fan, γ is the ratio

of specific heats and ηi is the isentropic efficiency. The power required to drive the
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fan is then:

Pfan = cp · ẇ · (Tout − Tin) (3.22)

and is positive since it is supplied to the air.

The air that flows through the core section of the engine is compressed via two

compressors in series. These are modelled in a similar fashion to the fan, except

that there is no splitting of the mass flow. Characteristic maps are again at the core

of the compressor models. More complex models would split the compressor into

stages separated by small plena and solve gas flow equations based on a knowledge

of blade angle and stage performance, but the approach adopted here is more

practical, particularly for a generic turbofan model where data requirements are

not too onerous [32].

Between the two compressors there is an open loop scheduled bleed valve (VBV).

This extracts air from the core flow and exhausts it directly into the duct. The

percentage of massflow extracted is scheduled with the corrected LP shaft speed.

For more information on the predicted effect of VBVs, the reader is referred to

[16].

The second of the compressors in series, the high pressure compressor (HPC)

also includes customer bleeds (these power aircraft accessories) and variable stator

vanes (VSVs). The latter are to improve the surge margin of the HPC and are

modelled by a percentage reduction in corrected mass flow. This reduction is open

loop scheduled against corrected HP shaft speed. The reader is referred to [16]

for plots of the effects of VSVs on compressor maps. The customer bleeds are

modelled by extracting a percentage of the inlet air flow. This air will not be

available for work in the compressor and this is reflected in the formula for HPC
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power:

HPCpower = cp · ẇ · (Tout − Tin) · [k1x1 + k2x2 + (1− k1 − k2)] (3.23)

where k1 and k2 are the proportion of air removed via bleeds 1 and 2 respectively

and x1 and x2 are scalars from 0 to 1 that represent the proportion of the total

temperature rise to be expected at that stage.

Cooling air is also extracted prior to the combustor, at the outlet of the HPC.

Cooling flow is an important element of the model because the total percentage

of engine inlet mass flow extracted before the combustor may be up to 25% for

a high technology aero or industrial engine [42], and cooling flow will represent a

significant proportion of this. Cooling flow is often modelled simply as a percentage

of the engine’s massflow [36] but in this case it was preferred to use a relation that,

although empirical, is based on the ratio of the pressure of the air source (the HPC)

and that of the sink (the HPT) [8, 27]:

ẇcool = K ·
√

1− p
′

out

pin
· pin√

Tin

, (3.24)

where K is the discharge coefficient, pin and Tin are respectively the pressure

and temperature at the bleed point and p
′

out is the static pressure at the exit of

the cooling circuit. In this work, this is approximated by the pressure value at

the cooling flow exit. This is reasonable, since the velocity of the gas stream is

relatively low at this stage and dynamic pressure remains a low proportion of the

total up to approximately Mach 0.4 [42].
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3. Modular construction of the mathematical model

Table 3.5.: Summary of the fan and compressor modules’ variables and pa-
rameters

model parameter description units

Inputs

N 7 shaft speed [rpm]
pout outlet pressure [Pa]
V SV variable stator vanes’ position 8 [degrees]

Outputs

Tout outlet temperature [K]
ẇout outlet mass flow [kg · s−1]
P power consumed [W ]

Boundary conditions: none

Dynamic states: none.

Constant parameters:

- lookup tables for calculating mass flow, isentropic efficiency, bleed flows
and surge line pressure ratio.
- linear function coefficients for calculating specific heat at constant pres-
sure
- gains associated with variable conversion between relative, normalised
and actual values.

7
N1 for the LP shaft and N2 for the HP shaft.

8High pressure compressor (HPC) only.
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3.4.4. Combustor

The air at the outlet of the HPC is passed into a combustion chamber. This in-

creases the enthalpy of the working fluid via the combustion of fuel. The flame

temperatures in the model are obtained from 2-D lookup tables that were calcu-

lated using NASA program SP273. This data was extracted from [2]. Therefore

the exit temperature of the combustor is provided as a function of excess air factor,

λ, and inlet temperature. To account for the unsteady mass balance between the

HPC, combustor and HPT, a storage volume is included in the combustor.

Table 3.7.: Summary of the combustor module’s variables and parameters

model parameter description units

Inputs

Tin inlet temperature [K]
R inlet ideal gas constant [J · kg−1 ·K−1]
fueloil fuel oil flow [kg · s−1]

Outputs

Tout outlet temperature [K]
pout outlet pressure [Pa]

Boundary conditions

M0 initial combustor mass [kg]
T0 initial inlet gas temperature [K]

Dynamic states

M combustor mass [kg]
T combustor temperature [K]

Constant parameters:

- stoichiometric fuel air ratios for gas and oil
- 2D lookup tables for burner exit gas temerature calculation
- lookup tables for converting between temperature and specific enthalpy
- reference values for calculation of pressure drop
- heatsoak design point time constant and heat transfer coefficient
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3.4.5. Turbines

The hot gas stream exits the combustor and is expanded via two turbines in series.

A characteristic map is used to represent each turbine. The constitutive equation

for the temperature drop across the turbine is:

Tinlet − Toutlet = ηt · Tin



1−
(

1
pin/pout

)
γ−1
γ



 , (3.25)

where ηt is the turbine isentropic efficiency. The HPT, although not modelled as

a multi-stage cooled turbine, does include injection of cooling air from the HPC.

Cooling air is injected into the main stream at the turbine inlet, therefore a mixing

procedure has to be included in the module. For calculations of work the whole

flow is used i.e. both the hot gases and the cooling air do work in the turbine. The

mixing block takes the mass fraction of cooling air and calculates the temperature

of the mixed flow:

Tmix =
x · Tcool · cp, cool + (1− x) · Tinlet · cp, hot

x · cp, cool + (1− x) · cp, hot
, (3.26)

where x is the mass fraction of cooling air. The temperature of the mixture of hot

and cold gas, Tmix, is then substituted for Tinlet in (3.25).
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3. Modular construction of the mathematical model

Table 3.9.: Summary of the turbine module’s variables and parameters

model parameter description units

Inputs

Tcool cooling air temperature 9 [K]
Tin temperature of inlet gas stream 10 [K]
pin inlet pressure [Pa]
pout outlet pressure [Pa]
N shaft speed [rpm]
FAR fuel-air ratio 11

Outputs

Tout outlet temperature [K]
ẇin inlet mass flow [Pa]
P power produced [W ]

Boundary conditions: none

Dynamic states: none

Constant parameters:

- lookup tables for calculating massflow and isentropic efficiency
- linear function coefficients for calculating the gas streams’ specific heat
at constant pressure

9HPT only
10In the case of the high pressure turbine, this is the combustor gas.
11This is used to calculate the thermodynamic properties of the gas stream.
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3.4.6. Exhaust system

Exhaust air exits the turbofan engine in two separate unmixed streams: duct air

and core section air. Both the duct and core exhaust are modelled as convergent

nozzles, each of a fixed area. At current levels of cycle pressure ratio, virtually

all turbojets (note that these engines do not have a duct section) operate with

the nozzle choked during take-off, climb and cruise and the nozzle only becomes

unchoked when thrust is significantly reduced. Thus the nozzle is liable to be

unchoked only when preparing to land or when taxiing [36]. The situation is

rather different for a turbofan and the core nozzle can be assumed to be unchoked

over the operating range of the engine. The duct nozzle, due to the inherently

low speed of the duct gas stream is also unchoked. The core and bypass flows

are therefore expanded through the core and bypass nozzles to the pressure of

ambient air. A converging nozzle is used because the exhaust flow is subsonic

and for subsonic flow, a convergent nozzle accelerates the gas. The “throat” or

minimum area of the nozzle will regulate the amount of flow that can be exhausted

through the nozzle.

The object of a turbine nozzle is to produce as much kinetic energy as possible from

given inlet conditions and pressure drop. There will inevitably be some frictional

losses - maximum efficiency will be when there is no friction and the process is

perfectly isentropic. The efficiency of the nozzle is the ratio of the actual kinetic

energy produced to this theoretical maximum. As the nozzle efficiency falls below

unity, the expansion will be a mixture of isentropic and isothermal [39]. Conditions

at the inlet of the nozzle shall be denoted with subscript “0”, e.g. p0, v0, T0 for

the pressure, specific volume and temperature respectively. Similarly conditions

at the exit of the nozzle are denoted with subscript “1”. Conditions at the nozzle

throat are denoted with subscript “t”.
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The nozzles of a gas turbine receive a gas that already possesses an appreciable

velocity, therefore the equations used to model the nozzle must incorporate factors

to account for these significant inlet velocities. The non-negligible gas velocity may

be accounted for by using the concepts of stagnation pressure, p0T , and stagnation

temperature, T0T . For a gas undergoing an isentropic expansion:

pvγ = constant, (3.27)

where γ, the ratio of specific heats, is known as the adiabatic index because this

is an isentropic (i.e. adiabatic and reversible) process. For a frictionally resisted,

adiabatic expansion this becomes:

pvm = constant, (3.28)

where the polytropic exponent, m, is a function of the adiabatic index, γ, and

nozzle efficiency ηN :

m =
γ

γ − ηN(γ − 1)
(3.29)

The nozzle throat will pass flow at speeds up to and including sonic but cannot

support supersonic flow (a convergent nozzle slows down supersonic fluids). Sonic

flow will be reached when the ratio of throat pressure pt to inlet stagnation pressure

p0T has reached a critical value (the nozzle is “choked”):

ptc
p0T

=

(

2

γ + 1

)
mc

(mc−1)

, (3.30)

where ptc and mc are respectively the throat pressure and polytropic exponent at

these critical conditions.

Furthermore, assuming that nozzle efficiency is constant over the length of the
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nozzle (the variation, for a convergent only nozzle, has been found in practice to

be small up to and including sonic velocity [39]) and under the assumption that

pressure and specific volume in the stagnation state are related to temperature by:

p0Tv0T = R̄T0T , (3.31)

where R̄ is the specific gas constant, the nozzle’s massflow is then:

ẇ = A

√

√

√

√

√2
γ

γ − 1

p0T
v0T





(

p1
p0T

) 2
m0

−
(

p1
p0T

)

(m0+1)
m0



 (3.32)

for

p1
p0T

≥
(

2

γ + 1

)
mc

(mc−1)

, (3.33)

i.e. for subsonic flow. A is the throat area and is the same as the exit area for a

convergent-only nozzle.

An important issue is that there is no value for the specific volume at stagnation

conditions, v0T , in the model at this stage, but this can easily be calculated from

the relationship in (3.31). Under the assumption that mc = m, i.e. the polytropic

index is not greatly varied at critical conditions [39], the model can be provided

with an architecture that can also cope with sonic flow if the following equation is

also included in the nozzle module:

ẇ = A

√

√

√

√

(

2

γ + 1

)
(mc+1)
(mc−1)

γ
p0T
v0T

(3.34)

for

p1
p0T

<

(

2

γ + 1

)
mc

(mc−1)

(3.35)
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This raises the question of how to determine the throat pressure given only the

inlet and outlet pressure for the nozzle, which will be the usual case. Because

for a convergent only nozzle the nozzle throat and outlet are adjacent, the throat

pressure will be the same as the outlet pressure until the ratio of the outlet to

inlet pressure falls below the critical value (i.e. the nozzle becomes choked), and

thereafter the throat pressure will remain at the critical value.

Table 3.11.: Summary of the exhaust module

model parameter description units

Inputs

Tin LPT exhaust temperature [K]
Pamb ambient pressure [Pa]
FAR fuel-air ratio

Outputs

ẇout nozzle massflow [kg · s−1]

Boundary conditions: none

Dynamic states: none

Constant parameters:

- nozzle diameter
- nozzle efficiency

3.4.7. Shafts

Speeds at time t are calculated using component power values, speeds from the

previous point and the spool inertias. The rotational acceleration of the shaft can

be found from the shaft dynamic balance. For example, for the LP shaft:

dω

dt
=

1

Iω
(PLPT − PLPC − PFan − Plosses), (3.36)
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where P is power, I is shaft moment of inertia and ω is the shaft angular speed.

Power losses are caused by friction and engine accessories and can be modelled as

a simple percentage of the total power provided to the shaft, or as a loss that is

proportional to shaft speed.

Table 3.13.: Summary of the shaft module

model parameter description units

Inputs

Pout power out 12 [W ]
Pin power in 13 [W ]
ẇin mass flow of inlet air [kg · s−1]

Outputs

N shaft speed [rpm]

Ṅ shaft acceleration [rpm · s−1]

Boundary conditions: none

Dynamic states

N shaft speed [rpm]

Constant parameters:

- shaft moment of inertia

12This is the power consumed by the HPC in the case of the HP shaft, and the power consumed by the
fan and the LPC for the LP shaft.

13This is the power provided by the HPT in the case of the HP shaft, and the power provided by the
LPT for the LP shaft.

3.4.8. Actuators

Models for mechanical actuators such as those of the fuel system valve, the vari-

able bleed valves (VBVs) and the stator vanes (VSVs) are also included. These are

modelled in terms of first and second order transfer functions [34]. The tempera-

ture sensor (transducer), also has its own dynamics and these too are represented
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in the model via transfer functions according to the representation in [13].

3.5. Summary

Chapter 3 analysed in in greater detail than Chapter 2 the architecture of a gas

turbine, presenting the key equations that can be used to model each component,

showing how they can be put together, and describing the principles of the simu-

lation architecture.

The chapter starts with a brief summary of the engine’s components. These, hav-

ing been discussed in chapter two are now given a whistle-stop tour: the purpose is

to show how the components are interconnected, with the assistance of a diagram.

The simulation’s basic principle, the use of “lumped” elements was then discussed:

the engine components are simplified to volumeless elements, thereby reducing the

partial differential equations that describe their distributed properties to ordinary

differential equations that describe the evolution of key properties over time. The

aim is to derive a set of explicit, first order differential equations that can be solved

using an integration algorithm to accurately describe the dynamic characteristics

of the modelled components. The unsteady mass balance between components is

taken into account via storage volumes (plena).

