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By extending the cleaving method of Broughton and Gilmer [J. Chem. Phys. 84, 5759 (1986)]
to molecular systems we perform direct calculations of the ice Ih–water interfacial free energy at
ambient pressure for the TIP4P model. The values for the basal, prism, and {112̄0} faces of ice
Ih are determined to be 23.3± 0.8mJm−2, 23.6± 1.0mJ m−2, and 24.7± 0.8mJm−2, respectively.
The closeness of these values implies a minimal role of thermodynamic factors in determining the
anisotropic behaviour observed during ice nucleation. These results are about 20% lower than the
best experimentally–based estimates. However, we observe a larger discrepancy in the Turnbull
coefficient, which is about 50% higher than for real water, indicating a possible limitation of the
TIP4P model in describing the freezing transition.

PACS numbers: 68.08.-p,64.70.Dv,05.70.Np,87.15.Aa

Introduction.—The excess free energy of a solid-liquid
interface, γsl, is the reversible work required to form a
unit area of interface between the two phases. A knowl-
edge of this quantity is essential for understanding solid-
liquid phase transitions, including the processes of nu-
cleation and crystal growth [1]. In a supercooled liquid,
γsl counteracts the effects of the free energy difference
between solid and liquid phases, and hence determines
the size of the critical nucleus. The anisotropy of γsl,
i.e., its dependence on the orientation of the interface
with respect to the crystal lattice, influences the shape of
the crystal and the morphology of dendritic growth [2].
Clearly, being able to accurately determine γsl and its
anisotropy is of considerable fundamental and technolog-
ical interest.

Recently, there has been much progress in the de-
velopment of methodology for determining γsl and its
anisotropy by means of molecular simulation. Two
distinct but complementary methods have been devel-
oped: the cleaving method, introduced by Broughton and
Gilmer [3] and subsequently enhanced by Davidchack and
Laird [4–6], and the capillary fluctuation method (CFM)
proposed by Hoyt, Asta, and Karma [7]. The cleaving
method uses external potentials to reversibly transform
two separate solid and liquid systems prepared at coexis-
tence conditions into a single system with the two phases
juxtaposed to create an interface. The value of γsl is
obtained directly by measuring the work performed by
the external potentials during the transformation pro-
cess. The main technical difficulty with this method is
that it involves several stages, each of which requires
precise control to ensure the transformation proceeds re-
versibly. The implementation of CFM is more straight-
forward, since it only requires the simulation of an equili-
brated interfacial system. However, in this case the value
of γsl is obtained indirectly, relying on the validity of the

relationship between the magnitude of the capillary fluc-
tuations and the stiffness of the interface, which, in turn,
is related to γsl through a functional dependence with a
carefully chosen set of anisotropy parameters. The cleav-
ing method is more precise in determining specific values
of γsl, while the CFM is more sensitive for ascertaining
the anisotropy.

It is notable that all systems studied to date have been
atomic, with the exception of succinonitrile (SCN) [8] and
a hard-dumbbell system [9]. However, both of these sys-
tems are amenable to current methods, since SCN freezes
into an orientationally disordered bcc crystal and hence
behaves essentially as atomic, while the cleaving walls
approach, developed originally for the hard-sphere sys-
tem [4], is directly applicable to the hard-dumbbell sys-
tem.

We report here a significant extension of the cleaving
method that enables the direct calculation of the solid-
liquid interfacial free energy for molecular systems. The
main challenge is to incorporate the orientational degrees
of freedom into the transformation path, so that, in the
process of forming the interface, the liquid molecules oc-
cupy crystal sites with appropriate orientational order.
We solve this problem by designing a cleaving poten-
tial that influences both position and orientation of the
molecules. The proposed potential is generic and can be
applied to all types of rigid molecules, as well as being
adaptable to flexible molecular systems. We use the ex-
tended cleaving method to determine the free energy of
the interface between ice Ih and water at ambient pres-
sure for the TIP4P model of water. Even though the ice
Ih structure consists of orientationally disordered hydro-
gen bonds, the orientation of molecules during the cleav-
ing process needs to be controlled in order for the crystal
structure to obey the Bernall-Fowler ice rules [10].

