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We describe progress in classifying the convective instability characteristics of the boundary-

layer flow over the family of rotating cones. Existing experimental and theoretical studies

are discussed which lead to the clear hypothesis of a centrifugal instability mode that domi-

nates over slender cones and manifests as Görtler-type spiral vortices. Although a formula-

tion consistent with the classic rotating-disk problem has been successful in predicting the

stability characteristics over broad cones, it is unable to identify such a centrifugal mode

as the half-angle is reduced. An alternative formulation is introduced and an asymptotic

analysis summarized which identifies such a centrifugal mode.

I. Introduction

This paper describes recent advances in the ongoing study of boundary-layer transition over rotating
cones. In particular, we are concerned with the distinct stability characteristics of slender and broad cones
and have undertaken an extended theoretical project with the ultimate aim of understanding the transition
mechanisms within the boundary-layer flow over cones of all half-angles, ψ. We describe the experimental
motivation for the investigation, summarize relevant previous work and present the latest findings in our
attempt to identify a hypothesized convective mode that is expected to dominate over slender cones.

Our interest in rotating cones is motivated by the flow around nose cones in aeroengine and spinning
projectile applications where laminar–turbulent transition within the boundary layer can lead to significant
increases in drag. For aeroengine applications this has negative implications for the fuel efficiency through
increased noise and energy dissipation, and for projectile applications this has negative implications for
control and accurate targeting. The ultimate understanding of the transition of such flows will enable the
development of strategies to maintain the laminar flow, leading to modifications in design and significant
cost savings.

It is clear that the linear-stability analyses presented here for cones rotating within incompressible and
otherwise still fluids are of limited relevance in terms of the motivating applications. However, this work
should be considered as a first step towards fully classifying the instability mechanics at play, with a view
to further extensions at a later date. Indeed, studies of the effects of enforced axial flow over broad cones
have already been published1–4 and a study into compressibility is underway. Such incremental advances in
knowledge is consistent with the historical development of the rotating-disk problem in the literature with
regards its application to swept-wing flows.

II. Experimental motivation

Experimental observations of the transitional region over rotating cones first highlighted the distinction
between the transition characteristics of slender and broad cones. For example, the experimental studies of
Kobayashi & co-workers5,6 of cones with slender half-angles rotating in still fluid show the existence of pairs
of counter-rotating Görtler-type vortices. These arise from a dynamic instability induced by the centrifugal
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Figure 1. Experimental data due to Nickels for the onset of turbulence on rotating cones, uppermost plot is ψ = 60◦.
(Cone angle = 2ψ)

force of the flow field. However, as the half-angle is increased beyond ψ = 30◦, their visualizations clearly
show that these vortices change from pairs of counter-rotating vortices to co-rotating crossflow vortices, as
observed on rotating disks7–12 and spheres.13,14 Indeed, their measurements of the orientation angle of the
vortices and other characteristics approach those observed for a rotating disk as the half-angle tends to 90◦.
It is well known from the studies of Gregory et al.11 and Hall,15 for example, that the stationary spiral
vortices observed on the rotating disk are in fact co-rotating vortices attributed to an underlying crossflow
instability that arises from an unstable inflexion point in the crossflow component of the flow field. The
observed centrifugal instability for cones with smaller half-angles stems from an inherently different process
to that governing the crossflow instability for cones of larger half-angles. Therefore, there appears to be a
distinct variation in the underlying physical mechanism governing the instability for more slender cones.

Further evidence is obtained from the more recent experimental measurements for the onset of turbulence
by Nickels (personal communication, 2007). Nickels’ motivation was to recreate Lingwood’s experiments16

into the existence (or otherwise) of streamwise absolute instability within the boundary-layer flow over
rotating cones. Although the exact involvement of absolute instability is now known to be less clear than
originally proposed by Lingwood,17–23 the fact remains that the theoretical onset of local absolute instability
is tantalizingly close to numerous consistent measurements of the onset of turbulence over rotating disks.7,8

