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Table 1. Examples of thixotropic materials with the mechanisms of recovery 
 

Materials Structural build-up at 
rest 

Structural breakdown 
under shear 

Collodial dispersions and 
suspensions of solids: 
   1) Paints 

2) Coatings 
3) Inks 
4) Clay slurries 

   5) Cosmetics 
   6) Agricultural              
chemicals 

 
 
 

Flocculation under inter-
particle forces 

 
 
 

Break-up of flocs 
(deflocculation) 

 

Emulsions Flocculation of droplets Deflocculation 
Foamed systems: 
1) Mousses    

Flocculation of bubbles Deflocculation 
Coalescence 

Crystalline systems: 
1) Waxy crude/fuel oils 
2) Waxes 
3) Butter/Margarine 
4) Chocolate 

 
 

Interlocking of growing 
crystals 

 

 
 

Break up of long needles 
 
 
 
 

Polymeric systems: 
1) Solutions/melts 
2) Starch/gums 
3) Sauces 

Agglomeration of 
macromolecules 

 
Entanglement 

 

De-agglomeration 
 
 

Disentanglement 

Fibrous suspensions: 
1) Tomato ketchup 
2) Fruit pulps 
3) Fermentation broths 
4) Sewage sludges 

 

Agglomeration of fibrous 
particles 

 
 

Entanglement 

De-agglomeration 
 
 
 

Disentanglement 

Semi-solid metallic systems Agglomeration of 
particles 

De-agglomeration 
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Table 2: Tabulation of parameters obtained from shear rate jump experiments on 
Sn15%Pb alloys (at Fs= 0.36) under different rest times [86].  
 

Shear rate 
Jumps (s-1) 

0-100 

Rest times 
(hrs) 

0 1 2 5 

pη  (Pas)* 2.1 5.4 8.0 23.0 

ssη  (Pas)** 0.8 0.8 1.2 2.0 

bτ  (s)*** 0.18 0.16 0.15 0.12 
* The errors are within 95% confidence limits (± 0.5) 
** The errors are within 95% confidence limits (± 0.2) 
***The errors are within 95% confidence limits (± 0.03) 
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Table 3 Classification of Models of Semi-Solid Die Filling (Commercial codes employed in work are indicated in brackets. If a code is not given 
then either the authors have written the code themselves or it is not identified in the text of the paper).  
 
 Finite Difference FEM Micro-Modelling 
One-Phase Ilegbusi & Brown 1995 (PHOENICS) [94] 

Barkhudarov et al. 1996 (FLOW3D) [95] 
Barkhudarov & Hirt 1996 (FLOW3D) [96] 
Modigell & Koke 1999 (FLOW3D) [84] 
Kim & Kang 2000 (MAGMAsoft) [97] 
Modigell & Koke 2001 (FLOW3D) [85] 
Ward et al. 2002 (FLOW3D) [98] 
Messmer 2002 (FLOW3D) [99] 
Seo & Kang 2002 (MAGMAsoft) [100] 
Itamura et al 2002 (Adstefan) [101] 
 

Zavaliangos & Lawley 1995 (ABAQUS) [103] 
Backer 1998 (WRAFTS) [104] 
Alexandrou et al. 1999 (PAMCASTSIMULOR) [105] 
Burgos & Alexandrou 1999 [106] 
Alexandrou et al 2001 (PAMCASTSIMULOR) [107] 
Burgos et al 2001 [108] 
Alexandrou et al. 2002 [109]  
Ding et al. 2002 (DEFORM3-D) [110] 
Jahajeeah et al. 2002 (Procast) [111] 
Rassili et al. 2002 (FORGE3) [112] 
Wahlen 2002 (Thixoform) [113] 
Alexandrou et al. 2003 [114]  
Orgeas et al. 2003 (Procast) [115] 

 

Two-Phase Ilegbusi et al 1999 [102] Zavaliangos & Lawley 1995 (ABAQUS) [103] 
Zavaliangos 1998 [116] 
Koke et al. 1999 [117] 
Kang & Jung 1999 [118] 
Binet & Pineau 2000 [119] 
Choi et al. 2000 [120] 
Kang & Jung 2001 [121] 
Yoon et al 2001 (CAMPform2D) [122] 
Kopp & Horst 2002 (ABAQUS) [123] 
Modigell et al. 2002 [124] 
 

Rouff et al.  
2002 [125]  
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Table 4. Summary of one-phase and two-phase finite difference simulation papers. 
 

