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ABSTRACT 

Aims 
Since 1990 data have been collected by the Trent Neonatal Survey (TNS) on neonatal 
intensive care activity within the area of the former Trent Regional Health Authority.  While 
TNS is a unique data set, no systematic investigation had previously been undertaken to 
ensure that the most appropriate statistical methods were applied to its analysis.  In this thesis, 
methods for the analysis of in-unit mortality rates were reviewed, critically appraised and, 
where appropriate, developed in order to identify the most suitable methods. 

Methods 
Statistical methods were illustrated using data from infants born in the years 2000 to 2002, at 
32 completed weeks gestational age or less, admitted to one of the sixteen neonatal intensive 
care units (NICUs) within the area.  The methods were discussed and risk-adjustment 
methods were explored to allow for differences in disease severity between the units. 

Results 
Simple descriptive approaches and statistical models are presented.  In particular, summary 
statistics derived from logistic regression models were explored, including odds ratios and 
statistics from both direct and indirect standardization.  In the final approach, logistic 
regression models were applied to obtain estimated standardized mortality ratios (SMRs) for 
each NICU.  Proposed methods to estimate confidence intervals for the SMR were 
investigated through a simulation study and by application to the TNS data, with the method 
proposed by Hosmer and Lemeshow (1995) applied in the final models.  The use of Bayesian 
methods was proposed and a model developed allowing the appropriate estimation of all 
uncertainty. 

Conclusions 
The use of SMRs was proposed for the reporting of mortality in future TNS annual reports.  
The advantages of a Bayesian approach, with the ability to make probability statements about 
the SMR, were also emphasised.  Further work is required into the effect of specification of 
prior distributions before this method can be recommended routinely. 
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BCa  Bias-corrected and accelerated bootstrap (§5.6.3) 
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CMF  Comparative Mortality Figure (§5.5.1) 
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TNS  Trent Neonatal Survey (§2.2) 
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Chapter 1: INTRODUCTION 

1.1 Aims of the Thesis 

Since 1990, data have been collected, under the auspices of the Trent Neonatal Survey (TNS), 

on activity in the neonatal intensive care units (NICUs) within the area of the former Trent 

Health Authority (Derbyshire, Leicestershire, Lincolnshire, Nottinghamshire, South 

Humberside and South Yorkshire).  TNS is a population-based survey of neonatal intensive 

care provision in the former Trent Health Authority Region, and is described in more detail in 

§2.2.   

In the TNS annual reports risk-adjusted in-unit mortality rates are given for each neonatal 

unit.  The information from TNS forms a unique data set in terms of size, completeness and 

history, but no systematic investigation has previously been undertaken to ensure that the 

most appropriate statistical methods are applied to its analysis.  This thesis aims to review, 

critically appraise, and develop where appropriate, possible methods for analysing these data 

in order to produce the most suitable summary of in-unit mortality, whilst recognising the 

differing case-mix of the units.  The sensitivity of the results to the statistical methodology 

used is of interest.  These methods will be illustrated and developed with data from infants 

born in the years 2000 to 2002, at 32 completed weeks gestational age or less, and who were 

admitted to NICUs within the area. 

This thesis does not aim to discuss in great depth the rationale for such provider profiling; 

rather the statistical methodology will be of more interest.  However, in order to critically 

appraise the various statistical methods, some discussion of the wider issues surrounding 

provider profiling is necessary. 

This Chapter introduces the thesis.  A brief introduction to provider profiling is given in 

Section 1.2.  Section 1.3 discusses general issues in the process of producing such profiles by 

considering the three stages: measurement, analysis and action.  The subsequent structure of 

the thesis is described Section 1.4 and Section 1.5 comprises a summary of the Chapter. 
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1.2 Background to Provider Profiling 

There is great interest in comparing the methods and outcomes of health care providers; 

whether they are individuals such as surgeons or physicians, institutions such as hospitals or 

wards, or indeed organisations such as primary care trusts.  As patients we are keen to obtain 

the ‘best’ and most appropriate treatment for us in the hope of obtaining the ‘best possible’ 

outcome.  As citizens we expect that health care providers make the ‘best possible’ use of the 

resources they are given.  These are understandable demands that we make on providers and it 

is equally understandable that we would want to monitor their performance. 

Various terms have been used in the medical literature to describe the process of comparing 

health care providers: for example ranking (Spiegelhalter, 2003), bench marking (Field et 

al, 2002) and profiling (Christiansen and Morris, 1997).  Although these terms are often used 

interchangeably, they imply different emphases in their approaches.  The term ranking 

suggests that it is a provider’s position (rankinga) in some form of league table that is of most 

importance.  As will be shown, it is unlikely that this approach will give much useful 

information about the performance of a health care provider.  Bench marking, on the other 

hand, implies that there is a standard (benchmarkb) against which institutions can be 

compared.  This may be a useful approach in particular circumstances and will be discussed 

further in later Chapters.  It is felt, however, that the term profilingc

In 1998 the United Kingdom Government summarised its rationale for provider profiling in 

their discussion document on NHS performance (NHS Executive, 1998):  

 offers a more general 

description of this activity and, as a consequence, will be the term generally used in this 

thesis. 

“The new approach aims to improve standards of performance across the NHS, and in 

doing so to tackle the unacceptable variations that currently exist.  The way to achieve 

this is by comparing performance and sharing best practice …”. 

                                                 

a “ranking  ►noun  a position in a scale of achievement or status” (The New Oxford English Dictionary, 1998) 

b “benchmark  ►noun  1. a standard or point of reference against which things may be compared or assessed.” 

(The New Oxford English Dictionary, 1998) 

c “Profiling  ►noun [mass noun]  the recording and analysing of a person’s psychological and behavioural 

characteristics, so as to assess or predict their capabilities in a certain sphere or to assist in identifying a 

particular subgroup of people” (The New Oxford English Dictionary, 1998) 
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The New York State Department of Health, USA started collecting and publishing 

information on mortality rates after coronary artery bypass surgery in 1989.  By 1998 they 

had found that the statewide mortality rate had fallen from 3.52 deaths per 100 in 1989 to 2.44 

per 100.  They credited “…this significant improvement in patient survival rates in part to the 

sharing of performance data with hospitals and physicians” (New York State Department of 

Health, 1998a).  If this were true then it is a powerful argument in support of such profiling 

and the dissemination of the information. 

However, even accepting that this is true, it is not at all obvious how performance can be 

compared between health service providers.  As with any statistical analysis, there is always 

the danger of providing the ‘wrong’ answer to your question or, indeed, answering the wrong 

question altogether.  There is also the danger that publication and circulation in the media 

may mean that the usual caveats and warnings required from statistical analyses may be lost.  

In the extreme such results “… may put a veneer of science onto inappropriate statistics.” 

(Shaw, 1997) 

One attempt to describe the characteristics of a useful approach to profiling was also given by 

Shaw (1997):  

“The ideal league table will be based on data which: are specific and sensitive to the 

achievement of explicit policy targets and clearly measure the achievement of an 

agreed management objective; represent the legitimate expectations of customers, 

purchasers and providers (unless these expectations can be reconciled, there will have 

to be separate indicators for each); are comparable, using consistent definitions and 

adjustments (they must compare like with like, ensuring comparability of case mix and 

consistent criteria for numerators and denominators); are accurate, timely and 

statistically valid (data must be collected promptly, systematically recorded, routinely 

reported and presented with measures of statistical significance); should assist 

clinicians and managers to improve performance (they must be readily available for 

local analysis and comparison to provide incentive for quality improvement rather 

than perverse incentive for inappropriate activity or manipulation of data); should be 

cost effective (the staff time and data handling systems required to collect, collate and 

compare the data should be justified in terms of the quantitative benefits achieved by 

the indicator); and should enable the public as a whole to assess the service and the 

individual patient to make informed choices between available technologies and 

alternative providers.” 
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How, if at all, such a profile may be achieved is explored further in the rest of this Chapter. 

 

1.3 The Process of Provider Profiling 

The process of producing a profile can be divided into three parts: measurement (how the 

performance of the organization is captured in quantitative terms); analysis (how the resulting 

data are interpreted); action (the impact of publication on the organization) (Nutley and 

Smith, 1998).  Figure 1.1, adapted from Nutley and Smith (1998), illustrates the model and 

the process of feedback. 

Figure 1.1 A model of the performance measurement process  

1. 
Measurement 

2. 
Analysis 

3. 
Action 

The  
health care 

system 

 

This thesis will concentrate on the second stage: analysis.  However, as this cannot be taken 

in isolation and each of the three stages will be discussed in the rest of this Section. 

 

1.3.1 Measurement 

There are many different reasons for the profiling of hospitals, surgeons, doctors and other 

health care providers.  Some of the parties interested in the performance of clinical units are 

shown in Table 1.1, adapted from Shaw (1979). 

However, the question also arises of what constitutes performance and what items in 

particular are to be measured in order to quantify it.  Table 1.2, also adapted from Shaw 

(1997), offers some suggestions on possible types of measures. 
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Table 1.1 Performance data – who, why? 

Who      Why 

HM Treasury     Efficiency 

Health departments    Public health targets 

Politicians     Charter mania 

Professions     Self-regulation 

Media      Circulation 

Purchasers     Contracts 

Managers     Accountability 

Public      Informed choices 

Table 1.2 What is ‘performance’? 

Access      e.g. waiting times 

Process     e.g. immunization, screening 

Success     e.g. outcomes 

Efficiency     e.g. management costs, output 

These needs may often conflict, for example it may not be an efficient use of resources to 

reduce waiting lists for minor conditions.  Therefore, the question of whether a particular set 

of measures is suitable inevitably, and unsurprisingly, depends on the question being asked, 

and who is asking it.  Anecdotal evidence has been reported (Bagust, 1996) suggesting that 

the public are interested in questions such as: 

“Can I get quick and effective local emergency treatment when I need it? 

If I have a painful and disabling condition and need surgery, how soon can I be 

treated and get ‘back to normal’? 

In hospital, will I be treated with proper respect and given the individual care and 

attention I need? 

Will I be kept informed of everything I need to know about my condition and 

treatment?”  
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These appear to cover different types of measures, with the first, for example, looking at both 

waiting time and efficacy.  To be effective, the choice of indicator should provide a balance 

between what is measurable and what is important.  In addition, practitioners must have the 

ability to effect change (Jankowski, 1999), although one potential complication is the 

patient’s desire for care and their compliance with treatment (Kassirer, 1994), something 

practitioners may have limited control over.  It has been suggested that the quality of medical 

care can be assessed according to structure, process or outcome (Donabedian, 1966). 

Assessment by structure, process or outcome? 

If quality of care is to be measured, it is through the processes of medical care that this 

quality is delivered.  Length of stay has been used to compare resource utilization, for 

example on paediatric intensive care units (Ruttimann and Pollack, 1996), for surgical repair 

of hip fracture (Shwartz et al, 1996) and ICU stay (Knaus et al, 1993).  However, the 

measurement of process is difficult, costly and time consuming (Donabedian, 1978).  There 

are difficulties in recording the care received by patients and what aspects of this care were 

important.  This also assumes that there is agreement on the type of care to be given in all 

circumstances: something which is unlikely to be true except in a very few cases.  In neonatal 

intensive care there is, for example, no consensus on whether infants at the margins of 

viability should be given aggressive and invasive therapy at all (Greisen, 2004; Levene, 

2004).  Agreement on the use of particular therapies is likely to be just as difficult to obtain. 

The use of structure has similar problems.  Daley et al, for example, argued that the 

relationship between the presence of a lithotripsy facility, a trauma programme, or a bone 

marrow transplant programme and the quality of cardiac surgery programme is unproven 

(Daley et al, 1995).  There is no evidence that presence of particular neonatal facilities 

ensures a high level of care, although their absence may mean that poor quality care is 

provided. 

For judging the quality of patient care, measures of outcome are often seen as relevant and 

direct.  However, within this are two implicit assumptions.  First, that ‘good quality’ care 

leads to ‘better outcomes’ than ‘poor quality’ care and, second, that rates of adverse outcomes 

can be used to judge the quality of care given (Thomas et al, 1993).  The first assumption is 

likely to hold true through definition: good quality care is that which produces good outcomes 

(however they are defined).  However, it is unclear whether high rates of ‘good’ outcome 

necessarily imply that the patients have received good quality care.  If they are to prove 
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satisfactory measures of patient care, they need to adequately reflect the quality of care 

provided. 

Silber et al (1995) investigated the use of complication rates as opposed to mortality as a 

measure of quality of care after coronary artery bypass surgery with over 16,000 patients in 

57 US hospitals.  They reported that there was low correlation between hospital rankings 

based on one outcome measure compared to the other. This, they concluded, was evidence 

that complication rates should not be used to judge hospital care, at least until “more is known 

about these differences.”  However, there are other conclusions that can be drawn.  The 

assumption made in their work was that mortality is an appropriate measure of the quality of 

care.  It is true that mortality rates are a commonly used measure of performance.  On the 

surface, it certainly appears to be a suitable measure as it is both easily available and 

relatively reliable, unlike complication rates where different definitions and reporting 

procedures may exist in different hospitals.  However, the ability of death rates to reflect 

quality of care is not accepted by all (Daley et al, 1995; Mant and Hicks, 1995).  In fact, 

Florence Nightingale suggested this in 1863: 

“The most important perhaps of all the elements are the complications occurring after 

operations.” (Nightingale, 1863) 

The appropriateness of mortality as a surrogate for quality of care may well vary by the 

medical condition being investigated.  A study comparing risk-adjusted mortality rates and 

peer-review determined quality of care for three conditions admitted to hospitals in 

Minneapolis and St. Paul, Minnesota found strong support for an association for cardiac 

disease, equivocal evidence for acute myocardial infarction, and no evidence for septicaemia 

(Thomas et al, 1993).   

Even when using death as a measure of poor outcome there are difficulties.  For patients with 

terminal disease, higher death rates are unlikely to reflect poor care and outcomes such as 

functional status and the quality of the dying experience may be more appropriate measures 

(Kahn et al, 1988).  In neonatal care, however, this is unlikely to be the case, but here any 

decrease in mortality is likely to result in an increased number of infants with severe 

disabilities (Colver et al, 2000; Rijken et al, 2003).  A more complete picture of outcome can 

be gained by including long term outcomes (Field et al, 2002; Marlow, 2004), but although it 

is recommended that the health status of survivors be ascertained at at least two years 

corrected age (that is, two years for the expected date of delivery rather than the actual date of 

birth)  (British Association of Perinatal Medicine, 2001) such data are usually unavailable. 
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A further difficulty with mortality as the outcome variable to compare hospitals is that the use 

of hospitals for end-of-life-care varies across areas according to what alternative care is 

available (e.g. hospice) and this influences the observed hospital mortality rates (Seagroatt 

and Goldacre, 2004).  However, this is not the case in neonatal medicine where care 

overwhelming takes place on neonatal units. 

A quote attributed to Albert Einstein is, “Everything that can be counted does not necessarily 

count: everything that counts cannot necessarily be counted.” (World of quotes, 2005).  

Outcomes such as quality of life and functional status may be more relevant and informative, 

but collecting such data in a consistent fashion may be extremely difficult (Iezzoni, 1994), 

especially with neonates.  Finally, there is also the assumption made in all profiling that the 

outcomes monitored are predictable.  To be generally accepted any measure used must not 

only overcome the difficulties discussed above but must also be seen to do so. 

However, “we cannot claim either for the measurement of process or the measurement of 

outcomes an inherently superior validity compared with the other, since the validity of either 

follows to an equal degree from the validity of the science that postulates a linkage between 

the two.” (Donabedian, 1988).  Perhaps it is easier to manipulate the figures using process, 

when compared to outcome.  This is directly associated with the former’s desirable 

characteristic that practitioners should be able to effect change.  Processes can be changed 

more easily, but also manipulated more easily.  The use of outcomes (or outputs), after 

allowing for inputs, is the most common approach to profiling and is often referred to as the 

input-output (IO) approach.  It is assumed that by comparing the ‘output’ to the ‘input’, 

inferences can be made about the processes that took place in-between even though these 

have not been directly observed (Draper and Gittoes, 2004). 

It seems reasonable that the quality of care provided by a unit cannot be summarised by a 

single measure.  In-unit mortality is only one aspect of neonatal intensive care.  A 

combination of structure, process and outcome can give a more complete picture by 

simultaneously looking at several markers of neonatal care. 

One approach suggested is to use radar charts to map several characteristics together (Leary et 

al, 2002); an example from this paper is shown in Appendix J.  In this example, nine axes are 

shown eminating from a central point, with each axis representing a different parameter.  The 

outcomes for each parameter have been transformed so that a larger value (further from the 

central point) represents ‘better’ performance and, thus, a larger area in the polygon represents 

‘better’ overall performance.  However, the interpretation of such plots is not straightforward 
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as the relative importance of each parameter needs to be considered, as does the ordering of 

the parameters around the plot. 

Another possible approach is to consider clinical outcomes together with economic 

performance (Rapoport et al, 1994).  The statistical methods discussed and illustrated in this 

thesis can, with some modification, be used to analyse such a range of measures.  An 

alternative approach may be to use a validated measure of health outcome that can be used to 

quantify a range of health outcomes into a single value, for example EQ-5D (The EuroQol 

Group, 1990), SF-36 (SF-36, 2005).  However, no such measure currently exists for neonates. 

Source and quality of the data 

Whatever indicators are chosen, the source of the data used in profiling is, obviously, of great 

importance.  Ideally, such data should to be up-to-date, complete, correct and relevant.  Often 

the data will come from customized datasets (such as TNS), although they may arise from 

routinely collected data, for example surgeons’ logs (Spiegelhalter et al, 2002), routine 

hospital episode data (Dr Foster, 2004), registration of births and deaths (Wen et al, 2000).  A 

recent study in France suggested that prospective data collection, that is during the patient’s 

stay, identified more patients with preventable adverse events that the retrospective collection 

of data from records (Michel et al, 2004).  Two possible reasons for unreliability are 

‘confusion’ or ‘conspiracy’ in the hospital administration (Bagust, 1996).  It is argued that 

high priority should be placed on the collection and processing of data by staff trained in 

research methods.  It should also be noted that, in some circumstances, a care provider might 

feel that it is in its best interest to provide poor figures as a means of putting pressure on a 

funding or purchasing authority (Bagust, 1996), although direct evidence for this is likely to 

be hard to find.  It may well be that a customised data set would help to reduce the problem of 

‘confusion’.  Evidence from the USA suggests that routinely collected data, usually used by 

physicians for reimbursement, may be unreliable (Chaiken, 1996).  This stems from the very 

fact that the data are collected for reasons other than provider profiling.  The various coding 

schemes used with such forms (e.g. ICD-9CM and CPT-4) can be difficult to apply and since 

payment to the physician may not differ greatly between codes there is little incentive for 

accuracy.  It is also noted that where such forms do not need to be submitted for 

reimbursement, i.e. physicians’ payments are capitated, the number of forms submitted is 

reduced, increasing the likelihood of the data being unreliable. 

The introduction of ‘payment by results’ (Department of Health, 2002b), a fixed price for 

each patient treated, may supply data that can be used to compare outcomes amongst health 
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care providers.  However, the use of Healthcare Resource Groups (HRGs) to allow for case 

mix is unlikely to allow adequate adjustment in most cases, and the problems outlined above 

with using data routinely collected for a different purpose will still hold.  The use of routine 

data, collected for contracting and activity purposes, by the Dr Foster organisation has been 

criticised for being unreliable (Bridgewater et al, 2002). 

Poor quality data can produce spurious and inappropriate results (Iezzoni et al, 1996b), but 

the collection of relevant, high-quality data can be hugely expensive.  In 1990 the State of 

California’s legislature dropped a bill proposing the collection of clinical information for risk 

adjustment because of the projected $61.2 million annual cost.  The following year they 

agreed to the use of their existing discharge abstract database with resulting lower costs 

(Iezzoni, 1997).  However, in 1996 a survey reported huge variation in the validity and 

reporting of risk factors between hospitals in the State of California (Wilson et al, 1996).  It 

has been suggested that discharge abstract-based methods are of poorer quality and more open 

to manipulation through the inclusion of adverse events brought on by substandard care 

(Iezzoni et al, 1996a). 

Generating data sets specifically for provider profiling may reduce these potential problems.  

However, introducing data collection that is additional to routine activities may be difficult in 

busy medical units.  When the Medicare Mortality Predictor Score (MMPS), for patients with 

stroke, pneumonia, acute myocardial infarction, and congestive heart failure, was being 

developed it was estimated that it would take about 15 minutes to abstract the data required 

from the hospital notes (Daley et al, 1988).  While computerisation may have aided this task, 

it is still something that takes a significant amount of time for busy staff.  One solution to this 

problem may lie with electronic data collection (Menke et al, 2001).  However, there is 

evidence that automated data collection produces different predictions than the use of 

manually collected data (Bosman et al, 1998).  If true, it would, at the least, mean that 

consistent data collection methods would be required across providers.  A national system of 

(good quality) data collection would allow a more general comparison of NICUs (Field et al, 

2002; Jain and Fleming, 2004).  The Healthcare Commission, following a request from the 

Department of Health, is currently investigating the possibility of a national ongoing audit of 

neonatal care in England and Wales (Hubbard and Haines, 2004).  However, it is likely that 

this system, should it be implemented, will only collect a small number of variables.  This 

means that it is unlikely to be sufficiently detailed to allow comparisons of mortality, let alone 

long-term follow-up. 
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Reliability is important, although hopefully not too many studies have such a lax approach to 

data collection as this example (The Guardian, 2003): 

“British educational leaders with a methodological axe to grind against league tables 

- isn't that nearly everybody? - will take cold comfort from a university ranking survey 

published this month by one national Canadian newspaper. The table, carried by the 

Globe and Mail, awarded high marks to the medical schools at York University and 

the University of Waterloo, with the latter institution scoring a top 10 place for its law 

school as well.  

Unfortunately for the Globe's university report card, as it is known, neither York nor 

Waterloo has a faculty of medicine, and Waterloo does not offer a law degree.  

‘There is an issue with the overall reliability of the survey,’ Nancy White, a 

spokeswoman for York University, told the Globe and Mail's major national 

competitor, the National Post.” 

1.3.2 Analysis 

The second stage of the performance measurement process, outlined in Figure 1.1, is 

‘analysis’. 

Three sources of statistical uncertainty 

The statistical uncertainty surrounding reported performance comprises three parts: sampling 

variability, differences in illness severity between populations and differences in care 

provision.  We wish to quantify the contribution of each source of uncertainty.  Indeed, the 

aim is to account for the first two sources of variability leaving just that due to any difference 

in the quality of care. 

Although the Trent Neonatal Survey aims to record all neonatal intensive care given to infants 

born at 32 weeks gestational age or less, it is useful to think of these infants as a sample from 

a (hypothetical) population of infants who might have received intensive care.  In this way, 

the observed mortality rates are assumed to be observed estimates of true (but unknown) 

underlying mortality rates.  This is especially important with the small units. 

One definition of statistics is given by Steel and Torrie (1960):  

“Statistics is the science, pure and applied, of creating, developing, and applying 

techniques such that the uncertainty of inductive inferences may be evaluated.” 
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Statistical techniques, used appropriately, quantify this sampling variability and possible 

methods are outlined in Chapter 3. 

The need to adequately adjust outcomes for differences in case mix (risk-adjustment) is well 

recognized (Signorini and Weir, 1999).  A hospital or clinician tending to treat only those 

patients with good prognoses would be expected to have a high rate of ‘good’ outcome.  

Conversely those treating patients with poor prognoses would expect a higher rate of ‘poor’ 

outcome.  Put another way, risk adjustment tries to help answer the question, “Is it you, Doc, 

or your patients, who are below average?” (Poloniecki, 1998).  It is important that 

“Performance indicators should be measures of what the relevant decision makers can 

reasonably be held to account for” (Giuffrida et al, 1999).  If a unit admits a high proportion 

of neonates with poor prognoses then this should be taken into account.  A study of GP 

practices has shown evidence that just under half of the variation in hospital admission rates 

between practices can be accounted for by adjusting for patient characteristics, both 

socio-demographic and clinical (Reid et al, 1999).  However, how such adjustment is best 

achieved is less clear.  The methodology for risk adjustment is discussed in greater depth in 

Chapter 4. 

The assumption made is that once sampling variation and case-mix differences have been 

accounted for, any differences between units is due to differences in the type, or quality, of 

care that the infants have received.  However, what is really ‘left’ is a measure of what has not 

been accounted for (Crouchley and Taylor, 2004).  This may result from factors other than the 

quality of care, for example inadequate case-mix adjustment.  However, it is hoped that the 

influence of these other factors is minimal. 

Reporting of the results 

The results of profiling need to be reported in a usable and useful way to interested parties.  

Possible approaches for the neonatal mortality data investigated here are taken up in 

Chapter 5.  However, there are three main ways in which the results of provider profiling can 

be presented: 

• The ranks of the institutions (i.e. league tables); 

• The probability that the observed outcome is more extreme than could be expected by 

chance alone, assuming that the null hypothesis is true, for example the institution’s 

true outcome is no different to that of a reference population (i.e. hypothesis testing); 
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• The probability of the true performance of an institution exceeding, or failing to meet, 

an agreed clinical standard (i.e. Bayesian posterior probability). 

League tables are perhaps the simplest method of presenting the data: care providers are put in 

order according to the value of their outcome.  Information is sometimes presented in this way 

in the media when reporting the performance of medical or educational institutions: for 

example, tables in the Sunday Times’ Good Hospital Guide (The Sunday Times, 2004b).  An 

example from this guide is shown in Table 1.3. 

Table 1.3 Mortality tables from the Sunday Times 

HOW THE NHS TRUSTS COMPARE 

 

 
 
Ranked by mortality rate from low to high 
Average index for Trent Region: 98 
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! 1 Sherwood Forest Hospitals 85 78% 28% 63 

! 2 Sheffield Teaching Hospitals 85 83% 21% 63 

! 3 Barnsley District General Hospital 92 74% 27% 61 

! 4 Doncaster and Bassetlaw Hospitals 93 80% 10% 61 

! 5 Queen’s Medical Centre Nottingham University Hospital 97 75% 15% 62 

! 6 Nottingham City Hospital 99 82% 12% 62 

! 7 University Hospitals of Leicester 100 80% 23% 64 

! 8 Rotherham General Hospitals 102 74% 18% 62 

! 9 Southern Derbyshire Acute Hospitals 103 78% 17% 64 

! 10 United Lincolnshire Hospitals 105 81% 21% 64 

! 11 Northern Lincolnshire and Goole Hospitals 108 75% 16% 61 

! 12 Chesterfield and North Derbyshire Royal Hospital 110 77% 0% 61 

 Ranking based on unrounded mortality figures     

However, there are serious problems with such an approach.  Naturally, there will always be 

somewhere or someone at the top, and somewhere or someone at the bottom.  The ranks 

themselves give no indication of the size or significance (statistical or clinical) of the 

differences between the institutions.  It is important to distinguish whether a provider is 

“indeed an outlier, and not merely ‘bottom of the league’ ” (Aylin et al, 2001a).  It has been 

shown that small changes in outcome can produce substantial changes in rank (Marshall and 
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Spiegelhalter, 1998b).  To quantify this uncertainty in the rankings, it has been suggested that 

the calculation of confidence intervals (or Bayesian credible intervals) for each rank can 

illustrate the uncertainty associated with them (Goldstein and Spiegelhalter, 1996; Marshall 

and Spiegelhalter, 1998b).  However, such an approach on its own can be of only limited help 

as it still offers only indirect information on the size of the clinical differences between the 

institutions.  Such intervals are illustrated in §3.3.1. 

By far the most common approach to provider profiling is that using ‘classical’ hypothesis 

testing.  This is discussed in more detail in §3.2.1 but, in this case, amounts to calculating the 

probability of obtaining results at least as extreme as those found, if there really was no 

difference between the units.  A problem with such an approach is that a proportion of 

institutions will always be classified as extreme.  Even when all of the health care providers 

are of similar performance, with such an approach some would still be seen as outliers 

(Normand et al, 1997).  It would also be wrong to concentrate solely on statistical 

significance.  While monitoring mortality following coronary artery bypass surgery, the State 

of New York Department of Health noted that two of the hospitals had mortality rates above 

the statewide average but that this difference was not statistically significant.  However, they 

concluded that they should still closely monitor their performance (New York State 

Department of Health, 1998b). 

The third approach suggested is to use Bayesian posterior probabilities.  The most important 

difference between this method and the other two is that clinical standards are applied to 

investigate the performance of the institutions, allowing questions such as “What is the 

probability that a given hospital’s true mortality rate for cardiac surgery patients exceeded 

3.33% last year?” to be answered (Christiansen and Morris, 1997).  This is possible within a 

Bayesian framework as the parameter is assumed to have a probability distribution as opposed 

to being of a fixed, but unknown, value (see §3.2.2).  The choice of the clinical reference 

standard will depend on circumstances (Normand et al, 1997).  It may be an absolute value, 

such as a national guideline, or a relative measure comparing an institution to a regional 

average.  However, whether the standard is absolute or relative, the reporting of the posterior 

distribution itself enables readers to decide on the final value of interest. 

All of these methods will be illustrated in this thesis.  However, when using any of these 

approaches the final presentation of the data is important.  It may be that graphical 

presentation is the most easy to interpret (Selbmann et al, 1982).  This was also suggested in 

an 1857 letter by Florence Nightingale, around the time she produced polar area charts: 
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“which is to affect thro’ the eyes what we may fail to convey to the brains of the public 

through their word proof ears”  (cited in Spiegelhalter, 1999) 

She referred to these as ‘coxcomb’ diagrams, and an example is shown in Appendix J.  In 

these plots, different coloured segments represent the monthly number of deaths from 

different causes, also allowing temporal trends to be inferred. 

However, the most appropriate method of presenting the results is likely to depend to many 

factors: e.g. the audience, the number of providers, the number of measures.  In this thesis 

tables and simple graphs will be used wherever possible. 

1.3.3 Action 

The third stage in the performance measurement process is ‘action’.  The ultimate aim of 

producing a provider profile is most likely to be to try to influence future events.  Such 

feedback may be structured or haphazard.  As Alan Milburn (then Secretary of State for 

Health) pointed out in 2002, in response to the Kennedy report into paediatric cardiac surgery 

at Bristol Royal Infirmary (Milburn, 2002): 

“… there was no shortage of data about clinical outcomes at Bristol.  The problem 

was that no one was responsible for analysing them or acting on them.” 

Predicting future events 

The assumption made is that past events will predict future events; in other words, those 

providers with a high rate of poor outcomes this year will be those that had a high rate of poor 

outcomes last year.  Green and Wintfeld suggested that the rankings of individual surgeons’ 

risk adjusted mortality rates after coronary-artery bypass grafting in 1989-1991 were poorly 

correlated with the rankings in 1991-1992: product moment correlation coefficient (ρ) = 0.022 

(Green and Wintfeld, 1995).  Although there are problems with using the rank to investigate 

differences (see §3.3.1), such a poor level of correlation may well mean that the assumption 

of predictive ability is false.  However, more recent published data from the New York State 

Department of Health (New York State Department of Health, 2000; New York State 

Department of Health, 2004) suggest that such pessimism is misplaced.  Using published data, 

it is possible to compare estimated risk-adjusted mortality rates (more informative than the 

ranks) following isolated coronary-artery bypass graft, for the years 1995-1997 and 1998-

2000, for individual surgeons, practising in the same hospital during both periods, and 

performing over 10 procedures during each period.  In this case ρ = 0.20.  This is also 
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illustrated in Figure 1.2, where the size of the circle is proportional to the average number of 

procedures carried out by the surgeon. 

Figure 1.2 Surgical outcomes in two time periods 

 

In order to investigate whether the differences in the estimated SMRs in the two time periods 

were the result of random variation, the surgeons are considered in two groups according to 

whether their workload was above or below the observed median for the whole group (Figure 

1.3).  For those surgeons with a work-load above the median value, ρ = 0.48, whereas for 

those surgeons with a work-load equal to or below the median value, where the ‘true’ SMRs 

are likely to be poorly estimated, ρ = 0.08. 

Figure 1.3 Surgical outcomes in two time periods by workload 

Workload above median value Workload below median value 

  

This suggests that where there is sufficient information, there is evidence of correlation 

between past and future performance. 
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Reaction of health care providers to profiling 

There are further difficulties in securing the confidence of users that profiling can provide 

useful information.  In 1992 reports were first published in Pennsylvania, USA listing annual 

risk adjusted mortality rates after coronary artery bypass surgery on both hospitals and 

individual surgeons providing such surgery in the state (Pennsylvania Health Care Cost 

Containment Council, 1992a; Pennsylvania Health Care Cost Containment Council, 1992b). 

After the publication of four annual reports, a survey of half of the cardiologists and cardiac 

surgeons in Pennsylvania reported that 69% (70% cardiologists and 68% cardiac surgeons) of 

them felt that the reports were “not important or minimally important” in assessing the 

performance of cardiac surgeons (Schneider and Epstein, 1996).  There were several concerns 

reported by respondents to explain this lack of confidence in the reports, the greatest (reported 

by 79% of responders) being the perceived inadequacy of the risk adjustment methods; 

although the model used has since been shown to be comparable to other alternative models 

(Landon et al, 1996).  A large majority of responders (78%) also felt that the lack of any 

outcome other that mortality meant that the published figures did not truly reflect the quality 

of care provided by a surgeon.  The third most commonly cited reason for mistrust in the 

figures was the feeling that surgeons and hospitals could manipulate the figures (53%).   

Although it was acknowledged that the responders to this survey (64 cardiologists and 74 

cardiac surgeons) may comprise those with stronger, and more negative views, about such 

public monitoring, this survey shows a large amount of scepticism over the reporting such 

results.  However, despite such scepticism the cardiologists and surgeons felt that the 

publication of these reports was influencing clinical practice.  It was reported that 59% of 

cardiologists felt that it had become more difficult to find a cardiac surgeon willing to accept 

a severely ill patient and 63% of the surgeons reported that they were now less willing to 

operate on such patients.  There is a danger that providers may change consciously, or 

subconsciously, to selecting low-risk patients as a result of previously reported results 

(Committee on Information Technology in Medicine, 1991).  Such avoidance of ‘high risk’ 

patients has also been suggested for in-vitro fertilisation clinics (Winston, 1998).  It was also 

suggested in this letter that such clinics may be reluctant to take part in research which they 

feel may adversely effect their league table position, a concern also expressed in other 

specialities (Shiu, 2002; Bridgewater et al, 2002). 

It is possible that even if such data are not made public, biases may be introduced into data 

collection (Green and Wintfeld, 1995).  This is a particular danger as, if it is introduced and 
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used inappropriately, profiling “can create an environment of fear instead of fostering quality 

improvement.” (Sheldon, 1998).  On the other hand, clinicians may welcome the publication 

of such data if it highlights problems beyond their control, such as resources to enable waiting 

lists to be reduced (Young, 1993). 

How providers react to any review is, unsurprisingly, likely to depend to how their particular 

organisation fared.  When The Times (2001) published the Dr Foster organisation’s 

standardized mortality rates following cardiothoracic surgery, the medical director (Dr 

Nicholas Bishop) of the trust responsible for the unit claimed to be the best performing, 

United Bristol Healthcare, said, “We’re delighted to be able to be recognised as being good 

for heart surgery” (Vass, 2001).  On the other hand, one consultant cardiologist from the 

hospital with the highest reported death rate, University Hospital of Coventry and 

Warwickshire, quite rightly points out the lack of adequate risk adjustment (Shiu, 2002) and 

consultants from the hospital with the second highest rate also point out several deficiencies 

with the data (Bridgewater et al, 2002).  It is probably not too cynical to suggest that 

organisations deemed to be performing ‘well’ are more likely to turn a blind eye to the 

deficiencies of any study, while those with ‘poor’ results will highlight any perceived 

deficiencies in the analyses, just as, in the early days, work by Florence Nightingale was often 

poorly received (Iezzoni, 1996).  It is important, therefore, to promote such reports as 

opportunities for improvement, such as has been advocated for reported medical ‘near-misses’ 

(Expert Group on Learning from Adverse Events in the NHS, 2000) rather than as 

metaphorical sticks with which to beat people.  It is vital to create the proper climate for good 

practice to flourish rather than generating fear that poor practice will be discovered and 

disapproved (Donabedian, 1978).  This issue has been bought to the fore more recently by the 

Institute of Medicine’s report To Err Is Human.  Here, it was argued that it is focusing on 

systems rather than individuals that allows improvements in the quality of care to be made:  

“The focus must shift from blaming individuals for past errors to a focus on 

preventing future errors by designing safety into the system. This does not mean that 

individuals can be careless. People must still be vigilant and held responsible for their 

actions. But when an error occurs, blaming an individual does little to make the 

system safer and prevent someone else from committing the same error.” (Kohn et al, 

2000: 5) 

Such an approach may sit uneasily with the tradition view of medical practitioners, often 

instilled during their training, that mistakes are not to be tolerated and that the individuals 
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responsible are to be identified and castigated (Bates and Gawande, 2000; Classen and 

Kilbridge, 2002).  However, “… simply telling our doctors and nurses to ‘try harder’ –not to 

kill their patients by mistake– has nothing at all to do with our eventual success.” (Berwick, 

2001).  One example of a ‘system’ change that may potential reduce medical errors is the 

reduction in working hours for junior doctors, as it is recognised that sleep deprivation can 

lead to an increase in errors (Clarke, 2001; Feyer, 2001; Pickersgill, 2001). 

However, finding causes of error in health care systems, and their solution, is complex 

requiring a comprehensive approach (Becher and Chassin, 2001; McNutt et al, 2002).  

Provider profiling, as described in this thesis, can play a role in identifying potential areas of 

concern. 

Potential consequences of provider profiling 

One example of benefit resulting from the use of profiling results is reported from a study in 

three New England states: Maine, New Hampshire and Vermont. Using data from coronary 

artery bypass patients, cardiothoracic surgeons were given feedback on outcomes, training in 

continuous quality improvement techniques and undertook visits to other hospitals.  Over the 

course of these interventions a 24% reduction in hospital mortality was noted (O'Connor et al, 

1996).  However, no matter how wide the range of measures reported, there is always the 

danger that efforts on improvement concentrate solely on the reported measures. 

