
 

NOVEL ACOUSTIC EMISSION SIGNAL PROCESSING 

METHODS FOR BEARING CONDITION MONITORING 

 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy 

at the University of Leicester 

by 

Yanhui Feng 

Department of Engineering  

University of Leicester 

 

 

May 2008 



NOVEL ACOUSTIC EMISSION SIGNAL PROCESSING 

METHODS FOR BEARING CONDITION MONITORING 

by 

Yanhui Feng 

 

 

Declaration of Originality: 

A thesis submitted in fulfilment of the requirements for the degree of Doctor 

of Philosophy in the Department of Engineering, University of Leicester, UK. 

All work presented in this thesis is original unless otherwise acknowledged in 

the text or by references. No part of it has been submitted for any other 

degree, either to the University of Leicester or to any other University. 

 

Signed:_______________________  Date:_______________ 

Yanhui Feng 

 

  



To my daughter Ruixue,  

who brings us eternal happiness and hopes.  

To my wife Yingning and my parents, 

who give me forever supports behind. 



 

i 

NOVEL ACOUSTIC EMISSION SIGNAL PROCESSING 

METHODS FOR BEARING CONDITION MONITORING 

Yanhui Feng 

Abstract 

Rolling Element Bearing is one of the most common mechanical components to 

be found in critical industrial rotating machinery. Since the failure of bearings will 

cause the machine to malfunction and may quickly lead to catastrophic failure of 

the machinery, it is very important to detect any bearing deterioration at an early 

stage. In this thesis, novel signal processing methods based on Acoustic Emission 

measurement are developed for bearing condition monitoring. The effectiveness 

of the proposed methods is experimentally demonstrated to detect and diagnose 

localised defects and incipient faults of rolling element bearings on a class of 

industrial rotating machinery – the iGX dry vacuum pump. Based on the 

cyclostationary signal model and probability law governing the interval 

distribution, the thesis proposes a simple signal processing method named 

LocMax-Interval on Acoustic Emission signals to detect a localised bearing defect. 

By examining whether the interval distribution is regular, a localised defect can be 

detected without a priori knowledge of shaft speed and bearing geometry. The 

Un-decimated Discrete Wavelet Transform denoising is then introduced as a 

pre-processing approach to improve the effective parameter range and the 

diagnostic capability of the LocMax-Interval method. The thesis also introduces 

Wavelet Packet quantifiers as a new tool for bearing fault detection and diagnosis. 

The quantifiers construct a quantitative time-frequency analysis of Acoustic 

Emission signals. The Bayesian method is studied to analyse and evaluate the 

performance of the quantifiers. This quantitative study method is also performed 

to investigate the relationships between the performance of the quantifiers and the 

factors which are important in implementation, including the wavelet order, length 

of signal segment and dimensionality of diagnostic scheme. The results of study 

provide useful directions for real-time implementation. 
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 Rolling Element Bearing is abbreviated to bearing in this thesis. 

Chapter 1  

Introduction 

1.1 Research Motivation 

The Rolling Element Bearing  is a class of bearing in which the main load is 

transferred through elements in rolling contact. It is found in broad applications 

from very simple commercial devices to complex engineering machinery. 

Particularly, bearing is one of the most common mechanical components to be 

found in the critical industrial rotating machinery, e.g. gas turbine engines, rocket 

engines, gearboxes and dry vacuum pumps. The safety and reliability of the 

critical industrial rotating machinery are vital in industry. Since premature bearing 

failures will cause machinery malfunction and may quickly lead to catastrophic 

failure of the machinery, it is important to monitor bearings on-line and predict 

when maintenance should be performed. The main motivation of this Ph.D. study 

is to investigate condition monitoring systems for predicting premature bearing 

failures at an early stage.  

Previous research works in University of Leicester based on vibration 

measurements (accelerometers) have achieved success on the detection of a 

localised bearing defect, which were reported in detail by Thanagasundram 

(2007). Besides the localised indent defect on bearing inner race, as reported 

before, the incipient contamination fault of bearing will be included in this study. 

When contaminants have just entered a bearing, the symptom is hidden and the 

fault at this incipient stage is difficult to detect by using traditional vibration 

measurements. This Ph.D. study attempts to adopt Acoustic Emission (AE) as a 

measurement method to provide a solution to this class of detection problem.  
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1.2 Research Objectives 

The subject of bearing condition monitoring can be divided up into three main 

areas, namely bearing fault detection, fault diagnosis and fault prognosis (Howard 

1994). Detection concerns the question of whether a specific fault is present on 

the bearing; diagnosis is concerned with the determination of the type of fault; 

prognosis is concerned with the estimation of the remaining life of the faulty 

bearing.  

This thesis is mainly about Bearing Fault Detection and Diagnosis (BFDD). Some 

background knowledge about bearings and BFDD will be given in the following 

chapters. A BFDD system based on signal processing usually follows three stages: 

sensing, signal processing, fault detection and diagnosis. Sensing describes the 

stage of setting up the measurement system, including the selection and 

installation of transducers, signal conditioning and data acquisition (Analogue to 

Digital conversion). The time of computation and the cost of implementation are 

major limitations for many advanced fault detection and diagnosis systems to be 

applied in practice. In many cases, the reduction of features and the selection of 

appropriate features are important engineering problems.  

These problems could be alleviated by choosing suitable signal processing 

methods. The main role of signal processing is to perform the transform and 

algorithm to extract characteristic information from the acquired signals. The term 

“signal processing” in the thesis encompasses both the pre-processing for 

denoising signals and the analysis for extracting features from signals. This stage 

is essential to the whole system. Appropriate signal processing methods can 

reduce the data to be handled, highlight characteristic signals and provide the 

optimal feature(s), which are all important for a BFDD system. See Figure 1-1 for 

a type of BFDD method using acoustic and vibration measurements (including 

sound, vibration and Acoustic Emission measurement) which are the most popular 

measurements for BFDD because of the non-destructivity, high sensitivity and 

cost effectiveness (Tandon and Choudhury 1999). The challenges for this type of 

BFDD system are: 
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 First, the capability of the system to cope with noise. Such noise may derive 

from the mechanical components, from the instrumentation, from internal 

electronics and also include computational noise introduced by signal 

processing.  

 Second, the capability of the system to operate with as little a priori 

knowledge as possible. Such knowledge may include the precise shaft speed 

and bearing geometry from which the Characteristic Defect Frequencies 

(CDFs) of bearings can be estimated.  

 Third, the capability of the system to detect and diagnose bearing deterioration 

at an early stage (i.e., the incipient bearing faults, such as the incipient 

contamination fault discussed in this thesis).  

To meet these challenges, it is necessary to apply appropriate signal processing 

methods. Some classical signal processing methods used for BFDD will be 

reviewed in Chapter 4.  

 

Figure 1-1 The BFDD system using acoustic and vibration measurements. 

Sensing 

Signal Pre-processing 
for Noise Reduction 

 

Signal Analysis 

Noises 

Mechanical 

Response 

Fault Detection and Diagnosis 
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The main objectives of this thesis are:  

 Study whether AE measurement is suitable for BFDD, particularly for the 

detection of localised defects and incipient faults. 

 Develop suitable signal processing methods for BFDD based on AE signals.  

 Demonstrate the effectiveness of the proposed BFDD systems on the iGX dry 

vacuum pump.  

 Find an effective method to evaluate the performance of different signal 

processing approaches for BFDD and their parameters. 

The rich information contained in the broadband high-frequency AE signals might 

provide new opportunities for the detection of bearing faults at different stages. 

This research is very promising for the future applications along with the 

reduction of AE transducer price. Two bearing faults of dry vacuum pump are 

studied to demonstrate the effectiveness of the proposed methods: the localised 

indent defect on bearing inner race which represents localised defects, and the 

incipient contamination fault which represents incipient faults. 

1.3 Original Contributions 

The thesis proposes novel signal processing methods on AE signals for BFDD: 

1. Based on the cyclostationary signal model and probability law governing the 

interval distribution, the thesis proposes a simple signal processing method on 

AE signals to detect a localised bearing defect. The new method is composed 

of a new algorithm for finding out the timings of impact signals and the 

interval distribution for detection or diagnosis. By examining whether the 

interval distribution is regular, a localised defect can be detected without a 

priori knowledge of CDFs. The method, named LocMax-Interval, will be 

shown in chapter 5. 

2. The thesis studies the application of Un-decimated Discrete Wavelet 

Transform (UDWT) in BFDD. The UDWT denoising is introduced as the 

pre-processing approach for AE signals. The proposed UDWT denoising 
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approach can improve the effective parameter range of the LocMax-Interval 

method. Also, it enables the method to detect incipient contamination bearing 

fault. This study will be shown in chapter 6.  

3. The thesis introduces the first study on the application of Wavelet Packet (WP) 

quantifiers in BFDD. The WP quantifiers construct a quantitative 

time-frequency analysis of AE signals: Relative Energy (RE) measures the 

normalised energy of the WP node; Total Entropy (TE) measures how the 

normalised energies of the WP nodes are distributed in the frequency domain; 

Node Entropy (NE) describes the uncertainty (i.e. the degree of disorder) of 

the normalised coefficients of the WP node. When using on AE signals, these 

quantifiers are powerful and particularly useful for diagnosing multiple 

bearing faults. The Bayesian method is also studied to analyse and evaluate 

the performance of the quantifiers. The best quantifier can be found by means 

of comparing the Bayesian classification error probabilities. This study will be 

reported in chapter 7. 

4. The Bayesian method also finds application on the implementation of a BFDD 

system using WP quantifiers. Chapter 7 will show the first investigation on 

relationships between the quantifiers and some important factors in 

implementation. The study provides useful directions for real-time 

implementation.  

1.4 Thesis Organisation 

Chapter 2 provides a broad overview of the research background, including some 

basic knowledge about bearings, premature bearing failures and measurements for 

BFDD. Chapter 3 introduces the details of the test bed (i.e. the iGX dry vacuum 

pump), transducer mounting, bearing faults, instrumentation and data acquisition. 

Chapter 4 reviews the classical applications of signal processing methods in 

BFDD, including the time domain methods, frequency domain methods and 

envelope analysis. The limitations of these methods are discussed in detail. The 

cyclostationary analysis and wavelet methods which have attracted increasing 

interest are also reviewed in detail.  
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Chapters 5, 6 and 7 detail the development of the new methods and present the 

results. Chapter 5 proposes a novel method called LocMax-Interval method to 

detect localised bearing defects. A difference between the proposed method and 

the traditional envelope analysis method is illustrated for comparison. Both 

simulations and experimental data are studied to test the new method. Finally, the 

Discrete Wavelet Transform (DWT) denoising method is implemented to improve 

the performance of the LocMax-Interval method. Chapter 6 introduces the UDWT 

decomposition and denoising as a pre-processing approach for the 

LocMax-Interval method. The signal models for the bearing faults are described 

in detail and the signal processing diagram is depicted. The applications of WP 

quantifiers and Bayesian method for BFDD are studied in chapter 7. The 

quantitative study method is also highlighted in this chapter. 

Finally, discussion and recommendations for future research work are presented in 

chapter 8. The conclusions are made in chapter 9. Appendix A briefly introduces 

the principles of wavelet methods, the differences between the transform 

variations, the mathematical descriptions and filtering conventions. Sections 

A.8-A.10 review some important wavelet techniques. This chapter is the essential 

background reading for the techniques used in this thesis. Appendix B reports the 

study of detection of a localised bearing defect using autocorrelation function. 

Appendix C lists the MATLAB codes used for signal processing.  

 



 

 

Chapter 2  

Background 

2.1 Rolling Element Bearings 

A bearing generally consists of four parts: an inner ring, an outer ring, a set of 

rolling elements (balls or rollers) and a cage. The most popular types of bearing 

are ball and roller bearings (Harris 1966). Figure 2-1 shows a ball bearing with 

nine rolling elements and Figure 2-2 sketches the bearing structure.  

 

Figure 2-1 A single-row, deep-groove bearing having a shield. 

 
Figure 2-2 Left: Bearing structure; Right: Shaft and bearing system with rotating 

inner race and fixed outer race. 
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The rolling elements are used to maintain the motion between the fixed supporting 

structure (i.e. housing) and the rotating shaft. See Figure 2-2. The rolling elements 

are held in an angularly spaced relationship by the cage. The inner race is 

mounted on the rotating shaft, the outer race is fixed on the housing (Harris 1966).  

2.2 Bearing Kinematics and Characteristic Defect Frequency 

Bearing kinematics is essential for understanding localised defects detection 

because it determines the rotational velocities of the bearing elements with respect 

to each other and the theoretical Characteristic Defect Frequencies.  

Howard (1994) gives the following formulas and related details. The race 

diameter of the bearing can be expressed in terms of the pitch circle diameter D , 

contact angle  and roller diameter d  to give 

cosdDDi ,          (2-1) 

and   cosdDDo ,          (2-2) 

where iD  is the inner race diameter and oD  is the outer race diameter.  

The circumferential velocity of the cage cV  is the average of the velocity 

of inner race iV  and outer race oV
 

assuming no slip occurs: 

2

oi
c

VV
V ,            (2-3) 

For a bearing with fixed outer race, the velocity of the cage is half of the velocity 

of the inner race: 

2

2

2

i
i

i
c

D

V
V .           (2-4) 

The cage frequency is the circumferential velocity dividing by D : 
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D

Df

D

D

D

V
f iiiic
c

24
.         (2-5) 

By substituting equation (2-1) into (2-5), the cage frequency becomes: 

2

)cos1(
D

d
f

f
i

c .          (2-6) 

When the inner race is fixed on the shaft, the inner race frequency is the same as 

the shaft frequency, the Cage Frequency (i.e. Fundamental Train Frequency, FTF) 

in equation (2-6) becomes: 

2

)cos1(
D

d
f

f
s

c .          (2-7) 

The frequency of rotation of a single rolling element with respect to the cage 

frequency is: 

csiZ fff =
2

)cos1(
D

d
fs

.       (2-8) 

The frequency of rotation of Z rolling elements with respect to the cage frequency, 

named Ball Pass Frequency of Inner race (BPFI), is iZf  multiplied by Z: 

iZbpfi Zff
2

)cos1(
D

d
Zf s

.       (2-9) 

Likewise, the Ball Pass Frequency of Outer race (BPFO) is cf  multiplied by Z: 

cbpfo Zff
2

)cos1(
D

d
Zf s

.       (2-10) 

The Ball Spin Frequency (BSF) is given by iZf  multiplied by the ratio of inner 

race diameter to the ball diameter: 
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)cos1(
2

2

2

2

D

d

d

Df

d

D
ff si
iZbsf

.      (2-11) 

The cf , bpfif , bpfof and bsff are the well known Characteristic Defect Frequencies 

(CDFs) which form the basis for the detection of localised bearing defects 

(Howard 1994, Li and Ma 1997, Tandon and Choudhury 1999, McInerny and Dai 

2003, Randall 2004). If the shaft speed and bearing geometry are known, the 

CDFs can be theoretically estimated by the above equations. When the defective 

part of the bearing makes contact with the surface of its mating part under load, an 

impulse impact is generated and captured by the transducer at a nearby location 

on the casing of the machine. If the machine rotates at a certain steady speed, the 

repetitive impacts will be generated with an equal interval which characterises a 

specific type of localised defect. The envelope signal, which is the outline of the 

impact signal, can be achieved after the rectification and smoothing of the impact 

signal (Randall 2004). See Section 4.4 for more details. 

The characteristic impact interval is termed Characteristic Defect Interval (CDI) 

in the time domain and the Characteristic Defect Frequency (CDF) in the 

frequency domain. The CDI (expressed as the number of discrete sampling points) 

is the sampling frequency wf  divided by CDF:  

CDF

f
CDI w ,           (2-12) 

2.3 Premature Bearing Failures 

The most common failure modes of premature bearing failures are fatigue and 

wear (Howard 1994). The failures may be caused by plastic deformation, 

corrosion, brinelling, poor lubrication, contamination, improper installation and 

incorrect design. The premature bearing failures will quickly lead to machine 

malfunction, even catastrophic failure. As a result, it is very important for an 

advanced condition monitoring system to be capable to find out any bearing 

deterioration problem as early as possible.  
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Bearing defects are usually classified into distributed defects and localised defects 

(Tandon and Choudhury 1999). Surface roughness, waviness, misaligned races 

and off-size rolling elements are included in the class of distributed defects. This 

class of defects is caused by incorrect design, improper installation or wear. 

Cracks, pits, spalls and indents caused by fatigue on the rolling surfaces are 

included in the class of localised defects.  

Solid contamination is one of the main failure root causes of premature bearing 

contact fatigue (Ville el at. 2006). About 20% of premature bearing failures are 

caused by solid contamination (FAG Bearings Corp.). Because of the harsh 

environments present in most industrial settings, contaminants such as dirt and 

foreign particles entering bearings through inadequate sealing commonly 

contaminate bearing lubrication and cause damage. The effects of contamination 

in rolling bearings can be varied, from abrasive wear, when a significant 

concentration of abrasive debris is present causing surface roughness, to the 

effects of a small number of particulates in relatively clean lubricant systems, 

causing localised surface defects such as dents, scuffing and melting (Maru et al. 

2007). When contaminants have just entered a bearing, serious damage may not 

have developed. In comparison to localised defects, the incipient contamination 

problem is more difficult to detect because the symptom is hidden at this stage.  

2.4 Measurements for Bearing Condition Monitoring 

Many measurements have been proposed for bearing condition monitoring, such 

as acoustic and vibration measurement, temperature measurement and wear debris 

analysis. Acoustic and vibration (including sound, vibration and Acoustic 

Emission measurements) are the most popular measurements for bearing 

condition monitoring because of the non-destructivity, high sensitivity and cost 

effectiveness (Tandon and Choudhury 1999). Using this type of measurement, it is 

then possible to continuously monitor the bearing condition of an industrial 

rotating machine without the need to interrupt the machine operation and 

production process. Previous research works based on vibration measurements 
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(accelerometers with frequency range 0-10 kHz) were reported by 

Thanagasundram (2007). The signal acquired via vibration measurement is called 

vibration signal in this thesis.  

Acoustic Emission (AE) transducers (Howard 1994, Choudhury and Tandon 

(2000), Holroyd 2003, Mba and Rao 2006) have received increasing attention for 

use in bearing condition monitoring. In the 1960s, Josef Kaiser discovered that the 

AE technique was capable of detecting elastic waves caused by microscopic 

deformation when material releases its energy (Holroyd 2003). The AE technique 

has been applied on many areas, including structural testing and surveillance, 

process monitoring and control, and materials characterisation (Scruby 1987). 

Holroyd (2003) introduced the general knowledge, condition monitoring 

applications and equipments for AE technique in his book. Recently, Mba and Rao 

(2006) reviewed the research and application of developing AE techniques to 

condition monitoring of industrial rotating machines and components, including 

bearings, pumps, gearboxes, engines and other rotating structures.  

Different types of AE transducer covering different frequency ranges of interest 

are now available in the market. Study suggests a moderate frequency band 10-40 

kHz to be used for bearing condition monitoring of a gear test rig (Howard 1994): 

The low frequency band 0-10 kHz is dominated by the gear mesh harmonics; the 

mid frequency range 10-20 kHz contains some gear mesh harmonics and a 

structural resonance; the high frequency range 20-40 kHz is dominated by 

structural resonances. Following that study, a PAC R3α AE transducer will be 

used in this study to provide a cost-effective solution and the frequency range of 

interest is between 10 kHz and 40 kHz, which is beyond that used by traditional 

accelerometers for vibration measurement (typically 0-10 kHz as reported in 

Thanagasundram 2007). The acquired AE signals are unlikely to be affected by 

the low frequency noise generated by other mechanical components.  

2.5 Summary 

The bearing is one of the most critical mechanical components in industrial 
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rotating machinery. Section 2.1 introduced the bearing geometry. Section 2.2 

introduced the bearing kinematics and Characteristic Defect Frequency (CDF) 

which are essential for understanding the localised bearing faults detection. Since 

premature bearing failure will quickly cause machine malfunction, even 

catastrophic failure, it is very important to detect any bearing deterioration at an 

early stage. Section 2.3 introduced the bearing faults. Finally, AE technique and 

Section 2.4 briefly reviewed AE transducers. Next chapter will introduce the 

details of experimental setup.  

 



 

 

Chapter 3  

Experimental Setup 

3.1 Introduction 

The acoustic and vibration measurements are highly sensitive, but these are 

external measurements in which the signal attenuation and the presence of 

interferences from other components are unavoidable. When the internal forces 

and stresses propagate through the structure of the machine, they will be 

attenuated at joints and interfaces, damped, modified by the frequency response of 

the system and then measured by the transducer. These transmission path effects 

mean that the acoustic and vibration signal which is finally measured by the 

transducer will be a poor response of the original forcing function, particularly in 

machinery with complex structure (Howard 1994).  

In practice, the manner of the transducer mounting and the complexity of the 

machine structure will have impacts on the quality of acquired signals, and then 

the system used for detection and diagnosis. An effective fault detection and 

diagnosis system often depends on the nature of signal acquired from the 

transducer and it may vary from one class of machine to another. In some 

laboratory situations where the transmission is quite effective and the signals 

acquired from the bearing test rigs are almost free from interferences, the 

measurement setup is a simple task and the detection system is easier to design. 

However, most of the industrial rotating machines are not that simple.  

The following sections will introduce the experimental platform, the mounting 

method for the Acoustic Emission transducer, the details of the bearing faults 

under investigation, and the instrumentation and data acquisition system.  
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3.2 Dry Vacuum Pump 

The BOC Edwards iGX dry vacuum pump has been used as the test bed for 

studying bearing faults. See Figure 3-1. The iGX dry vacuum pump has found 

crucial application in the semiconductor industry. Most of the processes in the 

semiconductor industry have in common the need to admit one or more process 

gases into the vacuum chamber for the generation of plasma and the promotion of 

any required chemical reactions. Pumping systems for these processes may 

therefore have to accommodate process gases, gaseous reaction products and 

particulates, most of which may be explosive, flammable, aggressive, corrosive or 

toxic, while solids are likely to be abrasive. The oil-free (dry) design of vacuum 

pump greatly reduces the possible occurrences of oil related problems, such as 

partial contamination-sealing or lubricating fluids reacting with the materials in 

the processes or retaining them. Detailed knowledge on dry vacuum pump is 

given by Harris (2001). 

 

Figure 3-1 The BOC Edwards iGX dry vacuum pump is used as the test bed. 

 

Any unexpected failure of the dry vacuum pump can be very costly for the 
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large-scale production process. A single failure incident might potentially cost 

over US $100,000 in the semiconductor industry. Due to the important role played 

by the iGX dry vacuum pump in the semiconductor industry, the research 

outcomes are of important practical value.  

 

Figure 3-2 The combined Roots and claw mechanism in dry vacuum pump (Harris 2001). 