One-phase 
 Comments Flow and viscosity equations Observations 
Ilegbusi & 
Brown 1995 
(PHOENICS) 
[94] 
 

Slurry incompressible, mass 
conservation, momentum 
conservation, energy 
conservation (enthalpy 
method), solid fraction from 
[126], input parameters 
identified, scalar-equation 
method for free surface, 
single internal variable (λ) 
constitutive model [127-129], 
experimentally determined 
values of agglomeration 
function H and 
disagglomeration function G 
given. Chisel-shaped mould. 

( )
( )

( ) ( ) nn
fsfy fTCn

cc
cc

A γηλγηλττ  1
3/1

max

3/1
max 1

/1
/

)( +++
−

+= (12) 

( )( ) ( ) n
ss fTGfTH

dt
d γλλλ

,1, −−=                                  (13) 

Boundary layer at wall (but 
not clear in velocity vectors 
diagram). Low temperature 
region at wall (but using 
non-heated die)→ solid 
shell. Jetting at central 
region. 

Barkhudarov et 
al. 1996 
(FLOW3D) [95] 
 

Transport equation for η  
includes advection term and 
relaxation term which 
accounts for thixotropy. No 
yield stress, wall slip, or 
elastic or plastic behaviour at 
high sf . Input parameters 
given. 

( )ηηωηη
−=∇+

∂
∂

eu
t

.                                                      (14) 

( ) γλλλλ
21 1. bbu

t
+−=∇+

∂
∂                                             (15) 

Note: We have changed ( )λ∇u to λ∇.u for clarity of notation.  
ληη c+= ∞                                                                       (16) 

γ
ηη

21

1

bb
cb

+
+=⇒ ∞  and γω 21 bb +=                            (17) 

Match to experimental 
shear stress hysteresis 
curves (Sn-15%Pb) [130] 
with reasonable accuracy. 
Sensitive to exact values of 
relaxation time. Die swell 
in thixoextrusion. 
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Barkhudarov & 
Hirt 1996 
(FLOW3D) [96] 
 

Transport equation for η  
with α  rate constant for 
thinning and β rate constant 
for thickening. eηη ≥ then 
material is trying to relax 
towards the lower equilibrium 
value eη  (i.e. thinning). 
Thixotropic data from [69]. 
Heat transfer, viscous heating 
and solidification effects 
included. Heat transfer 
negligible in time period 
considered  

( ) ( ) ( )0,0, ηηβηηαηη
−+−=∇+

∂
∂

ee MaxMinu
t

            (18) 

i.e. if 0<−ηηe  then the right hand side = ( )ηηα −e  and if 
0>−ηηe  then the right hand side = ( )ηηβ −e  

Small droplets of Sn-Pb 
impacting on flat plate. 
Droplet shapes influenced 
by relaxation times.  

Modigell & 
Koke 1999 
FLOW-3D [84] 

Shear stress is function of 
yield stress and structural 
parameter κ (which differs 
from λ in that it varies 
between 0 and ∞  rather than 
0 and 1). Shear stress is 
assumed to grow 
exponentially with increasing 
solid fraction. Input 
parameters given. 

                                                                                          (19) 
( ) ( )

( )( )κκγκ

γκττ

−=
∂
∂

+=

e

m
ssy

ba
t

kBff





exp

*exp

                                          (20) 

In equilibrium: 

( ) nme −
=

γα
κ



1
 

The equilibrium flow curve is then:                                  
( ) ( ) n

ssy kBff γττ exp+=  with                                         (21) 
mnkk −= α*  

 

Comparison between 
Newtonian and thixotropic 
for flow in a cavity with a 
round obstacle. 
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Kim & Kang 
2000 
(MAGMAsoft) 
[97] 

Comparison of Newtonian 
and Ostwald-de-Waele with n 
of –0.48 to +0.45 (depending 
on T) under shear rate of 3-
2500s-1. Input parameters 
given. Predict defects in 
product from temperature 
distribution 

Ostwald-de-Waele for viscosity dependence on shear rate. Good agreement between 
partial filling experiment 
and predicted temperature 
distribution at 80% filling. 

Modigell & 
Koke 2001 
(FLOW-3D) 
[85] 

Die filling of steering axle 
assumed isothermal with wall 
adhesion. 