The danger with focusing on outliers that perform badly, as may be natural, means that 

perhaps not enough attention is paid to the units that are producing good results (Sheldon, 

1998; Mohammed et al, 2001b).  This is where good practice is to be found.  The largest 

improvement in the quality of care will occur where the majority of providers with average 

performance improve: “if the mean of the quality curve is shifted” (Scally and Donaldson, 

1998).  In addition, it is important for health care providers, and those involved in medical 

care as a whole, to be aware of what is happening: 

“… even under the best conditions, constant monitoring will have to be maintained, 

for without it medicine cannot see itself, nor know where it is going.” (Donabedian, 

1978) 

Ultimately, the question is not whether the results represent the ‘truth’, as they do not, even 

assuming that such a truth exists.  In the final model, there undoubtedly still remain errors in 

risk-adjustment, model specification, systematic reporting, coding errors and biases.  

However, such an analysis is not intended to be a ‘final’ answer.  Instead, its usefulness 
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should be judged by whether the results are reliable enough, and generates sufficient 

confidence in practitioners, to inform the debate and choice of actions to improve the quality 

of neonatal care. 

“Risk-adjusted mortality rates, therefore, should be supplemented by review of the 

actual care rendered before conclusions are drawn regarding effectiveness of care.” 

(Jencks et al, 1988) 

The Royal Statistical Society Working Party on Performance Monitoring in the Public 

Services recently concluded that “Done badly, [performance monitoring] can be very costly 

and not merely ineffective but harmful and indeed destructive” and that performance 

indicators used in monitoring should be seen as “screening devices” (Royal Statistical 

Society Working Party on Performance Monitoring in the Public Services, 2004). 

Exactly what is being measured and how it can be interpreted should be carefully defined 

otherwise confusion can occur, such as the national newspaper headline (The Times, 2003): 

“Top heart hospital has worst bypass surgery death rate”  

Quite how this qualifies the hospital to be a ‘top’ hospital is not made clear.  The article then 

proceeds to state “And its figures for death after aortic valve surgery are the second highest 

in the country …”.  This is unlikely to be consistent with any definition of a ‘top’ hospital. 

 

1.4 Structure of the Thesis 

The remainder of this thesis will investigate and discuss statistical issues of particular 

relevance to the profiling of neonatal intensive care units using in-unit mortality.  The data 

used in this thesis, and their source, the Trent Neonatal Survey (TNS), are introduced and 

described in Chapter 2, together with relevant background to neonatal intensive care medicine 

and its organisation.  

In Chapter 3, statistical methods that may be appropriate to the profiling of neonatal mortality 

are described, critically appraised and, where appropriate, illustrated using TNS data.  In 

particular, logistic regression models are introduced. 

Chapter 4 sets out the necessity, rationale, and use of risk adjustment and describes published 

neonatal mortality risk-adjustment scores and their use. 
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Potentially useful outcome summary statistics derived from logistic regression models are 

described, illustrated and discussed in Chapter 5.  In particular, standardization methods are 

reviewed, and methods for estimating confidence intervals for the standardized mortality ratio 

explored through a simulation study and by applying the methods to the TNS data.  A 

Bayesian modelling approach is developed and investigated. 

Chapter 6 contains an investigation into potential confounders and effect modifiers that may 

be associated with in-unit mortality and, therefore, included in any risk-adjustment model.  

The final model is then developed in Chapter 6, and model fitting and checking techniques are 

also discussed.  Sensitivity analyses are undertaken to explore the robustness of the results. 

Chapter 7 contains a discussion of the results from this thesis and the conclusions that can be 

drawn.  Further work following from this thesis is outlined. 

The primary statistical software used throughout this thesis will be SAS/STAT®d

 

 version 8.2, 

with SAS/BASE® software used for data management.  The WinBUGS version 1.4 software 

(Spiegelhalter et al, 1999b) was used for the Gibbs sampling modelling.  The STATA® 

software was used in §6.4.3 for models which included fractional polynomials and the R 

package (R Development Core Team, 2005) was used in §5.10 to estimate non-linear mixed 

models with non-Normal mixing distributions.  SAS/GRAPH® software was used for all of 

the Figures, except for Figure 2.1, Figure 2.2 and Figure G.29, which were created with 

MapInfo Professional® V5.5. 

1.5 Chapter Summary 

This Chapter introduced the thesis and the process of provider profiling.  The aims of the 

thesis were set out (§1.1), and the background to provider profiling was introduced in §1.2.  

While §1.3 described the process of profiling, the rest of this thesis will focus on the statistical 

analyses.  The data to be used are introduced in the next Chapter, together with their source, 

the Trent Neonatal Survey, and a discussion of relevant issues in neonatal intensive care. 

 

                                                 

d SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 

Institute Inc. in the USA and other countries. ® indicates USA registration. 
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Chapter 2: THE TRENT NEONATAL SURVEY 

2.1 Chapter Overview 

This Chapter introduces the data that form the basis of this thesis and their source, the Trent 

Neonatal Survey (TNS), together with relevant background to neonatal intensive care. 

The TNS itself and its development are described in §2.2, whilst §2.3 comprises a brief 

description of neonatal intensive care, its organisation and issues relevant to neonatal 

mortality.  The TNS data used to illustrate the statistical methods are introduced in §2.4, 

together with basic summary descriptive information on the infants (more detailed 

information on these and other variables is given in §6.4 and Appendix G).  Methods for 

ensuring plausible recorded birth weights for gestational age are also introduced and the 

allocation of transferred infants to a particular unit are discussed.  Section 2.5 provides a 

summary of the main points from the Chapter. 

 

2.2 Trent Neonatal Survey 

The Trent Neonatal Survey was first established in 1987 to review the whole neonatal service 

within the area of the then Trent Regional Health Authority over a one year period (Field et 

al, 1989).  The former Trent Region Health Authority comprised the counties of 

Leicestershire, Rutland, Derbyshire, Nottinghamshire, Lincolnshire, South Yorkshire and 

South Humberside (Figure 2.1).  This region has a population of some 4.6 million with around 

60,000 births per annum.  In 2002 the neonatal death rate (deaths before four weeks of life) 

was 4.2 per 1000 live births compared to 3.6 for England and Wales as a whole.  

Although the original study lasted only one year, data collection recommenced in February 

1990 and has continued since that time.  The original exercise in 1987 collected data on every 

admission to a neonatal unit in Trent.  However, the analysis of those data revealed that the 

majority of admissions were of mature infants for short duration stays and who did not require 

intensive care.   
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Figure 2.1 Former Trent Health Authority 

 

(This work is based on data provided through EDINA UKBORDERS with the support of the ESRC and JISC 

and uses boundary material which is copyright of the Crown.) 

When the survey was re-established in 1990, it was decided to concentrate on those infants 

identified in the original study as being the most labour intensive.  As a result, infants are 

included in TNS only if they meet at least one of the following inclusion criteria (The Trent 

Infant Mortality and Morbidity Studies, 2003): 

• less than or equal to 32+6 weeks gestational age e

• less than or equal to 1500 grams birth weight; 

; 

• involved in transfers; 

• receive any intensive care; 

• die in a neonatal unit; 

• at term, show signs of severe hypoxic ischaemic encephalopathy. 

During the time the data used in this thesis were collected there were 16 neonatal intensive 

care units within the Region (Figure 2.2), located within the following hospitals: 

• Barnsley District General Hospital 

• Rotherham District General Hospital 

• Doncaster Royal Infirmary  

• Chesterfield and North Derbyshire Royal Hospital 

                                                 

e Gestational age given as WEEKS+DAYS 
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• Jessop Wing, Sheffield (a single unit following the merger of Jessop Hospital for 

Women and Northern General Hospital in 2001 and considered as a single unit for this 

thesis) 

• Bassetlaw District General Hospital, Worksop 

• Kings Mill Hospital, Sutton-in-Ashfield 

• Derbyshire Children’s Hospital, Derby 

• Nottingham City Hospital 

• Queen’s Medical Centre, Nottingham 

• Lincoln County Hospital 

• Pilgrim Hospital, Boston 

• Leicester Royal Infirmary 

• Leicester General Hospital 

• Diana, Princess of Wales Hospital, Grimsby 

• Scunthorpe General Hospital 

Figure 2.2 NICUs in the former Trent Regional Health Authority 

 

(This work is based on data provided through EDINA UKBORDERS with the support of the ESRC and JISC 

and uses boundary material which is copyright of the Crown.) 
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Three of these units are in teaching hospitals: Jessop, Queen’s Medical Centre and Leicester 

Royal Infirmary.  These units act as referral centres for the other units.  In this thesis, the 

NICUs have been anonymized following current practice in the Trent Neonatal Survey 

Annual Report (The Trent Infant Mortality and Morbidity Studies, 2003). 

Data for the Trent Neonatal Survey are collected by five part-time research nurses who visit 

each of the neonatal units on a regular basis and complete a standardized data set for each 

infant.  Information is obtained from the clinical records, discussions with staff and, where 

appropriate, personal observation.  A questionnaire is then completed for each admission 

(Appendix A) and the data double entered to a specifically created Microsoft Access database 

at the Department of Health Sciences, University of Leicester.  Data verification methods 

comprise range checks and sample validation.  The research nurses also meet regularly to 

discuss difficulties and to ensure the agreed definition of variables. 

Funding was originally provided from each of the eleven Health Districts in Trent, with 

Leicestershire Health acting as the lead agency.  Since 2002 funding has been provided by the 

Primary Care Trusts (PCTs) covered by the survey, with Eastern Leicestershire PCT acting as 

lead.  During the time of data collection for this thesis the Trent Neonatal Survey was 

overseen by the Trent Institute for Health Services Research, which itself was a collaboration 

of Leicester & Warwick, Nottingham and Sheffield medical schools.  In 2004 the survey was 

expanded to include data collection from Northamptonshire and the whole of Yorkshire. 

The Trent Neonatal Survey is a unique data set due to the length of time it has been running, 

because the data are collected by specially trained neonatal nurses and also because of its size.  

The TNS is collected over a complete geographical region, meaning that it is population 

based and is not subject to the referral biases that arise from only using admissions to 

individual units.  Information from the survey is disseminated through an annual report, an 

annual research meeting, requests from participating Trusts and Units, conference 

presentations and the publication of peer-review papers in scientific journals.  The survey 

team participate in national and international collaborative work using TNS data. 

 

2.3 Neonatal Intensive Care 

The British Association of Perinatal Medicine (BAPM) define levels of neonatal care as 

follows (British Association of Perinatal Medicine, 2001:13-14): 
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“Intensive Care 
These babies have the most complex problems. They need 1:1 care by a nurse with a 
neonatal qualification. The possibility of acute deterioration is such that there should 
be the constant availability of a competent doctor. 
1 receiving any respiratory support via a tracheal tube and in the first 24 hours 

after its withdrawal 
2 receiving NCPAP [Nasal Continuous Positive Airway Pressure] for any part of 

the day and less than five days old 
3  below 1000g current weight and receiving NCPAP for any part of the day and 

for 24 hours after withdrawal 
4  less than 29 weeks gestational age and less than 48 hours old 
5 requiring major emergency surgery, for the pre-operative period and post-

operatively for 24 hours 
6  requiring complex clinical procedures: 

• Full exchange transfusion 
• Peritoneal dialysis 
• Infusion of an inotrope, pulmonary vasodilator or prostaglandin and for 24 
hours afterwards 

7  any other very unstable baby considered by the nurse-in-charge to need 1:1 
nursing: for audit, a register should be kept of the clinical details of babies 
recorded in this category 

8  a baby on the day of death. 

 
High Dependency Care 
A nurse should not be responsible for the care of more than two babies in this 
category - 
1  receiving NCPAP for any part of the day and not fulfilling any of the criteria 

for intensive care 
2 below 1000g current weight and not fulfilling any of the criteria for intensive 

care 
3  receiving parenteral nutrition 
4 having convulsions 
5 receiving oxygen therapy and below 1500g current weight 
6  requiring treatment for neonatal abstinence syndrome 
7  requiring specified procedures that do not fulfil any criteria for intensive care: 

• Care of an intra-arterial catheter or chest drain 
• Partial exchange transfusion 
• Tracheostomy care until supervised by a parent 

8  requiring frequent stimulation for severe apnoea. 
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Special Care 
A nurse should not be responsible for the care of more than four babies receiving 
Special or Normal Care. 
Special care is provided for all other babies who could not reasonably be expected to 
be looked after at home by their mother. 

 
Normal Care 
Is provided for babies who themselves have no medical indication to be in hospital.” 

 

Using these definitions the BAPM has further defined three levels of neonatal intensive care 

units (NICUs) (British Association of Perinatal Medicine, 2001:2): 

“Level 1 Units provide Special Care but do not aim to provide any continuing 

High Dependency or Intensive Care.  This term includes units with and 

without resident medical staff. 

Level 2 Units provide High Dependency Care and some short-term Intensive 

Care as agreed within the Network. 

Level 3 Units provide the whole range of medical neonatal care but not 

necessarily all specialist services such as neonatal surgery.” 

It is estimated that around 10% of babies born in the UK are admitted for neonatal care (Audit 

Commission, 1992).  However, the majority of these infants are admitted for ‘special care’, 

for example jaundice requiring phototherapy, blood glucose monitoring (Rennie and 

Roberton, 2002:1), with about 2% of all babies requiring full intensive care.  

It has been recommended that neonatal units should work together as Managed Clinical 

Networks (British Association of Perinatal Medicine, 2001:1), with at least one unit providing 

the full range of neonatal intensive care.  Although this approach has not been implemented in 

the former Trent Health Authority area, there has been some work looking at the economic 

impact of implementing such networks (Draper et al, 2004).  The units included in this thesis 

operate at level 2 or 3, since all babies born at 32 weeks gestational age or less, if surviving to 

admission, are likely to require intensive care or high dependency care at some stage of their 

admission.  Hence, referral patterns, by medics or nurses, are unlikely to differ between units. 

Over recent years there has been a fall in neonatal mortality in England and Wales (Office of 

National Statistics, 2003a); shown in Figure 2.3.  A similar fall in mortality has been seen for 
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very low birth weight babies (< 1500g): around 50% mortality in 1975 falling to under 20% in 

1995 (Tucker et al, 2004). 

Figure 2.3 28-day Mortality by Year: England & Wales 

 

Improvements in care led to changes in registration practices (Wen et al, 2000), and to 

admissions to neonatal care, as infants previously considered not viable are now admitted.  

The changes in the characteristics of admitted infants can be complicated.  While 

improvements in obstetric care have led to increasing numbers of very small infants, these 

improvements have also meant that such infants are in ‘better clinical condition’ when 

admitted (Baumer et al, 1997).  However, there is some evidence that improvements in 

survival may not be consistent across all gestational ages.  One study from British Columbia, 

Canada compared a cohort of infants born in 1983-1989 with those born in 1991-1993 (Battin 

et al, 1998).  By the latter time period surfactant, antenatal steroids and dexamethasone were 

standard treatments for these infants.  However, while survival rates had been seen to improve 

for 26-28 week infants, no improvement was seen for those born at 23-25 weeks gestational 

age. 

Preterm birth 

The aetiology of preterm birth is unclear, with about 80% of all preterm births resulting from 

spontaneous preterm labour, preterm rupture of the membranes or vaginal bleeding, and the 

other 20% attributable to obstetric intervention due to maternal or fetal indications 

(Goldenberg et al, 2000; Pschirrer and Monga, 2000).  Many factors have been suggested 
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being related to preterm birth, including intrauterine infection (Goldenberg et al, 2000), low 

social class (Meis et al, 1995; Peacock et al, 1995), maternal stress (Dole et al, 2003), and, in 

sheep, a reduction in food intake around conception (Bloomfield et al, 2003).  There is little 

evidence of the effectiveness of therapies proposed to prevent or arrest preterm labour, or that 

improvements in neonatal outcomes derive from improvements in perinatal and neonatal care 

(Goldenberg, 2002).  Very preterm births, 32 weeks gestational age or less, only account for a 

small proportion of all births.  Local data show that in the years 2000 to 2002 less than 2% of 

all births to Leicestershire resident mothers resulted in births at 32 weeks or less: 595 out of 

32045 (Figure 2.4). 

Figure 2.4 Births to Leicestershire resident mothers 2000-2002 by gestational age at birth 

 

Quality of neonatal care 

It is intuitive to hypothesise that the quality of care given by health care professionals can 

influence the outcome of infants.  There is evidence to suggest that sub-optimal care can 

produce an increased incidence of poor outcomes.  The Project 27/28 study investigated births 

at 26 to 29 completed weeks gestational age and identified associations between neonatal 

death and care given, including the timing of the administration of surfactant, the appropriate 

use of mechanical ventilation, early thermal care and the early use of inotropes (CESDI, 

2003).  There has been evidence shown that highly individualized care plans can reduce the 

amount of invasive treatment a very preterm neonate receives, although no difference was 

seen in mortality in this study (Fleisher et al, 1995). 
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Poor quality of care also comprises medical errors, and in the NHS it has been estimated that 

adverse events (errors) in which harm is caused to the patient occur in around 10% of 

admissions, over 850,000 per year (Expert Group on Learning from Adverse Events in the 

NHS, 2000).  Neonatal medicine has particular problems with medical errors (Gray and 

Goldmann, 2004).  A study in the USA found that although error rates in medication 

prescribing for neonatal intensive care units were similar to other types of wards, the rate of 

potential or preventable adverse drug events was much higher (Kaushal et al, 2001).  Possible 

reasons suggested for this are that neonates are very often critically sick, neonatal weights 

change rapidly, neonates are less able to tolerate errors and that medicines usually do not 

come in doses suitable for neonates and need to be specially prepared.  Often neonates require 

doses one tenth of those required by an adult and in these circumstances errors can lead to 

10-fold overdoses (Chappell and Newman, 2003). 

The evidence of an association between unit workload and neonatal mortality is equivocal.  It 

has been hypothesized that outcome differences found between neonatal units in the UK and 

Australia were due to the more centralised care system in Australia producing better outcomes 

(International Neonatal Network, 2000).  Some studies from the USA have shown evidence of 

reduced mortality rates in larger units (Phibbs et al, 1996; Rogowski et al, 2004), although at 

least one other study has not (Horbar et al, 1997).  Such differences have previously been 

shown in the UK in 1988 to 1990 (The International Neonatal Network, 1993), other more 

recent work has shown no evidence of such a link (UK Neonatal Staffing Study Group, 2002).  

It has been suggested that the faster uptake of new therapies by tertiary (usually high volume) 

units compared to small units in the former time period may explain some of the differences 

between these groups of units (Parry et al, 2003a).  Other work has found an opposite effect 

with better outcomes in the less centralised Danish neonatal intensive care provision 

compared to the former Trent Region (Field et al, 2002).  However, varying case definitions 

and registration procedures often complicate such international comparisons. 

Published TNS data from 1987 showed evidence that infants born at 28 weeks gestational age 

or less, and admitted to large units (defined at that time as >600 ventilator days per year), had 

better survival rates that those admitted to smaller units: 48% mortality versus 78% (Field et 

al, 1991).  However, for infants born at 29 or 30 weeks gestational age there was a trend in 

the opposite direction (18% versus 7%), but this did not reach statistical significance at the 

10% level (p = 0.12: Fisher’s exact test).  By 1994-1996 there was no evidence that such 

differences still existed (Field and Draper, 1999), and this change was thought to be due to 
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increased levels of specialist medical and nursing care and to the appropriate transferring of 

infants.  However, there has been evidence presented of increased mortality with units 

working at high capacity (UK Neonatal Staffing Study Group, 2002). 

Neonatal mortality 

The outcome of interest in this thesis is death before discharge from the neonatal unit.  There 

are several commonly used categories for the death of newborn infants: perinatal death 

(stillbirths and deaths under one week), neonatal death (under four weeks) and infant death 

(under one year).  Neonatal death is sometimes further divided into early neonatal deaths 

(within seven days) and late neonatal deaths (seven to twenty-eight days).   Such definitions  

have been used in previous studies, for example de Courcy-Wheeler et al, 1995, Zullini et al, 

1997, Horbar et al, 1997. 

The observed in-unit 7-day, 28-day and ‘any time’ death rates, for TNS data investigated in 

this thesis (introduced in §2.4), are shown in Figure 2.5.  There were a total of 285 in-unit 

deaths, of which 160 (56.1% of all in-unit deaths) died within the first seven days of life and 

244 (85.6%) died within the first 28 days.  The differences in mortality rates, in particular 

between 7-day and ‘any time’ mortality, were greatest in the larger units. 

Figure 2.5 7-day,  28-day and any time in-unit mortality by neonatal unit  

 

In this thesis total in-unit mortality was investigated rather than death within a given time.  

There were four reasons for this choice: 

i) Some infants may die a short time after discharge and TNS does not collect information 

about such deaths; although the number of infants discharged home where it is felt that 

the infant was likely to die as a result of their current morbidity is very low.  However, 
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there is local anecdotal evidence of at least one infant being discharged home for 

palliative care (Field, D.J.: Personal communication); 

ii) The aim is to use mortality rates as a measure of care received within the neonatal units.  

Once the infant has been discharged from the unit it can be argued that subsequent death 

may be attributable to factors outside the control of the unit.  Inappropriate discharge, 

where the infants went on to died due to existing morbidity, is likely to be extremely 

rare; 

iii) Any choice of a cut-off point would be arbitrary and may not be appropriate over the 

whole range of gestations at birth; 

iv) Some deaths may occur on the neonatal unit after the cut-off, but any death on a 

neonatal unit is important. 

In effect, given the low probability of death after discharge, the choice of in-unit mortality 

could be seen as a close approximation to death within 228 days of birth (the longest time 

between birth and in-unit death observed in the data used in this thesis: Figure 2.6). 

Figure 2.6 Length of stay for infants who died before discharge 

 

Some studies have investigated subsequent survival for infants who have survived to a certain 

time, for example the first three days of life (Fowlie et al, 1998). While such an approach may 

be useful for informing parents, allocating infants to strata within a clinical trial and allocating 
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care, the fact that many deaths would be excluded means that it is an unsuitable approach for 

profiling here. 

It is acknowledged that there is disagreement about the use of mortality as a measure of care.  

In particular, the increasing survival rate of very low birth weight infants means that the 

chronic morbidity (particularly neurological) experienced by these infants is also very 

important (McCormick, 1997; Bard, 1993; Colver et al, 2000; Allen, 2002).   However, 

mortality has been chosen here as it has been reliably collected in the Trent Neonatal Survey 

and it is, in itself, a very important outcome and of interest to neonatologists and 

administrators within the Region (The Trent Infant Mortality and Morbidity Studies, 2003).  

As discussed in §2.3, there is also some evidence that mortality rates are influenced by the 

type of care given.  If true, mortality may be an appropriate measure of the quality of care 

provided. 

In-unit survival is a commonly used outcome to compare neonatal units.  However, other 

outcomes have been used in published papers.  Examples of outcomes used include: alive 

without supplementary oxygen on day 28 (Horbar et al, 1988); rates of chronic lung disease 

(CLD) at 36 weeks adjusted gestational age, retinopathy of prematurity (ROP), 

intraventricular haemorrhage (IVH), patent ductus arteriosus (PDA), nosocomial infection, 

stage 2 or greater necrotising enterocolitis (NEC), survival without major morbidity (grade 4 

IVH, CLD NEC or grade 4 ROP) (Lee et al, 2000), blood transfusion rates (Bednarek et al, 

1998) and narcotic use (Kahn et al, 1998).  However, these outcomes are either dependent on 

unit clinical policy and unsuitable for inferring the level of care of individual units (e.g. alive 

without supplementary oxygen and rates of CLD are hugely influenced by policy on 

oxygenation) or are outcomes not recorded by TNS (e.g. ROP, NEC and PDA). 

 

2.4 Study Population and Outcome 

The source of the data in this thesis (the Trent Neonatal Survey) was described in §2.2.  The 

data to be analysed are introduced in this Section, together with the problems of implausible 

values for birth weight for gestational age and how infants who may have received care from 

multiple units will be allocated to an individual unit. 
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Study population 

With any study it is important to carefully define the population of interest.  The choice of 

population of preterm infants can influence study results (Evans and Levene, 2001): for 

example should labour unit deaths be included (i.e. all live births) and what about stillbirths, 

both antepartum and intrapartum?  This thesis has only looked at infants admitted to neonatal 

care.  However, this could exclude some infants who could not be, or were not, resuscitated 

on the labour unit, a decision likely to have been made by the neonatal team.  Other studies, 

when considering preterm births, have looked at all deliveries within a hospital (Horbar et al, 

1997), whether they survived to admission or not.  However, in this thesis interest was with 

the care provided by the neonatal units and, therefore, only admissions were considered.  Of 

course, there are likely to be differences in the types of babies admitted to individual units, 

especially at the extremes.  There is a debate on what type of care should be given to infants, 

particularly very preterm infants, even if their chances of survival are felt to be negligible 

(Greisen, 2004; Levene, 2004; Morrison and Rennie, 1997).  It may be argued that good 

nursing care is more appropriate than subjecting the infant to invasive intensive care therapies 

with little hope of survival.  It is likely that different clinicians (together with parents and 

nursing staff) will have different opinions, and that hospitals will have different policies.  An 

Australian study showed that out of 71 neonatologists, 77% said that they would never 

resuscitate a 22-week infant, and 11% said that they would never resuscitate a 23-week infant 

(Oei et al, 2000).  In another Australian study, a sample of experienced obstetricians from 

non-tertiary hospitals stated that the minimum gestational age at birth at which they would 

consider active intervention ranged from 22 to 26 weeks (Gooi et al, 2003).  In the 

Netherlands active intensive care is generally not given to infants born at less than 25 or 26 

weeks gestational age (Sheldon, 2001).  At the extreme, there is anecdotal evidence of infants 

born alive following failed abortions not being given treatment in some hospitals but being 

admitted to neonatal units in others, with reports of two such cases being admitted to 

Leicester Royal Infirmary (Templeton and Rogers, 2004).  It is clear that infants at the 

margins of viability will have very poor prognoses.  A neonatal unit that takes an aggressive 

interventionist policy with such infants is very likely to show high death rates, not necessarily 

due to poor quality of care but, rather, because of its admission policy.  Certainly, units which 

admit a large number of infants with very poor prognoses run the risk, if model risk 

adjustment is not perfect, of having increased observed mortality over what is expected.  The 

TNS does not collect information on infants not admitted but, since the neonatologists are 
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making decisions on admission, it should at least be acknowledged that there is some 

information on performance being lost. 

In some studies, for example Lee et al (2000), all admissions have been considered, no matter 

the weight or gestational age at birth.  The data available to this thesis only allow a subgroup 

of admissions to be considered, as data are not collected on all admissions to neonatal 

intensive care units (see the inclusion criteria in §2.2).  However, the majority of neonatal 

deaths occur to preterm infants (Rennie and Roberton, 2002:1).  Indeed, local information 

confirms that infants born at 32 completed weeks achieve 98% to 99% survival (Draper et al, 

2003).  It has been suggested that the greater heterogeneity of the pathology of term babies 

and the greater unpredictability of their outcome make outcomes in that group a more 

sensitive marker for quality of care (Marlow, 2002).  However, the unpredictability of death 

in these more mature infants, and the small number of deaths, would make it difficult to use 

them to measure the quality of care. 

The total number of deaths, of all gestational ages at birth, recorded on neonatal units within 

the Trent Region from 2000 to 2002 was 364, with 285 (78%) of these infants born at less 

than 33 complete weeks gestational age (Figure 2.7).  Thus, the data used in this thesis 

include the majority of in-unit deaths, but not all.  However, the pathology of term infants 

dying is likely to be different to preterm births so this distinction may be appropriate. 

Figure 2.7 Total observed in-unit mortality by gestational age at birth: TNS data for all 

gestational ages 
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A further point of note is that this thesis investigates births at 32 weeks gestational age or less: 

the cohort is not defined by birth weight.  Some previous studies have used a combined 

selection criteria, such as less than 32 weeks or less than 1500g birth weight, in an attempt to 

include all ‘small’ infants, for example de Courcy-Wheeler et al (1995).  The TNS uses both 

of these as criteria for inclusion into the survey, although clinical investigations usually use 

subsets defined by gestational age, for example Draper et al (1999), Lal et al (2003), 

Manktelow et al (2001).  The use of birth weight to define a cohort potentially introduces bias 

into an analysis because a single definition of ‘low birth weight’ is unlikely to be appropriate 

for all group within a population (Wilcox, 2001). 

The population selected from TNS to be investigated in this thesis were all infants admitted to 

the sixteen NICUs named above, who were deemed to have been born at less than 33 weeks 

gestational age in the years 2001, 2002 and 2003.  Infants with lethal congenital abnormalities 

were excluded.  There were 3063 infants identified and, of these, 37 (1.2%) were identified 

with lethal abnormalities and were excluded from all further analyses, leaving 3026 infants. 

2.4.1 Plausible birth weight for gestational age 

The data on the 3026 remaining infants were inspected for recorded weight and gestational 

age at birth.  There are several difficulties in estimating gestational age, discussed in more 

detail in §6.4.1.  This, together with the potential for recording errors in both gestational age 

and birth weight, means that it is useful to check the data for possible implausible values of 

birth weight for gestational age.  An exceptionally high, or low, birth weight at any given 

gestational age may indicate an error in the data.  This is more likely, unless it is the result 

solely of a recording error, to be an error in the recorded gestational age than the birth weight.  

The incorrect inclusion of infants actually born at greater than 32 weeks gestational age is 

likely to result in a falsely low estimated mortality rate since infants born later have higher 

rates of survival. 

Sometimes such observations thought to be implausible have been removed after simply 

inspecting the data, for example Gruenwald (1966), but in other cases various rules for 

identifying implausible values have been proposed.  Some of these are simple rules, such as 

birth weights more that two interquartile ranges above the 75th, or below the 25th, birth weight 

for gestational age centile (Arbuckle et al, 1993), more than two standard deviations above 

the mean weight for gestational age (Seeds and Peng, 1998), more than 40% over the mean 

birth weight for gestational age (Arnold et al, 1991), over six standard deviations from the 
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mean (Cheung et al, 2000) and four or five standard deviations above or below the median 

birth weight for gestational age (Joseph et al, 2001). 

Other methods use the assumption that the distribution of birth weights conditional on 

gestational age follows a Normal distribution and then delete or reassign gestational age to 

extreme observations (Zhang and Bowes, 1995).  A more sophisticated method uses a mixture 

model to estimate the conditional birth weight distribution assuming a conditional Normal 

distribution (Platt et al, 2001).  It is further assumed that errors in recorded gestational age at 

birth resulted in either the gestational age being correctly recorded or a term birth incorrectly 

recorded.  In their paper, the assumption made by Platt et al was that all preterm births were 

correctly recorded.  Other error patterns were also referred to, but not presented as the 

solutions to such models are computationally very intensive.  A further approach has been 

suggested, similar to Platt et al but this time assuming a conditional log-normal distribution 

for the birth weights and also assuming that all errors are ± 4 weeks.  Extreme observations of 

birth weight for gestational age can then be identified using local criteria (Oja et al, 1991). 

When the empirical distribution of birth weight at each gestational age is multimodal, one 

proposed method is to assume that the lowest observed mode is the true mode for the 

distribution.  If it is further assumed that the true distribution is symmetrical about the mode, 

and that the values below this observed mode are correct, percentiles can then be estimated 

and observations above a specified percentile can be identified (David, 1983) 

An alternative approach is to investigate the range of gestational age for a given birth weight 

since, it is argued, birth weight can be measured more accurately than gestational age. 

Alexander et al (1996), using observed data from over 3,000,000 singleton live births in the 

USA in 1991, divided the observations into groups according to their birth weight (125g 

intervals) and then investigated any observations with reported gestational ages more than 2.5 

standard deviations from the mean gestational age for that birth weight group.  Such outlying 

observations were then further inspected for possible deletion using clinical judgement. 

While most of the methods outlined above assume a unimodal distribution for birth weight 

conditional on gestational age, preterm births are, by definition, a select group of fetuses (i.e. 

fetuses delivered prematurely) and a multimodal conditional distribution may, potentially, be 

more appropriate.  The distribution has been modelled at least once before as a mixture of two 

Normal distributions (Milner and Richards, 1974).  The observed conditional distribution for 

the data in this thesis is investigated in Appendix G. 
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Such rules only identify possible implausible birth weights and not other possible errors in the 

reported gestational age or birth weight.  It is quite possible for an observation with an 

incorrectly reported gestational age to have a birth weight that appears quite plausible.  No 

matter which cut-offs are chosen it is inevitable that some incorrect values will remain, just as 

some true but extreme values may have been excluded (Platt et al, 2001; Altman and Chitty, 

1997).  Indeed, it is only gross errors that will be identified using these methods.  There has 

been evidence presented that those excluded by such rules tend to have higher birth weight 

specific and gestational age specific mortality rates than other live births (Joseph et al, 2001; 

Parker and Schoendorf, 2002).  Nevertheless, these are useful techniques for identifying 

problems. 

The data in this thesis show no evidence of multimodal conditional birth weight for 

gestational age distributions (§6.4.3), characteristic of term births incorrectly recorded as 

preterm (Skjaerven et al, 2000; Platt et al, 2001; Altman and Chitty, 1997; Parker and 

Schoendorf, 2002).  However, this is not surprising as infants in these data are included only 

if they were admitted to a NICU, which is likely to have resulted in any large errors in the 

recording of gestational age to have been noticed and corrected.  The TNS already substitutes 

gestational age estimated from early ultrasound scan when the last menstrual period dates are 

thought to be incorrect and, therefore, already uses some form of data modification.  Any 

extreme errors remaining are likely to be recording errors.   Because of this, together with the 

tendency for such methods to exclude high-risk infants, this thesis will use the method 

proposed by Alexander et al (1996).  This method gives wide, conservative limits (Parker and 

Schoendorf, 2002) as well as being readily available and easy to use.  These limits are given 

in Table 2.1 and are shown in Figure 2.8 together with the observed birth weights. 

Only one observation fell outside the limits proposed: 2915g and 29 weeks gestational age at 

birth (Figure 2.8).  After confirmation of these values on the original TNS questionnaire, this 

observation was excluded and the remaining 3025 observations were used for all further 

analyses, unless otherwise stated. 
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Figure 2.8 Birth weight by gestational age: TNS data 
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Table 2.1 Limits of plausible birth weight 

Gestational age Plausible birth weightf

 (weeks) 

  (g) 

Lower limit Upper limit 

22 125 1375 

23 125 1500 

24 125 1625 

25 250 1750 

26 250 2000 

27 250 2250 

28 250 2500 

29 250 2750 

30 375 3000 

31 375 3250 

32 500 3500 

2.4.2 Allocation to NICU 

One notable feature of neonatal care in the UK is that many infants are transferred between 

neonatal intensive care units.  This may be before birth (in-utero) if the anticipated level of 

care and medical expertise, either for the birth or postnatally, is not available in the booked 

hospital of birth.  Transfers also occur postnatally if the level of care required is greater than 

that which can be given at the hospital of birth.  It is also usual for an infant to be transferred 

back from a referral centre to its local unit once it is possible to do so.  While these types of 

transfers are appropriate to fulfil clinical requirements, other transfers may not be.  In 

particular, transfers may occur because a unit does not have sufficient capacity at that time.  A 

1999 census of the 37 largest perinatal centres in the UK showed that a proportion of 

postnatal transfers out occurred due to lack of cots or appropriate staff (Parmanum et al, 

2000).  The 2002 TNS Annual Report reported that 181 infants recorded by the survey in that 

year were inappropriately transferred (The Trent Infant Mortality and Morbidity Studies, 

2003) although the reasons were not known.  Currently, transfers are generally carried out in a 

unplanned manner with little formal organisation between units (Field et al, 1997; Fenton et 

al, 2004). 

                                                 

f From (Alexander et al, 1996) 
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For the purposes of analyses, infants need to be allocated to a single unit.  One method is to 

attribute the unit that provided the longest period of care between 12 and 72 hours after birth 

(Scottish Neonatal Consultants' Collaborative Study Group and the International Neonatal 

Network, 1995; Parry, 1998).  However, the Trent Neonatal Survey only records that an infant 

was on a particular unit on a given day and, thus, does not provide sufficient detail to use this 

method of allocation.  The decision was therefore made that when an infant has been 

transferred, the NICU of care should be the first where the infant was recorded as having been 

on the unit on at least three consecutive days.  It is acknowledged that, depending on the time 

of admission and discharge, the minimum time on the unit may range from 24 to 72 hours.  If 

any transferred infant did not stay on any unit for this minimum amount of time, it was 

assigned to a unit using clinical judgement, considering the time spent on the units, the care 

given and the type of unit. 

Of the 3025 infants included in this study, 2814 (93%) were assigned to their first unit of 

admission and 2455 (81%) were never transferred to another unit.  Of the 570 who were 

transferred, 359 (63%) were assigned to the unit of their first admission and 204 (36%) were 

assigned to their second unit.  One infant was assigned to the third unit of admission having 

spent less than two days in two different units before being admitted to a third unit where he 

stayed for 12 days before being discharged home.  In addition, there were six infants who 

were transferred between units, but who were not on a single unit for three consecutive 

calendar days.  All of these infants died before discharge.  These infants were allocated to 

their second unit of admission.  This choice was made for three reasons.  For each infant the 

stay on the second unit (two days) is as least as long as the first unit (one or two days), the 

second unit is a referral unit implying that the transfer was appropriate and the deaths 

occurred on the second unit. 

The sensitivity of the numbers to allocation procedure can be investigated by using different 

criteria.  In Figure 2.9 the number of admissions, by outcome, are shown using three different 

allocation methods: ‘48-hours’ represents the method used in this thesis by allocating an 

infant to the first unit in which it stayed for three consecutive days; for ‘First Unit’, the infant 

was allocated to the unit of first admission regardless of the length of stay; ‘TNS report’ 

reproduced the allocation method used for the TNS report by allocating infants to the second 

unit of admission in the case of emergency (flying-squad) transfers but to the first unit 

otherwise. 
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Although the methods resulted in different numbers of infants for each unit, the variation was 

small.  The decision to allocate infants to the first unit in which they stayed for three 

consecutive days was preferred as it matched infants to the unit where most early care was 

received. 

Figure 2.9 Admissions and deaths in units by method of allocation 

 

2.4.3 Infant characteristics 

Important characteristics of the TNS data are described below: more detailed investigations 

are left until Chapter 6. 

The distribution of reported gestational ages is shown in Figure 2.10.  Unsurprisingly, there 

are increasing numbers of admitted infants with increasing gestational age.  This is mostly 

due to more births at higher gestational ages (in the range investigated here) but also due the 

increased likelihood of survival to admission to a NICU.  The distribution of recorded birth 

weight is shown in Figure 2.11.  However, it is birth weight for gestational age that is likely to 

be more informative and this is discussed in more detail in §6.4.3.   

