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Abstract

The main purpose of this paper is to propose computational methods for Greeks and the multidimensional density
estimation for an asset price dynamics model defined with time-changed Brownian motions. Our approach is based
on an application of the Malliavin integration-by-parts formula on the Gaussian space conditioning on the jump
component. Some numerical examples are presented to illustrate the effectiveness of our results.
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1 Introduction
The Malliavin integration-by-parts formula was established in the historic paper of Bismut [5], and served as a key
tool to reveal the relation between the Hörmander condition on the hypoelliptic problem and the existence of smooth
densities for solutions to stochastic differential equations. Moreover, in his book [6], he studied the logarithmic gra-
dient of the fundamental solution to the heat equation on a Riemaniann manifold. In mathematical finance, Malliavin
calculus on the Wiener space is applied in Fournié et al. [15] to the sensitivity analysis for the Black-Scholes asset
price dynamics model. Moreover, the so-called Malliavin-Thalmaier integration-by-parts formula was introduced in
Malliavin and Thalmaier [21] with a view towards the computation of multidimensional probability density functions,
of which numerical issues are studied in Kohatsu-Higa and Yasuda [19]. For stochastic differential equations driven
by Brownian motion, the technique based on the integration-by-parts formula from Malliavin Calculus has become
standard.

It is then a natural question whether a similar approach can be obtained in the case of computation of Greeks and
the multidimensional density for jump processes. Concerning Malliavin calculus for jump processes, the existence
of weights for the logarithmic gradient dates back to the work of Bichteler, Gravereaux, Jacod [4]. For practical
considerations, it is important to derive explicit weights, in order to design an efficient Monte Carlo evaluation. In
particular, Davis and Johansson [12], and Cass and Friz [10] studied the Malliavin Greeks for jump diffusion processes.
Their approach consists of conditioning by the jump component and then performing the Malliavin calculus techniques
with respect to the Brownian motion component. In other words, their models are required to be a superposition of
independent jump and diffusion components, where the diffusion must be nondegenerate. On the other hand, El-
Khatib and Privault [13] applied the calculus focused on the Poisson arrival times of Carlen and Pardoux [7], while
Bally et al. [1] took a unified approach considering the derivatives with respect to both the Poisson arrival times and
the amplitudes of the jumps. Takeuchi studied in [27] the same problem of solutions to stochastic differential equations
with jumps via the martingale approach, without using the approach introduced in [4]. Kawai and Takeuchi [17, 18]
derive Greeks formulas for asset price dynamics described by gamma processes, based upon a scaling property of
gamma processes with respect to the Esscher transform parameter. It seems that there is still no unified approach
to the sensitivity analysis and also the multidimensional density estimation for random processes beyond the pure
diffusion cases.
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The main purpose of this paper is to obtain an expression for the calculation of Greek and the multidimensional
density for an asset price dynamics model defined with time-changed Brownian motions. As will be illustrated later,
our framework encompasses some Lévy process models and stochastic volatility models. Our approach is based on an
application of the Malliavin integration-by-parts formula on the Gaussian space conditioning on the jump component.
We consider this approach best suited for actual financial models as we reflect in the examples that we have considered.
This approach has been taken in [10, 12]. Nevertheless they use the representation of the model as a stochastic
differential equation while we use an expression as subordinated Wiener processes. In the Lévy processes framework
with an expression as a time-changed Brownian motion, our results improve those of [1, 13] in the sense that our Lévy
processes are of more realistic infinite activity type. When restricted to the variance gamma model, our results can be
recovered from those of [17, 18].

The rest of this paper is organized as follows. We first introduce in Section 2 the time-changed Brownian motion
and give three examples of time-changed Brownian motions of practical interest. In Section 3, we apply the Malliavin
integration-by-parts formula on the Gaussian space to derive unbiased estimators of various Greeks in our model
setting with a view towards efficient Monte Carlo evaluation. We next present in Section 4 that the Malliavin-Thalmaier
integration-by-parts formula can also be applied to the multidimensional density estimation in our framework. Finally,
Section 5 concludes.

2 Preliminaries
Let us begin with general notations which will be used throughout the text. We let N be the set of positive integers. We
denote by Rd the d-dimensional Euclidean space with the norm ∥ · ∥ and the inner product by ⟨·, ·⟩. We fix (Ω,F ,P)
as our underlying probability space. We mean by the time-changed Brownian motion the following stochastic process

Xt := µt +θYt +σWYt , (2.1)

where µ ∈R, θ ∈R, σ > 0, and {Wt : t ≥ 0} is a standard Brownian motion in R, and {Yt : t ≥ 0} is a non-decreasing
stochastic process in R, with Y0 = 0, a.s., independent of {Wt : t ≥ 0}. For convenience, we define the characteristic
exponent

eφYt (y) := E
[
eiyYt

]
.

Intuitively, one may regard the original clock {t : t ≥ 0} as calendar time, while the new random clock {Yt : t ≥ 0} as
business time. A more active business day implies a faster business clock, and vice versa.

2.1 Examples of Time-Changed Brownian Motion
If {Yt : t ≥ 0} is a subordinator, that is, an one-sided Lévy process, the above time-changed Brownian motion is a
Lévy process, which is often called Lévy process of type G. (See, for example, Rosiński [24].) Moreover, unless it is
a deterministic subordinator (that is, Yt = at, a > 0), the time-changed Brownian motion becomes a pure-jump Lévy
process. In Example 2.1 and 2.2, we give two such examples.

Example 2.1. (Variance gamma Lévy processes) The stochastic process (2.1) is called a variance gamma (Lévy)
process of Madan, Carr and Chang [20], if we set {Yt : t ≥ 0} to be a gamma process, whose characteristic exponent
is given by φYt (y) =−at ln(1− iy/b), while its marginal density is given in closed form by

fYt (x) =
bat

Γ(at)
xat−1e−bx, x > 0, (2.2)

with a = b =: ν−1 > 0. The model has attracted the attention of finance practitioners, and thus appears often in the
computational finance literature (see for example, Carr and Madan [9] and Fu [16]). The characteristic function of
Xt = µt +θYt +σWYt is given by

E
[
eiyXt

]
= eiyµt

(
1− iyθν +

1
2

σ2νy2
)−t/ν

.