The key elements of each component are then described. Some can be described

algebraically, others require the use of lookup tables. This is the case for the turbo-

machinery components, whose airflow and relationship between is far too complex

to be simulated in a model of this scale - experimental maps are used.
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architecture and design

The engine controller serves the dual purpose of assisting with simulating and

validating engine transient performance and also as a benchmark for future con-

trols development. This chapter discusses the controller architecture: a switched,

gain-scheduled, feedback control system incorporating bumpless transfer and anti-

windup functionality.

4.1. Introduction

One of the key objectives of an aircraft engine is to achieve maximum thrust with

minimum engine weight. Therefore although a gas turbine is inherently in itself a

stable system [17], feedback control is an essential part of jet engines because of

the requirement to run close to the engine’s operating limits. Transient conditions

do exist for which operation is unstable, but because these are conditions that may

seriously damage the engine (an example of this is surge, a violent oscillatory rever-

sal of the gas stream’s flow) they are considered as areas of the operating envelope

that are to be avoided. This is achieved via open loop scheduled controls on some

of the engine components (e.g. bleed valves and stator vanes) and by closed-loop
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limiting of both shaft acceleration and the rate of change of fuel flow. Therefore

these unstable conditions are not part of the feedback control problem for civil

aircraft engines. The main aim of the engine controller is therefore to guarantee

that the engine will be maintained within its operating limits at all times, regard-

less of how the operator may move the throttle lever or of inlet conditions (e.g.

altitude and Mach number). The engine’s operating limits may be of a mechanical,

thermal or aerodynamic nature (e.g. surge). In addition to these constraints the

overall engine performance is also subject to both regulatory standards and the

requirements of the airframe manufacturer.

The highly constrained and variable environment, in which the engine must op-

erate, requires a controller that can cope with such conditions. Due to the range

of environmental conditions, it is unlikely that a single linear controller would be

able to achieve adequate performance across the operating envelope, although a

simple PI controller is well-known to yield good performance at a given operating

point. Therefore, gain-scheduling was used in order to vary the PI controller’s

gain as a function of varying operating condition. Furthermore, the constraints on

the various engine variables mean a single PI controller may be unable to deliver

adequate performance whilst adhering to these limits. For this reason switching

logic was used to choose a PI controller yielding the highest level of performance

without leading to violation of constraints. Due to the way the switching logic was

implemented, anti-windup protection was implemented on all off-line regulators to

prevent integrator run-away. The resulting controller architecture is thus a gain-

scheduled (with operating point), switched (as a function of active constraints) PI

controller. As a useful aside, the anti-windup logic used for preventing integrator

run-away, also provided a simple bumpless transfer mechanism in order to reduce

the magnitude of the so-called ”bump” which may occur during controller substi-
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tution.

What a pilot wants to achieve when moving the thrust lever is a certain percentage

of the maximum thrust available at the current flight conditions, not a specific net

thrust from the engine. Since thrust itself is not measurable in-flight, the relative

thrust command given by the PLA (power lever angle) setting must be translated

into a command change of a measured variable. Thrust corresponds well with

the low pressure shaft speed (after taking into account aircraft speed and environ-

mental conditions such as pressure and temperature), particularly in the case of

a high bypass turbofan, where the majority of the thrust is provided by the fan.

Therefore it is common practice to choose fan speed as the controlled parameter

(this, for example, is the choice adopted by General Electric [17], although other

vendors may and do choose other indirect measurements of thrust). Fuel flow is

the sole control input available, as other engine components that may modify the

engine’s operating point, such as bleed valves or variable stator vanes, are in this

instance open loop scheduled. On advanced civil aircraft these may be “tweaked”

according to the operating condition and past history of the engine, but they are

not, in any case, truly feedback controlled as would occur in multivariable military

jet engine control schemes. Furthermore, the exhaust nozzle on a civil aircraft is

fixed and as such cannot be used to modify the engine’s operating point, as occurs

on military engines. A diagram of the current model’s closed-loop control system

is provided in Fig. 4.1.
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Figure 4.1.: Diagram of the current model’s closed-loop system.
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The engine’s operating limits may be divided into two groups: maximum limits

are those that must not be exceeded from below and minimum limits are those

that must not be exceeded from above.

Maximum limits are as follows: fan speed (i.e. LP spool speed), fuel flow increase

rate, HP spool speed (the shaft that joins the HP turbine and the HP compressor),

HP spool acceleration, HP turbine inlet temperature, HP compressor discharge

pressure and fuel flow.

Minimum limits are: LP spool speed, fuel flow decrease rate, HP spool speed, HP

spool deceleration, and fuel flow.

With the exception of fan speed demand, minimum LP spool speed, maximum

fuel and fuel flow rate, all of the above are currently set to fixed values - however

the architecture would be able to cope with these varying according to operating

conditions or different engine requirements following, say, a failure. The engine’s

idle condition may be any of the minimum limits on LP spool speed, HP com-

pressor delivery pressure or fuel, according to the engine’s operating condition and

environmental factors.

The engine is maintained within its operating limits by fuel regulators, these can

also be split into two categories: steady state control regulators and transient con-

trol regulators. The steady state regulators consist of fixed limits that prevent

the engine operating outside fixed bounds, for example, to limit against over-

temperature, over-speed, fuel metering valve high and low limits, minimum idle

limits and flame out limits. These are maximum and minimum HP shaft speed, fan

speed control, maximum turbine inlet temperature, maximum and minimum fuel

flow and maximum and minimum fuel flow rate. The aim of the transient control

regulators is to control the HP shaft rate of acceleration and fuel rate during sharp

acceleration demands, and to control minimum core speed and fuel flow rate of
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reduction during sharp deceleration conditions.

There are several regulators within the designed controller and some are there as

a back-up to the others, for example, the duplication of acceleration and deceler-

ation regulators (thereby allowing control of the acceleration rate of both shafts).

An important motivation for the development of the model is to allow investiga-

tion of robust and adaptive control solutions to specific failure modes. Should a

failure mode affect the fuel system, then the acceleration profiles would need to be

controlled via the speed rate regulators. Should a failure mode affect the variable

geometry or bleed systems, the compressor delivery pressure would be significantly

affected along with the relative pressure regulators. The performance of the en-

gine under these failure modes needs to be assessed and so several regulators have

been implemented. The aim is to keep the controller design as open as possible to

accommodate future research objectives.

Indeed, the engine’s operational limits also need to be considered in the context

of engine degradation or failure. As an example, the acceleration of a healthy en-

gine is usually limited by the maximum permissible rate of acceleration of any of

the engine’s shafts (note: this is not a mechanical limit but is to avoid surge and

therefore the maximum rate of acceleration of the HP shaft tends to dominate the

acceleration profile), the allowed fuel flow rate of increase, and possibly the maxi-

mum permitted fuel flow (for an aggressive acceleration profile). A healthy engine

can therefore successfully reach its maximum rated power without encountering

any further limits. However for a condition of low ambient pressure with extreme

bleed and high ambient temperature, the maximum turbine inlet temperature may

instead become the operating envelope’s limiting factor, and the engine may not

reach maximum power but will instead settle at the maximum turbine inlet tem-

perature. Furthermore, transient turbine inlet temperature is higher than that
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permitted during steady state operation, therefore the maximum power achievable

would be further reduced after a short period of time. Another consideration is

that these operating limits may not always be set at a fixed value. For example, the

engine’s minimum LP spool speed is increased at high altitude or during landing

(to allow for a rapid increase in thrust in case of an aborted landing) and fuel flow

rate of change is scheduled according to the engine’s operating point. A further

example of this is a software upgrade by the engine manufacturer: it is current

practice that an engine’s performance may be capped to increase lifespan and fuel

economy. However should the aircraft owner have a requirement for improved per-

formance he may pay for a software upgrade to remove some of these limitations.

In addition to the engine operating limits, there are also the regulatory require-

ments on the overall behaviour of the engine. These standards are issued by an

international or national authority, for example the US Federal Aviation Author-

ity (FAA). Typical requirements for a civil aircraft [17], are that upon receiving a

demand for an increase in thrust, the engine must not overshoot its target by more

than 2%, with a maximum steady state deviation of 1%. The engine’s time to ac-

celerate to maximum thrust is also regulated; this is a specification of the airframe

manufacturer and often takes the form of a requirement that the engine must be

able to accelerate at Sea Level Static (SLS) from within 15% of idle to full throttle

within a specified timeframe, e.g. 10 seconds and preserve this acceleration profile

over a given altitude range.

4.2. Controller architecture

The controller’s input is relative thrust demand (a percentage of the maximum

thrust available at the engine’s operating point, here considered proportional to

73



4. Controller specifications, architecture and design

fan speed) and the output is fuel flow demand. Performance requirements are

satisfied while maintaining the engine within its operating limits by assigning a

gain-scheduled Proportional-Integral (PI) controller to each of the individual con-

straints. A selection logic then chooses amongst these so that at any point of its

operating envelope the engine is governed by an appropriate controller. The gains

of each PI controller are scheduled as a function of engine LP shaft speed and

altitude using lookup tables that are dynamically initialised from the workspace,

over a flight envelope from Sea-Level to 35000 ft and over values of engine shaft

speed from idle to maximum thrust. Bumpless transfer and anti-windup are also

provided by the controller architecture. For the purpose of clarity, for the remain-

der of this dissertation each individual PI loop will be referred to as a “regulator”,

with only the overall architecture and resultant control system referred to as “the

controller”.

All of the regulators that control a “maximum” limit (e.g. fan speed, HP turbine

inlet temperature) are routed into a “minimum” selection block that selects the

smallest output of these regulators. The resultant signal is then passed into a

“maximum” selection block along with the output of all the regulators assigned

to “minimum” limits. This “maximum” selection block then chooses the greatest

of these signals. A diagram of this architecture is shown in Fig. 4.2. A useful

feature of this minimum/maximum selection architecture is that it inherently pro-

vides bumpless transfer since a switchover between regulators may only occur at

a crossover point: when one of the inactive regulators’ outputs intersects that of

the active regulator. What this means in practice is best illustrated by a diagram:

Fig. 4.3 shows the individual fuel demands of the active regulators during a pilot

demand - in this case an abrupt increase in thrust at Sea Level Static (SLS), to

98% of maximum thrust, in a time span of half a second. It is immediately ap-
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Figure 4.2.: Selection logic architecture.

parent that it is the “maximum” regulators (i.e. limits not to be exceeded from

below) that govern the engine’s behaviour during an acceleration. Conversely, it

is the “minimum” regulators that intervene during a deceleration as is shown in

Fig. 4.4. Figure 4.5 shows the final controller demand after the selection logic has

been applied to the output of all regulators. By comparing this to Fig. 4.3, it is

apparent that the controller has selected the smallest of the regulators’ demands

during acceleration, and that the transfer between these is smooth. Conversely

it has selected the largest of the regulators’ demands during deceleration. Note

that the controller’s output is converted to fuel flow units (kg s−1) in a module

external to the controller, to allow for an easy implementation of different fuels

should the model be adapted in the future to a different configuration, e.g. an

industrial aero-derivative engine.

The switchover between regulators is evident in the next plot: Fig. 4.6 shows

which regulator is controlling the engine at any moment of time. The numbers

along the ordinate of the plot indicate the active regulator: 1 is the fan speed
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Figure 4.3.: Active regulator output during acceleration.

Figure 4.4.: Active regulator output during deceleration.

76



4. Controller specifications, architecture and design

Figure 4.5.: Controller fuel demand.

(LP shaft) regulator, 8 is the fuel flow increase rate regulator, 4 is the HP shaft

rate of acceleration regulator, 7 is the maximum fuel regulator, 15 is the fuel flow

decrease rate regulator, 12 is the HP shaft rate of deceleration regulator and 13

is the minimum fuel regulator. At steady state, up until time t=40, the engine is

controlled by the fan speed demand regulator, then upon a pilot request at t=40

for an abrupt acceleration, the fuel demand of the fan speed regulator rapidly

ramps up. At approximately t=40.01, the active regulator briefly switches over to

regulator 8 - fuel flow increase rate. During the remainder of the acceleration the

engine is controlled by the HP shaft maximum acceleration rate regulator (number

4), the fuel flow increase rate regulator (number 8) and the maxiumum fuel regula-

tor (number 7, at time t=45-46), as the target speed is reached control is switched

back to the fan speed regulator - which requires a shaft deceleration as a small

overshoot occurs, thereby activating the high pressure shaft deceleration regula-
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Figure 4.6.: The ordinate gives the number of the active regulator: 1 is the
fan speed (LP shaft) regulator, 4 is the HP shaft rate of accel-
eration regulator, 8 is the fuel flow increase rate regulator, 7 is
the maximum fuel flow regulator, 15 is the fuel flow decrease rate
regulator, 12 is the HP shaft rate of deceleration regulator.
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tor (number 12, at time t=47-47.5) before control finally returns to the fan speed

regulator. The inverse process occurs after t=90.5, upon engine deceleration: the

fuel flow decrease rate regulator is the first regulator to take over from fan speed

but is subsequently replaced by the HP shaft deceleration regulator. The overall

controller output is a smooth ramp and engine acceleration proceeds accordingly

until maximum thrust has been achieved. This can be seen clearly in Fig. 4.7.

Figure 4.7.: Thrust response to large throttle demand.
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4.3. Preventing integrator windup

The bumpless transfer logic in the controller works well, as indeed it must - it is an

inherent property of the architecture of the controller: a minimum and maximum

selection logic applied successively to groups of individual regulators. However,

although this bumpless transfer is inherent to the minimum/maximum selection

logic, this switching between controllers could not in practice occur with just a

PI control for each regulator - each PI regulator must have a procedure in place

to prevent the integrator’s output from growing indefinitely when that particular

regulator is not active. This would otherwise break the logic of the architecture.

Consider if the maximum LP shaft acceleration regulator did not have an integra-

tor reset in place - then while the engine is at steady state, its integrator’s output

would grow without bounds and switchover to the acceleration limit (upon a de-

mand for increased thrust) would only occur after the maximum acceleration limit

had already been greatly exceeded - or not at all if the engine had been running

at steady state for a long enough period of time. An effective anti-windup archi-

tecture that ensures that the integrator’s output does not grow without bounds is

shown in Fig. 4.8. When a regulator is active (it is notified of this by a module

that tracks which is the active regulator) the switch selector (as seen in Fig. 4.8)

will pass the regulator’s own signal around the feedback loop, and at point B the

output will be zero and the regulator will see an unmodified error signal. When the

controller is inactive, the switch will pass the value of the current active regulator.