Figure 2.10 Histogram of observed gestational age at birth for TNS data 
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Figure 2.11 Histogram of observed weight at birth for TNS data 

 

More than half of the infants admitted were boys (Table 2.2).  The one infant for whom sex 

was not recorded was born at 30 weeks gestational age and was discharged home alive.  

Although the majority of infants were singletons, around one quarter were from multiple 

pregnancies (Table 2.3).  The ethnic group of the infant, as reported by the mother, is 

recorded by TNS (Table 2.4). 

Table 2.2 Observed number of infants by sex of infants for TNS data 

Sex No. (%) 

Male 1667 (55.1) 

Female 1357 (44.9) 

Not recorded 1 (0.0) 

Total 3025  

Table 2.3 Observed number of infants by multiplicity of pregnancy for TNS data 

Multiplicity of pregnancy No. (%) 

Singleton 2288 (75.6) 

Twin 669 (22.1) 

Triplet 68 (2.2) 

Table 2.4 Observed number of infants by ethnic group for TNS data  

Ethnic group of infant No. (%) 

European 2551 (84.3) 

Asian 239 (7.9) 

African / West Indian 52 (1.7) 

Mixed race 108 (3.6) 

Other 14 (0.5) 

Not known / not recorded 61 (2.0) 
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The observed mortality before discharge for each unit is given in Table 2.5.  There is a wide 

variation between the units in the proportion of infants who died before discharge: from 2.2%, 

in units 13 and 14, to 14.3% in unit 6. 

Table 2.5 Observed In-Unit Mortality 2000-2002 for TNS data 

Unit Total 
Infants 

No. 
Died 

Percentage 
of 

Admissions 

(Exact 95% 
confidence 
interval) 

1 212 21 9.9 (6.2 to 14.8) 

2 283 30 10.6 (7.2 to 14.8) 

3 38 2 5.3 (0.6 to 17.8) 

4 142 6 4.2 (1.5 to   9.0) 

5 333 41 12.3 (8.9 to 16.4) 

6 378 54 14.3 (10.9 to 18.3) 

7 243 29 11.9 (8.1 to 16.7) 

8 124 8 6.4 (2.8 to 12.4) 

9 35 1 2.9 (0.0 to 15.0) 

10 146 5 3.4 (1.1 to   7.9) 

11 445 62 13.9 (10.8 to 17.5) 

12 196 5 2.6 (0.8 to   5.9) 

13 136 3 2.2 (0.4 to   6.4) 

14 90 2 2.2 (0.2 to   7.8) 

15 124 10 8.1 (3.9 to 14.4) 

16 100 6 6.0 (2.2 to 12.6) 

Total 3025 285 9.4 (8.4 to 10.6) 

Exact 95% confidence intervals are also shown in Table 2.5, calculated using a link between 

the binomial and the F distributions (Armitage and Berry, 1994:121).  The limits for the 

interval are given by: 

  ( ) rrn
Lower Frnr

r

2,222,025.01 +−+−+
=π      (2.1) 

( ) 1
22,22,025.01

1
−

−+−++
+

=π
rnr

Upper Frnr
r      (2.2) 

where:  n is the number of observations 
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2.5 Chapter Summary 

In this Chapter the data source (the Trent Neonatal Survey) and the data investigated in this 

thesis were introduced.  Some characteristics of neonatal intensive care and its organization 

were also described. 

In §2.4 basic descriptive statistics for the data were reported and the problem of implausible 

reported birth weight for gestational age was discussed, resulting in one observation being 

excluded from further analyses.  The method of allocating infants to responsible NICUs was 

also described. 

Observed in-unit mortality rates for the NICUs were reported in Table 2.5 and a wide 

variation in rates noted.  The observed differences can be accounted for by three sources of 

variation (as discussed in §1.3.2): random variation, differences in case-mix and differences 

in the type of care between the units.  Statistical methodology to disentangle these causes will 

be described in the rest of the thesis, beginning with methods to quantify the random variation 

for provider profiling with binary indicators in Chapter 3. 
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Chapter 3: STATISTICAL METHODOLOGY 

3.1 Chapter Overview 

In the previous Chapter, Table 2.5 showed the observed in-unit mortality rates for the 

neonatal units in this thesis.  The differences in rates observed can be accounted for by three 

sources: random variation, differences in case-mix and differences in the type of care between 

the units (§1.3.2).  In this Chapter statistical methods that quantify the random variation, and 

have been proposed for provider profiling with binary indicators, will be introduced and 

discussed.  Case-mix adjustment is taken up in Chapter 4. 

Section 3.2 comprises a brief description of two approaches to statistical analysis used in this 

thesis: Classical and Bayesian.  In §3.3 simple statistical methods for provider profiling using 

binary indicators are described and illustrated.  It is shown that such methods are unlikely to 

be sufficiently detailed or flexible to allow robust conclusions to be drawn and a statistical 

modelling approach is suggested as more appropriate.  This leads to §3.4 where generalized 

linear models, and in particular logistic regression models, are introduced and illustrated.  

Other statistical methods that may be applicable to provider profiling in general, but not 

suitable for the data in this thesis, are briefly described in §3.5.  The main results and 

conclusions from the Chapter are reported in §3.6. 

 

3.2 Frequentist and Bayesian statistical methods  

The statistical methods discussed in this thesis can generally be undertaken using either 

Frequentist (Classical) or Bayesian methods.  Although the primary analyses in this thesis 

will use frequentist methodology, a Bayesian approach will sometimes be presented to 

illustrate this potential approach and the results obtained compared with those from the 

frequentist analysis.  The difference between the two approaches is only briefly discussed, as 

the emphasis is on contrasting the different interpretations of the results obtained.  However, 

it is felt that a brief description of the main characteristics of each approach may be useful. 
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3.2.1 Frequentist methods 

Frequentist statistical methods are based on the relative frequency concept; i.e. the 

proportion of times an event occurs over a number of observations.  The long-term frequency 

of an event occurring (the limiting relative frequency) is interpreted as the probability of that 

event occurring on a single occasion (Lindley, 2005). 

Much of classical statistical methods involves hypothesis testing and the calculation of 

confidence intervals.  Hypothesis testing involves specifying a hypothesis of interest: the null 

hypothesis (H0).  In the case of a two arm clinical trial, the null hypothesis is often that the 

population mean value of the response of interest is the same in each group: i.e. µA = µB, 

where A and B signify the treatment groups and µ the population mean.  This hypothesis of no 

difference is sometimes referred to as the nil hypothesis (Cohen, 1994), which may help as a 

reminder that null hypotheses does not solely have to be of the form of no difference.  Instead, 

the null hypothesis could, and some say should (Mulaik et al, 1997:68), be used to test a 

hypothesised difference between the two groups, e.g. µA = (µB + 4). 

The approach involves the calculation of the probability of obtaining the study results, or 

results more extreme, if the null hypothesis was true, i.e. P(data|H0), where data is the totality 

of data equal to or more extreme than that observed (Berry and Stangl, 1996).  A small value 

of P is taken as evidence that the data are unlikely to have come from a population with the 

hypothesised parameter values and, hence, it is argued, the null hypothesis can be rejected. 

The uncertainty around the estimate of a parameter or statistic is usually presented using a 

100(1-α)% confidence interval.  Such intervals have the interpretation that over repeated 

sampling the true value lies in such intervals 100(1-α)% of the time. 

3.2.2 Bayesian methods 

It may be argued that it is the probability of a hypothesis given the data, i.e. P(H0|data), 

which is really the probability of interest.  An alternative way of looking at this is to consider 

P(θ|data), the conditional probability of the parameters.  However, P(θ|data) makes a 

probability statement about the parameters and in classical statistics parameters have fixed, 

but perhaps unknown, values.  Using this approach requires the acceptance that a parameter 

can have probability distribution rather than being a constant.  Once this is accepted P(θ|data) 

can be calculated using Bayes Theorem: 
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( ) ( ) ( )
( )dataP

PdataPdataP θθθ || =        (3.1) 

where: θ is any parameter, for example θ = (µA - µB). 

It can been seen that the use of Bayes Theorem requires P( θ ), the unconditional density of θ , 

to be stated.  This is the prior state of knowledge, or belief, about the hypothesis, or 

parameter, and is called the prior probability distribution.  The formal inclusion of prior 

knowledge into the calculations is perhaps the most contentious aspect of the Bayesian 

approach.  To some Bayesians this is the most important distinction between the two 

approaches (Berry and Stangl, 1996:8) as all evidence can be formally included in the 

analysis.  Frequentists, however, may argue that this introduces subjectivity, since different 

people can draw different conclusions from the same data (Fisher, 1996). 

In (3.1) P(data| θ ) is the likelihood function for the data evaluated at θ , sometimes denoted 

as L( θ |data).  Since P(data) is a normalising factor, then (3.1) can be rewritten: 

 ( ) ( ) ( )θθθ PdataLdataP || ∝         (3.2) 

Then, if all the parameters θ  = θ1,…,θk are assumed to be independent then: 

 ( ) ( ) ( ) ( )kPPdataLdataP θθ∝ ...|| 1θθ  

One method to obtain the marginal posterior distributions of each parameter is to integrate out 

the other parameters.  For example, this gives for θ1: 

 ( ) ( ) kdddataPdataP θθ∝θ ∫ ∫
∞

∞−

∞

∞−

... |...| 21 θ      (3.3) 

Generally, the solution to equations such as (3.3) is not able to be obtained analytically and 

other methods are often used (Gefland, 1995).  These include numerical evaluation, analytic 

approximation (e.g. Laplace approximation) and Monte Carlo integration (including Markov 

Chain Monte Carlo).  The method to be used in this thesis is Markov Chain Monte Carlo 

(MCMC), and in particular Gibbs sampling.  This method is felt to be the most appropriate for 

models with a large number of parameters to be estimated (Gilks et al, 1993). 

Gibbs sampling 

Characteristics of a posterior density function (e.g. mean, variance) can be expressed as 

functions of θ.  The posterior expectation of such a function is given by: 
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( )[ ] ( ) ( ) ( ) θθθθ∝θ ∫ dPdataLfdatafE ||     (3.4) 

Monte Carlo intergration evaluates ( )[ ]datafE |θ  by sampling {θt, t = 1,…,n} from 

( ) ( )θθ PdataL |  and the ergodic averaging gives (Gilks et al, 1995:4): 

( )[ ] ( )∑
=

≈
n

t
tf

n
datafE

1

1| θθ       (3.5) 

In practice it is often impossible to sample directly from ( ) ( )θθ PdataL |  as such distributions 

can be very non-standard (Spiegelhalter et al, 2004:105).  One solution is to construct a 

Markov chain with the same state space as (3.2) and with equilibrium distribution 

( ) ( )θθ PdataL | .  Sampling from the chain, once the equilibrium distribution has been 

reached, will provide observations that can be used to estimate the required summary statistic 

of the posterior distribution, i.e. (3.5).  Although this will not be an independent sample, since 

for a Markov chain any observation xp is a function of xp-1, convergence to the expectation of 

interest will be achieved if the chain is run for a sufficiently long time (Gilks et al, 1995:5). 

The Gibbs sampler can produce a Markov chain with the properties outlined above (Smith 

and Roberts, 1993).  If the joint posterior distribution is given by P(θ)=P(θ1, θ2,…, θp), then 

let P(θj| θ(-j), data) represent the induced full conditional distribution of parameter j given the 

value of the other parameters.  The Gibbs sampler starts with initial values for the parameters 

(θ0)=(θ1
0, θ2

0,…, θp
0), then successive random observations are made from the full conditional 

distributions P(θj| θ(-j)), j = 1,…, p.  The sampling starts thus: 

 θ1
1 from P(θ1| θ2

0,…, θp
0, data) 

 θ2
1 from P(θ2| θ1

1, θ3
0,…, θp

0, data) 

  .. 

 θp
1 from P(θp| θ1

1,…, θp-1
1, data) 

Hence, (θ0)=(θ1
0, θ2

0,…, θp
0) has been changed to (θ1)=(θ1

1, θ2
1,…, θp

1).  Repeated application 

of the algorithm (say m times) produces a series of observations θ0, θ1,…, θm.  These are 

realisations from a Markov chain with an equilibrium distribution equivalent to the joint 

posterior distribution. 

However, the Gibbs algorithm will not always produce a sample from the full sample space of 

the target posterior distribution.  For example, a high level of autocorrelation within the chain 

can result in poor mixing and the chain not covering the full sample space.  Methods exist to 
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try to improve the mixing of the chains and to diagnose any problems that may have occurred.  

Some of these are discussed below. 

Credible intervals 

The Bayesian equivalent to confidence intervals are credible intervals.  However, since it is 

now assumed that parameters have probability distributions, intervals can be constructed that 

truly have the interpretation that there is a probability of (1-α) that the true parameter estimate 

lies within a 100(1-α)% credible interval.  The intervals used in this thesis are two-sided 

equi-tail-area intervals.  The interval limits (θL, θU) are defined where P(θ < θL) = 0.025 and 

P(θ > θU) = 0.975.  However, for skewed distributions some values outside the interval may 

have higher posterior probabilities than some values in the interval.  An alternative approach, 

to overcome this problem, would have been to use highest posterior density (HPD) intervals.  

In this case the values of the limits are selected so that they have identical posterior 

probabilities (Spiegelhalter et al, 2004:65).  However, the limits of HPD credible intervals can 

be difficult to obtain, so equi-tail-area intervals were used in this thesis. 

Application of Gibbs sampling to data 

In this thesis, Gibbs sampling methods were applied to the data using the WinBUGS software 

(Spiegelhalter et al, 1999b).  To start the Markov chain initial values (i.e. θ0) were required to 

be specified for all parameters.  In theory, the choice of initial values has no effect on the later 

sampled values from the chain, assuming that the values chosen are compatible with the 

parameter (e.g. initial values for a variance should be positive).  However, in practice 

convergence of the chain to the equilibrium distribution can be improved by the choice of 

values (Spiegelhalter et al, 2004:106).  In this thesis, the initial values were specified so as to 

lie within the range of plausible values for the parameters. 

This thesis was not intended as an investigation into the influence of the choice of prior 

distribution on any inferences made.  In general, non-informative (or reference) prior 

distributions were used by specifying a vague probability distribution; often Normal(0,10002).  

Where data were sparse, external knowledge was used to create more informative priors, but 

no attempt was made formally elicit prior beliefs.  Of course, it would be possible to repeat 

the modelling illustrated in this thesis using more informative priors. 

It is important to determine that the Markov chain has converged to the equilibrium 

distribution and that it is sampling from the whole of this distribution.  Problems may arise 

because the Gibbs sampler produces only a sample from the equilibrium distribution, rather 



STATISTICAL METHODOLOGY 

BRADLEY MANKTELOW PHD THESIS 51 

than the distribution itself and also, since a Markov chain is used, the sampled values will be 

correlated.  There has been much discussion whether the number of chains generated can help 

to overcome, or at least identify, these problems.  Running a number of chains, starting from 

different initial values, and checking whether they all arrive at the same sampling distribution 

can help to identify a lack of convergence in the chains (Gelman and Rubin, 1992; Gelman, 

1995; Brooks and Gelman, 1998; Spiegelhalter et al, 2004).  An alternative argument has 

been made that if a single chain is run for long enough then, no matter how correlated the 

chain, a suitable sample will be obtained (Geyer, 1992).   

No methods exist to show for certain that a chain has sampled from the whole of the posterior 

sample space, though there are techniques that can offer evidence that such a sample has not 

been obtained.  Formal methods exist to invesigate the convergence of a chain, for example 

Best et al (1996).  The approach taken in this thesis was to run multiple chains, from 

dispersed starting values, as an initial inspection of models.  Convergence was then checked 

for by both visual inspection of the trace plots and by the calculation of the Brooks-Gelman-

Rubin statistic R (Brooks and Rubin, 1998).  The Brooks-Gelman-Rubin statistic is the ratio 

of the width of the central 80% interval of the pooled chains to the average width of the 80% 

intervals within each chain.  This statistic is available in WinBUGS, where it is calculated in 

bins of length 50 (Spiegelhalter et al, 1999b).  Good convergence properties are shown both 

by the convergence of R to the value 1 and by the convergence of the width of the intervals to 

stable, and equal, values (Brooks and Rubin, 1998).  Once a model was found to possess good 

convergence properties a single chain was used (usually with 10,000 sampled iterations) in 

other runs of the model for simplicity.  In addition, the autocorrelation within the chain was 

visually examined for evidence of slow mixing of the chain and, therefore, the possibility that 

the chain did not cover the whole sample space. 

For any chain, the iteration values generated before the equilibrium distribution has been 

reached need to be discarded (burn-in).  In this thesis, a 1,000 iteration burn-in was used, 

which could have been increased if it was felt that the equilibrium distribution had not been 

reached after that number of iterations. 

Advantages of Bayesian statistical methods 

The two main advantages in the use of Bayesian methods for statistical analysis are often 

given as the ability to formally include prior knowledge, or beliefs, in the modelling and the 

ability to make probability statements about estimated parameters (Berry and Stangl, 1996:8).  

It has also been argued that a Bayesian approach can be more flexible than frequentist 



STATISTICAL METHODOLOGY 

BRADLEY MANKTELOW PHD THESIS 52 

methods (Spiegelhalter et al, 2004:3).  Of course, these points are not universally accepted as 

advantages, particularly the first two.  Indeed, a glance through any medical journal will show 

that the vast majority of the statistical analyses in published papers use classical statistical 

techniques.  In using either approach in this thesis, emphasis is placed on the estimation of 

effect sizes and confidence (credible) intervals rather than solely on estimating statistical 

significance (p-values) because, after all, as Tukey (1969:86) said: 

“The physical scientists have learned much by storing up amounts, not just directions.  

If, for example, elasticity had been confined to “When you pull it, it gets longer!” 

Hooke’s law, the elastic limit, plasticity, and many other important topics could not 

have appeared.”  

3.3 Statistical Methods 

A range of statistical methods has been suggested to compare binary outcomes.  These range 

from basic ‘rough-and-ready’ methods to sophisticated statistical models.  A simple method 

based on the ranking of the units, and two graphical approached to summarizing the data, are 

outlined in this section and discussed. 

3.3.1 Rank 

Perhaps the simplest method of comparing providers is to list them in order of the value of the 

chosen outcome (Rabilloud et al, 2001; Jenkins and Gauvreau, 2002).  Such an analysis for 

the TNS data is shown in Table 3.1 using the observed mortality rates (Table 2.5).  However, 

the use of such reporting is problematic as the simple ranking gives no indication of the 

uncertainty surrounding a provider’s position (Spiegelhalter, 2003; Langford, 1997). 

This problem can be solved by quantifying the uncertainty around each rank, either by using a 

bootstrap method or with a MCMC approach, by sampling the rank at each iteration and then 

reporting a confidence (or credible) interval from the sampled values (Marshall and 

Spiegelhalter, 1998b).  These methods were applied to the TNS data.  To obtain the 

bootstrapped estimates samples were drawn with replacement from the data for each NICU, 

with sample size equal to their number of observations.  The mortality rates were then 

calculated for each NICU and each unit’s rank calculated.  This was repeated 1,000 times and 

then the 2.5th and 97.5th percentiles for each unit were estimated and reported as limits (Figure 

3.1).  The 50th percentiles are also shown for information.  The SAS/MACRO language was 

used and the macro boot_rank is shown in Appendix D.1.  As the sampling distribution of 
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rank is unlikely to be symmetric, since it is bounded at both limits, it is recognised that this 

percentile bootstrap method may be an unreliable method to estimate a confidence interval 

(Chernick, 1999:53-54): more appropriate bootstrap methods are discussed in §5.6.3.  

However, it was felt that this, admittedly rather crude, method is sufficient to illustrate the 

problem with using ranks as a summary measure. 

Table 3.1 NICUs ranked by rate of mortality 

Rank Unit Total Infants No. Died Percentage died 

1 13 136 3 2.2 

2 14 90 2 2.2 

3 12 196 5 2.6 

4 9 35 1 2.9 

5 10 146 5 3.4 

6 4 142 6 4.2 

7 3 38 2 5.3 

8 16 100 6 6.0 

9 8 124 8 6.4 

10 15 124 10 8.1 

11 1 212 21 9.9 

12 2 283 30 10.6 

13 7 243 29 11.9 

14 5 333 41 12.3 

15 11 445 62 13.9 

16 6 378 54 14.3 

Figure 3.1 Bootstrap 95% confidence intervals for rank 
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In the Bayesian approach, using MCMC sampling methods (in this case Gibbs sampling) a 

credible range for the ranks can be estimated in a similar matter to the bootstrap method 

outlined above, in this case sampling from binomial distributions with the parameters 

estimated using the observed values.  After a 1,000 iteration ‘burn-in’, 10,000 iterations were 

performed using Beta(2,18) as the prior distribution for the sampled probability of death (to 

be discussed further in §5.3.2).  These intervals are shown in Figure 3.2 and are, 

unsurprisingly given the similarity of methods, comparable to those in Figure 3.1. 

Figure 3.2 Bayesian 95% credible intervals for rank 

 

As can been seen in both Figure 3.1 and Figure 3.2 there is considerable uncertainty over the 

rank of any unit.  Units 6 and 11 have the highest observed mortality rates but the 95% 

confidence (credible) interval for each of these units is from 12th to 16th place.  Indeed, there 

is evidence that any one of seven of the units could truly have the lowest mortality rate.  Such 

uncertainly is hidden when the ranks alone are reported. 

In Chapter 5 a variety of outcome summary measures will be discussed and, in principle, they 

can all be used to rank the units.  However, any risk adjustment methods used are likely to 

reduce the differences between the units, thus producing more uncertainty about the true rank 

of each unit. 

3.3.2 Simple graphical approaches 

Two graphical methods have been proposed to identify providers with extreme outcome rates: 

the funnel plot and the spectrum plot.  Each of these is considered below. 
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Funnel plot 

One simple graphical method that has been proposed to illustrate observed rates (Stark et al, 

2000) uses a graph known as a funnel plot, widely used in meta-analysis (Sutton et al, 

2000:113).  It is suggested that such a graph allows the examination of the rate of mortality by 

unit size, “… providing a strong visual indication of ‘divergent’ performance or ‘special 

cause’ variation.” (Spiegelhalter, 2002)   

An example, for the data used in this thesis, is shown in Figure 3.3 with a 95% exact binomial 

confidence limits shown (2.1) & (2.2), calculated assuming the mean Regional unit rate, i.e. 

%29.70729.016

16

1 ==
∑
=

π
j

j

.   

Two points are immediately apparent from Figure 3.3.  First, there is a trend towards higher 

in-unit mortality in the larger units.  Second, some of the observed mortality rates fall outside 

the confidence interval shown.  There are some units that appear to be performing better than 

the average and others that appear worse. 

Figure 3.3 Mortality funnel plot for all admissions 

 

While such plots only give limited information, they may be useful in the preliminary 

investigation of subgroups.  For example, in §2.3 it was reported that a previous analysis 

using TNS data had shown different patterns of unit performance for those infants born at less 

that 29 weeks gestational age to those born between 29 and 32 weeks.  Funnel plots for these 

two gestational age groups are shown in Figure 3.4. 

Unit 6 has a high mortality rate for both gestational age groups, whereas Unit 11 only has a 

high rate for those infants with very low gestational ages. 
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Figure 3.4 Funnel plot for mortality by gestational age groups 

Less that 29 weeks gestation at birth 29-32 weeks gestation at birth 

  

It has also been suggested that funnel plots be used to present the results of complex 

modelling of the type discussed in Chapter 5 (Simpson et al, 2003; Spiegelhalter, 2005).  

Such funnel plots become more difficult to produce once the outcomes are adjusted for 

case-mix since the size of the confidence intervals then becomes a function of not only the 

sample size but also of case-mix.  One approach, used in a study of rates of severe 

intraventricular haemorrhage in neonatal units, is to interpolate between the estimated limits 

for each unit to form continuous (but not smooth) lines to represent the limits of the 

confidence intervals (Simpson et al, 2003).  Such plots are useful in investigating any 

relationship between outcome and units size. 

Spectrum plot 

An alternative graphic is the spectrum plot, proposed by Heyward and Howman from the 

Medical Informatics and Clinical Governance Support Unit, University Hospital of 

Birmingham (Society of Cardiothoracic Surgeons of Great Britain and Ireland, 2002:207).  In 

this example (Figure 3.5) the observed number of deaths is plotted against the number that 

would have occurred had the unit experienced the average Regional mortality rate of 7.29% 

(as derived above).  The graph is divided into section according to the size of the ratio of the 

observed to predicted deaths. Although this graph is eye-catching, it does not give any 

indication of the uncertainty around the observations, unlike the funnel plot, and, therefore, is 

less useful.  
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Figure 3.5 Spectrum plot 

       

 

3.4 Logistic Regression Models 

While the methods outlined above may have some role in the preliminary inspection of the 

data, they do not provide estimates of effects and their associated uncertainty.  In practice, 

statistical models are usually used for statistical estimation (Harrell, 2001:2).  Such models 

naturally allow adjustment for case-mix differences between providers.  Many of the models 

used in provider profiling can be seen to fall within the family of Generalized Linear 

Models (McCullagh and Nelder, 1989).   

In order to express a response as a product of a linear combination, generalized linear models 

use a monotonic differentiable function (link function), g(x), to map the predicted value to 

the interval (-∞, ∞).  This function describes the relationship between the expected value and 

the linear predictor η. 

Let  µi = E(Y | xi)   i = 1, …,n. 

Then  ( ) βx/
iiig =η=µ   { }ℜ∈η     (3.6) 

The variance of the response depends on the mean through a variance function V; 

( ) ( )
i

i
i

V
y

ω
µφ

=var        (3.7) 

where:  φ is the dispersion parameter; 
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ω is a known weight for each observation: assumed for the rest of this thesis 

that ωi = 1, unless otherwise stated.  

Generalized linear models for binary outcomes 

Generalized linear models can be used for all outcomes through the appropriate choice of link 

function and variance function.  However, in this thesis only the use of such models for binary 

outcome data will be pursued.  Outcome variables that can take one of two possible values are 

common in provider profiling.  Mortality is an often used outcome measure, e.g. in neonatal 

intensive care units (Parry et al, 1998) and following coronary bypass surgery (Peterson et al, 

1998), but other examples of binary outcomes include complication after surgery (Silber et al, 

1995), live birth rates from in vitro fertilisation (Marshall and Spiegelhalter, 1998b) and 

hospital readmission (Fisher et al, 1994; Daley et al, 1997). 

Possible link functions for binary data include (where π is the probability of an event): 

• the logit function:    ( ) 






−

=
π

ππ
1

logeLg  

• the probit function:    ( ) ( )ππ 1−Φ=Pg  

(where ( ).Φ  is the cumulative Normal distribution function) 

• the log-log function:    ( ) ( )[ ]ππ eeLLg loglog −−=  

• the complementary log-log function: ( ) ( )[ ]ππ −−= 1loglog eeCLLg  

Each of these functions has the desired property of mapping the interval [0, 1] to the whole 

real line.  However, there are both differences and similarities between these functions (Figure 

3.6). For 0.1 ≤ π ≤ 0.9 the logistic and the probit function are almost linearly related.  When 

π ≤ 0.1 the complementary log-log function and the logistic function are approximately equal, 

since they both approach log(π), and a similar argument holds for the log-log and logistic 

functions when π ≥ 0.9.  The logistic function and the probit function are both symmetrical in 

that: 

 ( ) ( )ππ −−= 1LL gg  

and 

 ( ) ( )ππ −−= 1PP gg . 
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Figure 3.6 Four possible link functions for binary data 
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The log-log and the complimentary log-log functions are related: 

( ) ( )ππ −−= 1CLLLL gg  

In general, the logistic and probit link functions are likely to give very similar results: this is 

particularly true away from the tails.  This is not surprising given the similarity between the 

two distributions (Figure 3.7). 

Figure 3.7 Probability Density Functions of Logistic and Normal Distributions: Mean=0 

and Variance =1 
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In practice, the logistic link is the most commonly used.  The main reason for this choice is 

that the parameter estimates from a logistic model are easier to interpret: log odds ratios.  

However, there are additional reasons why, in general, the logistic link may be preferred.  The 

logit transformation reflects an underlying qualitative variable (Binomial distribution), 

whereas the probit link reflects an underlying quantitative variable (cumulative Normal 

distribution) and it is also felt that logistic regression is more suited for the analysis of 

retrospectively collected data (McCullagh and Nelder, 1989:111). 

This is not to say that the logistic link will be the most appropriate in all circumstances.  

However, the logistic link will be the first choice of link function for the rest of this thesis 

because of the availability of appropriate software (in particular SAS PROC LOGISTIC) and 

the greater knowledge of the properties of logistic regression models compared to models 

with alternative link functions. 

The logistic regression model is given by: 

( )
( ) βx

x
x /

|1Pr1
|1Prlog =








=−

=
Y

Y
e       (3.8) 

where:  x = (1, x1,…, xp)/; the vector of explanatory variables; 

  




=
negative is outcome  theif        0

 positive is outcome  theif         1
Y  

β = (β0, β1,…, βp) /: the vector of unknown parameters. 

The unknown parameters can be estimated by maximum likelihood. 

Given:  )()|1( xxYP π==  

then:   )(1)|0( xxYP π−== . 

Hence, the likelihood function is: 

 ( ) ( )[ ]∏
=

−π−π=
n

i

y
i

y
i

ii xxL
1

11)(β .     (3.9) 

and the log-likelihood is: 
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  ( ) [ ] [ ] [ ] [ ]( )∑
=

π−−+π==
n

i
iiii yyll

1
1ln1ln)(ln ββ    (3.10) 

For models with p parameter estimates (p-1 covariates plus the intercept) this can be written 

as: 

  ( ) ∑ ∑ ∑∑
= = ==



















β+−β










=

p

j

n

i

p

j
ijjj

n

i
iji xxyl

j

1 1 11
exp1lnβ    (3.11) 

Partial differentiation with respect of each of the model parameters p gives the likelihood 

equations: 

∑∑
==

π−=
β∂
∂ kk n

i
iki

n

i
iki

k

xxyl
11

ˆ   k = 1, 2, …, p 

Therefore, in matrix notation, the solutions are found by: 

  ( ) 0ˆ =−′ πyX         (3.12) 

The variances of the parameter estimates are given by the inverse of the information matrix 

( )βI  where: 

( ) ( ) VXXββI ′=
β∂β∂

∂
=

mk

L2

  k, m = 1, 2, …, p  (3.13) 

where:  V = diag ( )ii π−π ˆ1ˆ  

Usually this is estimated at the maximum likelihood estimates of the parameters ( β̂ ).  Hence, 

the estimated standard deviation of parameter kβ  is given by the square-root of the kth 

diagonal element of ( )[ ] 1ˆ −
βI . 

Unlike linear regression, the maximum likelihood estimates for a logistic regression model 

cannot be written explicitly, except for special cases, such as when all the covariates are 

dummy variables (Harrell, 2001:228), and iterative methods are used to find solutions to the 

likelihood equations.  The default method in SAS PROC LOGISTIC (the routine used in this 

thesis) is the Fisher-scoring algorithm, which is equivalent to estimation by iterative, 

reweighted least squares (IRLS).  The alternative widely used approach is to use the 

Newton-Raphson method.  In general, these two methods give the same parameter estimates 

but different standard errors.  However, in the case of binary logistic regression the estimated 
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standard errors are identical, so the two methods give equivalent results (SAS Institute Inc., 

1999:1904). 

At the (m+1)th iteration the Fisher-scoring method estimates the expression (Agresti, 

1990:449): 

  ( ) mmmm qIββ 1
1

−
+ +=        (3.14) 

where:  Im is the information matrix evaluated at βm 

qm is the matrix ( )mπyXT ˆ− , where mπ̂ are estimated using βm 

This iterative process continues until convergence is reached, that is, cmm <−+ ββ 1 , where c 

is considered sufficiently small (the default in PROC LOGISTIC is c = 8101 −× ).  The 

estimates 1+mβ  are then the maximum likelihood estimates β̂ . 

Although logistic regression models are now widely used, and standard options within most 

general statistical packages, there are potential problems.  One of these is separation.  If there 

is a covariate, or collection of covariates, that completely separate the outcome groups then 

there is said to exist complete separation.  It can be shown that in this case the likelihood is 

monotonic and, therefore, the maximum likelihood estimates do not exist (Albert and 

Anderson, 1984; Bryson and Johnson, 1981; So, 1993). 

Figure 3.8 Complete Separation  
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 (adapted from So (1993)) 

Figure 3.8 shows the two outcome groups (1 & 2) completely separated, for example, by the 

line x2 = 2x1 - 6. 

If there is not complete separation but the overlap is confined to a small number of tied values 

then quasi-complete separation exists.  In this case there are solutions to the maximum 
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likelihood equations but typically the estimated standard errors of the coefficient estimates are 

very large. 

Figure 3.9 Quasi-complete Separation 
X2

20

30

40

50

60

70

80

90

X1
29 30 31 32 33

t

20

30

40

50

60

70

80

90

1

1

1

1

1

2

2

2

2

2

 (adapted from So (1993)) 

In this case Figure 3.9 shows the two outcome groups cannot be completely separated. 

In the absence of complete and quasi-complete separation there is an overlap between the two 

groups.  An example is shown in Figure 3.10: it can be seen that the two groups cannot be 

separated by any straight line. 

Figure 3.10 Overlap 
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 (adapted from So (1993)) 

Complete and quasi-complete separation are more likely to be a problem with small samples, 

a small proportion of subjects with a particular outcome, and a large number of variables 

included in the model (Hosmer and Lemeshow, 2000:130). 

SAS PROC LOGISTIC contains an empirical approach to try to identify complete and 

quasi-complete separation by reporting if the estimation procedure has not converged by the 

eighth iteration (SAS Institute Inc., 1999:1945). 
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3.4.1 Application to TNS data 

Logistic regression model 

The estimated log odds of mortality for each unit can be estimated using a logistic regression 

model.  Using the overall model: 

  ( ) NNe IIIg βββψ +++== ...log 2211     (3.15) 

where:   N is the number of units 

  Ij is an indicator variable: 




=
j Unit  toallocatednot infant   where0

      j Unit  toallocatedinfant   where1
jI  

 βj is the log odds for mortality for Unit j: i.e.  jjg β=  

This model is straightforward to estimate in SAS using PROC LOGISTIC by specifying that 

an intercept is not included in the model: NOINT (SAS Institute Inc., 1999:1920). 

Confidence intervals for ĝ  

The estimated confidence intervals for ĝ  are generally calculated using one of two 

approaches: Wald and likelihood ratio-based intervals (SAS Institute Inc., 1999:1950-1952). 

The Wald confidence intervals are based on the assumption of asymptotic normality of the 

parameter estimates and the 100(1-α)% confidence interval for parameter jβ  is given by: 

  ( ) ( )( )jjjj zz σ+βσ−β αα −− ˆˆˆˆ
22 11   to   

where:  jβ̂  is the maximum likelihood estimate of jβ  

jσ̂  is the estimated standard error of jβ̂  (see (3.16) and discussion) 

The likelihood ratio-based intervals (also known as profile likelihood intervals) are based on 

the log-likelihood function.  If, for example, a confidence interval for jβ  is to be estimated, 

the profile likelihood function for θ=β j  is: 

  ( )
( )

( )β
Ββ

ll
j

j θ∈
=θ max*  

where:  ( )θjΒ  is the set of all β  with the jth element fixed at θ . 
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Let the log-likelihood evaluated at the maximum likelihood estimate β̂  be denoted by maxl , 

i.e. ( )β̂max ll = , then ( )( )jjll β− *
max2  has a limiting chi-square distribution with one degree of 

freedom if jβ  is the true parameter value.  Therefore, limits to a 100(1-α)% confidence 

interval for parameter jβ  is given by: 

  ( ){ }0
*: ll j ≥θθ  

where:  2
1,1max0 2

1
α−χ−= ll  

2
1,1 α−χ  is the 100(1-α) percentile of the chi-square distribution with one degree 

of freedom 

The solutions are usually found by using an iterative algorithm (SAS Institute Inc., 

1999:1950-1951). 

Although confidence intervals based on the likelihood ratio are felt to be more accurate 

(Hosmer and Lemeshow, 2000:16; SAS Institute Inc., 1999:1950), they are computationally 

more complicated to obtain.  Likelihood ratio-based intervals are not available from 

CONTRAST statements in PROC LOGISTIC, which is used later.  To allow comparisons 

between different models Wald confidence intervals are the principal method used in this 

thesis: although Figure 3.11 displays both set of 95% confidence intervals for comparison. 

Figure 3.11 Wald and likelihood ratio-base confidence intervals 

 

For the large units the estimated confidence intervals were very similar for the two methods 

(Figure 3.11).  However, when the units are small the forced symmetry of the Wald intervals 
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on the logarithmic scale was very apparent and this characteristic led to higher limits.  Such 

intervals should, therefore, be interpreted with caution. 

Estimated odds of death by unit 

The results from the model specified by (3.8) are shown in Table 3.2 together with estimated 

Wald 95% confidence intervals 

Table 3.2 Estimated odds of death before discharge for TNS data 

Unit 

Observed 
probability 

of death 

jπ  

Odds of 
death 

( )
j

j
j π−

π=ω 1ˆ  (95% Wald 
Confidence interval) 

1 0.099 0.110 (0.070 to 0.173) 

2 0.106 0.119 (0.081 to 0.174) 

3 0.053 0.056 (0.013 to 0.231) 

4 0.042 0.044 (0.019 to 0.100) 

5 0.123 0.140 (0.101 to 0.195) 

6 0.143 0.167 (0.124 to 0.223) 

7 0.119 0.136 (0.091 to 0.200) 

8 0.064 0.069 (0.033 to 0.142) 

9 0.029 0.029 (0.004 to 0.215) 

10 0.034 0.035 (0.014 to 0.087) 

11 0.139 0.162 (0.123 to 0.212) 

12 0.026 0.026 (0.010 to 0.064) 

13 0.022 0.023 (0.007 to 0.071) 

14 0.022 0.023 (0.005 to 0.093) 

15 0.081 0.088 (0.045 to 0.168) 

16 0.060 0.064 (0.027 to 0.146) 

The maximum likelihood estimates for the odds were the same values as the observed.  This 

can be seen more easily if the estimated probabilities of death are reported ( π̂ ), rather than the 

estimated odds ( ω̂).  These probabilities and Wald 95% confidence intervals are shown in 

Table 3.3.  The estimated probabilities were equal to the observed values (Table 2.5) but the 

limits for the confidence intervals differ from the exact values calculated previously.  The 

limits of the Wald estimated intervals took higher values than the exact intervals, although 

these differences were small. 
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Table 3.3 Estimated probability of death before discharge 

Unit No. infants No. died jπ̂  (95% CI) 

1 212 21 0.099 (0.065 to 0.147) 

2 283 30 0.106 (0.075 to 0.147) 

3 38 2 0.053 (0.013 to 0.187) 

4 142 6 0.042 (0.018 to 0.090) 

5 333 41 0.123 (0.091 to 0.162) 

6 378 54 0.143 (0.111 to 0.181) 

7 243 29 0.119 (0.084 to 0.166) 

8 124 8 0.065 (0.032 to 0.123) 

9 35 1 0.029 (0.004 to 0.176) 

10 146 5 0.034 (0.014 to 0.079) 

11 445 62 0.139 (0.110 to 0.174) 

12 196 5 0.026 (0.010 to 0.059) 

13 136 3 0.022 (0.007 to 0.066) 

14 90 2 0.022 (0.005 to 0.084) 

15 124 10 0.081 (0.043 to 0.143) 

16 100 6 0.060 (0.027 to 0.127) 

 

3.4.2 Bayesian estimates 

Although exact confidence intervals for the probability of death before discharge can be 

calculated (see Table 2.5), one important advantage of using Bayesian methods is the ability 

to formally include prior knowledge into model.  This is illustrated in this subsection. 