The cleaving method.— The method consists of four
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basic steps: Step 1: Cleave the solid system with a suit-
ably chosen external potential (the cleaving potential)
along a plane (the cleaving plane) between two crystal
layers of a given orientation; Step 2: Cleave the liquid
system with a matching potential, which induces partial
ordering of the liquid near the cleaving plane, and creates
a barrier through which the liquid particles cannot cross;
Step 3: Merge the two systems by gradually rearrang-
ing the boundary conditions to allow interaction between
the solid and the liquid across the cleaving planes while
maintaining the cleaving potential; Step 4: Remove the
cleaving potential from the combined system.

Provided the initial isolated solid and liquid systems
have been equilibrated at the solid-liquid coexistence con-
ditions, the only result of the above transformation pro-
cess is the creation of the solid-liquid interface. There-
fore, the total work performed on the system constitutes
the product of the interfacial free energy γsl and the area
of the created interface.

The reversible work in each step is determined using a
standard coupling parameter approach [11] wherein the
total potential energy of the system depends on the cou-
pling parameter λ, i.e. U = U(λ), in such a way that
changing the parameter value (typically from λ = 0 to
λ = 1) transforms the system from its initial to its final
state. In the present study we have opted to compute
the reversible work in each of the four steps using the
nonequilibrium work approach in the spirit of the Ben-
nett acceptance ratio (BAR) method [12–16]. Within
this approach, the coupling parameter λ is changed con-
tinuously from its initial to its final value over the du-
ration of the simulation run (or, if one were employing
the Monte Carlo method, over a number of sweeps) [17].
Compared to the more traditional thermodynamic inte-
gration approach, the nonequilibrium BAR method ap-
pears to be more efficient and, even more significantly,
provides a highly reliable estimate of the error on the
determined free energy [15].

The cleaving potential.—The cleaving potential is in-
troduced to prevent the particles from crossing the
cleaving plane (otherwise the process of rearranging the
boundary conditions in Step 3 is not well defined). A
suitable choice of cleaving potential is crucial to the suc-
cess of the method, since accurate results can only be
obtained if the transformation path is near-reversible on
the time scale of the simulation. Both requirements can
be satisfied if the cleaving potential is designed to pro-
mote the formation of crystal layers at the cleaving plane
in Step 2. In the previous implementations of the cleav-
ing method, the cleaving potential has been purely repul-
sive, tailored to mimic the interaction of liquid particles
with layers of crystal particles at the interface. Such a
repulsive cleaving potential cannot be directly applied to
systems where attractive forces (e.g. electrostatic inter-
actions) play an essential role in determining the crystal
structure. The task of designing the cleaving potential
for molecular systems is further complicated by the need

to induce specific orientations of the molecules within the
crystal structure.

We construct the cleaving potential from a set of po-
tential wells located at the ideal crystal positions near
the cleaving plane. These wells attract the molecules in
the liquid to the lattice sites and orientate them in a
prescribed way to promote the formation of crystal lay-
ers. For a rigid molecule with center-of-mass coordinates
r and orientational coordinates q (e.g. rotation matrix,
Euler angles, or quaternions), the proposed cleaving po-
tential has the following generic form:

Φ(r,q) =
∑

j

φ(|r−Rj |)θ(q,Qj) , (1)

where Rj is the position of the potential well j and Qj

is the desired orientation of a molecule within the well.
Typically, φ(r) can be any potential well function with
a minimum (negative) value −dw (the “well depth”) at
r = 0 and a finite range rw, i.e., φ(r ≥ rw) = 0. In this
work we employed a simple polynomial function: φ(r) =
dw[(r/rw)2 − 1]3 for r < rw.

To induce the desired orientation, θ(q,Q) should be
a smooth function which is positive when a molecule is
aligned with the desired orientation (i.e., q is close to
Q) and negative when the molecule is misaligned. The
overall result is a potential which attracts molecules with
good alignment, and repels those with bad alignment,
and furthermore exerts a torque on the molecules in the
direction of perfect alignment.