Moreover, it is also shown in [20] that the variance gamma process can be expressed as the difference of two indepen-
dent gamma processes,

Xt = Yt,p −Yt,n, (2.3)
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where the gamma processes {Yt,p : t ≥ 0} and {Yt,n : t ≥ 0} can be characterized by (2.2) with (a,b) = (ν−1,(µpν)−1)

and (a,b) = (ν−1,(µnν)−1) for some ν > 0, where the parameters are given by µp = 1
2

√
θ 2 +2σ2/ν + θ/2 and

µn =
1
2

√
θ 2 +2σ2/ν −θ/2, respectively.

Example 2.2. (Normal inverse Gaussian Lévy processes) The normal inverse Gaussian process can be expressed
as a time-changed Brownian motion by setting {Yt : t ≥ 0} to be a Lévy process induced by the inverse Gaussian
distribution, whose marginal at time t is identical in law to the first time that a Brownian motion with drift ν reaches
the positive level t, that is,

E
[
eyYt
]
= exp

[
−t
(√

−2y+ν2 −ν
)]

.

Then, the normal inverse Gaussian process Xt = µt +θYt +σWYt has the characteristic function

E
[
eiyXt

]
= eiyµt exp

−tσ

√ ν2

σ2 +
θ 2

σ4 −
(

θ
σ2 + iy

)2

− ν
σ

 ,
where ν > 0. Conversely, set α =

√
ν2/σ2 +θ 2/σ4, β = θ/σ2, and δ = σ . Then, we get |β |< α , ν = δ

√
α2 −β 2,

and
Xt = µt +βδ 2Yt +δWYt .

See Barndorff-Nielsen [3], Carr et al.[8] and Schoutens [26] for more details.

It has been a general consensus that return volatilities vary stochastically over time. The concept of “time change”
can also be applied to capture the evidence of stochastic volatility. That is, by the Gaussian scaling property, random
changes in volatility can be related to random time changes. The following is an illustrative example of the business
clock, which is successfully applied in Carr et al.[8] to control the clock of pure-jump Lévy processes.

Example 2.3. (Brownian motion, time changed via integrated Cox-Ingersoll-Ross (CIR) square-root process) Let
{zt : t ≥ 0} be a mean-reverting positive process defined via the stochastic differential equation

dzt = κ(η − zt)dt +λ
√

ztdWt ,

where z0,κ,η ,σ are positive constants with 2κη > σ2. The parameter η serves as the long run rate of time change,
κ is the mean reversion rate, while λ is the volatility of the time change. This is often called the CIR square root
process [11]. Taking the process {zt : t ≥ 0} as the instantaneous rate of time change, we define an increasing process
Yt :=

∫ t
0 zsds. It is well known that the characteristic function of Yt is given by

ϕt(y) := E
[
eiyYt

]
= eA(t,y)z0B(t,y),

where γ :=
√

κ2 −2λ 2iy, A(t,y) := 2iy/(κ + γ coth(γt)/2), and

B(t,y) := exp
[
κ2ηt/λ 2](cosh

(γt
2

)
+

κ
γ

sinh
(γt

2

))−2κη/λ 2

.

Using the above fact, the characteristic function of Xt = µt +θYt +σWYt can be derived as

E
[
eiyXt

]
= eiyµtE

[
e(iyθ−y2σ2/2)Yt

]
= eiyµtϕt

(
yθ + iy2σ2/2

)
,

where the computation is performed given Yt . For more details, we refer, for example, to Carr et al.[8] and Schoutens
[26].

2.2 Malliavin Calculus. Some notations and properties
Let us next present some basic facts on the Malliavin calculus. For details and notation, we refer to the book of
Nualart [23]. Fix T > 0, d1 ∈ N, d2 ∈ N, and let {Wt : t ≥ 0} be a standard Brownian motion in Rd1 , independent of
{Yt : t ∈ [0,T ]}, with Wt := (W (1)

t , . . . ,W (d1)
t )′. Throughout this study, the time-changing process {Yt : t ∈ [0,T ]} is

one-dimensional. Let (Ft)t∈[0,T ] and (Gt)t≥0 be the natural filtrations generated respectively by {Yt : t ∈ [0,T ]} and
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{WYt : t ≥ 0}. Let F := (F1, . . . ,Fd2)
′ be a random vector in Rd2 , measurable with respect to GT := σ(WYt ; t ∈ [0,T ]).

We denote by D(k)
· the Malliavin derivative on the Gaussian space, conditionally on the time changing process, with

respect to the k-th component of the underlying Brownian motion. Define for each k = 1, . . . ,d2,

DsFk :=
[
D(1)

s Fk, . . . ,D
(d1)
s Fk

]′
.

Moreover, we denote by δk the Skorohod integral over (0,YT ] given FT with respect to the k-th component of the
underlying Brownian motion, that is, for a suitable smooth stochastic process {Gt : t ≥ 0} in Rd2 ,

δk(G·) :=
∫ YT

0
GsδW (k)

s ,

where the multivariate Skorohod integral is taken componentwise. Both the operators D and δ are linked by the
equality; for each k = 1, . . . ,d2,

δk (⟨F,G·⟩) = ⟨δk (G·) ,F⟩−
∫ YT

0

⟨
D(k)

t F,Gt

⟩
dt.