                                                                                           
( ) ( ) ( )( )κγττ sfm

ssy fkf *+=                                             (22) 
 

Models step change of 
shear rate experiments 
quite well. Die filling of 
steering axle. Above 
critical inlet velocity filling 
no longer laminar. 

Ward, Atkinson, 
Kirkwood and 
Chin 2002 
(FLOW3D) [98] 

As for Barkhudarov and Hirt 
1996 [95] 

As for Barkhudarov and Hirt 1996 [95] Modelling of shear rate 
jumps for Sn-15%Pb. All 
variable values to fit shear 
rate jumps consistent with 
Cross equation and with 
rate data, except the initial 
viscosity, which was 2-5 
times lower than 
experimental values. This 
suggests the initial 
breakdown of the slurry is 
very rapid, possibly beyond 
the detection limits of the 
data collection system. 
Modelling of rapid 
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compression in a 
thixoformer suggests 
aluminium slurries undergo 
an initial very rapid 
breakdown and that the 
subsequent breakdown rate 
is not strongly shear rate 
dependent. 

Messmer 2002 
(FLOW3D) [99] 
 

Thixoforging using approach 
of Barkhudarov et al. [95].   

 ( ) m
se BfA γη exp=                                                            (23)         

( )ηηβη
−= edt

d                                                                  (24)              

Forming force measured at 
end of stroke corresponds 
well with simulated force. 
Early part of stroke not 
well simulated. Attributed 
to use of only one thinning 
rate. 

Seo & Kang 
2002 
(MAGMAsoft) 
[100] 
 

Simple upsetting experiments 
to obtain rheological data 
with A356. Input parameters 
given. 

Ostwald-de-Waele compared with Carreau-Yasuda: 

( )[ ] a
n

ak
1

0

1
−

∞

∞ +=
−
−

γ
ηη
ηη

  

 
 

No filling results for 
Carreau-Yasuda presented. 
Ostwald-de-Waele gives 
reasonable agreement with 
partial filling tests. 

Itamura et al 
2002 (Adstefan) 
[101] 
 

Compares simulation for die-
casting, squeeze-casting and 
rheocasting for both metal 
flow and solidification. 

No details given. Die-casting gives air 
entrapment cf. squeeze 
casting and rheocasting. 
Less shrinkage defects in 
rheocasting. 

Two-phase 
Ilegbusi et al. 
1999 [102] 

Single phase equations solved 
for whole filling phase. 
Trajectories of given number 
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of particles computed, 
assuming they ‘disappear’ 
when they hit a wall or are 
trapped in recirculation zone. 
Measure of segregation 
obtained by comparing 
number of particles at given 
distance from inlet to total 
number of injected particles. 
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Table 5. One phase finite element simulation papers 
 
 Comments Flow and viscosity equations Observations 
Zavaliangos 
& Lawley 
1995 
(ABAQUS) 
[103] 

Medium 
Volume 
Fraction Solid 

7.06.0 −≤sf  

Single internal variable 
(λ ) constitutive model 
[127-129]. Same 
equations as for Ilegbusi 
and Brown 1995 [94] 
but without yield stress. 
Isothermal. 

( )
( )

( ) ( ) nn
fsf fTCn

cc
cc

A γηλγηλτ  1
3/1

max

3/1
max 1

/1
/

)( +++
−

=           (25)      

( )( ) ( ) n
ss fTGfTH

dt
d γλλλ

,1, −−=                                     (26) 

Sn-15%Pb. Free 
standing billet 
collapse for 

5.0≤sf . 
Thixoforming of 
a simple shape. 
No validation 
available. 

Backer 1998 (WRAFTS) 
[104] 
 

1) Herschel-Bulkley 
 1) Δuτ

1
2/

−
−=

n

IIy Dmτ                                                (27) 

Note that this equation is given here exactly as in the Backer 
paper but it is not clear whether yτ is being treated as a tensor. In 
its present form the equation is dimensionally incorrect. 
For simple shear, the Backer equation reduces to: 

n
y kγττ +=                                                                          (28) 

Comparison of 
Newtonian, 
Herschel-Bulkley 
and internal 
variable results 
for complex die. 
Latter tends to fill 
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2) Bingham combined 
with power law 
dependence. Single 
internal variable λ  
[127-129]… apparently 
the same equations as 
for Ilegbusi and Brown 
[94] but without a yield 
stress. Value of n=4. 

