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Abstract 

 

Temporal variability of parameters which describe dynamic cerebral autoregulation 

(CA), usually quantified by the short-term relationship between arterial blood 

pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous 

adjustments in physiological regulatory mechanisms, or could be the result of 

artefacts in methods of measurement, such as the use of non-invasive measurements 

of BP in the finger.  In 27 subjects (61 ± 11 years old) undergoing coronary artery 

angioplasty, BP was continuously recorded at rest with the Finapres device and in the 

ascending aorta (Millar catheter, BPAO), together with bilateral transcranial Doppler 

ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO2. 

Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 

(absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI  (ARI(t)) 

were obtained with an auto-regressive moving-average (ARMA) model applied to a 

60-s sliding data window. No significant differences were observed in the accuracy 

and precision of ARI(t) between estimates derived from the Finapres and BPAO.  

Highly significant correlations were obtained between ARI(t) estimates from the right 

and left MCA (Finapres r = 0.60 ± 0.20; BPAO r = 0.56 ± 0.22) and also between the 

ARI(t) estimates from the Finapres and BPAO (right MCA r = 0.70 ± 0.22; left MCA r 

= 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence 

of noise in the CBFV signal, with both the bias and dispersion of estimates increasing 

for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to 

zero as reported previously. Simulated sudden changes in ARI(t) can be detected by 

the Finapres, but the bias and variability of estimates also increase for lower values of 

ARI. In summary, the Finapres does not distort time-varying estimates of dynamic 

CA obtained with a sliding window combined with an ARMA model, but further 

research is needed to confirm these findings in healthy subjects and to assess the 

influence of different physiological maneuvers. 

 

 

 

Keywords: non-stationarity, cerebral blood flow, physiological variability, 

mathematical model, non-invasive blood pressure 
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1. Introduction 

 

Under normal physiological conditions, blood flow to the brain is controlled by 

multiple mechanisms, including cerebral pressure-autoregulation (CA), which 

maintains cerebral blood flow (CBF) relatively constant for changes in arterial blood 

pressure (BP) in the range 60-150 mmHg (Paulson et al 1990). Early studies of CA 

adopted a „static‟ approach, using mean values of BP and CBF averaged over several 

minutes. With the advent of transcranial Doppler ultrasound, it became possible to 

record CBF velocity (CBFV) with very high temporal resolution and this allowed the 

identification of transient responses of CBFV to sudden changes in BP, giving rise to 

the concept of „dynamic‟ CA (Aaslid et al 1989). 

 

Dynamic CA has several advantages when compared to the static approach, mainly 

that it does not require the induction of long lasting changes in mean BP, usually 

achieved with the use of pharmacological agents (Panerai 1998). Although dynamic 

CA cannot be observed without changes in mean BP, relatively fast changes can be 

induced by several different manoeuvres such as the thigh cuff test (Aaslid et al 

1989), Valsalva manoeuvre (Tiecks et al 1996), cold pressor test (Panerai et al 2001), 

synchronized breathing (Diehl et al 1995) or repeated squatting (Birch et al 1995). Of 

considerable interest is the possibility of using spontaneous fluctuations in BP and 

CBFV to model dynamic CA since this avoids any physiological perturbation and 

does not require any collaboration from the subject (Panerai 1998). 

 

Despite our recent ability to record changes in CBFV with high temporal resolution, 

most approaches proposed to study dynamic CA have adopted a relatively low 

temporal resolution for the estimation of CA parameters. For estimates derived from 

spontaneous fluctuations in BP and CBFV, recordings usually last between 5-10 min. 

leading to a single set of CA parameters.  One set of estimates is obtained from each 

manoeuvre performed to induce changes in BP, but each manoeuvre can take several 

minutes to perform (Czosnyka et al 1997, Panerai et al 1998, Panerai 1998, Tiecks et 

al 1995, Zhang et al 1998). There are two main reasons why it would be important to 

increase the temporal resolution of estimates of dynamic CA. Firstly, as with most 

physiological processes, it is unlikely that CA is a rigidly constant mechanism, but 
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would rather show some intrinsic variability which can be modulated by other 

biological factors (Busija and Heistad 1984, Gotoh et al 1982, Jones et al 1995, Vern 

et al 1988). Secondly, because CA involves vasoactive responses and hence changes 

in cerebrovascular resistance, which physically relates CBFV to BP, it cannot be 

regarded as a time-invariant system and will inevitably show some degree of non-

stationarity. This is more likely to be manifested during physiological manoeuvres 

such as head-up tilt, exercise, Valsalva or lower-body negative pressure. 

 

Previous studies of the variability or non-stationarity of dynamic CA involved 

analysis of spontaneous transients of BP (Panerai et al 2003a) or the use of a sliding-

window autoregressive-moving average (ARMA) approach (Panerai et al 2003b). 

Evidence of daily changes in the efficiency of CA in severe head injury patients was 

obtained with a sliding correlation index (Czosnyka et al 1997). Neural networks 

(Mitsis et al 2004), wavelet analysis (Latka et al 2005) and multimodal 

decomposition (Novak et al 2004) have also been proposed as techniques to cope with 

the non-stationarity of dynamic CA. 

 

In a previous study, it was suggested that continuous non-invasive measurements of 

finger BP made with the Finapres (or Portapres) device might exacerbate the 

variability of dynamic CA parameters estimated during spontaneous fluctuations in 

BP and CBFV (Panerai et al 2003b). To test this hypothesis, continuous estimates of 

an index of dynamic CA (ARI)  (Tiecks et al 1995) were obtained in patients 

undergoing coronary angioplasty, in whom BP was simultaneously recorded 

invasively (aorta) and non-invasively (finger). Surrogate data, generated by computer 

simulation, were used to validate the signal processing algorithms adopted to extract 

time-varying estimates of ARI. 