The choice of a prior distribution is important, especially with small numbers, as any prior 

will have an influence on the posterior distribution since: 

  ( ) ( ) ( )ΠΠΠ PdataLdataP || ∝   from (3.2) 

So while a specified prior distribution may be ‘vague’, it will never be completely 

‘non-informative’ (Fisher, 1996).  In this thesis the situation is complicated by the fact that 

the data have already been shown (Table 2.5).  However, the discussion in this Section is 

based on knowledge from before this information was known. 

It was assumed that: 
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  ( )jij bernoullid π~  

where:  dij is an indicator for death before discharge for the ith infant at the jth unit; 

and:  πj is the probability of mortality before discharge at the jth unit. 

Hence, a prior distribution was sought for πj. 

Since 0 ≤ π ≤ 1 two distributions were considered: 

• ( )βαπ ,~ Uniform     

( ) ( )αβ
βαπ

−
=

1,|f    10 <<<< βπα  

• ( )δγπ ,~ Beta  

( ) ( ) ( )
( ) ( )δγ

δγππδγπ δγ

ΓΓ
+Γ

−= −− 11 1,|f   10 <π<  

The choice of Uniform(0,1), or equivalently Beta(1,1), as prior distribution for π quantifies 

the a priori belief that any value of π between 0 and 1 was equally likely.  However, this was 

not the case since, at the very least, earlier data were available from the Trent Neonatal Study: 

between 1997 and 1999 the overall mortality in an equivalent population of admitted infants 

was 11.7% (The Trent Infant Mortality and Morbidity Studies, 2000).  This knowledge could 

be used to inform the choice of the prior distribution.  One option was to assume that a 

mortality rate of over 50% was impossible, but that values below this are equally likely, 

achieved by using Uniform(0,0.5) as the prior.  An alternative approach was to acknowledge 

that not all values of π within a given range were equally likely.  The use of the Beta 

distribution allowed this: the mean and variance of the beta distribution are: 

  ( )
δγ

γπ
+

=E         (3.16) 

  ( )
( ) ( )12 +++

=
δγδγ

γδπVar       (3.17) 

It was felt, a priori, that mortality had fallen between the two time periods to around 10%.  

However, this is the overall mortality and it is known that rates for individual units vary from 

this.  The values of γ and δ were varied to obtain suitable distributions.   
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The first Beta distribution was selected to have a mean value of 0.1.  It was also felt that it 

was unlikely, although not impossible, that a unit would have a rate of over 25%.   The 

distribution chosen based on these assumptions was Beta(2,18), giving: 

  ( ) 10.018,2| ==δ=γπE  

  ( ) 0043.018,2| ==δ=γπVar  

  ( ) 969.018,2|25.0 ==δ=γ<πP  

A second Beta distribution was chosen, Beta(4,28), so that the mode (rather than the mean) 

took the value 0.1 (mode = 2
1
−δ+γ
−γ ), but that P(π<0.25) was similar to the previous Beta 

distribution: 

  ( ) 125.028,4| ==δ=γπE  

  ( ) 0033.028,4| ==δ=γπVar  

  ( ) 969.028,4|25.0 ==δ=γ<πP  

However, the smallest observed values for π were 0.022 (Units 13 and 14) and the distribution 

Beta(4,28) gave inappropriately low probabilities to very small values of π :  P(π<0.02) = 

0.0033. 

Therefore, a further Beta distribution was proposed that gave the maximum value for 

P(π<0.02) while still having a modal value of 0.1: Beta(1.25, 3.25): further details are given 

in Appendix C.1.  The distribution Beta(1.25, 3.25) has the following properties: 

  ( ) 278.025.3,25.1| ==δ=γπE  

  ( ) 036.025.3,25.1| ==δ=γπVar  

  ( ) 51.010,2|25.0 ==δ=γ<πP  

( ) 030.010,2|02.0 ==δ=γ<πP  

The cumulative distribution functions of these distributions are shown in Figure 3.12.  

To investigate the influence of the choice of prior distribution on the estimates, each of the 

distributions described above was used in a simple model to estimate the probability of death.  

Three units were investigated, one small, one medium and one large: Units 3, 1 and 5 

respectively.  Although it was recognised that this was not a rigorous investigation into the 
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influence of the prior distribution, it did offer some indication of the likely impact of a 

particular choice.  Such a model can be expressed simply in WinBUGS (Appendix E.1). 

Figure 3.12 Probability distribution functions of prior distributions 

 
A 1,000 iterations ‘burn-in’ was inspected over five chains, using the methods described in 

§3.2.2, for reassurance that the markov chain had converged to the correct sampling 

distribution (examples of the diagnostic plots are shown in Appendix E.1).  There was no 

evidence that the chains were not sampling from the full target distribution.  The parameters 

of interest were then estimated from a further 10,000 iterations.  The results are shown in 

Table 3.4. 

Inspection of Table 3.4 illustrates two points.  First, the choice of prior distribution was less 

influential for the larger unit (Unit 5) than for the other two.  Second, different specifications 

of the Beta distribution produced different estimates for Units 1 & 3.  Neither of these 

characteristics was unexpected: indeed it can be argued that they are both desirable.  Where 

there is little information about the current performance of a unit (likelihood) then it seems 

reasonable that more weight will be given to prior knowledge (prior distribution).  It has been 

suggested that trying to measure the performance of a health care provider over such a 

relatively short period of time “… is rather like watching a football match for 10 minutes 

(randomly selected) and deciding that, if one team scores in this period, then it will win the 

match” (Langford, 1997).  To continue this analogy, surely we would want to take into 

account the score at the point we started to watch the match and, stretching it even further, we 

would want to allow for our prior knowledge of the teams. 

The second point shows that when such knowledge is formally included in the model, care 

must be taken when specifying the prior distribution.  The three Beta distributions illustrated 
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above are all compatible in some way with the prior information, but each produces different 

estimates for the smaller units.  However, one of the advantages of Bayesian methods is that 

prior knowledge, or beliefs, can inform the posterior probabilities. 

Table 3.4 Bayesian prior probabilities 

     WinBUGS Estimates 
Prior Unit No. 

Infants 
No. 

Died 
jπ̂  Mean  Median (95% credible 

interval) 

U
ni

fo
rm

(0
,1

) 1 212 21 0.0991 0.1028 0.1011 (0.0664 to 0.1482) 

3 38 2 0.0526 0.0743 0.0672 (0.0163 to 0.1733) 

5 333 41 0.1231 0.1252 0.1245 (0.0925 to 0.1628) 

U
ni

fo
rm

(0
,.5

) 1 212 21 0.0991 0.1027 0.1018 (0.0660 to 0.1463) 

3 38 2 0.0526 0.0756 0.0680 (0.0162 to 0.1770) 

5 333 41 0.1231 0.1254 0.1246 (0.0919 to 0.1633) 

Be
ta

(2
,1

8)
 1 212 21 0.0991 0.0991 0.0979 (0.0645 to 0.1406) 

3 38 2 0.0526 0.0689 0.0636 (0.0190 to 0.1467) 

5 333 41 0.1231 0.1219 0.1211 (0.0897 to 0.1583) 

Be
ta

(4
,2

8)
 1 212 21 0.0991 0.1020 0.1008 (0.0681 to 0.1420) 

3 38 2 0.0526 0.0861 0.0823 (0.0324 to 0.1603) 

5 333 41 0.1231 0.1232 0.1223 (0.0914 to 0.1588) 

Be
ta

(1
.2

5,
3.

25
) 1 212 21 0.0991 0.1031 0.1019 (0.0666 to 0.1466) 

3 38 2 0.0526 0.0744 0.0675 (0.0163 to 0.1717) 

5 333 41 0.1231 0.1255 0.1247 (0.0921 to 0.1622) 

It is possible to specify different prior distributions for the individual units.  However, this 

will create difficulties in the context of provider profiling as choosing a prior distribution with 

its location more extreme that those of the other units can move the posterior distribution 

away from the others.  While this is a possible approach to take, it would complicate the 

interpretation of any results: is an outlier the result of the chosen prior distribution?  In this 

thesis, the same prior was used for all units as the prior belief was that all units were 

performing equally well, apart from sampling variation. 
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In Table 3.5 the mean sampled probabilities of death, with 95% credible intervals, estimated 

using Beta(2,18) as the prior distribution for all jπ .  The point estimates and confidence 

intervals obtained were very similar to the frequentist results shown earlier (Table 3.3). 

Table 3.5 Bayesian estimated probability of death before discharge for TNS data 

Unit 

Observed 
probability 

of death 

jπ̂  Mean 
(95% Credible 

interval) 

1 0.099 0.099 (0.064 to 0.141) 

2 0.106 0.106 (0.073 to 0.143) 

3 0.053 0.069 (0.019 to 0.147) 

4 0.042 0.049 (0.021 to 0.087) 

5 0.123 0.122 (0.089 to 0.159) 

6 0.143 0.141 (0.108 to 0.176) 

7 0.119 0.118 (0.082 to 0.160) 

8 0.064 0.070 (0.035 to 0.118) 

9 0.029 0.055 (0.011 to 0.129) 

10 0.034 0.042 (0.017 to 0.078) 

11 0.139 0.138 (0.107 to 0.171) 

12 0.026 0.032 (0.013 to 0.061) 

13 0.022 0.032 (0.010 to 0.064) 

14 0.022 0.037 (0.010 to 0.080) 

15 0.081 0.083 (0.043 to 0.134) 

16 0.060 0.066 (0.029 to 0.118) 

A more intuitive approach may be to accept that there are different rates between the units and 

to specify a probability distribution for them.  Such an approach is discussed briefly in §5.10.  

 

3.5 Other Methods 

The logistic regression model discussed in the previous Section offers a suitable approach to 

the analysis of the TNS data in this thesis, and the use of such models is developed further in 

Chapter 5.  However, other statistical methods exist that may be appropriate for provider 
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profiling using binary outcomes but which are not suitable for the data to be analysed in this 

thesis.  Such statistical methods are briefly discussed below. 

Survival Analysis Techniques 

One approach that may be considered is to use ‘time to event’ (survival) methods.  However, 

such methods are unlikely to be appropriate in this case.  First, there are no censored 

observations, except possible cases of infants discharged home when thought to be terminally 

ill.  However, such cases are rare in neonatal medicine.  Second, and more importantly, small 

increases in survival amongst neonates are not necessarily appropriate.  It is felt that it is not 

always in the best interest of the infant, and the parents, to extend life at any cost.  The Royal 

College of Paediatrics and Child Health recommend five situations where it is appropriate to 

consider withholding or withdrawing treatment in children (Royal College of Paediatrics and 

Child Health, 1997:7).  Three of the situations are particularly relevant to neonates (the other 

two are “The Brain Dead Child” and “The Permanent Vegetative State”): 

“ 3. The ‘No Chance’ Situation. The child has such severe disease that life 
sustaining treatment simply delays death without significant alleviation of 
suffering. Medical treatment in this situation may thus be deemed 
inappropriate. 

4. The ‘No Purpose’ Situation. Although the patient may be able to survive with 
treatment, the degree of physical or mental impairment will be so great that it 
is unreasonable to expect them to bear it. The child in this situation will never 
be capable of taking part in decisions regarding treatment or its withdrawal. 

5. The ‘Unbearable Situation. The child and/or family feel that in the face of 
progressive and irreversible illness further

There are few data on the proportion of deaths that follow an informed and agreed decision to 

withdraw treatment.  One study reported that 30% of deaths in one London neonatal unit 

between 1982 and 1985 followed the withdrawal of treatment (Whitelaw, 1986).  A recent 

study from France found that 44% of deaths on neonatal units followed decisions to withhold 

or withdraw treatment (Larroque et al, 2004), and an earlier study reported that 14% of 

neonatal deaths at Yale-New Haven Hospital, Connecticut USA between 1970 and 1972 

followed the withdrawal of treatment (Duff and Campbell, 1973).  In the Netherlands, where 

active euthanasia is legal in some circumstances, it is not legal in the case of a severely 

disabled baby as such action must be requested by the patient.  However, it has been 

suggested that about 100 babies die each year as a result of decisions made by doctors to 

 treatment is more than can be 
borne. They wish to have a particular treatment withdrawn or to refuse further 
treatment irrespective of the medical opinion on its potential benefit. Oncology 
patients who are offered further aggressive treatment might be included in this 
category. ” 
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hasten their death (Sheldon, 2004). It has also been shown that clinicians’ attitudes to active 

euthanasia differ widely, with some 20% of UK neonatologists surveyed stating that they 

believed that the current law should be changed to allow active euthanasia “more than now” 

(Cuttini et al, 2004).  While this is not to say that such practices occur in British neonatal 

units, it is an indication that quality of life is an important consideration taken together with 

survival. 

Although it is unknown whether these decisions ultimately affected whether these infants 

survived until discharge, it is clear that they influenced the length of survival.  Using the 

length of survival as an outcome measure, that is using survival analysis methodology, 

implies that it is this that is important rather than the quality of care.  This is clearly 

inappropriate.  For other outcomes, there may be a case for using such statistical methods.  

The time that a particular interventions is used, for example mechanical ventilation, may lend 

itself to these techniques, although there may be problems with informative censoring as the 

sickest infants are more likely to die while on treatment and, therefore, be censored 

observations. 

Ecological Regression 

In cases where individual patient data are not available, summary data may be used in a linear 

regression model (Joyce et al, 2002).  Such methods are used by The Dr Foster organisation 

in its published “Guides” to hospital and consultant outcomes (Dr Foster, 2004).  The ratio of 

the observed number of deaths to the expected number of deaths (indirectly standardized to 

the whole population) is used as the outcome in a weighted linear regression model.  

Variables used as covariates in such models include “aggregated discharge data such as the 

percentage of emergency cases, individual hospital data such as total number of beds, and 

community attributed data such as the percentage of patients with limiting longstanding 

illness” (Jarman et al, 1999). 

However, the use of aggregated data presents distinct problems.  In particular, it is not certain 

that a correlation that exists within a group also exists at the individual level (Robinson, 

1950).  The assumption that such a relationship exists is often known as the ecological fallacy 

(Selvin, 1958).  A further problem with such modelling is that the use of aggregated data 

means that there are often only a few data points (only the number of units being investigated) 

and, therefore, there is little statistical power to investigate relationships within the data 

(Lambert et al, 2002, Sterne et al, 2001). 
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Since individual level data are available in this thesis, and because of the problems outlined 

above, such modelling will not be investigated in this thesis. 

Continuous Monitoring 

Various methods have been advocated, and used, that involve continuous updating of 

outcome summaries.  Some of these derive from methods used in industrial process control, 

for example Shewart's method (Braitman and Davidoff, 1996; Adab et al, 2002; Mohammed 

et al, 2001a), sequential probability ratio test (SPRT) (Spiegelhalter et al, 2003) and 

cumulative sum (CUSUM) (Poloniecki et al, 1998).  Others are derived from clinical data, for 

example the variable life-adjusted (VLAD) plot (Lovegrove et al, 1997; Sherlaw-Johnson et 

al, 2000). 

However, these methods will not be reviewed further in this thesis.  The nature of the data 

collection methods used with the Trent Neonatal Survey make such methods difficult to 

implement.  The data are collected from the units by research nurses, who may only visit 

small units every few months.  In addition, and perhaps more importantly, the data are not 

entered onto the database until the end of the calendar year.  Therefore, any use of continuous 

monitoring would be retrospective, this removing any advantage such methods may have over 

the cross-sectional approach taken here. 

Perhaps these methods are most suited to monitoring the performance of a single unit, 

reflecting the process control role many of them originate from. 

Conjoint Analysis 

Conjoint analysis can be used to elicit preferences and may have a role in provider profiling.  

The essence of the method is that various scenarios are proposed which are then ranked or 

rated.  These results can then be used in a linear regression model where changes in 

preference derived from a change in a characteristic can be estimated (Ryan and Farrar, 

2000).  However, such a technique is most likely to be of benefit in profiling where several 

characteristics of a provider have been estimated and their relative importance for classes of 

users is to be investigated. 

Bradley-Terry Model 

The Bradley-Terry method is used to model paired preference data (Bradley and Terry, 1952).  

Such preferences could then be used to compare institutions (Dittrich et al, 1998).  Using the 
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TNS data, preference probabilities could be obtained for all 
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While this approach of comparisons between units may be appealing, it is not clear how such 

models can be applied using TNS data.  In the case of the data in this thesis no direct 

comparisons between the units have been made.  It may be possible to imply such 

comparisons from the observed outcomes of similar infants, but such an approach is unlikely 

to offer any advantages over logistic regression modelling in this case.  This approach will 

not, therefore, be considered further here. 

 

3.6 Chapter Summary 

The statistical methods in this chapter have been proposed to quantify the sampling variation 

in binary performance indicators.  In §3.3 some simple methods that may be useful in 

preliminary investigations were illustrated.  It was argued that these methods were insufficient 

for a robust investigation, but that logistic regression models were sufficiently flexible to be 

of most use in provider profiling.  These models were introduced in §3.4 and illustrated using 

both Classical and Bayesian approaches.  Other statistical methods proposed for provider 

profiling, but unsuitable for the data in this thesis, were briefly described in §3.5. 
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As discussed in §1.3.2, there is also uncertainty in the mortality rates due to differences in 

morbidity between the infants in different units.  Any analysis that does not take such 

differences into account is likely to produce biased results.  This is certain to be true with the 

TNS data in this thesis as the larger ‘lead’ units are likely to have sicker infants than the other 

units.  It is this source of uncertainty that is discussed in the next Chapter. 
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Chapter 4: MORTALITY RISK ADJUSTMENT 

4.1 Chapter Overview 

Section 4.3 introduces risk scores.  Scores specifically designed, or advocated, to quantify the 

mortality risk of neonates are described in §4.4, and studies that have compared these scores 

are discussed in §4.5.  The approach to risk-adjustment taken in this thesis is described in 

§4.6, while §4.7 sets out the main conclusions of the Chapter. 

 

4.2 Background 

It was suggested in §1.3.2 that some of the variation in mortality rates between the units may 

be due to differences in the morbidity of the infants, rather than the care given.  This potential 

for bias was described in 1864 (in response to a letter from William Farr): 

“Any comparison which ignores the difference between the apple-cheeked 

farm-labourers at Stoke-Poges (probably for rheumatism and sore legs), and 

the wizened [sic], red-herring-like mechanics of Soho or Southwark, who 

come from a London Hospital, is fallacious.”  (cited in Iezzoni, 1997) 

This is particularly important with TNS data, as it was expected that there would be clinical 

differences between the infants in referral units and those in local units.  Since the smaller 

units will transfer out many of their sickest infants to the referral units, these smaller units are 

likely to have populations with relatively better prognoses.  This is indeed the case (Figure 

4.1) with the larger units also having the highest observed mortality rates (from Table 2.5). 

Differences in case mix between units have also been noted in adult intensive care and, 

moreover, it was observed that such differences were associated with hospital mortality 

(Rowan et al, 1993b). 
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Figure 4.1 Observed mortality by unit size 

 

The process of formally allowing for differences in patients’ characteristics has a number of 

names, for example case-mix, severity, sickness, intensity, complexity, comorbidity, health 

status (Iezzoni, 1994).  The term generally used, and the one used in this thesis, is 

risk-adjustment.  However, it is important to be clear what risk is being adjusted for.  A 

‘one-size-fits-all’ approach is unlikely to work and any adjustment needs to be adapted to the 

outcome of interest. 

One simple method of risk-adjustment is to compare only units with similar types of patients, 

an approach suggested for comparing general practitioners (Baker et al, 2003).  However, this 

is difficult to achieve, perhaps impossible, where there are a small number of units, as in TNS.  

One study sought to find groups of obstetric units with similar case-mixes using cluster 

analysis amongst 159 hospitals in Bavaria, Germany but was unable to find any such groups 

(Selbmann et al, 1982).  Therefore, an alternative approach is required that tries to quantify 

the mortality risk in individual infants. 

Various risk-scores have been proposed to quantify the morbidity of an individual and, when 

appropriate, these are useful tools.  The scores discussed in this thesis are designed to 

investigate the binary outcome of death before discharge or alive at discharge.  It is quite 

possible for scores to be used to try to estimate the probability of types of outcomes other than 

binary, such as the Cambridge Baby Check Score Card, which categorises infants under the 

age of six months into bands of illness severity (Morley et al, 1991).  However, as mortality is 

the outcome used in this thesis, such scores are not discussed. 

While the use of risk-adjustment is generally recognised as appropriate, there is an argument 

that the reporting of risk-adjusted indicators suggests an inappropriate level of accuracy.  It is 

argued that the reporting of unadjusted rates, with a more strict definition of extreme 
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performance, makes it explicit that the indicators do not represent the ‘truth’ but are a guide 

for further investigation (Keogh et al, 2004).  However, adjusted rates are a step towards the 

‘truth’, and all provider profiling should be taken as screening for providers worthy of further 

investigation.  This thesis, therefore, considered risk-adjusted outcomes. 

 

4.3 Risk Scores 

The use of a risk score, calculated using patient characteristics, to predict the probability of 

an event is the most commonly used approach to risk adjustment.  The desirable properties of 

a neonatal score have been described as including: “(1) ease of use; (2) applicability early in 

the course of hospitalisation; (3) ability to reproducibly predict mortality, specific 

morbidities, or cost for various categories of neonates; (4) usefulness for all groups of 

neonates to be described” (Fleisher et al, 1997).  It has also been said that “the whole trick is 

to decide what variables to look at and then to know how to add” (Dawes and Corrigan, 

1974).  Assuming that adding is not a major problem, the greatest difficulty arises in selecting 

the variables to be included in the model.  Investigators will often require a ready made and 

validated risk adjustment method as they may lack the data, resources, time, funding or 

expertise required to develop their own score (Rosenthal and Harper, 1994).  A previously 

validated score also has the advantage that the results of any analysis are more like to be 

accepted by others and more easily allow comparison across studies. 

4.3.1 Methods for deriving a risk score 

Risk scores are generally produced in one of two ways: 

• Medical models: These are derived using clinical knowledge and observed behaviour.  

Many of the early scores produced in the 1970s and 1980s were medical models as 

there were few large datasets available to developers (Iezzoni, 1997); 

• Data models: Collected data are used to produce these risk scores.  The variables 

included, and the values for the coefficients, are chosen according to some statistical 

criterion.  Most scores developed in recent years are derived using this approach, 

although medical knowledge may have, indeed should have, contributed to the choice 

of variables to be included in the model. 
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There are merits to both approaches.  As implied above, medical models can be derived 

where there is an absence of previously collected data.  Such models may well also attract 

more confidence from clinicians than statistically derived models.  However, there is evidence 

that statistically derived data models have superior predictive ability (Dawes, 1980; Einhorn, 

1986).  However, it is useful if the model is clinically plausible, not for an absolute statistical 

reason as good prediction is sufficient, but rather so that providers are convinced that risk has 

been adequately allowed for (Iezzoni, 1994). 

4.3.2 Use of risk scores 

If a suitable pre-existing risk score can be identified, it can be used in different ways.  When 

the coefficients (raw or occasionally rounded) from the logistic regression model are reported 

by a score’s developers, these coefficients, forming the linear predictor derived from the 

developers’ data, can then be applied to the sample of interest.  When a logistic regression 

model has been used, the estimated probabilities of an event for each observation can then be 

obtained using the inverse logit transformation.  For example, the authors of the Berlin Score 

(discussed further in §4.4.5) published the following linear predictor (Maier et al, 1997): 
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where:  BW = birth weight group; 

  RDS = grade of respiratory distress; 

  APGAR = Apgar score at 5 minutes; 

  VENT = administering of artificial ventilation; 

  BE = base excess at admission. 

The probability of death πi can be estimated from this function.  In fact, this is indirect 

standardization (discussed in more detail in §5.4) with the sample used to estimate the logistic 

model as the reference population. 

An alternative approach is for the coefficients, usually in this case rounded, to be used to form 

a score for each observation and this score then to be entered as a covariate in a new logistic 

regression model using the data of interest.  The individual probabilities of an event are then 

estimated from this second model.  As well as presenting the linear predictor from their 
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logistic regression model, the authors of the Berlin Score also published details of how to 

calculate a single score value from estimated values of the parameter estimates (details in 

Appendix B).  In this case, the score can take a value from 0 to 40 with higher scores 

representing higher morbidity.  This score can then be used as a covariate in a new logistic 

regression model.  Mortality rates change over time and a score may become poorly calibrated 

over time.  Using the score in a new model ensures that the observed and expected number of 

deaths are the same, thereby recalibrating the model so that it better represents the new data 

(Pollack et al, 2000; Ivanov et al, 1999).  Such an approach also allows additional variables to 

be added to the model if this was important. 

If it were felt that the published linear predictor was unsuitable (since, for example, surfactant 

had not been administered to infants in the original study) then another approach would be to 

estimate a new linear predictor using the variables identified in logistic regression model.  

This would also allow the introduction of additional variables. 

Which approach is most appropriate in any particular circumstances will depend on the 

question to be answered and the data available.  For this thesis, data are available to be used 

as a reference for each unit.  The preferred approach would be to use an existing score as a 

covariate in a new model.  This allows the use of a pre-existing and validated mortality 

prediction method but also allows recalibration to current mortality rates. 

Variables to be included in a neonatal score 

If the aim of a study is to make some inference on the quality of care provided, as is the case 

in this thesis, risk-adjustment must not include any variables that this care could influence.  

There is evidence that data collected a short time (up to 24 hours) after admission produce 

better discriminating models than data collected solely at birth (Pollack et al, 2000).  

However, the inclusion of such variables in the score can cause problems with an 

inappropriately treated infant receiving a ‘worse’ score than an adequately treated infant and, 

because of this, having a higher predicted mortality (Boyd and Grounds, 1994).  Such a unit 

would then appear better than it should, since its infants will seem to have poorer prognoses 

as the result of their early treatment.  It is, therefore, important to recognise when an infant 

first comes under the care of the unit.  Neonatologists are likely to have been involved in an 

infant’s care before it physically arrives on the unit.  Such circumstances allow the neonatal 

team the opportunity, unintentionally or intentionally, to influence an infant’s risk score, and 

hence its predicted probability of death.  The uptake of the recommendation that units should 

have guidelines for when senior or consultant neonatal staff should attend preterm births 
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(CESDI, 2003) would mean neonatal care beginning before the infant arrives on the neonatal 

unit more often.  The policy of the hospital can also influence the estimated mortality ratio, as 

infants stabilized before transfer will have better signs when it arrives on the unit.  The 

answer may be to investigate obstetric and neonatal care as one, although internal politics in 

hospitals may make this impossible to achieve. 

An example of how an infant’s condition can be affected by the neonatal team before its 

arrival on the unit is given by its temperature on admission.  Temperature on admission is a 

known risk factor for neonatal mortality (Parry et al, 2003b).  It can be appropriately 

controlled with good clinical practice (Lyon and Stenson, 2004), just as poor practice can 

produce inadequate temperature control (Rennie and Roberton, 2002:87): 

“[Transfer from the labour ward] is where the control and care of the sick neonate 

often starts to go awry.  It is a grossly substandard level of care – but one that applies 

all too often – to transfer a sick baby with inadequate respiration from the labour 

ward to the NNU wrapped in a blanket and without supplementary oxygen.  The baby 

arrives in the NNU cold, blue, limp and grunting (if you are lucky) or apnoeic and half 

dead (if you are unlucky).” 

Project 27/28, a study of infants born at 26 to 29 weeks gestational age, found that 61% of 

admissions to a NICU did not achieve the minimum required temperature of 36ºC and that it 

took a median time of 2 hours (range 1.5 to 4 hours) for the infants’ temperature to be 

corrected (Jain and Fleming, 2004).  Hence, the inclusion of admission temperature in a risk 

score means that the quality of the early care provided by the neonatal team influences the 

predicted probability of death.  This is an undesirable quality in this type of profiling. 

There is evidence that clinicians’ assessment of mortality risk can improve the performance of 

a neonatal risk adjustment model (Stevens et al, 1994).  However, while this may be 

important in clinical practice, for example decisions to transfer or to decide on treatment, such 

methods are unsuitable for provider profiling for the obvious reason that this cannot be 

standardized across all providers. 

Missing data 

The problem of missing data for a risk score is often overcome by assuming that the missing 

values would be within the ‘normal’ range; for example Paediatric Index of Mortality (PIM) 

(Shann et al, 1997), Score for Neonatal Acute Physiology (SNAP) (Richardson et al, 1993), 

Medicare Mortality Predictor System (MMPS) (Daley et al, 1988).  It is argued that 
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pathological or metabolic measurements are not routinely taken if it is felt that they will show 

no abnormality.  Therefore, substituting values considered appropriate allows these 

observations to be used.  While such an assumption may not true in all cases, it may offer a 

simple method to include all observations and it has been shown that the substitution of modal 

values (often ‘normal’ values) performs well in prognostic models (Ambler et al, 2005).  

However, if inappropriate, the substitution of ‘normal’ values means that this method will 

underestimate the morbidity of an infant and, hence, make it appear that the unit is performing 

worse that it really is.  It could be argued that such an approach provides an incentive for 

rigorous data collection.  A more robust approach may be to estimate the missing values using 

imputation methods (Zhang, 2003).  However, such methods are often not straightforward to 

apply and were not used in this thesis. 

Appropriateness of the score to sub-groups 

Any method applied to the data should not just ensure a good overall fit to the data but should 

adequately describe subgroups too.  For example, the USA-derived APACHE II equation, 

when fitted to British adult intensive care patients, found under-prediction of mortality in 

patients 76 years of age or older (Rowan et al, 1993a).  The authors concluded that such 

differences may be due to several reasons: systematic differences in medical definitions and 

diagnostic labelling between the two countries; true differences in the diagnostic mix between 

countries; systematic differences in the measurement of physiological variables; systematic 

differences in the effectiveness of treatment; the possibility that differences exist in the age 

specific health status between the countries. 

All scores make the assumption that the risk factors for each potentially fatal condition are the 

same but this may not be the case (Iezzoni, 1994).  The ideal system may use a core group of 

acute physiological variables to which are added a small subset of condition-specific clinical 

variables (Iezzoni et al, 1992).  However, such an approach is difficult with the small datasets 

available in neonatal medicine.  In certain circumstances it may be appropriate to investigate 

some sub-groups separately because potential confounders cannot be collected for all patients.  

For example, in a study comparing three month outcome after stroke in twelve centres across 

Europe, separate models were used to estimate outcome depending on whether the patient was 

in a coma at the initial examination since, if so, data could not be collected at that time on 

variables such as swallowing and limb movement (Wolfe et al, 1999).  However, such 

difficulties are unlikely to arise with the variables collected by TNS. 
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Model validation 

Before any risk score can be used, confirmation is required that it works ‘satisfactorily’ for 

data other than those used to derive it (Altman and Royston, 2000).  This is usually called 

model validation.  This is acheived either by internal validation methods using sub-sets of 

the data to develop and test the model, such as data-splitting, cross-validation and 

bootstrapping, or by external validation, applying the model to independent data (Harrell et 

al, 1996). 

This thesis does not attempt an investigation into model validation methods.  However, both 

internal (§6.5) and external (§6.8) validation methods are applied to models in Chapter 6. 

 

4.4 Neonatal Mortality Risk Scores 

A variety of risk adjustment scores have been derived, or advocated, for assessing the risk of 

neonatal mortality.  Scores identified from the literature are: 

• Clinical Risk Index for Infants (CRIB) and CRIB II 

• Score for Neonatal Acute Physiology – Perinatal Extension (SNAP-PE) and 

(SNAP-PE II)  

• Neonatal Therapeutic Intervention Scoring System (NTISS) 

• National Institute of Child Health and Human Development (NICHHD) 

• Berlin score 

• Sinkin scores 

• Neonatal Mortality Prognosis Index 

• Apgar Score 

• Transport Risk Index of Physiologic Stability (TRIPS) 

Each of these scores will be briefly described below, with further details of the variables used 

in each scoring system given in Appendix B. 
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4.4.1 Clinical Risk Index for Infants (CRIB) 

The Clinical Risk Index for Infants (CRIB) is a widely used mortality risk score for neonates.  

It has recently been updated (Parry et al, 2003b), under the title CRIB II, to reflect changes in 

survival since the score was first published in 1993 (The International Neonatal Network, 

1993).  The original CRIB was developed using 812 infants born either with a birth weight of 

1500g or less or at less than 31 weeks gestational age.  The data were admissions to four UK 

tertiary hospitals between 1988 and 1990. 

The variables in the final model were chosen from a pre-selected set of obstetric and neonatal 

variables using a logistic regression model.  The estimated model coefficients were then 

converted to an optimally chosen set of integers (Cole, 1993).  The score was designed to be 

used as a covariate in a locally derived logistic model, perhaps with the inclusion of additional 

important predictors.  However, in a later publication the authors gave the linear predictor 

from their original model: 
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  (Scottish Neonatal Consultants' Collaborative Study Group and the  

  International Neonatal Network, 1995) 

Data on admissions to four other teaching hospital neonatal units over the same time period 

(n = 488) were used to validate the predictive ability of the score: area under the ROC curve 

AROC = 0.90; se = 0.05 (§6.3.1).  Calibration was assessed using the Hosmer-Lemeshow 

goodness of fit test (discussed in more detail in §6.3.2): 2
10=χ df = 16.84; p = 0.078.  This test 

suggests that there may be some weak evidence for the model not predicting mortality 

probabilities well.  This together, with the fact there was no attempt to investigate the 

performance of the model in subgroups of admissions, means that although the discriminatory 

ability of the model is good we can be less sure of its calibration.  The only component in the 

score allowing for gestational age is whether the infant was born at 24 weeks gestational age 

or less.  As gestational age at birth is arguably the single most important predictor of survival 

(see §6.4.1), this would seem to be insufficient adjustment.  However, this could be overcome 

by including gestational age at birth as a covariate in a model together with CRIB. 

Although CRIB was originally derived as a mortality score it has also been used to try to 

predict other outcomes: e.g. major impairment at 18 months of age (Scottish Neonatal 
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Consultants' Collaborative Study Group and the International Neonatal Network, 1995), 

retinopathy of prematurity (Vyas et al, 2000). 

In 2003 the revised version of CRIB was published: CRIB II (Parry et al, 2003b).  CRIB was 

originally developed before the routine use of surfactant was introduced to neonatal units.  In 

addition, during the ten years between the publication of the two versions of the score, a 

growing number of very preterm infants (less than 26 weeks gestational age at birth) have 

been admitted to neonatal units.  The original score had become poorly calibrated for neonatal 

mortality.  In addition, it was recognised that the inclusion of observed maximum appropriate 

inspired oxygen concentration meant that differences in oxygen monitoring or administration 

can influence the calculated score (Baumer et al, 1997). 

CRIB II was developed using 1886 infants admitted to 35 randomly selected neonatal 

intensive care units in the UK.  The final score comprised an item derived from previously 

published mortality rates by gestational age, birth weight and sex (Draper et al, 1999), 

together with temperature at admission and base excess.  This was validated using data from 

1065 infants in 19 other NICUs: AROC = 0.92; Ĉ  = 4.30 ~ 2
8χ , p = 0.83 (see §6.3).  The 

authors’ estimated linear predictor was: 
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The application of CRIB and CRIB II to the TNS data is taken up in §6.9.4. 

4.4.2 Score for Neonatal Acute Physiology (SNAP) 

The Score for Neonatal Acute Physiology (SNAP) was first proposed in 1993 as a measure of 

infant morbidity (Richardson et al, 1993).  It was developed using data from 1643 admissions 

to three NICUs in the USA.  The final score comprised 34 items for which data are collected 

over the first 24 hours of life.  This score was then modified to include measures of low birth 

weight to produce the SNAP Perinatal Extension (SNAP-PE) to quantify mortality risk 

(Richardson et al, 1993). 

The SNAP and SNAP-PE were both updated and simplified in 2001 using data on 10,819 

admissions to NICUs in Canada (Richardson et al, 2001).  The scores were validated using 

data from Canada, California and New England and were considerably simpler than the 

original scores.  The revised scores also reduced the data collection period from 24 hours to 

the first 12 hours of life and found to fit these data well. 
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4.4.3 National Therapeutic Intervention Scoring System (NTISS) 

The NTISS was derived by modifying the Therapeutic Intervention Scoring System (Cullen et 

al, 1974; Keene and Cullen, 1983), a severity-of-illness score designed for adult intensive 

care patients (Gray et al, 1992).  This scoring system differs from the others reviewed here in 

two important ways.  First, it uses the therapies received by the neonates rather than factors 

reflecting their condition.  Second, the scoring system was derived from a panel comprising 

five neonatologists, a paediatric intensivist and a neonatal nurse as opposed to using the data 

to formulate a logistic regression model. 

However, therapy depends on the practice and policy of units and can vary greatly even 

within a relatively small geographic area (Field et al, 2002).  It is not possible to compare 

units using this type of adjustment.  Such a system is likely to be of more use in the prediction 

of individual probabilities of death to aid counselling, for stratifying infants into risk groups 

in a trial or for helping to decide on treatment plans (Dorling et al, 2005). 