For this reason further study into local absolute instability and its relationship to the onset of turbulence
over rotating cones is worthwhile. Garrett & co-workers1,4, 24 have demonstrated the existence of local
absolute instability in the rotating-cone boundary layer at all half-angles (reproducing Lingwood’s results in
the limiting case of ψ = 90◦). They find the theoretical prediction for the onset of absolute instability to
occur at a Reynolds number RX ≈ 2.5× 105, independent of half-angle. This Reynolds number is based on
distance from the apex and local surface speeds. Figure 1 shows Nickels’ measurements for a variety of cones
at different rotation rates and we see that the onset of turbulence for the broad cone (ψ = 60◦) is in good
agreement with the predicted onset of absolute instability and is independent of rotation rate. However,
the onset of turbulence for slender cones (ψ = 30◦ and 15◦) is well in advance of the predicted onset of
absolute instability and dependent on the rotation rate. Furthermore, Nickels notes different behaviour in
the turbulent intensity through transition in the case of the most slender cone. These observations again
demonstrate that transition over slender cones is inconsistent with the mechanism that occurs over broad
cones and disks.

It is interesting to note that for very slender cones (ψ ≤ 15◦), two physical cases of vortices can exist:
spiral and circular vortices. These are distinguished by non-zero and zero waveangles respectively, and have
been observed by Kobayashi and co-workers for cones rotating in both otherwise still fluid and enforced axial
flow.5,6 The theoretical study of these two cases is slightly different and we consider only spiral vortices
here. Our work in §IV is therefore applicable to slender cones, but with half-angles ψ > 15◦. Circular waves
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for ψ < 15◦ have been studied by Hussain3 and will be subject of future publications.

III. Previous theoretical work

Garrett1,24 uses a parallel-flow approximation to formulate the rotating-cone problem in still fluid and
enforced axial flow. Including viscous and streamline-curvature effects the resulting eigenvalue problem is
solved using a numerical approach. In addition to absolute instability (discussed in §II), Garrett considers
convective modes of instability of type I and II (also known as crossflow and streamline curvature, respec-
tively) and computes full neutral curves and critical Reynolds numbers for half-angles ψ = 10◦–90◦. The
results agree with theoretical analyses in the literature in the limiting case of the rotating disk.23,25–27

Although use of parallel-flow assumption is well established in the literature, it leads to a mathematical
formulation that is inconsistent at O(R−1

L )a, the order at which viscous and streamline-curvature effects
occur. This has implications for the accuracy of quantitative predictions. For this reason a rigorous analysis
using asymptotic methods has been conducted by the present authors28 where expressions for neutral type
I and II branches are derived in the high Reynolds-number limit.

As shown in Figures 2 and 3, comparisons of orientation angle, ǫ, and effective wavenumber, kδ, of the
vortices arising from the asymptotic and numerical analyses are in excellent agreement for large Reynolds
number. The figures show that increasing ψ leads to a rise in both type I and II waveangles, which are
attributed to the increased rotational shear effect: the spiral vortices are swept more in an azimuthal
direction, due to the steep angle of the cone surface, resulting in a wider orientation angle with respect to
the cone meridian. Conversely, for smaller ψ, the spiral vortices undergo a stronger forcing in the streamwise
direction and hence wrap around the surface in a helical nature, propagating at a lower deviation angle from
the streamwise direction. Importantly, it is observed that an increase in ψ has the effect of stabilizing both
the type I and type II modes by increasing the predicted value of the critical Reynolds number at the onset
of instability. This effectively expands the region of stable flow and gives rise to fewer wavenumbers in the
unstable area to the right of the neutrally-stable modes.

10
0

10
2

10
4

10
6

0

10

20

30

40

R
L

ε

10
0

10
2

10
4

10
6

0

10

20

30

40

R
L

ε

10
0

10
2

10
4

10
6

0

10

20

30

40

R
L

ε

10
0

10
2

10
4

10
6

0

10

20

30

40

R
L

ε

(a) (b) 

(c) (d) 

Figure 2. Neutral-stability curves for stationary modes in terms of predicted waveangle (solid line numerical, dashed
line asymptotic) (a) ψ = 80◦; (b) ψ = 70◦; (c) ψ = 40◦; (d) ψ = 20◦. Figure taken from Garrett et al.