  

2. Methods 

 

2.1 Subjects and measurements 

Recruited subjects were scheduled for routine elective percutaneous coronary 

interventions. Patients were excluded if they had any condition that could distort 

Finapres measurements of BP such as arthritis or Raynaud‟s disease. All patients were 

in a stable condition without evidence of significant valve disease. Ethical approval 
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was obtained from the Leicestershire Ethics Committee and written informed consent 

was obtained before each study. 

 

Patients were asked to fast for at least 6 hours before the procedure and also to avoid 

alcohol and nicotine. All studies were conducted in the morning in a temperature 

controlled recovery room, immediately following percutaneous coronary angiography 

or angioplasty. After the elective procedure, the angiographic catheter was replaced 

by a catheter-tip pressure transducer (Mikro-Tip SPC-454E, Millar Instruments, 

Houston, Texas), after it was zero-balanced. The Millar catheter was advanced in the 

ascending aorta with its final position 2-3 cm before the aortic valve checked by 

fluoroscopy. Cerebral blood flow velocity in the middle cerebral artery (MCA) was 

recorded bilaterally by Doppler ultrasound (2MHz, Scimed QVL842X, Bristol, UK) 

with probes placed over the temporal bone and secured with an adjustable head frame. 

The surface ECG was recorded with three standard chest leads and transcutaneous 

CO2 (TINA, Radiometer, Copenhagen, Denmark) was monitored continuously with 

an axillary probe overlying the Tail of Spence.The Finapres cuff (Finapres 2300, 

Ohmeda, Englewood, Colorado) of the appropriate size was placed around the middle 

or annular finger of the hand that was not cannulated and the hand was kept at atrial 

level. In most patients the hand was covered with a blanket to prevent it from getting 

cold. The Finapres cuff was repositioned until a stable waveform was achieved with 

the servo-adjust on, waveforms being considered stable when the period between 

servo-adjusts was >30 beats duration (Hope et al 2004). After all measurements were 

stable for 15 min., Finapres and Millar transducer calibration signals were recorded, 

followed by continuous data recording on digital audiotape (Sony PC 208AX, Tokyo, 

Japan) for two ten minute periods. A second calibration of the Finapres and Millar 

transducer was performed before the second recording. To avoid interruption of the 

recorded signals, the self-adjusting servo of the Finapres was switched off at the 

beginning of each recording. 

    

 

2.2 Data analysis  

Data were downloaded in real time onto a dedicated personal computer. An FFT was 

used to convert the Doppler signals into maximum frequency velocity envelopes with 

a 5 ms window resolution. The two BP signals, ECG and transcutaneous CO2 were 
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sampled at 200 samples/s per channel. The data were visually inspected to select 

recordings that had good quality waveforms for both CBFV channels, as well as BP 

from the Finapres (BPFIN) and aorta (BPAO) uninterrupted for at least 7 min. In 

patients who had two good quality recordings, only the longest recording was used for 

analysis. The CBFV signal was filtered with a 5-point median filter and all signals 

were low-pass filtered with a zero-phase eighth-order Butterworth digital filter with a 

cut-off frequency of 20 Hz. Each cardiac cycle was automatically marked to 

determine the R-R interval from the ECG tracing. Heart rate was calculated from the 

R-R interval. For all available cardiac cycles in each recording, spline interpolation 

was used to resample the data with a time interval 0.2 s to create a uniform time base. 

 

The autoregulation index (ARI) proposed by Tiecks et al (1995) was used to simulate 

and also to identify the temporal variability of CA. The Finapres or intra-aortic mean 

BP signal, represented generically by P(t), was normalized:  

 

CrCPP

PtP
tdP

M

M)(
)(         (1) 

 

where PM is the mean value of P(t) for the data window. CrCP is the critical closing 

pressure, and was chosen as 12 mmHg (Tiecks et al 1995). The model predicted 

velocity, VT(t) is given by 

 

)()(1)( 2 txKtdPVtV MT        (2) 

 

where K is a parameter reflecting autoregulatory gain and VM is the mean velocity for 

the entire record.  x1(t) and x2(t) are intermediate variables given by: 
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f, D, and T represent the sampling frequency, damping factor, and time constant 

parameters, respectively. Specific combinations of values of K, D, and T were used to 

generate 10 grades of dynamic autoregulation, expressed by the ARI, ranging from 0 

(absence of autoregulation) to 9 (best autoregulation) (Tiecks et al 1995). 

 

Tieck´s model was initially proposed to represent the CBFV response to a negative 

step change in BP, but it has been shown that it can also fit the CBFV-BP dynamic 

relationship during spontaneous fluctuations in BP or other challenges such as the 

Valsalva manoeuvre or lower body negative pressure (Panerai et al 2001). To 

simulate CBFV signals with constant values of ARI, P(t) is taken as the input variable 

and the values of K, D, T, corresponding to the selected value of ARI, were used with 

equations (2-4) to generate the velocity signal. To simulate velocity signals with time-

varying CA, the ARI was increased stepwisely from 0 to 9, in steps to 3, each step 

lasting 120 s (Fig. 3). Finally, the simulated velocity signal VS(t) was given by: 

 

)()()( ttVtV TS                  (5) 

 

where VT(t) is given by equation (2) and  η(t) is band-filtered random noise obtained 

by low-pass filtering gaussian white noise with a cutoff frequency of 0.3 Hz. 