Moreover, taking the conditional expectation, we get the duality; for each k = 1, . . . ,d2,

E
[∫ YT

0

⟨
D(k)

t F,Gt

⟩
dt
∣∣∣FT

]
= E

[
⟨δk(G·),F⟩

∣∣FT
]
. (2.4)

Here, we have assumed that F ∈ D1,2 and G ∈ Dom(δ ).
We next give an integration by parts formula in one dimension (the multidimensional case is introduced in Section

4), which is our key tool to integrate the derivative in the following expectation for Φ ∈C1
b(R;R),

E
[
Φ′(X)Z

∣∣FT
]
= E[Φ(X)H

∣∣FT ],

where X , Z and H are suitable random variables. We follow the argument of Montero and Kohatsu-Higa [22]. By the
chain rule of the Malliavin derivative, we have that given FT and for t ∈ [0,YT ],

(DtΦ(X))Zht = Φ′(X)ZhtDtX ,

where {ht : t ∈ [0,YT ]} is a suitable ”smooth” stochastic process such that the terms appearing below are well defined.
Integration over [0,YT ] leads to

Φ′(X)Z =
∫ YT

0
DtΦ(X)

Zht∫ YT
0 hsDsXds

dt.

Using the duality (2.4), we get

E
[
Φ′(X)Z

∣∣FT
]
= E

[∫ YT

0
DtΦ(X)

Zht∫ YT
0 hsDsXds

dt
∣∣∣FT

]
= E

[
Φ(X)δ

(
Zh·∫ YT

0 hsDsXds

)∣∣∣FT

]
. (2.5)

We will often refer this relation to the (conditional) integration-by-parts formula in what follows.

3 Computation of Greeks
Fix T > 0 and assume that {Yt : t ∈ [0,T ]} is such that∣∣φYt

(
−i
(
θ +σ2/2

))∣∣<+∞, t ∈ [0,T ]. (3.1)

We first consider an one-dimensional asset dynamics driven by a time-changed Brownian motion,

St := S0ert eXt

E [eXt ]
= S0ert exp

[
θYt +σWYt −φYt (−i(θ +σ2/2))

]
, (3.2)

where the expectation is henceforth taken with respect to a risk neutral probability. With {Yt : t ∈ [0,T ]} in Example
2.1, 2.2 and 2.3, the discounted stock price model (3.2) is clearly a martingale with respect to the risk neutral measure
under the integrability condition (3.1) due to the Markovian property of {Yt : t ∈ [0,T ]}.

If the business clock {Yt : t ∈ [0,T ]} is deterministic, then our framework simply reduces to the most basic Black-
Scholes model. To avoid such triviality, we rule out the deterministic clock a priori. Until Section 3.5, we work on
the above one-dimensional model, and thus suppress the scripts in the Malliavin derivative D(k) and in the Skorohod
integral δk.

4



3.1 Delta
We first derive an unbiased estimator of the so-called delta, which is the sensitivity index with respect to the initial
value.

Proposition 3.1. Assume that E[S2
T ] < +∞. Let Φ : R→ R be a measurable function such that E[Φ(ST )

2] is locally
uniformly bounded in S0 > 0. Moreover, assume that E[Y−2

T ]<+∞. Then, we have

∂
∂S0

E [Φ(ST )] =
1

σS0
E
[

Φ(ST )
WYT

YT

]
.

Proof. First, assume Φ ∈C2
b(R;R). We have

∂
∂S0

E [Φ(ST )] = E
[

∂
∂S0

Φ(ST )

]
= E

[
Φ′(ST )

∂ST

∂S0

]
= S−1

0 E
[
Φ′(ST )ST

]
,

where the interchange of the derivative and the expectation is justified by the dominated convergence theorem. In fact,
as ε ↓ 0,

Φ((1+ ε/S0)ST )−Φ(ST )

ε
→ Φ′(ST )

ST

S0
, a.s.,

and by the Taylor theorem,∣∣∣∣E [Φ((1+ ε/S0)ST )−Φ(ST )]

ε

∣∣∣∣≤ ∫ 1

0
E
[∣∣∣∣Φ′((1+δε/S0)ST )

(1+δε/S0)ST

S0

∣∣∣∣]dδ ,

which is clearly uniformly bounded in ε .
Next, given FT , we can apply the conditional integration-by-parts formula (2.5) with ht ≡ 1 as

E
[
Φ′(ST )ST

∣∣FT
]
= E

[
Φ(ST )δ

(
ST∫ YT

0 DsST ds

)∣∣FT

]
= E

[
Φ(ST )

WYT

σYT

∣∣FT

]
, (3.3)

where the last equality holds since given FT ,∫ YT

0
DsST ds = σST

∫ YT

0
1(s ≤ YT )ds = σSTYT . (3.4)

Taking the expectation on the both sides, we get the desired result for Φ ∈C2
b(R;R).

It remains to remove the regularity assumption on Φ. To this end, let us come back to Φ such that E[Φ(ST )
2] is

locally uniformly bounded in S0. We can always find a sequence {Φn}n∈N of continuously differentiable functions,
from R to R, with compact support such that limn↑+∞E[|Φn(ST )−Φ(ST )|2] = 0. Hence, by the Cauchy-Schwartz
inequality with E[|WYT /YT |2] = E[Y−1

T ]<+∞, we have that for each S0,∣∣∣∣E[Φn(ST )
WYT

YT
−Φ(ST )

WYT

YT

]∣∣∣∣2 ≤ E
[
|Φn(ST )−Φ(ST )|2

]
E

[∣∣∣∣WYT

YT

∣∣∣∣2
]
→ 0,

as n ↑+∞. Then, we obtain that

E [Φn((1+ ε/S0)ST )]−E [Φn(ST )] =
∫ ε

0
E
[

Φn((1+h/S0)ST )
WYT

YT

]
dh. (3.5)

Then, by taking limits with respect to n, we obtain that E[Φ((1+ ε/S0)ST )] is continuous in S0. In a similar fashion,
we can prove that E[Φ(ST )WYT /YT ] is continuous in S0. Finally, by taking limits with respect to n in (3.5) and dividing
by ε , we obtain that E[Φ(ST )] is differentiable with respect to S0 and that the desired formula holds. The proof is
complete.
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Remark 3.2. The sensitivity with respect to the risk-free rate r and the drift parameter θ can also be derived via the
identity (3.3), respectively as

∂
∂ r

E [Φ(ST )] = E
[

Φ′(ST )
∂
∂ r

ST

]
= TE

[
Φ′(ST )ST

]
= S0T

∂
∂S0

E [Φ(ST )] ,

and
∂

∂θ
E [Φ(ST )] = E

[
Φ′(ST )

∂
∂θ

ST

]
= E

[
E
[
Φ′(ST )ST |FT

]
YT
]
=

1
σ
E [Φ(ST )WYT ] ,

where the interchanges of the derivative and the expectation can be justified as before. Moreover, note that the proof
of Proposition 3.1 does not require the Markovian property of the time-changing process {Yt : t ∈ [0,T ]}.