Application to TIP4P water.—We have applied the
cleaving method with the proposed molecular cleaving
potential to the TIP4P model of water [18] and com-
puted ice Ih–water interfacial free energy for the {0001}
(basal), {11̄00} (prism), and {112̄0} interfaces. Both the
Lennard-Jones and electrostatic interactions were trun-
cated (discontinuously) at 10 Å. We employed molecu-
lar dynamics simulation in the NV T ensemble using a
quaternion-based algorithm NO SQUISH [19] with 2 fs
time step. The temperature was controlled using the
Nosé-Hoover method, with separate control of transla-
tional and rotational motions. In order to determine the
coexistence conditions for this water model, trial equili-
bration runs of the ice Ih–water interface systems were
performed at different temperatures [20]. We found the
run at 219 K to be closest to coexistence, exhibiting no
overall freezing or melting over a 4 ns simulation run.
This temperature is lower than the 232 K melting tem-
perature of TIP4P water reported in [21], and the 229 K
reported in [22] and [23]. This discrepancy is the re-
sult of differences in the handling of electrostatic inter-
actions: [21] used Ewald sums, while [22] and [23] used a
cutoff of 17 Å, compared to our 10 Å. Further details of
the methodology employed by us to ascertain the melt-
ing temperature for our system can be found in [17].
The coexistence densities of 938.0 kg/m3 for ice Ih and
1010.8 kg/m3 for water were found to yield the approxi-
mate ambient pressure of 1 bar at 219 K.
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Separate equilibrium ice and water systems were
prepared at the coexistence conditions. The proton-
disordered structure of ice Ih was generated using the
algorithm of Buch et al. [24]. The ice system contained
approx. 2 100 molecules in a simulation cell of dimensions
Lx ≈ 44 Å, Ly ≈ 39 Å, Lz ≈ 45 Å. The water system with
exactly the same Lx and Ly dimensions (the cleaving
plane is chosen normal to the z-axis) had approx. 2 400
molecules and Lz ≈ 42Å.

The orientational part of the cleaving potential in
Eq. (1) took the form:

θ(q,Q) = n(q) · n(Q) (2)

where, n is a unit vector directed from the oxygen to
the mid-point of the hydrogens. Note that the torque
induced by θ only influences two of the three rotational
degrees of freedom; our studies confirm that this is suf-
ficient inducement for the molecule to find its correct
orientation.

In the cleaving step for ice (Step 1), two layers of po-
tential wells are introduced at the ideal crystal positions
on either side of the cleaving plane, with orientations Q
aligned with the orientations of the crystal molecules at
the wells.

The potential for cleaving the liquid (Step 2) is iden-
tical to the potential for cleaving the solid. As noted
in previous studies [5, 6], the structural ordering of the
liquid induced by the cleaving potential is the principal
source of irreversibility in the cleaving method. For the
TIP4P water system, the hysteresis was found to be very
persistent and could not be removed by slowing down the
switching process, but could be reduced significantly by
cleaving at a higher temperature. So cleaving the liquid
becomes a 3-stage process: (1) heat the system, (2) cleave
the heated system, (3) re-cool the system. We found it
sufficient to heat the system to about 310K. Instead of
adjusting the simulation temperature, we adopted the
equivalent approach of scaling down the potential [25].
The scaling work is then calculated in a similar way to
the cleaving work. The amount of hysteresis is reliably
quantified by the nonequilibrium BAR measurement ap-
proach, since the presence of hysteresis in the switching
process gives rise to a substantial increase in the BAR
error estimator. See [17] for details. An illustration of
the cleaved liquid system is shown in Figure 1, where the
cleaving potential has induced the formation of a layer of
ice Ih crystal for the basal orientation of the interface.

To merge the two systems (Step 3), the combined po-
tential U is controlled by a coupling parameter λ as fol-
lows: U(λ) = (1− λ)(Ui + Uw) + λUiw, where Ui and Uw

are the molecular interaction potentials of separate ice
and water systems and Uiw is the potential of the com-
bined system. Finally, the cleaving potential is removed
from the combined ice–water system (Step 4).

The interfacial free energy is given by the sum of the
work performed in each of Steps 1–4 divided by the
area of the created interface, A = 2LxLy. The com-
puted values of the ice Ih–water interfacial free energy for

FIG. 1: (Color online) TIP4P water system at the end of
Step 2 (basal interface). Arrows indicate the location of the
cleaving plane.