 

Given a pair of pressure and velocity signals, an ARMA model (Ljung and 

Soderstrom 1983) was used to calculate the velocity impulse and step responses as the 

first step to the estimation of the ARI index. In a previous study, the ARMA model 

was found to provide more reliable values of ARI than direct fitting ot Eqs. 1-4 to 

time-series of V(t) and P(t) (Panerai et al 2003b). This approach was used with both 

measured and simulated velocity signals, and for both BPFIN and BPAO. 

 

The general structure of these models is 
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where the ai and bj are real coefficients and [M,Q] are the model orders (Ljung and 

Soderstrom 1983). For each data segment, the model coefficients were estimated by 

the least-square method. Previous studies have indicated that a [2,3] model was the 

most suitable for modeling dynamic CA (Liu et al 2003, Panerai et al 2003b). 

 

After obtaining the best fit for a data window of duration NW, the impulse and step 

responses were calculated from ai and bj, and the velocity step response generated by 

the ARMA model was matched to the most appropriate of the 10 step responses given 

by Tieck's model, using the correlation coefficient, but taking into account only the 

first Nfit = 12 s of the step response. The implications of this choice will be discussed 

later. Once a best-fit curve was selected, a parabolic interpolation was performed to 

estimate the value of ARI to one decimal place. To obtain time-varying, continuous 

values of ARI, a NW = 60 s sliding window was used and sequential estimates were 

obtained at 0.6 s intervals. Due to the duration of the window, estimates of ARI could 

not be obtained for the first and last 30 s of each record. The corresponding time 

series was represented by ARI(t). 

 

Three separate studies were performed: i) Simulation of constant values of ARI, ii) 

simulation of step changes in ARI(t), as a staircase varying from 0 to 9 in steps of 3, 

and iii) estimation of ARI(t) from real data to characterize its variability and the 

influence of the BP source, that is BPFIN and BPAO. In simulation studies, the velocity 

signal-to-noise ratio (SNRV) was expressed in decibels, that is 

 

2

10 2
10log V

V

N

SNR         (7) 

 

where σV
2
 and σN

2
 are the velocity and noise variances, respectively. BPAO was used to 

generate VT(t) signals and corresponding values of ARI(t) were extracted using both 

BPFIN and BPAO after noise was added to VT(t) (eq. 5). Only one simulated VT(t) signal 

was generated for each subject for each value of ARI. The appropriate SNRV (eq. 7) 

was found by comparing the coherence function between BPAO and VS(t) with values 

of coherence between CBFV and invasive aortic BP previously found with measured 

data. At the frequency of 0.1 Hz this representative value of the squared coherence 
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was chosen as  γ
2
=0.65 (Sammons et al 2007). For simulations and estimates derived 

from patient data, the continuous ARI(t) was averaged for each subject ( ( )ARI t ) and 

the population mean ± SD was calculated, as well as the intra-subject variability, 

represented by the standard deviation of ARI(t) for each recording. With patient data, 

( )ARI t  was also compared to single estimates of ARI (ARISINGLE) obtained with the 

ARMA model using the entire data record. 

 

 

2.3 Statistics  

All comparisons used exactly the same number of cardiac cycles extracted from the 

Finapres and intra-aortic measurements.  Differences between estimates of ARI were 

tested with Student‟s paired t-test. Differences between intra-subject variabilities were 

tested with the F-test for the ratio of two variances. Differences between probability 

distributions were tested with the χ
2
 test. Pearson correlation coefficients were also 

calculated and tested with the log transformation followed by the Z-test. Linear 

regressions between intra-subject coefficients of variation (CoV) of ARI(t) and CoV 

BP were performed to test for the influence of BP variability on the dispersion of 

ARI(t) values. A value of p<0.05 was considered significant. 

 

 

3. Results 

 

A total of 45 patients were recruited, but good quality Doppler recordings for both 

MCAs were only obtained in 27 subjects. The main reason for rejection was the 

absence of a suitable acoustic window in one or both sides. Table 1 gives the 

demographic and baseline characteristics of the population studied.  

 

3.1 Simulation study  

In simulations with fixed values of ARI, reducing the SNRV led to increases in ARIAO 

bias and also in intra-record variability as expressed by the CoV in Fig. 1. These 

changes were highly dependent on the value of ARI selected. The highest bias and 

CoV were observed for ARI = 0 and the smallest for ARI = 9 (Fig. 1). For ARI = 5, 

the bias remained relatively stable between 0 and 10 dB and the CV tended to show 

an asymptotic behaviour for higher values of SNRV (Fig. 1). The population 
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cumulative probability distributions for the continuous estimates of ARI for these 

fixed-value simulations are given in Fig. 5A. 

 

For ARI=5, the coherence criterion of γ
2 

(0.1Hz)
 
= 0.65 was met for simulations with 

SNRV=3 dB. The corresponding mean ± SD values of coherence for simulations with 

SNRV = 0 dB and 10 dB were γ
2
 = 0.56 ± 0.15 and 0.88 ± 0.09, respectively. Figure 2 

shows mean ± SD of ( )ARI t  and intra-subject variability for simulations with fixed 

values of ARI for SNRV=3 dB. In general, ARIFIN was above and ARIAO was below 

the reference value of ARI. Mean values of ARIFIN were significantly greater than 

corresponding values derived from aortic pressure for reference ARI ≤ 8 (p<0.05). 