This is then fed back via point B, after being subtracted from the signal at point

A and then multiplied by the gain WG - the result is then subtracted from the

error, thereby effectively reducing the error seen by the inactive regulator and thus

reducing its value.

When the output of the active controller is below the regulator’s target, the track-
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ing will reach a value slightly above that of the active regulator, and vice versa -

when the output of the active controller is above the regulator’s target it will rest

at slightly below the active signal (i.e. the regulator’s output will track the active

signal from above and below respectively). This property, in conjunction with a

maximum and minimum selection logic, is what allows the overall architecture to

function.

The value of the gain WG underpins the operation of the anti-windup loop. For

Figure 4.8.: PI controller structure with integrator anti-windup.

example, one may wish to know the value of a regulator when it is inactive and

the engine has reached a steady state - e.g. the condition before an abrupt ac-

celeration. Simple inspection leads to the following conclusion - the output of an

inactive controller will reach a fixed value when:

(A− C) ·WG = E,
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which if rearranged gives the steady state value of A as:

A = E/WG + C (4.1)

It would seem from this that during steady state operation it is desirable to have

a large WG, so that E/WG tends to zero and A≈C, where C is the value to be

tracked. Under these conditions a maximum limit regulator would track the active

regulator’s output asymptotically from above, whilst a minimum limit regulator

would track the active regulator’s output asymptotically from below. The require-

ments for this to occur are readily highlighted under the assumption of a discrete

model (as all simulated models are in practice, due to numerical integration) and

a single, small, time step update ∆t. For a “maximum” limit, assuming constant

E and C, the change in value of A over one time step is approximately:

IG(E − (A− C)WG)∆t (4.2)

Since A > C for a “maximum” limit, the major requirement is that the value

subtracted from A during one time step must be less than A-C. Consider the

worst case scenario of a negligible error value (since a large error value helps in

satisfying the above condition),

(A− C) ·WG · IG ·∆t < (A− C) (4.3)

simplifies to:

∆t ·WG · IG < 1 (4.4)
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Similarly for a “minimum” limit, since now C >A, the requirement is that the

value added to A during one time step must be less than C-A, i.e. :

− (A− C) ·WG · IG ·∆t < (C − A), (4.5)

which again reduces to the expression in Eq. (4.4):

∆t ·WG · IG < 1 (4.6)

These considerations may tempt one to arrive at the conclusion that WG should be

as large as possible subject to the above constraint - but first we need to consider

what happens during a single time step update for a time-varying controller output

C, assuming a constant error E. Under such a circumstance:

A(t+∆t) = PGE + I(t) + IG · {E − [A(t)− C(t+∆t)]WG}∆t, (4.7)

where

I(t) = IG{E − [A(t−∆t)− C(t)]WG} (4.8)

The requirement for a “maximum” limit to retain a margin of safety, i.e. how

much its signal rides above the signal to be tracked, is then:

IG · {E(t)− [A(t)− C(t+∆t)]WG}∆t ≥ ∆C (4.9)

and similarly for a “minimum” limit :

IG · {E(t)− [A(t)− C(t+∆t)]WG}∆t ≤ ∆C, (4.10)
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under all conditions. This is aided by a small ∆t, but too large a value of WG

can indeed lead to the value of A dipping below that of C when C should rise

very rapidly. For the system under consideration, it has been found that this

would require very large values of WG - of the order of 103 or more - and that

excellent tracking of C is achievable with values in the order of 102, without fear of

the tracking regulator’s output crossing over C. However, in general one must be

aware that a safe value of WG depends on the system considered - and in particular

on the maximum rate of increase of C and E - and that possible variations in the

time step, ∆t, are also of consequence. The implications of a time-varying error

during transients are a logical extension of the above.

In summary, it is not possible to provide an absolute guarantee that a certain value

of WG will be appropriate for all conditions unless clear boundaries on E, C and

their rate of increase are established. Therefore the value of WG must in general

be verified for the range of conditions expected.

4.4. Controller continuous analysis

The control structure in figure 4.8 can be rephrased as a reference tracking problem

as shown in figure 4.9.

Figure 4.9.: Controller structure as reference tracking
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Accordingly, defining Ks as:

Ks =
hps+ hi

s

then,

u = Ks[e+WG(ū− u)] (4.11)

= (I +KsWG)
−1[Kse+KsWGū]

=
hps+hi

s
e+ hps+hi

s
WGū

1 + (hp+hi

s
)WG

and finally:

u =
hps+ hi

s+ (hps+ hi)WG

e+
(hps+ hi)WGū

s+ (hps+ hi)WG

(4.12)

Therefore whenWG is large compared to s, then u ≈ ū. Thus there is good tracking

when ū contains predominantly low frequency and WG is large. There is poor

tracking when ū contains higher frequencies. For large WG there is better tracking

and improved bandwidth, but a decreased stability margin. Note however, that

the analysis conducted here is local to the PI-control loop and does not account for

the (hybrid) dynamics of the overall system, an analysis of which is significantly

more difficult.

4.5. Reference tracking: requirements and

consequences

How closely an inactive regulator must track the active regulator depends on how

rapidly switch-over must occur. It must not, however, track the active regulator

too closely, thereby providing a ‘safety margin’ in case of a rapid change in the value

of C. Time for switch-over also depends on the size of the gains PG and IG - with
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sufficiently large gains it has been found that the time for switch-over is negligible

and a good safety tracking margin can be achieved with no fear of switch-over being

delayed enough for any of the regulator limits to be exceeded by more than 1%.

It is clear then that this controller architecture requires extensive validation and

tuning to the dynamics of the controlled plant: the architecture does not guarantee

that no limits will be exceeded should the plant’s dynamics be significantly faster

than those predicted during testing, although this does not pose a serious problem

for gas turbines, whose dynamics are well known and predictable. Furthermore,

the presence of multiple regulators also provides a degree of redundancy.

4.6. PI control and gain schedule

A diagram of the implementation of the PI regulators, with anti-windup, is shown

in Fig. 4.8. The gains are implemented via the script “PI Gainschedule.m”, which

stores all values of the controller’s gain-schedule and places them in the workspace

in a format suitable for the Simulink lookup tables. In accordance with the flexible

architecture of the controller’s implementation, this script is designed to permit

the number of variables controlled to be easily extended.

The tuning of each of the PI loops was done manually in the standard fashion: the

proportional gain is raised until there is oscillation and then reduced somewhat.

Despite the steady-state offset, both tuning theory and industrial practice indi-

cate that it is the proportional term that should contribute the bulk of the output

change, however in this instance, due to the switching and cascaded architecture

of the overall controller, the integral gain may be significant.

The proportional and integral gains are both scheduled versus fan speed and al-

titude, over the range of 1000 to 5000 rpm and from sea level to 35000 ft. Mach
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number would be a good additional scheduling parameter, but the increased com-

plexity is not required for our purposes. The script “PI Gainschedule.m” allows

the user to set gain values for each combination of fan speed and altitude or

alternatively, as an aid to quick and easy tuning, the function “PIgainscheduleIn-

terpolation.m” can be called from within the script: once gains are chosen for the

extrema of each range, this script will then linearly interpolate between the outly-

ing values, thereby completing the matrix of gain values. This script can be seen

in the appendix, section B. It would be more appropriate to interpolate based

on the sum of fan and HPC power, but this is data that will change upon a new

target design and while the engine is being tuned, so it is best to work with what

does not change significantly: a target fan speed and altitude. It is a compromise,

but one that works well.

4.7. Summary

Chapter 2 introduced the basic principles of aero-engine gas turbines and Chapter

3 discussed the mechanical components of the engine in greater detail. This chap-

ter then proceeded to discuss the engine’s control system.

The engine controller serves the dual purpose of assisting with simulating engine

transients and, as representative of a baseline industrial implementation, also as

a benchmark for future controls development. The architecture is a switched,

gain-scheduled, feedback control system incorporating bumpless transfer and anti-

windup functionality. The appeal of this architecture was its transparent structure

to the control system designer and its ability to accommodate variation in operat-

ing condition while ensuring various constraints are not violated. Moreover, sample

simulation results have indicated that the controller performs well in realistic sce-

87



4. Controller specifications, architecture and design

narios.

There are several regulators within the designed controller and some are there as

a back-up to the others, for example, the duplication of acceleration and deceler-

ation regulators (thereby allowing control of the acceleration rate of both shafts).

An important motivation for the development of the model is to allow investiga-

tion of robust and adaptive control solutions to specific failure modes. Should a

failure mode affect the fuel system, then the acceleration profiles would need to be

controlled via the speed rate regulators. Should a failure mode affect the variable

geometry or bleed systems, the compressor delivery pressure would be significantly

affected along with the relative pressure regulators. The performance of the engine

under these failure modes needs to be assessed and so several regulators have been

implemented. The aim is to keep the controller design as flexible as possible to

accommodate future research objectives.

The entire controller can be easily replaced (or switched off) by the user, to eval-

uate novel control designs.
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simulation

Up until this point we have given an overview of aero-engine characteristics and

discussed the theory behind the aero-engine simulation and the logic of its con-

troller. The practical implementation aspect - the simulation itself, also requires

some explanation. Here we discuss some of the most important practical aspects

of translating this theory into a simulation architecture: the simulation environ-

ment, its initialisation to steady state conditions and the implementation of the

aerothermal lookup tables. The nature of the feed-forward solution also has sig-

nificant implications for the simulation, and can lead to algebraic loops when a

component requires data from downstream. These are discussed towards the end

of this chapter.

The values of engine parameters and tuning values for the characteristic maps are

provided in the model and the startup scripts. There is little value in listing them

lengthily here. A description of the startup scripts, their uses and the parameters

they initialise can be found in the appendix (section A).
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5.1. The simulation environment

The model is implemented within the Matlab-SimulinkR© environment, largely as

an industry requirement. The use of Simulink for large simulations implies by ne-

cessity the use of Matlab code to supplement the Simulink environment, and the

choice of Simulink itself is dictated by the fact that it is an industry standard and

appears to be, at a first glance, an easily accessible platform. A key feature is that

it provides a graphical interface that allows the designer to visually subdivide a

simulation into block modules that correspond to physical components or logical

groupings. Whether in the long run this remains the most viable method of im-

plementing large simulations (and in particular those that do not benefit from one

of Simulink’s own toolkits) is open to debate: code that would be simple to imple-

ment in a conventional programming language, both procedural or object oriented,

can lead to intricate nested blocks and entanglements of weaved interconnects in

Simulink. In the author’s opinion, this can often obfuscate any residual intelli-

gibility. As is often said: “the devil’s in the details!”, and although the overall

simulation structure may be apparent at the top level, the details of the individual

modules can be devilishly intricate. However the presence of a large widget toolkit

for displaying values and implementing controls does make rapid prototyping easy,

and it is perhaps here that its strength lies. As shown in figure 5.10, due to the

graphical nature of Simulink the engine components are clearly visible on the top

layer of the simulation, making it easy to understand the parallel between the

simulation and the physical apparatus. Furthermore it is easy for anyone to copy,

paste and interconnect the individual modules without any programing knowledge.

The aero-engine model was developed for the purpose of investigating future strate-

gies for robust fault tolerant aero-engine control, hence we seek to provide an im-

plementation architecture that permits the model to be easily altered - to both
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simulate faults and to adapt it to different engine configurations if so wished. The

development process itself has these same requirements and this prompts the use of

Matlab scripts to load data sets that contain variables to be assigned to the main

workspace at startup. As an example of this, where possible all Simulink tables are

initialised using vectors loaded from the workspace. In this way, scripts can assign

initialisation values to all lookup tables, enabling core performance characteristics

of the model to be rapidly changed if required. This is the reason characteristic

map scaling is performed online while the model is running: each of the scaling pa-

rameters is a workspace variable that can be changed at startup via script (and in

this particular case also while the simulation runs, via the model’s “dashboard”).

Each script is usually tied to a single logical aspect of the simulation. Some exam-

ples of logically independent scripts are the initialisation of environment conditions,

the controller’s gain schedule, loading the engine’s characteristic parameters (to

define properties specific to this engine such as bypass ratio, nozzle diameter etc.)

and the loading and saving of the simulation’s states. Assigning scripts to specific

tasks also helps to keep track of the resources required for the simulation. Note

that all parameters can also be made time dependent if their values are provided

via “from workspace” blocks.

5.2. Initial development

The simulation is designed along the lines of the engine components - i.e. a fan

section, a high pressure compressor section, combustor, turbines and so forth. Al-

though the mathematical basis for each section may be in place, good values are

required at the boundaries of each module, otherwise the simulation will rapidly

degenerate into unphysical conditions. This is further exacerbated by the feed-
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forward nature of the simulation - an iterative solver would be more robust to

discrepancies at the interfaces of the modules.

Gas stream temperature, pressure and massflow data at several engine operating

points was provided by Alstom. From these values quite a few others can be de-

duced e.g. component efficiency, power consumption (under assumptions for fuel

flow and gas stream properties) etc. - however a number of important variables

remain unknown, notably the bleed extraction values and schedule, cooling flow

% and pressure, nozzle diameter and efficiency, rotor inertia, component heat-

soak values etc. Most of these have a considerable effect on both the steady state

and dynamic performance of the engine, therefore an iterative tuning process is

required to adjust the values of all variables until the engine performance is ac-

ceptable. The initial step towards this is to first tune each module in isolation.

This can be achieved by isolating each element via use of adjustable gains at all

connecting points. The advantage of this is that each module can be run inde-

pendently if so desired but can also be gradually integrated into the system to

evaluate the effect of interaction between the elements (i.e. a tendency towards in-

stability, rapid acceleration/deceleration, unphysical conditions at the boundaries

due to incompatibilities etc.), without inducing catastrophic failure and requiring

a full simulation restart. Fortunately, the self-stabilizing nature of the gas turbine

works to our advantage: if the values between the components are approximately

correct, the engine will settle into a steady state after some initial instability. How-

ever this does depend on what “approximately correct” may be. . . and considering

the small size of the storage volumes between the engine components and the enor-

mous massflow, there is in reality little margin for error.

