Direct Calculation of Solid—Liquid Interfacial Free Energy for Molecular Systems:
TIP4P Ice—Water Interface
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INTRODUCTION

We provide here more detailed information on the fol-
lowing topics:

e Determination of ice Ip—water coexistence condi-
tions for the TIP4P model with 10 A interaction
cutoff (both van der Waals and electrostatic);

e Nonequilibrium measurements approach for com-
puting reversible work;

e Detailed discussion of the large hysteresis in Step 2
and of our approach for reducing the hysteresis

e Number and simulation time of forward and reverse
trajectories.

COEXISTENCE CONDITIONS

In order to determine the coexistence conditions for our
model of water (TTP4P with 10 A interaction cutoff), we
employed the direct coexistence simulation method [1-
3]. In this method a heterogeneous system containing
the two phases separated by an interface is allowed to
evolve in a long simulation run. If the conditions of the
simulation are not close to the coexistence conditions for
the two phases, the system will evolve towards the phase
which is more stable (i.e. the one with the lowest free en-
ergy), with the transformation between the phases taking
place at the interface. In the system containing crystal
and melt phases, one would observe melting (freezing) at
the interface if the temperature were above (below) the
melting temperature. The simulation can be carried out
in a variety of ensembles: NVT, NPT, NPH (constant
enthalpy).

In order to determine the ice I, water coexistence con-
ditions for the TIP4P model used in our system we ran
4ns simulations of the ice—water interfacial system at
temperatures 213, 216, 219, 222, 225K. We observed
melting of the ice water interfacial system at temper-
atures above 219K (see Figure 1). As is noted in the

Potential Energy for combined ice/water system

-11.4
— 213K
—— 216K
-115| —— 219K A
I | \,/N\ /
222K . WVW i

\

—11.677225K AV, iy \/

-11.7 WM Y

Potential Energy (kcal/mole)

I
AN
=
o

-11.9 : : : ‘
0 1 2 3 4

equilibration time (nanoseconds)

FIG. 1: Coexistence simulations at different temperatures.
Each simulation starts with equal quantities of ice and water
separated by interfaces. An increase (decrease) of potential
energy with time indicates melting (freezing).

paper, the melting temperature of 219 K for our system
is lower than those for TIP4P models reported in the
literature [2-5], which were in the range 229-232K. We
attribute this to the truncation of the electrostatic inter-
action at 10A, since the higher melting temperature esti-
mates were obtained for the TIP4P model either with full
electrostatic interactions (computed via Ewald sums) [5],
or with a larger interaction cutoff of 17 A [2, 4]. To ver-
ify the effect of truncation on the melting temperature,
we repeated the coexistence simulations for TIP4P with
Ewald sums, and the system did not melt at 230 K.
Based on this evidence, we conclude that the trunca-
tion of electrostatic interactions in TIP4P model leads to
the decrease of melting temperature. This decrease might
not be noticeable with the 17A cutoff due to the relatively
low precision of the coexistence simulation method, but
it is clearly observed for the 10A cutoff. We are confident
that our estimate of 219 K is not far from the true melting
temperature for this system. In fact, if the temperature
at which we performed the cleaving process were below



the melting temperature for this system, we would have
ended up with an excess amount of ice at the end of the
four-step cleaving process, which we did not observe.

NONEQUILIBRIUM FREE ENERGY
CALCULATION METHODS

We use a nonequilibrium method to calculate work in
the simulations. Since thermodynamic integration is a
valid alternative, we give here some explanation of the
nonequilibrium method, and discuss how it compares
with thermodynamic integration, in order to justify the
choice.

To calculate the free energy between two states using
the nonequilibrium approach, a number of trajectories
are run. The starting point for each forward trajectory
is chosen at random from the equilibrated starting state.
The trajectory then moves smoothly to the ending state.
Reverse trajectories are similar — they start from a ran-
domly chosen point in the equilibrated ending state, and
move smoothly to the starting state. As they run, the
trajectories are not in equilibrium.

To change the system state, its potential, U, is modi-
fied via a coupling parameter A(t), which transforms the
system from its initial state, A(0) = A; to its final state,
MT) = A¢. The (non-equilibrium) work done is then
computed [6] as:
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where ['(t) represents the phase space trajectory of the
system. The coupling parameter speed A= d\/dt can
be time dependent, }\(t), and tailored to slow the tra-
jectory over regions where relaxation time of the system
to equilibrium is relatively slow, and therefore subject to
hysteresis. This ability to vary the trajectory speed is
a useful device for concentrating computing time on the
problematic regions of the state transition. We found
a piecewise constant function adequate for this purpose,
though other functions are possible.

The measurements of nonequilibrium work in both for-
ward and reverse directions are used to determine the free
energy difference between the initial and final states, AF,
according the Bennett Acceptance Ratio (BAR) equa-
tion:
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where § = 1/ksT, M = ksTIn(ng/ng), and np (ng) is
the number of forward (reverse) trajectories. This equa-
tion, originally derived by Bennett [7] for the case of
instantaneous switching between two equilibrium states,
has been shown [8] to be also valid when the potential
energy difference between the two states is replaced with

the nonequilibrium work values for finite time switching
processes in the forward and reverse directions.

As an estimator for the free energy, this equation is
optimal in the statistical sense of a Maximum Likelihood
Estimator [9]. The variance in the obtained value for the
free energy can be estimated as follows:
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where niot = nr + ng and the average, denoted by the
angle brackets, is over all work measurements, both for-
ward and reverse.