3.2 Vega
In our framework, we may naturally regard the parameter σ as the volatility. The next formula is the so-called vega,
which is the sensitivity of the premium with respect to the volatility parameter.

Proposition 3.3. Assume E[S2
TW 2

YT
] < +∞. Let Φ : R→ R be a measurable function such that E[Φ(ST )

2] is locally
uniformly bounded in S0 > 0. Assume further that E[Y−2

T ]<+∞. Then,

∂
∂σ

E [Φ(ST )] =
1
σ
E

[
Φ(ST )

(
W 2

YT

YT
− WYT

YT

∂
∂σ

φYT (−i(θ +σ2/2))−1

)]

Proof. As before, it suffices to show the result with Φ ∈C2
b(R;R). We have

∂
∂σ

E [Φ(ST )] = E
[

Φ′(ST )
∂ST

∂σ

]
= E

[
Φ′(ST )ST

(
WYT −

∂
∂σ

φYT (−i(θ +σ2/2))
)]

,

where the interchange of the derivative and the expectation can be justified by the dominated convergence theorem in
a similar manner to the proof of Proposition 3.1.

Next, in view of the delta formula in Proposition 3.1, it remains to work on E [Φ′(ST )STWYT ]. Given FT , we apply
the conditional integration-by-parts formula (2.5) with ht ≡ 1 as

E
[
Φ′(ST )STWYT

]
= E

[
E

[
Φ(ST )δ

(
STWYT∫ YT

0 DuST du

)∣∣∣FT

]]
=

1
σ
E

[
Φ(ST )

(
W 2

YT

YT
−1

)]
,

where the last equality holds by (3.4). Finally, for the arguments to remove the smoothness on Φ, we need

E
[∣∣Φ(ST )W 2

YT
/YT
∣∣]2 ≤ E

[
|Φ(ST )|2

]
E
[
W 4

YT
/Y 2

T
]
= E

[
|Φ(ST )|2

]
E
[
W 4

1
]
<+∞,

which concludes.

3.3 Gamma
Next, we consider the second-order sensitivity with respect to the initial value, that is, the delta of the delta. In the
derivation, we literally take “delta” of the delta formula of Proposition 3.1.

Proposition 3.4. Assume E[S2
TW 2

YT
/Y 2

T ] < +∞. Let Φ : R→ R be a measurable function such that E[Φ(ST )
2] < +∞

is locally uniformly bounded in S0 > 0. Assume further that E[Y−4
T ]<+∞. Then, we have

∂ 2

∂S2
0
E [Φ(ST )] =

1
σ2S2

0
E

[
Φ(ST )

1
YT

(
W 2

YT

YT
−σWYT −1

)]
.
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Proof. As before, it suffices to show the result with Φ ∈C2
b(R;R). In view of Proposition 3.1, we have

∂ 2

∂S2
0
E [Φ(ST )] =

∂
∂S0

(
1

σS0
E
[

Φ(ST )
WYT

YT

])
.

Then, by a similar argument to the previous proofs, we have

∂
∂S0

E
[

Φ(ST )
WYT

YT

]
= E

[
∂

∂S0
Φ(ST )

WYT

YT

]
=

1
S0

E
[

Φ′(ST )
STWYT

YT

]
=

1
σS0

E
[
E
[
Φ(ST )δ (WYT )

∣∣FT
] 1

Y 2
T

]
=

1
σS0

E

[
Φ(ST )

W 2
YT

−YT

Y 2
T

]
,

where the interchange of the derivative and the expectation can be justified by the dominated convergence theorem.
Finally, for the arguments to remove the smoothness on Φ, we need

E
[∣∣Φ(ST )W 4

YT
/Y 4

T
∣∣]2 ≤ E

[
Φ(ST )

2]E[Y−4
T
]
E
[
W 8

1
]
<+∞,

which completes the proof.

3.4 Delta of Asian
Notice that by setting Yt = t, our formulas recover the counterparts in the Black-Scholes framework. We may say,
and indeed as our intuition, that in the derivation of the logarithmic derivatives, it does not matter how the clock is
governed, but matters only where the Brownian motion is at the end.

A delta formula of the Asian options is derived below. Interestingly, even such a path dependent payoff yields a
similar form to its counterpart in the Black-Scholes, which can be found in [22].

Proposition 3.5. Fix T > 0, and define

F1 :=
∫ T

0
Sudu, F2 :=

∫ T

0
SuYudu, F3 :=

∫ T

0
SuY 2

u du.

Let Φ : R → R be a measurable function such that E[Φ(F1/T )2] is locally uniformly bounded in S0 > 0. Assume
further that {Yt : t ∈ [0,T ]} is a non-decreasing Lévy process with Lévy measure ν defined on R+, and that there exist
p > 1 and s > 1 with q(s) := (1−1/s)−1 such that∫

z>1
e4ξ zν(dz)<+∞,

where ξ := (4p2s2σ2 + ps(0∨θ))∨ (2p2q(s)2σ2 + pq(s)(0∨θ)), and

E
[
Y−4pq(s)

ε e8p2q(s)2σ2Yε
]
<+∞,

for some ε ∈ (0,T ). Then, we have

∂
∂S0

E [Φ(F1/T )] =
1
S0

E
[

Φ(F1/T )
(

WYT F1

σF2
+

F1F3

F2
2

−1
)]

.