28

The computed critical Reynolds numbers compare well with experimental observations of the appearance

aNote that RL =
√

R2

X
sinψ is the Reynolds number based on boundary-layer thickness and local surface speed.
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Figure 3. Neutral-stability curves for stationary modes in terms of predicted wavenumber (solid line numerical, dashed
line asymptotic) (a) ψ = 80◦; (b) ψ = 70◦; (c) ψ = 40◦; (d) ψ = 20◦. Figure taken from Garrett et al.

28

of spiral vortices for broad cones with ψ ≥ 50◦.6,29,30 However, for more slender half-angles an increas-
ing discrepancy is found. This suggests an apparent change in the physical nature of the instability, not
attributable to the type I and II modes that were explicitly sought. Such observations, when taken into
account with Kobayashi’s physical descriptions of the vortices, suggest the possibility of a viscous-mode
dominated structure at work, pertaining to the onset of the centrifugal Görtler-type instability. This mode
was hypothesized by Garrett et al.28 and further elaborated by Garrett.31 In particular, Garrett extended
the existing numerical results to consider the amplification rates of the stationary and traveling type I and
II modes through the convectively-unstable region. He found that the amplification rates of both modes
reduce with decreased half-angle, as shown in Figure 4. This behaviour adds weight to the hypothesis of a
centrifugal mode that dominates at low half-angles but becomes less amplified as the half-angle increases.
As the half-angle is increased we expect the existence of a possible critical half-angle for the variation from
a predominantly centrifugal instability (manifested in the appearance of counter-rotating vortices) to the
crossflow instability (manifested in the appearance of co-rotating vortices). Experiments suggest that this
critical half-angle is around 40◦ but a theoretical prediction of this is an intriguing possibility which motivates
the remainder of this paper and further work in progress.

IV. Analysis of the centrifugal mode

In this section we present the latest progress in identifying the hypothesized centrifugal mode. An
asymptotic study is currently underway, as summarized in §IV.B, and a numerical analysis is intended to
commence shortly.

IV.A. Formulation

The formulation and methods are significantly different from those used in our previous studies.4,24,28,31

With regards the formulation, we had previously fixed the coordinate axes with respect to the axis of rotation
of the cone and with origin at the apex. However we now have axes aligned with the spiral vortices and with
origin O′ placed at the position with local surface radius r∗0 = x∗0 sinψ, where x

∗ is the Cartesian axis along
the axis of rotation (note that a ∗ represents a dimensional quantity). As shown in Figure 5, we introduce
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Figure 4. Linear convective growth rates for stationary-mode disturbances of type I through the convectively unstable
region at various ψ. RD = RL − RL,C . Figure taken from Garrett.31

x̂∗- and y∗-axes that coincide with the direction of propagation of the spiral vortices and the tangent curve to
the spiral vortices, respectively; the z∗-axis is normal to the cone surface. The coordinate system (x̂∗, y∗, z∗)
rotates with the cone surface at constant angular frequency Ω⋆. Importantly, the logarithmic spirals are
directed such that the y∗-axis has a positive projection with the direction of rotation of the cone. This
requires that the x̂∗-axis has positive projection onto the axis of rotation and the y∗-axis to have negative
projection, as seen in Figure 5. The spiral vortices are shed at a waveangle φ, and coordinates (r∗, θ, z⋆)
used in the previous studies are transformed to

r∗ = r∗0exp
( 1

r∗0
(x̂∗ cosφ− y∗ sinφ)

)

, (1)

θ =
1

r∗0 sinψ
(x̂∗ sinφ+ y∗ cosφ), (2)

z∗ = z∗, (3)

from which the governing dimensional equations can be derived with appropriate scale factors. This formu-
lation is similar to Kobayashi’s32 but differs by a sign of the Coriolis terms in the momentum equations.

We non-dimensionalize lengths on a characteristic distance along the cone l∗, so that x̂∗ = l∗x̂ and
y∗ = l∗y. Furthermore, we scale both logarithmic coordinates x̂ and y, as well as the normal coordinate z∗,
on the boundary-layer thickness, leading to the scaled coordinate system (x̌, ȳ, η) = R1/2(x̂, y, z) where R is
the Reynolds number given by

R =
Ω∗l∗2 sinψ

ν∗
.