4.4.4 National Institute of Child Health and Human Development 

(NICHHD) 

Using a sample of 1,823 infants born between 1 November 1987 and 31 October 1989 this 

study was designed to develop a mortality risk model using admission perinatal factors for 

neonates weighing 501 to 1500 grams at birth (Horbar et al, 1993a).  The infants were born at 

one of seven neonatal units in the USA. 

The authors used a logistic regression model to select variables to be included in the model 

from a list of candidate variables known at the time of admission.  The final model was then 

validated using a further 1,780 infants. 

4.4.5 Berlin Score 

This score aimed to quantify the mortality risk in infants with birth weights below 1500g 

(Maier et al, 1997).  Derived using data on 572 infants, randomly split using 396 to develop 

the score and 176 for validation, the authors used logistic regression models to produce the 

final predictive model. 

Although this score has the advantage that it only includes variables readily available at the 

time of admission, the inclusion of some of the variables is a cause for concern if the score is 

used to standardize between neonatal units (Tarnow-Mordi, 1997).  The administration of 



MORTALITY RISK ADJUSTMENT 

BRADLEY MANKTELOW PHD THESIS 89 

ventilatory support prior to admission to a neonatal unit is highly dependent on the policy of 

the hospital, and on the availability of equipment and facilities.  Such policies and facilities 

are likely to vary greatly between obstetric units.  There is also a difficulty with such heavy 

reliance on Apgar scores (discussed further in §4.4.8), and assessment of respiratory distress 

syndrome, as these allow an element of subjectivity that may lead to bias in any comparison 

between neonatal units. 

A further difficulty with the Berlin score is that none of the infants included in this study had 

surfactant administered prior to admission.  The scoring system should be reassessed as 

surfactant is now routinely administered to such infants, with a reported decrease in mortality 

(Horbar et al, 1993b; Horbar et al, 2002; Rosenberg et al, 2001; Suresh and Soll, 2001). 

4.4.6 Sinkin Scores 

Two scores were originally derived to predict the risk of bronchopulmonary dysplasia 

(defined as the need for supplemental oxygen at 28 days postnatal) amongst neonates at 12 

hours and 10 days of life (Sinkin et al, 1990).  However, it has been suggested that the scores 

“are probably excellent mortality scores as well” (Hentschel et al, 1998),  

The scores were developed using data on 2341 infants admitted to one neonatal intensive care 

unit in New York.  The 12-hour score could possibly be used for mortality risk-adjustment if 

it was found to work well.  However, this suggestion was not supported by one study that 

used the Sinkin 12 hour score (SS12) (Fleisher et al, 1997).  Fleisher et al found that although 

the non-survivors had a greater observed mean score (µ = 2.25: s.d. = 1.36) than the survivors 

(µ = 1.86: s.d. = 1.06) the difference was not statistically significant (p = 0.31).  However, this 

study lacked statistical power with only 10 non-survivors and 69 survivors included. 

4.4.7 Neonatal Mortality Prognosis Index 

In contrast to the scores described above that were derived for specific groups within the 

neonatal population, the Neonatal Mortality Prognostic Index was developed with the aim of 

predicting mortality before discharge for all infants admitted to neonatal intensive care 

(Garcia et al, 2000). 

The score was derived 1994 using a logistic regression model with data from 336 infants (112 

deaths) admitted to three neonatal units in Mexico City between July 1993 and August 1995.  

Potential prognostic factors were collected up to 12 hours after admission.  The model was 

validated by examining sensitivity, specificity, positive and negative predictive values, using 
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an additional cohort of 300 infants (100 deaths).  However, it is unclear if these were a 

random sample from all admissions or were a cohort from later years. 

4.4.8 Apgar Score 

The Apgar score was originally published in 1953 (Apgar, 1953) and is a simple, routinely 

used neonatal morbidity scoring system.  It was designed to quantify a newborn infant’s 

physical condition and to determine the level of care required.  The score uses five features 

(heart rate, respiratory effort, muscle tone, reflex irritability and skin colour) determined by 

observation (Rennie and Roberton, 2002).  The current practice is for infants to be scored 

twice: one and five minutes after birth (Letko, 1996).  The early score aims to indicate the 

need for immediate treatment, whereas the second score indicates the infant’s immediate 

response to resuscitation and the need for further intervention.  Further Apgar scores may be 

calculated for an infant if its condition is felt to warrant it.  The final score is on the scale 0 to 

10, with higher scores representing healthier infants (see Appendix B). 

Although not designed as a mortality score, an association with 28-day mortality was 

recognised in Virginia Apgar’s original paper.  Even though it is some 50 years since the 

creation of the score, there is still evidence for an association between low Apgar score and 

increase mortality, including in preterm infants (Casey et al, 2001: Weinberger et al, 2000). 

Its simplicity means that the score has the potential to be unreliable for case-mix adjustment, 

at least on its own.  Two studies have suggested that the accuracy of the score suffers due to 

poor inter-rater reliability, Clark and Hakanson (1988) and Livingston (1990).  However, only 

eight descriptive cases were used in the former study, which concluded that nurses, in 

particular, inaccurately assigned Apgar scores.  The second study comprised 52 infants, 

although this included only eleven preterm infants.  Such sparse evidence, from North 

America from at least 15 years ago, gives little indication on the current reliability of Apgar 

scoring in UK neonatal units nor on the size or direction of any errors.  While it is recognised 

that such errors may exist these can be overcome by adequate training of clinical and nursing 

staff (Letko, 1996).  In addition, Apgar is not reliant on gestational age and birth weight for 

prediction, unlike CRIB II, and may offer the ability to appropriately ‘fine tune’ the morbidity 

of infants of equivalent birth weight and gestational age. 
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4.4.9 Transport Risk Index of Physiologic Stability 

The Transport Risk Index of Physiologic Stability (TRIPS) was derived as an instrument to 

help assess the care given to neonates transported to tertiary NICUs in Canada (Lee et al, 

2001).  Data were collected on 1723 infants from January 1996 to October 1997, comprising 

71% of all infants eligible for inclusion.   

Although this scoring system was designed to investigate mortality within seven days of 

being transported, the authors also looked at its ability to predict total mortality before 

discharge.  They reported that the index was a better predictor of such mortality than 

gestational age, although this did not hold for infants born at 32 weeks or less gestational age: 

TRIPS AROC = 0.72; gestational age AROC = 0.75.  However, they did find that the 

combination of TRIPS, gestational and other risk factors (antenatal steroids, sex, SGA, 5-

minute Apgar, vaginal delivery) improved the discriminatory ability of the model: 

AROC = 0.83.  The score still needs validating in a population of infants that includes inborn 

infants. 

TRIPS is calculated using four physiologic items: temperature, respiratory status, systolic BP, 

response to noxious stimuli.  The advantage of TRIPS over most other neonatal mortality risk 

scores is that the observed values of all of its components, and the other variables included 

above, can be collected before admission to a neonatal unit. 

 

4.5 Comparison of neonatal scores 

The neonatal mortality risk scores described above vary both in complexity and in the 

variables that they include.  The conflict between the requirement of a score to be simple to 

use, and therefore perhaps more reliable, but at the same time quantify complex risks is well 

recognised: 

“It appears to be impossible for a score to be simple and parsimonious and at the 

same time to be rich, robust, and dynamic.” (Richardson et al, 2001) 

In principle, a score such as CRIB II has a natural appeal as it is based on only five routinely 

collected variables.  One study found that the original CRIB score took 5 minutes to apply 

whereas SNAP, SNAP-PE and NTISS took some 20 to 30 minutes each (Bastos et al, 1997).  

However, the question arises whether it is sufficiently complex to be able to quantify the risk 
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of mortality.  Although the Trent Neonatal Survey data used here do not allow a comparison 

of the scores (only Apgar and the original CRIB are available) other studies have looked at 

this.   

A study in Portugal of 186 infants, with birth weights less than 1,500g or born at under 32 

weeks gestational age, found similar values for the area under the ROC curve (see §6.3.1) for 

four scoring systems: CRIB (0.90), SNAP (0.88), SNAP-PE (0.88), NTISS (0.85) (Bastos et 

al, 1997).  Another study compared CRIB, SNAP-PE and NICHHD using 552 infants with 

birth weights from 500 to 1499 grams, born and admitted to 8 neonatal units between October 

1994 and February 1997 (Pollack et al, 2000).  Only small differences in the estimated area 

under the ROC curve were found: CRIB (0.89), SNAP-PE (0.91), NICHHD (0.87).  A study 

of 222 neonates in Finland found that CRIB had better calibration (AROC = 0.89) compared to 

SNAP (0.82) and SNAP-PE (0.79) (Rautonen et al, 1994), and a small study from Brazil, 102 

infants below 1,500g birth weight with 32 deaths, showed similar estimated area under the 

ROC curve for SNAP-PE (0.93), SNAP-PE II (0.94) and CRIB (0.91) (Zardo and Procianoy, 

2003).  Therefore, despite their differences, there does not appear to be large differences in 

the discriminatory ability of these scores.   

It is also unclear whether such scoring systems can be used in countries other than the one in 

which they were developed.  Problems may arise for two reasons.  First, the variables that are 

predictive for infant mortality may not be the same in different populations or the weights 

used may not fit the new population (Rowan et al, 1993a).  Second, even if the populations 

are similar, users may be more accurate in using scores that they are more familiar with 

(Richardson et al, 1994; Iezzoni et al, 1995).  Also of importance, but rarely discussed in 

relation to neonatal risk scores, is the inter- and intra-observed reliability of the scores.  These 

are important issues as a score inconsistently recorded is of limited use, especially if such 

differences are associated with the unit of care.  It is likely that the simpler scores would also 

be the most reliable.  This, and the evidence above suggesting equal performance of the 

models, suggests that the appropriate choice of scoring method is for the simple scores, such 

as CRIB. 

One further point is that these scores, and the discussion in this thesis, relate to the prediction 

for groups of infants and not for individual predictions.  Different risk scores may give similar 

overall predictions but individual estimates may differ greatly (Iezzoni et al, 1996a).  While 

systems to predict an outcome for a particular infant may be of clinical use (Dorling et al, 

2005) there are many difficulties with such an approach (Ridley, 2002; Lemeshow et al, 
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1995).  Although this is an important research area, it is not directly relevant to the issues in 

this thesis and, therefore, will not be pursued further. 

 

4.6 Risk Adjustment in this Thesis 

Study specific risk-adjustment scores 

It is possible to use the data available to develop a model specific to those data.  This may be 

necessary where information on variables used in the pre-existing scores are not available, or 

where it is felt that these scores are not suitable for the particular population being 

investigated.  However, particularly in the former case, it should be remembered that the local 

model would not include variables that other researchers have shown evidence of being 

associated with mortality. 

Risk-adjustment approach taken in this thesis 

The Trent Neonatal Survey was designed to collect information to allow adjustment for 

different mortality prognoses using CRIB.  However, the deficiencies in the original CRIB 

have been recognised and an updated version, CRIB II, proposed.  The Trent Neonatal Survey 

did not collect information on temperature at admission to the NICU, one of the five variables 

used in CRIB II (although the collection of this information was started from the beginning 

2004).  In addition, the birth weight by gestational age component of the CRIB II score is 

adapted from published mortality tables using previous TNS data (Draper et al, 1999).  More 

up-to-date data are now available; both the data used in this thesis and as more recently 

published mortality tables (Draper et al, 2003).  The application of CRIB and CRIB II to the 

TNS data is investigated in §6.9.4. 

There is, therefore, no up-to-date pre-existing neonatal mortality risk score that is suitable for 

these data, except for the Apgar score.  However, the Apgar score alone is unlikely to offer 

adequate risk-adjustment (although this is examined in 0), and a model to allow for mortality 

risk will be derived using the data available.  It is accepted that such an approach may 

produced a model only applicable to these data but it is felt that such an approach is 

acceptable since it is not a requirement that the adjustment method developed here is 

generalizable to other data.  In any case no pre-existing risk adjustment method is felt to be 

suitable, or at least superior to building a local model. 

Therefore, the TNS data will be used to produce a risk-adjustment model. 
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4.7 Chapter Summary 

In this Chapter various mortality risk-adjustment scores were described that have been 

proposed as suitable for provider profiling.  However, none of these published scores were 

suitable for the TNS data in this thesis, either because the necessary data were not available or 

because it was felt that the scores do not adequately describe current outcomes in NICUs 

(§4.6).  The approach taken here was to develop a risk-adjustment model from the available 

data and this is reported in Chapter 6. 

In the next Chapter methods of presenting the data will be explored.  In order to make these 

comparisons more realistic, the outcomes will be adjusted for gestational age at birth.  This is 

known to have a very strong association with neonatal mortality, discussed in §6.4.1.  A more 

complex model will be derived in Chapter 6, but it is felt that the methods in the next Chapter 

can be better demonstrated and discussed using a simpler model. 
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Chapter 5: OUTCOME SUMMARY MEASURES 

5.1 Chapter Overview 

In §3.4.1 the odds of mortality for each unit were estimated using a logistic regression model 

(Table 3.2).  However, this does not give any information on whether the reported outcome 

for a unit differs from the rest of the Region.  Alternative summary statistics that may be 

useful are discussed, illustrated and compared in this Chapter. 

In §5.3 the Odds Ratio is described and its use in provider profiling illustrated.  Three 

different parameterizations of the neonatal units are compared and the use of deviation 

contrasts in the rest of the thesis justified.  Difficulties in the clinical interpretation of Odds 

Ratios are discussed and the alternative approach of standardization is explored in §5.4.  

Direct and indirect standardization are described, with proposed methods of significance 

testing (§5.4.2) and effect estimation (§5.5 & §5.9) reviewed.  In particular, the use of 

standardized outcome ratios is explored in §5.5 and the use of the Standardized Mortality 

Ratio (SMR) proposed for this thesis.  Methods for estimating confidence intervals for the 

SMR are described, and a Bayesian approach developed, in §5.6, and their properties were 

investigated through a simulation study, described in §5.7.  The standardized mortality 

difference is briefly discussed in §5.9 and the use of random effects models is considered in 

§5.10.  The main conclusions for the Chapter are discussed in §5.11. 

 

5.2 Chapter Introduction 

Gestational age at birth was included in the models throughout this Chapter, as it is known to 

have a strong relationship with infant mortality (Draper et al, 1999), discussed in more detail 

in §6.4.1.  This allowed more realistic examples.  It also allowed the BCa bootstrap method to 

be used in §5.6, as otherwise all observations within each unit would have the same predicted 

probability of death.  This would have led to each bootstrapped sample taking the same value 

and, therefore, showing no variation and providing no estimated confidence intervals. 

Hence, the logistic regression model used in this Chapter was (from 3.6): 
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= β0 + βG.gesti + Xuβu     (5.1) 

where:  gest is the gestational age at birth, in completed weeks 

  Xu is the design matrix specifying the units of admission 

  Uβ  is the vector of coefficients for the units of admission 

Various potentially useful forms of the matrix Xu are discussed in §5.3.1. 

The assumption was made that there was a linear relationship between gestational age at birth 

and mortality for all units.  The plausibility of this assumption is investigated in Chapter 6. 

All of the approaches in this Chapter allow the difference in outcome between a unit and a 

reference population to be represented by a single summary statistic.  However, reducing 

differences between complex and heterogeneous populations to a single summary statistic 

means that much information is lost.  Units may perform differently with different groups of 

patients: for example, a Scottish study of 30-day mortality after discharge following acute 

myocardial infarction found that the hospitals with the highest mortality rates for patients 

aged 50 years were different from those with the highest rates for patients aged 70 years 

(Leyland and Boddy, 1998).  It is quite possible for a single figure to hide these differences.  

Thus, while an extreme value for a single statistic is likely to indicate abnormal rates of 

outcome, an unremarkable value may be hiding more complex differences.  In addition, the 

use of summary measures is of no use to individual patients who would want to know the 

probabilities specific to them (Rao, 2001).   

Nevertheless, these are useful methods.  Much of the role of statistical methods is to provide 

meaningful summaries of data to allow inferences to be drawn: 

“Such summary statistics are … necessary for the precise and efficient comparison of 

different sets of data.” (Hennekens and Buring, 1987:229) 

There is a responsibility on the statistician and the user to ensure that appropriate conclusions 

are made from these summary statistics.   
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5.3  Odds Ratio 

While the probability of death in individual units can be estimated with the methods discussed 

in §3.4.1, this says nothing about the relative sizes of such probabilities compare to the rest of 

the Region.  One method to investigate the relative sizes of the mortality rates is to compare 

the odds of death for infants in a unit to that in the rest of the Region.  Since odds are additive 

on the logarithmic scale, it is, in general, the ratio of two odds that is most often compared.  

This can be done in different ways.  In particular, the method for the parameterisation of the 

health care providers within the logistic regression model will depend on the way the results 

are to be reported. 

The standard logistic modelling approach is to choose one of the providers as a reference; 

sometimes called reference cell coding (Hosmer and Lemeshow, 2000:56). For example, in a 

comparison of infant mortality between Canadian provinces and territories, Quebec was 

chosen as the reference as it was the largest care provider and also had the lowest mortality 

rate (Wen et al, 2000).  However, the most obvious problem with this approach is finding the 

most appropriate choice of reference.  Sometimes there may be a provider that naturally fits 

the role of reference.  If not, another way, that used in the example above, is to choose the 

‘best’ performing provider and then test whether there is evidence that the other units are 

performing poorly compared to this ‘best’ provider.  However, there are difficulties with this.  

First, the reference cannot be identified a priori, rather it is determined by the data.  Second, 

the choice of the reference provider is arbitrary and may not be relevant organisationally: for 

example, the reference may be a small unit with unusual working practices.  It is also the case 

that the ‘best’ performing provider may be difficult to identify: for example, if the outcome of 

interest is the use of mechanical ventilation it is likely that neither extremely high nor 

extremely low rates are ‘best’ practice.  In addition, in this thesis, the interest is primarily in 

comparing each unit to the rest of the Region, rather than to one particular unit. 

While in some cases it may be possible to identify a suitable reference provider a priori, 

alternative, perhaps more useful, approaches exist.  These will be examined in the following 

sub-section. 
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5.3.1 Parameterization of the reference units 

Rest of Region  

The simplest approach is to compare the outcome in the unit of interest to the rest of the 

Region as a single group.  Hence, the hypotheses of interest are: 

( )

( )jRj

jRj

ggH

ggH

−

−

≠

=

:

:

1

0

 

where:  gj is the log odds for the provider of interest; 

gR(-j) is the log odds for the Region excluding observations from the provider of 

interest. 

 

The logistic regression model can be written, from (5.1): 
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where:  




=
                 otherwise       0

 j Unit  toadmitted if       1
jI  

 

Therefore, the natural logarithm of the odds ratio of interest (ψj) is: 

( ) ( ) jjRjje gg β=−=ψ −log  

 

Table 5.1 shows the results of such analyses using the TNS data.  

The estimated odds ratios varied greatly, from 0.26 (Unit 14) to 2.02 (Unit 3).  However, both 

of these values had very wide associated 95% confidence intervals.  Two units showed 

evidence, at the 5% significance level, of extreme odds ratios: Unit 6 had a high mortality rate 

and Unit 12 had a low rate. 
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Table 5.1 Odds ratios for in-unit mortality with Wald confidence intervals 

Unit 
Odds 
Ratio Wald 95% CI 

Wald    
p-value 

1 1.01 (0.56 to 1.78) 0.99 

2 0.88 (0.54 to 1.43) 0.61 

3 2.02 (0.33 to 12.10) 0.44 

4 0.91 (0.37 to 2.25) 0.84 

5 1.18 (0.77 to 1.78) 0.44 

6 1.68 (1.13 to 2.48) 0.0094 

7 1.44 (0.87 to 2.36) 0.15 

8 0.59 (0.25 to 1.38) 0.22 

9 0.89 (0.10 to 7.37) 0.91 

10 0.39 (0.14 to 1.04) 0.058 

11 1.25 (0.87 to 1.80) 0.22 

12 0.30 (0.11 to 0.77) 0.012 

13 0.34 (0.09 to 1.22) 0.097 

14 0.26 (0.06 to 1.16) 0.077 

15 0.80 (0.37 to 1.71) 0.56 

16 1.02 (0.40 to 2.57) 0.97 

However, even after allowing for the gestational age of infants at birth, an association still 

remained between the number of admissions to a unit and its rate of mortality (Figure 5.1).  It 

is uncertain whether this is due to the quality of care or to differences in the morbidity of the 

infants.  This will be investigated further in Chapter 6. 

Figure 5.1 Adjusted odds ratios by total admissions 
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What is clear is that the larger units can influence the previous results in two ways.  First, 

collectively they raise the estimate of the ‘rest-of-region’ odds ratio ( ( )jRg − ).  Second, they 

influence the estimate for the effect of gestational age (βG). 

The use of a common parameter estimate for the relationship between gestational age and 

mortality is not a problem.  Using this model specification it is assumed that there is a 

constant difference (on the logit scale) between the units in gestational age specific odds of 

death.   However, the extent to which large units influence the estimation of ( )jRg −  is a 

problem.  In this example, a large outlying unit is less likely to be identified whereas small 

units are more likely.  Approaches to overcome this problem are discussed below. 

Weighted Logistic Regression 

The problem of large units erroneously influencing the estimation odds of death for ‘the rest 

of the Region’ can be overcome by using weighted logistic regression.  The contribution of 

each observation to the log likelihood is given a weight (wi): 

  Log L ( )∑
=

π=
N

i
iiw

1

ˆlog  

The simplest way of assigning weights is to use 
jn

1  as the weight for each observation in Unit 

j: where nj is the number of observations in Unit j.  To ensure that the estimated covariance 

matrix is invariant to the weights, the weights are normalized so that they sum to the actual 

sample size.  For the weights used here, each weight is multiplied by the mean number of 

admissions for the units: i.e. for observations in unit j their normalized weight is 
j

n

n
k

k

16

16

1
∑
=

. 

This can be achieved directly in SAS PROC LOGISTIC using the NORMALIZE option in the 

WEIGHT statement (SAS Institute Inc., 1999:1939): 

 i.e. weight wt / normalize; 

However, intuitively the down-weighting (or up-weighting) of the unit of interest seems 

inappropriate.  This would overestimate the variance for large units and underestimate that of 

a small unit.  The approach to be taken here is for the 15 reference units to be weighted to 

ensure equal importance and for each observation in the unit of interest take the weight 

value 1.  For observations from each of the reference units the weight is: 
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16

16

1
∑
≠
=

       (5.3) 

The model remains: 

loge(π) = β0 + βG.gest + βj.Ij  

 

where:  




=
                 otherwise       0

 j Unit  toadmitted if       1
jI  

 

The natural logarithm of the odds ratio of interest (ψj) is still: 

( ) ( ) jjRjIe gg β=−=ψ −log  

 

As before, the indicator variable can be created in a SAS DATASTEP and then included in the 

MODEL (and CLASS) statement in PROC LOGISTIC.  The weights can also be created using 

a SAS DATASTEP and then specified in the WEIGHT statement in PROC LOGISTIC.  The 

SAS macro weighted that does this is shown in Appendix D.2. 

The results of these analyses are shown in Table 5.2.  There was statistical evidence that Units 

6 and 12 had extreme odds ratios. 

The estimated odds ratios were higher in the weighted model than in the unweighted (Table 

5.1 and Table 5.2).  This was because reducing the influence of the large (high mortality) 

units reduced the mortality rate in the reference group for each comparison. 

However, by using weighted logistic regression the parameter estimates for risk factors 

became ‘weighted’ estimates.  Weighted estimates are less efficient than estimates from 

unweighted models (Harrell, 2001:206).  An alternative, more efficient, approach is to use 

deviation contrasts; such contrasts are discussed next. 

 



OUTCOME SUMMARY MEASURES 

BRADLEY MANKTELOW PHD THESIS 102 

Table 5.2 Weighted logistic regression 

Unit Odds 
Ratio 

(95% Confidence 
Interval) P-value 

1 1.14 (0.63 to 2.05) 0.66 

2 1.00 (0.61 to 1.64) 0.99 

3 2.47 (0.40 to 15.14) 0.33 

4 1.07 (0.42 to 2.66) 0.89 

5 1.33 (0.87 to 2.04) 0.18 

6 1.86 (1.24 to 2.77) 0.024 

7 1.64 (0.98 to 2.73) 0.056 

8 0.65 (0.27 to 1.54) 0.32 

9 1.03 (0.12 to 8.63) 0.98 

10 0.44 (0.16 to 1.17) 0.10 

11 1.39 (0.95 to 2.03) 0.082 

12 0.33 (0.12 to 0.87) 0.025 

13 0.39 (0.10 to 1.40) 0.15 

14 0.29 (0.06 to 1.28) 0.10 

15 0.90 (0.41 to 1.94) 0.79 

16 1.19 (0.46 to 3.04) 0.72 

 

Deviation from the mean 

An alternative approach is to compare the log odds of the provider of interest to the mean of 

the estimated log odds of the reference units, for example Sankaran et al (2002).  These are 

referred to as effect contrasts within SAS (SAS Institute Inc., 1999:1915), but are also called 

deviation, or deviation from means, contrasts (Hosmer and Lemeshow, 2000:54). 

In the standard application of these contrasts, the hypotheses of interest are: 

N
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where:  gk is the log odds for the outcome in unit k: k ∈ {1,2,…,16}; 

gj is the log odds for the provider of interest; 

 N is the total number of providers. 

Therefore, the natural logarithm of the odds ratio of interest (ψi) is: 

( )
N

g
g

N

k
k

jje










−=ψ
∑
=1log  

       ( ) ( )

N
g

N
g

N
gg

N
N jN

j
−−−−−

−
= ...1 21  

In this case the model is: 

logit(π) = β0 + βG.gest + β1.I1 + β2.I2 +…+ β15.I15   (5.4) 

where:  

{ }15,...,2,1       
                   otherwise    :0

16 Unit  toadmitted if:1
 j Unit   toadmitted if    :1

∈
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I
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From (5.4) it can be seen that the log odds of death before discharge are: 

for Units j = {1, 2,…,15}: ( ) jG gestgestation β+β+β= .|Plogit 0D  

and for Unit 16:  ( ) ∑
=

β−β+β=
15

1
0D .|Plogit

k
kG gestgestation  

Furthermore, it is simple to show that, when gest = 0, the intercept (β0) takes the value of the 

mean of the estimated log odds 
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Hence, using the parameterisation in (5.4), the estimated regression coefficient for Units 1 to 

15 (β1 to β15) represents the estimated log odds ratio for that unit compared to the mean 

outcome.  For Unit 16 the corresponding log odds ratio is estimated by 







β−∑

=

15

1k
k . 

Although each unit is compared to the mean of the log odds, each unit still has an influence 

on the mean to which it is being compared: for example, a unit with a high mortality rate will 

increase the value of the observed mean log odds.  This produces conservative results since 

each unit influences the average towards its own observed value.  An alternative approach to 

overcome this problem would be to estimate the mean regional response based on the other 

fifteen units and then compare the unit of interest to that value.  This approach most closely 

matches that in the ‘rest of Region’ and ‘weighted’ models, in that the unit of interest is 

compared to some ‘average’ odds for the rest of the Region. 

In this case the hypotheses of interest becomes: 
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The log odds ratio of interest is now given by: 

Loge (Odds Ratio) 
15
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Such estimates can be obtained from SAS PROC LOGISTIC by using appropriate CLASS 

and CONTRAST statements and, in this example, using the EFFECT indicator contrasts with 

Unit 16 as the reference category (i.e. class c_hosp / param=effect ref=last;). 
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Using Unit 1 as an example, the log odds of death are: 

( )( ) 101 .| β+β+β= gestgestLogOdds G     (5.5) 

However, the mean log odds for the other units is now given by: 
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β

−β+β= gestG        (5.6) 

Therefore, the test of the log odds of Unit 1 versus the mean of the log odds of the other units 

is: 

115
16

151

15010

0
0

..
1

1

β=

+β=

−β+β=β+β+β
β

βgestgest GG

 

This is straightforward to test using a CONTRAST statement in PROC LOGISTIC: 

i.e. contrast 'unit 1'  
c_hosp  1.0667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /estimate=exp; 

(Since 0667.115
16 ≈ ) 

Appropriately modified CONTRAST statements can be used for Units 2 to 15 and it can be 

shown that the equivalent test for Unit 16 is: 

∑
=

β−=
15

1
15
160

j
j  

i.e. contrast 'unit 16' c_hosp   -1.0667 -1.0667 -1.0667 -1.0667  
      -1.0667 -1.0667 -1.0667 -1.0667  
      -1.0667 -1.0667 -1.0667 -1.0667  
      -1.0667 -1.0667 -1.0667 / estimate=exp; 

 

The results from these analyses are shown in Table 5.3. 
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Table 5.3 Deviation contrast Odds Ratios 

Unit Odds 
Ratio 

(95% Confidence 
Interval) P-value 

1 1.29 (0.70 to 2.39) 0.41 

2 1.14 (0.67 to 1.95) 0.62 

3 2.62 (0.43 to 15.58) 0.29 

4 1.15 (0.45 to 2.92) 0.76 

5 1.49 (0.93 to 2.39) 0.095 

6 2.05 (1.30 to 3.21) 0.0017 

7 1.83 (1.05 to 3.15) 0.030 

8 0.75 (0.31 to 1.80) 0.52 

9 1.11 (0.13 to 9.23) 0.92 

10 0.49 (0.17 to 1.32) 0.16 

11 1.56 (1.02 to 2.39) 0.040 

12 0.37 (0.13 to 0.98) 0.044 

13 0.42 (0.11 to 1.51) 0.18 

14 0.32 (0.07 to 1.41) 0.13 

15 1.02 (0.46 to 2.25) 0.96 

16 1.29 (0.50 to 3.34) 0.59 

The estimated values for the odds ratios are now greater than those from the previous models.  

The results from all three models are discussed next. 

Comparison of parameterizations 

The three methods (unweighted and weighted ‘rest of Region’ parameterization, and 

‘deviation’ parameterisation) outlined above produce three different solutions, as illustrated 

by the following example where Unit 1 is to be compared to the combined outcome of Units 2 

to 16.  When there is no risk adjustment the combined outcomes are given in Table 5.4. 

Hence, in an unadjusted analysis, the odds of death in Unit 1 (π1 = 0.0991; ω1 = 0.1099) are 

compared to three very different values.  Such differences also hold when the model contains 

additional variables to allow for morbidity differences, in this Chapter gestational age at birth.  

However, the different models also result in different estimates for the association between 

gestational age and mortality due to the different weights given to the units. 
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Table 5.4 Unadjusted summary Odds (Units 2 to 16) to which Unit 1 is compared 

Method Odds (ω) ω̂  π̂  

Rest of region: 
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Weighted logistic regression: 
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The differences in the odds ratios can be seen in Figure 5.2, where the odds ratios estimated 

using the first method have a lower absolute value than the other two methods.  Although the 

estimates and their 95% confidence intervals are similar there are different conclusions that 

can be drawn at the 5% significance level for units 7 and 11. 
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Figure 5.2 Odds Ratios estimated using three different methods 

 

The method felt to be most appropriate with this thesis is deviation contrasts.  There are two 

reasons for this.  First, the ‘rest of region’ method gives unjustifiable influence to the larger 

units.  Second, using weighted logistic regression causes the estimates for additional risk 

factors, in this case gestational age, to be ‘weighted’ estimates and, as outlined previously, 

weighted estimates are less efficient than estimates from unweighted models (Harrell, 

2001:206).  The use of deviance contrasts overcomes both of these problems. 

5.3.2 Bayesian Analysis 

The use of a Bayesian approach allows the assumption of a probability distribution for the 

odds ratios, based on the underlying binomial distributions.  This has the advantage of 

allowing probability statements to be made regarding them: for example, what is the 

probability the odds ratio is greater than 2?  Such questions allow the emphasis to rest with 

clinical significance rather than purely statistical significance (Burton et al, 1998), as the 

probability that a provider’s performance is extreme (i.e. an outlier) is not the same as saying 

that they have a clinically extreme mortality rate.  For large providers small differences in 

performance may be statistically significant, so instances of classifying providers as ‘low-

performers’ purely on the basis of a statistical significance is unwise (Glance et al, 2002).  

Clinical standards are likely to be of most use when selected by those who are going to use 

the results but it is possible, indeed likely, that these different users will have different 

expectations of appropriate benchmarks (Christiansen and Morris, 1997).  However, if the 
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posterior distribution can be specified then the different posterior probabilities can be easily 

calculated. 

A Bayesian approach is illustrated using WinBUGS (§3.2.2) to estimate parameters for the 

deviance model described previously (§5.3.1).  The outcomes were estimated using 

N(0,10002) as the prior distribution for all of the parameter estimates.  A 1,000-iteration 

burn-in was inspected using five independent chains and Brooks-Gelman-Rubin statistics 

calculated for the model parameters.  There was no evidence that the model exhibited poor 

mixing and the parameters were estimated using a further 10,000 sampled values (Appendix 

E.2).  In addition, the estimated odds ratio was inspected at each iteration and the proportion 

of times its value fell below 0.5 (P(ψ<1/2)), or above 2 (P(ψ>2)), recorded.  The results are 

shown in Table 5.5.  

Table 5.5 Odds ratio estimated using Bayesian approach 

Unit Odds 
Ratio 

(95% Credible 
Interval) P(ψ<1/2) P(ψ>2) 

1 1.45 (0.73 to 2.82) 0.0010 0.17 

2 1.29 (0.73 to 2.27) 0.0011 0.060 

3 2.50 (0.25 to 12.14) 0.075 0.59 

4 1.25 (0.43 to 3.07) 0.042 0.16 

5 1.69 (1.03 to 2.78) <0.0001 0.25 

6 2.31 (1.45 to 3.79) <0.0001 0.73 

7 2.06 (1.17 to 3.64) <0.0001 0.54 

8 0.82 (0.3 to 1.94) 0.15 0.022 

9 0.88 (0.02 to 5.66) 0.34 0.23 

10 0.52 (0.16 to 1.32) 0.47 0.0023 

11 1.77 (1.12 to 2.84) <0.0001 0.30 

12 0.39 (0.12 to 0.96) 0.67 0.0001 

13 0.43 (0.08 to 1.37) 0.59 0.0034 

14 0.31 (0.04 to 1.2) 0.74 0.0025 

15 1.12 (0.46 to 2.5) 0.036 0.076 

16 1.38 (0.46 to 3.43) 0.031 0.22 

The smoothed posterior probability density functions are also shown (Figure 5.3) to further 

illustrate the interpretation of P(ψ<1/2) and P(ψ>2). 
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Figure 5.3 Estimated posterior probablilty density functions for Odds Ratio 

    

    

    

    

The Bayesian estimates in Table 5.5 can be compared with the estimates in Table 5.3.  When 

the point estimates are compared, differences can be seen.  For all units except four (Units 3, 

9, 14 and 16) the estimates for the odds ratio are higher in the Bayesian analysis than from the 

classical model.  The four units where this is not the case are the four smallest units in the 

study.  This difference between the two approaches is due to the introduction of prior 

probability distributions for the model parameters.  When the units are small, the information 

from the prior probability dominates that from the data.  In this case, the prior probability 

distribution chosen for all of the parameter estimates was N(0,10002).  Although this 

distribution may be ‘vague’, that is having a large variance, it still has a mean higher that the 

observed values for β1, β2,…, β15.  Where there is little information in the data the model 

estimates for these parameters are drawn (‘shrunk’) toward the mean of the prior distribution.  

Due to the model parameterization this affects all of the parameter estimates.  One solution 

lies with a more considered choice of prior distributions, as was discussed in §3.4.2, although 
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with such sparse data, any prior distribution will be highly influential for the small units.  This 

is pursued further in §5.8.4. 

5.3.3 Use of odds ratios 

This section has outlined approaches that use the odds ratio to summarize the difference 

between a unit and the rest of the Region.  However, odds ratios can be difficult to interpret 

and, in practice, they are often interpreted as relative risks, although they can be poor 

approximations (Sinclair and Bracken, 1994; Davies et al, 1998; Sackett et al, 1996).  One 

solution may be to use a generalized linear model to estimate relative risks directly, either by 

using a log-log link (Martuzzi and Elliott, 1998) or a log-link (Wacholder, 1986), as these 

have a straightforward interpretation.  However, such models present difficulties, in particular 

problems with convergence, but also predicted probabilities outside of the interval [0,1] and 

confidence intervals that are too small (McNutt et al, 2003; Wacholder, 1986; Martuzzi and 

Elliott, 1998). 

Although possible solutions may exist to these problems, alternative summary statistics have 

been suggested using logistic regression models.  These are commonly used in practice and 

are explored in the next Section. 

 

5.4 Standardization 

5.4.1 Direct and indirect standardization 

The aim of standardization is to provide a measure of the difference between the population 

of interest and a standard, or reference, population.  To do this, the sample of interest and the 

reference population are divided into relatively homogeneous strata (risk-adjustment) and the 

stratum specific mortality rates of the two data sets calculated and compared.  Possible 

summary statistics that can be used are illustrated later in this Chapter, but before that two 

approaches to standardization, direct and indirect, are discussed and compared. 

Direct standardization 

Direct standardization provides an answer to the question, ‘What would have been the 

outcome in the rest of the Region if its population had the same outcomes as those in the unit 

of interest?’  To do this, stratum specific event rates are calculated for the population of 
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interest and these rates are then applied to the reference population and the expected number 

of events (DDIRECT) calculated: 

  ∑
=

π=
l

i
RiiDIRECT nD

1

       (5.7) 

where:  l is the number of strata 

  πi is the probability of death for an observation in stratum i in unit of interest 

  nRi is the number of observations in stratum i in the reference population 

Alternatively, this can be written as: 

∑
=

π=
l

i
RiiRDIRECT pND

1

      (5.8) 

where:  NR is the total number of observations in the reference population 

  pRi is the proportion of observations in the reference population in stratum i  

Since the expected number of deaths is dependent on the population structure of the reference 

population, its value, and that of any summary statistic derived from it, is difficult to interpret 

in relation to the unit of interest.  On the other hand, if various units are standardized to the 

same reference population then it is appropriate to use the values obtained to compare the 

units with each other.  This property will be discussed in more detail later (§5.5.1). 