Proof. As so far, we proceed with the proof in the case Φ ∈C2
b(R;R). First, observe that

∂
∂S0

E [Φ(F1/T )] = E
[

∂
∂S0

Φ(F1/T )
]
=

1
S0

E
[
Φ′ (F1/T )F1/T

]
,
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where the interchange of the derivative and the expectation is justified by the dominated convergence theorem as before
with E[F2

1 ]<+∞. To prove this, observe that

E
[
F2

1
]
≤ E

[∫ T

0
S2

udu
]
=
∫ T

0
E
[
S2

u
]

du

≤ S2
0e2rT

∫ T

0
exp
[
u
(
φY1

(
−2i

(
θ −σ2))−φY1

(
−i
(
θ +σ2/2

)))]
du <+∞,

where we have used the Cauchy-Schwarz inequality, the Fubini theorem, and the infinite divisibility of Lévy processes
φYt = tφY1 .

To continue our proof, given FT , note first that∫ YT

0
DsF1 ds = σ

∫ T

0

∫ YT

0
Su1(s ≤ Yu)dsdu = σF2,

and ∫ YT

0
DsF2 ds = σ

∫ T

0

∫ YT

0
SuYu1(s ≤ Yu)dsdu = σF3,

where the interchanges of the Malliavin derivative and the Lebesgue integral hold true. (See, for example, Property
P2 of [15].) By using the identity

δ (F1) =WYT F1 −σF2,

we get

δ
(

F1

F2

)
=

δ (F1)

F2
+

F1
∫ YT

0 DsF2ds
F2

2
=

WYT F1

F2
+σ

F1F3

F2
2

−σ .

The desired formula now follows from

E
[
Φ′ (F1/T )F1/T

∣∣FT
]
= E

[
Φ(F1/T )δ

(
F1∫ YT

0 DsF1ds

) ∣∣∣FT

]
,

due to the conditional integration-by-parts formula (2.5) with ht ≡ 1.
Concerning the integrability and the arguments to remove the smoothness of Φ, by the Cauchy-Schwartz inequality

with E[Φ(F1/T )2]<+∞, it suffices to guarantee the existence of E[W 4
YT
(F1/F2)

4] and E[(F1F3/F2
2 )

4]. Since F3 ≤YT F2,
a.s., it further suffices to check the existence of E[W 4

YT
(F1/F2)

4] and E[Y 2
T (F1/F2)

4]. Let q(p) := (1−1/p)−1 so that
(p,q(p)) are conjugate exponents. By the Hölder inequality, we have

E
[
W 4

YT
(F1/F2)

4
]
≤ E

[
|WYT |

4q(p)
]1/q(p)

E
[
(F1/F2)

4p
]1/p

,

and

E
[
Y 4

T (F1/F2)
4
]
≤ E

[
Y 4q(p)

T

]1/q(p)
E
[
(F1/F2)

4p
]1/p

.

Hence, we investigate E[(F1/F2)
4p]. By the Hölder inequality, we have

E
[
(F1/F2)

4p]≤ E
[
F4ps

1

]1/s
E
[
F−4pq(s)

2

]1/q(s)
.

Recalling the formula

P

[
sup

t∈[0,T ]
Wt ∈ B

]
=
∫ +∞

0
1B(x)

2√
2πT

exp
[
− x2

2T

]
dx, B ∈ B(R+), (3.6)

where B(R+) is the Borel σ -field of R+, we get

E
[
F4ps

1

]
≤ T 4pse4psrTE

[
e4pssupt∈[0,T ](θYt+σWYt +φYt (−i(θ+σ2/2)))

]
≤ T 4pse4psrT e4pssupt∈[0,T ] φYt (−i(θ+σ2/2))E

[
e4pssupt∈[0,T ](θYt )E

[
e4psσ supt∈[0,T ]WYt

∣∣∣FT

]]
≤ 2T 4pse4psrT e4pssupt∈[0,T ] φYt (−i(θ+σ2/2))E

[
e4pssupt∈[0,T ](θYt )+16p2s2σ2YT

]
≤ 2T 4pse4psrT e4pssupt∈[0,T ] φYt (−i(θ+σ2/2))E

[
e(16p2s2σ2+4ps(0∨θ))YT

]
.
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Hence, we get that E[F4ps
1 ] < +∞ if E[e(16p2s2σ2+4ps(0∨θ))YT ] < +∞. Next, we investigate E[F−4pq(s)

2 ]. For ease in
notation, write τ :=−4pq(s). Pick an arbitrary ε ∈ (0,T ). First, since P(St > 0) = P(Yt > 0) = 1 for each t ∈ (0,T ],
we have E[Fτ

2 ]≤ (T − ε)τE[Y τ
ε (inft∈[ε,T ] St)

τ ], and

E
[
Y τ

ε

(
inf

t∈[ε,T ]
St

)τ]
≤ E

[
Y τ

ε eτ inft∈[ε,T ](θYt+φYt (−i(θ+σ2/2)))E
[
eτ inft∈[Yε ,YT ] σWt

∣∣∣FT

]]
.