The physics of the engine can be used to our advantage for the engine tuning: dur-

ing engine acceleration the engine components absorb heat from the gas stream
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and during deceleration they release it. However at steady state the components

are “heatsoaked”, i.e. in thermal equilibrium with the gas stream and no heat is

transferred (note that in practice a small quantity of the gas stream’s heat would

still be transferred to the components due to heat loss through the engine’s cas-

ing). Because the objective of initial tuning is to run the engine to steady-state

(at which heat transfer is nil), the quantity of heatsoak, which effectively acts

as a damper, can be momentarily increased to tame any oscillatory behaviour or

tendency to abrupt transients that the engine may undergo due to maladjusted

tuning during the initial startup (as an aside, note also that heatsoak itself plays

a significant role in controller tuning - allowing for much higher gains than would

otherwise be possible).

5.3. Simulation initialisation

Simulation initialisation is an aspect that is easily overlooked, however the choice

of an inappropriate method for saving and restoring the model’s states can lead

to massively time-consuming procedures at a later date (as we discovered to our

expense), not least because of Simulink’s compilation procedure. When first de-

veloped the model adopted a startup routine in use at the time at Alstom, but the

lengthy procedures required to restore state ordering when adapting and changing

the model - clearly a common activity during development, eventually prompted

a complete overhaul of this aspect of the simulation. The consequences for model

redevelopment (and linearisation) are far-reaching: the initial implementation is

difficult, but the longer-term time savings are dramatic. This new method is sup-

ported by Simulink, but appears to be largely undocumented.
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5.3.1. Simulink and the state array

The way in which Simulink saves and restores the simulation’s states between

sessions can be a major inconvenience when developing and maintaining a large

simulation. The Simulink default is to save the simulation’s states to the workspace

as an array. This can be used to initialise a model to a previously saved state

(see Simulink’s “Configuration parameters/Data Import-Export” section). This

ordered array contains the model’s states in the specific order needed to start the

simulation: by default Simulink does not save information that links the states

to the simulation elements for which they are required, relying instead upon the

ordering of the saved array being identical to that needed by the Simulink compiler

upon simulation startup.

The problem with Simulink’s default method is that the user has no control over

the order in which the states are required at initialisation, and that this order

is strictly enforced by the Simulink compiler (from this point of view, Simulink

effectively works as a black box). The model states are saved in the order that

they are required by the simulation, however should the simulation change and

elements be added or removed, this order may no longer be valid because Simulink

frequently rearranges the order of the states when the simulation is recompiled.

This can be the source of some confusion: for example, simply adding a block

that integrates an output value of the model (i.e. one upon which the simulation’s

progress is not dependent) - for example integrating fuel flow to calculate total fuel

consumption - can cause a reordering of states. The consequence of this is that

if the user saves a simulation and then subsequently adds a block to the model,

the previously saved simulation is unlikely to be able to resume. The user is then
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forced to reassign the states manually by assigning the correct state value to each of

the blocks required for startup. If the changes are minor and the model is by some

good luck still capable of starting up (although its results may be garbage), the

user can evaluate the ordering of the simulation states via the command [sizes, x0,

xstord] = vdp( [ ], [ ], [ ], 0), and then manually adjust the initial vector. However,

should this fail (as it frequently does), there is no choice but to manually replace

the initialisation values in each of the Simulink blocks. When there are a large

number of states (the current simulation had up to 68 at one point!), and the state

blocks are situated in multiple sublayers of the simulation, this can be an extremely

tedious and error prone process. Clearly this is a matter of some consequence when

developing a model that requires frequent changes and hundreds of tests, as is the

case here.

5.3.2. Assigning initial states by block address

The simulation’s dependency upon Simulink’s internal order of states is clearly a

source of problems. Fortunately there is a way around this, although with some

provisos of its own: a little known method of simulation initialisation is to set

the model’s states at startup via each block’s “address”, i.e. the path within the

simulation to each block that has an internal state. In this way, the states are

no longer linked to an order kept internally by the Simulink compiler but are

conveniently linked to the appropriate block via an address.

The onus is now upon the user to keep track of the simulation’s states: because

an absolute block address is used (unfortunately one cannot provide an address

relative to a top level main simulation block), Simulink is unable to find the state

blocks should the model’s name change. This can be resolved by parsing the

model’s filename at startup and inserting the current model’s name into the state
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structure for each block by using the “bdroot” command. For an example of how

this can be done see section B in the Appendix. This script manages the blocks’

addresses and also erases automatically any states linked to Simulink blocks that

are no longer present. A drawback to this method is that when a block that

requires an initial condition is added to the model, its address and values needs to

be manually added to the state structure prior to simulation startup. A script to

simplify this procedure can be found in section B in the Appendix: first highlight

the required block, copy its address (using the “gcb” command) and then run the

script. If the simulation is already able to start, the easiest way to begin using a

state block address approach is to simply have the structure created by running

the simulation and saving the final states to a structure. This is done through

the “Workspace I/O” tab in Simulink’s “Configuration parameters”. However it

may not be possible to get the model to run without correct initial state values

(or at least good guesses), particularly if it is a complicated model or if there have

been changes: it may be necessary to create the state structure programmatically

from the simulation. An example of how this can be achieved can be found in the

Appendix, section B.

5.4. Turbomachinery characteristic maps

The core aero-thermodynamic behaviour of the turbomachinery components is de-

fined by their “characteristic maps”. Each characteristic map is effectively a 4-D

plot of pressure ratio, referred speed, referred massflow and efficiency that encom-

passes the characteristics of the modelled turbomachinery component(see sections

2.2.1 and 3.4.3 for more details). Although simulation is used during the design of

most turbomachinery components, in practice these components show discrepan-
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cies from the theoretical, ideal behaviour and it is therefore experimental data that

is used in final design - the reason for characteristic maps. Furthermore, surge is

also verified experimentally as it is too complicated a phenomenon to be accurately

simulated [42]. With the inclusion of surge data an additional dimension is added

to the map - bringing the dimensions up to 5.

It is worthwhile taking a little time to discuss how these characteristic maps

are implemented in the simulation because they are a key element in the aero-

thermodynamic performance of the engine’s turbomachinery and therefore its over-

all performance. Their implementation, tuning, and limitations are discussed here.

The simulation uses “generic” turbine maps that have been adapted to be appro-

priate to the performance requirements of the modelled engine. While it is common

practice to use a map from a component of similar design and apply “factors” and

“deltas” to align its design point to that required, it should be noted that this is a

technique to provide only an approximate map for early engine off design perfor-

mance [18, 21, 33]. There are more sophisticated methods available, but most are

beyond the scope of the current simulation and require data that was not available

to the author. The suitability and detractions of characteristic map scaling are

discussed in [18, 21, 33]. Other methods of map adaptation and relative consider-

ations regarding component matching can also be found in [20]. A point to note

is that, as mentioned in [21]: “The traditional methods of scaling maps can lead

to significant error in component representations. This was recognised many years

ago and led to the development of programs which generate from only a few de-

sign points typical maps for fans, boosters and high pressure compressors”. Such a

detailed analysis is however beyond the scope of our current objective which is to

develop a detailed simulation that exhibits the complex dynamic performance of a

gas turbine and models its elements accurately (so that failure can be examined)
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- but without the additional complexity required for simulating the details of the

complex aerodynamic phenomena that can occur within the engine such as for

example, surge or combustion chamber conditions.

Such a simulation would also be well beyond the capacity of a single workstation,

particularly should the simulation be desired to run at real-time or near real-time

speed.

Therefore a clear note should be made of the fact that the characteristic maps

used cannot simulate extreme off-design conditions. Although the simulation itself

will not fail, this is because limits have been hard coded into the simulation and

therefore the simulation will run stably at the boundary of the simulation maps.

As noted in [33], under extreme engine partload conditions, as for example subidle

or windmilling, the operating points in the compressor map are located in a region

that is usually not covered by rig tests and the parameters generally used in com-

pressor maps are no longer appropriate. In short, as with all simulations, the old

adage: “garbage in - garbage out”, applies here.

5.5. Characteristic map scaling

An example of turbine maps that are suitable for adaptation are those shown in

figures 5.1-5.6. These are the characteristic maps used in the NLR GSP simula-

tion [28] and they are also used here after being appropriately scaled. However

any suitable characteristic map may be used (i.e. one that is not too dissimilar to

the component being modelled). Note that should the true characteristic map of a

modelled component be available then of course this scaling procedure would not

be necessary.
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The engine extremum operating points used for tuning and scaling are shown on

figures 5.1-5.6: desired operating positions can be plotted on the maps and then

matched to those of a given target engine via map scaling [28]. The map scaling

procedure requires temperature, pressure and massflow data at the component in-

let and exit over a range of engine speeds (the temperature difference and pressure

ratio over the component can then be used to calculate efficiency). Corrected shaft

speed is calculated and used to plot the engine’s operating point on the simulation

map (disregarding the dynamic element of pressure, which is relatively small until

0.4 Mach [42]).

A point worth mentioning is that, as can be seen in the turbine maps (figures

5.5-5.6), beyond a certain pressure ratio the massflow hardly increases: this phe-

nomenon is called “choking”. Notice also that the shaft speed shown is “corrected

speed” that has in addition been normalised to the maximum design rotor speed

of the shaft and therefore 1 corresponds to maximum (corrected) shaft speed for

a particular design of engine.
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Figure 5.1.: Fan duct characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.

Figure 5.2.: Fan core characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.
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Figure 5.3.: LPC characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.

Figure 5.4.: HPC characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.
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Figure 5.5.: HPT characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.

Figure 5.6.: LPT characteristic map. The left-hand arrow indicates the en-
gine’s low-regime operating point; the right-hand arrow indicates
the high-regime operating point.
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5.5.1. Map scaling formulae

For a compressor (or a fan) the conventional scaling formulae are as given below.

Massflow scaling:

ẇc = factor1 · wmap +∆1 (5.1)

Efficiency scaling:

ηi = factor2 · ηmap +∆2 (5.2)

Pressure ratio scaling:

π = [(πmap − 1) · factor3 +∆3] + 1 (5.3)

Corrected speed scaling:

n/
√
θ = nmap · factor4 +∆4 (5.4)

These same expressions apply to scaling a turbine characteristic map (as shown in

Figures 5.5-5.6), with the exception of the formula for pressure ratio, which is not

usually scaled for a turbine.

For each characteristic map a linear scaling value (e.g. factor1, factor2) and an

offset (∆) is required. ẇc is the non-dimensional mass flow rate, ηi is isentropic

efficiency, n/
√
θ is corrected shaft speed and π is the pressure ratio over the com-

pressor. factor2 is usually set to 1 and ∆4 to 0, i.e. the efficiency data may have

an offset but is not scaled linearly (and therefore care must be taken to not get

unreasonable values of efficiency very close to - or even greater than 1!) while the

corrected speed is scaled linearly, without an offset.

Target inlet and discharge values of pressure, temperature and massflow are avail-

able over a range of engine speeds for each component. However only the data
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points at the lowest and highest value of engine speed are used to adapt the map,

with the values in between being used to verify that the scaling works well at

off-design conditions.

Map scaling is usually undertaken when a new engine is being designed and is

achieved by choosing a scaling factor: a value that matches the reduction or in-

crease in size of the target component. Our task here, to design an engine simula-

tion that performs in agreement with real-world data, is not the standard scenario.

Usually maps are scaled when doing initial designs for an engine that is not yet in

existence, and the original formulae are then quite suitable. However, because our

objective is to match the performance of a target engine, an alternative formula-

tion of the above has been derived to suit our needs - i.e. matching a map position

to target pressure, temperature and massflow conditions. The advantage of this

scheme is that in these alternative expressions, the map positions and target values

are used directly, making it easy and intuitive to tailor the map scaling to a target

engine.

Each of the formulae above can be mapped to a single expression (note, however,

that for the scaling of efficiency a simple offset is often used, so this may not be

necessary):

x∗ = (x− a) · b
∗ − a∗

b− a
+ a∗ (5.5)

where a and b are the operating points chosen on the unscaled map for the low

rpm and high rpm setting respectively, and a∗ and b∗ are the target values for the

data set in consideration, i.e. one of pressure, temperature, massflow or efficiency.

x and x∗ are the independent and dependent variables respectively, i.e. x is data

to look up in the scaled map, for example looking up the corrected massflow or

efficiency for a given corrected shaft speed and pressure ratio), and x∗ is the scaled

data output. As an example, the conventional formula for scaling massflow can be
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expressed as equation 5.5 under the conditions that:

factor1 =
b∗ − a∗

b− a

and

∆1 = −a · (factor1) + a∗

This follows from:

x∗ = (x− a) · b
∗ − a∗

b− a
+ a∗

= x(
b∗ − a∗

b− a
)− a(

b∗ − a∗

b− a
) + a∗

whereupon it therefore follows that:

factor1 =
b∗ − a∗

b− a

and

∆1 = −a(
b∗ − a∗

b− a
) + a∗ = −a · (factor1) + a∗

Similarly the scaling formula for pressure ratio can also be expressed in the form

of equation 5.5. The conventional formula for map scaling for pressure ratio is:

π = [(πmap − 1) · factor3 +∆3] + 1

which is equivalent to:

π = x · (factor3) + (−factor3 +∆3 + 1)
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and again the expression is of the form:

x · (factor) + ∆

This can be expressed using starting and target map points a, b, and a∗ and b∗ as

before.

This alternative expression of the traditional formulae is more suitable for scaling

the characteristic maps to target design points because all that is required are suit-

able design points on the compressor and turbine maps, and target performance

values (for each of pressure ratio, massflow and corrected speed). Another benefit

is that this same expression can be used for all conversions, turning the conversion

element itself into a simple simulation module.

As mentioned previously, the gas stream data at the lowest and highest speeds

were used to scale the maps: the assumption is that if the maps are suitable for

the target engine and the design points are well chosen, the scaled map will per-

form acceptably also between these two extrema and the output data will match

well the target performance data. By using several design points, it is in theory

possible to adapt the performance maps to fit exactly the requirements of any

model for which sufficient data is provided, however this is in effect equivalent to

recreating characteristic maps entirely from the data provided (which is indeed

reasonable should there be sufficient data, but this is not usually the case as such

information is usually closely guarded by the engine manufacturer).