This enables the vortex structure in both logarithmic directions to be analyzed on the same level as the
smallest length scale in the surface-normal direction. Usually a Görtler-mode analysis requires only lengths
normal to the surface and spanwise to the vortices to be scaled on boundary layer thickness (see Hall33

and Denier et al.34). However, here the counter-rotating vortices are characterized by both logarithmic
coordinates which require this scaling.
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Figure 5. Diagram of spiral vortex instability of a rotating cone (left) and the detailed physical interpretation (right)
showing streamwise, azimuthal and effective velocity directions. Note the cone is rotating anticlockwise when viewed
from the nose tip.

Next we use the fact that the spiral waves are periodic in the effective velocity direction to introduce
periodicity into the perturbation quantities of vortex x̌-wavenumber a and ȳ-wavenumber b. Scaling our
perturbing quantities on the boundary-layer thickness, we introduce a perturbed flow of the form

ũ∗ = Ω∗l∗ sinψ[{xŨ(η), xṼ (η),R−
1

2W}+R−
1

2 {ũ(η), ṽ(η), w̃(η)}exp(iax̌+ ibȳ)],

The pressure perturbation term scales as

p∗ = (ρ∗Ω∗2l∗2 sin2 ψ)R−1p̃(η)exp(iax̌+ ibȳ).

The shifted steady-flow components in the x̌- and ȳ-directions are Ū and V̄ , and are expressed as

Ū = x(U(η) cosφ+ V (η) sinφ) = xŨ(η),

V̄ = x(U(η) sinφ+ V (η) cosφ) = xṼ (η),

where U(η) and V (η) are scaled velocities in the streamwise and azimuthal directions in our previous formu-
lation28 and are the familiar von Kàrmàn profiles. We therefore see that although the formulation is different
to that used previously, the steady flows on which the new analysis is conducted are consistent. Note that Ũ
and Ṽ can be interpreted as effective velocities in the φ-direction. Figure 6 gives the steady-flow profiles for
φ = 0◦, 5◦ and 10◦. There is a minor increase in the velocity in the ȳ-direction. However, for the x̌-direction,
we observe a greater change with the velocity decreasing and becoming negative as the waveangle increases.
It is clear that the profiles in the case of φ = 0◦ correspond to those used in the previous analyses and are
not considered further here.

In order to derive the governing perturbation equations for spiral vortices with φ 6= 0 it is necessary to
make a number of mathematical approximations to the scale factors. These are based on the assumption
of large Reynolds number and small waveangle which are justified from the experimental observations of
Kobayashi & Izumi6 where φ ≈ 0◦− 2.7◦. We wish to investigate the short-wavelength asymptotic structure
of the centrifugal instability and hence identify the spiral vortex wavenumber in the x̌-direction as a = ǫ−1,
where ǫ is a small parameter. Here, b = O(1) is the wavenumber in the ȳ-direction. Full details of the
mathematical manipulations are given by Hussain,3 and we arrive at the governing stability equations also
stated in his thesis.

IV.B. Asymptotic analysis

In our previous analyses of the type I and II modes3,28 we introduced a small parameter given by inverse
powers of the Reynolds number as the basis of the asymptotic structure. The governing perturbation
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Figure 6. Effective velocity profiles Ũ and Ṽ for waveangles φ = 0◦, 5◦ and 10◦ (in direction of arrow).

equations were then solved to form leading- and first-order estimates of the wavenumbers for neutrally-
stable modes. This resulted in explicit expressions (applicable in the large Reynolds-number limit) that
enable simple comparisons with the upper and lower branches of the numerically-computed neutral curves,
as can be seen in Figure 3, for example. However, in this analysis it is inverse powers of wavenumber
which form the basis of our asymptotic structure. The governing equations are then solved to determine
leading- and next-order estimates of a scaled Taylor number for neutrally-stable modes. Hussain3 shows
that the Taylor number (as defined in equation (4)) is linearly related to the rotational Reynolds number
used by Kobayashi & Izumi.6 This asymptotic approach is therefore quite distinct to that used previously
and follows Hall33 for the Taylor problem of flow between concentric rotating cylinders. Indeed, for slender
rotating cones, the half-angle is sufficiently small that the formulation resembles that for flow moving axially
over a rotating cylinder.