 

The iGX dry vacuum pump consists of a pump housing, a pair of parallel shafts 

extending throughout the pump housing for supporting the rotary movement of 

rotors, timing gears for synchronising the movement of rotors, rotors arranged in 

complementary pairs, ball bearings at the inlet and outlet to support the shafts 

(Harris 2001). A combined Roots and claw mechanism is used in the pump to 

achieve optimal performance at both lower and higher pressures. See Figure 3-2 

for the combined Roots and claw mechanism. The one stage Roots are devices 

which interlock, synchronise and rotate in opposite directions. The pair moves 

past each other and the stator wall with a small clearance. The true compressors 

are the following four stage claws. When the non-contact claw rotors rotate, gas is 

drawn in via an inlet slot, which matches the cavity in one of the rotors. 

Continued rotation closes the inlet while the claws compress the trapped volume 
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of gas until the cavity in the second rotor exposes the outlet or exhaust slot. In the 

iGX pump, the second claw stage of the pump is reversed so that the outlet of the 

first stage is directly in line with the inlet of the second stage. This creates a short 

path that allows direct transfer of gas. 

3.3 Mounting Acoustic Emission Transducer 

The suitable mounting point for a vibration transducer has been identified by the 

previous study (Thanagasundram 2007). A convenient means for obtaining signals 

of good quality is by holding the transducer at the surface of the pump housing in 

the radial direction of movement and as near as possible to the position of the 

bearing. The same position is used for mounting the Acoustic Emission 

Transducer to achieve good signal quality. See Figure 3-3. When the transducer is 

mounted at the appropriate position, the mechanical forces and stresses can be 

effectively transmitted from the bearing to the surface of the pump housing.  

 

Figure 3-3 The AE Transducer is firmly held at the surface of the pump housing. 

 

The high frequency stress waves are of small amplitudes and they will be 

attenuated at the surface of machine structure. Therefore, the transducer needs to 

be firmly held at the surface of the pump housing to ensure good enough signal 

quality. Because the repeated compressions can raise the temperature of the 

Acoustic Emission Transducer 
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surface of pump housing well above 100 C, the conventional mounting methods 

such as glue fixing or glue-magnetic fixing are not suitable. In this study, a strap is 

used to hold the transducer at the specific position with a steel cylinder 

transversely pressing on the transducer.  

3.4 Bearing Faults for Investigation 

A bearing mounted at the high vacuum side of iGX dry vacuum pump is seeded 

with different conditions. The scale of the bearing used for investigation is shown 

Figure 3-4. The bearing specifications are shown in Table 3-1.  

 

Figure 3-4 The scale of the bearing used for investigation. 

 

Table 3-1 The bearing specifications for iGX dry vacuum pump. 

Number of balls Z Pitch diameter D  Ball diameter d  Contact angle  

9 46.2 mm 9.5 mm 24.97° 

 

The three bearing conditions are: fault free, localised indent defect which is 

artificially made on bearing‟s inner race, contamination fault with artificially 

introduced solid particles. The location and size of the localised defect are shown 



Chapter 3   Experimental Setup 

 19 

in Figure 3-5 and Figure 3-6, respectively.  

 

Figure 3-5 Artificially made indent on inner race of bearing. 

 

 

Figure 3-6 The seeded indent is approximately 2 mm wide and 2 mm deep. 

 

These bearing faults can well represent two important deteriorative stages: foreign 

particles first enter and contaminate a good bearing, which is the incipient stage; 
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then the fatigue happens and a localised indent defect appears at the race, which is 

the localised fatigue stage. As the bearing faults are carefully identified by 

experienced engineers of BOC Edwards and introduced in test facilities by Barden 

Bearing specialists, they replicate the bearing damage and wear of the dry vacuum 

pump in natural semiconductor operating conditions.  

3.5 Instrumentation and Data Acquisition 

The iGX dry vacuum pump with empty load is used as test bed. The speed of the 

pump is set at 105 Hz (6300 rev min
-1

) and the inlet pressure is set at 0 mbar. The 

AE transducer (PAC R3α) is firmly held at the surface of the pump house near the 

high vacuum end in the radial direction.  

 

Figure 3-7 Schematic diagram of the complete data acquisition system. 

 

The acquired signals are amplified with the gain of 1000 and filtered by a 

analogue second order Butterworth band-pass filter. Signals are digitised by a 

16-bit NI Analogue to Digital Converter (ADC) with the sampling rate 200 kHz 
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and stored in a computer. The AE signals are down sampled to 80 kHz offline and 

further processed in MATLAB. See Figure 3-7 for the schematic diagram of the 

complete data acquisition system.  

For the localised indent defect of inner race mentioned earlier, and the theoretical 

CDF is calculated as 560 Hz and the theoretical CDI is 143 samples (expressed as 

the number of discrete sampling points when sampling rate is 80 kHz) according 

to the equations (2-9) and (2-12) with the information on the shaft speed and the 

bearing specifications.  

3.6 Summary 

It is important to understand that many factors such as the mounting method of the 

transducer, transmission path and degree of interference will limit the success of a 

BFDD system. Section 3.2 briefly introduced the application and working 

principle of the iGX dry vacuum pump which serves as the test bed for this study. 

The mounting method of an AE transducer was explained in Section 3.3.  

The details of bearing faults for investigation were given in Section 3.4. Two 

types of bearing faults are identified and introduced by the industrial specialists. 

These efforts are made to replicate bearing damage and wear of the dry vacuum 

pump in natural semiconductor operating conditions. The instrumentation and 

data acquisition were introduced in Section 3.5.  

A reported advantage of AE technique is that it can be directly demodulated to 

reveal the localised bearing defects. Appendix B also shows that the detection 

performance on a localised defect can be improved by using the AE technique. 

The rich information contained in the broadband AE signals may also provide new 

opportunities for characterising different stages of bearing faults. However, the 

success of AE technique is limited, partly due to the difficulty in processing, 

interpreting and classifying the information from AE signals (Mba and Rao 2006).



 

 

Chapter 4  

Literature Review 

4.1 Introduction 

Bearing Faults Detection and Diagnosis (BFDD) is essentially a problem of 

pattern recognition and pattern classification. It is a procedure of mapping the 

obtained features in the feature space to machine faults in the fault space. The 

main role of signal processing is to perform the transform and algorithm to extract 

features from the acquired signals. At this stage, useful information is extracted 

for further manual or automatic detection and diagnosis purpose. Some of the 

signal processing methods can provide the capability of denoising.  

Traditionally, fault detection and diagnosis is done manually with aid of graphical 

tools such as parameter trending graph, power spectrum graph, envelope spectrum 

graph, AR spectrum graph, spectrogram, wavelet scalogram, etc. Manual fault 

detection and diagnosis may depend on some expertise and specific knowledge to 

interpret information in the specific application. Thus, a fault detection and 

diagnosis system which can operate with little a priori knowledge will be 

preferable in practice.  

On the other hand, automatic fault detection and diagnosis is more desirable and it 

can be achieved by automatic classification based on the features extracted from 

the signals. Statistical, model-based and Artificial Intelligence (AI) are the main 

approaches used for machine fault detection and diagnosis. Statistical approaches 

such as Bayesian method, Support Vector Machine, nearest neighbour, Hidden 

Markov Model are applied on fault detection and diagnosis (Jardine et al. 2006). 

Widodo and Yang (2007) presented a review of condition monitoring and fault 
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diagnosis using Support Vector Machine. The model-based approaches basically 

consist of observer, parity space, and parameter estimation. Isermann (2005) gave 

an introduction on the model-based approaches.  

Many Aritificial Intelligence techniques have increasingly been applied for the 

fault detection and diagnosis, including Artificial Neural Networks (McCormick 

and Nandi 1996, Paya et al. 1997, Yang et al. 2002, Samanta and Al-Balushi 

2003, Wang and Hope 2004, Yu et al. 2006, Rafiee et al. 2007) and fuzzy logic 

systems (Sugumaran and Ramachandran 2007). Artificial Neural Networks 

(ANN) consists of simple processing elements connected in a complex layer 

structure which enables the model to approximate a complex non-linear function 

with multi-input and multi-output. The training of an ANN is the process to learn 

the unknown function by adjusting its weights with observations of input and 

output. (Jardine et al. 2006). A main limitation of ANNs is that the results are 

difficult to interpret physically and the difficulty in the training process. The main 

difficulties of a fuzzy logic system stand in the fuzzy partitioning of the input and 

output spaces and in the establishment of the fuzzy rules, which may require a 

time-consuming trial-and-error process (Zio and Gola 2009). There has been 

much effort recently in making a fusion of fuzzy logic and neural networks for 

better performance in diagnostic systems, including fuzzy-neural network 

approach (Zhang et al. 2003) and neural-fuzzy approach (Zio and Gola 2009, Lou 

and Lopar 2004). Other AI techniques including Genetic Algorithm (Zhang et al. 

2005), Expert System (Ebersbach and Peng 2008) or the combination of AI 

techniques (Lei et al. 2007, Saxena and Saad 2007) are also reported for fault 

diagnosis.  

Many of the above methods have achieved a certain amount of success for fault 

detection and diagnosis, but there is no general guideline on how to choose the 

appropriate signal processing methods and the features being generated for 

diagnosis. The first reason for that is the understanding of fault mechanisms and 

interpretation of acquired signals are still limited. Secondly, the problems of fault 

detection and diagnosis often differ from one another. One method works well on 
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one type of machine but possibly will fail on another type of machine. The 

acquired signals also depend on the mounting method and the type of the 

transducer. In most applications of condition monitoring, particularly for those 

with emphasis on real-time detection and diagnosis, the amount of features cannot 

be too large. The number of features needs to be as small as possible; otherwise, 

the time of computation and the cost of implementation will increase 

considerably. The research advances on signal processing will bring many benefits 

for fault detection and diagnosis:  

 Better understanding of fault mechanisms and interpretation of acquired 

signals; 

 Correct selection of the appropriate signal processing methods and the 

number of features;  

 Faster computation to allow on-line implementation. 

Because the characteristics of AE signals are quite different from those of the 

vibration signals acquired by accelerometers, the signal processing methods for 

AE signals have to be reconsidered. The following sections will review some 

important signal processing methods, with emphasis on those used for BFDD. 

These methods, including the time domain methods, frequency domain methods, 

envelope analysis, cyclostationary analysis and wavelet methods will be 

introduced in Sections 4.2 - 4.6. The time domain methods are the simplest and 

use statistical parameters for trending bearing condition. The frequency domain 

methods use major frequency components and their amplitudes in the direct 

spectrum of the signal for trending and comparison. Both low frequency range 

and high frequency range of the spectrum are used for BFDD. The envelope 

analysis is the most popular method used for localised bearing defect detection. 

The envelope analysis aims to find out whether significant power exists at some 

characteristic frequencies in the envelope spectrum. The characteristic frequencies 

can be theoretically estimated by the equation of shaft speed and bearing 

geometry as a priori knowledge for the envelope analysis approach. In the 
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pre-processing stage of envelope analysis of vibration signals, a narrow band-pass 

filter needs to be used for isolating a resonance frequency band. The 

cyclostationary signal model and cyclostationary analysis on a localised bearing 

defect give valuable insight into the statistical properties of the impact signals. 

The main application of wavelet methods to date is to overcome the drawback of 

the envelope analysis in which determining the resonance frequency band is 

troublesome. Both single-scale and multi-scale wavelet methods have been 

investigated for pre-processing the impact signal. This chapter finishes with a 

summary in Section 4.7.  

An early review on these signal processing methods can be found in the book 

edited by Braun et al. (1986). Howard (1994), Tandon and Choudhury (1999), 

Randall (2004a, b) updated the reviews. Recently, Sawalhi (2007) summarised 

some new developments in his thesis.  

4.2 Time Domain Methods 

The quantitative methods in the time domain for BFDD are based on trending 

some statistical parameters. The most common mentioned statistical parameters 

are: peak, root mean square ( rms ), crest factor, skewness and kurtosis (Braun et 

al. 1986, Howard 1994, Tandon and Choudhury 1999, Sawalhi 2007). The details 

are given as below. For a signal )(nx  with sample size N , such that 

2/)))(min())((max( nxnxpeak ,      (4-1) 
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where  is the mean value of the signal. The well known first, second and 

fourth statistical moments are the mean value , variance 2 , and kurtosis. 

Statistical moments k  are defined as (E is the statistical expectation operator): 

}){( k
k XE , ,...3,2k .       (4-5) 

The third moment, also known as skewness, is defined as 

3

1

3))((
1 N

n

nx
N

skewness .        (4-6) 

The denominators k  in the expressions are necessary for normalisation to make 

the statistical moments independent of scale (i.e., independent of the actual 

amplitude of signal). Peak and rms  values are less sensitive to a localised fault. 

Kurtosis and crest factor are used to describe the “spikiness” of signals (Braun et 

al. 1986).  

The lower moments are less sensitive to the “spikiness”, whereas the higher 

moments are over-sensitive to spurious interference and noise. The value of 

kurtosis is close to 3 for the fault free bearing. The value of kurtosis greater than 3 

is used for an indication of bearing fault without any prior history (Tao et al., 

2007). However, the value may come down to the level for a fault free bearing 

(i.e., close to 3) as the damage is well advanced. Crest factor has the same 

problem as Kurtosis. These hinder the Kurtosis and crest factor becoming popular 

for BFDD in industry (Howard 1994, Tandon and Choudhury 1999). From the 

viewpoint of Rényi entropy, Tao et al. (2007) recently proposed the generalised 

statistical moments, of which the kurtosis is a special case. When relaxing the 

mean value property from an arithmetic mean to an exponential mean, the Rényi 

entropy becomes the well known Shannon entropy.  

Two strategies are usually employed for time domain methods (Howard 1994). 

The first is to monitor the statistical parameters for the whole frequency range of 

signal. One main drawback of this approach is that the vibration signal from the 
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bearing usually mixes with that from other mechanical components. This makes 

the parameters less sensitive to certain modes of bearing failure, in which only 

some narrow frequency bands are influenced. To alleviate this problem, the 

second approach is to monitor the parameters over a number of frequency bands 

or a certain frequency band. Howard (1994) showed four typical frequency bands 

(0-40 kHz, 0-10 kHz, 10-20 kHz and 20-40 kHz) and the corresponding statistical 

parameters for bearing condition monitoring of a gear test rig.  

Few time domain methods are reported for identifying incipient contamination 

bearing faults. Maru et al. (2007) proposed to trend the values of rms  in the 

frequency band 600 Hz - 10 kHz for identifying the contamination bearing fault. 

The problem with this method is the values of rms  in the low frequency band 

600 Hz - 10 kHz will be sensitive to noise in some situations, e.g., Howard (1994) 

reported the frequency band 0-10 kHz was dominated by noises from gears on a 

gear test rig.  

For the high-frequency AE signals, the most commonly used parameters in the 

time domain are ringdown counts and events counts of the signals (Choudhury 

and Tandon 2000, Miettinen and Andersson 2000, Mba and Rao 2006). The 

ringdown counts involve counting the number of times the amplitude exceeds a 

preset threshold level in a given time. An event consists of a group of ringdown 

counts and signifies a transient wave. In practice, it is difficult to specify threshold 

level for the counting methods. The accuracy of the threshold level being set relies 

on the empirical experiences.  

4.3 Frequency Domain Methods 

The frequency domain methods identify the major frequency components in the 

direct spectrum of the signal, and then use these components and their amplitudes 

for trending and comparison. Both low frequency range and high frequency range 

of the spectrum can be used for BFDD (Howard 1994, Tandon and Choudhury 

1999, Randall 2004a). The spectrum (i.e., power spectral density) can be 

estimated via the well known Fast Fourier Transform (FFT) or parametric 
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techniques. A summary of the typical techniques for spectrum analysis is given by 

Kay and Marple (1981).  

The approach using a low frequency range tries to find out if there is any 

significant power occurring at the spectral lines of the fault-related frequencies. 

For localised defects, the major frequencies of interest for spectrum trending are 

the Characteristic Defect Frequencies (CDF), their harmonics and sidebands. 

However, for some modes of failure such as lubrication starvation, general wear 

and contamination, the fault-related frequencies may not be readily apparent. This 

makes BFDD using low frequency range difficult or not appropriate for detecting 

those bearing faults (Howard 1994). The approach also has some limitations: 

factors like speed variations, bearing slip and bearing geometry need to be known 

a priori for setting up the baseline spectrum; the mechanical noises from other 

components often mask the major frequencies of interest and make the detection 

very difficult, especially if the defect is not sufficiently large.  

For localised defects, the changes will often become apparent in the high 

frequency range where the impacts excite the structural resonances. To improve 

the detection sensitivity, some statistical parameters over a number of frequency 

bands in the high frequency range are suggested for monitoring. Recently, Antoni 

and Randall (2006) systematically studied the Spectral Kurtosis (SK) for BFDD 

using band-pass filtering. The computation of SK combines the classical time 

domain methods and the time-frequency analysis. SK computes the kurtosis at the 

outputs of the filter bank which correspond to the different frequency bands. The 

implementation of filter bank based on Short Time Fourier Transform (STFT) to 

compute SK was also proposed by Antoni (2006). In this thesis, Chapter 6 will 

show some new statistical quantifiers based on Discrete Wavelet Packet 

Transform (DWPT). The DWPT is computed by the fast filter bank algorithm, and 

the outputs of the filter bank are used for computing the statistical quantifiers. 

DWPT has some important advantages over STFT: faster computation; flexible 

basis to be chosen for practical implementation considerations; easier noise 

elimination. See also Appendix A for detailed technical introduction on DWPT.  
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4.4 Envelope analysis 

Envelope analysis, also known as High Frequency Resonance Technique (HFRT) 

or demodulated resonance analysis, is one of the classical and most widely 

accepted signal processing techniques for localised bearing defect detection 

(McFadden and Smith 1984b). Envelope analysis is an amplitude demodulation 

process used to obtain the bearing defect harmonics from the spectrum for fault 

diagnosis purposes (Ho and Randall 2000). The basic sequence of processing used 

in envelope analysis of vibration signals is shown in Figure 4-1.  

When a localised defect in a rolling element bearing makes contact with another 

mating surface in the bearing under cyclic load, a repetitive impact process is 

generated. The impact process is later recognised as the cyclostationary process 

by Antoni and Randall (2002, 2003), which will be introduced in next section. A 

localised bearing defect is then characterised by the regular impact interval of the 

impact process. The regular impact interval characterising the localised bearing 

defect is termed Characteristic Defect Interval (CDI) in the time domain and 

Characteristic Defect Frequency (CDF) in the frequency domain. As mentioned in 

Section 2.2, the CDFs can be estimated theoretically by equations of shaft speed, 

bearing geometry and defect location. The impact may excite resonances in the 

bearing and the machine which can be measured by a transducer mounted on the 

machine case near the bearing. With a narrowband filter around the resonance 

frequency band of vibration signals (typically several kHz), it is possible to 

exclude most of the interferences generated by other parts of the machine, 

enabling the impact energy from the bearing to be identified (McFadden and 

Smith 1984a). In contrast, the AE signals can be demodulated directly to reveal 

CDF without the need to find out the resonance frequency band.  

Demodulation can be employed in many ways (Howard 1994). These methods are 

applicable for the demodulation of band-passed vibration signals and AE signals. 

The first method is to use full or half wave rectification followed by smoothing to 

obtain the envelope signal. The second method is to replace the rectification by a 

squaring operation and then smooth the band-passed signal. The third way of 
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extracting the envelope signal is to take the magnitude of the analytic signal 

whose imaginary part is the Hilbert transform of the real part. The real part is the 

band-passed signal in the time domain.  

 
Figure 4-1 Diagram of basic processing used in envelope analysis of vibration signals. 

 

The first comprehensive model for describing different sources of amplitude 

modulation of the bearing envelope signal was proposed by McFadden and Smith 

(1984a). This model attempts to explain the appearance of various spectral lines in 

the envelope spectrum and provides fundamental understanding of the bearing 

envelope signal. It incorporates the effects of bearing geometry, shaft speed, 

bearing load distribution, transfer function and the exponential decay of impact 

signal. The envelope signal )(tYr  is expressed as (McFadden and Smith 1984a, 

McFadden and Toozhy 2000) 

)())()()(()( thtatqtdtYr ,        (4-7) 

where )(td  is the pattern of impacts which are generated by the action of the 

rolling elements under cyclic load, )(tq  is the amplitude modulation of the signal 

under the cyclic load, )(ta  is the amplitude variation of the transfer function at 
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the excited resonance frequency between the location of the defect when an 

impact occurs and the transducer location, )(th  represents the impulse response 

of the low-pass filter in the envelope detector.  

Improvement for envelope analysis can be achieved by adding a denoising 

operation between band-pass filtering and demodulation. Ho and Randall (2000) 

applied the Self-Adaptive Noise Canceller (SANC) to remove discrete frequency 

masking noise in the envelope spectrum. The main problem with applying SANC 

is that it may require an extremely long filter length and then become very slow to 

adapt if some parameters are not set properly (Antoni and Randall 2004a). A 

newer algorithm called frequency-domain algorithm, which is faster and simpler 

than SANC, is proposed by Antoni and Randall (2004b).  

One of the difficulties with envelope analysis of vibration signals is how to 

determine the best frequency band to envelope (Howard 1994, Li and Ma 1997). 

Tse et al. (2001) pointed out that the technique itself had some drawbacks in 

practice: Impact tests are necessary to determine the excited resonance frequency 

of a particular bearing system; a skilful operator is needed to perform the impact 

tests. Some efforts are attempted using wavelet methods to overcome the 

difficulty on determining the resonance frequency band (See Section 4.6.1). To 

diagnose the bearing condition, envelope analysis needs to perform detection in 

the envelope spectrum to find out if significant power exists at one of the CDFs. 

Therefore, information about the shaft speed and bearing geometry should be 

known a priori for diagnosis, and this might not be possible in some situations. In 

other applications, it is only important to know whether the bearing has a localised 

defect rather than to know the exact type of localised defect (i.e., inner race 

defect, outer race defect or cage defect). It might be difficult for the envelope 

analysis to deal with these cases due to the highly complex envelope spectrum.  

An easy way to avoid the problem to determine the resonance frequency band is 

to directly demodulate the high frequency Acoustic Emission (AE) signals. See 

Appendix B. Note that the proposed detection method using the AE signals and 

Autocorrelation Function is very similar to those in the envelope spectrum. The 
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power spectral density is essentially the Fourier transform of the autocorrelation 

function (Kay and Marple 1981). Usually, complicated processing operations need 

to be used for the envelope analysis, including pre-processing (no need for AE 

signals), demodulation, and the envelope spectral analysis which relies on a priori 

knowledge. A simple signal processing method for BFDD will be proposed in 

Chapter 5. The advantages of the proposed method are the detection is based on 

the time domain and it does not need to perform demodulation and envelope 

spectral analysis.  

4.5 Cyclostationary Analysis 

Increasing interest aroused on performing the cyclostationary analysis method for 

BFDD in recent years. The systematic research works on using the cyclostationary 

method for modelling and detecting localised bearing defects were pioneered by 

Randall and Antoni (Randall et al. 2001, Antoni and Randall 2002, Antoni and 

Randall 2003, Antoni 2007). Cyclostationarity is popular in nature and it has been 

broadly studied in many scientific and engineering fields. A survey of the 

literature review was recently undertaken by Gardner et al. (2006). Some 

important definitions of the method and the results for BFDD are reviewed as 

below. The details of the following definitions were given by Gardner and 

Spooner (1992). 