2) 
( )
( )

Δuτ











−

−
=

−1

3/1
max

3/1
max 2/

/1
/ n

IIs DfCu
cc

cc
A λ                     (29)                

which, for simple shear, reduces to 
( )
( )

n
sfCu

cc
cc

A γλγτ  +
−

= 3/1
max

3/1
max

/1
/

                                             (30) 

(In comparison with Ilegbusi and Brown [94], the liquid viscosity 
fη appears to have been included in the function A, a velocity u is 

present in the first term and ( ) 11 ++ n
fn η is included in the function 

C in the second term). 
The transport equation for λ is: 

( ) 2/1. 2
IIDGKu

t
λλλρ

δ
δρλ

−−+∇=                                    (31) 

which, if ρ  is treated as a constant and 0,, =
∂
∂

∂

∂

∂
∂

z
u

y
u

x
u zyx , 

reduces to: 

( ) =∇−






∂
∂ λρλρ .u

t
( ) γλλ 21 GK −−                                       (32) 

(which is very similar to Barkhudarov et al [95] but with a 2λ  in 
the second term on the right hand side rather than λ ). 

from side runner 
rather than 
bottom because 
material has 
flowed further in 
the runner and 
disagglomerated 
in the process. No 
validation with 
experiment. 

Alexandrou et al. 1999 
(PAMCASTSIMULOR) 
[105] 

Herschel-Bulkley. 

s

s
y f

f
−

=
6.0

9615
3

τ  

Fluid assumed 
incompressible. 

1=n then Bingham. 

( )( )
ij

II

IIy
ij D

D

Dm











 −−

=
2/

2/exp1τ
τ                                          (33)                       

( )( ) 2/12/ −= n
IIDKη                                                                   (34)               

For simple shear the equation reduces to:               

Bingham set 
constant and 
independent of 
processing 
conditions…fairly 
good agreement 
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T dependence 
introduced through 
making yτ function of T. 

( )( )γmττ y −−= exp1                                                                 (35)                                                 
1−= nγKη                                                                                     (36) 

between 
modelling and 
filling for 
complex part. 
Local flow not 
predicted as well 
as bulk filling. 
Comparison of 
Newtonian and 
Bingham filling 
of simple 2-D 
cavity. 
Comparison of 
Newtonian and 
Bingham filling 
of 3-D cavity 
with core. Results 
show efficacy of 
‘overflows’ on 
dies beyond 
‘rewelding’ areas.  

Burgos & Alexandrou 1999 
[106] 

Herschel-Bulkley (as for 
[105]) 

 Predicts time 
evolution of 
yielded/unyielded 
regions for 
sudden 3-D 
square expansion. 

Alexandrou et al 2001 
(PAMCASTSIMULOR) 

Bingham fluid. 
Continuous model due 

 0=γ  yττ ≤  
Five different 
flow patterns 
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[107] to Papanastasiou [131] 
to avoid discontinuity at 
yield surface. 

γ
γ
τ

ητ y 
 








+=     yττ >                                                (37) 

( )
γ

γ
γm

τητ y 














 −−
+=

exp1
  [132]                                       (38) 

Simplifying: 
( )( )γτγητ  my −−+= exp1                                                    (39) 

‘mound’, ‘disk’, 
‘shell’, ‘bubble’ 
and ‘transition 
flow’ agreeing 
with observations 
by Paradies and 
Rappaz [136]. 
Map of flow 
patterns as a 
function of 
Reynolds and 
Bingham 
numbers. 

Burgos et al 2001 [108] 
 

Herschel-Bulkley 
expanded to include 
effect of evolution of 

microstructure. nKy ,,τ  
are assumed functions of 

sf and λ . Single 
internal variable λ . 
Assume transient 
behaviour at constant 
structure is shear 
thickening. Material 
parameters from [133] 
for Sn-15%Pb with 

45.0=sf . 

( ) 



















−−=∇+

∂
∂

2/12/1

2
exp

2
1. IIII DcDbau

t
λλλλ                 (40) 

which, for simple shear and where λ is not changing spatially, 
reduces to: 

( ) ( ) ( )[ ]( )ecbacba
t

λλγγγγλλλ
−+−=−−=

∂
∂

 expexp1         (41) 

(which for 0=c  is equivalent to the Moore equation [72]). 