Equation 5.5 is applied in real-time to the characteristic maps. This might be

considered an excessive use of processing resources but it is of great use during

engine tuning and allows the model to be easily adapted by simply changing the

scaling parameters - which are set via scripts upon simulation initialisation and

can be further adjusted in the simulation’s “dashboard”. This online adaptation
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also allows verification of the engine operating point at any moment upon both

the original and scaled maps.

Although the maps can be adjusted to the design point of a target engine, without

a complete and thorough dataset there will be discrepancies between the operating

point on the simulation and the target engine. There are several possible factors

that can contribute to this: discrepancies between the efficiencies calculated, dif-

ferent fuel calorific content which would lead to a different fuel/air mixture, VBV

and VSV schedule, metering of cooling flow, pressure losses etc. Therefore al-

though the tuned maps may match precisely the operating points of the received

data, due to even minute discrepancies the operating point of the simulation will

drift away from these ideal values - and in general the discrepancies will not be so

minute (consider the huge amount of power generated by a turbine - a discrepancy

of a fraction of a percent in efficiency will have a noticeable effect upon the engine

operating point). It must also be remembered that the characteristic maps used

are not strictly equivalent to those of the reference engine: because generic charac-

teristic maps are used, although the simulation is tuned to the extrema of the data

provided and will match well at these points, the regions between these outlying

points are essentially interpolated data that is unlikely to match the desired per-

formance (for example efficiency might decrease/increase at a steeper/shallower

rate). All of these factors will contribute to the overall engine’s operating point

drifting immediately upon the start of the simulation until a new steady state -

different to that of the target engine, is reached. The aim is for this drift to be

minimal and with a good understanding of the factors involved and the principles

of turbomachinery it is possible, to a degree, to compensate for this and achieve a

simulation that has similar characteristics to those of the reference engine. With-

out sufficient data and the original characteristic maps, identical performance will
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not be achieved. The process of adjusting design values to achieve good matching

could be automated but this would be a major design effort in itself and is not

particularly useful for control design, where the aim is to achieve a good repre-

sentation of a typical turbofan engine - any standard turbofan -, and to design a

simulation architecture that is easily adjustable and modular. Our aim is not to

identically model a particular design of engine, although we have sought to match

a reference design for the purpose of validation.

5.5.2. Simulink implementation

Figure 5.7 outlines how the real-time map scaling is implemented in Simulink. The

simulation does not use an iterative solver and therefore does not require use of

“beta-lines” placed on the characteristic maps for compressor, turbine and derived

components (e.g. the fan). The beta parameter is used to avoid numerical con-

vergence problems during iterations towards the operating point solutions. With

the typical relations between corrected mass flow and pressure ratio for constant

rotational speed for these turbo-machinery components, either one of the variables

can become independent of the other. For example, the constant speed curve in a

compressor map can be nearly horizontal or nearly vertical. This causes numerical

problems, since for one rotor speed and pressure ratio, multiple values for mass

flow are possible. To avoid these numerical problems the beta parameter is added:

this is represented by arbitrary equidistant lines that range in value between 0 and

1 and are parallel to the surge line. The position along a beta line serves simply

as an array address.

Note that at the component inlet, PR and normalised speed are scaled in the in-

verse direction - i.e. we are mapping data from the model onto desired positions
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on the map, while for efficiency and massflow, the opposite occurs: we are map-

ping positions on the map to desired values of efficiency and massflow. Another

advantage of the scaling expression as defined above is that one simply has to

reverse a and a∗ and b and b∗ to get an expression suitable for scaling data from

the simulation to the map - it can be used as defined for data provided from the

map. In summary, data from the component’s inlet - i.e. the shaft referred (and

normalized) speed and pressure ratio are (inversely) scaled, and used to look up the

operating point on the original map. This returns values of efficiency and massflow

that are then scaled back up to to the values they would have on an adapted map.

Note the use of referred speed and massflow for the map lookup - massflow then

needs to be restored to its-non referred value for use in the simulation.

Figure 5.7.: Outline of the map lookup dataflow and scaling

5.6. Algebraic loops

Algebraic loops occur if a module requires data from elements downstream. This

is a major issue for the compressors and turbines because outlet pressure data

is required to calculate the pressure ratio across the component (see figure 5.7)
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and thus, via the characteristic map, the component’s massflow. It is also good

practice to calculate thermodynamic parameters based on a component’s average

temperature but this requires knowledge of the component’s outlet temperature

prior to its calculation by the simulation module.

If these algebraic loops are not specifically eliminated the Simulink loop solver

uses Newton’s method to iteratively find a solution [26]. Although the method is

robust, it is possible to create loops for which the loop solver will not converge

without a good initial guess for the algebraic states. An initial guess for a line in

an algebraic loop can be specified by placing an IC block (used to specify an initial

condition for a signal) on that line. Another way to specify an initial guess is to

use an Algebraic Constraint block.

An alternative method that is particularly advantageous for the current model is

to specify a one-time-step delay by using a “memory” block, thereby avoiding the

need for iterative calculations that would slow down the simulation considerably.

Thanks to the use of these delays the solution can be reached without the iterative

procedure that is generally required for the solution of the nonlinear equation

system. This is made possible by means of the approximations that are applicable

to real-time gas turbine dynamic models in consideration of the very short time

step used in the simulation.

5.7. Running the simulation

The top level of the simulation, as shown in figure 5.8, largely mirrors the diagram

of the closed-loop system (figure 4.1): the section at the left is the controller (figure

5.9), the right-hand section is the engine (figure 5.10), and the top section is the

“dashboard”. This last shows key engine and controller parameters, and contains
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the controls for running test cases.

5.7.1. Standard test cases

Within the dashboard block, the first group of blocks on the left triggers steady-

state test runs. These are labelled according to altitude, Mach Number and fan

speed. To the right are three key transient test cases:

1. Case 1. Sea Level Static, from 40% to 98% of maximum thrust.

2. Case 2. Environment conditions: 15000 ft (4572 m), Mach Number 0.45, from

50% to 98% of maximum thrust.

3. Case 3. Environment conditions: 35000 ft (10067 m), Mach Number 0.8, from

60% to 96% of maximum thrust.

Double clicking on one these blocks will start the relevant simulation run. Each

block calls a script: to see its name right click on a block, choose “block properties”,

move to the “callback” tab and browse to the “openfcn” section. The script is

then listed on the right-hand side. Note that scripts are placed in subdirectories

of the main simulation directory to permit related scripts to be grouped together.

Matlab would not usually be able to find these because they are not directly on

the working path, however in this instance the Simulink model automatically sets

all subfolders of its main folder to be on the search path. This is done via the

command “addpath(genpath(pwd))” and can be changed by locating the menubar

of any of the model’s windows and then browsing to “File\.. model properties \..

callbacks \.. PreLoadfunction.
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Figure 5.8.: Top level of the Simulink model
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Figure 5.9.: Simulink governor section
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Figure 5.10.: Simulink engine section
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Figure 5.11.: Simulink engine section - detail
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Figure 5.12.: Simulink engine section - detail
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Figure 5.13.: Simulink engine section - detail
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Figure 5.14.: Simulink engine section - detail
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Figure 5.15.: Simulink engine section - detail
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Figure 5.16.: Simulink engine section - detail
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Figure 5.17.: Simulink engine section - detail
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Figure 5.18.: Simulink engine section - detail
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5.7.2. Custom test cases

The easiest way of running a custom test case is via the block “startup conditions”

within the dashboard. Here the user can set the acceleration profile, ambient

temperature, Mach Number and altitude for a custom test run.

5.7.3. Saving and restoring simulation tests

Test data can be saved by clicking on the “save simulation data” block. The “load

simulation data” block allows the user to load a previous test case. A dialog box

asks the user to provide the name of a data file (a .mat file), a start time, and finally

the end time of the new simulation run: the simulation file stores the complete

dataset of a previous run and not just the last operating point, therefore a saved

run can be resumed from any point in time. If the requested start time is beyond

the end time of the saved data, the simulation will resume from the end of the last

run.

5.8. Summary

While the proceeding chapters looked at the modelling details of the simulation,

the purpose of this chapter was to look at the practical aspects of implementing

such a large-scale simulation: issues related to the practical implementation of the

simulation also require some explanation.

Here were discussed some of the most important practical aspects of translating

the theory into a simulation architecture, starting with a brief discussion of the

Matlab-Simulink environment and the simulation initialisation, before proceeding

to the implementation of one of the more elaborate simulation modules: the real-

time scaling and implementation of the turbomachinery characteristic maps.

123



6. Full envelope closed loop model

validation

This chapter presents the performance results of some key dynamic and steady-

state tests that validate both the engine performance and that of the controller.

These tests and key plots were peer-reviewed and published in the leading journal

of the field: the ASME Journal of Engineering for Gas Turbines and Power [25].

The overall control system architecture and results were presented at the 2008

American Control Conference [24].

6.1. Introduction

True to the scientific process, the simulation’s performance needs to be validated

against some benchmark. Several methods to validate the dynamic performance

of gas turbine simulations have been used in the past, e.g. [4] uses GasTurb [19]

(commercial software dedicated to gas turbine modeling) and [5] matches calcu-

lated performance to previously published results [34].

The current model and controller have been validated against dynamic perfor-

mance data for a comparable engine by analysing the resulting closed-loop perfor-

mance properties for a range of different pilot thrust demands against the type of
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responses required from a real turbofan engine.

Substantial work could be done to replicate exactly the performance of a specific

engine, however the objective is to provide representative baseline turbofan perfor-

mance for the purpose of testing overall controller architectures and not to match

exactly a specific engine design.

At the request of Alstom Aerospace some of the data in the performance plots be-

low has been normalized to remove the actual performance values used. However

the dynamic behaviour is still clearly visible and shows the expected trends.

The engine was tuned by running multiple tests, starting from first-principle val-

ues of key parameters and gradually adjusting these until the engine performance

closely matched that of our design target. As mentioned previously, one can con-

ceive of a tuning framework that can adjust all parameters automatically - but this

would be a very major undertaking in itself. The performance would never match

exactly that of the target without identical characteristic maps, and therefore an

averaging of the errors over all parameters, over all testing conditions, together

with a ranking in importance of the errors would be required. Add to this that it

is not simply a question of tuning parameters one at a time, but that the simulta-

neous adjustment of multiple parameters is often required for a beneficial effect to

be seen. . . this puts the magnitude of the task into perspective. Parameters were

instead adjusted manually using engineering insight into the roles they play in the

simulation, a lot of tests, and a large dose of patience!

6.2. Simulation time step

The model runs deterministically if a constant time step is applied, i.e. the simula-

tion results are repeatable. This means that with a powerful processor, the model
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is able to run aside engine hardware because the time step is defined, and the model

solution does not require an iterative procedure whose convergence time may vary.

This type of simulation has previously been referred to as a “real time transient

performance model” to emphasize this quality [42]. The model is also compatible

with the Real-Time-Workshop, a toolbox available in the Matlab-Simulink envi-

ronment that is able to automatically generate C language source code from the

Simulink scheme. This feature can be useful for developing a code for hardware-

in-the-loop applications.

While there are many “real time” transient performance models, the choice of an

aerothermal model is preferable to other methods involving crude approximations

of major turbomachinery elements via transfer functions. “Real time” is used

here to mean those models that do not involve an iterative procedure [42] and are

therefore, subject to sufficient processing power, most suitable for running along-

side hardware. However should the convergence time for an iterative model be

small and guaranteed, such a model would also be suitable. This is often however

not the case [42]. When, in a mass of gas at rest, a small disturbance results

in a slight local rise of pressure, it can be shown that a pressure wave is propa-

gated throughout the gas with a velocity which depends upon the pressure and

density of the gas. This velocity is the speed of sound in the gas and is known

as the sonic velocity. Therefore during rapid transients, pressures cannot change

instantaneously because of the finite volume between the components, and the

assumption of flow compatibility at all times is not exactly true, although it is a

good approximation. These gas dynamic effects occur only at the beginning of a

transient and have extremely small time constants in the region of kHz (time for

the effect to propagate through the storage volume) and therefore these dynamics

are often neglected as in the case of the present model. The choice of an explicit
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solver means that phenomena with a time constant smaller than the characteristic

time cannot be considered (we shall consider this to be one tenth of the time step

size).

For small plenum volumes there is a very steep rate of variation in pressure for any

variation in mass influx or efflux. Should the time step of the system be large, this

would lead to situations whereby the system would respond to massive changes in

pressure rather than to the gradual change that would occur for a smaller sample

time. An unphysical situation would arise when the changes in pressure that occur

result in the model exceeding the pressure ratio boundaries of the compressor or

turbine maps either downstream or upstream of the plenum. From this perspective,

the smallest possible timestep is desirable, however one should consider that the

compressor maps are in themselves approximations and an extremely small time

step will not necessarily realistically improve the simulation accuracy, although it

will indeed improve the solution accuracy. Furthermore, because the model incor-

porates numerous component maps, the tradeoff between solution accuracy and

time step is not readily analytically quantifiable, and determination of an overall

limiting time step is not easy. The smallest plenum will be the limiting factor

to the permissible time step and therefore solution accuracy needs to be carefully

tested should very small volumes be used, as would occur for multi-stage compo-

nent modelling. A way of testing for this is to repeatedly halve the time-step until

no difference in solution accuracy is noticed for an engine rapid transient such as

would occur during a pilot slam request. A good, conservative, constant time-step

for the current simulation is 10−4 seconds. This works comfortably even with basic

Euler numerical integration (Matlab ode1).
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6.3. Closed-loop validation: performance plots

In this section we show the results of three key performance tests. These test cases

are:

1. Case 1. Sea Level Static, from 40% to 98% of maximum thrust.

2. Case 2. Environment conditions: 15000 ft (4572 m), Mach Number 0.45, from

50% to 98% of maximum thrust.

3. Case 3. Environment conditions: 35000 ft (10067 m), Mach Number 0.8, from

60% to 96% of maximum thrust.