A zero-mean process is said to be cyclostationary (in the wide sense) if its 

autocorrelation function ),(tRxx  varies periodically with time. Since ),(tRxx  

is periodic, it admits a Fourier series representation 

tj

xxxx eRtR 2),(),( ,        (4-8) 

where the Fourier coefficients ),(xxR  are given by 

dtetRtRFR tj

xxxxxx

2),()),((),( .    (4-9) 

),(xxR  is referred to as the cyclic autocorrelation; the set ),(:{ xxR }0  
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is referred to as the set of cyclic frequencies. The Fourier transform of ),(xxR  

is  

deRRFfS fj

xxxxxx

2),()),((),( ,   (4-10) 

or the double Fourier transform of ),(tRxx  is 
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which is called the cyclic spectral density or cyclic spectrum. The cyclic spectrum 

is a continuous function over f . Meanwhile, it is a discrete function over  with 

non-zero values only at those frequencies related to some hidden frequencies in 

the cyclostationary process. Figure 4-2 shows the cyclic spectrum of a 

cyclostationary process related to cyclic frequencies Ti / (Antoni 2007). Note that 

the cyclic spectrum shows a discrete structure in the  direction.  

 

Figure 4-2 Cyclic spectrum of a cyclostationary process (Antoni 2007). 
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For stationary random signals, only the spectrum at zero cyclic frequency ( 0 ) 

has non-zero values in the f  direction, which is actually the power spectral 

density. For those periodic signals, there will be discrete components in both f  

and  directions. Therefore, a simple test for evidence of cyclostationarity is to 

check for continuity of the cyclic spectrum for some values of 0 (Antoni and 

Randall 2002). 

 

Figure 4-1 Relationship between cyclostationary analysis and envelope analysis 

(Randall et al. 2001). 

 

Randall et al. (2001) introduced a statistical model which is composed of three 

parts: a deterministic part, a purely stochastic part and an additive background 

noise. The deterministic part is the periodic frequency components which are 
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phase-locked to the various shaft speeds and their harmonics, e.g., gear mesh 

frequencies. The stochastic part is the localised bearing defect signal which is also 

tied to shaft speeds. But this part is not strictly phase-locked because there is 

random slip between the bearing components. The reason is the actual load for 

individual rolling elements depend on their positions in the bearing, the rolling 

elements are trying to roll at different speeds. But the physical cage forces them to 

maintain an equal separation, which causes the slippage. As a result, this signal is 

not strictly periodic as the deterministic part but cyclostationary. When a defect 

excites some high frequency modes of the bearing, the energy of the stochastic 

part may be significantly higher than that of the deterministic part. Therefore, the 

contribution from the deterministic part is negligible if the analysis spans over 

sufficiently high frequencies, where the stochastic part may be simply obtained by 

high pass filtering the signal. This is particularly true for such techniques as 

envelope analysis. Randall et al. (2001) pointed out the integrated cyclic spectrum 

over f  was equivalent to the envelope spectrum (see Figure 4-1).  

Antoni and Randall (2002, 2003) modelled the impact process as a 2
nd

 order 

cyclostationary process. This process is generated by the repetition of impact 

forces when a defect in one surface strikes a mating surface. Denote the impact 

process as 

0

)()(
i

ii ttAtF ,          (4-13) 

where iA  is the amplitude of the thi  impact on the defect, accounting for 

amplitude modulation. )(t  is the Dirac delta function for describing each 

impact. it  is the timing of the impact occurrence.  

McFadden and Smith (1984a) developed the first model to explain the amplitude 

modulation of the envelope signal and the corresponding spectral lines of the 

envelope spectrum.  

The uniform point process simply assumes all impacts have equal magnitudes 

(Antoni and Randall 2003) 
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0

)()(
i

itttF ,          (4-14) 

The interval time between two adjacent impacts, 1ii ttT , is the independent 

and identically distributed random variable. If the impact signals are 

cyclostationary, the interval time is regular. The term “regular” means that the 

interval standard deviation is a small fraction of the mean value; thus being 

regular is characterised by a narrow peak in the probability density function of 

interval distribution. The probability law governing the interval time between 

adjacent impacts was approximated by the Normal distribution (Antoni and 

Randall 2003). In the cyclostationary study, the probability law governing the 

intervals of a cyclostationary process was also approximated by the Gamma 

distribution (Gestri and Piram 1975, Landini and Verrazzani 1990). The 

probability law can also be well approximated by other distributions converging to 

the central limit, e.g. the Cauchy distribution. This will be studied in Chapter 5.  

Antoni (2007) explained the reason why classical spectral analysis often failed to 

detect bearing faults in practice. Very slight random slippage on the interval time 

can completely destroy the harmonic structure and cause Dirac pulses to quickly 

vanish in the frequency domain. The amplitude modulation by shaft or cage 

rotation smears the raw spectrum. When background noise has very large power 

in the lower frequency range, it can easily mask the harmonic components 

produced by localised bearing defects.  

Since the cyclic spectrum is the double Fourier transform of the autocorrelation 

function of the signal, the computation of the cyclostationary analysis will be even 

more complicated than that of the classical envelope analysis. This might hinder 

the application of the cyclostationary analysis. However, the above studies on the 

cyclostationary signal model can give us valuable insight into the statistical 

properties of the impact signals. The cyclostationary model of the impact signals 

and the probability law governing intervals provide the theoretical foundation for 

proposing a new BFDD method. If the timings of impacts can be detected by an 

algorithm in the time domain, the intervals between adjacent impacts will be 
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easily achieved and the distribution of the intervals can be directly used for 

BFDD. A localised defect can then be detected if the interval distribution is found 

to be regular. See Chapter 5 for the details on LocMax algorithm.  

4.6 Wavelet Methods 

Wavelet methods are particularly interesting for BFDD. The theory of wavelet 

methods will be given in Appendix A. One of the main reasons is that the 

localised bearing defect usually produces a non-stationary signal from which the 

timing information cannot be easily revealed by conventional spectral analysis. A 

comparison of the performances of different time-frequency analysis methods 

such as Short Time Fourier Transform (STFT), Wigner-Ville Distribution (WVD), 

Choi-Williams Distribution (CWD), Cone-Shape Distribution (CSD), is given in 

Peng and Chu 2004 (See Table 4-1).  

Table 4-1. Comparison of different time-frequency analysis methods (Peng and Chu 2004). 

Methods Resolution Interference term Speed 

CWT 

Good frequency resolution and low 

time resolution for low-frequency 

c o m p o n e n t s ;  l o w  f r e q u e n c y 

resolution and good time resolution 

for high-frequency components 

No Fast 

STFT 
Dependent on window function, good 

time or frequency resolution 
No 

Slower 

than CWT 

WVD Good time and frequency resolution 
Severe interference 

terms 

Slower 

than STFT 

CWD Good time and frequency resolution 
Less interference terms 

than WVD 
Very slow 

CSD Good time and frequency resolution 
Less interference terms 

then CWD 
Very slow 

 

The interference terms on the time-frequency plane will affect the signal analysis. 

Continuous Wavelet Transform (CWT) and STFT are the most appropriate 

methods because they have no interference terms. The difference between STFT 
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and CWT lies in the elementary function to analyse the signal. The wavelet basis 

is very compressed for high frequency, which allows CWT a better localisation in 

time than STFT. This property is particularly useful for the detection of localised 

bearing defects. Wavelet methods are a set of related processing and analysis 

techniques based on the idea of wavelet transform, including CWT and other 

wavelet transform variations, such as Un-decimated Discrete Wavelet Transform 

(UDWT), Discrete Wavelet Transform (DWT) and Discrete Wavelet Packet 

Transform (DWPT). The literature on the applications of wavelet methods in 

BFDD is reviewed below. The detailed introduction is given in the next chapter. 

4.6.1 Single-scale Feature Extraction 

The main application of wavelet methods in BFDD to date is to assist the 

envelope analysis of vibration signals in which determining the resonance 

frequency band is troublesome. These methods are usually employed as a 

pre-processing operation of the traditional envelope analysis for localised defect 

detection.  

The first scheme for localised defect detection based on CWT was presented by Li 

and Ma (1997). The method does not require the prediction of the resonance 

frequencies. By finding out whether the magnitudes of wavelet coefficients at 

certain dilation vary at the rate of a certain characteristic defect frequency, it can 

be concluded that periodic structural response due to repetitive force impulses, 

generated when the passing of each rolling element on the defect, is present – and 

the localised defect appears. To detect the periodicity, the scheme calculates the 

autocorrelation of the absolute value of wavelet coefficients and examines the 

values at time lags around the characteristic frequencies. Once a local peak at one 

of those lags is found, the bearing is regarded as damaged.  

As stated by Lin and Qu (2000), the Morlet wavelet is used for BFDD because of 

its similarity to the individual impact signal which characterises the localised 

defect. Based on similarity of the Morlet wavelet to the impact signal, the values 

of parameters of Morlet wavelet can be optimised. Lin and Qu (2000) proposed a 
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method based on Morlet CWT. The optimal value of parameter  of the Morlet 

wavelet is obtained by minimising the wavelet entropy. Here  controls the 

shape of Morlet wavelet. Qiu et al. (2006) proposed a two-step process to select 

optimal values of parameters  and a  for the Morlet wavelet, where a  is the 

scaling parameter). After  is optimised using the method given by Lin and Qu 

(2000), the optimal value of a scale parameter a  is selected based on the 

Singular Value Decomposition (SVD). Lin et al. (2004) employed the Morlet 

wavelet to match the impact signal (the value of parameter  is set to 1), and 

then applied the thresholding rule based on the Maximum Likelihood Estimation 

(MLE) principle by approximating the probability density of impact. Shi et al. 

(2004) proposed an approach based on the fusion of Morlet wavelet transform and 

envelope spectrum. The approach selects the optimal scale a  based on Shannon 

entropy.  

The above Morlet wavelet filter-based method is based on the idea of detecting 

the “similar” impact components from the noisy signal by optimising the values of 

parameters of the Morlet wavelet. The method requires a good approximation to 

the impact signal as a priori information for the optimisation procedure, which is 

difficult to obtain in practice. When the amplitude modulation is considered, the 

shape of individual impact signals may vary widely. The amplitude variation and 

the noise from other mechanical components will also influence the shape of 

individual impact signals. On the other hand, the methods based on the 

optimisation of Morlet wavelets also cost large computation time. All of the above 

factors will hinder the application of Morlet wavelet filter-based method.  

DWPT is the more flexible version of Discrete Wavelet Transform (DWT) to 

achieve small frequency separations. The DWPT was also used to overcome the 

limitations with regard to determining the frequency bands of interest. Altmann 

and Mathew (2001) presented a method which can automatically extract the 

Wavelet Packet (WP) node via an adaptive network-based fuzzy inference system. 

A signal is then reconstructed from the node and used in conjunction with the 

autoregressive (AR) modelling for spectral analysis. Significant gains in the 
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signal-to-noise ratio are evident compared to the high pass filtering. Nikolaou and 

Antoniadis (2002) proposed a method using DWPT as the systematic tool to 

decompose signals and select the “best” WP node with most energy concentration. 

A signal is then reconstructed from the node and its envelope spectrum is 

inspected for the presence of characteristic defect frequencies. In the methods 

using DWPT, a certain WP node usually is selected as the “best” or “optimal” 

component for characterising the impact signal. In principle, these methods are 

similar to the envelope analysis of vibration signals which were filtered around 

the resonance frequency band.  

4.6.2 Multi-scale Denoising and Singularity Detection 

In the aforementioned methods, a certain wavelet scale (or a certain WP node) 

usually is selected as the “best” or “optimal” component for characterising the 

impacts from vibration signals. However, note that the impact signal is a typical 

type of transient signal. It has wide-spread frequency distribution which may cross 

over several wavelet scales and excite several resonances. Therefore, the 

information at different scales (inter-scale information) should be jointly 

considered for characterising the impact signals well. The large wavelet 

coefficients at different scales maintain the characteristics of the impact signals. 

Recently, many research works in BFDD have linked to these methods. 

Shao and Nezu (2005) proposed a mixture denoising techniques consisting of an 

Adaptive Noise Cancelling (ANC) filter and a wavelet based denoising estimator. 

A reference signal is necessary for ANC and the SquareTwoLog threshold 

estimator is used for wavelet denoising. Hong and Liang (2007) proposed a 

kurtosis-based hybrid thresholding method, K-hybrid, for wavelet denoising the 

mechanical fault signals. The threshold is determined based on kurtosis. The 

hybrid thresholding rule divides the wavelet coefficients into four zones 

associated with different denoising processes. Zuo et al. (2005) proposed a 

method using the wavelet transform as the pre-processor for Independent 

Component Analysis (ICA). The wavelet coefficients at different scales are 

modelled as the mixture observation containing the independent sources (transient 
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signal and noise) and used for ICA separation. The principle behind the ICA 

method is the IC coefficients of the transient and noise have different sparseness 

properties. Therefore, non-Gaussianity is used as the separation rule and the 

separated components with least Gaussianness are found. 

Although the denoised signal can provide a clear image for visual inspection on 

the bearing condition, the quantities for automatic BFDD have to be generated by 

other means. Conventionally, the denoised signal is also demodulated and 

analysed with the envelope analysis. Thus the defect detection method is still 

based on the analysis of the envelope spectrum of the denoised signal. As pointed 

out in Section 4.4, however, this detection method would rely on a priori 

information, such as the geometry of the bearing and the rotational speed. An 

alternative method is to directly utilise the detected timings of impact signals to 

achieve interval distribution for defect detection. This will allow a localised 

bearing defect to be detected without a priori knowledge of CDFs. See Chapter 5.  

Sun and Tang (2002) performed the singularity analysis based on Continuous 

Wavelet Transform (CWT). The method finds out some long ridgelines by tracing 

along the ridge of the wavelet transform modulus. The periodic patterns of these 

ridgelines can reveal the relevant information about the health of machine 

components. The ridgelines that do not propagate to large scales are due to noise. 

The method can effectively capture the timings of the impact signals. Finally, the 

method performs a level-dependent thresholding of wavelet coefficients and 

reconstructs the denoised signals with improved SNR.  

Although Sun and Tang (2002) have shown in their work to reveal these timings 

based on CWT, the CWT for analysis is highly redundant and computational 

intensive. As an important simplified version of CWT, UDWT not only inherits 

the translation-invariant property of CWT, but also has much reduced computation 

requirements. Chapter 6 will present a UDWT denoising method.  

4.7 Summary 

Although many manual and automatic methods have been successfully applied for 
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fault detection and diagnosis, there is no general guideline on how to choose the 

appropriate signal processing methods and the features being generated for 

diagnosis. The research in signal processing will also allow better understanding 

and interpretation of acquired signals. Signal processing also studies the possible 

ways of fast computation which allows on-line implementation of a fault detection 

and diagnosis system.  

This chapter reviewed some important signal processing methods used for BFDD. 

Sections 4.2 and 4.3 showed the time domain methods and frequency domain 

methods. The time domain methods are the simplest methods, which use statistical 

parameters for trending the bearing condition. When the statistical parameters are 

monitored for the whole frequency range of the signal, they are less sensitive to 

certain modes of bearing failure, in which only some narrow frequency bands are 

influenced. In the frequency domain methods, both low frequency range and high 

frequency range of the spectrum can be used for BFDD. For some modes of 

failure, the fault-related frequencies may not be readily apparent in the low 

frequency range. The mechanical noise from other components may also easily 

mask the major frequencies of interest and make the detection very difficult if the 

localised defect is not sufficiently large. To cope with noises and improve 

detection sensitivity, studies suggest the statistical parameters can be monitored 

over a number of frequency bands in the high frequency range. This method 

inherits the merits from both the time domain and frequency domain approaches. 

The Spectral Kurtosis is such a combined method that it computes the kurtosis at 

the outputs of the STFT. In Chapter 7, some novel statistical quantifiers based on 

the DWPT will be studied for diagnosing three bearing conditions. 

Section 4.4 reviewed the classical envelope analysis, which is established as one 

of the most widely accepted signal processing techniques for localised bearing 

defect detection. In the pre-processing stage of envelope analysis of vibration 

signals, a narrow band-pass filter needs to be used for isolating a resonance 

frequency band. This pre-processing is essentially an empirical signal denoising 

approach that improves SNR. One of the difficulties with envelope analysis is 
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how to determine the „best‟ frequency band for the envelope. To diagnose the 

bearing conditions, the envelope analysis also needs to perform detection in the 

envelope spectrum to find out if significant power exists at one of the CDFs. 

Therefore, the information about the shaft speed and bearing geometry should be 

known a priori for diagnosis.  

Section 4.5 reviewed the cyclostationary analysis using the cyclic spectral density 

or cyclic spectrum for BFDD. For a cyclostationary process, the cyclic spectrum 

is a continuous function over f  and a discrete function over  with non-zero 

values only at those frequencies related to some hidden frequencies. The impact 

signals are not strictly periodic but cyclostationary. If the impact signals are 

cyclostationary, the interval time is regular. The studies in cyclostationary analysis 

provide a theoretical base for understanding the statistical properties of the impact 

signals. Based on the cyclostationary model of impact signals, a new algorithm 

termed LocMax for detecting the timings of the impact signals will be proposed. 

The details will be given in Chapter 5.  

Section 4.5 reviewed the wavelet methods used for BFDD. The main application 

of wavelet methods is to assist the envelope analysis of vibration signals in which 

determining the resonance frequency band is problematic. For pre-processing the 

impact signals which may cross over several wavelet scales and excite several 

resonances, however, the multi-scale wavelet denoising and singularity detection 

are more suitable. Sun and Tang (2002) suggested denoising could be directly 

performed on the CWT wavelet coefficients across the whole scale range. 

However, the translation-invariant CWT analysis is highly redundant and 

computationally intensive. Chapter 6 will introduce the UDWT denoising method 

which has an advantage over CWT denoising method in computation.  

When dealing with the incipient contamination bearing fault, the problems with 

the reported time domain methods are either sensitivity to the noise or difficulty to 

automatically specify the threshold level for counting. Because no obvious 

repetitive impact signals can be observed at the early stage, some signal analysis 

methods for localised bearing defects may not be effective for the incipient 
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contamination fault. Chapter 6 will show a new solution – after the AE signals are 

applied with the automatic UDWT denoising and LocMax-Interval method, the 

incipient contamination fault can be successful diagnosed. Chapter 7 will provide 

an alternative solution using novel statistical quantifiers based on the DWPT.  



 

 

Chapter 5  

A New Method for Localised Defect Detection 

5.1 Introduction 

This chapter introduces a new method to detect a localised bearing defect. The 

new method includes an algorithm named LocMax for finding out the timings of 

impact signals and the interval distribution for defect detection. By examining 

whether the interval distribution is regular, a localised defect can be detected 

without a priori knowledge on Characteristic Defect Frequencies (CDFs). This 

method is named LocMax-Interval method. This study demonstrates the method 

using both simulations and experiments. The signal denoising method using DWT 

thresholding is then investigated to improve the effective range of the parameter 

values used in the LocMax algorithm. 

The impact signals caused by a localised bearing defect can be modelled as a 2
nd

 

order cyclostationary process. Since the interval time is regular for a 

cyclostationary process, a localised bearing defect can then be characterised by 

the regular interval time of impact signals. To detect a localised bearing defect, the 

prevalent envelope analysis needs to perform detection in the envelope spectrum 

to find out if significant power exists at one of the CDFs. Then the information 

about the shaft speed and bearing geometry should be known a priori for defect 

detection. Refer to Chapter 4 for more details.  

However, the information on the shaft speed and bearing geometry for estimating 

CDFs might not always be available. The cyclostationary method would benefit 

from a new method for localised defect detection without a priori knowledge 

about the shaft speed and bearing geometry. A localised bearing defect is detected 



Chapter 5   A New Method for Localised Defect Detection 

 46 

by examining if the interval distribution of the process is regular (i.e. whether it 

converges to a narrow peak). The position of the narrow peak of the regular 

distribution, which corresponds to the bearing Characteristic Defect Interval 

(CDI), is not necessary information for the diagnostic decision. 

On the other hand, denoising techniques have been broadly studied in Bearing 

Fault Detection and Diagnosis (BFDD) as a pre-processing approach to reduce 

noise. The details were reviewed in Section 3.3 and 3.5. Denoised signals, which 

have simpler representation of impact signals, usually provide a clear image for 

visual inspection on localised defect. But they do not directly provide information 

for automatic fault diagnosis. To generate the information suitable for automatic 

BFDD, the denoised signals are conventionally demodulated and envelope 

spectral analysis is performed. Thus, the detection method is based on the 

envelope spectrum of the denoised signals.  

In this chapter, a new LocMax-Interval method is proposed to find out the timings 

of impact signals in the time domain, estimate the intervals between adjacent 

impact signals, and then detect localised defects from the interval distribution. 

Compared to the envelope analysis, the LocMax-Interval method is also simpler 

for processing the denoised signals in the time domain. The Discrete Wavelet 

Transform (DWT) denoising is also investigated as a pre-processing approach for 

the new LocMax-Interval method.  

This chapter is organised as follows: Section 5.2 provides a brief description of 

the signal model of the impact process. Section 5.3 overviews the methodology, 

including a new LocMax algorithm for finding out the timings of impact signals 

and the interval distribution method for defect detection. The simulations in 

Section 5.4 aim to investigate the effective range of the parameter values used by 

the algorithm for different cyclostationary processes. The interval distributions 

achieved for the white noise process and zero process are also shown. Section 5.5 

shows the experimental results and a discussion of applying the new method on 

AE signals for optimal detection. Section 5.6 summarises the chapter. 
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5.2 Signal Model 

The impact process )(tY  for a localised defect can be modelled as 

)()()( 0 twtYtY r .         (5-1) 

The major signal of interest, )(tYr , is generated by the repetition of impact forces 

when a defect in one surface strikes a mating surface. The term )(0 tw  represents 

white noise. Without considering the amplitude variation, )(tYr can be ideally 

modelled as the cyclostationary uniform point process signal assuming all impacts 

have equal magnitudes (Antoni and Randall 2003). That is: 

0

)()(
i

ir tttY ,         (5-2) 

where )(t is the Dirac delta function and it is its exact timing.  

5.3 Methodology 

5.3.1 An Algorithm for Finding out Local Maxima 

From the above introduction, the problem of localised bearing defect detection is 

essentially to estimate the interval time T  between two adjacent impacts: 

1ii ttT .           (5-3) 

The estimated interval time T̂  is obtained from the timing of adjacent impacts: 

)()()()( 11 iiii tEtEttETE ,      (5-4) 

1
ˆˆˆ
ii ttT ,           (5-5) 

where ...3,2,1i .  