( )
( )( ) ( ) ( )[ ]

D
/D

/Dm,λfτD,λfKτ
II

IIsy
/,λfn

II
s

s











 −−

+



=

−

2

2exp1

2

21

                                   

                                                                                                  (42) 
which, in simple shear, reduces to: 

( ) ( ) ( ) ( )( )γλτγλτ λ  mffK sy
fn

s
s −−+= exp1,, ,                         (43) 

(Note that equation (8) in [108] is not correct). 

Flow in simple 
straight channel. 
Power law index 
decreases with λ , 
but consistency 
index and 

yτ decrease. 
Breakdown is less 
in the core and in 
the corners of the 
square channel 
than in the higher 
shear regions. 
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Alexandrou et al. 2002 
[109]  
 

Bingham but using 
[131] to avoid 
singularity. Simple 
compression test. No 
account taken of 
evolution of sample’s 
internal structure. 

( )
γτητ 










 −−
+=

2/

2/exp1

II

II
y D

Dm
                                        (44) 

A356 simple 
compression. 
Shape during 
compression 
reproduced in 
simulation using 
η  and yτ from 
fitting load versus 
time curve. 
Unyielded 
material at top 
and bottom in 
stagnant layers. 

Ding et al. 2002 
(DEFORM3-D) [110] 
 

Rigid viscoplastic 
constitutive model. Flow 
stress for AlSi7Mg 
obtained from 
compression on Gleeble 
machine, ignoring initial 
transient. Levy-Mises 
flow rule. 

( ) nmbTa εεσ −= exp                                                              (45) 
When written in shear stress terms this is equivalent to: 

( )( ) nmbTa γγτ −= exp                                                            (46) 

Die with six 
rectangular 
orifices heated to 
580-586˚C (i.e. 
isothermal). Good 
agreement with 
interrupted flow 
tests. Metal in 
biggest orifice 
flows fastest. 
Some discrepancy 
between 
prediction of 
load-stroke curve 
and actual. No 
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examination of 
liquid segregation 
in the samples. 

Jahajeeah et al. 2002 
(Procast) [111] 
 

Power Law Cut-Off 
(PLCO) model of 
Procast [134] i.e. 
isotropic, purely 
viscoplastic, 
independent of pressure, 
deformation 
homogeneous. 

( ) ( ) ( )TnTT 00, γηγη  =  for 0γγ  ≤  
( ) ( ) ( )TnTT γηγη  0, =  for 0γγ  >                                           (47) 

Brake calliper 
divided into 
different regions 
each with 
different cut-off 
values 0γ .  
Reasonable 
agreement with 
interrupted filling 
tests. Defect 
prediction with 
less than optimum 
runner design. 

Rassili et al. 2002 
(FORGE3) [112] 
 

Visco-plastic 
constitutive model from 
force recordings of 
extrusion tests. Friction 
assumed very low. No 
time dependence. 

( ) n

T
KTK εβε 






= exp, 0                                                     (48) 

K  is equivalent to the current yield stress, 0K  to a yield stress 

and ε  to an effective strain. In shear terms, this is analogous to: 
n

y T
γβττ 





= exp                                                                (49) 

Several 
combinations for 
tool displacement. 
Ejector goes up, 
punch starts to go 
down when 
ejector 
stops….buckling 
leading to lap. 
Punch and ejector 
move 
simultaneously or 
punch goes down 
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first then ejector 
goes up both 
avoid buckling 
but lap is formed 
on each ‘ear’ of 
part. Estimation 
of forging force. 

Wahlen 2002 (Thixoform) 
[113] 
 

Model based on 
viscoelasticity and 
thixotropy. 

m
bs

M RT
Q

R
Rf








































−−= exp

2
exp1

0

3

0 ε
ελ

τε
εσσ






        (50) 

This could be written in shear stress terms as: 
m

bs

M
y RT

Q
R
Rf








































−−= exp

2
exp1

0

3

γ
γλ

τγ
γττ






          (51) 

Note: R  means both the particle size in the RRb  term and the 
gas constant in the exponential term. 