The bias increased as the reference value of ARI was reduced. The intra-subject 

variability was significantly greater for ARIFIN in relation to ARIAO for reference ARI 

≤ 3 (p<0.05). Both estimates of ARI showed reduced variabilities at higher values of 

reference ARI (Fig. 1, bottom).  

 

Figure 3 represents the population ensemble average ARI(t) for the time-varying 

staircase simulation, together with representative data from a 65 year-old male 

subject. Both mean ARIFIN(t) and mean ARIAO(t) showed considerable differences in 

relation to the correct value of ARI, but for ARIAO(t) the error decreases for higher 

values of ARI. For simulations with SNRV ≥ 20 dB, ARIAO(t) followed the correct 

value with much greater accuracy, but the ARIFIN(t) error remained approximately the 

same. At each transition of the reference ARI(t) staircase, there was a slow response 

for both estimates of ARI(t), due to the duration of the estimation window which was 

60 s in all cases (Fig. 3B). 

 

3.2 Patient data  

Representative estimates of ARI(t) are given in Fig. 4 for both MCAs. Most subjects 

showed wide variations in ARI(t), often including values of ARI=0 and ARI=9 in the 

same segment of data as shown in Fig. 4E and 4F. For the population as a whole, 

intra-subject mean values of ARI(t) were not significantly different from estimates 

from the entire record (Table 2), but the intra-subject variability was considerable, as 

expressed by the CoV in Table 2. ARIFIN was significantly higher than ARIAO for 

both MCAs (right p<0.05; left p<0.01). Figure 5B complements the information in 
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Table 2 by showing the population cumulative probability distribution for ARI(t). 

Noteworthy, estimates derived from both the Finapres and intra-aortic pressure had 

very similar incidence of values in the [0-0.5] bin range. 

 

Highly significant correlation coefficients (p<0.001) were obtained between ARI(t) 

estimates from the right and left MCA for both ARIFIN and ARIAO, respectively 0.60 ± 

0.20 and 0.56 ± 0.22. Likewise, there was good correlation between the invasive and 

non-invasive estimates for each MCA side, corresponding to 0.70 ± 0.21 for the right 

MCA and 0.74 ± 0.22 for the left MCA. A sensitivity analysis performed with values 

of NW above and below 60 s and values of Nfit above and below 12 s led to slightly 

smaller correlation values in comparison with the values above. On the other hand, 

reducing Nfit to 6 s reduced the coefficient of variation (Table 2) by approximately 

40% (data not shown). 

 

Linear regressions between intra-subject CoV of ARI(t) for both MCAs and CoV of 

BP were not significant for either BPAO or BPFIN.  
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4. Discussion 

 

4.1 Influence of the Finapres 

In a previous study, estimates of dynamic CA obtained with the Finapres were shown 

to produce single values of ARI that were greater than corresponding measures 

derived from intra-aortic BP recordings, although the differences were relatively 

small (Sammons et al 2007). However, there were reasons to suspect that the Finapres 

could lead to much greater differences in continuous estimates of dynamic CA. First, 

reducing the data window for estimating parameters like the ARI is bound to increase 

the variability of estimates and their bias. Second, previous attempts to extract 

continuous estimates of ARI, using only the BPFIN as the input signal, showed that 

sudden drops of ARI(t) were a fairly frequent occurrence and led to the hypothesis that 

such nonphysiological behaviour could be caused by temporary malfunction of the 

Finapres (Panerai et al 2003b). Finally, another recent study showed that despite a 

null-bias between the Finapres and intra-aortic BP, relatively large transient 

differences in systolic, diastolic and mean BP can occur, lasting approximately 20 s 

(Panerai et al 2007). These transient drifts of the Finapres could then lead to much 

larger localized differences in ARI(t) when compared to estimates derived from the 

entire record (ARISINGLE). These expectations were not supported by the results of this 

investigation. In the simulations (Figs 2 & 3), ARIFIN was significantly higher that 

ARIAO, but this could have been due to using BPAO as the reference signal with added 

noise. Nevertheless, the differences were not greater than previously observed for 

estimates derived from the entire record (Sammons et al 2007) using real patient data. 

Likewise, both the intra-subject variability and the CoV did not show significant 

differences between BPFIN and BPAO estimates (Table 2) and the correlation 

coefficients between right and left MCA estimates of ARI(t) were not significantly 

different from those for ARIAO, either. As shown in Fig. 5B, the probability 

distributions of ARIFIN and ARIAO were similar and the number of „crashes‟ to ARI = 

0 (Figs. 4E & 4F) were also equivalent as shown by the % of values for ARI < 0.5. 

 

 

4.2 Physiological significance of short-term changes in cerebral autoregulation 

The conclusion that the Finapres does not distort continuous estimates of ARI, in 

comparison with values extracted with BPAO, provides reassurance about the validity 
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of previous studies of the longitudinal variability of dynamic CA, that were performed 

using only the Finapres (Chen et al 2006, Giller and Mueller 2003, Latka et al 2005, 

Liu et al 2005, Mitsis et al 2004, Panerai et al 2003a, 2003b). The problem of 

validating methods to describe the non-stationarity of dynamic CA can be appreciated 

when it is considered that a „gold standard‟ for dynamic CA does not exist, even 

under the assumption that CA does not show short-term variability (Panerai 1998). 

Under these circumstances, the use of surrogate data can provide some indication 

about the reliability of time-varying estimates of dynamic CA. In other words, given 

the patterns of variability exemplified by the subject in Fig. 4, to what extent can we 

trust that such wide short-term changes are truly physiological? If that is not the case, 

then what is being observed is the result of inappropriate methods (e.g. ARMA + 

ARI), noise, or a combination of both. 