For a pure cyclostationary process, the impact signals are quasi-periodic and their 

amplitude distribution shows a local maximum. That is, the estimated it̂  is the 
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timing on which there is a local maximum iN̂ : 

iii Ntt ˆˆ             (5-6) 

which is a conditional estimation. Then a signal detection method in the time 

domain can be used to find out the timings of impact signals. Note the timing 

mentioned below will be expressed as the index of the discrete sampling point for 

convenience.  

 

Figure 5-1 Local maxima Detection using LocMax algorithm. 

Here a simple recursive algorithm is proposed to find out these local maxima: 

Take the coefficient with the largest magnitude within a local window iA . That is, 

a local maximum iN̂  is defined in a local window: 

)(ˆ
iobi AmMaxN ,          (5-7) 

where ...3,2,1i  and obm  are all the observations within the local window.  

The algorithm starts from the first index of the original observation ( 0t ), takes 

its value as temporal value and the index as temporal timing. Then it searches for 
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another value greater than this temporal value. Once it finds the greater value, it 

stores the new value and timing, and discards the previous temporal record. If it 

does not find a greater value, it keeps the temporal record and takes the record at 

the next index for comparison. This search continues until the distance from an 

index to the temporal value is greater than an input value of parameter dis . The 

parameter dis is defined as the distance (expressed as the number of discrete 

sampling points) between a local maximum and the end of the local window. This 

is the end of a local search. The temporal value is confirmed to be a local 

maximum and its timing is permanently stored. The selection of the parameter dis 

will be studied in Section 5.4. 

Table 5-1. A recursive algorithm LocMax to detect local maxima. 

%% (:)m stores the observation; 

%% (:)position stores the index of (:)m in the original observation; 

%% (:)index stores the timing indices of the local maxima found. 

l = length( position( : ) ); %% Take the length of position( : ) array; 

t = position( 1 );       %% Initialise t ; 

j = 1; 

for i = 2 : l 

if position( i ) - t > dis  %% The condition to terminate a local search; 

index ( j ) = t; 

j = j+1; 

t = position( i ); 

elseif abs(m( position( i ) ))> abs(m( t )) 

t = position( i ); 

end 

end 

 

The next local search starts from the index next to the end of the previous search, 

and performs the same searching procedure. The algorithm repeats the same 

procedure and finds out all the local maxima together with their timings. The 
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algorithm can be implemented on-line for continuous detection without the need 

to separate the signal into segments. The proposed algorithm is named LocMax 

algorithm. See Table 5-1 and Figure 5-1.  

5.3.2 Interval Distribution 

Estimate the interval by subtracting the adjacent timing of local maxima 

(expressed as the number of discrete sampling points):  

)ˆˆ()ˆˆ(ˆ
11 iiii NtNtT .        (5-8) 

As the subtraction is quite an easy computation, the diagnostic information is 

quickly generated. 
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Figure 5-2 Original distribution for interval (left) and generated interval distribution (right). 

 

Figure 5-2 shows a pure cyclostationary process (without any noise involvement) 

with interval of Cauchy distribution and the interval distribution achieved after 

applying the LocMax algorithm (parameter value dis= 0). Here the algorithm 
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completely recovers the original distribution. It is possible to judge whether the 

generated interval distribution is regular (i.e. whether it converges to a narrow 

peak) to infer whether the original process is cyclostationary. 

See Figure 5-3 for the comparison between the proposed method and the 

traditional envelope analysis method for localised bearing defect detection. One 

advantage of applying interval distribution is that the defect can be detected even 

without a priori knowledge about the shaft speed and bearing geometry. The 

position of the narrow peak of the regular interval distribution will correspond to 

the bearing CDI. This fact can be later used for validating the method.  

 

Figure 5-3 Comparison between the proposed LocMax-Interval method and envelope 

analysis method. 

 

5.4 Simulations 

The simulations below aim to investigate the effective range of values valid for 

the parameter for a pure cyclostationary process, a noisy cyclostationary process 
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and a denoised cyclostationary process. The performances of the LocMax-Interval 

method on the white noise process and zero process are also investigated.  

5.4.1 The Parameter of Algorithm 

Suppose a pure cyclostationary process with interval of Cauchy Distribution 

(mean interval is 143 samples), the LocMax algorithm is performed on the 

process to achieve the interval distribution. A complete regular interval 

distribution can be easily achieved, even taking a very small parameter value dis

= 0 as shown in Figure 5-2 (right). When increasing the parameter value, the 

truncated distributions are achieved where the distribution part less than dis is 

removed. See Figure 5-4 top left and top right. Also note the truncated distribution 

maintains its regularity and the peak converges to the mean, which means the 

algorithm is adaptive to a wide range of the parameter values when the process is 

noise free. If the parameter value is set too large, a weaker peak will be seen at 

twice the value of the mean interval (see Figure 5-4 bottom).  

5.4.2 Noisy Cyclostationary Process 

The situation will be different for noisy cyclostationary processes. Suppose a 

cyclostationary point process with uniform amplitude, local SNR (defined to be 

the ratio between the impulse power and Root Mean Square of white noise) is 64.  

When the value of the parameter is small, either the exponential distribution (see 

Figure 5-5 top left) or the bi-modal distribution (see Figure 5-5 top right) is 

achieved. Gradually increasing the parameter values, again the truncated regular 

distributions are achieved. See Figure 5-5 bottom left and bottom right. Note the 

effective range of the parameter values to achieve truncated regular distributions 

is narrower for the noisy process than the pure cyclostationary process. For a 

cyclostationary process containing noise, it can be seen that usually larger 

parameter values are chosen to achieve truncated regular distributions.  
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Figure 5-4 Generated interval distribution from pure cyclostationary process using 

different parameter values. 
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Figure 5-5 Generated interval distribution from noisy cyclostationary process. 

 

5.4.3 Denoising to Improve Effective Range of Parameter Values 

From the practical point of view, the effective range of the parameter values 

should be as wide as possible. Denoising can be employed to improve the 

effective range of the parameter values. Suppose a cyclostationary point process 

with uniform amplitude and the local SNR of 64, and single level denoising is 
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performed on this noisy cyclostationary process. Note that denoising greatly 

improved the effective range of the allowed parameter values (see Figure 5-6). 

Compared to the results shown in Figure 5-5, the interval distributions show 

regularity even using small parameter values, such as dis= 0 and dis= 40. This 

is important for the detection without a priori knowledge because the algorithm 

may have to start checking the distribution using small parameter values.  
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Figure 5-6 Generated interval distribution from denoised cyclostationary process. 
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5.4.4 White Noise Process and Zero Process 

The performance of the algorithm on the white noise process is shown in Figure 

5-7 left. For a white noise process, the detected intervals do not show a regular 

distribution but an exponential distribution. For a pure zero process (i.e. no signal 

appears), the algorithm cannot find a “local maximum” and the local window will 

extend infinitely. In this case, the interval distribution cannot actually be 

produced. (see Figure 5-7 right). In practice, an approximate zero process rather 

than a pure zero process is usually met. See Figure 5-7 middle for the generated 

interval distribution from an approximated zero process. The detected intervals 

show a uniform distribution. Both the pure zero process and the approximate zero 

process can be achieved when denoising is applied to the white noise process. 
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Figure 5-7 Generated interval distributions from white noise process (left), approximate 

zero process (middle) and zero process (right). 

 

5.5 Results and Discussion 

For the localised indent defect of inner race, the theoretical CDI is calculated as 
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143 samples (expressed as the number of discrete sampling points when sampling 

rate is 80 kHz) using the equations (2-9) and (2-12). The shaft speed is 105 Hz 

and the Barden bearing specifications are used in the equations for calcuation. The 

acquired AE signals from localised defect bearing are divided into many 

4096-point segments without overlap and subsequently processed by the proposed 

LocMax algorithm. 
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Figure 5-8 Generated interval distributions from raw AE signals of localised defect. 
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Figure 5-8 shows the interval distributions when using parameter values dis= 40, 

dis= 60, dis= 80 and dis= 100. The distributions gradually show regularity 

when using large parameter values, such as dis= 80 and dis= 100. The peaks of 

these two latter cases are at interval=144 samples, which is very close to the 

theoretical CDI. 
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Figure 5-9 Generated interval distributions from AE Signals of localised defect using 

wavelet multi-scale denoising methods. 
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To improve the effective range of the parameter values and allow the method to 

work with small parameter values, the raw signals can be pre-processed by the 

wavelet denoising methods. The acquired AE signal segments are pre-processed 

by the 2-level DWT denoising (see Section A.8) and then the denoised signals are 

applied with the proposed LocMax-Interval method. The non-parametric DWT 

thresholding methods are performed and thresholds are automatically estimated. 

Figure 5-9 shows the interval distributions when using Minimax and 

SquareTwoLog, with parameter values dis= 40 and dis= 60, respectively. For 

small parameter values, the regularities of denoised signals are clearer than for the 

raw signals. This is evident when using parameter value dis= 40, where the 

distribution from raw signals fails to show any regularity in Figure 5-8 top left and 

the one from denoised signals highlights the regularity in Figure 5-9 left. The 

SquareTwoLog thresholding is stricter and eliminate more variations than the 

Minimax thresholding. When small parameter values are used, increasing the 

thresholds such as changing from Minimax to SquareTwoLog thresholding can 

lead to better visibility of the regularity. The first peaks of these cases are also at 

interval= 144 samples, which is very close to the theoretical CDI.  

The acquired raw AE signals from a fault free bearing are also divided and 

processed by the LocMax algorithm. See Figure 5-10 for the interval distributions 

when using different parameter values, where they all show the exponential 

distributions. It means the bearing conditions can be diagnosed by testing the 

generated interval distribution directly from raw signals when using large 

parameter values, such as dis= 80 and dis= 100. It is evident that Figure 5-10 

bottom show exponential distributions, while Figure 5-8 bottom show very clear 

regular distributions.  

The AE signals from fault free bearing are also pre-processed by DWT denoising 

and then processed by the LocMax algorithm. See Figure 5-11 for the generated 

interval distributions. The intervals from Minimax denoising show exponential 

distributions (top), while the interval distributions cannot be produced after 

SquareTwoLog denoising (bottom). The latter cases are the distributions detected 
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from the zero processes. It means the bearing conditions can also be diagnosed by 

testing the distribution from the denoised signals when using small parameter 

values, such as dis= 40 and dis= 60. Comparing Figure 5-9 and Figure 5-11, the 

denoising can help to highlight the regularity of interval distribution for the 

bearing with localised defects (see Figure 5-9), and generate the exponential 

distribution (Figure 5-11 top) or fail to generate any distribution for the fault free 

bearing, corresponding to a zero process (Figure 5-11 bottom).  
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Figure 5-10 Generated interval distributions from raw AE signals of fault free bearing. 
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Figure 5-11 Generated interval distributions from AE Signals of fault free bearing using 

wavelet multi-scale denoising methods. 
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5.6 Summary 

Many prevalent signal processing methods in the frequency-domain find out if 

significant power exists at one of the CDFs which should be obtained from the 

shaft speed and bearing geometry as a priori knowledge for defect detection. 

However, this knowledge might not be always available for some applications. 

In this chapter, a new LocMax-Interval method was proposed to detect localised 

bearing defects. The new method first applies a new algorithm, LocMax, for 

finding out the timings of impact signals in the time domain, and the intervals 

between adjacent impact signals are estimated, the interval distribution is then 

used for defect detection. By examining whether the interval distribution of the 

process is regular, a localised bearing defect can then be detected.  

The simulations show a wide range of values for the choice of the parameter of 

the algorithm when the process is noise free. By increasing the value of the 

parameter, the truncated distributions which maintain the regularity and the peaks 

which converge to the mean will be achieved. However, the involvement of noise 

in a cyclostationary process will limit the effective range of the parameter values. 

Denoising is shown to improve the effective range of the parameter values, which 

allows the proposed method to work with small values of the parameter.  

The experimental results also show that a localised defect can be successfully 

detected using the proposed method. When using large parameter values, the 

bearing conditions can be diagnosed by testing the interval distribution directly 

from raw signals. The intervals from a localised defect bearing show very clearly 

a regular distribution; while the intervals from a fault free bearing show 

exponential distribution. The regular distribution converges to the peak 

corresponding to the theoretical CDI. It is shown that denoising methods can 

improve the effective range of the parameter values, thus allowing the proposed 

method to work with a wider range of the parameter values, including small 

values. Denoising can also help to highlight the regularity of interval distribution 

for bearings with localised defects, and generate the exponential distribution or 
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the distribution corresponding to a zero process for fault free bearings. Another 

benefit brought by denoising is that the computation of the algorithm can be 

greatly reduced, which is important for real-time implementation. 

The proposed method shows the feasibility to detect a localised bearing defect 

when a priori knowledge on the shaft speed and bearing geometry is unavailable. 

The LocMax algorithm can also be implemented on-line for continuous detection, 

without the need to separate the signal into segments. The diagnostic information 

can be quickly generated after the timings are detected by the algorithm. This 

method is suitable for those detection applications which do not need to know the 

exact type of localised bearing defect. However, if the type of localised bearing 

defect needs to be known, the position of the narrow peak of the regular interval 

distribution is also capable to provide the necessary information.  



 

 

Chapter 6  

Application of Un-decimated Discrete Wavelet 

Transform 

6.1 Introduction 

This chapter investigates the application of the Un-decimated Discrete Wavelet 

Transform (UDWT) in Bearing Fault Detection and Diagnosis (BFDD). In the last 

chapter, the LocMax-Interval method including a new algorithm LocMax and the 

interval distribution was proposed for localised defect detection. In this chapter, 

UDWT decomposition and denoising will be introduced to process the acquired 

AE signals. UDWT representation allows convenient and direct detection on the 

wavelet coefficients. The local maxima of UDWT wavelet coefficients can 

highlight the timing information. The UDWT denoising is introduced as a 

pre-processing approach to apply with the LocMax-Interval method. The signal 

models for different bearing conditions are also described. 

The LocMax-Interval method was proposed in the last chapter, where it was used 

for finding out the timings of impact signals. The idea of the LocMax algorithm is 

to take the coefficient with the largest magnitude within a local window. The local 

window should be able to extend infinitely and it has the minimal size controlled 

by a parameter. The algorithm detects the local maximum and the corresponding 

timing in the time domain. All the intervals calculated from the timings of the 

adjacent local maxima then form a distribution used for diagnosis.  

For a cyclostationary process, the local maxima found will show strong 

periodicity. The detected interval distribution shows strong regularity - it 
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converges to a narrow peak. For a white noise process, the “local maxima” found 

will be distributed quite randomly. The intervals do not show a regular distribution 

but an exponential distribution. For a zero process, the algorithm will not find a 

“local maximum” and the local window will extend infinitely. An interval 

distribution cannot actually be produced. In practice, an approximately zero 

process rather than a pure zero process is usually met. The detected intervals show 

a uniform distribution for an approximately zero process.  

UDWT has been introduced as a powerful tool used for transient analysis (see 

Section 4.6 and Appendix A.5 for details): UDWT not only inherits the 

translation-invariant property of CWT, but also has much reduced computation 

requirements; UDWT is translation invariant and suitable for the transient signal 

analysis which requires precise time localisation; UDWT representation allows 

convenient and direct detection on the wavelet coefficients; local maxima of 

UDWT wavelet coefficients can highlight the timing information. For the 

traditional signal denoising approaches, signal reconstruction is usually the 

necessary operation to achieve the denoised signal which will be used for fault 

detection in the next stage. In the last chapter, DWT denoising was performed to 

improve the effective range of the parameter values dis , thus allowing the 

proposed method to work with a wider range of the parameter values. After being 

processed by the DWT denoising, the AE signal was reconstructed as the denoised 

signal which was then processed with the LocMax-Interval method. However, the 

reconstruction process usually needs much computation.  

In this chapter, UDWT denoising, which combines Wavelet Maxima Chain 

(WMC) search and thresholding, will be introduced as a pre-processing approach 

for the LocMax-Interval method. Since the UDWT-denoised wavelet coefficients 

have the same time resolution as the original signal, the timings of impacts can 

also be detected by the LocMax algorithm from the denoised UDWT wavelet 

coefficients. After being processed by the UDWT denoising, the denoised UDWT 

wavelet coefficients can be directly applied with the LocMax-Interval method 

without the need for reconstruction. Once timings are found by the LocMax 



Chapter 6   Application of Un-decimated Discrete Wavelet Transform 

 66 

algorithm, the interval distribution can be easily generated for fault diagnosis. 

This chapter is organised as follows: Section 6.2 provides a brief description of 

signal models. Section 6.3 overviews the methodology, including the description 

of the UDWT decomposition and denoising method. In Section 6.4, the 

application of the UDWT will be demonstrated with experimental results. The 

summary is in Section 6.5. 

6.2 Signal Models 

For a localised defect, the impact process )(tY  is modelled as 

)()()()()( 0 twtYtYtYtY clr .      (6-1) 

The major signal of interest, )(tYr  , is generated by the repetition of impact 

forces when a defect in one surface strikes a mating surface. )(tYl  represents the 

weak harmonic component located in the lower frequency range (Antoni 2007). 

)(tYc  represents the coherent component of the signal )(tYr . It may show similar 

time-frequency behaviour as )(tYr  but with lower amplitudes. The terms )(tYc  

and )(tYl  are essentially the interferences. The )(0 tw  term represents white 

noise with zero mean. In practice, the timing and amplitude of impact signals are 

usually difficult to estimate directly from the noisy observation )(tY . The 

amplitude of signal )(tYr was modelled by McFadden and Smith (1984a) (see 

Section 3.3 for details). Without considering the above amplitude variation, )(tYr  

can also be ideally modelled as the cyclostationary point process signal with 

uniform amplitudes.  

For an incipient contamination fault, the signal process )(tYC  is modelled as:  

)()()()( 0 twtZtYtYC hl ,       (6-2) 

which is a process containing the weak harmonic component )(tYl  located in the 

lower frequency range, the random non-cyclostationary component )(tZh  at high 
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frequencies and the white noise term )(0 tw . Since no obvious cyclostationary 

impact signals can be observed at an early stage, the prevalent envelope analysis 

method broadly used for localised defect detection will be ineffective to detect the 

incipient contamination fault. 

For a fault free bearing, the signal process )(tYF  is modelled as 

)()()( 0 twtYtYF l ,          (6-3) 

which is a process containing the weak harmonic component )(tYl  located in the 

lower frequency range and the white noise )(0 tw . For both the fault free and 

incipient contamination fault models, the impact signal )(tYr  and the coherent 

component )(tYc  in the impact process )(tYr  no longer exist. The difference 

between these two processes is the random non-cyclostationary component )(tZh  

at high frequencies. 

6.3 Methodology 

6.3.1 UDWT Decomposition 

The UDWT decomposes the impact process )(tY  as 

)()()()()( twWtyWtyWtyWtYW jcjljrjj , Jj ,...,2,1 , (6-4) 

where )(tyW rj , )(tyW lj , )(tyW cj and )(twWj denote the UDWT wavelet 

coefficients of signal components )(tYr  , )(tYl  , )(tYc  and )(tw  at the dyadic 

scale j  and time t , each scale having the same number of coefficients. For the 

incipient contamination fault process (6-2) and fault free process (6-3), the 

UDWT wavelet coefficients are denoted as )(tYFWj  and )(tYCWj , 

respectively. 

6.3.2 Significance Measure 

The impact signals generated by localised defects are typically transient signals 
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with wide spread frequency distribution and relatively high local SNR at high 

frequencies. The detection of the transient signal was reported in literature as 

singularity detection (see Section A.9 for details). After the Wavelet Maxima 

Chains (WMCs) are found, a significance measure km  needs to be defined for 

detection in the time domain. For example, one can define km  as the local 

regularity estimation, coefficient magnitude, or the amount of inter-scale 

correlation. The significance measure is essentially a new signal computed from 

the observed wavelet coefficients and the selection of the position is the detection. 

The significance measure allows the LocMax algorithm to detect failures in the 

time domain. In the following approach, the thresholded WMCs will be defined as 

the new significance measure. The non-parametric thresholding methods (i.e., 

SquareTwoLog, SURE and Minimax) with hard thresholding are also used here 

for investigation. 

6.3.3 UDWT Denoising 

Let the decomposition level be 2J , the UDWT wavelet coefficients of impact 

signal at two dyadic scales )(1 tYW  and )(2 tYW  are: 

)()()()()( 11111 twWtyWtyWtyWtYW clr ,    (6-5) 

)()()()()( 22222 twWtyWtyWtyWtYW clr .   (6-6) 

The UDWT scaling coefficients which are viewed as the low frequency carrier 

representing the weak harmonic component )(tYl  in the model will be discarded 

as the interference components. After the UDWT denoising, which combines the 

WMC search and thresholding, most of the noise components can be eliminated. 

The remaining coefficients are supposed to be: 

)()()( 111 tyMtyMtYM cr ,        (6-7) 

)()()( 222 tyMtyMtYM cr ,        (6-8) 

Choose the modulus magnitudes of the denoised UDWT wavelet coefficients at 
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the finest scale ( 1j ) to perform timing detection using the LocMax algorithm. 

These denoised UDWT wavelet coefficients will be called as the UDWT denoised 

signals in the following description for simplicity. That is, the significance 

measure km  is: 

)(1 tYMmk )()( 11 tyMtyM cr .      (6-9) 

The detection at the single scale means that there is no need to reconstruct signals. 

In this way, the local maximum iN̂  is defined by: 

)(ˆ
iki AmMaxN ,         (6-10) 

where Li ,...,2,1  and km  is the significance measure within the local window

iA . The detection and diagnosis can then be obtained using the LocMax-Interval 

method. See Figure 6-1 for the processing diagram of the proposed method. The 

interval distribution is supposed to show regularity for the impact process.  

On the other hand, the signal processes in (6-2) and (6-3) at the finest scale for 

incipient contamination fault and fault free bearing are also supposed to have two 

simple forms after the UDWT denoising: 

)()( 11 tZMtYCM h ,         (6-11) 

0)(1 tYFM .          (6-12) 

These are a random non-cyclostationary component and zero, respectively. For the 

signal from a fault free bearing, the UDWT denoising completely eliminates the 

noise and the process becomes a zero process. In an ideal situation, an interval 

distribution cannot be actually generated for this case. Since the incipient 

contamination fault maintains some random non-cyclostationary components at 

high frequencies which will not be completely eliminated by the denoising, the 

generated intervals are supposed to show an exponential distribution.  
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Figure 6-1 The method based on UDWT decomposition and denoising for BFDD. 

 

6.4 Results and Discussion 

The acquired AE signals are divided into segments without overlap and 

subsequently decomposed by the two-level UDWT using the biorthogonal wavelet 

bior 6.8 (see Figure 4-12 for the function of bior 6.8 wavelet). The scaling 

coefficients are discarded as the interference components and the wavelet 
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coefficients at two dyadic detail scales are processed with the UDWT denoising. 

The thresholds at different scales are automatically estimated according to the 

non-parametric thresholding methods (SURE, Minimax or SquareTwoLog) on a 

segment by segment basis. 
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Figure 6-2 Raw AE signal of localised defect (first row) and UDWT-SURE denoised 

coefficients at two scales. 