Good agreement 
between model 
and curve of flow 
stress versus true 
strain. Cylindrical 
specimens 
produced in 
backward 
extrusion. Results 
allow prediction 
of temperature of 
transition from 
plastic 
deformation of 
interconnected 
particles to 
viscous flow of a 
suspension of 
solid particles. 
Discrepancies 
between 
prediction and 
experiment 
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though. 
Alexandrou et al. 2003 
[114]  
 

2-D jets of Bingham and 
Herschel-Bulkley fluids 
impacting on vertical 
surface at distance from 
die exit in order to 
account for flow 
instabilities (eg. 
‘toothpaste’ effect) in 
semi-solid processing. 

Papanastasiou model [131]:                                               
( ) γτ 










 −−
+=

γ
γτη m

y
exp1                                               (52) 

Generalized to Herschel-Bulkley fluid by specifying 
1−= nγκη                                                                              (53) 

‘Bubble’ pattern 
gives unstable jet, 
‘shell’, ‘disk’ and 
‘mound’ stable 
along with most 
‘transition’ cases. 
Instabilities are 
result of finite 
yield stress and 
the way yielded 
and unyielded 
regions interact. 
Plots of Bingham 
number versus 
Reynolds number 
identify stable 
and unstable 
regions. 

Orgeas et al. 2003 (Procast) 
[115] 

PLCO model as for 
Jahajeeah et al [111] 
(see above) but with 
only one value of cut-off 

0γ  (determined by 
geometry). n and 0η  
dependent on sf . 
 

1
0

0

−









=

n

cγ
γ

ηη



 for 0γγ  <                                                   (54) 

1

0

−









=

n

cγ
γηη



 for 0γγ  ≥  

Bifurcation of 
Poiseuille-type 
flow near a shaft 
inserted in a tube. 
Without shaft, 
experimentally, 
thin segregated 
layer of liquid at 
wall led to ‘plug 
flow’. Reliable 
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results for flow 
around the shaft 
but some 
instabilities/ 
discrepancies 
when flow first 
encounters shaft. 
Filling of 
reservoir (giving 
‘disk+shell’) 
well-simulated. 
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Table 6. Two-phase finite element simulation papers and micro-modelling 
 
 Comments Flow and viscosity equations Observations 
Zavaliangos & 
Lawley 1995 
(ABAQUS) [103] 
 

High Volume Fraction 
Solid 7.0≥sf . Porous viscoplasticity 
model; fluid flow in porous medium; 
continuity equations. Isothermal. 
Behaviour symmetric under tension 
and compression. 
 
 

See paper for details. 
 

Compression of semi-
solid billet indicating 
liquid segregation. At 
higher strain rates less 
liquid is lost. No 
experimental validation. 

Zavaliangos 1998 
[116] 
 

Deformable porous medium 
saturated with liquid. Stress 
partitioned into stress carried by 
solid phase and purely hydrostatic 
component for pressure in liquid 
phase. Solid phase has two limits: 
fully cohesive porous solid and 
cohesionless granular material. 
Degree of cohesion represented by 
internal variable which does evolve 
with deformation (cf. single internal 
variable in [127-129]). Permeability 
equation implies that solid-liquid 
segregation decreases as the grain 
size decreases. Behaviour not 
symmetric under tension and 
compression. 

 
See paper 
 

Converging (conical) 
channel. High strain rates 
result in near-undrained 
conditions and minimal 
phase segregation.                        
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Koke et al. 1999 
[117]  
 

Liquid phase assumed Newtonian. 
Solid phase is pseudo-fluid with 
Herschel-Bulkley viscosity. Darcy 
Law, Carmen-Kozeny capillary 
approach. 5.0≥sf . 

f
my

s k ηλγ
γ
τ

η +







+= −1* 


                                  (55) 

At equilibrium, kk =* , the coefficient in the Herschel-
Bulkley power law term (see Backer above), and 

nm = . yτ and k  are assumed to increase exponentially 
with sf . This equation gives a different expression for 
shear stress from that due to Brown and co-workers 
[127-129]. Note: It isn’t clear where λ has gone to in 
equation 16. 

Vertical compression of 
cylindrical billet. Phase 
segregation. Qualitative 
agreement with 
experiment [135]. 

Kang & Jung 
1999 [118] 

Compressible viscoplastic model for 
the solid phase and Darcy’s law for 
the flow of liquid through a porous 
medium. Separation coefficient 

introduced ( )
cr

SSS
ε
ε

00 1−+=  

where 0S  is the ratio of the actual 
separation to the initial separation, 
ε  is the equivalent strain and crε a 
critical strain. 