 

In the absence of noise, simulations with a fixed value of ARI showed a negligible 

bias for estimates of ARI(t) obtained with the ARI model fitted to the CBFV step 

response obtained with the ARMA method (Fig. 1). Although Simpson et al (2004) 

showed that the Tiecks model discriminates poorly between different values of ARI 

for estimates derived from spontaneous fluctuations in BP and CBFV, this problem 

should be much attenuated by first calculating the CBFV step response therefore 

avoiding the application of equations (1-4) directly to the data (Panerai et al 2003b). 

Thus, accepting that the estimation of ARI by means of the CBFV step response is an 

unbiased and consistent estimator as shown by the results in Fig. 1, the next question 

is to assess its robustness to noise. As shown by Figs. 1 and 2, the influence of noise 

is dependent on the value of ARI. It is not entirely clear why the bias for ARI=0 is 

much higher than corresponding values for ARI = 9, given that both are in the 

extremes of the closed interval [0,9]. On the other hand, it is understandable that the 

CoV for ARI=0 should be the highest (Fig. 1B) since the denominator would tend to 

be lower than for other values of ARI. Despite reducing the SNRV to 0 dB, the bias 

observed for values of ARI=5 remained relatively low and the CV reached a 

maximum of 40%. 

 

Although the true SNRV of CBFV is not known, an approximation can be derived 

from the coherence function between BP and CBFV. Several research groups have 

shown that the coherence tends to be less than 0.5 at very low frequencies (VLF < 
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0.07 Hz), rising above 0.5 at higher frequencies (>0.1 Hz) (Panerai et al 1998, Panerai 

et al 2006, Zhang et al 1998). The low coherence at VLF has been attributed to the 

non-linear relationship between CBFV and BP due to changes in CVR (Panerai et al 

2006). For this reason the VLF band is not suitable for estimating the SNRV, but this 

problem should not exist at higher frequencies where dynamic CA is not as effective. 

Unfortunately, the limitation in this case is the relatively low amount of spectral 

power in the BP and CBFV signals which would make estimates less reliable at 

higher frequencies. As a compromise, the coherence at 0.1 Hz was chosen to identify 

the equivalent level of band-filtered noise to be added to the simulated, noise-free 

velocity signal generated with eqs. (1-4). Using previously reported values of 

coherence between BPAO and CBFV, the appropriate SNRV was found to be 3 dB. 

Noteworthy, this is a worst case condition because the true coherence between BPAO 

and CBFV is likely to be higher than 0.65 when the contribution of CVR (or RAP – 

resistance-area product) is taken into account (Panerai et al 2006). Performing 

realistic simulations with SNRV = 3 dB confirmed the dependence of the bias and 

variability on the simulated fixed value of ARI (Fig. 2). Moreover, the corresponding 

probability distributions (Fig. 5A) suggest that sudden drops to ARI = 0 (Figs. 4E & 

4F) do not tend to occur for values of ARI ≥ 4. By interpolation, the equivalent value 

of fixed ARI that would lead to the same incidence of zero values as in the real data 

(Fig. 5B) would be ARI = 2.3. One possible interpretation, is that sudden drops, or 

„crashes‟ to ARI = 0 can take place, due to the presence of noise,  when the true 

physiological ARI approaches values ≤ 3 .  

 

The evidence provided by simulation studies, that short-term variability in continuous 

estimates of dynamic CA reflect true physiological changes, is supported by previous 

reports in the literature. Czosnyka et al (1997) adopted a correlation index between 

BP and ICP (PRx) with a moving window of 200 s. They observed both short-term 

and day-to-day changes in CA in head injury patients, but some of those changes 

could have been caused by physiological instability in critically ill patients. Under 

more stable physiological conditions, Mitsis et al (2004) showed longitudinal 

fluctuations in frequency-domain estimates of multivariate, non-linear, first- and 

second-order kernels for the effects of BP and PaCO2 on CBFV, using a sliding 

window of 6 min. duration. Using the phase difference between CBFV and BP, as an 

indicator of dynamic CA (Birch et al 1995, Diehl et al 1995), Latka et al (2005) 
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performed wavelet analysis to obtain time-varying changes in phase which showed 

very rapid fluctuations, similarly to that we observed with ARI(t). Instantaneous 

changes in phase were also reported by Chen et al (2006), using a Hilbert transform 

approach. Large intra-subject variability in phase could be observed in healthy 

subjects at rest (their Fig. 3c), but unfortunately CoV or other measures of variability 

were not presented. Giller and Mueller (2003) performed time-frequency analysis 

showing an intermittent agreement between BP and CBFV in healthy subjects. These 

findings let the authors to conclude, in their own words, that “autoregulation is 

impaired intermittently in normal subjects, challenging the belief that autoregulation 

is normally invariant and stable”. Finally, to avoid the interference of any system 

identification methods, large spontaneous transients in BP were compared to 

corresponding transients in CBFV. Dramatic differences in temporal patterns also 

suggested that dynamic CA can present major longitudinal changes in healthy 

individuals  (Panerai et al 2003a). Despite the need to replicate these isolated 

findings, in this case the lack of standardization can be seen as beneficial since it 

shows that short-term variability of dynamic CA is manifested through a diversity of 

methodological approaches. 

 

In summary, continuous estimates of dynamic CA seem to reflect spontaneous 

fluctuations of autoregulatory mechanisms at rest, but considerable more work is 

needed to shed light on the physiological processes involved and to improve and 

standardize analytical methods. 