 

Figure 6-2 shows a 2048-point segment of the acquired AE signal from the 

localised defect bearing and the corresponding UDWT-SURE thresholded WMCs 

obtained from the UDWT wavelet coefficients. Scale 1 is the finest detail scale 

corresponding to frequency band [20 kHz, 40 kHz]; Scale 2 corresponds to 

frequency band [10 kHz, 20 kHz]. The WMCs at both scales always have the 

same sign and line up at the same positions. Note that the WMCs keep the 
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important signal features at sharp singularities and most of the noise fluctuation 

has been suppressed. This is because the signal feature shows persistence across 

scales with larger amplitude, while the noise attenuates very quickly when the 

scale increases.  

Hence the local maxima on those UDWT-SURE denoised wavelet coefficients at 

the finest scale are detected using the LocMax algorithm. Figure 6-3 shows the 

acquired AE signal and the clear timings of impact signals, where the regular 

intervals between adjacent impacts are clearly visible at both scales. 
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Figure 6-3 Clear timings of impact signals are revealed at two scales after the LocMax 

detection algorithm is performed on denoised coefficients. 

 

The intervals calculated from the timings of adjacent local maxima then form the 

distribution for diagnosis. This interval distribution is plotted to study the 
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diagnostic performance of the signals after the UDWT-SURE denoising. Figure 

6-4, Figure 6-5 and Figure 6-6 show the interval distributions from a localised 

defect, an incipient contamination fault and a fault free bearing, respectively. 

Clearly, the interval distribution from localised defect signals in Figure 6-4 shows 

a Cauchy distribution. The distribution in Figure 6-4 has a very high and narrow 

peak around the mean value. This peak converges to a mean value = 142 

samples, which is very close to the theoretical estimation CDI = 143 samples. 

This illustrates the performance of our detection method.  

 

Figure 6-4 Interval distribution from AE signals of localised defect using UDWT-SURE 

denoising and LocMax-Interval method. 

 

The interval distribution from an incipient contamination fault bearing signal in 

Figure 6-5 shows an exponential distribution; the distribution from a fault free 

bearing in Figure 6-6 shows that a rare event distribution is found. The bearing 

conditions can then be diagnosed from these interval distributions. 
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Figure 6-5 Interval distribution from AE signals of incipient contamination fault 

using UDWT-SURE denoising and LocMax-Interval method. 
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Figure 6-6 Interval distribution from AE signals of fault free bearing using 

UDWT-SURE denoising and LocMax-Interval method. 

 

The advantage of the UDWT denoising is it can automatically adjust the 

denoising processing for the AE signals acquired from three different bearing 

conditions. When there is a localised defect on the bearing, cyclostationary 
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impacts are generated and the energy of these impacts extends to the high 

frequency band [20 kHz, 40 kHz]. The detected intervals will be distributed quite 

regularly. As a result, the signal process is characterised by the narrow peak in 

interval distribution as shown in Figure 6-4. For the signals from the bearing with 

an incipient contamination fault, there are some random non-cyclostationary 

components at high frequencies and the UDWT denoising does not completely 

eliminate these. Therefore, the intervals show an exponential distribution as 

shown in Figure 6-5. For the signal from the fault free bearing, the noise has been 

nearly eliminated and the signal process becomes an approximately zero process. 

The interval distribution is shown in Figure 6-6. The tests show the interval 

distributions generated from the bearing conditions of an incipient contamination 

fault and fault free can consistently exhibit exponential and rare event 

distributions accordingly, despite different thresholding estimators used in UDWT 

denoising (i.e. SURE, Minimax or SquareTwoLog).  

When performed with the LocMax algorithm on the denoised signals, the 

parameter dis  is used to control local windows. Figure 6-7 shows the interval 

distributions from a localised defect bearing when the parameter is 60, 80, 90 and 

100, respectively. For these four distributions, the Chi-square goodness-of-fit 

Tests of Cauchy distributions give the statistical results 1021, 78, 106 and 127, 

respectively. The smaller the statistical result, the better the interval distribution 

fits the Cauchy distribution. Out of these four situations, dis= 80 is the best value 

of the parameter for diagnosing a localised bearing defect. For a specific 

application, it is then possible to optimise the value of parameter dis  for the 

LocMax algorithm towards automatic detection and diagnosis when combined 

with the test statistics. 

In Figure 6-7 top left, note that some wrong detections accumulate at the lower 

part of the distribution when a relatively small value of parameter is used ( dis= 

60). If a smaller value of parameter is used (e.g., dis = 10), this bi-modal 

distribution will develop into an exponential distribution because more and more 

wrong detections occur. The effect of increasing the threshold based on DWT 
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denoising for reducing this was studied in the last chapter. The purpose of 

increasing the threshold is to improve the effective range of the parameter values, 

which allows the LocMax-Interval method to work well with a wider range of 

parameters. For example, changing the threshold estimator from SURE to the 

estimators with higher threshold estimation, such as Minimax and SquareTwoLog, 

can improve the effective range of the parameter values.  

 

Figure 6-7 Interval distribution from AE signals of localised defect using UDWT-SURE 

denoising and LocMax-Interval method (the parameter of LocMax algorithm is 

set to 60, 80, 90, 100). 
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Figure 6-8 Comparison of interval distributions using UDWT and DWT denoising as 

pre-processing for LocMax-Interval Method. 

 

A similar strategy can also be applied for the UDWT denoising to improve the 

effective range of the parameter values. When there is no a priori information 

about the bearing, a possible diagnostic scheme is to examine the interval 

distribution using some small value of parameter (e.g., dis= 10). In this case, 

UDWT-Minimax denoising which is stricter than UDWT-SURE denoising is 

suggested for pre-processing. See Figure 6-8 (left) for the generated interval 

distributions using the UDWT-Minimax denoising. Compared with the result from 

DWT denoising on the right side of Figure 6-8, the proposed UDWT denoising 

method can show better performance when a small value of parameter dis= 10 is 

used. The regularity is still visible for the UDWT denoised signal, while it is 

hardly seen for the DWT denoised signal. The UDWT-Minimax denoising 
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improves the diagnostic capability of the LocMax-Interval method using a small 

parameter. In our test, the interval distribution from a fault free bearing will show 

a rare event distribution like Figure 6-6; the interval distribution from a localised 

defect bearing will reveal the regularity as shown in Figure 6-8 left; the interval 

distribution from the bearing with an incipient contamination fault will maintain 

an exponential distribution. With UDWT-Minimax denoising as a pre-processing 

approach, LocMax-Interval method will work with small parameter values and 

diagnose three different bearing conditions.  

6.5 Summary 

This chapter studied a new AE signal processing approach based on UDWT 

representation and denoising. The method allows direct fault detection on UDWT 

denoised wavelet coefficients without the need to reconstruct the signal. It is also 

found that the UDWT denoising can effectively improve the performance of the 

LocMax algorithm and the diagnostic capability of the LocMax-Interval method.  

The method is demonstrated on the bearings of a dry vacuum pump seeded with 

different conditions: localised defect, incipient contamination fault and fault free. 

The results show that UDWT denoising, which combines Wavelet Maxima Chain 

search and thresholding, can improve the diagnostic capability of the 

LocMax-Interval method. After the UDWT denoising, three different bearing 

conditions can be diagnosed by examining their generated interval distributions. 

When there is a localised defect on the bearing, the detected interval distribution 

shows a Cauchy distribution which is characterised by the narrow peak at the 

theoretical CDI. When there is incipient contamination fault on the bearing, the 

detected intervals show an exponential distribution. This is because there are some 

random non-cyclostationary components at high frequencies for the incipient 

contamination fault and the UDWT denoising does not completely eliminate these 

components. When the bearing is fault free, the noise can be completely 

eliminated by the UDWT denoising and the signal process becomes an 

approximately zero process. The interval distribution then shows a rare event 



Chapter 6   Application of Un-decimated Discrete Wavelet Transform 

 79 

distribution. It is also possible to optimise the value for the parameter of the 

LocMax algorithm towards automatic detection and diagnosis when combined 

with a statistics test. If small values of the parameter need to be used in the 

LocMax-Interval method to diagnose three bearing conditions, the UDWT 

denoising outperforms the DWT denoising, and the UDWT-Minimax denoising is 

recommended for use as a pre-processing approach. 



 

 

Chapter 7  

Application of Wavelet Packet Quantifiers and 

Bayesian Method 

7.1 Introduction 

This chapter studies the application of Wavelet Packet (WP) quantifiers and the 

Bayesian method in Bearing Fault Detection and Diagnosis (BFDD). Appendix 

A.10 will introduce the concept and statistical explanation of WP quantifiers. The 

WP quantifiers which are obtained from WP coefficients can construct a 

quantitative time-frequency analysis. The materials presented in this chapter have 

been published in different form by Feng and Schlindwein (2008). 

In the field of BFDD, wavelets and WPs to date were most commonly used as a 

complementary tool of envelope analysis to overcome the limitations with regard 

to determining the frequency bands of interest (see Section 4.6.1 for details). This 

is because the low frequency range of the commonly used vibration signals is 

usually dominated by noise. In this chapter, the WP quantifiers are applied to 

analyse the AE signals and extract signal characteristics from bearings in three 

conditions: fault free, with a localised defect and with an incipient contamination 

fault. The study is to find out whether the WP quantifiers are suitable for 

diagnosing those different bearing conditions and whether there exists a “best” 

quantifier.  

To find out the “best” quantifier, the Bayesian method is introduced in this chapter 

to analyse and evaluate quantitatively the performance of the WP quantifiers. This 

quantitative study method also has many important applications in BFDD. 
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Quantitative studies can be performed to investigate the relationships between the 

performance of the quantifiers and some consideration factors in implementation. 

These factors include the wavelet order, length of signal segment and 

dimensionality of diagnostic scheme.  

This chapter is organised as follows: Section 7.2 provides an overview of the 

methodology, including the introduction to WP quantifiers and the performance 

evaluation method. Section 7.3 shows the results of applying WP quantifiers on 

AE signals analysis. Section 7.4 evaluates the performance of WP quantifiers and 

finds out the “best” quantifier by comparing the Bayesian classification error 

probability. For implementation, wavelet order, length of signal segment and 

dimensionality of the diagnostic scheme are often the important consideration 

factors. Sections 7.5 - 7.7 study the relationships between the performance of WP 

quantifiers and these consideration factors via the Bayesian method. The results 

are discussed in Section 7.8 and finally, the summary is reported in Section 7.9. 

7.2 Methodology 

7.2.1 WP Quantifiers 

By decomposing the details of DWT coefficients into dyadic frequency bands, the 

DWPT can yield a STFT-like decomposition but with some important advantages. 

The wavelet basis of the DWPT can be flexibly chosen for practical 

implementation considerations; the contaminating noises concentrating in some 

frequency bands can be easily eliminated; the DWPT can be efficiently computed 

via the filter bank algorithm.  

Recall that the WP node ( kj, ) corresponds to the vector kj ,P  of WP 

coefficients. The collection of nodes forming the indices of the WP table will be 

denoted by }12,...,0;,...,1:),{( jkJjkjT . The coefficients vector kj ,P  is 

associated with the frequency band of signal on [ 11 2/)1(,2/ j

s

j

s kfkf ]. The 

terminal WP nodes can preserve the energy of the signal. The new quantifiers 

construct the quantitative time-frequency analysis based on WP coefficients: 
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Relative Energy (RE) measures the normalised energy of the WP node; Total 

Entropy (TE) measures how the normalised energies of the WP nodes are 

distributed in the frequency domain; Node Entropy (NE) describes the uncertainty 

of the normalised coefficients of the WP node. 

In the following study, these WP quantifiers are used to process the AE signals. 

AE signals acquired from three different bearing conditions (fault free, incipient 

contamination fault, localised defect) are divided into L-point signal segments 

without overlap. Each segment S  is then decomposed at 2j  levels by 

DWPT using the Daubechies wavelet as base because Daubechies wavelets are 

compactly supported for a given number of vanishing moments (see Appendix 

A.7). The terminal WP nodes ( 0,2 ), ( 1,2 ), ( 2,2 ), ( 3,2 ) correspond to frequency 

bands [0, 10 kHz], [10 kHz, 20 kHz], [20 kHz, 30 kHz] and [30 kHz, 40 kHz], 

respectively. The last three bands are labelled as A, B and C, see Figure 7-1.  

 

Figure 7-1 2-level DWPT decomposition on AE signals (frequency ordering). 

 

Because the interesting information in AE signals is above 10 kHz, the low 

frequency band of AE signals [0, 10 kHz] is not used in the analysis and is 

discarded. WP nodes A [10 kHz, 20 kHz], B [20 kHz, 30 kHz] and C [30 kHz, 40 

kHz] are analysed using the proposed quantifiers. Specifically, the energy of the 
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denoised signal Ŝ  is the total energy of the signal on A, B and C band 

CBAn

ntot EE

,,

,           (7-1) 

where 

14/

0

,

N

t

tnn PE for CBAn ,,  band. 

The RE of band n  is 

totnn EEfRE /)( ,          (7-2) 
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and the TE of a signal segment is 

CBAn

nn fREfREfTE
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2 )(log)()( .      (7-4) 

7.2.2 Bayesian Method 

BFDD can be systematically studied in the context of pattern recognition 

(Theodoridis and Koutroumbas, 2003). The performance of the WP quantifiers, 

also known as the features, will be evaluated by comparing their classification 

error probability. The adopted classification method based on Bayes decision 

theory is optimal with respect to minimising the classification error probability or 

the total risk.  

Consider a classification task of M classes, i , Mi ,...,2,1 , the a posteriori 

probability of an unknown pattern, which is represented by a feature vector X , is 

denoted by )( XiP . It represents the probability that the unknown pattern 

belongs to the respective class i , given the corresponding feature vector takes 

X . For iRX , the a posteriori probability )( XiP  is the correct classification 
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probability; otherwise, it is the classification error probability.  

The risk associated with the class k is 

M

i R

kkik

i

dpr
1

)(
X

XX .         (7-5) 

The total risk for the Bayesian classification is 
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and this can be written in the form of a posteriori probability as 

M
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i

ikki RPr
1 1

)( X .        (7-7) 

In equation (7-5), the probability density function )( iP X  describes the 

distribution of the feature vectors in each class. The integral in the region iR  of 

the class i  represents the classification error probability of k  caused by 

misclassification, i.e. the values of a feature belonging to class k  being 

misclassified as belonging to class i .  

The penalty term ik  is zero for ik  because no penalty is given to correct 

classification. When there is no practical risk evaluation available, assume ik  
is 

1 for any ik . That is, any misclassification has equal penalty. The above total 

risk becomes the total classification error probability 

M

k

M

i

ik RPE
1 1

)( X .         (7-8) 

The less the probability densities of different classes with respect to a quantifier 

are overlapped, the better their ability to discriminate and diagnose different 

bearing conditions.  

 



Chapter 7   Application of Wavelet Packet Quantifiers and Bayesian Method 

 85 

7.3 Analysing AE signals via WP Quantifiers 

In this analysis, AE signals are first divided into 292 sets of 2048-point signal 

segments and decomposed by the 2-level DWPT using db10 as the wavelet basis. 

The histograms of the quantities of quantifier RE of A band [10 kHz, 20 kHz], B 

band [20 kHz, 30 kHz], C band [30 kHz, 40 kHz] for three different bearing 

conditions are shown in Figure 7-2, Figure 7-3 and Figure 7-4, respectively. The 

distributions are well fitted with a Gaussian distribution (profile in solid curves), 

likewise for the following figures. In Figure 7-2, most energy of the signals is 

concentrated in the A band [10 kHz, 20 kHz]: over 65% of the energy for the 

incipient contamination fault, over 80% for fault free and over 85% for the 

localised defect.  
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Figure 7-2 The histogram of RE of A band for three classes (L = 2048, db10). 

 

The energy of B band [20 kHz, 30 kHz] is the second largest. The energy for an 

incipient contamination fault is over 18%, for fault free, about 10% to 18% and 

for a localised defect, no more than 8%, as shown in Figure 7-3. Notice that the 
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three classes here are well separated except for a slight overlap between fault free 

and incipient contamination fault. Compared to A and B band, C band [30 kHz, 40 

kHz] contains the lowest energies as shown in Figure 7-4. Only 2% to 8% 

energies are for the localised defect and less than 2% of the energy for the other 

two classes.  
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Figure 7-3 The histogram of RE of B band for three classes (L = 2048, db10): Different 

classes are well separated. 

 

When an incipient contamination fault happens, it corresponds to the lowest 

energy portion in band A compared to the other two bearing conditions. However, 

relatively high energies tend to spread to band B and almost all the energies 

attenuate in band C. In contrast, the localised defect has very different 

characteristics. It shows relatively high energies in bands A and C, but lower 

energy in band B. In all three bands, the energy probability distributions for the 

fault free condition are located in the middle of the other two.  
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Figure 7-4 The histogram of RE of C band for three classes (L = 2048, db10). 

 

To further investigate these energy distributions in the three bands, we obtained 

the histogram of the quantities of the TE for three bearing conditions (Figure 7-5). 

This quantifier describes the degree of the disorder of signals from the point of 

view of frequency energy distribution. Narrowband-like signals are more ordered 

than wideband-like signals. If the total energies of signals concentrate in one 

band, the quantities will then have relatively small values. From the previous 

graph, it is shown that localised defects produce more narrowband-like signals, 

where over 85% of the energy concentrates in band A, while bands B and C have 

together no more than 15% of the energy. The incipient contamination fault signal 

produces more broadband-like signals, where 65% to 80% of the energy is in band 

A and 18% to 35% of the energy is in band B. Broadband-like signals are more 

disordered than narrowband-like signals. The energy of wideband like signals tend 

to spread over the bands and the quantifier therefore takes larger values. 
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According to the above analysis, it is expected that the relationship of the 

quantities of the quantifier TE for the three bearing conditions would be: TE 

(incipient contamination fault) > TE (fault free) > TE (localised defect). Figure 

7-5 shows a good agreement with this expectation. Again notice that the overlaps 

between the incipient contamination fault and the other two conditions are very 

small, which implies that this quantifier is good at discriminating incipient 

contamination faults. The quantitative analysis for the overlaps will be given in 

Table 7-1.  
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Figure 7-5 The histogram of TE for three classes (L = 2048, db10). 

 

As mentioned earlier, the quantifier NE is used to describe how disordered the 

normalised coefficients are in a frequency band. The quantities of the quantifier 

will take small values if coefficients show ordered behaviour, and vice-versa. 

Figure 7-6 shows the histogram of the quantities of the quantifier NE in band C.  

In Figure 7-6, the quantities for the localised defect are much lower than the other 

two, which implies that the coefficients might be very ordered and the processes 
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concentrate energy in a few large coefficients and have stronger peaks fluctuation. 

Figure 7.7 displays the normalised coefficients in band C (from top: localised 

defect, incipient contamination fault, fault-free) and shows good agreement with 

the above analysis. For the fault-free and the incipient contamination fault, the 

processes are relatively disordered and their energies are distributed more evenly. 

Consequently, the quantities for them take larger values. The overlaps between 

localised defect and the other two conditions are very small, which indicates this 

quantifier is good at discriminating localised defects. 
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Figure 7-6 The histogram of NE in band C for three classes (L = 2048, db10). 
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Figure 7-7 The normalised WP coefficients in band C (L = 2048, db10). 

 

7.4 Finding out the Best Quantifier via Bayesian Method 

To quantitatively evaluate the performance of the proposed quantifiers, the 

Bayesian classifier is used to compute the classification error probability, where 

the probability density functions are estimated by Gaussian distributions. The 

classifier is trained with 30% of the data and tested with the remainder. In the 

following context, the quantifier RE of A, B, C band are denoted as F1, F2 and 

F3; the quantifier TE is denoted as F4; the quantifier NE of A, B, C band is 

denoted as F5, F6 and F7. Table 7-1 shows the classification error probability 

using the quantifiers F1~F7. 
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The first row in Table 7-1 is the classification error probability for the fault-free 

condition, that is, the patterns belong to fault free but are misclassified to the other 

two classes. The second row and the third row are the classification error 

probability for the incipient contamination fault and localised defect, respectively. 

The fourth row is the total classification error probability from the sums of all 

three types of classification error probability. Significant low classification error 

probability (less than 5%) is highlighted in red colour.  

Table 7-1. Classification error probability using different quantifiers (L = 2048 and db10).  

 F1 F2 F3 F4 F5 F6 F7 

Fault free 0.048 0.003 0.182 0.151 0.699 0.702 0.175 

Contamination 0.003 0.003 0.092 0.010 0.387 0.469 0.592 

Localised defect 0.031 0 0 0.140 0.397 0.188 0 

Total 0.081 0.006 0.273 0.300 1.482 1.359 0.768 

NB: since the total error includes false positives and false negatives it might be larger than 1. 

 

The “best” diagnosis performance is from F2, where total error probability is only 

0.6%. The second “best” performance is from F1, where total error probability is 

8.1%. The results can also be explained from the corresponding Figure 7-2 and 

Figure 7-3, both showing small overlaps among different classes. In Figure 7-3, 

all three classes are well separated except slight overlaps between fault free and 

incipient contamination fault. The results in Table 7-1 show the small overlaps 

cause 0.3% classification error probability for each class. Because the distribution 

of the localised defect has no overlap with the other two classes, the classification 

error probability for it is zero. In Figure 7-2, more overlaps between the localised 

defect and fault-free classes appear, which cause the increasing classification error 

probability 4.8% and 3.1% for each class. The other quantifiers have not attained 

satisfactory results, with their total error probabilities over 25%. Although their 

total performance are not satisfactory, these quantifiers have very low 

classification error probability for the classes relevant to some faults (e.g. F3 and 
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F7 for localised defect, F4 for incipient contamination fault), which means they 

have good specificity for certain types of bearing fault. 

7.5 Performance Factor 1: Wavelet Order  

In the above results, the Daubechies wavelet dbN with large order N =10 was used 

as the WP basis. This Section investigates how the change of order N influences 

the performance of the quantifiers. Figure 7-8 shows the total classification error 

probability of the proposed quantifiers when using different Daubechies wavelet 

orders (N =1, 2, …, 10).  
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Figure 7-8 Total classification error probability of the quantifiers using different 

Daubechies wavelet orders (N = 1, 2, …, 10) (L = 2048). 

 

The graph shows F5 and F6 both have a poor performance, with unacceptable 
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classification error probability. F4 and F7 also perform badly, with over 30% 

classification error probability for all the wavelet orders. F3 performs best when 

db1 (haar) basis is used. F2 has the best performance for the larger wavelet orders 

but the performance deteriorates when wavelet order goes lower. F1 is the second 

best quantifier overall, but the classification error probability also increases when 

wavelet order decreases. 

7.6 Performance Factor 2: Length of Signal Segment 

To study how the length of signal segment influences the performance of the 

quantifiers, the AE signals are divided into signal segments of different sizes. For 

different lengths, only 292 sets of signal segments are kept for Bayesian 

classification.  
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Figure 7-9 Total classification error probability increases when the length of signal 

segment decreases. 