The main problem with using direct standardization is that the estimation of stratum specific 

mortality rates for the units of interest can be difficult.  These units are often small, as with 

the TNS data, and any estimated rates are likely to have large sampling errors.  It seems 

inconceivable that the small volume neonatal units have a sufficient number of observations 

to allow the creation of sufficiently homogeneous strata.  In fact, inspection of Table 2.5 

shows that the estimated mortality rates for the whole sample of each unit have a large 

amount of uncertainty.  At the extreme, Unit 9 has only one death from 35 admissions, giving 

an exact 95% confidence interval for the true death rate from 0.000 to 0.150, and once there is 

more than one stratum all but one will have an observed death rate of zero.  While this 

example is at the extreme, a similar argument exists for all but the very largest units.  Even if 

direct standardization was possible by using only a small number of strata, the mortality rate 

estimates are still likely be poorly estimated. 

However, it may be possible to obtain directly standardized outcomes by including a 

risk-adjustment covariate in the model as a continuous variable, rather than as a categorical 
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variable.  To illustrate this, directly standardized expected mortality is shown in Table 5.6 for 

the TNS data in this thesis.  Two expected mortality totals are shown; first without adjustment 

for gestational age (i.e. using the overall mortality rate for each unit) and then directly 

standardized using gestational age at birth as a continuous variable in a logistic regression 

model. 

When investigating Unit j, the model for estimating the probability of death for observation i, 

adjusted for gestational age, is: 

logit ( ) iGii gestg .0 β+β==π       (5.9) 

 

Hence, the estimated probability of death for an individual in the reference population is: 

  ( )iG gestRi
e .ˆˆ

01
1ˆ

β+β−+
=π        (5.10) 

and the expected number of deaths in the rest of the Regional (DDIRECT) is given by summing 

these estimated probabilities for all observations across all fifteen reference units: 

  ∑∑
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1 1

ˆ
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k

n

i
RiDIRECT
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D        (5.11) 

 

The expected number of deaths from direct standardization adjusted for gestational age is 

generally closer to the observed number than the unadjusted expected number of deaths.  This 

suggests that differences in the gestational ages of the infants may account for some of the 

differences in mortality rates between the units.  However, uncertainty in the estimates of β0 

and βG mean that uncertainty around DDIRECT is likely to be large.  For small units, for 

example Units 3 and 9, the difference is very large, suggesting that the effect of gestational 

age on mortality may be poorly estimated. 
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Table 5.6 Observed and expected number of deaths: directly standardized for gestational 

age at birth 

  Died  

Unit Observed (Σdi) Unadjusted 
standardized 
expected (Σπi) 

Adjusted 
standardized 
expected (Σπi) 

1 264 278.6 260.3 

2 255 290.7 244.0 

3 283 157.2 822.0 

4 279 120.9 295.1 

5 244 331.4 269.1 

6 231 378.1 324.4 

7 256 332.0 322.9 

8 277 187.2 194.4 

9 284 85.4 379.5 

10 280 98.6 148.2 

11 223 360.4 259.5 

12 280 72.2 96.8 

13 282 63.7 139.2 

14 283 65.2 95.1 

15 275 234.0 240.6 

16 279 175.5 263.6 

 

Indirect standardization 

To overcome the problem seen with direct standardization of trying to estimate stratum 

specific mortality rates from the unit of interest, indirect standardization applies the 

mortality rates observed in the reference population to the population of interest.  This 

amounts to the general question, ‘What would have been the outcome if the Unit’s population 

had the same outcome as patients with the same characteristics in the rest of the Region?’  

This is likely to overcome the problem of imprecise stratum specific rates seen with direct 

standardization, as the reference population is usually larger and has a greater number of 

observations in each stratum. 

Following on from (5.7) & (5.8), indirect standardization can be written: 
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  ∑
=

π=
l

i
iRiINDIRECT nD

1

       (5.12) 

where:  l is the number of strata 

πRi is the probability of death in reference population for an observation in 

stratum i 

  ni is the number of observations in stratum i in the unit of interest 

Or as:  ∑
=

π=
l

i
iRiINDIRECT pND

1

      (5.13) 

where:  N is the total number of observations in the unit of interest 

  pi is the proportion of observations in the unit of interest in stratum i  

Using indirect standardization, the expected number of deaths for each provider is weighted 

according to the characteristics of their population, i.e. p1, p2,…,pl (Bhopal, 2002:194-198).  

Since, in many practical situations, each unit is likely to have samples with different empirical 

distributions of the variables used for standardization (risk adjustment) then the rates 

estimated for each unit will, strictly, not be comparable with each other.  This has been known 

for a long time: 

“… it will appear evident that if any one locality had an excess of population at that 

period [age group] where the mortality was 25 per cent., and a deficiency of 

population at that period at that period where the rate of mortality was only half per 

cent., that the average amount of mortality, the number of deaths … would differ 

widely from that of another locality in which the order of population was exactly 

reversed …” (Neison, 1844) 

This characteristic will just be noted here but will be addressed further in §5.5. 

In the meantime, the TNS data were used to indirectly standardize each neonatal unit to the 

rest of the Region using gestational age at birth as a continuous variable in a logistic 

regression model.  The model used in this section is slightly different to that used in §5.3.1, in 

that the data from the unit of interest were not used in the model to find the Regional average.  

The main difference is that the estimate for the effect of gestational age is now estimated from 

the 15 units that comprise the ‘rest of Region’ rather that all 16 units as previously.  In 

practice, this has almost no effect on the parameter estimates and, therefore, the expected 

number of deaths for each unit.  The main disadvantage with this second approach is that 16 
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separate models are now required rather than the previous single model.  However, the 

advantage gained is that any estimates from the two parts of the data (‘unit of interest’ & ‘rest 

of Region’) are statistically independent.  This characteristic will be utilized in §5.6. 

So, for example, when investigating Unit 1 the model can be written as: 

logit ( ) ∑
=

β+β+β==π
16

2
0 .

k
kkiGii Igestg     (5.14) 

where:  
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Hence, the estimated probability of death for an individual in Unit 1 is: 

  ( )iG gesti e .ˆˆ
01
1ˆ

β+β−+
=π        (5.15) 

 

Summing these gives the expected total deaths in Unit 1, D1NDIRECT: 

  ∑
=

π=
1

1

ˆ
n

i
iINDIRECTD        (5.16) 

 

This process was carried out for each unit both with and without adjustment for gestational 

age at birth (Table 5.7). 

For most of the units (the exceptions are Units 3, 8 & 16) the standardized expected number 

of deaths is closer in value to the observed number of deaths than the unstandardized.  As 

before, this suggests that there are differences in the gestational age structures between the 

units and that these differences account for some of the differences in the observed mortality 

rates. 
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Table 5.7 Observed and expected number of deaths: indirectly standardized for 

gestational age at birth 

  Died  

Unit Observed (Σdi) Unadjusted 
standardized 
expected (Σπi) 

Adjusted 
standardized 
expected (Σπi) 

1 21 12.4 17.8 

2 30 16.5 27.9 

3 2 2.3 1.1 

4 6 8.9 5.3 

5 41 19.2 31.1 

6 54 21.6 35.1 

7 29 14.0 19.7 

8 8 7.5 9.8 

9 1 2.2 0.9 

10 5 9.2 8.9 

11 62 25.4 46.9 

12 5 12.6 11.5 

13 3 8.8 6.0 

14 2 5.8 5.2 

15 10 7.4 9.9 

16 6 6.0 4.9 

 

Use of direct and indirect standardization 

Although direct standardization has been used in published research, for example Horbar et al 

(1988) and Wolfe et al (1999), indirect standardization is usually preferred.  Often, as with the 

data in this thesis, indirect standardization is expected to be the only option as stratum specific 

mortality rates are likely to be poorly estimated from the units of interest. 

However, it is possible that some of the problems with direct standardization could be 

overcome.  Ad-hoc rules could be used; for example, an early approach was to ignore those 

strata where rates are likely to be very poorly estimated (Ogle, 1886).  An alternative, and 

more conservative, approach could be to derive estimates by assuming that no difference 

exists where rates cannot be estimated.  However, this approach seems inferior, and 

possessing potential problems, when compared to using indirect standardization.  Some more 
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of the practical differences between direct and indirect standardization will be discussed 

further in §5.5 when looking at the ratio of the observed and expected deaths.  One further 

consideration is that, with the model used here, each unit has been compared to the rest of the 

Region.  This means that each unit is compared to a different standard population, thus 

eliminating the advantage of direct standardization. 

Various methods of comparing the total number of observed deaths ∑
=

n

i
id

1

 to the expected 

total ∑
=

π
n

i
i

1

ˆ  are explored in the following Sections.  These methods fall broadly into two 

types: significance tests and effect estimation.  In the next Section significance testing 

approaches will be illustrated and discussed, with methods used to estimate effect sizes shown 

in later Sections. 

5.4.2 Significance Tests with Standardized Outcomes 

A naïve approach to reporting the difference between the observed and expected mortality of 

a unit would be to present the p-value for the observed number of deaths, under the null 

hypothesis that a unit has the same underlying mortality rates as the rest of the Region as 

quantified by the expected number of deaths.  Such an approach has been used by the 

California Office of Statewide Health Planning and Development to categorise the 

performance of hospitals in the treatment of acute myocardial infarction (Healthcare Quality 

and Analysis Division, 2002), although this was only one part of a much larger, and robust, 

reporting procedure.  Here, these methods will be illustrated using indirect standardization, 

because the expected number of deaths can be more reliably estimated.  However, the 

methods outlined can equally be applied to estimates derived using direct standardization. 

It is apparent from Table 5.7 that the inclusion of gestational age in the model produces 

values for the expected number of deaths that are generally closer to the observed values than 

those obtained without adjustment.  However, there still remain some units that have a ‘large’ 

difference; for example Units 6 and 12.  It may be of interest to investigate the statistical 

significance of these differences. 

Although a method for calculating exact confidence intervals, and exact p-values, for 

observations from a binomial distribution was discussed in Chapter 2, that method cannot be 

used when observations have different event probabilities.  Different predicted probabilities 

can occur after risk-adjusting for morbidity.  It can easily be seen that an infant born at a very 
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early gestational age, say 22 weeks, is likely to have a much higher predicted probability of 

death that another born at 32 weeks, even if they are admitted to the same NICU.  Therefore, 

infants admitted to any NICU are likely to have a range of predicted probabilities for death 

and any method to calculate the probability for the observed number of deaths, under the null 

hypothesis, will need to take this into account.  Methods for estimating probabilities in such 

circumstances are now discussed. 

Exact method 

Luft & Brown (1993) proposed an exact method based on the probability of survival qi where: 

  iiq π−= 1  

The probability that there are no deaths among N admissions to a NICU is ∏
=

N

i
iq

1

and, hence, 

the probability of at least one death is ∏
=

−
N

i
iq

1

1 . 

The probability of exactly one death occurring is estimated by summing all of the possible 

combinations that one death could have occured in the observed data: 
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The probability of at least two deaths occurring is give by one minus the probability of zero 

deaths plus all the possible combinations one death could have occured: 
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This method can then be continued to find ( )
i

dDP ∑≥ . 

The California Hospital Outcomes Project (Healthcare Quality and Analysis Division, 2002) 

calculated such a probability for each of the 398 hospitals investigated.  However, when the 

observed number of deaths was less than the expected, they calculated the probability of the 

observed value or less.  The probability of a greater or equal number of deaths was calculated 

for those hospitals with more observed deaths than expected.  A hospital with an associated 

p-value of less than 0.01 was classified as being “significantly better [worse] than expected”. 

The most obvious approaches to calculating such probabilities are difficult due to computing 

time and memory requirements.  The number of calculations is dependent on both the number 
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of admissions and the number of deaths, and computing requirements grow quickly with 

increasing sample size.  For each number of deaths (r), the number of ways of selecting r 

admissions from a total of n (combinations) is given by: 

  ( ) !!.
!

rrn
nCrn −

=  

For example, Unit 9, the smallest observed number of admissions (35) and deaths (1), only 

requires one calculation to calculate the probability of all admissions surviving to discharge 

and 35 to calculate the probability of exactly one death.  However, once the sample grows to 

that of Unit 10 (146 admissions and 5 deaths) the number of individual probabilities to be 

summed becomes: 

 0 deaths: 1 

 1 death: 146 

 2 deaths: 10,585 

 3 deaths: 508,080 

 4 deaths: 18,163,860 

 5 deaths: 515,853,624 

This is a total of 534,536,296 calculations.   

For the small units such probabilities are straightforward to calculate in a statistical package 

such as SAS.  PROC PLAN can be used within SAS to generate a dataset containing all 

combinations of a given set of observations for a specified size of sample.  This can then be 

used to calculate the probability of observing the specified exact number of observation.  

However, for more than a small number of deaths, such a dataset with all possible 

combinations of observations of a given size is very large.  Using Unit 10 as an example 

again, a data set containing all possible combinations of size five from 146 observations will 

have (515,853,624 × 5 =) 2,759,268,120 observations.  The SAS program used for analysing 

data for this thesis has insufficient memory to generate such a dataset.  An alternative 

programming approach would be to use ‘loops’ to generate one combination at a time, but 

such an approach can be expected to take a very long time to run.  

Luft & Brown supplied an alternative, efficient approach to the calculations (Appendix D.3).  

Their method works by using cumulative sums of probabilities for different outcomes and full 
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details are given in their paper.  They recommended that exact p-values be calculated if the 

number of observed deaths is 15 or less.  Other authors have suggested that when the 

predicted number of deaths is equal to or exceeds five, approximation methods are adequate 

(Fleiss et al, 2003:26).  Such methods will be discussed next and in the example below, using 

the TNS data, both exact and approximate p-values will be calculated for all units. 

Normal Approximation 

The probability that the i-th infant will die before discharge is πi and its variance is given by 

πi(1-πi).  The true value of πi is unknown but can be estimated by iπ̂  and its variance by 

( )ii π−π ˆ1ˆ .  If the observations within Unit j are assumed to be observations from a set of 

independent Bernoulli trials then ∑
=

π
n

i
i

1

 is estimated by ∑
=

π
n

i
i

1

ˆ : its variance can be estimated 

by ( )∑
=

π−π
n

i
ii

1

ˆ1ˆ .  When ∑π̂  and ( )∑ π− ˆ1  are is sufficiently large (≥ 5), under the null 

hypothesis that Σπi = Σdi, the following distribution approximately holds (Luft and Brown, 

1993; Fleiss et al, 2003:26): 

  [ ]( )∑ ∑ ∑ π−ππ iiii Normald 1,~  

Thus:  
( )∑
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π−π
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ii
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As this approximation is using a continuous probability distribution to approximate a discrete 

distribution, the absolute difference ∑ ∑π− iid ˆ  is often reduced by a continuity correction 

of the value ½ (Armitage and Berry, 1994; Bland, 1995:221; Fleiss et al, 2003:27).  The 

calculated z-score can then be converted to a one-tailed probability using the standard normal 

distribution. 

Comparison of exact and Normal approximation methods 

For the TNS data, the calculated probabilities using the exact method proposed by Luft & 

Brown and using the Normal approximation (with the continuity correction) are shown in 

Table 5.8. 
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Table 5.8 P-values for observed mortality 

 Died  P-valuesg

Unit 

 

Observed 

(Σdi) 

Expected 

(Σπi) 

Σdi - Σπi Exact 

method 

Normal 

approx. 

1 21 17.8 3.2 0.2176 0.2208 

2 30 27.9 2.1 0.3181 0.3232 

3 2 1.1 0.9 0.2717 0.3194 

4 6 5.3 0.7 0.4457 0.4684 

5 41 31.1 9.9 0.0277 0.0250 

6 54 35.1 18.9 0.0001 0.0001 

7 29 19.7 9.3 0.0104 0.0084 

8 8 9.8 -1.8 0.3217 0.3132 

9 1 0.9 0.1 0.6222 0.6768 

10 5 8.9 -3.9 0.0892 0.0956 

11 62 46.9 15.1 0.0051 0.0042 

12 5 11.5 -6.5 0.0158 0.0227 

13 3 6.0 -3.0 0.1159 0.1225 

14 2 5.2 -3.2 0.0770 0.0873 

15 10 9.9 0.1 0.5431 0.5566 

16 6 4.9 1.1 0.3607 0.3804 

For Units 9 & 15 the p-values are greater than 0.5 and, due to the definition of these one-sided 

p-values, this should not be expected.  However, in the case of these two units the continuity 

correction used (½) is greater that the observed difference.  In this case the application of the 

correction changes the sign of the difference, clearly an undesirable effect.  However, by its 

nature this problem only occurs when the observed mortality and expected mortality are very 

close (i.e. an absolute difference of 0.5 or less) and there is no danger of misclassifying a unit 

as an outlier.  One solution is to apply the correction only if the absolute value of the observed 

difference exceeds the value of the correction; i.e. 0.5 (Fleiss et al, 2003:27). 

To illustrate the effect of the addition of the continuity correction, p-values calculated without 

it are shown in Table 5.9. 

                                                 

g P(Σdi ≤ Σπi) where Σdi < Σπi  &  P(Σdi ≥ Σπi) where Σdi > Σπi 
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Table 5.9 Corrected p-values 

  P-valuesh

Unit 

 

Σdi - Σπi Exact method Normal approx. 

 
 

 Continuity 
correction 

No continuity 
correction 

1 3.2 0.2176 0.2208 0.1794 

2 2.1 0.3181 0.3232 0.2817 

3 0.9 0.2717 0.3194 0.1418 

4 0.7 0.4457 0.4684 0.3757 

5 9.9 0.0277 0.0250 0.0194 

6 18.9 0.0001 0.0001 0.0001 

7 9.3 0.0104 0.0084 0.0057 

8 -1.8 0.3217 0.3132 0.2473 

9 0.1 0.6222 0.6768 0.4604 

10 -3.9 0.0892 0.0956 0.0668 

11 15.1 0.0051 0.0042 0.0032 

12 -6.5 0.0158 0.0227 0.0150 

13 -3.0 0.1159 0.1225 0.0815 

14 -3.2 0.0770 0.0873 0.0542 

15 0.1 0.5431 0.5566 0.4811 

16 1.1 0.3607 0.3804 0.2891 

 

There are several points to note from Table 5.9.  First, as expected, all of the p-values 

calculated using the Normal approximation without the continuity correction are less than 0.5.  

Second, all of the p-values calculated using the Normal approximation with the continuity 

correction are greater than those calculated without the continuity correction, since the 

absolute value of the difference between observed and expected mortality has been reduced.  

In almost all cases, the p-values calculated using the Normal approximation with the 

continuity correction are closer to the exact p-values than those calculated without using the 

continuity correction. 

                                                 

h P(Σdi ≤ Σπi) where Σdi < Σπi  &  P(Σdi ≥ Σπi) where Σdi > Σπi 
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Figure 5.4 Plot of Normal approximation p-values against exact p-values 

 

The absolute differences between the approximate p-values (with the continuity correction) 

and the exact values are small (Figure 5.4).  However, there are substantial relative 

differences between the probabilities calculated from the two methods (Figure 5.5). 

Figure 5.5 Ratio of p-values from Normal and Exact methods by total expected deaths 

 

 

It is also of interest to note that these differences occur with units that have total expected 

deaths greater than five.  It is unclear why this should be the case, but it may be due to the 

wide range in the value of π or, perhaps, because the p-value is small and a small absolute 

difference can result in a large relative difference.  The problem arises in units with small 

p-values, those with the more extreme performance, and since these are usually the ones of 

interest and it is important that they are estimated correctly. 
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Further investigation would be required to try to find the cause of these differences.  

However, since the exact probabilities are straightforward to calculate, it is recommended that 

exact p-values be reported for all units where the total number of expected deaths is less than 

20. 

Other methods 

Although the exact method outlined above is an appropriate method to estimate such p-values 

other methods have been suggested.  These are briefly described next. 

Lexian Distributions 

The family of Lexian distributions specify the distribution of a set of binary outcomes where 

the event probabilities are not necessarily equal but, rather, follow a probability distribution 

themselves.  The probability density function for the Lexian distributions is: 

  ( ) ( ) ( ) θθθ−θ
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where (Stuart and Ord, 1994:172):  
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It can be seen that in the special case where θ is fixed, i.e. Var(θ)=0, the above expressions 

reduce to those of the Binomial distribution.  It can also be seen that the variance is greater by 

the value of n(n-1)Var(θ) than that of the Binomial distribution with the same mean. 

One consideration with this distribution is the choice of probability distribution for θ.  Both 

the Beta and Poisson distributions have been suggested (Edwards, 1960).  In previous work, 

Edwards had assumed a Beta distribution for the event probabilities (Edwards, 1958).  He felt 

that since the variance of π in his data was small, mispecification of this distribution would 

have a minor influence on the results.  This is not the case with the TNS data used in this 

thesis.  The range of estimated probabilities within each NICU is large; for example in Unit 1 

π̂  ranges from 0.0063 to 0.8280.  The estimated probabilities seem a poor fit to the beta 

distribution; for example the Beta Q-Q plot for Unit 1 (using maximum likelihood estimates 

for α and β) is shown in Figure 5.6.  Inspection of this plot suggests that the observed 
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distribution has longer tails that that expected from the corresponding Beta distribution.  All 

the other NICUs show a similar pattern.   

Figure 5.6 Q-Q Plot for estimated π for Unit 1 

 

Obviously, the distribution of π̂ s will depend on the model used to estimate them.  In this 

example, they follow the same distribution as the observed gestational ages, since this is the 

only variable in the model.  It is possible that the addition of other variables to the model may 

produce an observed distribution close to that of a Beta distribution.  However, this is not 

necessarily certain in all cases. 

The difficulty of specifying a distribution for the estimated probabilities means that this 

approach will not be considered further in this thesis. 

Poisson Approximation 

When the events are rare it may be assumed that the number of observed deaths Σdi follows a 

Poisson Distribution (Luft and Brown, 1993): 
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OUTCOME SUMMARY MEASURES 

BRADLEY MANKTELOW PHD THESIS 127 

However, as well as the assumption that Σπj ≥ 5, this approximation only holds if all the πj are 

small and relatively uniform (Luft and Brown, 1993).  It is clear that this is not the case for 

the TNS data used in this thesis.  Therefore, this method will not be considered further. 

Simulation 

One further method suggested involves drawing, for each observation, a value from the 

Uniform distribution, Uniform(0,1).  If this value is greater than the predicted probability of 

dying for that infant, then the observation is counted as a ‘death’.  Once this has been repeated 

for all observations from the unit of interest, the total number of simulated ‘deaths’ is 

recorded.  This process is repeated many times and the proportion of times that the total 

number of simulated ‘deaths’ equals or exceeds the observed value is the estimated 

probability of observing that many or more deaths (Luft and Brown, 1993). 

Although this method provides an unbiased estimate for the required p-value, its precision 

depends on the number of simulations.  This can become computationally intensive and 

slower to run than the exact method outline above.  Luft & Brown compared the two methods 

using data from 34,234 patients from 465 hospitals and calculated exact values for all 

hospitals with 15 or fewer observed deaths.  They found that the exact method took less than 

90 seconds whereas the simulation method took around 2¼ hours, using a Macintosh II with a 

68881 floating point coprocessor and 5Mb of memory (Luft and Brown, 1993).  Although 

computing resources have developed greatly since their study, it is difficult to see any 

advantage in using the simulation method when the exact method is so straightforward.  It 

will, therefore, not be considered further here. 

Chi-square Test 

Knaus et al (1993) used the chi-squared test (with one degree of freedom) to determine the 

statistical significance of the difference between the observed and expected mortality rates for 

each unit.  This is illustrated using the TNS data in Table 5.3. 

Three units (Units 6, 7 and 11) have p-values of less than 0.05, the cut-off used by Knaus, and 

all of these have expected mortality totals greater than the observed.  It can also be seen that 

the p-values shown above are similar to the p-values for the odd ratios shown in Table 5.3. 

One further point to note is that the p-values calculated using the chi-squared distribution are, 

by definition, two-sided p-values.  The p-values reported by the California Office of 

Statewide Health Planning and Development mentioned at the start of §5.4.2 are one-side, as 

were the others described above. 
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Table 5.10 Chi-square p-values 

  Died   

Unit Observed (Σdi) Expected (Σπi) ( )
∑

∑ ∑
π

π−

i

iid

ˆ

ˆ 2

 p-value 

1 21 17.8 0.594 0.44 

2 30 27.9 0.151 0.70 

3 2 1.1 0.707 0.40 

4 6 5.3 0.080 0.78 

5 41 31.1 3.129 0.077 

6 54 35.1 10.203 0.0014 

7 29 19.7 4.344 0.037 

8 8 9.8 0.314 0.57 

9 1 0.9 0.008 0.93 

10 5 8.9 1.701 0.19 

11 62 46.9 4.844 0.028 

12 5 11.5 3.637 0.056 

13 3 6.0 1.502 0.22 

14 2 5.2 2.004 0.16 

15 10 9.9 0.002 0.96 

16 6 4.9 0.251 0.62 

As a point of interest, the authors then used these p-values to label points in a scatterplot of 

observed mortality rates against expected mortality rates.  This is illustrated using the TNS 

data in Figure 5.7. 

Figure 5.7 Plot of observed against expected mortality rate 
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The units performing worse than expected are those with high rates of predicted mortality.  

This may indicate a lower quality of care, but may also be the result of inadequate adjustment 

for infant morbidity at admission.  In fact, while the truth about the former is unknown, we 

know that the latter is true; gestational age alone is unlikely to be adequate case-mix 

adjustment. 

While such an approach may be useful in an initial inspection of the data, the lack of 

estimated confidence intervals means that it is an insufficient approach on its own. 

To “… determine the amount of variation across ICUs that was accounted for by predictions 

…” the authors also used a least-squares linear regression model, with the observed mortality 

rate as the outcome and the expected rate as the covariate, to estimate the coefficient of 

determination (R2).  When using the TNS data R2 = 0.70.  Thus some 70% of the variation in 

observed mortality rates is ‘explained’ by differences in gestational age between the units. 

 

5.5 Standardized Outcome Ratios 

In the previous Section statistical methods were described and illustrated to carry out 

significance tests on standardized outcomes.  No matter which of these methods is used, a 

p-value only gives information about the statistical significance of a difference between the 

observed and expected.  What is of more interest is an estimate of the clinical size of this 

difference, and the uncertainty around it.  Such estimates can be obtained by comparing the 

expected number of deaths to the observed number in different ways.  Two of the most used 

approaches will be discussed in the rest of this Chapter.  First, the ratio of the observed and 

expected deaths is investigated and then their difference is briefly considered.   

The ratio between the observed number of deaths and the expected number (obtained through 

standardization) can be used as a summary measure of a unit’s outcome.  The two most 

popular approaches, the comparative mortality figure and the standardized mortality 

ratio, are described next. 

5.5.1 Comparative Mortality Figure 

The comparative mortality figure (CMF) is derived using direct standardization and is the 

ratio of the expected number of deaths in the reference population to the observed number 

(Fleiss et al, 2003:639): 
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where:  πi is the probability of death for an observation in stratum i in unit of interest 

πRi is the probability of death for an observation in stratum i in reference 

population 

pRi is the proportion of observations in stratum i in reference population 

The value unity represents no difference between the observed and expected totals.  A value 

greater than unity indicates that the expected number is greater than the observed, so that the 

stratum specific mortality rates in the unit of interest are, in some way, greater than those of 

the reference population.  A CMF value of less than unity represents the opposite scenario. 

This ratio may be the most appropriate summary statistic to use as the weights ( Rip ) are the 

same for each unit and, therefore, allow direct comparisons between different units to be 

made in addition to the comparison of a unit to the reference population.  This is made clearer 

by supposing that mortality rates are to be compared between two populations a and b by 

reference to a standard population.  Silcock (1959) suggested three properties (the first two 

essential and the third desirable) for such a summary statistic if it is to be used to compare the 

outcome between the two health care providers: 

where:  xiπ  is the mortality rate for stratum i in population x; 

  pxi is the proportion of population x in stratum i; 

xΠ  is the overall death rate in population x (e.g. ∑
=

π=Π
n

i
aiaia p

1

). 

Property 1 

 If  β≤
π
π

≤α
bi

ai  

 then β≤
Π
Π

≤α
b

a  

This property specifies that the value of the ratio of the overall mortality rates between 

two populations lies within the limits of the ratios of the stratum specific rates. 
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Property 2 

If ba Π≠Π  then the inequality should be due to biai π≠π  for some or all i, and to 

nothing else. 

Property 3 

“… the comparative function [
b

a
Π

Π ] should have a meaning other than in the abstract 

mathematical sense in which a number is ‘explained’ by pointing to the mathematical 

formula from which it was derived.” (Silcock, 1959)  That is to say, there should be a 

clear clinical interpretation to such a statistic.  An example of a summary statistic 

fulfilling this property (CMF) and one not (SMR) are shown below. 

The comparative mortality figure fulfils all three of these properties. 

That Property 1 holds can be seen by considering that if β≤
π
π

≤α
bi

ai  then: 

  biRiaiRibiRi ppp πβ≤π≤πα  

hence:  β=
π

πβ
≤

π

π
≤

π

πα
=α

∑
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∑
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and  β≤
Π
Π

≤α
bi

ai  as required. 

If CMFa ≠  CMFb , then from (5.7), bi

n

i
Riai

n

i
Ri pp π≠π ∑∑

== 11

 .  Since Rip  is common to both 

sides this inequality is due to biai π≠π  for one or more i, thus satisfying the condition for 

Property 2. 

The third property can be seen to be met by considering hCMFCMF ba += 1 .  In this case h 

can be interpreted by seeing that if the reference population had the same mortality rates as 

population a then there would have been 100h% more deaths than if it had the mortality rates 

of population b. 

However, the problem remains of sufficiently precise estimates of strata specific death rates 

being able to be estimated and these properties also depend on the same reference population 
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being used for all comparisons.  Neither of these conditions holds for the analyses in this 

thesis. 

5.5.2 Standardized Mortality Ratio 

An alternative summary statistic, estimated using indirect standardization, is the standardized 

mortality ratio (SMR): 

∑

∑

=

=

π

π
== l

i
iRi

l

i
ii

p

p

Expected
ObservedSMR

1

1      (5.19) 

where:  πi is the probability of death for an observation in stratum i in unit of interest 

pi is the proportion of observations in stratum i in unit of interest 

pRi is the proportion of observations in stratum i in reference population 

This is the ratio of the observed to the expected number of deaths for each unit.  Although 

each SMR is a true measure of the difference between each population and the reference 

population, given the population structures, it can be seen that the SMR for each unit is 

weighted according to its own population structure, i.e. p1, p2,…, pl.  This means that it may 

not be possible to compare the SMRs of two units even if they are standardized to the same 

reference population.  The three properties proposed by Silcock to allow the comparison of 

mortality ratios were discussed in §5.5.1, and these will now be considered in relation to the 

standardized mortality ratio. 

Algebraic details are shown in Appendix C.2 that Property 1 (that the overall ratio between 

two populations of interest does not take a value more extreme than any of the stratum 

specific ratios) does not hold for the SMR, but perhaps it can more easily be shown by a 

counter-example.  Consider two populations, X and Y, whose death rates are to be indirectly 

standardized by sex to a reference population (Table 5.11). 

Table 5.11 Internal comparison using SMRs 

Population Ref.  X   Y  
 Rate n obs exp n obs exp 

Male 0.2 700 350 140 300 180 60 

Female 0.4 300 90 120 700 240 280 

Total   440 260  420 340 
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The stratum specific SMRs are: 

Male:  maleXSMR .  = 2.50 maleYSMR .  = 3.00 
maleY

maleX
SMR
SMR

.

.  = 0.83 

Female: femaleXSMR .  = 0.5 femaleYSMR .  = 0.86 
femaleY

femaleX

SMR
SMR

.

.  = 0.88 

Overall: XSMR  = 1.69  YSMR  = 1.24  
Y

X
SMR
SMR  = 1.37 

Therefore, in this example the ratio of the overall SMRs is greater than the ratio of either 

stratum specific SMRs.  Moreover, it can be see that Population X has lower stratum specific 

death rates that Population Y ( 50.0. =π maleX ; 60.0. =π maleY ; 30.0. =π femaleX ; 34.0. =π femaleY ), 

but that the overall death rate is higher in X ( 44.0=Π X ; 42.0=ΠY ).  This is a version of 

‘Simpson’s Paradox’ (Simpson, 1951; Heydtmann, 2002).  Not only is the overall ratio of 

rates more extreme than either of the stratum specific rates but, in this case, the conclusion 

that Y has a higher overall death rate is not supported by either of the stratum specific rates.  

This is clearly an undesirable characteristic and shows that the SMR does not fulfil 

Property 1.  

Property 2 states that any inequality between two SMRs is solely due to differences in the 

stratum specific death rates.  However, we have: 

if   SMRa ≠ SMRb 

then   
∑

∑

∑

∑

=

=

=

=

π

π
≠

π

π

l

i
biRi

l

i
bibi
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i
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i
aiai
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p

p

p

1

1

1

1  

From this it can only be concluded that either biai π≠π  or biai pp ≠ , or that both are true for 

at least one i.  The weights used in the denominator of the SMR are specific to the unit being 

investigated and, therefore, the ratio estimated for each provider is weighted (biased) in 

relation to the characteristics of their populations (Bhopal, 2002:194-198).  Since the 

observations in each unit are likely to have different empirical distributions for the variables 

used in standardization (risk-adjustment), the rates estimated for each unit will, strictly, not be 

comparable with each other.  The only comparison that truly can be made is the comparison 

between the population under study and the reference population. 

The final property, Property 3, requires that a clinical interpretation can be put to the 

comparison of two SMRs.  This is clearly not possible for the reasons outlined above; that is, 
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the difference may be due to either differences in stratum-specific mortality rates or because 

of different population structures. 

Although none of the three properties advocated are met when comparing SMRs between two 

populations of interest, there is no problem when comparing a population of interest to the 

reference population.  While the use of the SMR has a long history (Neison, 1844; Keiding, 

1985), the size of the errors produced when comparing SMRs to each other is unclear 

(Howell, 2002).  The size of the errors is a function of the differences in both the population 

structure and the stratum specific rates, and this will be investigated in the next Section.  

However, what is clear, is that caution is required when comparing units according to the 

magnitude of their SMRs (Howell, 1995). 

Standardized mortality ratios are sometimes presented in a number of different ways.  In some 

cases the SMR is multiplied by 100 and expressed as a percentage (Armitage and Berry, 

1994:439).  An alternative method of presentation that has been published is to use a 

percentage difference from the expected (Zullini et al, 1997): 

 ( ) 100×
−

=
Expected

ExpectedObserveddifference Percentage  

A further adaptation, used by the New York Department of Health, is to multiply the 

mortality ratio by a measure of the overall mortality rate in order to provide a risk-adjusted 

rate for each provider (New York State Department of Health, 1998a).  However, since all of 

these are simply a rescaling of the SMR, and do not add any further information, they will not 

be considered further in this thesis. 

5.5.3 Comparison of the SMR and CMF 

Indirect standardization has been proposed for the data in this thesis, since the use of direct 

standardization is not viable once additional risk-adjustment variables are added to the model.  

As discussed above, it is argued that only comparisons between each neonatal unit and the 

reference population can be made using the SMR.  It has been suggested that this is the only 

comparison of interest, as people are not interested in direct comparisons between hospitals: 

“Most patients are probably not interested in where exactly their hospital is in the 

league table, but they are interested, and rightly so, in knowing that their hospital 

constantly monitors its performance and acts immediately if there is evidence that it is 



OUTCOME SUMMARY MEASURES 

BRADLEY MANKTELOW PHD THESIS 135 

not doing well.” (Society of Cardiothoracic Surgeons of Great Britain and Ireland, 

2004) 

While these are good sentiments, they may underestimate people’s curiosity.  Despite the 

known limitations of the SMR, it is enormously tempting to compare SMRs between units 

when several are published together.  This thesis will present the SMRs for all 16 units in a 

single table.  It is felt to be important that the figures shown are not grossly misleading, even 

if used in an inappropriate manner.  For this reason the similarity or otherwise between the 

two statistics will be discussed in this section.  Notwithstanding the use of different reference 

populations in this thesis for each unit (i.e. the other 15 units), the problem with the SMR is 

that the weights used to calculate it are different for each unit (5.19).  To some, such 

characteristics immediately mean that such ratios are unsuitable: 

“Any so-called method of standardization which does not fulfil this condition [the 

ratios being comparable with each other] hardly deserves the name at all: it is only a 

‘single-pair’ method, and if it is applied to a number of groups it may only be thanks 

to the mercy of Providence that it is not grossly misleading.”  (Yule, 1934) 

M statistic 

However, the size of the bias introduced is unknown.  A statistic, M, has been proposed to try 

to quantify the difference in case-mix between two populations that may be useful in 

comparing two populations: for example a & b (Hollis et al, 1995).  If both populations are 

divided into K intervals according to the value of the predicted probability of death πi, the M 

statistic is given by: 

( )∑
=

=
K

k
kfM

1
,kFminimum       (5.20) 

where:  Fk proportion of observations in population a in interval k 

fk proportion of observations in population b in interval k 

The intervals suggested are shown in Table 5.12.  Using such intervals, it has been proposed 

that a value of less than 0.88 indicates that the two populations are ‘significantly’ different, 

although no justification was given for such a choice (Boyd et al, 1987).  However, such a 

statistic is only able to quantify the difference rather than to indicate whether the difference 

will affect the results (Hollis et al, 1995). 
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Table 5.12 Intervals for M statistic 

Interval (1-πi) range 

1 0.96 – 1.00 

2 0.91 – 0.95 

3 0.76 – 0.90 

4 0.51 – 0.75 

5 0.26 – 0.50 

6 0.00 – 0.25 

Weighted standardized mortality ratios 

Various methods of weighting the SMR have been proposed in order to try to overcome the 

problem of non-comparability.  One approach is derived from the WS statistic (Hollis et al, 

1995), also sometimes called the standardized Z score (Tibby et al, 2002).  Although Hollis et 

al illustrated their method using the difference between the observed and expected mortality, 

it can equally be applied to the ratio, in effect producing a “standardized SMR” (Glance et al, 

2000).  In order to obtain this variation of the SMR, the observations from the reference 

population are categorised into K intervals according the values of the predicted probability of 

death.  The proportion of reference observations in each interval j is Fj, hence 1
1

=∑
=

K

j
jF .  

Interval specific SMRs are then calculated (SMRj) and weighted using F1, F2, …, FK: 

Standardized SMR = ( )∑∑
∑

∑
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=

= =
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However, a decision is required on how many intervals and what cut-off values should be 

used.  In their paper Hollis et al (1995) used the six intervals shown in Table 5.12.  However, 

the choice of intervals may influence the estimated overall SMR.  A further problem is that, 

for the smaller units, many of these intervals will have no observed deaths and, therefore, an 

estimated interval specific SMR of zero.  Even in the intervals for which there are observed 

deaths, the SMRs are likely to be poorly estimated because of the small numbers. 

