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Abstract. The 3 and 4-electron states of a gated semiconducting carbon nanotube quantum
dot are calculated by exact diagonalisation of a modified effective mass Hamiltonian. A typical
nanotube quantum dot is examined and the few-electron states are Wigner molecule-like. The
exact diagonalisation method and the rate of convergence of the calculation are discussed.

1. Introduction
In a gated semiconductor nanotube (SNT) quantum dot, electrons or holes are confined
electrostatically. The occupancy of this type of dot can be precisely controlled and, importantly,
a semiconducting nanotube dot can be completely emptied of electrons. This means that SNT
quantum dots are excellent systems in which to study the physics of a few interacting particles.

Like traditional semiconductor quantum dots, SNT dots behave like artificial atoms but
there are some differences that make semiconducting carbon nanotube dots unique. First, the
SNT bandstructure is unusual, primarily because nanotubes are rolled graphene sheets and the
nanotube bandstructure is derived from that of graphene. Second, the geometry of SNT dots
is also unusual: the nanotube length is very much greater than its diameter and so SNT dots
are quasi-1 dimensional objects. In Ref. [1] we demonstrated that the electronic correlation was
large in a large proportion of all physically accessible SNT quantum dots. Taken together with
the tube geometry, this means that SNT dots are ideal systems in which to observe quasi-1D
Wigner (or all-electron) molecules.

In our approach, we describe the few particle states in a SNT quantum dot with a 1
dimensional, 2 band, effective mass Hamiltonian [1]. However, because the electron correlation is
strong and the few-particle states are Wigner molecule-like, care must be taken in the calculation
of the electron states: exact diagonalisation, or configuration interaction (CI), techniques must
be used to include the correlation effects correctly. In this paper we give an overview of our
effective mass description of SNT dots and then discuss the exact diagonalisation scheme in
detail. We examine the convergence of the few-electron states and discuss a way of truncating
the full CI basis which improves the convergence of the few-electron energy.



2. Effective mass description of a nanotube dot
Our dot model is based on the type of semiconducting nanotube quantum dot that is typically
studied experimentally [2]. In this type of device, a long (∼ µm) nanotube is contacted between
source and drain electrodes and separated from a back-gate by a thin insulating layer. The
quantum dot potential is generated electrostatically by applying a voltage to the back-gate and,
in our model, this confinement potential varies parabolically along the length of the tube.

The confined states of a typical SNT dot are broad and may extend over a few hundred
nanometres (of the order of a few hundred thousand atoms). However, although the states are
broad, their extent is much less than the typical source-drain separation and so we assume our
dot is completely isolated. The energy scale of a SNT dot is typically of the order of a few to
ten meV, much less than the typical SNT band gap (∼ 1 eV). So, given that the dot length
scale is also much larger than the SNT unit cell length, the few-particle states in the dot can be
described with an effective mass theory. However, there are new features which must be added
to the theory to take account of the unusual nanotube bandstructure.

Nanotubes are rolled graphene sheets, and in each SNT there are two equivalent conduction
bands with minima equally spaced either side of k = 0. The two conduction bands arise from
the equivalence of the K and K ′ points in the graphene Brillouin zone and there is an additional
complication because the dispersion near to each of these points in the graphene zone is linear.
In Ref. [1] we demonstrated how to deal with both these effects by expanding the SNT dot
states in terms of the two-component Bloch wavefunctions of graphene. The net result is a 1D,
2-band effective mass Hamiltonian with a modified Coulomb interaction, U , that contains all of
the effects of the nanotube bandstructure and the details of the nanotube geometry,
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Here N is the number of electrons, h̄ω is the parabolic confinement energy, R is the SNT radius,
εr is the dielectric constant, m∗ is the effective mass, ρ = e2/(4πεo) and
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1
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u(z,R) is derived from the standard form of the interaction between charged particles on the
surface of a cylinder,
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and K is an elliptic integral of the first kind which diverges like log(z/R) as z → 0.
Eq. (2) gives the intraband effective interaction. We ignore the interband interaction because

its effect is small [3, 4]. In this case the band index acts like a pseudospin and our Hamiltonian
is block diagonal in both the total electron spin and the pseudospin.

3. Exact diagonalisation
To calculate the N particle energies and wavefunctions we must solve the Schrödinger equation,
HΨ(z1 . . . zN ) = EΨ(z1 . . . zN ). We expand the N particle states, Ψ(z1 . . . zN ), as a sum of
Slater determinants, Φi(z1 . . . zN ), constructed from the single particle states of the system,

Ψ(z1 . . . zN ) =
∑
i

aiΦi(z1 . . . zN ), (4)

where each Φi(z1 . . . zn) is a normalised eigenfunction of the total spin, S and its z component Sz.
In principle, this expansion is exact. However, in reality, the basis set can never be truly complete



and must be truncated. In our calculation we use a slight variation of the full configuration
interaction scheme in which all the possible determinants that can be generated from a given
finite single particle basis set are included in the expansion. The size of our finite basis is then
determined by a single parameter, a maximum quantum number n, and we can systematically
converge our calculation of the few particle states simply by increasing n.