 

4.3 Limitations of the study 

Doppler ultrasound measurements of CBFV will only reflect changes in CBF if the 

diameter of the insonated artery (i.e. MCA) remains constant. Several previous studies 

have failed to demonstrate that major changes in MCA diameter can take place during 

recordings at rest, even in situations involving large changes in BP and PaCO2 

(Newell et al 1994, Serrador et al 2000). Nevertheless, changes in MCA diameter 

could modulate the CBFV beat-to-beat signal and contribute to the short-term 

variability of ARI(t) or other continuous measures of dynamic CA. This possibility is 

not very likely though, because dynamic CA is mainly manifested through temporal 

characteristics of beat-to-beat patterns of CBFV, such as the phase lead in relation to 

BP, rather than its absolute amplitude. 
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The use of spontaneous BP fluctuations to obtain estimates of dynamic CA can only 

produce reliable results if there is enough „input power‟, or BP variability in the first 

instance (Liu et al 2005, Panerai et al 2001, Panerai et al 2006, Simpson et al 2004, 

Zhang et al 1998)). ABP variability is thought to decrease with ageing and for this 

reason, given the mean age of our population (Table 1), it could lead to unreliable 

estimates of ARI(t) in our case, to the extent of producing the sudden drops in ARI(t) 

shown in Figs. 4 and 5. There are several reasons why this possibility was unlikely. 

First, as shown in Fig. 4, during the sudden drops in ARI(t), ABP variability is no 

different from other periods when ARI(t) was more stable. We compared the CoV of 

ABP of our subjects with data from previous studies which included a wider range of 

ages (Panerai et al 2001, 2003a, 2003b, 2006) and found similar distributions for the 

CoV of BP. Finally, linear regression analyses of the intra-subject variability of ARI(t) 

as a function of BP variability (CoV) were not significant and recordings with 

elevated dispersion of ARI(t) values occurred for cases with low, medium and high BP 

variability. 

 

For ethical reasons, measurement of intra-aortic BP was only possible in patients 

undergoing catheterization for clinical indications. The subjects we studied had 

coronary artery disease and were likely to have an increased probability of having 

both extracranial and intracranial atherosclerotic disease. For the study of the 

influence of estimates derived from BPFIN, in comparison with corresponding 

measures obtained from BPAO, each subject acted as his/her own control and the 

levels of agreement observed suggest that their upper peripheral circulation was free 

from severe occlusive disease. Their mean values of ARI (Table 2) were also in good 

agreement with other studies based on healthy subjects, which seems to suggest the 

absence of severe carotid artery disease (Panerai et al 2001, Tiecks et al 1995, White 

and Markus 1997). Future studies are needed to compare the short-term variability of 

ARI(t) found in this investigation with that of healthy individuals and patients with 

cerebrovascular diseases such as stroke or intracranial hypertension. 

 

More work is also required on several methodological aspects of the approach 

adopted to quantify the temporal evolution of dynamic CA. Simulations of the 

influence of additive noise using random band-pass gaussian noise are only an 
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approximation since the true nature and pathways of other physiological influences, 

such as fluctuations in PaCO2, which would behave as „noise‟ in the identification of 

the relationship between CBFV and BP, are not known. A moving window of 60s 

duration affords 100 data points with sampling interval of 0.6 s which should be 

enough to provide reliable estimates of ARI(t) when it is taken into account that the 

original proposal to derive the ARI from thigh cuff manoeuvres was based on a 30 s 

data window (Tiecks et al 1995). Our initial tests did not show significant 

improvement or deterioration when NW was changed to 120 s or 30 s. One obvious 

consequence of the choice of NW though is the temporal resolution of ARI(t) estimates 

as shown in Fig. 3B. For bedside monitoring, this time delay is unlikely to be a 

serious problem, but shorter time windows might be beneficial in studies involving 

interventions such as head-up tilt, sit-to-stand manoeuver or exercise. The data 

window was centralized at the current sample for offline analysis (Fig. 3) but in real 

time applications only past samples could be used and the time delay will shift 

accordingly. Finally, the choice of ARI as a measure of dynamic CA is not critical 

either since other parameters like the CBFV-BP phase difference of the CBFV step 

response would be equally valid. The advantages of using the ARI though, are a 

previously validated scale (Tiecks et al 1995) and its popularity in clinical studies of 

dynamic CA (Dawson et al 2000, Panerai et al 2004, White and Markus 1997). 

 

5. Conclusions 

 

Continuous estimates of dynamic CA obtained from noninvasive measurements of 

beat-to-beat BP in the finger are not substantially different from corresponding values 

derived from intra-aortic BP recordings. Surrogate data showed that a moving 

window ARMA method combined with the estimation of an index of dynamic CA 

(ARI) can reproduce step changes in CA, but the presence of noise in the velocity 

signal can lead to increasing bias and variability of estimates, mainly at low values of 

ARI. Further research is needed on the physiology of short-term variability of 

autoregulatory mechanisms and also on the suitability of different techniques for 

analysis of short-term fluctuations in healthy subjects and patients with 

cerebrovascular disease. 

 

 



 17 

 

Acknowledgements 

 

We are grateful to Professor David H. Evans and Dr. Lingke Fan for development of 

the Doppler analyser software. This work was supported by the UK Engineering and 

Physical Research Council Grant EP/C001656/1. 