( ) [ ] 3/21expexp l
m f

RT
QSK βεσ −






=                  (56) 

for 1, crcr εεεε ><  

( ) [ ] 3/21exp1exp l
m f

RT
QSK βεσ −






−=             (57) 

for 1crcr εεε << . 
These equations could be written in shear stress terms 
by replacing σ  with τ , ε  with γ , ε  with γ  etc. 

The higher the strain rate 
the more homogeneous 
the distribution of the 
solid fraction. In 
compression forming, 
macroscopic phase 
segregation occurred with 
densification of the 
remaining solid in the 
central region.  

Binet & Pineau 
2000 [119] 
 

Mixture approach. Hydrodynamic 
part same as for most incompressible 
CFD codes but velocity field 
represents velocities of the mixture 
and a source term is added to the 
momentum equations to take account 
of the diffusion velocities of the 
individual phases. Relative velocities 

See paper. Predictions of segregation 
at corners of entrance and 
outlet of diverging 
channel in a simple die. 
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calculated from interaction force 
between phases. Darcy’s Law, 
Carman-Kozeny relation. 
Rheological data from [137]. 

Choi et al. 2000 
[120] 
 

Compressible visco-plastic solid, 
liquid phase following Darcy’s law. 
Kuhn’s yield criterion [137] for 
deformation of solid phase. Friction 
equation at die/material surface from 
[138]. 

See paper. Head of a trench mortar 
shell in which forward and 
backward extrusion are 
taking place 
simultaneously. Higher 
die temperature (400˚C) 
gives better product. 
Qualitative agreement 
with experiment for 
segregation of liquid. 

Kang & Jung 
2001 [121] 
 

As for Kang & Jung 1999 [118] As for Kang & Jung 1999 [118] Prediction of overflow 
positions in scroll 
component. Liquid 
segregation in the narrow 
cross-sections. Higher 
strain rates gave less 
segregation. 

Yoon et al 2001 
(CAMPform2D) 
[122] 
 

Von Mises yield criterion. Semi-
solid treated as single phase with 
incompressibility. Flow stress as 
function of strain (with sf and 
‘breakage ratio’). Mixture theory and 
D’Arcy’s Law to update sf . 
Material properties for Sn-15%Pb 
from [134]. Input parameters for 

Equations are summarised in Fig. 1 in the paper. 

( )( ) m
n

cr

f bK ε
ε
εσ exp









=  for crεε <                 (58) 

m

stcr

st
f bK ε

εε
εεσ 



















−
−

= exp  for crεε ≥           (59) 

These equations could be written in shear stress terms 

Isothermal predictions of 
liquid segregation in good 
agreement with 
experiment [134]. Non-
isothermal simulation for 
ball joint gives 
qualitatively useful 
information. 
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non-isothermal Al2024 alloy given. in an analogous way to Kang and Jung 2001 above. 
Kopp & Horst 
2002 (ABAQUS) 
[123] 
 

Drucker-Prager yield criterion (yield 
strength different in tensile and in 
compressive strain). Finite element 
mesh attached to solid phase. 

  

Modigell et al. 
2002 [124]. 

Equilibrium flow behaviour 
modelled with Herschel-Bulkley. 
Thixotropy modelled with structural 
parameter following first order 
differential equation. Pseudo-fluid 
approach for the solid phase. All 
non-Newtonian properties shifted to 
the solid. Liquid Newtonian. 
Continuity and momentum equations 
solved for each phase. Interaction 
between phases modelled with Darcy 
law. 

 Simulation and 
experiment for Sn-15%Pb 
match well for 55.0>sf . 
Maps of laminar, transient 
and full turbulent filling 
produced. 

Micro-modelling 
Rouff et al.  
2002 [125] 

Volume solid fraction of the ‘active 
zone’, s

Af  ,is the internal variable. 
The ‘active zone’ consists of the 
solid bonds between spheroids and 
the liquid between spheroids which 
is not internally entrapped. During 
deformation the bonds are broken 
and liquid is released. Spheroids and 
‘active zone’ treated as isotropic and 
incompressible. 

0=s
Af  for c

s ff ≤  

( ) n
ss

ss
A fDf

f
f

γ−+
=

1
 for cs

A ff >                      (60) 

Good agreement with 
experimental data on 
viscosity versus shear rate. 

 