TIP4P were 23.3± 0.8mJm−2 for the basal face, 23.6±
1.0mJ m−2 for the prism face, and 24.7± 0.8 mJm−2 for
the {112̄0} face of ice Ih.

Discussion.—Because of its importance, there have
been numerous attempts to determine the interfacial free
energy of the ice–water interface by experiment using
a variety of methods (see Ref. [26] for a review of ex-
perimental results). Even though the scatter in these
results exceeds 50%, the more recent estimates [26, 27]
tend to converge to the value 29.1±0.8mJm−2 obtained
by Hardy using the shape of the grain boundary groove
method [28]. So far, the computer simulation results
for γsl for ice–water interface have been obtained only
by indirect methods: Haymet, Bryk, and Smith [29] de-
termined the interfacial tension along the basal face for
the SPC/E model to be 39 ± 4mJm−2and argued that
the difference between the tension and the free energy of
the ice–water interface should be small [38]. In a recent
study, Wang, Tang and Zeng [30] used the superheating-
undercooling hysteresis method [27] to determine γsl for
TIP4P-Ew and TIP5P-Ew models and obtained values
of 37± 3mJ m−2and 42± 4mJ m−2, respectively.

Calculation of the Turnbull coefficient [31], CT , reveals
that the lower than experimental γsl values we obtained
could be attributed to the low enthalpy of fusion, ∆Hfus,
of the water model employed in our study. The Turn-
bull coefficient, defined by γslρ

−2/3
s = CT ∆Hfus, where

ρs is the number density of the solid phase, commonly
takes a value of about 0.45 for metals, and 0.32 for
many non-metallic materials. Since for our water model
∆Hfus = 3.18 kJmol−1, whilst for real water ∆Hfus =
6.02 kJ mol−1, our Turnbull coefficient, CT = 0.45, is
substantially higher than that of real water, CT = 0.30.
The low value of ∆Hfus is partially the result of trunca-
tion of the electrostatic interactions in our model, since
TIP4P with full electrostatic interactions has an enthalpy
of fusion ∆Hfus = 4.39 kJ mol−1 at its coexistence tem-
perature of 232 K [21]. Since CT is typically insensitive
to the details of the interaction potential, we expect that
for TIP4P with full electrostatics the ice–water interfa-
cial free energy will be higher. The discrepancy for CT
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between TIP4P and real water might indicate a limita-
tion of this model in describing freezing. It remains to
be investigated whether inclusion of full electrostatic in-
teractions will reduce this discrepancy.

The dependence of γsl on the crystal face at the inter-
face remains poorly characterised. Experimentally, the
ratios could be estimated from the equilibrium shape
of an ice Ih crystal using the well known Wulff con-
struction [32] but, to our knowledge, the equilibrium
shapes of isolated ice crystals have never been defini-
tively observed [33]. The experimental observation of the
oblate ellipsoidal shape of water inclusions in ice Ih [34]
would imply a very large ratio γprism/γbasal = 1.857,
but this could also be attributed to the strong influ-
ence of mechanical stresses on the shape of the inclu-
sions [35]. According to a rough estimate based on the
number of broken bonds at the crystal surface [36, 37]
γbasal : γprism : γ{112̄0} ≈ 1 : 1.06 : 1.22. Our results are
consistent with this estimate in that the value for γ{112̄0}
is higher than the values for the other two interfaces,
which are marginally smaller but very similar. The simi-
larity between the calculated interfacial free energies for
different crystallographic planes implies a minimal role
of thermodynamic factors in determining the anisotropic
behaviour observed during ice nucleation.

Conclusion.—We have extended the cleaving method
to molecular systems and determined the TIP4P ice Ih–
water interfacial free energy for the basal, prism, and
{112̄0} orientations to be 23.3 ± 0.8mJ m−2, 23.6 ±
1.0mJ m−2, and 24.7 ± 0.8mJ m−2, respectively. In our
future work, we will investigate the influence of electro-
static potential truncation on γsl and CT by including
full electrostatic interactions (e.g., via Ewald sums) in
our calculations. We will also compute γsl for other mod-
els of water and other ice phases, as well as extend the
cleaving method to flexible molecular model potentials.
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