Overall performance of the model and controller during a slam acceleration and

deceleration can be seen in figures 6.1-6.3.

Figures 6.4-6.6 show the individual fuel demands of the active regulators during

a pilot request for an abrupt increase in thrust in the time span of half a second.

Figures 6.7-6.9 show the active regulator demands during a similar deceleration.

Figure 6.10 show the final controller demand after the controller’s selection logic

has been applied to the output of all regulators. This is essentially the fuel de-

mand - the controller output is converted into fuel demand in a separate module

to permit the engine to use fuels with different calorific content. The results have

been staggered for clarity. As can be seen in test case 3, at 35000 ft the engine

consumes a fraction of the fuel it consumes at sea level - which is one of the reasons

why aircraft fly at high altitude!

By comparing the controller output of the three tests (figures 6.4-6.9) to figure

6.10, it is apparent that the controller has selected the smallest of the regulators’

demands during acceleration, and that the transfer between these is smooth. Con-

versely, it has selected the largest of the regulators’ demands during deceleration.

The overall controller output is a smooth ramp and engine acceleration proceeds
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accordingly until maximum thrust has been achieved. This is apparent in figures

6.1-6.3, which show the engine’s response to the pilot’s demand: although the

request is abrupt, the engine acceleration is smooth. As can be seen in the plot

inlays, there is a slight overshoot and undershoot however the overshoot does not

exceed 0.6% and the undershoot never exceeds 1.2% - this is within the FAA re-

quirement of a deviation in thrust of not more than 2% [17].

Plots 6.11-6.13 show the active regulators for these test conditions. The numbers

along the ordinate of the plot indicate the active regulator: 1 is the fan speed

(LP shaft) regulator, 8 is the fuel flow increase rate regulator, 4 is the HP shaft

rate of acceleration regulator, 7 is the maximum fuel regulator, 15 is the fuel flow

decrease rate regulator, 12 is the HP shaft rate of deceleration regulator and 13 is

the minimum fuel regulator.

For the first test, figure 6.11, the engine is at steady state until time t=40 and

the engine is controlled by the fan speed demand regulator. Upon a pilot request

for an abrupt acceleration, the fuel demand of the fan speed regulator rapidly

ramps up. At approximately t=40.01, the active regulator briefly switches over to

regulator 8 - fuel flow increase rate. During the remainder of the acceleration the

engine is controlled by the HP shaft maximum acceleration rate regulator (number

4), the fuel flow increase rate regulator (number 8) and the maximum fuel regu-

lator (number 7, at time t=45-46). As the target speed is approached, control is

switched back to the fan speed regulator. This then requires a shaft deceleration

as a small overshoot occurs, thereby activating the high pressure shaft deceleration

regulator (number 12, at time t=47-47.5) before control finally returns to the fan

speed regulator.

The inverse process occurs after t=90.5, upon engine deceleration: the fuel flow

decrease rate regulator is the first regulator to take over from fan speed but is
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subsequently replaced by the HP shaft deceleration regulator. The overall con-

troller output is a smooth ramp and engine acceleration proceeds accordingly until

maximum thrust has been achieved. The profile is similar for the other two cases,

with the exception that the high pressure shaft deceleration regulator no longer

needs to intervene upon correction for fan speed overshoot.

Figure 6.1.: Relative thrust and demand - case 1
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Figure 6.2.: Relative thrust and demand - case 2

Figure 6.3.: Relative thrust and demand - case 3
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Figure 6.4.: Regulators upon acceleration - case 1

Figure 6.5.: Regulators upon acceleration - case 2
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Figure 6.6.: Regulators upon acceleration - case 3

Figure 6.7.: Regulators upon deceleration - case 1
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Figure 6.8.: Regulators upon deceleration - case 2

Figure 6.9.: Regulators upon deceleration - case 3
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Figure 6.10.: Engine fuel demand: case 1-3

Figure 6.11.: Active regulator - case 1
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Figure 6.12.: Active regulator - case 2

Figure 6.13.: Active regulator - case 3
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Figures 6.14 and 6.15 show the massflow through the engine. The latter figure

also includes the air from the bleed valve placed between the LPC and the HPC.

As can be seen the massflow through the engine is less in test case 3 (35000 ft

and 0.8 Mach), although the aircraft is travelling at a greater speed [mach 0.8].

This is due to the reduction in air density at high altitude. Figure 6.16 shows the

massflow at the exit of the LPT - compare this to figure 6.14 to see the reduction

in massflow that occurs due to engine bleeds.

The massflow passing through the engine core is significantly affected by the vari-

able bleed valves and the variable stator vanes. Figure 6.17 shows the percentage

of massflow extracted during the three cases and figure 6.18 shows the bleed valve

position. As can be seen, the VBV position and percentage of massflow extracted

are linearly proportional - this is the simplification used in the model. The VBV

are scheduled versus corrected low pressure shaft speed - using corrected speed

takes into account the variations in engine inlet conditions. A greater percentage

of air is extracted at low engine speeds, due to the increased risk of surge at low

speed. The purpose of the VBVs is to lower the operating point of the engine’s

high-pressure compressor (see also Section 2.2.2). The variable stator vanes (VSV)

are similarly scheduled with corrected high-pressure spool speed.

Cooling flow to the HPT is discussed in Section 3.4.5. Figure 6.20 shows the

massflow channeled to the the HPT.
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Figure 6.14.: Fan massflow - core section

Figure 6.15.: Fan massflow (inclusive of bleed air) - duct section
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Figure 6.16.: Engine massflow at exit

Figure 6.17.: Variable bleed valves (VBV) - percentage of massflow extracted
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Figure 6.18.: VBV position

Figure 6.19.: VSV position
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Figure 6.20.: Cooling flow to HPT

What makes turbines engines particularly suitable for aircraft is their very high

power-to-weight ratio. Figure 6.21 shows the total power output by the engine’s

turbines. This massive power can also be the source of problems - it is not cost-

effective to use a gearbox to obtain a higher bypass ratio because a gearbox sturdy

enough to withstand such massive torque would offset the gains in efficiency (and

would add a critical point of possible catastrophic failure to the engine’s compo-

nents). The following images show the percentage of total output power used by

the fan (figure 6.22), HPC (figure 6.23), and LPC (figure 6.24) respectively. The

HPC consumes the lion’s share due to the high compression achieved over this

stage, followed on closely by the fan. This barely compresses the gas stream, but

moves a vast volume of air as shown in figures 6.15, 6.14 and 6.26.

The high pressure ratio of the HPC is the cause of its massive power consump-

tion, this is shown in figure 6.27. The engine’s overall pressure ratio is obtained
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by multiplying the pressure ratios achieved over fan core, LPC and HPC and is

shown in figure 6.28. As can be seen, the large surges in HPC pressure ratio during

acceleration are small in comparison to the overall pressure ratio.

HPT inlet temperature is a limiting factor for turbine technology. However ther-

modynamics proves that the hotter the engine runs, the greater the achievable

efficiency. Therefore engines aim to run with the highest possible HPT inlet tem-

perature considering the metallurgical and mechanical limits of the turbine blades.

The HPT inlet temperatures are shown in figure 6.29.

Figure 6.21.: Total output power of the turbines
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Figure 6.22.: Fan power consumption - percentage of total power output

Figure 6.23.: HPC power consumption - percentage of total power output
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Figure 6.24.: LPC power consumption - percentage of total power output

Figure 6.25.: Engine net power
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Figure 6.26.: Total engine massflow

Figure 6.27.: HPC pressure ratio
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Figure 6.28.: Overall compression ratio

Figure 6.29.: HPT inlet temperature
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6.4. Summary

This chapter presented the performance plots of key dynamic and steady-state

tests. These tests occur under a wide range of operating conditions:

1. Case 1. Sea Level Static, from 40% to 98% of maximum thrust.

2. Case 2. Environment conditions: 15000 ft (4572 m), Mach Number 0.45, from

50% to 98% of maximum thrust.

3. Case 3. Environment conditions: 35000 ft (10067 m), Mach Number 0.8, from

60% to 96% of maximum thrust.

These figures show the dynamic performance of both the engine and the benchmark

controller under rapid acceleration, decelaration and at steady state conditions.
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By way of conclusion we now summarise the main contributions of this dissertation

and outline some recommendations for future research in the area of aero-engine

simulation.

7.1. Review of contents

First, a brief review of what has been presented:

Chapter 2 introduced the architecture and design principles of the turbofan aero-

engine. The effect of the engine environment (namely frontal velocity, altitude and

ambient temperature), and key aerodynamic phenomena such as surge and other

transient effects were discussed along with performance requirements.

After the necessary introduction of chapter 2, the following chapter provides fur-

ther details about the target engine, the engine components and how they work

together. Then follows the details of how key components of the turbofan can

be modelled. Key aerodynamic and physical phenomena are discussed further.

Novel simulation elements are explained in detail: this includes heat soak, cooling

flow and the core and duct nozzle. The overall simulation architecture - a lumped

element model with a feedforward solution, known as an “aerothermal transient

performance model” is outlined and compared with alternatives.
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Chapter 4 outlines the control problem. A switched, gain-scheduled aero-engine

controller with bumpless transfer and anti-windup has been implemented. While

the architecture is an industry standard, its implementation in Simulink has been

completely redesigned so that it is now easy to add additional control loops and

organize a hierarchy of controls. This architecture is analyzed and plots of its

performance and tracking are shown in order to explain its operation.

Chapter 5 moves onto the more practical aspects required for implementation of

the engine model as outlined in chapters 3 and 4. The pros and cons of the Matlab-

Simulink environment are discussed, along with some of the “tricks of the trade”

required for initialisation of a large simulation.

Although the theory of the turbomachinery components was discussed in chapter

3, their implementation in Simulink requires some extra thought - it has been

shown how the characteristic map scaling is implemented in a fashion suitable to

the task at hand: matching the performance of a target engine. Via a simple

reformulation of the conventional formulae we are able to succinctly implement

a scaling module that is suitable for massflow, pressure and referred speed. To

allow the scaling to occur and be adjusted in realtime, rather than scaling the

component’s characteristic map, the data is scaled instead: onto the characteristic

map at the component’s inlet, then at the outlet data is scaled from the map to

the target values required in the simulation. A brief discussion of the issues of

algebraic loops that occur when providing each map with pressure ratio and how

these can be solved is given at the end of the chapter.

Chapter 6 shows the performance plots of the engine - the key plots that charac-

terise the performance of this particular engine, and those that show key charac-

teristics of aero-engines in general and turbofan engines in particular. Some plots

of engine and controller performance were shown in chapter 3 to aid in understand-
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ing the operation of the controller. Here additional test cases are introduced to

detail the steady-state and dynamic performance of the engine at sea-level static

conditions, then at 15000 feet and 35000 feet of altitude with respective frontal ve-

locities of 0.45 and 0.8 Mach. The engine shows characteristic turbofan behaviour

and the controller performs well, with minimal overshoot or undershoot that is

well within the FAA requirements.

7.2. Contributions of this dissertation

This thesis has presented the details of the design, implementation and validation

of a complex nonlinear realtime simulation model for a civil turbofan aircraft

engine, with an associated gain-scheduled feedback control system.

For the control engineer and mechanical designer alike, some of the key features of

the model are its flexibility, modularity and ability to easily handle the nonlinear

dynamic features of the engine model. It seems that, in other available models,

these features are either partially absent, difficult to enable or only available with

input from the model developers. In contrast, these features are all inherent in the

model described within this thesis and therefore, it is relatively easy to “plug-and-

play” different components or control schemes and accurately assess their impact

on the dynamic behaviour of the system as a whole. Such flexibility is clearly

desirable for industrial practitioners and researchers alike. In fact, the model

developed in this thesis has now been adopted by Alstom Aerospace for their

routine use [41].
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7.2.1. Engine developments

The model was developed in a modular fashion using where possible the underlying

physics and avoiding empirical approximations. This allows us to achieve a greater

degree of independence from empirical data from a manufacturer and allows the

model to be easily adapted to a new engine design: the basic physics still holds.

Similarly, failure cases would not be covered by standard operating range empirical

data.

For this purpose, a model of the core nozzle that is suitable for a non-iterative

model has been implemented from basic theory. Should the model change, it is

sufficient to change the nozzle diameter (and perhaps adjust the efficiency, although

that is unlikely to be required unless the changes are dramatic) - it is therefore

not necessary to have a full performance dataset over the entire operating range.

The turbofan duct is also implemented as a nozzle - this allows fan power con-

sumption to be accurately modelled based on fan duct and core pressure ratio, and

not as a percentage of output power - this has the same benefits of not requiring

a full data set over the entire operating envelope.

The fan consumes a major portion of the engine’s power, therefore an accurate

model of this element is highly desirable to obtain a good match with dynamic

performance: although the pressure ratio achieved by the fan is small (depending

on the engine design, between 1.5-1.9 for the duct section), the massflow is enor-

mous, often well above 300 Kg/s so the consequences of inaccurate performance

data would be large. The fan is implemented as two sections: a core and a duct

section, each with its own characteristic map.

Cooling flow is also implemented using a formula that although empirical in origin

allows physical parameters to be used to define cooling flow: namely the radius

of the cooling flow outlet and the difference in pressure between the high pressure
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compressor and the high pressure turbine. The benefit of this is again that for a

changed design it is sufficient to scale a single characteristic value to get accept-

able performance over the operating range. With just one datapoint (comprised of

inlet and outlet pressure and cooling massflow) the cooling flow parameters can be

determined for the entire operating range - rather than requiring a grid of cooling

flow datapoints that covers the operating range.

Map scaling is made much easier with a reformulation of the key formulae: if one

has target positions on the characteristic maps and target performance data, these

can be used directly in the scaling formulae. Furthermore, this new expression is

suitable for scaling data at both component inlet and outlet by simply reversing

the map and target operating points (further details are in Chapter 5, Section 5.5).

The scaling is performed in realtime (by scaling the data and not the maps) which

allows the map scaling to be adjusted while the simulation is running which greatly

simplifies engine tuning. Any momentary adjustments to the baseline scaling pa-

rameters can be recalled at startup or simply reset to test alternative adjustments.