To solve the Schrödinger equation numerically we first transform it into a standard matrix
eigenvalue equation by left multiplying with one of the determinants from the expansion in Eq.
(4) and integrating over all the z1 . . . zN spatial coordinates. We have∑

i

(〈Φj |H|Φi〉 − Eδij) ai = 0,

or, in matrix notation,
(H− EI) a = 0,

where I is the unit matrix. To find the N particle energies and the expansion coefficients, ai, we
diagonalise this Hamiltonian matrix numerically. The calculation time scales as the size of the
matrix cubed and, to reduce this time, we block the Hamiltonian matrix according to the total
pseudospin and the symmetry of each N particle state along the nanotube.

To reduce the size of the calculation we also slightly modify the full CI scheme. Our basis
functions span a multi-dimensional Hilbert space, but we find that states from the ’corners’ of
this space do not contribute significantly to the few-electron wavefunctions. So, if
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we find ai to be negligible if all the mij quantum numbers are large. We therefore neglect
determinants from these ’corners’ and use a ’spherical cut off’ to truncate the basis when(∑N

j=1m
2
ij)
)1/2

> n, as opposed to the usual ’cuboid cut-off’ from the full CI scheme in which
the basis is truncated when mij > n. The total number of determinants in our expansion at a
given maximum quantum number, M(n), depends on the truncation scheme, and we compare
the convergence of the ground state energy in each of these two schemes in section 4.

4. Results and discussion
In Ref. [1] we found that the correlation was large in the majority of NT dots, and that all
2-electron states were Wigner molecule-like when m∗

h̄2

(
(ρ/εr)2

h̄ω

)
≥ 2.8. In this work, we therefore

focus on a typical strongly correlated SNT dot (h̄ω = 5 meV, εr = 2.0) and we examine the
3 and 4 electron states. We choose a 35,0 nanotube with R = 1.37 nm and m∗ = 0.034 as
this is the type of tube studied experimentally in Ref. [2]. However, within the effective mass
approximation, the details of the chirality are unimportant and our results will be similar for
any SNT with similar R and m∗. In the 35,0 NT dot the N -electron ground state energies, EN ,
(converged to within 0.1 meV) are E3 = 76.4 meV and E4 = 145.1 meV. Fig. 1 shows the 3 and
4 electron density as a function of z. The states are clearly Wigner molecule-like with a strong
peak in the density corresponding to each electron: each electron is almost localised on its own
lattice site and the probability of tunnelling between lattice sites is small.

To investigate the convergence of the 3 and 4-electron ground state energy and to compare
the ’spherical’ and ’cuboid’ schemes for truncating the basis set we calculate EN as a function
of n, the maximum single particle quantum number that we include in our basis set. We assume
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Figure 1. Ground state few-electron densities
in a (35,0) SNT quantum dot (R = 1.37 nm,
m∗ = 0.034, h̄ω = 5.0 meV, εr = 2.0). Top:
3 electron number density. Bottom: 4 electron
number density.

that the lowest energy we obtain in our calculations (using the largest number of basis states,
Mmax) is converged. Then ∆EN = EN (M(n))−EN (Mmax) gives a measure of the convergence
of the ground state energy for each n.

In Fig. 2 we plot ∆EN as a function of M(n). It is immediately clear that a large number
of determinants are needed to give an accurate value for EN and this is another indication that
the electron correlation in SNT dots is important. For example, to converge the ground state
energies to within 0.1 meV we need roughly M = 150 Slater determinants for 3 electrons and
about M = 3000 for 4 electrons. It is also apparent that truncating the CI basis with the
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Figure 2. Convergence of the N -electron ground state energy as a function of the number of Slater
determinants in the expansion. Left: 3 electrons. Right: 4 electrons. Each point indicates a different
value of n in the calculation.

spherical cut off gives an advantage over the full CI method, and this advantage increases with
increasing N . For example, to obtain ∆EN = 0.1 meV with 3 electrons we need M = 124 Slater
determinants with the spherical cut-off and M = 164 with the cuboid cut off. So, using the
spherical cut off reduces the computer time by a factor of roughly (124/164)3 = 0.57. Similarly,
for 4-electrons the calculation time is reduced by a factor (1815/2568)3 = 0.35.

In conclusion, we have outlined our effective mass description of the N -electron states in SNT
quantum dots and demonstrated that many Slater determinants are needed in an expansion of
the states to get accurate ground state energies. Also, significant advantages can be obtained
using a ’spherical’ quantum number cut off to truncate the basis set.
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