 

 

References 

 

Aaslid R, Lindegaard KF, Sorteberg W and Nornes H 1989 Cerebral autoregulation 

dynamics in humans Stroke 20 45-52 

Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F and Neil-Dwyer G 1995 

Assessment of autoregulation by means of periodic changes in blood pressure 

Stroke 26 834-8371995 

Busija DW and Heistad DD 1984 Factors involved in the physiological regulation of 

the cerebral circulation  Rev. Physiol. Biochem. Pharm. 101 162-211 

Chen Z, Hu K, Stanley HE, Novak V and Ivanov PC 2006 Cross-correlation of 

instantaneous phase increments in pressure-flow fluctuations: applications to 

cerebral autoregulation Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73 031915 

Epub 2006 March 15 

Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D and Pickard JD 1997 

Continuous assessment of the cerebral vasomotor reactivity in head injury 

Neurosurgery 41 11-19 



 18 

 

Dawson SL, Blake MJ, Panerai RB and Potter JF 2000 Dynamic but not static 

cerebral autoregulation is impaired in acute ischaemic stroke Cerebrovasc. Dis. 

10 126-132 

Diehl RR, Linden D, Lucke D and Berlit P 1995 Phase relationship between cerebral 

blood flow velocity and blood pressure. A clinical test of autoregulation Stroke 

26 1801-1804 

Giller CA and Mueller M 2003 Linearity and non-linearity in cerebral hemodynamics 

Med. Eng. & Phys.  25 633-646 

Gotoh F, Fukuuchi Y, Okayasu H, Tanaka K, Suzuki N and Kobari M 1982 Rhythmic 

changes in diameter of pial vessels and function fo autonomic nervous system. 

In: Cerebral Blood Flow: Effects of Nerves and Neurotransmitters, edited by 

Heistad DD.  Amsterdam: Elsevier North Holland p. 409-417. 

Hope SA, Meredith IT, Cameron JD 2004 Effect of non-invasive calibration of radial 

waveform on error in transfer-function-derived central aortic waveform 

characteristics Clin. Sci. 107 205-211  

Jones SC, Williams JL, Shea M, Easley KA and Wei D 1995 Cortical cerebral blood 

flow cycling: anesthesia and arterial pressure  Am. J. Physiol. Heart Circ. 

Physiol.  268 H569-H575  



 19 

 

Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ 2005 Phase 

dynamics in cerebral autoregulation  Am. J. Physiol. Heart Circ. Physiol. 289 

H2272-H2279  

Liu J, Simpson DM and Allen R 2005 High spontaneous fluctuations in arterial blood 

pressure improves the assessment of cerebral autoregulation Physiol. Meas. 26 

725-741 

Liu Y, Birch AA and Allen R 2003 Dynamic cerebral autoregulation assessment 

using an ARX model: comparative study using step response and phase shift 

analysis  Med. Eng. & Phys. 25 647-653 

Ljung L and Soderstrom T 1983 Theory and practice of recursive identification. 

Cambridge, Massachusetts: MIT Press 

Mitsis G, Poulin MJ, Robbins PA and Marmarelis VZ 2004 Nonlinear modeling of 

the dynamic effects of arterial pressure and CO2 variations on cerebral blood 

flow in healthy humans  IEEE Trans. Biomed. Eng. 51 1932-1943  

Newell DW, Aaslid R, Lam A, Mayberg TS and Winn HR 1994 Comparison of flow      

and velocity during dynamic autoregulation testing in humans Stroke 25 793-

797 

Novak V, Yang ACC, Lepicovsky L, Goldberger AL, Lipsitz LA and Peng CK 2004 

Multimodal pressure-flow method to assess dynamics of cerebral autoregulation 

in stroke and hypertension BioMed. Eng. OnLine 3 39 



 20 

 

Panerai RB 1998 Assessment of cerebral pressure autoregulation in humans - a review 

of measurement methods  Physiol. Meas. 19 305-338 

Panerai RB, Carey BJ and Potter JF 2003a Short-term variability of cerebral blood 

flow velocity responses to arterial blood pressure transients  Ultrasound  Med. 

Biol. 29 31-38 

Panerai RB, Dawson SL, Eames PJ and Potter JF 2001 Cerebral blood flow velocity 

response to induced and spontaneous sudden changes in arterial blood pressure 

Am. J. Physiol. Heart Circ. Physiol.  280 H2162-H2174 

Panerai RB, Eames PJ and Potter JF 2003b Variability of time-domain indices of 

dynamic cerebral autoregulation Physiol. Meas. 24 367-381 

Panerai RB, Eames PJ and Potter JF 2006 Multiple coherence of cerebral blood flow 

velocity in humans Am..J. Physiol. Heart Circ. Physiol.  291 H251-H259  

Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T and Evans DH 2004 Association 

between dynamic cerebral autoregulation and mortality in severe head injury 

Brit. J. Neurosurg. 18 471-479 

Panerai RB, Rennie JM, Kelsall AWR and Evans DH 1998 Frequency-domain 

analysis of cerebral autoregulation from spontaneous fluctuations in arterial 

blood pressure Med. & Biol. Eng. & Comput.  36 315-322 



 21 

 