Heatsoak is implemented in the simulation. Again, data for this was lacking so

the heatsoak values of an industrial engine were scaled down to match the mass of

a representative aero-engine. The theory behind its use is outlined in chapter 3,

Section 3.4.2.

7.2.2. Controller developments

A switched gain scheduled feedback controller incorporating bumpless transfer and

antiwindup functionality was designed and implemented on the engine model in

accordance with current industrial practice. Together the engine and controller

cover the full flight envelope (with the exception of startup and windmilling) and

achieve dynamic performance that closely matches that of a real engine. The con-
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trol scheme corresponds closely to current industrial practice and delivers high-

performance tracking of pilot demands while ensuring that the operating con-

straints of the engine are met at all times. The architecture of the regulator is

analysed in chapter 4.

The implementation of this controller has been completely redesigned from scratch.

The gain-schedule is not hard-coded into the simulation but is provided by a script.

To aid with rapid tuning the script allows the gains to be interpolated according

to altitude and fan speed (it would be more appropriate to use the sum of fan and

HPC power consumption - but this is data that will change upon a new target

design and while the engine is being tuned, so it is best to work with what does

not change significantly: a target fan speed and altitude). It is a compromise, but

one that works well. The gains can also be manually scheduled over the range and

not simply interpolated.

The architecture implementation was redesigned so that the output of all indi-

vidual controllers that go into a “maximum” or “minimum” block is compared

simultaneously rather than in a cascade fashion, while informing all controllers of

the active controller. This allows the number of elements controlled by the engine

regulator to be easily extended.

7.3. Recommendations for future work

7.3.1. Future modelling work

The engine in this study is considered in isolation. The model could benefit greatly

from being coupled with a simple airframe simulation for the purpose of modelling

a true correspondence between achievable frontal velocities and thrust and alti-

tude. Our test cases do take this into account - the frontal velocity is within the
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range of that achievable with a reference airframe, i.e an aircraft flying at the given

altitude with a similar engine at full thrust would achieve approximately the test

case velocity. However with even a simple model, it would be possible to greatly

extend the number of test cases and reduce reliance on external data.

Indeed the author does not recommend further extensions to the engine simulation

itself unless there are guarantees of obtaining the necessary data directly from an

engine manufacturer: much of what can be done with generic data is already in

place - and therefore further work in this direction would be extremely difficult (if

not impossible) without extensive support. That said, on the premise of such data

being available, the simulation could then be easily extended to include failure

cases. However failure data (such as the effects of bird strike) is necessarily very

engine specific, detailed, and expensive to produce and is (in the author’s opinion)

much less likely to be available than generic data - which can itself be difficult to

get hold of.

Looking at a worst-case scenario of little to no further data being available, the

first targets for investigating failure scenarios should be engine elements that are

already implemented and that can fail in a fixed state: the obvious targets for this

would be the variable bleeds - these could be modelled as stuck at the always on

or off position or indeed anywhere in-between, and would have a dramatic effect

upon the high pressure compressor.

It should however be noted that for civil aircraft the pilot’s response to most seri-

ous failure cases would be to simply shut down the engine. The aircraft operator

will not risk damaging a very costly investment by running the engine at condi-

tions that could require an overhaul (such as high turbine inlet temperature) if

the aircraft can limp home without the engine running: commercial aircraft have

at least two engines, and can fly to the nearest landing point on the remaining
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engine.

In summary, industry with its resource of test data can benefit from the engine

model in many ways: the simulation can be used to implement failure scenarios

and because of its modular design based on scripts and the avoidance of empirical

approximations, the model can be easily adapted to match the performance of

specific engines and used as a validation tool - indeed Alstom Aerospace has used

the model during the course of the past year to produce engine operating points

and failure conditions for the purpose of assessing condition monitoring tools.

A further use, suitable for both industry and academia, is to use the model to

assess and prototype novel control schemes: i.e. as a testing tool for control de-

sign. This model is, to the best of the author’s knowledge, one of the most fully

featured non-proprietary aero-engine models implemented in the Matlab/Simulink

environment. This is a familiar platform for control engineers and the graphical

nature of Simulink makes it easy to tap into the engine’s data streams, without

requiring an understanding of the overall simulation.

7.3.2. Future control work

Should the existing controller architecture be retained, there is scope for improving

the gain scheduled tuning of the individual PI loops and reexamining the present

anti-windup strategy which is an ad-hoc scheme that performs well for the current

range of the model but that is without sure guarantees of performance (as is PI

gain scheduling itself).

With some provisos, the model can be extended to include various sources of un-

certainty, faults, and failure scenarios. Control schemes that aim to achieve robust

fault tolerant performance can therefore be tested on this platform.
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Current gas turbine control algorithms are usually designed from a worst-case

scenario perspective, to guarantee steady state operating points and transient per-

formance in spite of phenomena such as engine deterioration over its lifecycle,

engine scatter or heat effects, and faults/damage. As a consequence, present con-

trol systems have large safety margins that restrict the achievable overall engine

performance. The ability of current generation engine control algorithms to cope

with unexpected faults and/or damage to the engine is also limited, and in practice

is often reliant on the conservatism of the original design providing robustness to

such events.

Because of the safety implications of the nature of our application, the robust-

ness of any applied controller is of vital importance [9]. The first step in control

design is building a sufficiently accurate mathematical model of the plant - and

that has been achieved here. The term sufficiently accurate is used because, apart

from very simple systems, having an exact mathematical model of a physical plant

is almost impossible. So by modelling we aim to adequately capture essential

features of the plant for analysis and control synthesis. This abstraction neces-

sarily introduces system uncertainty which is the difference between the nominal

mathematical model and the actual physical plant. System uncertainty generally

includes other concepts such as the imperfect knowledge of the system dynamics

and unknown or uncertain system parameters. Hence, any effective control system

should be, up to some degree, robust against uncertainties. In addition to system

uncertainty, an applicable controller must be capable of dealing with environmen-

tal uncertainties such as noise and other (bounded) disturbances.

Currently, one of the most promising control techniques is gain scheduling achieved

by interpolating controllers synthesized at different linearized operating points

throughout the flight envelope [31]. As discussed in [31], during the past 15 years
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work has been developed for gain scheduling, resulting in the so called LPV (Linear

Parameter Varying) models. This method offers a theoretical framework to ensure

stability, performance and/or robustness of the controlled system via convex opti-

misation over LMI (Linear Matrix Inequalities).

From a control engineering perspective, one of the main issues with the current

model is that no linearisations have currently been developed. Virtually all stan-

dard control system design tools, aside from those based on empirical tuning rules

or fuzzy-logic etc, begin from linear mathematical models. It is well-known that

with this starting point, it is possible to design controllers with stability, robust-

ness and performance guarantees, and that many powerful design techniques can

be invoked. While, in this case, it was seen that the dynamics of the engine al-

lowed successfull controller tuning to be achieved by directly using the nonlinear

model, it would clearly be desirable for these controllers to be accompanied by

classical robustness measures such as gain and phase margins, along with other

performance metrics. It is also noted that virtually all gain-scheduled control algo-

rithms (including so-called linear-parameter-varying (LPV) control methods) are

based to some extent on linear models. This is also broadly true of most adaptive

control methods as well.

However, linearisation of a complex model, such as that described in this thesis,

is not a trivial task. While Matlab contains several dedicated functions to trim

and linearise nonlinear models they are not always easy to work with and, in-

deed, it is standard practice for developers of complex nonlinear models to develop

their own trim/linearisation routines which work specifically with a given model.

Furthermore, finding linearisations around certain equilibria may be difficult or

impossible. While some attempt at linearising the current model with the Matlab

routines was made, it was found that linmod in particular failed to find accurate
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linear models. This is a well documented problem; see [14] for further reading.

Thus, while the lack of a set of linear models accompanying the nonlinear model

is unfortunate, it was felt that the trimming and linearisation task was too great

to be conducted during the duration of this research and is therefore left open for

future study. It is noted that, as this model is purely open-source, any interested

party could begin development of such routines.

Adaptive control (considered as other than gain-scheduling) could also have a

strong role to play in future control design: the aim of adaptive control is to self-

adapt automatically engine control algorithms in order to improve the capability

to handle faults and engine damage, and improve overall engine performance by

reductions in conservative safety margins. Other gains that could be expected

from the introduction of adaptive control include an increase in engine component

life and decreased specific fuel consumption through more accurate control of the

surge margin.

To date, very few applications of adaptive control have been developed and mar-

keted for gas turbine engines. For aircraft engines, adaptive control has been ap-

plied to restricted and specific cases such as torque adaptation on selected turbo-

shafts, or adjustment of the LPC working line and thrust adaptation on some

military gas-turbine engines. However, adaptive control of the overall engine is

not currently implemented on any civil aero-engine (or even on military engines).

The main reason for this is that gas turbine engines are classed as safety-critical

systems, e.g. for aircraft engines, the safety of the overall aircraft and its occu-

pants is critically dependent on the correct functioning of the engine. This places

stringent analysis and certification requirements on aero-engine control systems. In

particular, overall stability of the closed loop engine control system in the presence

of uncertainty and disturbances must be clearly demonstrable, through both ana-
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lytical analysis and computer simulation. This issue represents a major problem

for many adaptive control schemes, which because of their time-varying nature,

do not come with strong stability guarantees. In particular, methods to suitably

constrain and monitor the adaptation of feedback controllers so that serious per-

formance degradation or even instability cannot occur are crucial if such schemes

are to be implemented on safety critical systems.

Optimal state space control [22, 43] and robust model-based control [12] have also

been applied to gas turbine control. In recent years there has been considerable

research on the application of multivariable gas turbine controllers. Most apply

a linear fixed controller to the highly nonlinear plant which may not be the most

suitable control strategy [37]. Artificial neural networks have also attracted a lot

of attention because of their ability to approximate nonlinear relationships [37].

In summary, suggested future work would be to focus on extending the model to

include various sources of uncertainty, fault and failure scenarios and on extending

the control scheme to deliver robust fault tolerant performance.
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A. Key simulation scripts

CASE1.m

Calls in the correct sequence all script files required for the predefined test case 1.

CASE2.m loads the sequence for test case 2 and so forth.

SIM Stop.m

Ensures the simulation is stopped. While not strictly necessary, this is a useful

location for simulation maintenance code, e.g. to store workspace contents and

clear workspace variables when running batches of test cases etc.

CounterScript.m

This file was used to call a function that loads into a sub-workspace the number of

the current simulation run. This is useful for running multiple test cases - which

requires the workspace to be cleared between runs. A sub-workspace can store

the number of test cases run so far, allowing the next test case to be called up

automatically. This is now legacy code and simply sets the counter variable to 1.
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LoadInitialStatesCASE1.m

This file loads workspace data from a “.mat” data file, controls the simulation

starting time and calls the function “CheckInitialStates” which is responsible for

checking and, if required, reformatting the state blocks’ addresses. It also loads

the initial conditions of the simulation’s memory blocks.

CheckInitialStates.m

The Matlab function responsible for ensuring that the states recalled are linked to

the correct Simulink block by formatting the block address should the simulation

name change. It also removes from the state structure any states that are no longer

present in the model.

EnvironmentConditionsScriptCASE1.m

Recalls the parameters for the several steady-state and dynamic test cases.

EngineParameters.m

Recalls key engine parameters (that tune the engine to the target profile) and also

the map scaling parameters.

PI Gainschedule.m

Stores the values of the controller’s gain-schedule and places them in the workspace

in a format suitable for the Simulink lookup tables. In accordance with the flexible

architecture of the controller’s implementation, this script is designed to permit

the number of variables controlled to be easily extended.
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PIgainscheduleInterpolation.m

This function interpolates the gain values according to altitude and fan speed. It

would be more appropriate to interpolate based on the sum of fan and HPC power,

but this is data that will change upon a new target design and while the engine is

being tuned, so it is best to work with what does not change significantly: a target

fan speed and altitude. It is a compromise, but one that works well.

PI Fixed Limits.m

Sets the fixed limits of the controller.

SIM Starter.m

The partner to “SIM Stop.m”.
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Startup scripts - test case 1

%-------------------------------------------------- ------------------ 1

run SIM_Stop 2

3

%clear all 4

5

MAPTUNINGSWITCHval=0 % when this is called the model will us e the 6

% original map tuning parameters. 7

% See EngineParameters.m 8

9

run CounterScript 10

run LoadInitialStatesCASE1 % sim start time is also specifi ed here 11

run EnvironmentConditionsScriptCASE1 12

run EngineParameters 13

run PI_Gainschedule 14

run PI_Fixed_Limits 15

run SIM_Starter 16

%-------------------------------------------------- ------------------ 17

Initial states and memory block initial values

%-------------------------------------------------- ------------------ 1

% model initialisation script 2

%-------------------------------------------------- ------------------ 3

4

initfile = char(’INITconds_SLS_1500’) 5

eval([’load’ initfile ’tout xout memout * M* 0 H* 0 T* 0 conout GOV... 6

p3s T3 xFinal’]); 7

8

tstartip = char(’0’); 9

tstopip = char(’10000’); 10

11
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tstart = round(min(eval(tstartip),max(tout))); 12