We wish to investigate the short-wavelength asymptotic structure of the centrifugal instability and hence
identify the spiral vortex wavenumber in the x̌-direction as a = ǫ−1, where ǫ is a small parameter which
forms the basis of our asymptotic analysis. The wavenumber in the ȳ-direction is b = O(1). The Taylor
number characterizes the importance of centrifugal forces relative to viscous forces in this problem, and is
given as a function of half-angle for each φ under consideration:

T =
2 cotψ cosφ

sin5 ψ
. (4)

7 of 11

American Institute of Aeronautics and Astronautics



IV.B.1. Leading-order solution

The perturbation quantities are expanded and we consider a WKB solution for small values of ǫ. The
dominant terms in the governing equations balance if we scale T ∼ ǫ−4 and W/V ∼ O(ǫ−2), resulting in

ũ = E(u0(η) + ǫu1(η) + ǫ2u2(η) + . . .),

ṽ = ǫ2E(v0(η) + ǫv1(η) + ǫ2v2(η) + . . .),

w̃ = E(w0(η) + ǫw1(η) + ǫ2w2(η) + . . .),

T = ǫ−4(λ0 + λ1ǫ+ λ2ǫ
2 + . . .),

where λ = λ0 + λ1ǫ+ λ2ǫ
2 + . . ., E = exp i

ǫ

∫ ϕ
K(τ)dτ and ϕ = sinψ

h̄1

η.
After substitution of these expansions into the governing equations and some simplification owing to the

assumption of small waveangle, we arrive at an eigenrelation at leading order which can be solved to give
the scaled leading-order eigenvalue estimate

λ̄0 = λ0h̄
4
1(1 + x̌ cosφ− ȳ sinφ) =

1
[

(Ṽ cosφ+ 1)∂Ṽ∂η

]

min

,

where h̄1 is a scale factor defined as h̄1 = 1 + x̌ cosφ− ȳ sinφ+ η cosψ sin2 φ.
The minimum value of the denominator occurs at the wall (η = 0) in the range of small waveangles

that have been experimentally observed for slender cones. In order to evaluate the denominator, we note

that Ṽ (0) = 0 and so we are required to evaluate only ∂Ṽ
∂η (0) for varying φ. Although not shown here,

this quantity is found to decrease as φ is increased and our leading-order eigenvalue estimate increases in
magnitude as the waveangle is increases. Numerical values for λ̄0 are given in Table 1.

IV.B.2. First-order solution

Following Hall’s method, we expand the Taylor number in the form

T = ǫ−4(λ0 + λ1ǫ
2

3 + . . .)

and re-scale the normal variable on an appropriate thickness ξ = ϕ

3
1

3 ǫ
2

3

. The normal perturbation velocity is

then expanded as

w̃ = w0(ξ) + ǫ
2

3w1(ξ) + . . . ,

with ũ = O(1) and ṽ = O(ǫ2) as in the leading-order analysis. After substituting these expressions into the

governing equations and equating terms of O(ǫ
2

3 ) we obtain an eigenvalue relation at first order. This can
be solved to give a first-order estimate of our scaled Taylor-number eigenvalue as

λ̄1 =
2.3381× 3

1

3

|Ṽ ′(0)|

[ Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cosφ

]2

.

The mathematics is very involved and full details are given by Hussain.3 In fact we obtain an infinite sequence
of eigenvalues {λ1n}, corresponding to the zeros of an Airy function on the negative real axis. Numerical
values for the most dangerous λ̄1 are given in Table 1 for various ψ and φ.

IV.B.3. Asymptotic estimate of the Taylor number

Combining the leading- and next-order solutions, the most dangerous instability mode has a scaled Taylor-
number expansion given by

T̄ = T h̄41(1 + x̌ cosφ− ȳ sinφ)

= ǫ−4

(

1

|Ṽ ′(0)|
+

2.3381× 3
1

3 ǫ
2

3

|Ṽ ′(0)|

[ Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cosφ

]2

+ . . .

)

.
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For large n, the eigenvalues may be approximated by

2
( λ̄1n

3|Ṽ ′(0)|3

[ Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cosφ

]6) 3

2

∼ π

(

n−
1

4

)

,

and so the scaled Taylor-number estimate has the form

T̄n = T h̄41(1 + x̌ cosφ− ȳ sinφ),

= ǫ−4

[

1

|Ṽ ′(0)|
+ 3

(

ǫ|Ṽ ′(0)|3
[

Ṽ ′′(0)

Ṽ ′(0)
+ Ṽ ′(0) cosφ

]6

π

2

(

n−
1

4

)

)
2

3

+ . . .