 

Figure 7-9 displays the total classification error probability when using different 

lengths of signal segment for the quantifier F2 and the Daubechies wavelet dbN 

with order N = 10 (Note: The previous analyses have showed the quantifier F2 

and db10 as the wavelet basis which can achieve the best performance of all 
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amongst the options tested). Figure 7-9 shows that the total classification error 

probability increases significantly when the length of the signal segment 

decreases. 

7.7 Performance Factor 3: Dimensionality of Diagnostic Scheme 

Figure 7-8 showed how the performance of the “best” quantifier F2 deteriorates 

when wavelet order decreases. When very low order db1 (Haar) is used, the total 

classification error probability increases to 27.6%, where two classes - fault free 

and incipient contamination fault - overlap heavily. Figure 7-10 shows the 

histogram for this situation. A possible approach to improve the classification 

performance is to use a two-dimensional diagnostic scheme, i.e. combine a pair of 

quantifiers to diagnose bearing faults.  
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Figure 7-10 The histogram of quantifier F2 for three classes using Haar wavelet (L = 

2048); the total classification error probability is very high at 27.6%. 
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Figure 7-11 Two-dimensional diagnostic map using two quantifiers F2 and F4 (Haar 

wavelet; L = 2048): Total classification error probability has greatly reduced. 

 

Figure 7-11 shows a two-dimensional diagnostic map using two quantifiers F2 

and F4. The quantifier F4 is used to help for discriminating the incipient 

contamination fault and fault free cases, where the total classification error 

probability reduces from 27.6% to 9.6%. 

Figure 7-12 shows the comparison of classification error probability between the 

“best” single quantifier F2 and the “best” combination pair of quantifiers. It shows 

that a two-dimensional diagnostic scheme can help to improve the diagnostic 

performance. The improvements are more significant when lower wavelet orders 

are used.  
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Figure 7-12 Using two-dimensional diagnostic scheme reduces the classification error 

probability; improvement is significant for lower wavelet order (L = 2048). 

 

7.8 Discussion 

For mechanical vibration and high frequency AE, the loss of energy due to 

attenuation increases with the frequency. This is evident in studying the RE, 

where for all the three bearing conditions the energies decay along the A, B, and C 

bands. Although the energies in band B [20 kHz, 30 kHz] are far less than for 

band A [10 kHz, 20 kHz], band B provides better information for the diagnosis. 

All three classes shown in the histograms are well separated, which means the 

quantifier RE of band B has the greater power for diagnosis. The corresponding 

total classification error probability of the Bayesian classifier (only 0.6%) proves 

this point. Band C [30 kHz, 40 kHz] contains the lowest energies, but it is a very 

good band for detecting localised defects by using RE or NE quantifiers. The 

quantifier TE is good at detecting whether the signals are broadband and proved to 

be quite efficient to detect an incipient contamination fault.  
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The WP quantifiers derived from probability distributions are either normalised 

over the total signal energy or the node energy. The normalisation is important for 

the successful diagnostic application. In practice, it is very difficult to compare 

different bearing conditions using the quantifiers without normalisation, unless the 

amplifier is carefully tuned to achieve equal amplitudes for different signals. 

Without normalisation the signal with higher amplitude will produce the wavelet 

coefficients with higher values. This will generate unpredictable effects on the 

quantifiers. For example, the signal from a localised defect without normalisation 

will generate much higher amplitude coefficients in band B than those shown in 

Figure 7-3, where the class belonging to the localised defect moves upwards on 

the abscissa. If these coefficients were directly used for diagnosis, the 

classification would often fail. The same situation will also happen for the other 

quantifiers.  

From the viewpoint of implementation, it is expected that the orthogonal wavelet 

basis would have higher vanishing moments (order) N. This is because the higher 

the vanishing moments, the better representation the signal will have and signals 

would be approximated efficiently by fewer non-zero wavelet coefficients. See 

Section A.7 for details. However for the Daubechies orthogonal wavelets, a trade 

off has to be made between filter support size and vanishing moment. The filter 

support size has to be at least 2N-1 for moment N. The implementation of longer 

support size will increase the cost and slow down the computation. This study 

shows the classification error increases when wavelet order N increases for some 

good quantifiers (F1 and F2) with satisfactory performance overall. An optimal 

implementation therefore relies on a balance between the increasing classification 

error probability and the cost of increasing support size.  

In practice, diagnostic schemes for BFDD with minimal length of signal segment 

and dimension(s) are often preferable because increasing length or dimension is 

also costly for implementation. Unfortunately, analysis shows that the total 

classification error probability increases significantly as the length of signal 

segment decreases. It is also shown that a two-dimensional diagnostic scheme 
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using a pair of quantifiers can help to reduce the classification error probability, 

but the reductions are only significant when lower wavelet orders are used. 

Therefore, an optimal implementation also needs to consider how to balance 

between the increasing classification error probability and the cost of increasing 

length of signal segment or dimension(s).  

7.9 Summary 

This chapter reported the study of WP quantifiers as a new tool for BFDD. To the 

best of our knowledge, this work is the first study on the application of WP 

quantifiers in BFDD. Particularly, this work provides an alternative method for 

detecting and diagnosing incipient contamination faults. The WP quantifiers 

construct a quantitative time-frequency analysis: Relative Energy (RE) measures 

the normalised energy of the WP node; Total Entropy (TE) measures how the 

normalised energies of the WP nodes are distributed in the frequency domain; 

Node Entropy (NE) describes the uncertainty (i.e. the degree of disorder) of the 

normalised coefficients of the WP node.  

By applying the WP quantifiers on AE signals from faulty bearings, this study 

shows that both localised defects and advanced incipient contamination faults can 

be successfully detected and diagnosed if the appropriate quantifier is chosen. The 

Bayesian method is also introduced to quantitatively analyse and evaluate the 

performance of the WP quantifiers. It is shown how the optimal quantifier for an 

application can be found by comparing the total classification error probabilities 

of quantifiers. In this case study on an iGX dry vacuum pump, the RE of band B 

[20 kHz, 30 kHz] is the optimal quantifier for BFDD. The performance of the WP 

quantifier also depends on the wavelet order and the length of signal segment. 

Reducing the Daubechies wavelet order or the length of signal segment will 

deteriorate the performance of the quantifier. It is also shown that a 

two-dimensional scheme can also help to improve the diagnostic performance and 

that the improvements are more significant when lower wavelet orders are used.  



 

 

Chapter 8  

Discussion and Future Work 

8.1 Discussion 

The rolling element bearing is one of the most common mechanical components 

in critical industrial rotating machinery. Since the failure of bearings will cause 

the machine to malfunction and may quickly lead to catastrophic failure of the 

machinery, it is very important to detect any bearing deterioration at an early 

stage. Following the previous research works in University of Leicester based on 

vibration measurements, this Ph.D. study adopts Acoustic Emission (AE) as a 

measurement method to provide good solutions for detecting both the localised 

defect and the incipient contamination fault of bearing. The contamination fault at 

an incipient stage is difficult to detect by using traditional vibration measurements. 

The bearing faults to be studied are both typical examples carefully selected by 

BOC Edwards experienced engineers and introduced in test facilities by Barden 

Bearing specialists. Therefore, they replicate the bearing damage and wear of the 

dry vacuum pump in natural semiconductor operating conditions. 

The difficulties in processing, interpreting and classifying the information from 

AE signals limit the success of AE technique. An effective signal processing 

method for a BFDD system depends on the nature of acquired signal. The AE 

signals, with broadband and high frequency nature, are different from the 

vibration signals acquired from traditional accelerometers, which necessitate the 

development of new signal processing method. Signal processing is important that 

it bridges the stages of sensing and fault diagnosis. Applying the appropriate 

signal processing methods is essential to the success of a BFDD system.  
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Based on the cyclostationary model of impact signals and probability law 

governing the intervals, chapter 5 proposed a novel BFDD method called 

LocMax-Interval method to detect a localised bearing defect. The new method 

includes a new algorithm named LocMax algorithm for finding out the timings of 

impact signals and the interval distribution generated for localised defect 

detection. By examining whether the interval distribution is regular, a localised 

defect can be detected without a priori knowledge on Characteristic Defect 

Frequencies (CDFs). Since the involvement of noise will limit the effective range 

of the parameter values used in the LocMax algorithm, the DWT denoising 

method was then studied to improve the effective range.  

Further improvement of LocMax-Interval method is achieved by pre-processing 

the AE signals with the UDWT decomposition and denoising. Chapter 6 showed 

the UDWT denoising, which combined Wavelet Maxima Chain search and 

thresholding, not only outperformed the DWT denoising on improving the 

effective parameter range, but also improved the diagnostic capability of the 

LocMax-Interval method. The BFDD problem (including localised defect, fault 

free and incipient contamination fault) can be solved using the recommended 

UDWT-Minimax denoising as a pre-processing approach for LocMax-Interval 

method.  

The applications of WP quantifiers and Bayesian method for BFDD were studied 

in chapter 7. This is the first study on the application of WP quantifiers in BFDD. 

The WP quantifiers construct a quantitative time-frequency analysis for BFDD: 

Relative Energy (RE) measures the normalised energy of the WP node; Total 

Entropy (TE) measures how the normalised energies of the WP nodes are 

distributed in the frequency domain; Node Entropy (NE) describes the uncertainty 

(i.e. the degree of disorder) of the normalised coefficients of the WP node. The 

result shows that the BFDD problem can be solved if the appropriate WP 

quantifier is applied. Based on the quantitative performance evaluated by the 

Bayesian method, the study also shows that the optimal quantifier for an 

application can be found out by comparing the total classification error 
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probabilities of quantifiers. This quantitative study method has further 

applications in BFDD: Quantitative study can also be performed to investigate the 

relationships between the performance of the quantifiers and some factors. These 

factors include the wavelet order, length of signal segment and dimensionality of 

diagnostic scheme, which are all important in implementation.  

8.2 Future Work 

Since the broad existence of cyclostationary processes in physical and man-made 

processes, such as ultrasonic imaging of materials and biological tissues, medicine 

(EEG, ECG), radar, communication systems and cyclic vibration signals produced 

by Internal Combustion (IC) engines (Gardner et al. 2006), the proposed 

LocMax-Interval method and UDWT denoising are promising to find applications 

for cyclostationary signal detection in these areas.  

The traditional detection techniques can detect localised defects efficiently and 

provide information on the locations of defects. However, the techniques fail to 

detect and diagnose some advanced bearing faults such as incipient contamination 

because these types of fault may not produce an increase in modulated 

characteristic frequency at an early stage. Time-frequency analysis methods such 

as DWPT give us deep insight into these challenging problems by using the WP 

quantifiers. The author believes the proposed method and quantifiers can be used 

to solve even more challenging problems in the field of condition monitoring. 

Besides the EEG and condition monitoring, the study methods and WP quantifiers 

introduced in Chapter 7 are also very promising in many other applications to 

extract features from signals.  

It was pointed out that the Rényi entropy concept could be used to derive a 

generalised statistical moment, of which the classical statistical moment kurtosis 

is a special case. When relaxing the mean value property from an arithmetic mean 

to an exponential mean, the Rényi entropy becomes the well known Shannon 

entropy (Tao et al. 2007). The concept of Rényi entropy can be applied to derive 

some new mathematical tools, for example, the Rényi entropy-based TE and NE 
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quantifiers. The derivation and explanation of these new WP quantifiers with their 

applications will be an interesting direction for future study.  

Chapter 7 introduced the Bayesian classifier to quantitatively evaluate the 

performance of the WP quantifiers. There ki  is assumed to be 1 for any ik , 

i.e. any misclassification had an equal penalty. However, this tends to be a naive 

assumption. In the real world, some of the misclassification may imply more 

serious consequences. As a result, they should be penalised more heavily rather 

than equally. The actual penalty evaluation is closely linked to the industrial 

requirement. The unequal penalty terms will change the decision boundary of the 

Bayesian classifier and this change may cause different “best” quantifiers to be 

found. 

Along with the reduction of AE transducer price, these new methods are expected 

to have very promising applications. To implement these methods will be the next 

critical step for real-time applications.  



 

 

Chapter 9  

Conclusions 

This thesis summarised the investigations and research carried out by the author in 

Bearing Fault Detection and Diagnosis (BFDD). The main conclusions are: 

 Acoustic Emission (AE) measurement is suitable to detect both localised 

defects and incipient faults of bearing.  

 Some new BFDD systems using AE signals are developed and their 

effectiveness of the proposed BFDD systems is demonstrated on the iGX dry 

vacuum pump.  

 A new signal processing method called LocMax-Interval method is proposed. 

It is feasible to detect localised defects when some knowledge is unavailable.  

 The Un-decimated Discrete Wavelet Transform denoising can be used as a 

pre-processing approach to improve the detection capability and the effective 

parameter range of the LocMax-Interval method.  

 The Wavelet Packet quantifiers, including Relative Energy, Total Entropy and 

Node Entropy are introduced for BFDD in the first time.  

 The Bayesian method can be used to analyse and evaluate the performance of 

different quantifiers. The best quantifier is found with the minimal Bayesian 

classification error probabilities.  

 The performance of the WP quantifier also depends on the wavelet order and 

the length of signal segment. Reducing the wavelet order or the length of 

signal segment will deteriorate the performance of the quantifier.  

 A two-dimensional scheme can improve the diagnostic performance.  
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Appendix A 

Wavelet Methods 

Since many wavelet techniques and terminology are frequently used in this thesis, 

the intention of this appendix is to provide a brief introduction and explanation to 

some major wavelet methods. Wavelet methods include a set of related methods 

based on the idea of a wavelet transform. From Continuous Wavelet Transform 

(CWT), it extends to other wavelet transform variations, such as the 

Un-decimated Discrete Wavelet Transform (UDWT), Discrete Wavelet Transform 

(DWT) and Discrete Wavelet Packet Transform (DWPT). For more 

comprehensive readings, refer to Daubechies 1992, Chui 1992, Vetterli and 

Kovacevic 1995, Strang and Nguyen 1996, Mallat 1999, Percival and Walden 

2000.  

This chapter starts by introducing the CWT in Section A.1 and explaining the 

relationship between different transform variations in Section A.2. Section A.3 

introduces the Multiresolution Analysis (MRA) theory established by Mallat 

(1989), which provides a natural framework for understanding wavelet transforms. 

Sections A.4-A.6 summarise the mathematical descriptions and filtering 

conventions for different transform variations. See also Mallat 1999, Percival and 

Walden 2000 for more details. Orthogonal and biorthogonal wavelet bases have 

very different characteristics which lead to different applications. Section A.7 

summarises these differences. Sections A.8-A.10 review some important 

wavelet-based techniques which will be further studied and exploited for BFDD 

in the following chapters. The chapter finishes with a summary in Section A.11.  
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A.1  Introduction to Wavelet Representation 

The initial motivation of using wavelet transforms is to study signals at different 

scales with each scale corresponding to a specific frequency band. The multi-scale 

(i.e., multiresolution) representations provided by wavelet transforms are of great 

interest in science and engineering. They form a mechanism for decomposing a 

complicated signal into many frequency bands, each of which carries certain 

concise information. This rich and compact information eases the task for people 

to analyse and make decisions on the complicated signals. Wavelet theory was 

introduced and developed as a unifying framework in mid of 1980s (Rioul and 

Vetterli 1991). CWT provides good localisation in the time domain by matching 

the signal with a highly localised basic function-wavelet basis. CWT generates a 

continuous time-scale analysis which is particularly interesting for transient signal 

analysis.  

Recall the standard Fourier transform of a signal )(tf  

dttfefFf tj )()()( .         (A-1) 

This gives a global representation of the frequency content of signal )(tf , but it 

misses the information concerning time localisation. The timing of the 

occurrences of high frequency bursts cannot be revealed by the spectrum. The 

spectrum is the energy distribution associated with Fourier transform. However, 

these high frequency bursts often carry important information.  

A typical example is the situation where high frequency burst signals are 

superimposed on a low frequency carrier. See Figure A-1 (left). The blue arrows 

point out the regular occurrences of burst signals. However, the occurrence of 

burst signals cannot be revealed by the conventional Fourier-based spectrum. See 

Figure A-1 (right). Therefore, the interesting information on the occurrence 

frequency of the burst signals needs to be discovered by other means. 
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Figure A-1 Modulated burst signals on carrier (left), Y-axis is amplitude of arbitrary 

unit, and Fourier spectrum (right). 

 

Daubechies (1992) explains the difference between Short Time Fourier Transform 

and CWT. The windowed Fourier transform provides a description for signal in 

the time-frequency domain. It windows a signal in time before applying the 

Fourier transform:  

dteutgtfdttgtfuffF tj

ug )()()()(),()( ,
.  (A-2) 

A popular choice for window function g  is a Gaussian function. This transform is 

also called Short Time Fourier Transform (STFT) or Gabor Transform. STFT 

analyses signals using the window function
tj

u eutgtg )()(, which is the 

same envelope function g , translated to different time location u  and modulated 

with frequency component tje .The spectrogram is the energy distribution 

associated with STFT.  

The wavelet transform provides a description in the time-scale domain. The CWT 

of a signal )(tf  is: 

dt
a

bt
tfadtttfbafW ba )()()(),)((

2/1

, , (A-3) 
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bafbafW ,,),()( .         (A-4) 

The parameters a (scale) and b (time) allow us to obtain scale and time localisation. 

The wavelet basis  satisfies the following two basic properties (Percival and 

Walden 2000). Firstly, the integral of )(t  is zero: 

0)( dtt .           (A-5) 

Secondly, the square of )(t  integrates to unity: 

1)(2 dtt .            (A-6) 

The difference between STFT and CWT lies in the elementary function used to 

analyse the signal. CWT analyses signals using the wavelet basis 

a

bt
atba

2/1

, )( , which is the same function  translated by b , 

compressed or stretched by a . The wavelet basis is very compressed for high 

frequency, which allows CWT a better localisation at time than STFT. Figure A-2 

shows the elementary functions for these two transforms.  

 

 

Figure A-2 Elementary functions for STFT (left) and CWT (right) to analyse the signal 

(Vetterli and Kovacevic 1995). 
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The two-dimensional CWT is obtained when the continuous integer parameter a  

is used. The scalogram is the energy distribution associated with the wavelet 

transform. CWT can effectively reveal the occurrences of burst signals. Figure 

A-3 shows that the burst signals are highlighted in the CWT scalogram. Scales a  

are continuous, changing in the scalogram of CWT from 1 to 32. The 

burst-generated coefficients converge to small scales which correspond to high 

frequencies.  

 

Figure A-3 High frequency bursts (top) are highlighted in scalogram (bottom). Scale 

parameters are 1: 32.  

 

A.2  Beyond the CWT: DWT, UDWT and DWPT 

The CWT is highly redundant and computationally intensive, which is 

inconvenient for many engineering applications. Simplicity can be achieved by 

subsampling the parameters a  and b . The DWT and UDWT can be considered as 

two important variations of CWT from the view of subsampling, although their 
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computation methods are quite different.  

The DWT can be considered as the subsampled version of CWT at dyadic scales 

(i.e., parameter a  is selected as 
j2 , ,...3,2,1j ) and within a given dyadic 

scale, parameterb (time shift) is selected at the multiples of 
j2  (Percival and 

Walden 2000). When the scale j  increases, the number of the corresponding 

coefficients at scale j  will drop down at the rate of 
j2 . See Figure A-4 for the 

comparison between DWT and the other transforms.  

 

Figure A-4 Elementary functions and frequency (or scale) representations for different 

transforms. 

 

The numerical computation method for DWT was developed by Mallat (1989) via 

a fast filter bank algorithm - the Fast Wavelet Transform (FWT) which is faster 

than the classical Fast Fourier Transform (FFT). Because the DWT can be 
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formulated in terms of filters, the notion of scale is also related to a certain 

frequency band. The equivalent filter yielding the wavelet coefficients for scale 

j2  corresponds to a band-pass filter with a pass-band given by [ j

s

j

s ff 2/,2/ 1 ] 

for 1j , which is a dyadic decomposition of the Nyquist frequency (i.e., half of 

the sampling frequency).  

The UDWT can be considered as the subsampled version of CWT at dyadic scales 

(i.e., parameter a  is selected at 
j2 , ,...3,2,1j ). In contrast to DWT, UDWT 

keeps the same number of coefficients at all the scales as the original signal. See 

Figure A-5 for the sampling of time-scale plane for DWT and UDWT. The 

translation-invariant UDWT is more suitable for transient signal analysis which 

requires precise time localisation. The UDWT is computed via a filter bank 

algorithm called in French the algorithme à trous, (the filter is obtained by 

inserting 
j2 -1 zeroes between successive coefficients, hence the French name, 

which means “holes algorithm” or “gaps algorithm”) which has the same 

computational complexity as the FFT (Mallat 1999).  

 

Figure A-5 Sampling of time-scale plane for DWT (left) and UDWT (right). Circle, square 

and triangle represent wavelet coefficients at dyadic scale 1, 2, 3, respectively.  

 

The DWPT is a more flexible version of the DWT, which yields a time-frequency 

like decomposition using the similar computational method to the FWT (Percival 
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and Walden 2000). By adaptively decomposing the dyadic scales which 

correspond to octave frequency bands, smaller frequency separations called 

Wavelet Packet (WP) nodes are possible. This flexible decomposition allows 

better insight of the time-frequency structure of signal. Besides the fast 

computation and adaptive decomposition, DWPT also has some important 

advantages over STFT: The basis of DWPT can be flexibly chosen for practical 

implementation considerations; the contaminating noises that are concentrated in 

some frequency bands can also be easily eliminated. The relationship between 

different transform variations is illustrated in Figure A-6.  

 

Figure A-6 Relationship between different transform variations. 

 

A.3  Multiresolution Analysis 

The Multiresolution Analysis (MRA) theory (Mallat 1989) provides a framework 

for the understanding of wavelet methods. The nested approximation spaces jV  

are increasing ...... 1012 VVVV and the detail space jW  is the difference 

between successive space 1jV  and jV . The properties of subspaces jV  are 

summarised below (Strang and Nguyen 1996):  
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a) 
jj VV 1
 (nested spaces) and }0{jV  (emptiness) and )(2 RLVj  

(completeness); 

b) Scale invariance: 
1)2/()( jj VtfVtf ; 

c) Translation invariance: j

j

j VntfVtf )2()( ; 

d) Translation-invariant basis: 0V  has biorthogonal basis or orthogonal basis 

)( nt . 

The detail spaces 
jW  associated with orthogonal basis have the properties:  

jjj VWV 11
 and }0{jj WV   and }0{jW . 