Panerai RB, Sammons EL, Rathbone WE, Bentley S, Potter JF and Samani NJ 2007 

Transient drifts between Finapres and continuous intra-aortic measurements of 

arterial blood pressure Blood Pres. Monit. 12 369-376 

Paulson OB, Strandgaard S and Edvinson L 1990 Cerebral autoregulation 

Cerebrovasc. Brain Metab. Reviews 2 161-192 

Sammons EL, Samani NJ, Smith SM, Rathbone WE, Bentley S, Potter J and Panerai 

RB 2007 Influences of noninvasive peripheral arterial blood pressure 

measurements on assessment of dynamic cerebral autoregulation  J. Applied 

Physiol. 103 369-375 

Serrador JM, Picot PA, Rutt BK, Shoemaker JK and Bondar RL 2000 MRI measures 

of middle cerebral artery diameter in conscious humans during simulated 

orthostasis Stroke 31 1672-1678 

Simpson DM, Panerai RB, Ramos EG, Lopes JMA, Marinatto MNV, Nadal J and 

Evans DH 2004 Assessing blood flow control through a bootstrap method. IEEE 

Trans. Biomed. Eng. 51 1284-1286 

Tiecks FP, Douville C, Byrd S, Lam AM and Newell DW 1996 Evaluation of 

impaired cerebral autoregulation by the Valsalva maneuver Stroke 27 1177-1182 

Tiecks FP, Lam AM, Aaslid R and Newell DW 1995 Comparison of static and 

dynamic cerebral autoregulation measurements Stroke 26 1014-1019 



 22 

 

Vern BA, Schuette WH, Leheta B, Juel VC and Radulovacki M 1988 Low-frequency 

oscillations of cortical oxidative metabolism in waking and sleep J. Cerebr. 

Blood Flow Metab. 8 215-226 

White RP and Markus HS 1997 Impaired dynamic cerebral autoregulation in carotid 

artery stenosis Stroke 28 1340-1344 

Zhang R, Zuckerman JH, Giller CA and Levine BD 1998 Transfer function analysis 

of dynamic cerebral autoregulation in humans Am. J. Physiol. Heart Circ. 

Physiol.  274 H233-H241 



 23 

 

Table 1. Demographics and baseline characteristics of the study population (N=27). 

 

Parameter 
Mean ± SD or 

number 

Gender (M/F) 26/1 

Age (years) 61.4 ± 11.2 

Body mass index (kg.m
-2

) 27.4 ± 3.5 

Height (m) 1.74 ± 0.05 

Weight (kg) 83.0 ± 11.2 

mean BPFIN  (mmHg) 94.0 ± 16.0 

systolic BPFIN  (mmHg) 138.5 ± 23.7 

diastolic BPFIN  (mmHg) 72.8 ± 13.4 

mean BPAO  (mmHg) 96.5 ± 14.5 

systolic BPAO  (mmHg)   134.2 ± 25.8 

diastolic BPAO  (mmHg) 69.7 ± 10.7 

CBFVR  (cm.s
-1

) 42.1 ± 13.0 

CBFVL  (cm.s
-1

) 45.7 ± 15.5 

Heart rate (bpm)     58.6 ± 8.3 

TcCO2  (mmHg) 27.4 ± 9.3 
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Table 2 – Population mean ± SD of continuous and punctual estimates of ARI. ARISINGLE 

was calculated with NW equal the duration of the entire recording. (See Methods). 

 

Parameter 
Intra-aortic pressure Finapres 

Right MCA Left MCA Right MCA Left MCA 

ARISINGLE 4.95 ± 2.27 5.25 ± 2.18 5.73 ± 2.46 5.76 ± 2.37 

( )ARI t  4.88 ± 1.47
§
 4.90 ± 1.61

#
 5.30 ± 1.52 5.42 ± 1.61 

intra-subject variability 2.44 ± 0.59 2.24 ± 0.65 2.51 ± 0.75 2.32 ± 0.80 

coefficient of variation (%) 54.3 ± 19.0 52.4 ± 25.7 53.4 ± 27.2 48.9 ± 26.6 

 
§
 p < 0.05 in relation to the Finapres (right MCA) 

#
 p < 0.01 in relation to the Finapres (left MCA) 

 

 

 

 

 

. 
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Legends 

 

 

Figure 1. Influence of velocity signal-to-noise ratio on simulations with fixed values of ARI. 

A. ARIAO bias (in units of ARI) in comparison with reference values of ARI for ARI = 0 

(circles), 5 (squares) and 9 (triangles), respectively. B. Coefficient of variation of intra-

subject variability. Error bars represent ± 1 SEM. 

 

Figure 2. Influence of ARI on estimated intra-subject mean values of ARI (top) and 

variability (bottom) in simulations with fixed value of ARI (Reference ARI) for SNRV=3 dB. 

Continuous ARI estimates were derived with the Finapres (black columns) or intra-aortic BP 

(grey columns) recordings from 27 subjects. The error bars represent ± 1 SD. 

 

Figure 3. A. Representative estimate of continuous ARI for simulation of time-varying 

staircase ARI. The mean aortic BP for this subject was used with the staircase changes in 

ARI to generate the CBFV signal shown at the top. The ARI(t) estimates at the bottom were 

derived from BPAO (solid line) and BPFIN (dotted line).B. Population mean values (N=27) of 

continuous ARI for estimates obtained with mean aortic BP (solid line) and the Finapres 

(dotted line). The moving window duration for estimating the ARI was 60 s and the CBFV 

SNRV was 3 dB. The original staircase time-varying ARI signal is shown by the broken line. 

The error bars represent the largest ± 1 SD in each case. 

 

Figure 4. Time-series of BPAO (A), BPFIN (B), right (C) and left (D) CBFV and right (E) and 

left (F) estimates of ARI(t) in a 58 year old male subject derived from BPAO (solid line) and 

BPFIN (interrupted line). 

 

Figure 5. Population cumulative probability distributions of ARI(t). A. Simulations of fixed 

values of ARI for SNRV = 3 dB. B. Distributions obtained with patient data for ARIFIN 

(circles) and ARIAO (triangles), for both right (closed symbols) and left (open symbols) 

MCA. 
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