]

, (5)

= ǫ−4
(

λ̄0 + λ̄1nǫ
2

3 + . . .
)

.

Numerical estimates of the leading- and first-order eigenvalues corresponding to the scaled Taylor number
are shown in Table 1 for parameter values in the range of those observed by Kobayashi & Izumi.6

ψ φ λ̄0 λ̄1

15◦ 0◦ 1.6236 2.0769

30◦ 1◦ 1.6477 1.8567

2◦ 1.6731 1.6389

2.7◦ 1.6915 1.4887

4◦ 1.7277 1.2162

5◦ 1.7572 1.0146

6◦ 1.7883 0.8221

8◦ 1.8556 0.4747

45◦ 8.5◦ 1.8735 0.3979

10◦ 1.9305 0.1991

Table 1. Leading- and first-order eigenvalue estimates of the scaled Taylor number, λ̄0, λ̄1, for a range of slender rotating
cones in still fluid.

Plots of the scaled Taylor number against wavenumber, ǫ−1 = a, for φ = 0◦−10◦ in increments of 2.5◦ are
shown in Figure 7. The unstable region is above the curves and the stable region below. We see that there
is slight variation with waveangle which reduces with increased wavenumber. The definition of the Taylor
number is such that increased T̄ corresponds to reduced half-angle (for any fixed waveangle), the results may
therefore suggest that the most unstable case (in the sense of a broader range of unstable wavenumbers) for
the centrifugal-instability mode is for small half-angles; this, however, assumes a particular behaviour for
the upper neutrally-stable branch in that it is at worst parallel to the computed lower branch.

IV.C. Numerical analysis

The asymptotic analysis has identified the centrifugal mode, which is the first result in this study. However,
in order to judge its importance at each half-angle and waveangle, it is necessary to investigate the onset
and subsequent amplification of the mode. These properties are unable to be determined by the asymptotic
approach and work is underway on a numerical solution of the governing stability equations which will result
in neutral-stability curves parameterized by Taylor number. Such an analysis will lead to predictions of
amplification rates and other measurable quantities for experimental comparison.

V. Conclusion

In this paper we have highlighted the experimental motivation for the hypothesis of a centrifugal-
instability mode within the rotating-cone boundary-layer flow. Furthermore, the results of previous the-
oretical studies have been summarized which add weight to the idea that an alternative mode exists. In
particular, previous studies have been formulated with a view to studying the type I and II modes and note a
discrepancy between the predicted onset of these modes and experimental measurements of the appearance
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of spiral vortices with reduced half-angle.1,24,28 In addition, the recent discovery that the amplification
rates of type I and II modes reduce with decreased half-angle is consistent with the notion of an alternative,
competing mode with amplification rate that dominates for small half-angles.31

An alternative formulation that focuses on centrifugal effects has been developed and an asymptotic
analysis conducted. Although the analysis requires the use of various scalings which make interpretation in
terms of measurable quantities difficult, a centrifugal mode has been identified and an indication of the range
of unstable wavenumbers against half-angle has been presented. It is suggested that the range of unstable
wavenumbers increases with reduced half-angle (which is, in a sense, destabilizing), however the asymptotic
approach is unable to calculate critical Reynolds numbers and amplification rates. A numerical analysis of
the governing equations under this formulation is underway. The hypothesized properties of the centrifugal
mode lead us to expect either a reduction in critical Reynolds number or an increase in amplification rates
with reduced half-angle, or both.

We conclude that three instability modes exist within the boundary-layer flow over rotating cones: cross-
flow (type I), streamline curvature (type II) and centrifugal. Although it is tempting to label this new mode
as type III, we note that this is already used in the literature to denote the convectively-stable mode involved
in the local absolute instability over broad cones and disks.1,4, 23,24 Ultimately we wish to compare the onset
and subsequent amplification of these three convectively-unstable modes for each cone in order to predict
the half-angle at which the dominant instability mode changes; current experimental observations suggest
that this is around ψ = 40◦.
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