The detail spaces 
jW  associated with biorthogonal basis have the following 

properties (Strang and Nguyen 1996):  

e) 
jjj VWV 11
 and jjj VWV

~~~
11 ; 

f) }0{
~

jj WV   and }0{
~

jj WV  . 

 

Figure A-7 Divisions of frequency domain for approximation and detail spaces. 

 

The MRA decomposes successively each approximation jV  into a coarser 

approximation 1jV  plus the detail 1jW . The detail 1jW  is the difference 



Appendix A 

 121 

between two approximations 
jV  and 

1jV . Figure A-7 shows the divisions of 

spectrum for approximation and detail spaces. Note that the MRA of signal is 

defined in the spaces of approximation and details, not for the scaling and wavelet 

coefficients. Therefore, the analysis which directly uses those coefficients can 

bring convenience in computation, e.g., the analysis based on UDWT, which will 

be introduced in Section A.5 and A.9.  

A.4  Discrete Wavelet Transform 

This Section summarise the mathematical descriptions and filtering conventions 

for DWT. Details refer to Mallat 1999, Percival and Walden 2000.  

Let real signal X  be a N  dimensional vector },....,1:)({ NttX , where the 

sample size N  is taken to be an integer multiple of 02
J

. The DWT of scale J  

of X  is given by HXC , where C  is a 1J  dimensional vector of DWT 

coefficients and H  is a NJ )1(  matrix defining the DWT. J  is the scale to 

be decomposed, such that 

J

J

A

D

D

D

C 
2

1

 and 

J

J

G

H

H

H

H 
2

1

, 

where the wavelet coefficients XHD jj , and scaling coefficients XGA JJ . 

jD  is a 
j

j NN 2/  dimensional vector of wavelet coefficients; jH  is a 

 dimensional matrix. JA  is a JN  dimensional vector of scaling 

coefficients; JG  is a NN J  dimensional matrix.  

Signal X can be synthesized from the sum of details and approximation, which 

defines a MRA of X  such that 

NN j
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J

j

Jj

J

j

J

T

Jj

T

j

T VW
11

AGDHCHX ,    (A-7) 

and the energy of the signal is kept by the wavelet and scaling coefficients: 

J

j

Jj

1

2222
ADCX .       (A-8) 

The above expressions can be written in terms of inner product, such that ( f  and 

X  are interchangeable notations):  

njnjj fV ,,

~
,  and njnjj fW ,,

~, ,    (A-9) 

where 
~

 and ~  are the dual bases of scaling  and wavelet . For the 

orthogonal basis, the dual basis is itself, i.e., )(
~

t = )(t  and )(~ t = )(t . The 

inner products are the scaling coefficients ( )}({ na jjA ) and wavelet coefficients 

( })({ nd jjD ): 

dt
nt

tffna
j

j

jnjj
2

2
)(

2

1
,)( , ,    (A-10) 

dt
nt

tffntWfnd
j

j

j
njj

2

2
)(

2

1
,),)(()( , .  (A-11) 

In the numerical method for computation, the DWT wavelet and scaling 

coefficients are obtained using the perfect reconstruction filter banks (Strang and 

Nguyen 1996, pp.103). See Figure A-8 for the filter bank computation.  

In the typical DWT decomposition, the scaling coefficients )(na j  and wavelet 

coefficients )(nd j  are: 

njj fna ,,)(  and njj fnd ,,)( ,      (A-12) 

or, written in terms of recursive filtering convention:  
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)()2()(1 tantgna jj ,         (A-13) 

)()2()(1 tanthnd jj .        (A-14) 

The translation n2  notation specifies the downsampling by 2 at each level of the 

decomposition.  

 

Figure A-8 Filter banks computation for DWT (3-level decomposition). 

 

For simplicity, the coefficients can be viewed as the direct result of filtering signal 

X :  

j

j

L

l
Nlnljj Xgna

1
modulo12,)( ,    jNt ,...,1 ;    (A-15) 

j

j

L

l
Nlnljj Xhnd

1
modulo12,)( ,    jNt ,...,1 .    (A-16) 

jNN j /  is the length of coefficients vector nj ,W at scale j ; jL is the filter 

width at j  scale 1)1)(12( LL j

j ; ljh ,  and ljg ,  are the equivalent filters 

for the computation of wavelet and scaling coefficients at scale j .  
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The scaling coefficients and wavelet coefficients are the subsampled sequences, 

which make the interpretation of the original signal very difficult, particularly for 

transient events. Therefore, the MRA using DWT needs to construct details and 

approximation spaces. However, the DWT is not translation invariant and the 

MRA will depend critically on where the signal is separated (Percival and Walden 

2000, pp161). The starting points of each signal segment will greatly affect the 

analysis results. To obtain a translation-invariant wavelet representation, only the 

scales are subsampled at dyadic scales without subsampling the translation 

parameters. By this means, the translation-invariant Un-decimated Discrete 

Wavelet Transform is obtained, which will be introduced in the following Section.  

A.5  Un-decimated Discrete Wavelet Transform 

This Section summarise the mathematical descriptions and filtering conventions 

for UDWT. More details refer to Mallat 1999, Percival and Walden 2000.  

Let the real signal X  be a N  dimensional vector },....,1:)({ NttX , where 

the sample size N  is any positive integer. For the scale J  to be decomposed, 

the Un-decimated Discrete Wavelet Transform (UDWT) of X  is given by 

XHC ˆˆ , where Ĉ is a 1J  dimensional vector of UDWT coefficients and Ĥ  

is a NJ )1( matrix defining the UDWT.  

J

J
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D

D
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ˆ

ˆ

ˆ

ˆ

ˆ
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  and 

J

J
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H

H

H

ˆ

ˆ

ˆ

ˆ

ˆ
2

1

 , 

The UDWT wavelet coefficients XHD jj
ˆˆ , and scaling coefficients XGA JJ

ˆˆ . 

jD̂  is a N  dimensional vector of wavelet coefficients (with the same length as 

the signal X ); jĤ  is a NN dimensional matrix. JÂ  is a N  dimensional 

vector of scaling coefficients; JĜ  is a NN  dimensional matrix.  
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The signal X can be synthesized from the sum of details 
jŴ  and approximations 

V̂ , which defines a MRA of X . Such that 

J

j

Jj

J

j

J

T

Jj

T

j

T VWAD
11

ˆˆˆˆˆˆˆˆ GHCHX ,     (A-17) 

and the energy of the signal is also kept by the wavelet and scaling coefficients: 

J

j

Jj

1

2222 ˆˆˆ ADCX .       (A-18) 

The above expressions can be written in terms of inner product, such that ( f  and 

X  are interchangeable notations):  

njnjj fV ,,

~
,  and njnjj fW ,,

~, ,    (A-19) 

where 
~

 and ~  are the dual basis of scaling  and wavelet . For the 

orthogonal basis, the dual basis is itself, i.e., )(
~

t = )(t  and )(~ t = )(t . The 

inner products are the scaling coefficients ( )}({ na jjA ) and wavelet coefficients 

( })({ nd jjD ): 

dt
nt

tffna
jjnjj

2
)(

2

1
,)(ˆ

, ,     (A-20) 

dt
nt

tffntfWnd
jj

njj
2

)(
2

1
,),)(ˆ()(ˆ

, .   (A-21) 

Numerically, the UDWT wavelet and scaling coefficients are also computed using 

the filter banks (see Figure A-9). Notice that the dyadic subsamplings are removed 

for UDWT.  

As the coefficients are computed using the filter bank algorithm they can be 

viewed as the direct result of filtering the signal X :  
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jL

l

Nltljj Xgna
1

modulo,
ˆ)(ˆ ,    Nt ,...,1 ;     (A-22) 

jL

l

Nltljj Xhnd
1

modulo,
ˆ)(ˆ ,    Nt ,...,1 .     (A-23) 

N  is the length of coefficients vector nj,W  at all the scales; jL  is the filter 

width at j  scale 1)1)(12( LL j
j ; ljh ,

ˆ  and ljg ,
ˆ are respectively the 

equivalent high–pass and low-pass filter coefficients for the computation of 

UDWT wavelet and scaling coefficients at scale j .  

 

Figure A-9 Filter banks computation for UDWT (3-level decomposition). 

 

A pattern search is particularly difficult if its representation depends on its 

location. To obtain the signal representations that are translation invariant is 

important in pattern recognition (Mallat 1999, pp146). The UDWT can provide 

this type of representation. When a pattern is translated, its UDWT representation 

will also translated without modification. The UDWT has been discussed in the 

wavelet literature under different names, such as “shift translation invariant 

DWT”, “wavelet frames”, “translation invariant DWT”, “stationary DWT”, “time 

invariant DWT”, “non-decimated DWT” and “maximal overlap DWT”. The 
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UDWT is computed via a filter bank algorithm, the above mentioned ‘algorithme 

à trous’. This representation also allows direct analysis of the wavelet coefficients, 

which is impossible for DWT because the subsampling in time will greatly reduce 

the time resolution. The wavelet coefficients of UDWT are convenient for 

transient analysis. The precise timing locations can be found out by tracing the 

abrupt changes of wavelet coefficients. This singularity detection using UDWT is 

discussed in Section A.9.  

A.6  Discrete Wavelet Packet Transform 

This Section summarise the mathematical descriptions and filtering conventions 

for DWPT. More details refer to Mallat 1999, Percival and Walden 2000.  

The DWPT is a more flexible version of the DWT, which yields a time-frequency 

like decomposition. By adaptively decomposing the dyadic scales, smaller 

frequency separations are possible. The WP nodes correspond to frequency bands. 

This flexible decomposition allows better insight of the time-frequency structure 

of signals. The DWPT can also be computed by the simple modification of the 

filter bank algorithm for the DWT. See Figure A-10. The DWPT generates a „WP 

table‟ or „WP tree‟. The collection of nodes forming the indices of the WP table 

will be denoted by }12,...,0;,...,1:),{( jkJjkjT . The wavelet node (

kj, ) corresponds to the vector kj ,P  of WP coefficients where Jj ,...,1  is the 

depth of the node, and 12,...,0 jk  is the number of nodes that are on its left 

at the same depth.  
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Figure A-10 Decomposition structures of DWT (left) and DWPT (right). 

 

Let the real signal X  be an N  dimensional vector },....,1:)({ NttX , where 

the sample size N  is taken to be an integer multiple of 02
J

. The DWPT of level 

J  of X  yields an 
j2  dimensional vector of DWPT coefficients, such that 
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where the coefficients kj ,P  are a 
j

j NN 2/  dimensional vector associated 

with the frequency band [ 11 2/)1(,2/ j

s

j

s kfkf ]. 
2

,kjP , which can be 

interpreted as the energy in the frequency band, their sum preserves the signal 

energy: 
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The terminal WP nodes ( kj ˆ,ˆ ) preserve the energy of the signal X , that is 

J

j k
kj

j

PX
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ˆ,ˆ

2

ˆ

.          (A-26) 

The WP coefficients can also be viewed as the direct result of filtering signal X  

such that, the WP coefficients kj ,P  of node ( kj, ) are: 

j

j

L

l
Nltlkjkj Xun

1
modulo1)1(2,,, )(P , jNt ,...,1 ,    (A-27) 

where jN  is the length of coefficients vector 
kj ,P  at level j  and jNN j / , 

jL is the filter width at j  level 1)1)(12( LL j

j and lkju ,, is the equivalent 

filter for WP node ( kj, ).The wavelet quantifiers using DWPT will be introduced 

in Section A.10. 

A.7  Wavelet Basis 

Most applications of wavelet methods aim to efficiently represent signals with few 

non-zero wavelet coefficients. In other words, the goal is to produce as many as 

possible wavelet coefficients that are close to zero. The wavelet basis should be 

optimised to produce a maximum number of wavelet coefficients that are close to 

zero (Mallat 1999).  
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Figure A-11 Examples of Daubechies wavelets db N (N is the number of vanishing 

moments). 

 

Wavelet basis  has p vanishing moments if 

0)( dttt k            (A-28) 

for pk0 . If the wavelet basis has enough vanishing moments p, then the 

wavelet coefficients are small at fine scales. However, the cost of vanishing 

moments is the support size. Compact support means the wavelet basis is optimal 

in the sense that it has a minimal support size for the given number of vanishing 

moments.  

For the orthogonal basis, the support size has to be at least 12p  with vanishing 

moment p . Daubechies wavelets are compactly supported for a given number of 

vanishing moments. Three Daubechies wavelets are shown in Figure A-11. 

Chapter 7 shows a study on how Daubechies wavelet order influences the 

performance of wavelet quantifiers.  

)(t

)(t )(t )(t

)(t )(t
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Figure A-12 Biorthogonal scaling and wavelet functions of bior 6.8. 

 

Apart from the Haar (db1) wavelet, orthogonal wavelets with compact support 

cannot be either symmetric or antisymmetric. The wavelets are symmetric or 

antisymmetric if the coefficients of the filters used for wavelet implementation are 

symmetric or antisymmetric around the central coefficient. However, it is possible 

to have biorthogonal wavelets with compact support which are either symmetric 

or antisymmetric. For the biorthogonal wavelets, the compact support does not 

contradict the symmetry or antisymmetry. Symmetric or antisymmetric wavelets 

are implemented with perfect reconstruction filters having linear phase. Since the 

filter with linear phase has constant group delay, all frequency components have 

equal delay times. Linear phase is important in signal detection. The abrupt 

changes of wavelet coefficients at different scales can be traced to locate the 

singularities. Figure A-12 shows the biorthogonal wavelets bior 6.8. Chapter 5 

shows a study using this biorthogonal wavelet for transient signal detection.  

A.8  Wavelet Thresholding 

Wavelet thresholding is a popular approach for signal denoising. The technique is 

performed on wavelet coefficients. See Figure A-13 for the procedure. The 

threshold is estimated from each scale and the coefficients at each scale are 

compared to the threshold. If the absolute value of coefficient is smaller than the 
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threshold, it is replaced by zero; otherwise, it is left unchanged or modified 

(Mallat 1999).  

In hard thresholding, the coefficients greater than the threshold are left unchanged 

Twif

Twifw
wDh

0
)( .         (A-29) 

In soft thresholding, the coefficients greater than the threshold are reduced by an 

amount equal to the value of the threshold 

Twif

TwifTww
wDs

0

))(sgn(
)( .      (A-30) 

 

Figure A-13 Signal denoising via wavelet multi-scale thresholding and reconstruction.  

 

Donoho and Johnstone (1994, 1995) systematically proposed the well known 

non-parametric thresholding estimators for wavelet denoising: SquareTwoLog, 

Stein Unbiased Risk Estimate (SURE) and Minimax. See also Misiti et al. 2000, 

Mallat 1999.  

A signal S  of size L  is contaminated by the addition of a noise W . The 

measured signal X  is  

WSX ,            (A-31) 

where W  is a Gaussian white noise of variance 2 . The signal S  is estimated 
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by the thresholded wavelet coefficients ,XD  projecting onto the dual basis 

space }~{  

~,ˆ XX D ,          (A-32) 

where D  is the thresholding function.  

The SquareTwoLog method estimates the threshold as 

LT eSTL log2 ,           (A-33) 

where the noise variance  is estimated at each scale as  

6745.0

Med
,            (A-34) 

where Med  is the median of wavelet coefficients. 

Denote the wavelet coefficients w  of signal X  at a scale by ascending order as 

asw . The SURE method estimates the threshold SURET  to be one of the wavelet 

coefficients in the sense it can minimise a quadratic loss function F  

))((min)( nFnwT
n

as

SURE .        (A-35) 

The Minimax method minimises the maximum risk R  

)},({supinfminimax S
S

DRT
D

.        (A-36) 

where the risk }{),(
2

SXS DEDR , and the threshold can be rescaled by the 

noise variance to minimaxT .  

The above thresholding methods are convenient to perform because of their 

non-parametric nature. The sequence of thresholds estimated by the 

non-parametric thresholding estimators is SquareTwoLog, Minimax, SURE in 

descending order. This sequence is useful for designing a suitable thresholding 

strategy for signals with different degrees of noise contamination. For 
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observations with high SNR, strict thresholding (i.e. SquareTwoLog) can 

effectively eliminate noise and highlight the signal of interest. For observations 

with strong noise contamination, conservative (i.e. SURE) or moderate (i.e. 

Minimax) thresholding can help to improve the SNR.  In Chapter 5, DWT 

thresholding is applied to improve the effective range of the parameter values 

used in the LocMax algorithm. Chapter 6 shows an UDWT denoising scheme, 

which combines the Wavelet Maxima Chain search and the thresholding principle, 

can achieve better performance than DWT thresholding. 

A.9  Wavelet for Singularity Detection 

Singularities and irregularities often carry the most important information of 

signals. In images, the locations of the object edges are provided by the 

discontinuities of the intensity. For some signals, such as the ECG signal and the 

AE signal used in this thesis, the most interesting information is carried by the 

transient characteristics such as impulses. Singularity detection is one of the most 

important applications of wavelet methods. This was reported in the pioneering 

work of Mallat and Hwang (1992) using UDWT. Singularities are detected by 

searching the abscissa where the wavelet modulus maxima converge at fine 

scales. 

The term “modulus maximum” is used to describe the local maximum at point 

),( 00 au  such that the wavelet coefficient ),( 0auWf  is locally maximal at 

0uu . This local maximum is locally maximal at either the right or the left 

neighbourhood of 0u . The modulus maximum that propagates from the finest 

scale to the coarse scales having the same signs corresponds to the signal 

transition. This reflects the important difference between signal transition and 

noise. Actual signal transition produces large coefficients across many scales. The 

signal transition shows persistence across scales, while noise attenuates very 

quickly as the scale increases. These associated modulus maxima are called 

Wavelet Maxima Chain (WMC) in this thesis. 
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In the work of Mallat and Hwang, the local regularity estimation is then applied as 

a criterion for selecting the significant coefficients. They estimate the local 

regularity, which is often measured by the Lipschitz exponent (also called Hölder 

exponent in the mathematical literature), from the decay of the modulus maxima 

across the scales. If the amplitude of the modulus maximum decreases strongly 

when the scale increases, it indicates the corresponding singularity has a negative 

Lipschitz exponent 0 . These maxima are mostly dominated by the noise and 

the whole WMC is removed. However, the modulus maximum produced by the 

signal transition would follow the decay at the rate 2  and Lipschitz exponent 

0  when the scale decreases.  

The above denoising algorithm shows the feasibility to discriminate a signal from 

noise by analysing the modulus maxima evolution across scales. Apart from the 

regularity estimation, approaches based on inter-scale ratios or inter-scale 

products of modulus maxima were also developed for the selection of significant 

coefficients (Pizurica 2002). Depending on the application, one could select the 

coefficient at a position k  based on a significance measure km , which is 

computed from the observed wavelet coefficients. For example, one can define 

km  as the local regularity estimation, coefficient magnitude, or the amount of 

inter-scale correlation at the position k . The singularity detection incorporated 

with the thresholding principle is used for denoising and shown in Chapter 6. 

A.10 Wavelet or WP Quantifiers: Relative Energy and Entropy 

Wavelet coefficients or WP coefficients are decomposed by the filter bank 

algorithm. These coefficients associated with specific frequency band preserve the 

energy of signal in the frequency band. Wavelet or WP quantifiers are then 

obtained by the expressions of these coefficients. The pioneer works on these 

quantifiers were reported by Rosso et al. (2001), Blanco et al. (1998) and Zunino 

et al. (2007) to quantitatively study electroencephalogram (EEG) signals.  

Relative Energy (RE) is used for describing the energy distribution in the 
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frequency domain, normalised over the energy of the signal. To compute RE, the 

energies of coefficients associated with a specific frequency band are normalised 

over the energy of the whole signal. Because the coefficients can be viewed as the 

output of band-pass filtering, RE reflects the probability distributions of the 

frequency bands from the viewpoint of the frequency domain.  

Entropy is used for measuring the uncertainty (i.e. the degree of disorder) of the 

signal. This concept plays an important role in many scientific and application 

fields, including statistical mechanics, information theory, communications, signal 

processing, data mining and machine learning. The Shannon entropy (Shannon 

and Weaver 1959) is the most popular quantifier of entropy using logarithm of 

base 2:  

j

jj ppQ 2log           (A-37) 

where }{ jp  is the probability distribution satisfying the condition 

j

jp 1.            (A-38) 

The value of the entropy reflects the degree of disorder. A bigger entropy value 