This is illustrated with the TNS data, using the same model used to obtain the SMRs as in 

§5.5.2.  The cut-off values 0.00≤ iπ̂ ≤ 0.15, 0.15< iπ̂ ≤ 0.40, 0.40< iπ̂ ≤ 0.60, 0.60< iπ̂ ≤ 1.00 

were chosen to try to obtain roughly equal numbers of deaths in each interval.  The estimates 
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were compared to the SMR (Table 5.13).  For many units there are substantial differences in 

both the point estimates and the limits of the confidence intervals. 

Table 5.13 SMR and standardized SMR by unit with 95% confidence intervals 

Unit SMR (95% CI) Standardized 
SMR 

(95% CI) 

1 1.18 (0.84 to 1.51) 0.95 (0.28 to 1.73) 

2 1.07 (0.73 to 1.44) 1.92 (1.14 to 2.72) 

3 1.80 (0.00 to 4.87) 1.74 (0.00 to 5.73) 

4 1.12 (0.42 to 1.83) 0.83 (0.05 to 1.83) 

5 1.32 (1.00 to 1.65) 1.19 (0.70 to 1.75) 

6 1.54 (1.22 to 1.88) 2.20 (1.34 to 3.01) 

7 1.47 (1.02 to 1.91) 1.80 (0.99 to 2.73) 

8 0.82 (0.37 to 1.32) 0.76 (0.07 to 1.77) 

9 1.09 (0.00 to 2.73) 0.26 (0.00 to 0.41) 

10 0.56 (0.11 to 1.06) 0.64 (0.03 to 1.38) 

11 1.32 (1.06 to 1.59) 1.54 (1.03 to 2.07) 
12 0.44 (0.08 to 0.85) 0.60 (0.16 to 1.34) 

13 0.50 (0.00 to 1.05) 0.33 (0.00 to 1.04) 

14 0.38 (0.00 to 1.04) 0.39 (0.00 to 1.28) 

15 1.01 (0.54 to 1.52) 0.92 (0.16 to 1.82) 

16 1.23 (0.40 to 2.24) 1.16 (0.09 to 5.54) 

 

The 95% confidence intervals were estimated using the percentile bootstrap method 

(introduced in §3.3.1).  Methods to estimate confidence intervals for the SMR are explored 

further in §5.6. 

The values for the SMR are also shown in Figure 5.8 where the size of the symbol for each 

unit is proportional to its number of admissions. 
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Figure 5.8 SMR and standardized SMR by unit size 

 

It is not only the small units where the ‘standardized SMR’ differs substantially from the 

SMR: Units 2 and 6, for example, show large differences.  The reason for this can be seen by 

looking at Unit 6: 

Table 5.14 Components of standardized SMR for Unit 6 

Interval (j) ∑π iˆ  ∑ id  SMRj Fj SMRj*Fj 

0.00≤ iπ̂  ≤ 0.15 7.90 19 2.40 82.4 1.98 

0.15< iπ̂ ≤ 0.40 14.97 20 1.34 10.7 0.14 

0.40< iπ̂ ≤ 0.60 5.42 5 0.92 4.1 0.04 

0.60< iπ̂ ≤ 1.00 6.80 10 1.47 2.8 0.04 

To ensure at least one observed death in each interval, the weights (Fj) given to the intervals 

vary greatly, and the first interval greatly influences the final estimated ‘standardized SMR’.  

This results in the outcomes of infants with good prognoses having a large effect on the 

overall statistic, as noted previously (Younge et al, 1997).  Whilst this is correct in the sense 

that this interval comprises most of the population, the interval only comprises 35% of the 

deaths observed in Unit 6.  It may be possible to find an optimum set of cut-off values for the 

larger units, but this is likely to be impossible for the smaller ones.  A further difficulty with 

the standardized SMR is that such a statistic has no simple interpretation.  As has been 

discussed previously, it is helpful if a summary statistic has a simple interpretation.  This 

approach may have a role in exploring differences in performance for different types of 
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infants but such sub-group analyses are likely to be more useful if the groups are derived 

using clinical criteria rather than the estimated predictive probabilities. 

Other methods of weighting the SMR have been proposed.  The Harmonically Weighted 

Ratio (HWR) for population j when comparing J populations to a standard population over I 

strata is given by (Lee, 2002): 
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where:  Oij is the observed number of events in strata i for population j 

Eij is the predicted number of events in strata i for population j 

An alternative, also proposed by Lee, is the Geometrically Averaged Ratio (GAR) (Lee, 

1999).  For Unit j, using K risk strata, the Geometrically Averaged Ratio (GARj) is given by: 
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However, all of these methods, while perhaps useful in some circumstances, attempt to solve 

a problem that may not be a significant problem in practice. 

Differences between CMF and SMR 

It has been noted that the values of the CMF and SMR are often similar (Breslow and Day, 

1987:73).  A function closely approximating the relationship between the CMF and SMR (for 

population a) has been proposed (Silcock, 1959): 

  ( )φ+≈ 1aa SMRCMF        (5.24) 

where:  ( ) 
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The condition where the CMF and SMR are approximately equal, i.e. when φ  is small, can be 

found from (5.25).   These conditions are: 
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• The differences in population structure are small, i.e. the values of ( )aiRi pp −  are 

small; 

• The stratum specific mortality rates are of similar magnitude across all strata; 

Riai kπ≈π  and Riai kπ≈π , hence 
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• Even if these two conditions do not hold, φ  will still be small as long as they are not 
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Therefore, for the SMR to differ greatly from the CMF all three of the conditions must not 

hold: i.e. there must be differences in population structure, differences in the relative sizes of 

the stratum specific mortality rates and these differences must be strongly correlated.  If all of 

these conditions do hold then the SMR is a good approximation to the CMF.  This is a useful 

characteristic since it is legitimate to use the CMF to compare providers.  Hence, although it 

is technically wrong to use the SMR, perhaps it can, with caution, be used in practice.  Such 

an argument has been used in previous clinical papers, for example Takemura et al (1998). 

Although it has been suggested that comparative mortality figures are likely to be poorly 

estimated from the TNS data it was still possible to obtain them from Table 5.6.  These were 

then compared to the estimated standardized mortality ratios (Table 5.7).  These values are 

shown in Table 5.15 and are plotted in Figure 5.9 

For most units there was close agreement between the estimates for the CMF and the SMR.  

There were only two units where the rank changed by more than one place: Unit 9 changed 

six places and Unit 16 changed four places.  These two, together with Unit 3, showed the 

most difference between the two values.  However, these are all small units and it seems 

reasonable to assume that the CMFs were poorly estimated; for example in Unit 9 there was a 

single death from 35 admissions.  This comparison suggests that in this example, the 

differences between the CMF and the SMR were due to poor estimation of the CMF in very 

small units.  However, gestational age was the only risk-adjustment variable considered.  The 

addition of other variables into the model may introduce further differences in population 

structure between the units and, therefore, bias into the estimates for the SMRs.  While this 

cannot be discounted in these data, the examples discussed earlier offer no evidence that this 

is likely to be a major problem. 
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Table 5.15 Comparative mortality figure and standardized mortality ratio 

Unit Comparative 
mortality figure 

Standardized 
mortality ratio 

1 0.99 1.18 

2 0.96 1.07 

3 2.90 1.80 

4 1.06 1.12 

5 1.10 1.32 

6 1.40 1.54 

7 1.26 1.47 

8 0.70 0.82 

9 1.34 1.09 

10 0.53 0.56 

11 1.16 1.32 

12 0.35 0.44 

13 0.49 0.50 

14 0.34 0.38 
15 0.87 1.01 

16 0.94 1.23 

The choice between CMF and SMR is a trade off between precision and bias (Breslow and 

Day, 1987:72).  While there are those who believe that the gain in precision achieved from 

using the SMR as opposed to the CMF outweighs the inherent bias (Court and Cheng, 1995), 

there are those who take the opposite view (Julious et al, 2001; Rixom, 2002). 

Figure 5.9 Comparative mortality figure and standardized mortality ratio 
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Use of the SMR 

Even if the decision is taken that, in practice, the differences in the population structure of the 

units are unlikely to bias the results ‘significantly’, any comparison must come with a caution 

about the assumptions made.  It is of concern that this caution is often missing, and almost 

always ignored.  For example, the Dr Foster organization annually publishes indirectly 

standardized mortality ratios for UK hospitals trusts that appear in The Sunday Times 

newspaper (The Sunday Times, 2004a).  Using these figures, high and low performing trusts 

were identified by the newspaper, for example: 

“The worst overall was Royal Bournemouth and Christchurch Trust where 29% more 

patients died between July 2002 and July 2003 than would be expected after adjusting 

for their medical background and other factors.” 

While it may be true that Royal Bournemouth and Christchurch Trust had the highest 

estimated SMR, it has been shown that this conclusion is dependent on the population 

structure of the Trust’s patients, together with the population structures of the other Trusts.  

The error is further reinforced by the recommendation that: 

“In this way, it is possible to produce a standardised figure that allows an assessment 

of the relative rates of mortality.” (The Sunday Times, 2004b) 

To be fair to The Sunday Times this is an assertion made by the Dr Foster organisation itself: 

“Standardisation of the ratio allows valid comparison between different hospitals 

serving different communities.” (Dr Foster, 2004) 

In their publication of mortality following coronary artery bypass surgery, the New York 

State Department of Health report the SMR for individual surgeons and hospitals (multiplied 

by the overall mortality rate).  This, they say, produces “... the best estimate…of what the 

provider’s mortality rate would have been if the provider had a mix of patients identical to the 

statewide mix.” (New York State Department of Health, 1998a).  However, as has been 

shown, this is likely not to be the case. 

It is also important to recognise that any predictive model used to risk-adjust is likely to 

perform better (more accurate calibration) for some patient groups than others (Glance et al, 

2000).  In particular, model coefficients for characteristics sparsely represented in the 

reference population may be particularly poorly estimated.  It has been suggested that the 

patient characteristics in the index population should be compared to the population in which 
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the model was derived using statistical tests, and the model not applied if there is statistical 

evidence of a difference (Jones et al, 1995).  However, while a difference may also lead to the 

problems outlined above, this too is not thought to represent a major problem in practical 

situations (Glance and Osler, 2001). 

Use of the SMR in this thesis 

The SMR was preferred over the CMF in this thesis. The comparison of each unit to the rest 

of the Region was of primary importance, rather than directly comparing the individual units.  

In any case, it has been shown in this Section that if such comparisons are made the bias 

introduced by the different population structures in the units is unlikely to result in any 

comparison of SMRs being grossly misleading. 

One final problem is that there is no single, universally accepted, method for the estimation of 

confidence intervals for the standardized mortality ratio.  Various suggested methods will be 

discussed and illustrated in the next Section. 

 

5.6 Confidence interval for Standardized Mortality Ratio 

There is no standard method for estimating a confidence interval for a standardized mortality 

ratio.  Several methods have been suggested and these will be reviewed in this Section, along 

with the development of a Bayesian alternative. 

The most commonly used estimation method is an approximation to the Normal distribution, 

but this approach assumes that the expected number of deaths is known exactly, and that all 

uncertainty arises from the observed deaths.  This is unlikely to be strictly true.  The expected 

number of deaths is usually derived from the parameter estimates of a logistic regression 

model.  Since the data used within this model (in this case the rest of the Region) can be seen 

as a sample from a larger population of possible admissions, there is sampling variation 

associated with these parameter estimates and, therefore, with the expected number of deaths.  

While this uncertainty is likely to be small relative to that associated with the observed 

number of deaths, because of the relative sizes of the two data sets, its omission nevertheless 

may lead to inappropriately narrow confidence intervals.  Two extensions to the Normal 

approximation method have been suggested to take the whole uncertainty into account and 

these will be discussed below.  However these three methods are all based on the Normal 

approximation and, as discussed in §5.4.2, these may be poor estimates, particularly with 
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small samples.  Three further methods will also be investigated that are not based on this 

approximation.  Two are resampling (bootstrap) methods, while the third is a Bayesian 

approach using Gibbs sampling. 

5.6.1 Normal approximation assuming uncertainty from observed 

deaths only 

The simplest approach is to only include the uncertainty from the observed deaths, that is, to 

assume that each predicted probability of death for observations in the unit of interest ( iπ̂ ) is 

estimated without error.  Under this assumption a 100(1-α)% confidence interval for ∑π iˆ  

can be easily constructed.  If, initially, the case is considered when the probability of death is 

constant for all infants in any particular unit (i.e. no case-mix adjustment), and that this 

probability follows a binomial distribution ( )
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, then the lower ( Lπ ) and upper 

( Uπ ) limits for a 100(1-α)% confidence interval are given by solution to the formulae 

(Armitage and Berry, 1994:120-121): 
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where:  Lπ  is the lower limit of the confidence interval 

  Uπ  is the upper limit of the confidence interval 

and the continuity correction ½ is included. 

These can be rewritten as: 
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where: 
n

d
d

n

i
i∑

== 1  

Lπ  and Uπ  can be obtained by rearranging the two equations above (still including the 

continuity correction) and finding the two solutions to π* in the quadratic equation: 
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The two solutions are (details of the solution for the lower limit are given in Appendix C.3): 
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It is suggested that the continuity correction in the numerator (½) can be omitted if Lnπ  or 

( )Un π−1  are greater than 5 (Armitage and Berry, 1994:122).  Without the continuity 

correction the solutions to (5.30) are: 

 
( ) ( )

( )2
2/

2
2/2/

2
2/

2
142

α

ααα

+

−+−+
=π

zn
ddnzzzdn

L      (5.33) 
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Since these formulae are not particularly straightforward to use, [ ]LL π−π 1  and [ ]UU π−π 1  in 

(5.26) & (5.27) are usually replaced with [ ]π−π ˆ1ˆ , where π̂  is the mortality rate from the 
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reference population.  It is argued that this is an acceptable approximation because ( )π−π 1  

changes slowly with changes in π.  However, this is only true away from the limits of π , i.e. 0 

and 1, as can be seen in Figure 5.10.  Recommendations have been made to use this 

substitution only when 0.3 ≤ π ≤ 0.7 and values of both π̂n  and ( )π− ˆ1n  equal at least 5 

(Fleiss et al, 2003:29), or when both π̂n  and ( )π− ˆ1n  are equal to 10 or greater (Armitage and 

Berry, 1994:121).  However, often such cautions are missing when they are reported in 

practice. 

Figure 5.10 Plot of π(1-π) against π 

 

 

With this substitution, (5.33) & (5.34) simplify to become the often-used approximations: 

 ( )
nn

zdL 2
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2/ −
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−=π α        (5.35) 

and ( )
nn

zdU 2
1ˆ1ˆ

2/ +
π−π

+=π α        (5.36) 

although these are most often seen without the continuity correction n2
1 : for example 

Rapoport et al (1994). 

The approximations derived above apply when each observation has the same probability of 

the event (in this case death) occurring.  Once adjustments are made for case-mix differences 

amongst the observations this is no longer the case.  The approach often taken is to replace π̂  

with n
i∑π̂  in (5.35) & (5.36) (Hosmer and Lemeshow, 1995), thus: 
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With continuity correction 

Following on, the limits of an estimated 100(1-α)% confidence interval for the standardized 

mortality ratio can then be seen to be given by: 
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Without continuity correction 

However, these are most often seen without the continuity correction: 
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‘Full’ method 

However, (5.41) & (5.42) are derived using the assumption that it is appropriate to replaced 

[ ]LL π−π 1  and [ ]UU π−π 1  with [ ]π−π ˆ1ˆ .  If this is not the case then, in the situation where iπ̂  

is not fixed, the two limits are given by: 
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where πL and πU are given by (5.31) & (5.32). 

Comparison of methods based on the Normal approximation 

In this Section three approaches to the estimation of the limits for confidence intervals of the 

SMR have been proposed: (5.39) & (5.40) (referred to as ‘With CC’), (5.41) & (5.42) 

(‘Without CC’) and (5.43) & (5.44) (‘Full’).  The estimated limits when these methods are 

applied to the TNS data are shown in Table 5.16 and Figure 5.11. 

Table 5.16 95% confidence intervals for SMR using Normal approximation methods for 

TNS data 

Unit SMR 95% Confidence Interval 
  With CC Without CC ‘Full’ 

1 1.18 0.78 to 1.59 0.81 to 1.56 0.76 to 1.79 

2 1.07 0.76 to 1.38 0.78 to 1.37 0.75 to 1.51 

3 1.80 -0.12 to 3.71 0.33 to 3.26 0.31 to 6.56 

4 1.12 0.26 to 1.99 0.35 to 1.90 0.46 to 2.49 

5 1.32 1.01 to 1.63 1.02 to 1.61 0.97 to 1.76 

6 1.54 1.26 to 1.82 1.27 to 1.81 1.19 to 1.97 

7 1.47 1.08 to 1.86 1.11 to 1.83 1.02 to 2.08 

8 0.82 0.26 to 1.38 0.31 to 1.33 0.39 to 1.62 

9 1.09 -1.38 to 3.57 -0.83 to 3.02 0.06 to 6.40 

10 0.56 -0.07 to 1.19 -0.01 to 1.13 0.21 to 1.35 

11 1.32 1.08 to 1.56 1.09 to 1.55 1.04 to 1.67 

12 0.44 -0.12 to 0.99 -0.07 to 0.95 0.16 to 1.06 

13 0.50 -0.29 to 1.29 -0.20 to 1.20 0.13 to 1.55 

14 0.38 -0.47 to 1.23 -0.37 to 1.14 0.07 to 1.47 

15 1.01 0.44 to 1.59 0.49 to 1.54 0.52 to 1.85 

16 1.23 0.33 to 2.12 0.43 to 2.02 0.50 to 2.69 

 



OUTCOME SUMMARY MEASURES 

BRADLEY MANKTELOW PHD THESIS 149 

Figure 5.11 95% confidence intervals for SMR using Normal approximation methods for 

TNS data 

 

 
 

With continuity correction 
Without continuity correction 
‘Full’ 

The two methods using the substitutions [ ] [ ]π−π=π−π ˆ1ˆ1 LL  and [ ] [ ]π−π=π−π ˆ1ˆ1 UU  (blue 

and green) both produce intervals that are symmetrical about the point estimate for the SMR.  

This can lead to lower limits less that zero.  In addition, the intervals calculated without the 

continuity correction are narrower than those calculated with it.  The intervals calculated 

using the ‘full’ method are not symmetrical and tend to have higher lower and upper limits 

than those obtained using the other two methods.  The differences between the methods are 

particularly noticeable for the small units.  Although more complex to calculate, the intervals 

calculated using the ‘Full’ method have a more rigorous theoretical base, are not restricted to 

lie symmetrically about the point estimate and do not include (implausible) negative values.  

These would, therefore, seem to be the more appropriate choice.  However, the coverage 

properties of confidence intervals calculated using these methods will be further investigated 

later in this Chapter (§5.7). 
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None of these methods take into account any uncertainty in the expected number of deaths.  

Two possible extensions to the Normal approximation are illustrated next.  The first was 

proposed by Hosmer & Lemeshow (1995) and the second by Zhou & Romano (1997). 

5.6.2 Extensions to the Normal approximation method 

Although the methods outlined above are widely used, one problem is that it is assumed that 

uncertainty only arises from the number of observed deaths.  However, uncertainty can arise 

from two sources.  First, as has been included above, the observed number of deaths is an 

observation from a random process and, therefore, has uncertainty associated with it.  The 

second source of variability arises from the uncertainty in the estimates of the model 

parameters used to estimate the expected number of deaths.  Although the variability around 

the observed deaths is likely to be far greater that that from the expected, as the model 

providing these estimates will have a larger number of observations, ignoring either source of 

uncertainty will produce intervals that are too narrow (Signorini and Weir, 1999).  The 

uncertainty referred to in this context only refers to the sampling uncertainty and does not 

include any uncertainty from model mispecification. 

Hosmer & Lemeshow (1995) 

Taking the logarithm of the SMR gives: 

log(O/E) = log(O) – log(E) 

and using the delta method to approximate the variance of log(O/E), assuming independence 

between O and E gives: 

  ( )[ ] ( )
22 ˆ

ˆ)(ˆ
logˆ

e
EraV

o
OraVraV E

O +=       (5.45) 

The estimated variance of the expected total is given by: 

( ) ( ) ( ) ( )( ) 1VXXVXXV1' '1

RR
'
R jjjjjjjEVar ˆˆˆˆ −

−−−=    (5.46) 

where:  subscript j refers to the unit of interest; 

  subscript R(-j) refers to the units other than the unit of interest; 

V is the m x m diagonal matrix: diag ( ){ }ii π−π ˆ1ˆ ; 

X is the data matrix 

1 is the m x m diagonal matrix: diag{1}. 
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In practice this is simplified by recognising that: 

  ( ) ( ) ( )( ) ( )( )jjjj −−−− = RRR
'
R βSXVX ˆˆ      (5.47) 

that is, the asymptotic covariance matrix of the parameter estimates ( )j−Rβ̂ (i.e. the inverse of 

the information matrix).  This enables the variance of the expected value to be estimated 

either where the raw data are available, as in this case, or where the covariance matrix is 

available from the logistic regression model.  The latter possibility may be useful where the 

function to estimate the expected values has been developed by one group and the original 

data are not available to others. 

Hosmer and Lemeshow took the estimated variance of the observed number of deaths to be: 

  ( ) ( )
n

OraV ii∑ π−π
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ˆ1ˆ
ˆ       (5.48) 

or, in matrix notation: 

  ( ) 1V1' jOraV ˆˆ =        (5.49) 

These can then be used with (5.45) to estimate a confidence interval for the SMR: 
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The authors argued that this estimate is appropriate as the logarithm of the ratio is more likely 

to be approximately Normally distributed than the ratio itself (Hosmer and Lemeshow, 1997).  

Using the logarithm of the ratio also has the advantage that the lower end point will always be 

positive.   One characteristic noted with this estimate is that, with the examples shown in the 

original paper (Hosmer and Lemeshow, 1995), the lower limit of this interval was always 

greater than the lower limit of the interval using var(O) alone.  This was particularly 

noticeable for small datasets and is counterintuitive as including more uncertainty should 

reduce the value of the lower limit (and raise the value of the upper).  This was claimed to be 

a ‘fault’ with the method (Zhou and Romano, 1997).  However, this effect is an artefact of 

moving from the (inappropriate) linear scale to the (more appropriate) logarithmic scale. 

Zhou & Romano (1997) 

After pointing out the characteristic of Hosmer & Lemeshow’s method described above, Zhou 

& Romano (1997) proposed an extension to the method to return the interval to the linear 
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scale.  The derivation of their method is the same as that given by Hosmer and Lemeshow, up 

to the point of using the delta method to obtain an estimate of var(E).  The delta method is 

then applied again to obtain an estimate for the variance of the exponential of the logarithm of 

the ratio, i.e. the ratio itself: 
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This estimate can then be used to create a confidence interval for the ratio: 
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The most obvious problem with this interval is that the lower limit can be negative.  However, 

the authors believe that their method is superior as it overcomes the ‘problem’ with the lower 

confidence limit found with the Hosmer & Lemeshow method. 

5.6.3 Bootstrap 

All of the methods described so far are based on the Normal approximation.  However, the 

assumptions made may not hold, especially for small samples.  An alternative approach is to 

use bootstrap methods.  In this thesis two approaches using bootstrap methods to estimate 

confidence intervals for the SMR were investigated. 

Accounting for uncertainty of observed deaths only 

The first approach involved fitting the appropriate logistic regression model and then repeated 

sampling with replacement from the observations of the unit of interest.  The size of each 

sample was equal to the number of observations in that unit.  For each sample the SMR was 

calculated using the observed and expected number of deaths in that sample.  The distribution 

of the estimated SMR can then be used to obtain confidence limits.  This can be done in 

several ways.  A naïve approach (that used in §3.3.1) is to use the percentile method and to 

simply report the observed 2.5th and 97.5th percentiles as the limits of the 95% confidence 

interval.  However, this method is known not to work well in small samples, especially when 

the distribution is asymmetrical (Chernick, 1999:53; Davison and Hinkley, 1997:203; Good, 

1999:91), and this is likely to be the case for the SMR.  Alternative bootstrap methods have 
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been proposed that may be more appropriate, but this thesis does not aim to discuss them all.  

Rather, one method that has previously been suggested for the SMR will be illustrated 

(Hosmer and Lemeshow, 1995).  

Confidence limits can be found for a statistic such as the SMR using the bias-corrected and 

accelerated bootstrap method (BCa).  It is assumed that there is a monotone transformation 

h such that ( )θ=φ h , where θ  is the parameter of interest (here the SMR) and φ  

approximately follows a Normally distribution with mean φτ−φ 0z .  In this expression 0z  is 

the bias correction and takes the value of the difference between the point estimate of the 

parameter of interest (i.e. θ̂ ) and the value of the 50th percentile from the bootstrap samples 

( *
50θ̂ ): therefore *

500
ˆˆ θ−θ=z .  The term φτ  represents the standard deviation of φ̂  and 

depends on θ  given that φ+=τφ a1 , where a is the acceleration constant often defined as 

one-sixth of the skewness and is usually estimated from the data (Efron and Tibshirani, 

1993:186; Chernick, 1999:53; Davison and Hinkley, 1997:203). 

Accounting for uncertainty of observed and expected deaths 

While useful, the method above does not take into account the full uncertainty of the model 

since only the observations from the unit of interest are sampled.  An alternative approach is 

to sample from the whole population, with the sample size for each unit equal to its number of 

observations, and then to fit a model to each sample.  An estimated SMR can be calculated for 

each bootstrap sample and confidence intervals calculated as described above.  This approach 

would ensure that the uncertainty in the model parameter estimates was included.  However, 

since a logistic regression model is fitted for each bootstrap sample, this is more 

computationally intensive than the first bootstrap method outlined above.  In this thesis, such 

an approach was either impracticable (§5.7.1) or other problems were found with the whole 

approach (§5.8.5).  Therefore, simple percentile confidence limits were used with this second 

bootstrap method. 

5.6.4 Bayesian Method 

An alternative approach is to use Bayesian methods.  One suitable model is, for Unit j: 



OUTCOME SUMMARY MEASURES 

BRADLEY MANKTELOW PHD THESIS 154 

  

∑

∑

=

=

π
=

j

j

n

k
i

n

i
i

j

d
RMS

1

1

ˆ

ˆ
ˆ        (5.54) 

where:  ( )ijXβ̂1
1ˆ
−+

=
e

di  

  ( )iR Xβ̂1
1ˆ
−+

=π
ei  

where:  jβ̂  are the parameter estimates obtained from the observations from Unit j 

Rβ̂  are the parameter estimates obtained from the observations the reference 

population 

This approach involves parameter estimates from two logistic regression models.  The 

denominator is derived as before, from logistic regression parameter estimates obtained using 

the reference data.  From these, indirectly standardized probabilities of death are estimated for 

each observation from the unit of interest and these are then summed to obtain the total 

expected number of deaths.  However, with this method the value of the numerator is 

obtained using a separate logistic regression model (but with the same risk-adjustment 

variables) in which the parameters are estimated using the observations from the unit of 

interest.  The parameter estimates from this second model are then used to estimate a second 

predicted probability for each observation (i.e. id̂ ).  These probabilities are then summed to 

obtain an estimate of the ‘observed’ number of deaths.  The ratio of these two summations is 

then taken as an estimate of the SMR.  This process is repeated at each iteration to obtain a 

posterior distribution for the SMR from which credible intervals can be estimated (§3.2.2).  

An obvious difficulty with this approach is that the parameter estimates derived using the 

observations from the unit of interest (i.e. jβ̂ ) are likely to be poorly estimated.  For small 

units the prior distributions chosen are likely to dominate.  Some previous work has ignored 

this source of uncertainty and has only included the uncertainty in the denominator (Austin et 

al, 2001; Austin, 2002).  However, such an approach is likely to seriously underestimate the 

true uncertainty and produce confidence intervals that are too narrow. 
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5.7 Simulation study 

It is unclear which method for estimating confidence intervals for SMRs is the most 

appropriate.  Of particular interested in this thesis is their application to small units. 

5.7.1 Methods of simulation study 

The performance of the estimation methods described previously in this Section (§5.6.1 to 

§5.6.4) was investigated using a simulation study.  For each simulation, two datasets were 

created: a small dataset to represent the health care provider of interest and a large set to 

represent the reference data.  Using the same empirical distribution for each dataset, morbidity 

scores were input and observations were sampled using a logistic model with a known linear 

predictor. These observations then formed the basis for estimation of the outcome ratio and 

confidence intervals.  Twenty-seven different scenarios were simulated with 1,000 repetitions 

in each case, varying: (i) the size of the dataset of interest; (ii) the size of the reference 

dataset; (iii) the underlying probability of death within the dataset of interest.  For each 

scenario the Type I error rates and coverage were calculated and compared.  The choice of 

1,000 repetitions was a pragmatic decision that hoped to balance precision with practicality. 

The size of the target dataset was set at 50, 100 and 200 observations and the reference data 

set having 500, 1000 and 2000 observations to try to represent realistic sample sizes in 

neonatal intensive care. 

For each observation the probability of an event was calculated using the logistic 

transformation and a known linear predictor, i.e.: 

( )scorei Se .01
1

β+β−+
=π  

where 0β  and Sβ  are specified and score represents a morbidity severity score which had the 

same given empirical distribution in each data set:  

Score 1 2 3 4 5 6 7 8 9 10 

Proportion 0.14 0.18 0.20 0.16 0.10 0.08 0.06 0.04 0.02 0.02 

In all cases Sβ  = 0.2 but 0β  was varied.  Three values for 0β  were chosen: 

• 0β  = -2.5 was used for the reference data in all scenarios.  It was also used for the 

target data to simulate no underlying differences between the populations; 
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• 0β  = -2.1 was used for the target data to approximate an Odds Ratio for mortality 

between the two populations of 2
3  (mortality ratio of approximately 1.37); 

• 0β  = -2.9 was used for the target data to approximate an Odds Ratio for mortality 

between the two populations of 3
2  (mortality ratio of approximately 0.71). 

The probability of death for each given value of 0β  at each value of ‘score’ is shown in 

Figure 5.12. 

Figure 5.12 Probability of death by score 

 

The distribution of ‘Score’ was selected to mimic the observed skewed distribution of scores 

such as CRIB in neonatal populations.  In addition, a relatively high probability of death was 

simulated to try to avoid samples where there were no observed deaths.  The methods 

proposed by Hosmer & Lemeshow and Zhou & Romano require division by the number of 

observed deaths, therefore the limits are undefined when the observed number is zero.  The 

methods based on the bootstrap are also unsuitable for units with no observed events.  An 

alternative approach, for the methods based on the Normal approximation, would have been 

to add a small constant to all zero observations, but it was felt that this would make 

interpretation more difficult as the effect of adding a constant is unknown.  A further solution 

would have been to discard all simulations with zero observed deaths, but this would produce 

a biased set of intervals.  This is discussed further in §0. 

For each observation an event (Yi) was simulated where: 

Yi ~ Bernoulli(πi) 
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The simulated values Yi, for the reference part of the simulated data set, were then used in a 

new logistic regression model to estimate *
0β  and *

Sβ , where logit(Yi) = *
0β  + *

Sβ .score.  In the 

Bayesian approach a similar model was estimated for the simulated data of the unit of interest.  

Confidence (credible) intervals were then estimated using the methods previously described 

and the proportion of intervals not containing the true ratio reported.  In total eight methods 

were investigated, including the three methods derived from the Normal approximation 

discussed in §5.6.1. 

For both bootstrap methods 1,000 replications were used, a figure thought to be generally 

“safe” for estimation (Davison and Hinkley, 1997:156).  While the bias-corrected and 

accelerated bootstrap method (BCa) was used for the simpler approach of bootstrapping the 

predicted probabilities from a single model, such an approach was not possible for fitting a 

logistic regression model to each replication.  Computer memory limitations meant that this 

approach was not possible without the use of loops in the programme, leading to 1,000 

bootstrap loops within 1,000 datasets (i.e. estimating 1 million logistic regression models) and 

then using jackknife methods to estimate the value of the acceleration constant a.  All of this 

meant that each scenario would take an extremely long time to run.  Because of this problem, 

percentile bootstrap intervals were estimated but, even so, due to the loops, each scenario took 

up to two days to run. 

For the Bayesian approach a 1,000 iteration ‘burn-in’ was used and then 10,000 iterations for 

estimation.  The prior distribution chosen for all of the parameter estimates was 

Normal(0,10002) 

The SAS macros and WinBUGS code used to simulate the data and to calculate the intervals 

are given in Appendix F.1. 

5.7.2 Results 

The mean event rate and range for the 1,000 data sets in each scenario are given in Appendix 

F.2.  The mean event rates were consistent across all of the data sets, although for two 

scenarios there were some data sets with no events.  For these two scenarios only the non-zero 

event data sets were included in any further analyses.  This was unlikely to affect the results 

described below. 

Histograms and Normal and log-Normal distributions plots for the simulated SMRs are also 

shown in Appendix F.2.  Inspection of these plots offers some evidence that the distribution 
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of these ratios more closely approximates a log-Normal distribution than the Normal 

distribution.  This is not unexpected, as previously discussed. 

Each estimated 95% confidence interval was inspected to see whether it contained the value 

of the true SMR and the observed coverage of the estimated intervals of the 27 scenarios are 

shown in Figure 5.13.  Further details are given in Appendix F.3. 

Figure 5.13 Observed coverage of estimated 95% confidence intervals for SMR 
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In general, the coverage rates are closer to the true rate of 95% when the true SMR for the 

simulated data is equal to one.  For most of the methods the coverage rate was too small when 

the SMR was greater than one, and too large when less than one.  The bootstrap and Bayesian 

methods were the exceptions to this with coverage rates generally (slightly) less than 95% 

when the true ratio was 0.71. 

The upper limits of the estimated intervals, when the true ratio was unity and the sample sizes 

were 100 and 1,000, are shown in Figure 5.14 and the lower limits in Figure 5.15.  For 

simplicity, only the most commonly used Normal approximation method is illustrated 

(‘without CC’).  Similar plots for the other scenarios are in Appendix F.3.   
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Figure 5.14 Upper limits of 95% confidence (credible) intervals 
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Figure 5.15  Lower limits of 95% confidence (credible) intervals 
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These plots show the negative lower limits from the normal approximation method and the 

method proposed by Zhou & Romano.  There was little difference between the values 

estimated by these two methods, with the intervals estimated by the latter method being 

slightly wider, reflecting the addition of the uncertainty in the expected number of events.  In 

addition, there was little difference between estimates from the bootstrap and Bayesian 

approaches.  The method proposed by Hosmer & Lemeshow tended to estimate very high 

values for the upper limits and rarely produce intervals where the value of the upper limit was 

less than the true value for the SMR.  The influence of the choice of prior distributions in the 

Bayesian analysis is unknown but, for the small units at least, is likely to be influential (this is 

investigated further in §5.8).  Therefore, the final bootstrap method, although computationally 

intensive, appeared to offer the most appropriate approach at this stage. 

Although informative, the simulation study described here may be an oversimplification of 

the situation found in a ‘real’ study.  The models in the simulation study are correctly 

specified, with all covariates included in the correct form.  This is unlikely to be the case with 

the TNS data analysed in this thesis.  It is of interest, therefore, to compare the estimated 

confidence intervals when these methods are applied to the TNS data.  This is described next. 

 

5.8 Application of confidence interval estimation 

methods to TNS data 

The previous Section showed differences in the coverage properties of the confidence 

intervals estimated using different methods.  Six of the methods outlined above are illustrated 

using the data from TNS.  As previously, gestational age at birth was included in the model 

and the ‘deviation from the mean’ parameterisation used: i.e. a separate model was fitted for 

each unit to estimate the mean log odds of death in the other 15 units (see §5.4 for more 

details): 

  logit ( ) ∑
=

β+β+β==π
16

2
0 .

k
kkiGii Igestg     (5.55) 

5.8.1 Normal approximation 

Methods based on the Normal approximation have been illustrated using TNS data in §5.6.1.  

In this Section the results using the most commonly used approach, Normal approximation 
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without the continuity correction (5.41) & (5.42), was repeated for comparison with the 

alternative methods. 

5.8.2 Hosmer & Lemeshow and Zhou & Romano 

These two extensions to the Normal approximation method were both applied generally as 

described in §5.6.2.  However, with the TNS data the model used for the reference data 

contained indicator variables representing the NICUs (5.14).  Obviously, these indicators 

variables did not exist in the design matrix for the unit of interest (Xj in 5.46).  Therefore, 

only the components in the covariance matrix ( )j−Rβ̂  that related to the intercept and 

gestational age were used to estimate the variance (5.46).  The likely effect of this was to 

reduce the estimate of ( )EraV ˆ  but the size of this reduction is not known, and was not 

investigated in this thesis. 

5.8.3 Bootstrap 

The two bootstrap methods were applied in an identical way to the simulation study (§5.6.3): 

a BCa bootstrap interval was estimated for the first method and a percentile interval of the 

second.  One thousand bootstrap samples were simulated for each method. 

5.8.4 Bayesian analysis 

This thesis aims to illustrate the different methods of estimating the confidence intervals 

rather than to be an examination of the effects of various prior distributions.  However, it is 

recognised that the choice of prior distribution can influence the estimates of the confidence 

intervals, particularly for the small units.   

Using the Bayesian approach shown in (5.56), prior probability distributions were required to 

be specified for the intercepts β0 and βR0, the regression parameters for gestational age βG and 

βRG and for the indicator parameters for the reference units βK: 

  

∑

∑
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The parameter estimates ROβ̂  and ROβ̂  are obtained using the data from the other 15 units: 

  k

jk
k

kiRGRi Igestg .ˆ.ˆˆˆ
16

1
0 ∑

≠
=

++= βββ  

Where the indicator variables Ik follow the deviation parameterization described in §5.3.1. 

Previously, in §3.4.2, a prior distribution was specified for the underlying probability of death 

(π0 and πR0).  However, it is more straightforward to specify a prior distribution for logit(π), 

i.e. β0 and βR0, although this is likely to be less intuitive to interprete.  In this section both 

approaches were undertaken: three probability distributions were specified for π0 and πR0, and 

four for β0 and βR0 (Figure 5.16).  As the value of gestational age included in the model was 

centred on the median value (30 weeks), this was the value at which the intercept, the mean 

log odds of deaths for the other 15 units, was estimated.   There was some evidence from the 

analysis of previous TNS data that the expected in-unit mortality rate for infants born at 30 

weeks gestational age was about 5% (Draper et al, 1999).  These seven probability 

distributions allowed an investigation into the influence of the location and precision of the 

prior distributions (Table 5.17) on the parameter estimates. 