Then, by using the independence of increments and formula (3.6), we get

E
[
eτ inft∈[Yε ,YT ](σWt )

∣∣∣FT

]
= e

1
2 τ2σ2YεE

[
e−τσ supt∈[Yε ,YT ](Wt−WYε )

∣∣∣FT

]
≤ 2e

1
2 τ2σ2YT ,

where the inequality holds by the fact P(YT −Yε > 0) = 1. Hence, we get

E
[
Y τ

ε

(
inf

t∈[ε,T ]
St

)τ]
≤ 2E

[
Y τ

ε exp
[

τ inf
t∈[ε,T ]

(θYt +φYt (−i(θ +σ2/2)))+YT τ2 σ2

2

]]
≤ 2eτ inft∈[ε,T ] φYt (−i(θ+σ2/2))

×E
[
Y τ

ε exp
[

τ inf
t∈[ε,T ]

(θ(Yt −Yε))+(τ2σ2/2+ τθ)Yε +(YT −Yε)τ2 σ2

2

]]
= 2eτ inft∈[ε,T ] φYt (−i(θ+σ2/2))E

[
Y τ

ε e(τ
2σ2/2+τθ)Yε

]
E
[
e(τ

2σ2/2−(0∧−τθ))YT−ε
]
,

where the equality holds by the independence and the stationarity of increments of {Yt : t ∈ [0,T ]}. Hence, the expecta-
tion E[Fτ

2 ] is well defined if there exists ε ∈ (0,T ) such that E[Y τ
ε eτ2σ2/2Yε ]<+∞ and if E[e(τ2σ2/2−(0∧−τθ))YT ]<+∞.

Theorem 25.3 of Sato [25] concludes the proof.

3.5 Greeks for Baskets
In this subsection, we consider a basket of correlated asset prices, and its sensitivity with respect to the correlation
parameter ρ , and its so-called cross-gamma, that is, (∂ 2/(∂S(1)0 ∂S(2)0 )). We here restrict ourselves to a basket of only
two assets, while our results can easily be extended to a higher dimension.

Fix ρ ∈ (−1,1) and set η(ρ) :=
√

1−ρ2. Define[
X (1)

t

X (2)
t

]
:=

[
θ1Yt +σ1W (1)

Yt
−φYt (−i(θ1 +σ2

1 /2))

θ2Yt +σ2

(
ρW (1)

Yt
+η(ρ)W (2)

Yt

)
−φYt (−i(θ2 +σ2

2 /2))

]
,

and
[F1,F2]

′ :=
[
S(1)0 exp

(
X (1)

T

)
,S(2)0 exp

(
X (2)

T

)]′
,

where S(1)0 and S(2)0 are positive constants. Set F := a1F1+a2F2, for some real a1 and a2. Then, we have the following.

Proposition 3.6. Let Φ : R 7→R be a measurable function such that E[Φ(F)2] is locally uniformly bounded in S(1)0 > 0

and S(2)0 > 0. Then, it holds that

∂
∂ρ

E [Φ(F)] =
1

η(ρ)
E

Φ(F)
W (1)

YT
W (2)

YT
− ρ

η(ρ)

(
(W (2)

YT
)2 −YT

)
YT

 .
If E[Y−2

T ]<+∞, then it holds that

∂ 2

∂S(1)0 ∂S(2)0

E [Φ(F)] =
1

η(ρ)σ1σ2S(1)0 S(2)0

E
[

Φ(F)
1

Y 2
T

(
W (1)

YT
W (2)

YT
− ρ

η(ρ)

(
(W (2)

YT
)2 −YT

))]
.
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Proof. In a similar manner to the previous proofs, it suffices to assume Φ ∈C2
b(R;R).

For the sensitivity with respect to the correlation parameter, we proceed

∂
∂ρ

E [Φ(F)] = a2σ2E
[

Φ′(F)F2

(
W (1)

YT
− ρ

η(ρ)
W (2)

YT

)]

=
1

η(ρ)
E

∫ YT

0
D(2)

s Φ(F)
W (1)

YT
− ρ

η(ρ)W
(2)

YT

YT
ds


=

1
η(ρ)

E
[

1
YT

E
[

Φ(F)δ2

(
W (1)

YT
− ρ

η(ρ)
W (2)

YT

)∣∣∣FT

]]
=

1
η(ρ)

E
[

1
YT

E
[

Φ(F)

(
W (1)

YT
W (2)

YT
− ρ

η(ρ)

(
(W (2)

YT
)2 −YT

))∣∣∣FT

]]
,

where the interchange of the derivative and the expectation at the first equality can be justified by standard uniform
integrability arguments, where the second equality can be justified by D(2)

s Φ(F) = Φ′(F)a2F2σ2η(ρ), and where the
third equality holds by the conditional integration-by-parts formula (2.5) with ht ≡ 1.

For the cross-gamma, we start with deriving an expression for (∂/∂S(2)0 )E[Φ(F)], which can be done by

∂
∂S(2)0

E [Φ(F)] =
a2

S(2)0

E
[
Φ′(F)F2

]
=

1

S(2)0 η(ρ)σ2

E
[

1
YT

E
[∫ YT

0
D(2)

s Φ(F)ds
∣∣∣FT

]]

=
1

S(2)0 η(ρ)σ2

E

[
Φ(F)

W (2)
YT

YT

]
,

where the last equality holds by D(2)
s Φ(F) = Φ′(F)a2F2σ2η(ρ). With the identity D(1)

s Φ(F) = Φ′(F)(a1σ1F1 +
a2σ2ρF2), we have

Φ′(F)a1σ1F1 =
1

YT

(∫ YT

0
D(1)

s Φ(F)ds− ρ
η(ρ)

∫ YT

0
D(2)

s Φ(F)ds
)
.

Using this identity, we proceed

∂ 2

∂S(1)0 ∂S(2)0

E [Φ(F)] =
a1

S(1)0 S(2)0 η(ρ)σ2

E

[
Φ′(F)F1

W (2)
YT

YT

]

=
1

S(1)0 S(2)0 η(ρ)σ1σ2

E
[

1
Y 2

T

∫ YT

0

(
D(1)

s Φ(F)− ρ
η(ρ)

D(2)
s Φ(F)

)
W (2)

YT
ds
]
,

which yields the desired equality by the conditional integration-by-parts formula (2.5) with ht ≡ 1. The proof is
complete. (In our setting, regardless of the order of the partial derivatives and the choice of the Skorohod integrals, we
arrive at the same formula.)