means greater disorder and vice versa. Depending on how }{ jp  is obtained, the 

entropy can measure the uncertainty of the signal in different ways. If the 

distribution }{ jp  is computed using the RE, the entropy will measure the degree 

of disorder for the frequency energy distribution. A signal with a narrow band 

spectrum can be viewed as a typical example of ordered frequency energy 

distribution with small entropy value. This kind of entropy is called Total Entropy 

(TE). If the distribution }{ jp  is computed using the normalised coefficient in a 

specific frequency band, the entropy will measure the degree of disorder of the 

coefficients in this frequency band. It shows how redundant the time series is. A 

signal with some periodic or self-similar patterns is an ordered process having a 

small entropy value. This second type of entropy is called Node Entropy (NE).  
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The wavelet or WP quantifiers construct a time-frequency analysis in a 

quantitative way. Chapter 7 shows the details on the application of these 

quantifiers for BFDD.  

A.11 Summary 

Wavelet methods include a set of processing and analysis methods based on the 

idea of a wavelet transform. This chapter briefly reviewed the principles of 

wavelet theory, the differences between the transform variations, the mathematical 

descriptions and filtering conventions for different transform variations.  

The wavelet basis is very compressed for high frequency which allows good 

localisation at time. The DWT can be considered as the subsampled version of the 

CWT at dyadic scales and time. The UDWT can be considered as the subsampled 

version of the CWT at dyadic scales. Compared to DWT, the UDWT is translation 

invariant and is more suitable for the transient signal analysis which requires 

precise time localisation. This UDWT representation also allows direct analysis of 

the wavelet coefficients, which can bring convenience for transient analysis. By 

adaptively decomposing the dyadic scales of the DWT, smaller frequency 

separations are possible for the DWPT. This flexible decomposition allows better 

insight of the time-frequency structure of signal. The wavelet basis of the DWPT 

can be flexibly chosen for practical implementation considerations and the 

contaminating noises concentrating in some frequency bands can be easily 

eliminated. All these transform variations can be efficiently computed via the 

filter bank algorithm, which is one of the important characteristics of wavelet 

methods (Sweldens 1996).  

Sections A.7-A.10 showed the theoretical basis for the understanding of the 

following chapters. Orthogonal and biorthogonal wavelet bases have very 

different characteristics, which lead to different applications. The Daubechies 

basis with compact support can efficiently represent signals with few non-zero 

wavelet coefficients, which can be put to good use in the applications concerning 

the statistics of wavelet coefficients. In singularity detection, biorthogonal bases 
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are often preferred because of their symmetry and consequent linear phase. 

Studies using these two types of wavelet bases are discussed in chapter 6 and 

chapter 5, respectively. Section A.8-A.10 reviewed the wavelet-based techniques 

which are studied for BFDD in the chapter 5-7 These include wavelet 

thresholding for signal denoising, singularity detection using UDWT, wavelet or 

WP quantifiers for quantitative time-frequency analysis. 



 

 

Appendix B 

A Localised Defect Detection using ACF 

B.1  Introduction 

The most commonly used signal processing technique for a vibration signal to 

detect the localised bearing defects is the envelope analysis or High Frequency 

Resonance Technique (HFRT). See Section 4.4. One of the difficulties with 

envelope analysis on a vibration signal is the determination of the best resonance 

frequency band to envelope at the pre-processing stage. One of the solutions for 

the problem is using a AE signal to detect the localised defects. The modulation of 

AE signatures at bearing Characteristic Defect Frequency (CDF) has been 

reported in many research works (Holroyd and Randall 1993, Holroyd 2001). The 

AE signals can be demodulated directly to reveal the CDF without the need to 

find out the resonance frequency band. Since AE signals have broad 

high-frequency range and very good time resolution, they can characterise the 

impact train (generated by a localised defect, which is transient in nature) well.  

This appendix studies the detection of localised bearing defect using 

autocorrelation function (ACF). To facilitate the detection scheme, the 

Characteristic Defect Frequency (CDF) will be first expressed in the time domain 

as Characteristic Defect Interval (CDI). The relationship between CDF and CDI 

has been pointed out in Section 2.2, that is, CDI (expressed as the number of 

discrete sampling points) is the sampling frequency divided by CDF.  

B.2  Autocorrelation Function 

ACF is very powerful for finding out repeating pattern in a signal. It is a function 

of time lag m  used to measure the associated degree of a signal itself at time lag 
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In practice, ACF has to be estimated from the available finite discrete signal )(nx . 

Assuming real signal )(nx is the N data samples with indices from 0n  to 

1Nn , the biased estimates of ACF is 

1

0

)()(
1

)(

mN

n

xx
B nxmnx

N
mR .        (A-2) 

The unbiased estimates of ACF for lags indices 1)1( NmN  is 
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B.3  Detection Scheme 

The following detection scheme for localised bearing aims to find out if there are 

repeating impulses in a signal and estimate the interval between these impulses. 

There are three steps for the detection scheme using ACF (Schlindwein et al. 

2004): a signal is first transformed into envelope signal; a short time moving 

window is then used, as an approximation to a matched filter, to split the signal 

and their ACFs are calculated; finally, the positions of the local maximum 

coefficients of these ACF in a certain range are found out respectively.  

The approaches to achieve envelope signals are different for vibration and AE 

signals. The envelope vibration signal needs to be achieved from raw signal via 

filtering around resonance frequency band and then demodulating. But it is 

difficult to determine the best frequency band of raw vibration signal to perform 

filtering. Refer to Section 3.3 for some details. In contrast, the envelope Acoustic 

Emission (AE) signal can be achieved easily via only demodulating raw signal.  
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B.4  Experimental Setup and Signal Processing 

A five stage “Roots and Claw” dry vacuum pump with empty load was used as 

test bed. A defective bearing with inner race defect was mounted at the high 

vacuum side of pump. The speed of pump was set at 105 Hz (6300 rev min
-1

) and 

the inlet pressure was set at 0 mbar. An AE transducer (PAC R3α) and an 

accelerometer were firmly held at the surface of the pump house near the high 

vacuum end in the radial direction. AE signals were amplified with gain of 1000 

and filtered by a band-pass filter. Vibration signals were suitably pre-filtered with 

in-house built 8th order elliptic anti-aliasing filters with cut-off frequencies of 10 

kHz. 

Analogue signals were digitised by a 16-bit NI Analogue to Digital Converter 

(ADC) with the sampling rate 100 kHz and stored in the computer. The stored 

vibration signals were then band-pass filtered to isolate a resonant frequency 

range 8 kHz-10 kHz. The AE and vibration signals were demodulated and then 

downsampled to 25 kHz. For a sampling rate 25 kHz, the characteristic Ball Pass 

Frequency of Inner race (BPFI) is 550 Hz and the corresponding CDI is estimated 

as 45 (expressed as the number of discrete sampling points).  

A short time moving window was then applied to split the signals into short 

segments with 50% overlap, and the ACFs of the segments were calculated via 

formula (A-3). Finally, the positions of the local maximum coefficient of these 

ACFs in a search range were found out. The search range here is set from 40 to 

50.  

B.5  Results and Summary 

Figure B-1 and Figure B-2 below show the histograms of the found positions 

using the AE and vibration signals respectively. Figure B-1 is a typical Gaussian 

distribution that converges to its mean value 45 which matches with the 

theoretical value. In contrast, the distribution in Figure B-2 does not show this 

convergence.  
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Figure B-1 The histogram of the positions found using the AE signals. 

 
Figure B-2 The histogram of the positions found using the vibration signals. 

 

This appendix studied a detection scheme for localised defect using 

autocorrelation function. It is shown that using AE signals can improve the 

detection performance.



 

 

Appendix C 

MATLAB Codes 

C.1  Cyclostationary Signals Simulation 

%% Cyclostationary Signals Simulation (Cauchy distribution) 

Par.N=1000000; 

Par.CDI=143; 

Par.rnd=floor(Par.N/Par.CDI);  

cauchyn=zeros(1,Par.rnd); 

 

!! Here generate a set of Cauchy distribution data which size is Par.rnd;  

%% Store the integer part of generated data in cauchyn(); 

cauchyn=floor(abs(cauchyn)); 

%% limit data size for simulation; 

for i=1:Par.rnd 

 if cauchyn(1,i)>400 

   cauchyn(1,i)=cauchyn(1,i-1); 

 end 

end  

 

%% Set the deviation of noise; 

Par.dev=0.5; 

 

%% Here are options for different types of additive noise; 

%Sim(1,:) =rand(1,Par.N);                  %% Uniform noise; 

%Sim(2,:) =abs(Par.dev*randn(1,Par.N)+2);    %% Gaussian noise all greater than zeros; 

%Sim(3,:) =abs(Par.dev*randn(1,Par.N));      %% white Gaussian noise; 

%Sim(4,:) =zeros(1,Par.N);                 %% without noise; 

 

!! Choose one of the options; 

Sim(5,:)=Sim(2,:); 

%% Periodic impulse with Cauchy distribution; 
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ip=1; Par.p=2; Par.S=4*Par.dev; 

while Par.p<Par.N 

  Sim(5,Par.p)=Sim(5,Par.p)+Par.S; 

  Par.p=Par.p+cauchyn(1,ip); 

  ip=ip+1; 

end 

 

%% Noise estimation 

thr.noise=wnoisest(Sim(5,1:1000)); 

%% Threshold estimation using SquareTwoLog, Minimax or SURE estimator; 

thr.sqt  =thselect(Sim(5,1:1000),'sqtwolog'); 

thr.min =thselect(Sim(5,1:1000),'minimaxi'); 

thr.heur =thselect(Sim(5,1:1000),'heursure'); 

thr.rig  =thselect(Sim(5,1:1000),'rigrsure'); 

 

!! Choose one of the threshold estimates for hard thresholding processing; 

thr.se = thr. rig; 

%% Signal denoising; 

for i=1:Par.N 

 if Sim(5,i)>thr.se 

   Sim(6,i)=Sim(5,i); 

 else 

   Sim(6,i)=0;  

 end 

end 
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C.2  LocMax Algorithm and Interval Calculation 

%% LocMax Detection algorithm 

!! Here load in signal r(1,:) for detection; 

ind.r=find(r(1,:)~=0); 

l.i=length(ind.r); 

 

l.do=180;      %% The condition of distance to terminate a local search; 

j=1; 

t=ind.r(1,1);    %% Initialise the position index vector; 

 

%% The following program for timing detection of signal; 

for i=2:l.i 

 if ind.r(1,i)-t>l.do 

   ind.do(1,j)=t; 

   j=j+1; 

   t=ind.r(1,i); 

 elseif abs(r(1,ind.r(1,i)))>abs(r(1,t)) 

   t=ind.r(1,i); 

 end 

end 

ind.do(1,j)=t; 

 

%% Find out the intervals; 

l.b=length(ind.do(1,:)); 

ki=1; 

for i=1:l.b-1 

 p(ki)=ind.do(1,i+1)-ind.do(1,i); 

 ki=ki+1; 

end 

 

%% Plot the intervals histogram; 

figure;hist(p',1:2:500); 
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C.3  UDWT Denoising Algorithm 

!! Load in signal S.D for denoising; 

Ld=2048;               %% Set the length of signal segment; 

c=floor(length(S.D)/Ld);   %% Calculate the number of signal segments; 

ki=1; 

kj=1; 

km=1; 

l.do=90; 

 

%% calculate c realization; 

for ii=1:c 

A(ii,:)=S.D(1+Ld*(ii-1):Ld*ii)'; 

clear ind; 

 

%% Stationary Wavelet Transform using biorthogonal wavelet basis 

swc=swt(A(ii,:),2,'bior6.8'); 

%% Estimate threshold using SURE estimator; 

thr.se(ii) =thselect(swc(1,:),'rigrsure'); 

 

%% consider the phase problem 

rswc(1,:)=rshift(swc(1,:)); 

rswc(2,:)=rshift(swc(2,:)); 

lswc(1,:)=lshift(swc(1,:)); 

lswc(2,:)=lshift(swc(2,:)); 

 

 

%% Here ignore the border coefficients to avoid border effect; 

swc(:,1:2)=0; 

lswc(:,1:2)=0; 

rswc(:,1:2)=0; 

swc(:,Ld-1:Ld)=0; 

lswc(:,Ld-1:Ld)=0; 

rswc(:,Ld-1:Ld)=0; 

 

%% Positive part; Only keep the Maximum Chain; 

pokeep(1:5,:)=zeros(5,Ld); 
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for i=1:Ld 

 for j=1:2 

   if swc(j,i)>thr.se(ii) & swc(j,i)>lswc(j,i) & swc(j,i)>rswc(j,i); 

    pokeep(j,i)=swc(j,i); 

   else 

    pokeep(j,i)=0; 

   end 

 end 

end 

 

for i=3:(Ld-2) 

 if pokeep(1,i)~=0 & pokeep(2,i)~=0  

   pokeep(3,i)=1; 

   pokeep(4,i)=pokeep(1,i); 

   pokeep(5,i)=pokeep(2,i); 

 elseif pokeep(1,i)~=0 & pokeep(2,i-1)~=0 

   pokeep(3,i)=2; 

   pokeep(4,i)=pokeep(1,i); 

   pokeep(5,i)=pokeep(2,i-1); 

 elseif pokeep(1,i)~=0 & pokeep(2,i+1)~=0 

   pokeep(3,i)=3; 

   pokeep(4,i)=pokeep(1,i); 

   pokeep(5,i)=pokeep(2,i+1); 

 end 

end 

 

%% Negative part; Only keep the Maximum Chain; 

nokeep(1:5,:)=zeros(5,Ld); 

 

for i=1:Ld 

 for j=1:2 

   if swc(j,i)<-thr.se(ii) & swc(j,i)<lswc(j,i) & swc(j,i)<rswc(j,i); 

    nokeep(j,i)=swc(j,i); 

   else 

    nokeep(j,i)=0; 

   end 

 end 

end 
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for i=3:(Ld-2) 

 if nokeep(1,i)~=0 & nokeep(2,i)~=0  

   nokeep(3,i)=1; 

   nokeep(4,i)=nokeep(1,i); 

   nokeep(5,i)=nokeep(2,i); 

 elseif nokeep(1,i)~=0 & nokeep(2,i-1)~=0 

   nokeep(3,i)=2; 

   nokeep(4,i)=nokeep(1,i); 

   nokeep(5,i)=nokeep(2,i-1); 

 elseif nokeep(1,i)~=0 & nokeep(2,i+1)~=0 

   nokeep(3,i)=3; 

   nokeep(4,i)=nokeep(1,i); 

   nokeep(5,i)=nokeep(2,i+1); 

 end 

end 

 

%% Save the denoising results; 

keep(1:3,:)=zeros(3,Ld); 

keep(1:3,:)=nokeep(3:5,:)+pokeep(3:5,:); 

end 
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C.4  Wavelet Packet Quantifiers 

%% Algorithms for calculating Wavelet Packet Quantifiers; 

!! Load in signals S.L, S.D, S.F for three different bearing conditions (localised, contaminated, fault free); 

%% Sampling rate is 80 kHz; 

!! Require installing MATLAB wavelet toolbox; 

 

L=length(S.L); 

Le=2048;        %% Set the length of signal segment; 

W=floor(L/Le);   %% Calculate the number of signal segments; 

 

%% Calculate the quantifiers of all realization; Decomposition using Haar wavelet; 

for i=1:W 

 

%% Calculate quantifiers for localised defect bearing; 

wpt.L = wpdec(S.L(1+Le*(i-1):Le*i),2,'haar'); 

[cfs0,cfs1,cfs2,cfs3]=read(wpt.L,'cfs',3,'cfs',4,'cfs',6,'cfs',5); 

cfs0=zeros(size(cfs0)); 

wpt.L=write(wpt.L,'cfs',3,cfs0);  %% Set 0-10kHz frequency part as zero; 

cfs1=cfs1.^2/sum(cfs1.^2); 

cfs2=cfs2.^2/sum(cfs2.^2); 

cfs3=cfs3.^2/sum(cfs3.^2); 

 

%% Calculate Node Entropy quantifier; 

Entropy.T.L(i,:)=[-sum(cfs1.*log2(cfs1)) -sum(cfs2.*log2(cfs2)) -sum(cfs3.*log2(cfs3))]; 

 

%% Calculate Relative Energy quantifer; 

E(i,:) = wenergy(wpt.L)./100; 

%% Reorder energy vector into frequency order; 

Energy.L(i,:)=[E(i,2) E(i,4) E(i,3)]; 

 

%% Calculate Total Entropy quantifier; 

Entropy.W.L(i,:)= 
[-Energy.L(i,1)*log2(Energy.L(i,1)) -Energy.L(i,2)*log2(Energy.L(i,2)) -Energy.L(i,3)*log2(Energy.L(i,3))]; 

TotEntropy.W.L(i)=sum(Entropy.W.L(i,:)); 

clear E; clear cfs1; clear cfs2; clear cfs3; clear cfs0; 
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%% Calculate quantifiers for contaminated bearing using the same algorithm; 

wpt.D = wpdec(S.D(1+Le*(i-1):Le*i),2,'haar'); 

[cfs0,cfs1,cfs2,cfs3]=read(wpt.D,'cfs',3,'cfs',4,'cfs',6,'cfs',5); 

cfs0=zeros(size(cfs0)); 

wpt.D=write(wpt.D,'cfs',3,cfs0); 

cfs1=cfs1.^2/sum(cfs1.^2); 

cfs2=cfs2.^2/sum(cfs2.^2); 

cfs3=cfs3.^2/sum(cfs3.^2); 

Entropy.T.D(i,:)=[-sum(cfs1.*log2(cfs1)) -sum(cfs2.*log2(cfs2)) -sum(cfs3.*log2(cfs3))]; 

E(i,:) = wenergy(wpt.D)./100; 

Energy.D(i,:)=[E(i,2) E(i,4) E(i,3)]; 

Entropy.W.D(i,:)=[-Energy.D(i,1)*log2(Energy.D(i,1))  
-Energy.D(i,2)*log2(Energy.D(i,2)) -Energy.D(i,3)*log2(Energy.D(i,3))]; 

TotEntropy.W.D(i)=sum(Entropy.W.D(i,:)); 

clear E; clear cfs1; clear cfs2; clear cfs3; clear cfs0; 

 

%% Calculate quantifiers for fault free bearing using the same algorithm; 

wpt.F = wpdec(S.F(1+Le*(i-1):Le*i),2,'haar'); 

[cfs0,cfs1,cfs2,cfs3]=read(wpt.F,'cfs',3,'cfs',4,'cfs',6,'cfs',5); 

cfs0=zeros(size(cfs0)); 

wpt.F=write(wpt.F,'cfs',3,cfs0); 

cfs1=cfs1.^2/sum(cfs1.^2); 

cfs2=cfs2.^2/sum(cfs2.^2); 

cfs3=cfs3.^2/sum(cfs3.^2); 

Entropy.T.F(i,:)= 

[-sum(cfs1.*log2(cfs1)) -sum(cfs2.*log2(cfs2)) -sum(cfs3.*log2(cfs3))]; 

E(i,:) = wenergy(wpt.F)./100; 

Energy.F(i,:)=[E(i,2) E(i,4) E(i,3)]; 

Entropy.W.F(i,:)= 

[-Energy.F(i,1)*log2(Energy.F(i,1)) -Energy.F(i,2)*log2(Energy.F(i,2)) -Energy.F(i,3)*log2(Energy.F(i,3))]; 

TotEntropy.W.F(i)=sum(Entropy.W.F(i,:)); 

clear E; clear cfs1; clear cfs2; clear cfs3; clear cfs0; 

 

end 
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C.5  One Dimensional Bayesian Classification 

!! Load in features; 

!! Toolbox named STPRTool by Franc needs to be installed; 

%% Access to website http://cmp.felk.cvut.cz/cmp/software/stprtool/;  

%% trn is the 1-dimensional feature matrix; 

trn.F(1,:)=Energy.F(:,1); 

trn.D(1,:)=Energy.D(:,1); 

trn.L(1,:)=Energy.L(:,1); 

 

trn.F(2,:)=Energy.F(:,2); 

trn.D(2,:)=Energy.D(:,2); 

trn.L(2,:)=Energy.L(:,2); 

 

trn.F(3,:)=Energy.F(:,3); 

trn.D(3,:)=Energy.D(:,3); 

trn.L(3,:)=Energy.L(:,3); 

 

trn.F(4,:)=TotEntropy.W.F(:); 

trn.D(4,:)=TotEntropy.W.D(:); 

trn.L(4,:)=TotEntropy.W.L(:); 

 

trn.F(5,:)=Entropy.T.F(:,1); 

trn.D(5,:)=Entropy.T.D(:,1); 

trn.L(5,:)=Entropy.T.L(:,1); 

 

trn.F(6,:)=Entropy.T.F(:,2); 

trn.D(6,:)=Entropy.T.D(:,2); 

trn.L(6,:)=Entropy.T.L(:,2); 

 

trn.F(7,:)=Entropy.T.F(:,3); 

trn.D(7,:)=Entropy.T.D(:,3); 

trn.L(7,:)=Entropy.T.L(:,3); 

 

%% Number of the classes; %% Label the classes; 

W=length(trn.F(1,:)); 

le.F=ones(1,W); 

le.D=2*le.F; 

le.L=3*le.F; 



Appendix C 

 152 

 

%% Set the percentage of training data; 

ind=floor(0.3*W); 

comp=3; 

 

%% Calculate all the classification errors; 

for i=1:7 

 

%% Using Gausian Mixture Models to train the model; 

bayes_model.Pclass{1}= 
emgmm(trn.F(i,1:ind),struct('ncomp',comp,'tmax',2000,'eps_logL',0.1,'eps_Alphas',0.1)); 

bayes_model.Pclass{2}= 
emgmm(trn.D(i,1:ind),struct('ncomp',comp,'tmax',2000,'eps_logL',0.1,'eps_Alphas',0.1)); 

bayes_model.Pclass{3}= 
emgmm(trn.L(i,1:ind),struct('ncomp',comp,'tmax',2000,'eps_logL',0.1,'eps_Alphas',0.1)); 

 

%% The priori probability is 1/3 for each class; 

bayes_model.Prior=[1/3 1/3 1/3];  

%% Using Bayesian classification; 

ypred.F=bayescls(trn.F(i,:),bayes_model); 

ypred.D=bayescls(trn.D(i,:),bayes_model); 

ypred.L=bayescls(trn.L(i,:),bayes_model); 

 

%% Calculate the classification errors; 

err.F(i)=cerror(ypred.F,le.F); 

err.D(i)=cerror(ypred.D,le.D); 

err.L(i)=cerror(ypred.L,le.L); 

err.s(i)=err.F(i)+err.D(i)+err.L(i); 

 

%% Remember here to clear all temporal vectors for next iteration; 

clear bayes_model;clear ypred;  

 

end 

 

error(1,:)=err.F; 

error(2,:)=err.D; 

error(3,:)=err.L; 

error(4,:)=err.s; 

error=roundn(error,-3); 
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C.6  Two Dimensional Bayesian Classification 

!! Toolbox named STPRTool by Franc needs to be installed; 

 

%% Load in Relative Energy; 

trn.F(1,:)=Energy.F(:,1); 

trn.D(1,:)=Energy.D(:,1); 

trn.L(1,:)=Energy.L(:,1); 

 

trn.F(2,:)=Energy.F(:,2); 

trn.D(2,:)=Energy.D(:,2); 

trn.L(2,:)=Energy.L(:,2); 

 

trn.F(3,:)=Energy.F(:,3); 

trn.D(3,:)=Energy.D(:,3); 

trn.L(3,:)=Energy.L(:,3); 

 

%% Load in Total Entropy; 

trn.F(4,:)=TotEntropy.W.F(:); 

trn.D(4,:)=TotEntropy.W.D(:); 

trn.L(4,:)=TotEntropy.W.L(:); 

 

%% Load in Node Entropy; 

trn.F(5,:)=Entropy.T.F(:,1); 

trn.D(5,:)=Entropy.T.D(:,1); 

trn.L(5,:)=Entropy.T.L(:,1); 

 

trn.F(6,:)=Entropy.T.F(:,2); 

trn.D(6,:)=Entropy.T.D(:,2); 

trn.L(6,:)=Entropy.T.L(:,2); 

 

trn.F(7,:)=Entropy.T.F(:,3); 

trn.D(7,:)=Entropy.T.D(:,3); 

trn.L(7,:)=Entropy.T.L(:,3); 

 

%% Number of the classes; 

W=length(trn.F(1,:)); 

%% Label the classes; 

le.F=ones(1,W); 
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le.D=2*le.F; 

le.L=3*le.F; 

 

%% Set the percentage of training data; 

ind=floor(0.3*W); 

comp=3; 

 

%% trn1 is the 2-dimensional feature matrix; 

N=4; 

M=2; 

trn1.F(1,:)=trn.F(N,:); 

trn1.D(1,:)=trn.D(N,:); 

trn1.L(1,:)=trn.L(N,:); 

 

trn1.F(2,:)=trn.F(M,:); 

trn1.D(2,:)=trn.D(M,:); 

trn1.L(2,:)=trn.L(M,:); 

 

%% Using Gausian Mixture Models to train the model; 

bayes_model.Pclass{1}=emgmm(trn1.F(:,1:ind),struct('ncomp',comp)); 

bayes_model.Pclass{2}=emgmm(trn1.D(:,1:ind),struct('ncomp',comp)); 

bayes_model.Pclass{3}=emgmm(trn1.L(:,1:ind),struct('ncomp',comp)); 

 

%% The priori probability is 1/3 for each class; 

bayes_model.Prior=[1/3 1/3 1/3]; 

 

%% Using Bayesian classification; 

ypred.F=bayescls(trn1.F,bayes_model); 

ypred.D=bayescls(trn1.D,bayes_model); 

ypred.L=bayescls(trn1.L,bayes_model); 

 

%% Calculate the classification errors; 

err.F=cerror(ypred.F,le.F); 

err.D=cerror(ypred.D,le.D); 

err.L=cerror(ypred.L,le.L); 

err.s=err.F+err.D+err.L; 

 

%% Visulization 2-d classification map; 

figure;hold on; 
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ppatterns(trn1.F,'k.'); 

ppatterns(trn1.D,'b.'); 

ppatterns(trn1.L,'r.'); 

bayes_model.fun='bayescls';  

pboundary(bayes_model); %% Plot the boundary; 