It is instructive to contrast this method with thermo-
dynamic integration, which has been used in earlier stud-
ies. We have found that nonequilibrium methods provide
accuracy comparable to thermodynamic integration (for
given computing resources). In addition, they offer some
important advantages:
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Hysteresis detection: Since forward and reverse tra-
jectories are combined in the BAR calculation, any
hysteresis will show up as a significant difference
between forward and reverse work, which in turn
will be reflected in a high error estimate. So the
method itself contains a built-in check for hystere-
sis.

Few equilibration runs: Within the nonequilibrium
approach we need to equilibrate the system only at
the initial and final states. Such states are usually
far from any thermodynamic transition points and
thus the equilibration is fairly rapid. To use ther-
modynamic integration, we need to equilibrate the
system at many intermediate states. States that
are close to thermodynamic transition points may
exhibit weak ergodicity and thus require very long
equilibration runs.

Additional trajectories can improve accuracy: If
additional accuracy is required, further trajectories
can be run after the initial results have been
collected. The results are added to the results
of the earlier trajectories, so improved accuracy
can be obtained without discarding any earlier
computations.

‘Naturally’ parallel computation: The free energy is
calculated as an average from a number of indepen-
dent trajectories. Being independent, these trajec-
tories can be run on separate processors, enabling
the simulation to be run in parallel without the
need to write MPI software.

An appropriate speed for the trajectories must be es-
tablished: we have found that the greatest accuracy is
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FIG. 2: Hysteresis in step 2 (cleaving water). The graph
shows 10 forward and 10 reverse trajectories at co-existence
conditions. Each trajectory ran for 0.9 ns. The hysteresis is
too persistent to be removed by slowing down the trajectories.
Free energy is impossible to calculate when the trajectories
are so far from reversible.
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FIG. 3: Cleaving water at reduced potential. After reducing
the system potential to 70% of full-strength, the hysteresis
is completely removed. The forward and reverse paths are
now close enough for a good estimate of the free energy to
be made. The scaling and restoring of the potential are done
separately (shown in the following figures).

achieved with a slow enough speed so that the system is
never too far from equilibrium, so that the forward and
reverse work distributions overlap somewhat.

HYSTERESIS DURING CLEAVING OF WATER
(STEP 2)

As noted in previous studies [10, 11], the structural
ordering of the liquid induced by the cleaving potential
is the principal source of irreversibility in the cleaving
method. This problem was found to be particularly se-
vere for TIP4P water, as can be clearly seen in Figure 2.
The hysteresis was found to be very persistent and could
not be removed by slowing down the switching process.

The hysteresis was significantly reduced by reducing
the interaction potential of the molecules. Reducing the
potential, equivalent to heating up the system, moves
it away from ice/water co-existence conditions. When
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FIG. 4: Scaling the potential of the (uncleaved) water system.
This is done at the beginning of step 2 before cleaving. The
transition suffers from no hysteresis.
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FIG. 5: Restoring the potential of the (cleaved) water system.
This is done at the end of step 2 after cleaving. There is
still some hysteresis, as the cleaved system approaches co-
existence conditions, but the problem is far less severe than
the cleaving hysteresis of figure 2.

the cleaving wells are introduced into a system with the
potential reduced by 30%, there is no hysteresis, as can
be seen in Figure 3. To calculate the cleaving free energy
at co-existence conditions using this ‘potential scaling’
technique requires three separate stages:

e Reduce the interaction potential of the (uncleaved)
water system by 30%

e Cleave the (reduced-potential) water system by in-
troducing the wells

e Restore the potential of the (cleaved) water system
to its full value

The free energy for each stage is calculated (using sim-
ilar techniques as before), and the total free energy of
cleaving at co-existence is the sum of the three individ-
ual free energies. Graphs are shown for reducing the po-
tential (Figure 4), and restoring the potential (Figure 5).
There remains some hysteresis in the final stage (restor-
ing the potential), as the cleaved system approaches full-
potential (and therefore co-existence conditions). De-
spite slowing down the trajectories in this region, a slight
hysteresis is still present, although it is now far less severe



TABLE I: Duration of simulation runs in each step for the
three interface orientations and the number of forward and
reverse trajectories (in brackets) we ran in order to obtain
the stated accuracy of our results.

Basal Prism {1120}
Step 1 0.4ns (10)| 0.4ns (5) [0.4ns (10)
Step 2, heat [|1.0ns (10)|0.9ns (15)|1.0ns (10)
Step 2, cleave|[2.4ns (30)|1.7ns (15)|1.8 ns (20)
Step 2, cool ||2.6ns (60)|4.4ns (60)|4.9 ns (40)
Step 3 0.8ns (20)[1.0ns (25)| 0.2 ns (5)
Step 4 1.3ns (25)|1.3ns (30)|0.8 ns (20)

than the original cleaving hysteresis, and the trajectories
are close enough for free energy to be calculated with
reasonable accuracy.

NUMBER AND SIMULATION TIME OF
TRAJECTORIES

As discussed in the previous section, the simulation
runs need to be slow enough in order for the nonequilib-
rium runs to stay relatively close to equilibrium. As can

be seen in Table I, in Steps 1, 2(heat), and 3, this was
achieved with the much shorter runs than in other steps.
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