Remark 3.7. For all the formulas of this section, we have imposed the assumptions on the L2(Ω)-integrability of the
payoff and on the finite negative moment E[Y−p

T ] < +∞, for some p > 0. As a matter of course, with a higher order
integrability of the payoff and with the use of the Hölder inequality (instead of the Cauchy-Schwarz inequality) just as
in the proof of Proposition 3.5, we may decrease the order p of the negative moment to a certain extent. In particular,
in the case of uniformly bounded payoffs, such as digital options (to be tested in our numerical experiments below),
the order p can be taken arbitrarily small. Moreover, the order p has been increased in order to remove the smoothness
of the payoff function Φ. Hence, we can again decrease the order p when dealing with smooth Φs. For the reader’s
convenience, let us here investigate the negative moments for the three candidates given in Example 2.1, 2.2, and 2.3.
For the gamma process, by using the density function (2.2), we can easily derive that E[Y−p

T ] < +∞ if and only if
p ∈ (0,aT ). Meanwhile, it is well known that the inverse Gaussian distribution has the density

fYt (x) =
δ teδγt

√
2πx3/2

exp
[
−1

2
(
δ 2t2x−1 + γ2x

)]
, x ∈ (0,+∞),
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where parameters are the same as given in Example 2.2. Hence, E[Y−p
T ]<+∞ for every p ∈ (0,+∞). Finally, for the

integrated CIR square root process, we use the identity

E
[
Y−p

T

]
=

1
Γ(p)

∫ +∞

0
sp−1E

[
e−sYT

]
ds =

1
Γ(p)

∫ +∞

0
sp−1eA(T,is)z0 B(T, is)ds,

where the functions are as given in Example 2.3. We can show that A(T, is)∼−2
√

2s/λ , B(T, is)∼ e−
√

2sκηT/λ , and
thus E[e−sYT ] ∼ e−

√
2s(2z0+κηT )/λ as s ↑ +∞. This implies that the negative moment is well defined for every order.

Interestingly, the above observations indicate that the inverse Gaussian process and the integrated CIR square root
process cannot stay very low for long.

3.6 Numerical Illustration
We test our formulas on a digital payoff Φ(x) = 1(x > K) with the normal inverse Gaussian model described in
Example 2.2. In the numerical results given below, “FD” indicates the Monte Carlo convergence of the finite difference
counterparts. For the delta, the vega, the gamma, and the Asian delta, we set model parameters S0 = 100, K = 1.1S0,
α = 8, β = −3, and δ = 0.2. For the baskets, we use the same inverse Gaussian process and set S(1)0 = S(2)0 = 100,

ρ = 0.3, a1 = a2 = 1, and K = 2.2S(1)0 . We fix T = 1 and r = 0.05 throughout. The figures and the variance ratios
evidently indicate a faster convergence of our Greeks formulae, compared to the finite difference approximations.
Note that the finite difference approximations are in general biased.

4 Multidimensional Density Estimation
This section treats the problem of obtaining a Monte Carlo estimation of the value of the density for a multidimensional
time-changed Brownian motion model. Let us begin with some additional notations on the Malliavin calculus. Fix
T > 0, d1 ∈ N, and d2 ∈ N. Let {Wt : t ≥ 0} be a standard Brownian motion in Rd1 and define by F := (F1, . . . ,Fd2)

′

a random vector in Rd2 , measurable with respect to GT . We denote by γF the Malliavin matrix of F given FT , whose
(k1,k2)-entry is

(γF)k1,k2 =
∫ YT

0

⟨
DsFk1 ,DsFk2

⟩
ds.

Define for k = 1, . . . ,d2,

H(k)(F) :=
d1

∑
l=1

d2

∑
m=1

δl

(
(γ−1

F )k,mD(l)
· Fm

)
,

and set
H(F) := [H(1)(F), . . . ,H(d2)(F)]′.

We denote by ad the area of the unit sphere in Rd , and define c2 := a2 and cd := (d −2)ad for d ≥ 3. Moreover, for
each d ≥ 2, define a map Qd : Rd 7→ R by Q2(x) := a2 ln∥x∥, and for d ≥ 3, Qd(x) := −ad∥x∥2−d . Then, we get for
k = 1, . . . ,d,

∇Qd(x) = cd
x

∥x∥d .

The following is a key tool due to Malliavin and Thalmaier (our formulation follows from Bally and Caramellino
[2]). We illustrate, in Example 4.2, how the algebra actually proceeds with numerical results.

Theorem 4.1. (Kohatsu-Higa and Yasuda [19]) Assume that there exists p > 1 such that for every c > 0,

sup
∥x∥≤c

E
[∥∥∇Qd2(F − x)

∥∥ p
p−1 +

∣∣Qd2(F − x)
∣∣ p

p−1
]
<+∞.

Then, the density pF(·) of F is given by

pF(x) = E
[⟨

∇Qd2(F − x),H(F)
⟩]
.
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The idea of the above result is to use the fact that in the sense of generalized functions, one has that (see, for
example, Evans [14])

∇Qd2(y− x) = δx(y).

Therefore, the above result can be understood as an application of the integration-by-parts formula.

Example 4.2. Consider the two-dimensional model investigated in Section 3.5. Set

F := [F1,F2]
′ :=

[
S(1)0 exp

(
X (1)

T

)
,S(2)0 exp

(
X (2)

T

)]′
,

where S(1)0 and S(2)0 are positive constants, as before. Then, given FT , we have for s ∈ [0,YT ],

DsFk =

{
σ1F1[1,0]′, if k = 1,
σ2F2 [ρ,η(ρ)]′ , if k = 2,

and

DsF−1
k =−F−2

k DsFk =

{
−σ1F−1

1 [1,0]′, if k = 1,
−σ2F−1

2 [ρ,η(ρ)]′ , if k = 2.