index1 = min(find(tout >= tstart)); 13

14

if (isempty(index1)) 15

[index1,index2] = size(tout); 16

tstart = round(tout(end)); 17

end 18

19

tstop = eval(tstopip); 20

21

% uncomment to change simulation start time if needed 22

% tstart=0 23

24

xin = xout; 25

xin=CheckInitialStates(xin, index1); 26

27

%-------------------------------------------------- ------------------ 28

% memory block initialisation 29

30

meminit_01 = memout_01(index1) 31

meminit_02 = memout_02(index1) 32

meminit_03 = memout_03(index1) 33

meminit_04 = memout_04(index1) 34

meminit_05 = memout_05(index1) 35

meminit_06 = memout_06(index1) 36

meminit_07 = memout_07(index1) 37

meminit_08 = memout_08(index1) 38

meminit_09 = memout_09(index1) 39

meminit_10 = memout_10(index1) 40

meminit_11 = memout_11(index1) 41

meminit_13 = memout_13(index1) 42

meminit_14 = memout_14(index1) 43

44

meminit_015 = 0; 45

meminit_016 = 0; 46

meminit_017 = 2001; 47

%-------------------------------------------------- ------------------ 48

Saving a simulation run

%-------------------------------------------------- ------------------ 1

% save simulation data, ONLY WORKS IF SIMULATION PAUSED 2

%-------------------------------------------------- ------------------ 3

4

namesys = bdroot; 5

simstatus = get_param(namesys,’SimulationStatus’); 6

7

if ((simstatus(1) == ’p’)|(simstatus(1) == ’s’)) 8

9
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disp(’ ’); 10

11

prompt = {’Enter name of * .mat file to save run data to:’}; 12

title1 = ’Input for saving simulation data’; 13

lines = 1; 14

def = {’runxxx’}; 15

answer = inputdlg(prompt,title1,lines,def); 16

17

savefile = char(answer(1)); 18

19

eval([’save ’ savefile]); 20

disp(’ ’); 21

disp(’simulation data SAVED’); 22

%-------------------------------------------------- ------------------ 23

% continue the simulation if paused 24

if (simstatus(1) == ’p’) 25

set_param(namesys,’SimulationCommand’,’continue’); 26

disp(’ ’); 27

disp(’simulation CONTINUE’); 28

disp(’ ’); 29

end 30

31

else 32

disp(’ ’); 33

disp(’WARNING simulation data NOT SAVED’); 34

disp(’PAUSE or STOP the simulation to save the data’); 35

end 36

%-------------------------------------------------- ------------------ 37

Absent states and block addresses

%-------------------------------------------------- ------------------ 1

function xin=correctinitialstates(xin, index1) 2

%-------------------------------------------------- ------------------ 3

xin2=xin; 4

forit1=length(xin.signals); 5

index02=0; 6

NumBlocksNotFound=0; 7

missingstatesindex=0; 8

%-------------------------------------------------- ------------------ 9

for a=1:1:forit1; 10

blockstatenameslist(a,1)={xin.signals(a).blockName} ; 11

%-------------------------------------------------- ------------------ 12

% this section replaces the old model name as found in the stat e 13

% list structure, e.g. xin, with the current model name. 14

15

seps=findstr(blockstatenameslist{a}, ’/’);% the "/" in t he name! 16

firstseps=seps(1); 17

CurrModelName=bdroot; 18
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SavedModelName=sscanf(blockstatenameslist{a}, ’%c’, ( firstseps-1)); 19

if strcmp(CurrModelName,SavedModelName)==0 20

%warn if the model name has changed! 21

disp(’model name has changed...’); 22

end 23

%replace saved model name with current name. 24

blockstatenameslist{a, 1}=regexprep(blockstatenamesl ist{a},... 25

SavedModelName,CurrModelName); 26

27

%-------------------------------------------------- ------------------ 28

% Section eliminates from state list any states not found in t he 29

% current model.Note that the current model name needed to be 30

% inserted prior to this otherwise all states will be erased! Note 31

% this script can automatically REMOVE states, but cannot 32

% automatically discover new ones - these need to be added wit h the 33

% command "gcb" and the utility script "writeAnewState.m". 34

35

b=blockstatenameslist{a}; 36

try, 37

d=get_param(b, ’Handle’); 38

catch, 39

clear(’d’) % inserted for safety - might be redundant 40

missingstatesindex=missingstatesindex+1; 41

disp(’this one not found!’) 42

indexmissingstates(missingstatesindex)=a; 43

NumBlocksNotFound=NumBlocksNotFound+1; 44

end 45

%write a list of the existing block state names. 46

if ˜exist(’d’)==0 % i.e. does exist. 47

index02=index02+1; 48

existingblockstatesnames{index02,1}= ... 49

blockstatenameslist{a}; 50

end 51

end %end of [for a=1:1:forit1;] 52

53

if exist(’indexmissingstates’)==1 |... 54

strcmp(CurrModelName,SavedModelName)==0 55

% if a)OR b): for ANY OF THE ABOVE CONDS (i.e. states are missin g 56

% or the model has changed name) THEN will remove missing stat es 57

% if option a) is true and will reformat the xin model name to 58

% the current model name. If a) exist(’indexmissingstates’ )==1 59

%--> i.e. indexmissingstates exists. 60

% This occurs when there are missing states. 61

% if b) strcmp(CurrModelName,SavedModelName)==0 --> i.e. when the 62

% current model name and the SavedModelName 63

% (as found by parsing xin) are not the same. 64

%-------------------------------------------------- ------------------ 65

% uses indexmissing states to remove these from xin 66

if exist(’indexmissingstates’)==1 67

for eraser=(length(indexmissingstates)):-1:1 68

%note this works only because we are erasing from 69

% highest to lowest index number!!! 70
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xin2.signals(indexmissingstates(eraser))=[]; 71

end 72

end 73

74

%-------------------------------------------------- ------------------ 75

% change new xin2 to current model names 76

for a=1:1:index02 77

xin2.signals(a).blockName=regexprep(xin2.signals(a) .blockName,... 78

SavedModelName,CurrModelName); 79

end 80

end %end of [if exist(’indexmissingstates’)==1 | strcmp.. . 81

82

for a=1:1:forit1 83

tempVal = xin2.signals(a).values(index1); 84

xin2.signals(a).values = tempVal; 85

end 86

87

%-------------------------------------------------- ------------------ 88

xin=xin2 % a shiny new xin! 89

%-------------------------------------------------- ------------------ 90

91

92

%---------------------- garbage collection ----------- ------------- 93

clear(’a’,’b’,’d’) 94

clear(’firstseps’,’forit1’, ’index02’, ’name1’, ’seps’ , ’xin2’) 95

clear (’blockstatenameslist’,’NumBlocksNotFound’) 96

%-------------------------------------------------- ------------------ 97

New model states

%-------------------------------------------------- ------------------ 1

% When placing into the model a new block that has a state, use g cb 2

% command to get its path name. Getting an initial value can be 3

% tricky - an educated guess will need to be provided should th e 4

% initial value be unknown. Another consideration is if it sh ould 5

% be defined as a continuous or not continuous state - here we s hall 6

% assume continuous.Use command "gcb" to get block address a nd 7

% substitute this for ’FOO’ below. 8

%-------------------------------------------------- ------------------ 9

% to get this to work type at command, e.g. : 10

% xin=writeanewstate(xin, ’FOO’, ’450’) 11

%-------------------------------------------------- ------------------ 12

function xin= writeanewstate(xin, blockpath,statevalue ) 13

%-------------------------------------------------- ------------------ 14

15

% xin structure has fields: 16

% xin.signals(a).values 17

% xin.signals(a).dimensions 18

% xin.signals(a).label 19
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% xin.signals(a).blockName 20

21

% assume that all dimensions are 1 and that all are continuous states 22

% (label = CSTATE) 23

24

% ASSUME xin already loaded else 25

% load (’initialstates’, ’xin’) 26

27

statecurrlength = length(xin.signals); 28

29

xin.signals(statecurrlength+1).values=statevalue; 30

xin.signals(statecurrlength+1).dimensions=1; 31

xin.signals(statecurrlength+1).label=’CSTATE’; 32

xin.signals(statecurrlength+1).blockName=blockpath; 33

34

xin; 35

%-------------------------------------------------- ------------------ 36

State structure preparation

%-------------------------------------------------- ------------------ 1

function xstruct = makestatestruct(mdl) 2

%-------------------------------------------------- ------------------ 3

4

%Get the initial condition and sample time info from the mode l 5

[sys,x0,stateblocks,ts,xts]=feval(mdl,[],[],[],0); 6

7

% Find the unique state names 8

[uniquestates,uind] = unique(stateblocks); 9

uniquexts = xts(uind); 10

11

% Create the structure 12

for ct = length(uniquestates):-1:1 13

ind = find(strcmp(uniquestates(ct),stateblocks)); 14

if uniquexts(ct) == 0 15

xsignal(ct) = struct(’values’,x0(ind),’dimensions’,.. . 16

length(ind),’label’,’CSTATE’,’blockName’,uniquestat es(ct)); 17

else 18

xsignal(ct) = struct(’values’,x0(ind),’dimensions’,.. . 19

length(ind),’label’,’DSTATE’,’blockName’,uniquestat es(ct)); 20

end 21

end 22

23

if ˜isempty(uniquestates) 24

xstruct = struct(’time’,[],’signals’,xsignal); 25

else 26

xstruct = struct(’time’,[],’signals’,[]); 27

end 28

%-------------------------------------------------- ------------------ 29
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PI gain schedule interpolation script

%-------------------------------------------------- ------------------ 1

function MatrixOut=PIgainscheduleInterpolation(a1,a5 ,a21,a25) 2

%-------------------------------------------------- ------------------ 3

% you can get these from the main workspace, 4

% but this is quicker for now. 5

6

GAIN_sched_vels=[1000 2000 3000 4000 5000]; %these are the x axis 7

8

GAIN_sched_alts=[0 2000 4572 7620 10668] ; %these are the y a xis 9

10

11

%-------------------------------------------------- ------------------ 12

13

TestMatrix = {’a1’ ’a2’ ’a3’ ’a4’ ’a5’; 14

’a6’ ’a7’ ’a8’ ’a9’ ’a10’; 15

’a11’ ’a12’ ’a13’ ’a14’ ’a15’; 16

’a16’ ’a17’ ’a18’ ’a19’ ’a20’; 17

’a21’ ’a22’ ’a23’ ’a24’ ’a25’}; 18

19

%-------------------------------------------------- ------------------ 20

%section creates values for a6, a11, a16 and then a10, a15, a2 0, 21

% i.e. fills out columns 1 and 5 22

23

for clmn = 1:4:5; %(i.e. 1 & 5) 24

for i=2:4 25

for j=1:4 26

high = eval(TestMatrix{5,clmn}); 27

low = eval(TestMatrix{1,clmn}); 28

%averaging expression 29

val = low(j)+ ( (high(j)-low(j))/GAIN_sched_alts(5) )... 30

* GAIN_sched_alts(i); 31

eval( [ TestMatrix{i,clmn},’(j)=val’ ] ) 32

end 33

end 34

end 35

%-------------------------------------------------- ------------------ 36

%section creates values for a2, a7, a12 etc down column 2, the n 37

% moves on to column 3 and 4 (column 1 and 5 are taken care of 38

% via previous block) 39

for k=2:4 40

for i=1:5 41

for j=1:4 42

high = eval(TestMatrix{i,5}); 43

low = eval(TestMatrix{i,1}); 44

%averaging expression 45

val = low(j)+ ( (high(j)-low(j))/... 46

(GAIN_sched_vels(5)-GAIN_sched_vels(1)) )... 47

* (GAIN_sched_vels(k)-GAIN_sched_vels(1)); 48

eval( [ TestMatrix{i,k},’(j)=val’ ] ) 49

end 50
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end 51

end 52

%-------------------------------------------------- ------------------ 53

%uncomment below to print out values for a1 to a25 54

% clc 55

% for i=1:5 56

% for j=1:5 57

% eval(TestMatrix{i,j}) 58

% end 59

% end 60

%-------------------------------------------------- ------------------ 61

% function return variable 62

63

MatrixOut = {a1 a2 a3 a4 a5; 64

a6 a7 a8 a9 a10; 65

a11 a12 a13 a14 a15; 66

a16 a17 a18 a19 a20; 67

a21 a22 a23 a24 a25}; 68

%-------------------------------------------------- ------------------ 69
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corresponding model variables

Table C.1.

model parameter simulation variable

LP shaft speed N1 rpm

HP shaft speed N2 rpm

Fan inlet pressure P0

Fan inlet temperature T0

Total thrust TOTAL THRUST

Duct thrust DUCT THRUST

Duct airflow velocity BYPASS Vel

Core thrust CORE THRUST

Core airflow velocity BYPASS Vel1

Fan duct efficiency FanDuctEfficiency

Fan duct discharge temperature see Bypass temperature

Fan duct massflow (at fan exit) FanDuctMassflow

Fan duct power FanDuctPower

Fan duct pressure ratio FAND Y PRs

Continued on next page
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– continued from previous page

model parameter simulation variable

Bypass massflow (after bleeds injection) BYPASS W

Bypass temperature BYPASS T

Bypass pressure BYPASS P

Fan power (total) FAN POWER

Fan core efficiency FanCoreEfficiency

Fan core discharge temperature T2

Fan core massflow W2

Fan core power FanCorePower

Fan core pressure ratio FANC Y PRs

LPC efficiency BoosterEta

LPC inlet pressure P2

LPC inlet temperature T2

LPC inlet massflow W2

LPC discharge pressure P23

LPC discharge temperature T23

LPC discharge massflow W23

HPC efficiency CompEta

HPC inlet pressure P25

HPC inlet temperature T25

HPC inlet massflow W25

HPC discharge pressure P3

HPC discharge temperature T3

HPC discharge massflow W3

Continued on next page
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– continued from previous page

model parameter simulation variable

Combustor exit pressure P4

Combustor exit temperature T4

Combustor exit massflow W4

HPT efficiency HPT Eta

HPT inlet P41

HPT inlet T41

HPT inlet W41

HPT exit P42

HPT exit T42

HPT exit W42

LPT efficiency LPT Eta

LPT inlet P48

LPT inlet T48

LPT inlet W48

LPT exit P5

LPT exit T5

LPT exit W5

Fuel flow Fuel Flow

Fan power (total) FAN POWER

Fan duct power FanDuctPower

Fan core power FanCorePower

LPC power LPC POWER

HPC power HPC POWER

Continued on next page
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– continued from previous page

model parameter simulation variable

HPT power HPT POWER

LPT power LPT POWER

VSV position degrees VSV DEG

VBV position degrees VBV DEG

VBV percentage extracted VBV W

HPC cooling flow HPC Cooling W

LP shaft speed Reg1

Max HP shaft speed Reg2

LP spool accel rate Reg3

HP spool accel rate Reg4

Max EGT Reg5

Max PR over HPC Reg6

Max fuel Reg7

Max fuel rate of increase Reg8

LP shaft min speed Reg9

HP shaft min speed Reg10

LP shaft decel rate Reg11

HP shaft decel rate Reg12

Min fuel Reg13

Min PR over HPC Reg14

Max fuel rate of decrease Reg15
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