Hence, the Malliavin matrix γF of the random vector F given FT is

γF =
∫ YT

0

[
∥DsF1∥2 ⟨DsF1,DsF2⟩

⟨DsF1,DsF2⟩ ∥DsF2∥2

]
ds = YT

[
σ2

1 F2
1 σ1σ2F1F2ρ

σ1σ2F1F2ρ σ 2
2 F2

2

]
,

while its inverse almost surely exists and is given by

γ−1
F =

1
YT σ2

1 σ2
2 F2

1 F2
2 η(ρ)2

[
σ2

2 F2
2 −σ1σ2F1F2ρ

−σ1σ2F1F2ρ σ2
1 F2

1

]
.

Given FT , using the conditional integration-by-parts formula (2.5) with ht ≡ 1, we get

δl
(
F−1

m
)
= F−1

m δl(1)−
∫ YT

0
D(l)

s F−1
m ds =



F−1
1

(
W (1)

YT
−σ1YT

)
, if (l,m) = (1,1),

F−1
2

(
W (1)

YT
−σ2ρYT

)
, if (l,m) = (1,2),

F−1
1 W (2)

YT
, if (l,m) = (2,1),

F−1
2

(
W (2)

YT
−σ2η(ρ)YT

)
, if (l,m) = (2,2).

Hence, we get

H(1)(F) =δ1

(
(γ−1

F )1,1D(1)
· F1

)
+δ1

(
(γ−1

F )1,2D(1)
· F2

)
+δ2

(
(γ−1

F )1,1D(2)
· F1

)
+δ2

(
(γ−1

F )1,2D(2)
· F2

)
=

δ1
(
F−1

1

)
σ1YT η(ρ)2 −

ρ2δ1
(
F−1

1

)
σ1YT η(ρ)2 +0−

ρδ2
(
F−1

1

)
σ1YT η(ρ)

=
W (1)

YT
− ρ

η(ρ)W
(2)

YT
−σ1YT

F1σ1YT
,

and

H(2)(F) =δ1

(
(γ−1

F )2,1D(1)
· F1

)
+δ1

(
(γ−1

F )2,2D(1)
· F2

)
+δ2

(
(γ−1

F )2,1D(2)
· F1

)
+δ2

(
(γ−1

F )2,2D(2)
· F2

)
=−

ρδ1
(
F−1

2

)
σ2YT η(ρ)2 +

ρδ1
(
F−1

2

)
σ2YT η(ρ)2 +0+

δ2
(
F−1

2

)
σ2YT η(ρ)

=
W (2)

YT
−σ2YT η(ρ)

F2σ2YT η(ρ)
.
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Hence, we get for x := (x1,x2)
′ ∈ R2,

pF(x) = c2E
[
E
[⟨

F − x
∥F − x∥2 ,H(F)

⟩∣∣FT

]]

= c2E

 F1 − x1

∥F − x∥2

W (1)
YT

− ρ
η(ρ)W

(2)
YT

−σ1YT

F1σ1YT
+

F2 − x2

∥F − x∥2

W (2)
YT

−σ2YT η(ρ)
F2σ2YT η(ρ)

 .
We can show that the above formula is well defined when there exists p > 1 and q > 0 such that

E
[
Y−p

T e2p((−θ1+q)∨(−θ2+pσ2
2 ))YT

]
<+∞.

Notice that as in the case of the Greeks formulas of European type, the Markov feature of the time control process is
not required in the derivation of the above estimator and we need only the sample of the marginal YT , but not the entire
sample paths {Yt : t ∈ [0,T ]}. We present in Figure 2 and Figure 3 simulation results, respectively, of the variance
gamma model and the normal inverse Gaussian model.

For two reasons, the above density estimation formulae outperforms the standard kernel density estimation, for
example,

p̂h(x) :=
1

hd1
E
[

K
(

x−ST

h

)]
, x ∈ Rd1 ,

where K is a suitable kernel and where h is the bandwidth. First, the kernel density estimation is only asymptotically
unbiased as h ↓ 0, while in reality h can never be taken zero. On the other hand, our density estimators are intrinsically
unbiased. Second, in the kernel density estimation, Monte Carlo summands provide almost no contribution to the
convergence of Monte Carlo simulation unless realizations are very close to x. This problem turns out to be very serious
when we set the bandwidth h to be extremely small. In our formula, meanwhile, all the Monte Carlo realizations make
an equal contribution.

A drawback of our formula is its infinite variance, due to the singularity of the denominator ∥F − x∥2. To get
around this issue, we may employ an approximation technique studied in Kohatsu-Higa and Yasuda [19] also in our
framework, in exchange for the lost of the unbiasedness. In such a case, the method is similar to the kernel density
estimation but the rates of bias and variance and smaller than in the classical method due to the use of the conditional
integration-by-parts formula.

5 Concluding Remarks
In this paper, we have computed formulas for the Greeks and the multidimensional density estimation for an asset
price dynamics model defined with time-changed Brownian motions. Our approach is based on an application of
Malliavin duality formulas on the Gaussian space conditioning on the jump component. We have noticed that the
Markov property of the time-changing process is not required and that our formulas may recover the counterparts with
the degenerate time clock.

On the sensitivity analysis for asset price models related to jump processes, a variety of different approaches have
been proposed in the literature. In some cases, we may derive different formulas for a single object. For example,
the variance gamma model can also be in the framework of [17], where different formulas are obtained for delta,
gamma, and vega. It would be interesting to somehow investigate how those distinct formulas should be compared,
for example, in terms of the Monte Carlo variance.
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Figure 1: (FD)
(MC) indicates the variance ratios Var(FD)/Var(MC). The quantity ε is the increment for the finite difference

estimation.
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Figure 2: Variance gamma model; parameters are S(1)0 = S(2)0 = 100, r = 0.05, T = 1, σ1 = σ2 = 0.12, θ1 = θ2 = 0.1,
and ν = 1/6.
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Figure 3: Normal inverse Gaussian model; parameters are S(1)0 = S(2)0 = 100, r = 0.05, T = 1, α = 8, β =−3, δ = 0.2.
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