Table 5.17 Prior distributions 

Distribution E(π) Var(π) P(π<x)≈0.025 P(π>x)≈0.025 

Prior on π     

Uniform(0,1) 0.50 0.083 x = 0.025 x = 0.975 

Beta(0.25, 4.75) 0.05 0.008 x = 6x10-7 x = 0.32 

Beta(0.1, 1.9) 0.05 0.016 x = 4x10-17 x = 0.48 

     

Prior on logit(π) i      

Normal(0, 10002) 0.50 250.00 x < 1x10-99 x >0.99999 

Normal(-2.94, 10002) 0.05 47.69 x < 1x10-99 x >0.99999 

Normal(-2.94, 0.80) 0.05 0.043 x = 0.009 x = 0.22 

Uniform(-25, 25) 0.50 11.51 x = 5x10-11 x >0.99999 

                                                 

i Using the delta method: Var(π) = 
[ ]

[ ]{ }
[ ]( )π

π

π

logit.
1

2

2logit

logit

Var
e

e
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The probability density functions (PDFs) and cumulative density functions (CDFs) for these 

probability distributions are shown in Figure 5.16. 

Figure 5.16 PDFs and CDFs for prior distrbutions 

Prior distributions for π Prior distributions for logit(π) 

  

  
Ten scenarios were selected to investigate the influence of the choice of prior distributions on 

the parameter estimates.  The first seven looked at the effect of various prior distributions for 

β0 and βR0.  For the next scenario the estimated values for βR0 and βRG were given as the mean 

values for Normal distributions with large variances to be used as prior distributions for β0 

and βG.  For the final two scenarios alternative probability distributions were specified for βK. 

These approaches to the specification of the prior probabilities are first illustrated using Unit 

16 (Table 5.18).  Equivalent tables for Units 3 and 8 are given in Appendix F.4 for further 

information.  A 1,000 iteration burn-in was inspected (§3.2.2) to ensure that sampling 

occurred from the whole of the target distribution, plots for Unit 8 are given in Appendix F.4 

as an example. Once it had been confirmed that samples appeared to be being taken from the 

full target distribution, 10,000 further samples were then taken. 
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Potential difficulties with the estimation of β0 and βG for Units 3 and 9 were noted due to 

quasi-complete separation of the data.  However, at the end of the 1,000 iteration burn-in the 

values of the Brooks-Gelman-Rubin statistic were 1.050 and 1.034 for Unit 3, and 1.048 and 

1.026 for Unit 9, indicating that all five chains were sampling from the same distribution.  

Trace and Brooks-Gelman-Rubin statistic plots for Unit 3 for the burn-in and a further 10,000 

interaction are shown in Appendix F.4.  These suggested that the parameter estimates 

comprised samples from the whole target distribution. 

Using the example of Unit 16, the estimated SMRs varied from 1.22 to 1.46, compared to an 

estimate of 1.23 from the frequentist analysis.  Unsurprisingly, given the amount of data in 

each case, the estimates for βR0 and βRG were more stable than those for β0 and βG.  The 

scenario that produced an estimated value for the SMR closest to the frequentist estimate was 

the final scenario, where the distribution Normal(0,1) was specified as the prior distribution 

for each βK.  This sensitivity of the estimated values of the SMR to the prior distributions of 

βK was unsurprising as the values for these parameter estimates were, in many cases, derived 

from a small number of data.  A similar pattern of results was seen with all of the other units 

(details for Units 3 and 8 are given in Appendix F.4). 

In the next Section, the results reported are those from the scenario using the distribution 

Normal(0, 10002) as the prior distribution for β0, βG, βR0 and βRG and Normal(0, 1) for each 

parameter βK.  This approach was chosen as it gave a point estimate for the SMR closest to 

the value from the frequentist analyses. 

5.8.5 Results 

For two of the methods investigated (Normal approximation and BCa bootstrap) only 

uncertainty from the observed number of deaths was included.  Their use was justified by the 

observation that the uncertainty associated with the expected number of deaths ( ( )EraV ˆ ) is 

less than the uncertainty associated with the observed deaths ( )(ˆ OraV ).  Table 5.19 shows 

)(ˆ OraV  and )(ˆ EraV  derived using the methods based on the Normal approximation. 

As expected, )(ˆ OraV  is always greater than )(ˆ EraV .  However, it can also be seen (perhaps 

more clearly in Figure 5.17) that the relative difference decreases as the unit size increases.  

The amount of data in the logistic regression model used to estimate )(ˆ EraV  is reduced when 

considering large units and so the uncertainty is increased.  Hence, ignoring )(ˆ EraV  will 

result in the estimated confidence intervals being too narrow. 
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Table 5.19 Estimated variance by NICU 

Unit No. Infants Observed deaths 

Ô  

Expected deaths 
Ê  

)(ˆ OraV  )(ˆ EraV  

1 212 21 17.8 11.52 2.62 

2 283 30 27.9 17.43 6.31 

3 38 2 1.1 0.69 0.01 

4 142 6 5.3 4.45 0.38 

5 333 41 31.1 22.00 9.64 

6 378 54 35.1 22.85 10.85 

7 243 29 19.7 13.45 3.64 

8 124 8 9.8 6.47 0.81 

9 35 1 0.9 0.80 0.01 

10 146 5 8.9 6.72 0.84 

11 445 62 46.9 30.85 19.91 

12 196 5 11.5 8.84 1.47 

13 136 3 6.0 4.63 0.40 

14 90 2 5.2 4.08 0.29 

15 124 10 9.9 6.96 0.93 

16 100 6 4.9 3.94 0.29 

Figure 5.17 Estimated variances by unit size 

 

● )(ˆ OraV  ● )(ˆ EraV  

 

The estimated confidence (credible) intervals are shown in Table 5.20 and Figure 5.19. 
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Table 5.20 SMR 95% confidence intervals by estimation method 
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The confidence intervals obtained using the second (percentile) bootstrap method are very 

wide.  This arose because some bootstrap samples had units with no sampled deaths.  This 

caused the problem of data separation in the model (§3.4) and resulted in poorly estimated 

model parameters with large standard errors.  Figure 5.18 shows the grouping of the estimated 

values of β0 and βG according to the number of reference units with no sampled observed 

deaths. 

Figure 5.18 Estimated coefficients by number of units with sampled zero deaths 

 

The details of this behaviour will not be investigated in this thesis.  It is sufficient to note that 

this method is difficult to apply when some of the units are small, or where the outcome is 

rare.  The problem may be overcome by using a different model parameterization, for 

example the ‘rest of Region’ parameterization in §5.3.1.  The estimated SMRs from such a 

model are shown in Table 5.21.  However, the different parameterisation of the units means 

that any estimates from this approach are not directly comparable to the estimates from the 

deviation contrast models explored elsewhere in this Section. 

The differences between the methods for the deviation parameterisation model (Table 5.20) 

are most marked for small units; e.g. Units 3 & 9.  As was seen in the simulation study, the 

estimates obtained using the method of Hosmer & Lemeshow tended to yield higher values 

for upper limit, and negative lower limits were observed for the Normal approximation and 

Zhou & Romano method.  The differences in the estimated limits from the normal 

approximation and Zhou & Romano methods were small: the addition of the uncertainty in 

the total number of expected deaths had little effect compared to the difference between 

methods.  The point estimates from the Bayesian methods differed from the MLE point 

estimates due to the influence of the prior distributions. 
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Table 5.21 SMR from ‘Rest of Region’ model, with bootstrapped 95% confidence intervals 

Unit SMR (95% CI) 

1 1.00 (0.67 to 1.31) 

2 0.92 (0.65 to 1.25) 

3 1.52 (0.00 to 4.27) 

4 0.93 (0.34 to 1.57) 

5 1.11 (0.84 to 1.41) 

6 1.35 (1.07 to 1.70) 

7 1.25 (0.86 to 1.66) 

8 0.70 (0.30 to 1.1) 

9 0.90 (0.00 to 2.31) 

10 0.48 (0.12 to 0.88) 

11 1.15 (0.89 to 1.40) 

12 0.37 (0.08 to 0.76) 

13 0.43 (0.00 to 0.91) 

14 0.33 (0.00 to 0.93) 

15 0.86 (0.43 to 1.32) 
16 1.01 (0.34 to 1.85) 

 

5.8.6 Choice of confidence interval estimation method 

The method proposed by Hosmer and Lemeshow (1995) and the second bootstrap method 

offered advantages over the other frequentist approaches: (i) they included all uncertainty 

(although comparison of the intervals estimated using the Normal approximation and those 

using the method proposed by Zhou and Romano (1997) suggest that the effect of including 

)(ˆ EraV  is not great); (ii) they are symmetrical on the logarithmic scale; (iii) the simulation 

study shows evidence of good coverage properties. 

The bootstrap also has one other useful characteristic over the methods proposed by Hosmer 

& Lemeshow and Zhou & Romano.  As the estimate of uncertainty only depends on the 

estimated probability of mortality, and not the estimated variances of the parameter estimates, 

it is not influenced by collinearity.  A major problem with collinearity would inflate the 

variance of the parameter estimates and, therefore, inflate the width of the Hosmer & 

Lemeshow intervals, since they are estimated using the covariance matrix ( )( )jR −βS ˆ  (5.47).  
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The point estimates used in the bootstrap method are unaffected by collinearity (Harrell, 

2001:64-65). 

Figure 5.19 Confidence and credible intervals for SMRs in TNS data, using different 

estimation methods 

 
Method: 

 
Normal approximation  

  

BCa Bootstrap  

  

Hosmer & Lemeshow  

  

Zhou & Romano  

  Bayesian  
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If the problem of small data sets and the sampling of zero deaths did not occur in these data, 

the ‘full’ bootstrap method would, perhaps, be the most appropriate choice.  It has all the 

desirable properties of the method proposed by Hosmer & Lemeshow, except that it is 

computationally intensive.  However, as was shown above, this option is not suitable for these 

data, due to the small unit sizes, and the method of Hosmer & Lemeshow was preferred. 

The Bayesian method also showed good properties.  This approach will also be illustrated in 

Chapter 6. 

 

5.9 Mortality Difference 

The SMR and its use have been discussed in the previous Section.  However, an alternative 

method of presentation is to report the difference between the number of observed and the 

number of expected deaths: 

 ∑∑
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The mortality difference, “excess mortality”, has been used for provider profiling, for example 

in the report of the Bristol Royal Infirmary Inquiry (Spiegelhalter et al, 2002).  Confidence 

intervals for such differences can be estimated using methods similar to those for the SMR. 

The standardized mortality difference (w) is illustrated using the TNS data (Table 5.22).  The 

95% confidence intervals were estimated using the Normal approximation method, without 

the inclusion of the continuity correction (Glance et al, 2000): 
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  π̂  is the estimated probability of death before discharge 

The absolute value of any difference needs to be interpreted in the light of the workload of the 

unit.  The difference between the observed and expected mortality does not allow for the 

relative size of a particular unit.  This is important when interpreting such results.  The 

following illustration is given in Hosmer and Lemeshow (1995): 

“For example, suppose that among 100 patients the observed number of deaths in a 

particular ICU is 10 and the expected number is 7.  In this case, the difference is 3 

and the ratio is 1.43.  In a second ICU, assume that among 100 patients the observed 

number of deaths is 30 while the expected number is 27.  Again, the difference 

between observed and expected is 3 but now the ratio is 1.11.  From the point of view 

of interpretability, the ratio provides evidence that hospital B performs at a higher 

level than hospital A (11 per cent excess mortality versus 43 per cent) whereas, based 

on the difference measure, there is no difference between the ICUs.” 

Table 5.22 Difference between observed and expected mortality 

Unit 
Observed 

Deaths  (O) 

Expected 
Deaths  

(E) 
w 

(O-E) Var(O) (95% CI) P(O=E) 

1 21 17.9 3.1 11.40 (-3.5 to 9.8) 0.36 

2 30 27.6 2.4 17.65 (-5.8 to 10.7) 0.56 

3 2 1.1 0.9 0.69 (-0.7 to 2.6) 0.28 

4 6 5.3 0.7 4.43 (-3.4 to 4.8) 0.75 

5 41 31.3 9.7 21.91 (0.5 to 18.9) 0.039 

6 54 34.8 19.2 22.95 (9.7 to 28.6) 0.0001 

7 29 19.7 9.3 13.45 (2.0 to 16.5) 0.011 

8 8 9.7 -1.7 6.48 (-6.7 to 3.3) 0.49 

9 1 0.9 0.1 0.80 (-1.6 to 1.9) 0.92 

10 5 8.9 -3.9 6.72 (-8.9 to 1.2) 0.13 

11 62 46.9 15.1 30.87 (4.2 to 26.1) 0.0064 

12 5 11.5 -6.5 8.88 (-12.3 to -0.7) 0.030 

13 3 6.0 -3.0 4.62 (-7.2 to 1.3) 0.16 

14 2 5.2 -3.2 4.08 (-7.2 to 0.8) 0.11 

15 10 9.9 0.1 6.94 (-5.0 to 5.3) 0.96 

16 6 4.9 1.1 3.95 (-2.7 to 5.0) 0.58 
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To overcome this problem a standardized difference has been proposed: the W-statistic (Sacco 

et al, 1994): 

10011 ×
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Hence, the value of the W-statistic represents the number of ‘excess deaths’ per 100 patients, 

thus allowing interpretation of the statistic to be independent of the number of observations.  

However, whichever way the difference is reported (w or W) the same difficulties arise in 

comparing values across units as was discussed for the SMR (§5.5.2) since indirect 

standardization was used to obtain the expected number of deaths, (Glance et al, 2000).  To 

overcome this, a standardized W-statistic WS has been proposed (Hollis et al, 1995), 

analogous to the standardized SMR discussed in §5.5.3 and with the same difficulties in 

application. 

In general, the mortality ratio (O/E) is to be preferred to a statistic based on mortality 

difference as a ratio, rather than the difference, is likely to allow a better interpretation of the 

effect size to be made for each unit.  Therefore, the SMR is used in Chapter 6. 

 

5.10 Random Effects Modelling 

The data used in this thesis have a hierarchical structure, with infants nested within hospitals.  

It has been argued that in such situations statistical methods that take the data structures into 

account should be used (Goldstein and Spiegelhalter, 1996; Normand et al, 1997).  It is 

suggested that the possible correlation between observations within the same cluster should be 

accounted for, otherwise the estimates of the standard errors may be biased (Goldstein, 

1995:3).  The assumption is made that, after adjustment for individual-level and NICU-level 

covariates, the units are exchangeable, that is, they can be seen as having been drawn from a 

population of units with a specified probability distribution.  Such methods produce shrunken 

estimates of the unit effects, with the effects shrunk towards the population mean.  The model 

can be expressed, assuming in this case that the unit effects follow a Normal distribution (the 

mixing distribution), as: 
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  jiig δ++β= βX0         (5.58) 

where:  δ  ~ Normal(0, 2σ ) 

The values for the parameters β0, β and σ are estimated from the data.   

The values δj represent the units’ effects and can be used as a measure of a unit’s deviation 

from the Regional average, for example Leyland and Boddy (1998), Goldstein and 

Spiegelhalter (1996), DeLong et al (1997), Normand et al (1997).   

5.10.1 Mixing distribution 

If a random effects model is to be used, there are difficulties in applying such an approach.  It 

is possible, especially if an important unit level covariate is missing, that the random effects 

do not follow a Normal distribution (Marshall and Spiegelhalter, 1998a; Mohammed et al, 

2001b).  It is particularly unclear in non-linear modelling whether a Normal mixing 

distribution is appropriate.  Previous research has shown that misspecification of the mixture 

distribution of a logistic regression model introduces little bias into the estimates of the fixed 

parameters; i.e. β (Agresti et al, 2004; Butler and Louis, 1992; Neuhaus et al, 1992).  

However, under such misspecification, inferences concerning the mixing distribution are less 

robust (Aylin et al, 2001b; Neuhaus et al, 1992; Turner et al, 2001; Verbeke and Lesaffre. 

1996).  This, obviously, has important implications for the estimation of δj.   

Non-Normal mixing distributions 

Although methods exist to try to assess the assumption of Normality of the random effects for 

linear mixed models (Jaing, 2001; Lange and Ryan, 1989; Ritz, 2004) these are not 

straightforward and their application to non-linear mixed models undeveloped.  In addition, 

statistical software that allows the specification of a non-Normal mixing distribution within a 

frequentist framework is not generally available.  Alternative distributions should be possible 

in SAS PROC NLMIXED but, as of version 8.2, this feature has not been introduced.  The 

only option available to this thesis was the gnlmix function within the REPEATED package 

for the R software (Lindsey, 2005).  This function, using Romberg integration, allows 

different mixing distributions to be specified.  However, the estimation of level 2 residuals is 

not available.  Nevertheless, this package does allow an investigation into the appropriateness 

of the assumption of a Normal mixing distribution.   
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In addition to the Normal distribution, the three alternative probability distributions were 

investigated: Cauchy, Laplace (double exponential) and Logistic.  These distributions were 

chosen as they can take values over the whole real line.  To avoid overparameterisation, in 

each case the mean (mode in the case of the Cauchy distribution) is set to zero.  It was noted 

that these distribution are all symmetrical about the mean, which may not reflect the true 

distribution of the units.  However, available alternative non-symetrical distributions, for 

example the Gamma and Beta distributions, are bounded and, therefore, unsuitable for these 

data. 

5.10.2 Application to TNS data 

A model was analysed using gestational age as the only risk-adjustment variable (in keeping 

with the rest of this chapter): 

  jiGi gestβg δβ ++= .0        (5.59) 

where:  gest is the gestational age at birth, in completed weeks 

Four models were considered, each with a different probability distribution specified forδ : 

Normal, Cauchy, Laplace and Logistic.  

As suggested previously, the estimates for the fixed parameters are reasonably robust to the 

choice of mixture distribution (Table 5.23).  In this case, the variance estimates for the 

random effects were also similar. 

Table 5.23 Parameter estimates from random effects models using various mixture 

distributions 

Distribution 
0β̂  (s.e.) 

Gβ̂  (s.e.) 2σ̂  AIC 

Normal 15.8521 (0.9015) -0.6566 0.0335 0.1083 634.6552 

Cauchy 16.0111 (0.8909) -0.6585 0.0335 - j 635.9348  

Laplace 15.9219 (0.8954) -0.6575 0.0335 0.1141 634.9994 

Logistic 15.8800 (0.8994) -0.6570 0.0335 0.0926 634.7929 

The four estimated mixture distributions are shown in Figure 5.20.  The estimated Cauchy 

distribution was the most different of the four, being more a leptokurtic distribution.  

However, the value for the Akaike Information Criterion (AIC) was lowest for the Normal 

                                                 

j Variance does not exist for the Cauchy distribution (Rothschild and Logothetis, 1986) 
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distribution (albeit by a very small amount), therefore offering no evidence that any of the 

alternative distributions offered an improvement in the model (Table 5.23). 

Figure 5.20 Estimated mixture distributions 

 

 

Estimation of level-2 residuals 

Since the glnmix function in R does not facilitate the estimation of the value of the residuals 

for the random effects (Lindsey, J.: Personal communication), the model was re-estimated 

with a Normal mixture distribution in SAS PROC NLMIXED, using the default dual 

quasi-Newton algorithm (SAS Institute Inc., 1999:2460-2465).  The parameter estimates 

obtained were very similar to those from R’s gnlmix (Table 5.23), differing only because of 

the different estimation procedures in each package: 

0β̂   = 15.8520 (s.e. = 0.9040) 

Gβ̂  = -0.6566 (s.e. = 0.0335) 

2σ̂  =  0.1081 (s.e. = 0.0866) 

 

PROC NLMIXED allowed the estimation of unit level residuals (Table 5.24).  Although it is 

difficult to determine any pattern with only 16 observations, a q-q plot showed evidence that 

these residuals do seem to follow a Normal distribution (Figure 5.21). 
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Figure 5.21 Q-Q plot for level 2 residuals 

 

The residuals can be presented together with estimated 95% confidence intervals. More 

informatively, by taking the exponential the residuals can be presented as estimated odds 

ratios, comparing each unit to the mean of the mixture distribution (Table 5.24).  In all cases 

the estimated 95% confidence interval contains the value unity, offering no statistical 

evidence that any unit is different from the Regional ‘average’.   

Table 5.24 Estimated unit level residuals and odds ratios from mixed model 

Unit 
jδ̂  (s.e.) (95% C.I.) jω̂  (95% C.I.) 

1 0.081 (0.234) (-0.416 to 0.579) 1.08 (0.66 to 1.78) 

2 0.016 (0.211) (-0.433 to 0.465) 1.02 (0.65 to 1.59) 

3 0.078 (0.322) (-0.608 to 0.765) 1.08 (0.54 to 2.15) 

4 0.014 (0.271) (-0.565 to 0.593) 1.01 (0.57 to 1.81) 

5 0.203 (0.209) (-0.242 to 0.648) 1.23 (0.79 to 1.91) 

6 0.437 (0.224) (-0.042 to 0.915) 1.55 (0.96 to 2.50) 

7 0.300 (0.245) (-0.222 to 0.823) 1.35 (0.80 to 2.28) 

8 -0.145 (0.263) (-0.706 to 0.416) 0.87 (0.49 to 1.52) 

9 0.001 (0.315) (-0.670 to 0.672) 1.00 (0.51 to 1.96) 

10 -0.272 (0.285) (-0.879 to 0.336) 0.76 (0.42 to 1.40) 

11 0.253 (0.197) (-0.166 to 0.673) 1.29 (0.85 to 1.96) 

12 -0.393 (0.298) (-1.028 to 0.243) 0.68 (0.36 to 1.28) 

13 -0.234 (0.300) (-0.873 to 0.406) 0.79 (0.42 to 1.50) 

14 -0.256 (0.312) (-0.922 to 0.410) 0.77 (0.40 to 1.51) 

15 -0.036 (0.252) (-0.574 to 0.503) 0.96 (0.56 to 1.65) 

16 0.048 (0.277) (-0.543 to 0.639) 1.05 (0.58 to 1.89) 
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5.10.3 Comparison with estimates from fixed-effects model 

The estimates from Table 5.24 were compared to the results from a fixed-effects model, in 

this case the ‘Rest of Region’ model (Table 5.1) although all potential parameterisations of 

the units showed the same pattern.  The point estimates from the random-effects model were 

obviously ‘shrunken’ towards the mean value (Figure 5.22).  The widths of the confidence 

intervals from the random-effects model were also narrower than those from the fixed-effects 

model. 

Figure 5.22 Estimated Odds Ratios from fixed-effects and random-effects models, with 95% 

confidence intervals 

 
Model: 

 
Fixed effects  

  Random effects  

 

The point estimates are also compared in Figure 5.23.  In this Figure the areas of the circles 

are proportional to the number of admissions to the neonatal units.  Although the values zero 

are not directly comparable, they represent different Regional ‘averages’, the shrinkage 

induced into the estimates with the random-effects model, particularly for the smaller unit, 

can once again be clearly be seen, with the estimates for the smaller units changing the most. 
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Figure 5.23 Comparison of log odds ratios from fixed-effects and random-effects models 

 

The results can also be presented as Standardized Mortality Ratios (SMRs).  SAS PROC 

NLMIXED was used to estimate a SMR for each unit using the model shown in equation 

(5.58).  Ninety-five percent confidence intervals were estimated using the percentile bootstrap 

method described in §5.6.3 that allowed for uncertainty in both the observed and expected 

number of deaths. 

Table 5.25 Estimated SMR, with 95% confidence interval, from mixed model 

Unit SMR (95% CI) 

1 1.03 (0.91 to 1.10) 

2 1.01 (0.92 to 1.06) 

3 1.48 (0.00 to 3.12) 

4 1.03 (0.51 to 1.27) 

5 1.03 (0.99 to 1.08) 

6 1.05 (1.02 to 1.11) 

7 1.07 (1.00 to 1.14) 

8 0.90 (0.57 to 1.11) 

9 1.05 (0.00 to 2.09) 

10 0.72 (0.27 to 1.00) 

11 1.02 (1.00 to 1.06) 

12 0.66 (0.25 to 0.95) 

13 0.64 (0.00 to 1.02) 

14 0.51 (0.00 to 1.00) 

15 0.98 (0.70 to 1.16) 

16 1.07 (0.53 to 1.36) 
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The estimated SMRs (Table 5.25) took values closer to the value one than the equivalent 

estimates from the fixed effects model (Table 5.21): i.e. they were ‘shrunken’ estimates.  In 

addition, the estimated 95% confidence intervals were generally very narrow, especially for 

the large units (Figure 5.24).  Although the estimates were not precisely comparable, as all 16 

units were used to provide the estimate of expected number of deaths for the mixed model, 

whereas for the fixed-effects model the observations from the unit of interest were excluded 

from the model, the models were sufficiently similar to make the comparison of interest.  

Figure 5.24 Estimated SMRs from fixed-effect and random-effect models 

 
Model: 

 
Fixed effects  

  Random effects  

 

The narrow confidence intervals from the random-effects model are the result of obtaining, 

for each bootstrap sample, an estimated expected number of deaths close to the sampled 

observed number.  Examples of this are shown for Units 10 and 11 (Figure 5.25).  

The exact cause of this phenomenon was not investigated but was likely to have been due to 

shrunken estimates of the unit effects being estimated in the random-effects model. 
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Figure 5.25 Estimated expected number of deaths and sampled number of death for 

fixed-effects and random-effects models 
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5.10.4 Intraclass correlation 

Exact methods for estimating the intraclass correlation (ICC) do not exist for hierarchical 

logistic regression models.  The approach used for linear hierarchical models does not apply 

here as the variance and the mean are linked, meaning that the value of the ICC is dependent 

of the rate of positive outcome in the sample, and the level 2 variance is measured on the 

logistic scale.  Different approximations have been proposed and it has been suggested that 

these lead to similar results (Chaix et al, 2004).  A straightforward approximate estimator (ρI) 

has been put forward by Snijders & Bosker (1999): 
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Substituting 2σ̂  = 0.1081 gives: 

  0318.0ˆ I =ρ  

Such a low value for the ICC suggests small differences in performance between the units. 

5.10.5 The Bayesian approach 

The Bayesian approach also allows the introduction of alternative distributions and can be 

implemented in a straightforward manner using standard software (e.g. WinBUGS).  

However, it has been shown that parameter estimates are sensitive to the choice of prior 

distribution, together with its variance, for the random effects (Turner et al, 2001). 

The model was briefly explored here by specifying a range of prior probability distributions 

for the mixture distribution.  The results were inspected by reported the observed point 

estimates for jδ̂ : j ∈ {1, 2, …, 16}.  This approach was taken, rather than reporting the 

estimated SMRs, as interest was on the random-effects model and not on the estimation of the 

uncertainty in the observed number of deaths (as was the case in §5.8). 

The model can be specified, from (5.59), as: 

jiG gestg δββ ++= .0    j ∈ {1, 2, …, 16} 

Prior probability distributions were required for the model parameters.  For the parameters β0 

and βG the distribution Normal(0, 10002) was used.  Three distributions were specified for the 

random effects δ: Normal (N), Logistic (L) and Laplace or Double Exponential (DE), each 

with mean zero and variance σ2.  Three prior distribution given to σ2 in the case of the Normal 

distribution: 1/σ2~Gamma(0.0001,0.0001), σ2~Uniform(0,1000) and σ2~Uniform(0,10).  For 

the Logistic and Laplace distributions σ2~Uniform(0,1000) was used. 

For each model five chains were inspected over a 1,000 interation burn-in.  The first 

specification of the model produced poor mixing (Brooks-Gelman-Rubin statistic plots are 

shown in Appendix E.3): 

  jiG gestg δββ ++= .0    j ∈ {1, 2, …, 16} 
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with prior probability distributions: 
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This problem was solved by specifying the (mathematically equivalent) model: 

  jiG gestg δβ += .    j ∈ {1, 2, …, 16} 

with prior probability distributions: 
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This method of model specification model showed good sampling properties for all scenarios 

(Appendix E.3) and a further 10,000 iteration were used in each case to estimate values for 

the model parameters (Table 5.26). 

The choice of prior distribution for the random effect had little influence on the estimated 

values of the fixed model parameters 0β̂  and Gβ̂ .  It was seen in §5.10.2 that, within a 

frequentist framework, the estimates of the fixed parameters were robust to the choice of 

mixture distribution and there is evidence here that this also applies to the Bayesian estimates.   

However, the values of the parameter estimates for the random part of the model are 

influenced both by the choice of probability distribution and by the prior distribution for the 

variance.  If such an approach was to be used in practice very careful consideration would 

need to be given to the choice of prior distributions. 
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Table 5.26 Estimates from Bayesian random-effects model 

Estimate Model 
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 0.113 0.061 0.113 0.096 0.051 0.081 

2δ̂  0.043 0.012 0.043 0.027 -0.001 0.016 

3δ̂  0.129 0.060 0.125 0.115 0.080 0.078 

4δ̂  0.025 0.007 0.023 0.018 -0.001 0.014 

5δ̂  0.249 0.172 0.249 0.223 0.161 0.203 

6δ̂  0.501 0.395 0.499 0.483 0.444 0.437 

7δ̂  0.367 0.258 0.364 0.338 0.281 0.300 

8̂δ  -0.167 -0.116 -0.175 -0.169 -0.146 -0.145 

9δ̂  -0.002 0.002 0.004 -0.003 -0.004 0.001 

10δ̂  0.345 -0.233 -0.348 -0.346 -0.342 -0.272 

11δ̂  0.298 0.220 0.298 0.270 0.217 0.253 

12δ̂  -0.499 -0.348 -0.489 -0.519 -0.567 -0.393 

13δ̂  -0.321 -0.198 -0.316 -0.316 -0.304 -0.234 

14δ̂  -0.363 -0.222 -0.366 -0.360 -0.366 -0.256 

15δ̂  -0.030 -0.029 -0.032 -0.036 -0.037 -0.036 

16δ̂  0.073 0.032 0.073 0.058 0.027 0.048 
2σ̂  0.206 0.106 0.202 0.224 0.276 0.108 

0β̂  -3.89 -3.84 -3.89 -3.86 -3.83 -3.85 

Gβ̂  -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 

 

5.10.6 Choice between fixed and random effects models 

It has previously been shown that random-effects models have greater specificity (true 

negative rate) than fixed-effects models considered, and that fixed-effects models have greater 

                                                 

k The estimated value for β0 differs from Table 5.24 as gestational age centred at 30 weeks was used here 
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sensitivity (true positive rate) (Goldstein and Spiegelhalter, 1996; DeLong et al, 1997; Austin 

et al, 2003).  This has also been suggested in this thesis for both the estimated odds ratio 

(Figure 5.22) and standardized mortality rate (Figure 5.24).  In each case, units were 

identified as statistical outliers from fixed-effects models but none were detected with 

random-effects models. 

The choice of model will reflect the aims of the investigators (Draper and Gittoes, 2004).  A 

fixed-effects model is more likely to identify true extreme performers, but at the expense of 

an increased false positive rate.  Conversely, a random-effects model will tend to have a 

higher false negative rate, meaning that some outlying providers are not identified.  The aim 

of the analysis of the data from TNS is to provide a screening of the data, to identify units in 

which a further (clinical) investigation of mortality rates may be appropriate.  It was felt, 

therefore, that a fixed-effects model was the more appropriate for these data. 

5.10.7 Further alternatives 

An alternative approach, used for the Bristol Royal Infirmary Inquiry (Spiegelhalter et al, 

2002), was to use a random-effects model to estimate an ‘average’ Regional effect using the 

data without the unit of interest.  These model parameters could then be used to produce an 

indirectly standardized measure of performance.  The expected number of deaths for the unit 

of interest is calculated using the mean value of the distribution of the reference units: i.e. β0 

(from 5.59).  This is an alternative reweighing of the reference units, analogous to the 

methods discussed in §5.3.1. 

In the case of the Bristol Royal Infirmary Inquiry, the difference between the observed and 

expected mortality was presented but to illustrate the method here the standardized mortality 

ratio was calculated (Table 5.27).  The 95% confidence intervals were estimated by fitting 

models to 1,000 bootstrap samples and finding the 2.5th and 97.5th percentiles of values of the 

SMRs from the samples. 

The estimates obtained were lower that those from the fixed-effects model with deviation 

contrasts for the units (Table 5.20) but were greater than the fixed-effects model with the 

‘Rest of region’ parameterisation (Table 5.21).  This duplicated the phenomenon seen when 

estimating odds ratios in §5.3.1, as the use of random-effects models in this way represents a 

weighted analysis of the units.  However, once again the estimated confidence intervals are 

much narrower than those from fixed-effects models.  In this case, six units would be 

identified as having statistically significant high values for the SMR and five with low values.  
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This suggests that the estimated intervals are too narrow and, should this method be used, a 

more appropriate method for estimating them needs to be developed. 

Table 5.27 Estimated SMR from random-effects model 

Unit SMR (95% CI) 

1 1.11 (1.00 to 1.35) 

2 1.02 (0.92 to 1.25) 

3 1.65 (1.50 to 1.95) 

4 1.04 (0.90 to 1.33) 

5 1.24 (1.12 to 1.52) 

6 1.45 (1.30 to 1.80) 

7 1.38 (1.25 to 1.69) 

8 0.77 (0.70 to 0.93) 

9 1.01 (0.88 to 1.30) 

10 0.52 (0.46 to 0.65) 

11 1.25 (1.13 to 1.55) 

12 0.39 (0.36 to 0.49) 
13 0.47 (0.41 to 0.59) 

14 0.36 (0.32 to 0.44) 

15 0.95 (0.86 to 1.17) 

16 1.13 (1.01 to 1.44) 

 

5.11 Chapter Summary 

In this Chapter various summary measures have been described that can be estimated using 

logistic regression models.  First, the use of the odds ratio was described and the effect of 

different parameterizations of the units was shown (§5.3).  The use of ‘deviation from the 

mean’ contrasts was justified as it reduced the influence of large units by using the mean of 

the logarithm of the odds of the reference units for the comparison. 

To overcome potential difficulties in the interpretation of odds ratios, standardized outcomes 

were introduced in §5.4.  Direct and indirect standardization were discussed and appropriate 

summary statistics described: including the SMR and CMF (§5.5).  The use of indirect 

standardization was proposed for these data (specifically the SMR) because of the problems 

of direct standardization with small data sets.  Section 5.6 comprised an investigation into 
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proposed methods to estimate a confidence interval for the SMR, and introduced and 

developed a Bayesian alternative.  Whilst an approach employing bootstrap methods 

demonstrated good coverage, but was shown to be unfeasible for small data sets or where the 

probability of death was low using the deviation parameterisation preferred in this thesis.  An 

alternative method, proposed by Hosmer & Lemeshow was then advocated for the TNS data. 

Mortality difference was briefly discussed as an alternative summary statistic (§5.9).  The use 

of random-effects models was introduced and illustrated (§5.10), but because of the likely 

decreased sensitivity of such models, compared to fixed effects models, the objectives of this 

thesis mean that this approach will not pursued further. 

Next, the methods proposed in this Chapter were used to investigate the in-unit mortality of 

the units using more detailed case-mix adjustment.  This is described in the next Chapter. 
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Chapter 6: RISK-ADJUSTED MORTALITY 

6.1 Chapter Overview 

In this Chapter the methods of Chapter 4 and 5 are brought together to estimate risk-adjusted 

in-unit mortality rates for infants born at less than 33 weeks gestational age, from 2000 to 

2002, and admitted to one of the 16 Trent neonatal units.   

Three summary measures of the fit of a logistic regression model are described in §6.3 to 

enable an assessment of a candidate variable to ‘explain’ in-unit mortality.  The area under the 

Receiver Operating Characteristic (ROC) curve (§6.3.1) is a measure of the discriminatory 

ability of a model and the Hosmer & Lemeshow goodness-of-fit χ2 statistic (§6.3.2) measures 

its calibration.  Cox’s measures of calibration and refinement allow an assessment of the 

calibration of a model on new data (§6.3.3).  A more detailed investigation of model fit is left 

until §6.6. 

Section 6.4 comprises an investigation into the association between selected variables 

recorded by TNS and in-unit mortality.  A final model containing all of these potentially 

important variables is described in §6.5.  A reduced model was also estimated, using a 

stepwise variable selection procedure to identify statistically significant variables (§6.6).  The 

predicted probabilities from the two models are compared in §6.7.  The application of the 

model to more recent TNS data is also discussed (§6.8) and its sensitivity to modelling 

assumption investigated (§6.9).  A Bayesian approach to modelling posterior predictive 

probabilities is illustrated in §6.10.  The problems encountered when a unit has no observed 

events are discussed (§6.11) and the main points from the Chapter are summarized in §6.12. 

 

6.2 Chapter Introduction 

It was noted in Chapter 4 that, for these data, the Trent Neonatal Survey (TNS) did not collect 

information to allow risk-adjustment using any of the current neonatal mortality risk scores (it 

has been assumed that CRIB has been superseded by CRIB II).  Therefore, here 

risk-adjustment is achieved through the introduction in a logistic regression model of those 

variables recorded by TNS and thought to be associated with neonatal mortality.  The 
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omission of some variables identified in published scores, or previous studies, but not 

collected by TNS, means that risk-adjustment may be incomplete.  However, such a situation 

is not uncommon in medical studies, as it is difficult, perhaps impossible, to quantify 

completely the morbidity of a human.  Nevertheless, it may be possible to identify the factors 

that have a strong association with mortality and many of these variables are likely to be 

associated with each other, meaning that the relationship between mortality and a missing 

variable may, in part, be captured by the inclusion of correlated variables. 

The variables to be investigated in this Chapter are those thought to be uninfluenced by any 

care given by the neonatal team.  These variables fall into three broad categories; 

characteristics of the infant, perinatal factors and antenatal factors. 

Gestational age at birth is recognised as a very strong predictor of mortality (§6.4.1), with 

decreasing mortality with increasing gestational age.  Since gestational age is also likely to be 

associated with other variables, there is the potential for the relationships between mortality 

and other variable to be confounded by gestational age or for gestational age to be an effect 

modifier.  Therefore, each variable will first be investigated on its own and then with 

gestational age at birth. 

The relationship between the variable of interest and in-unit mortality will be quantified by 

estimated odds ratios, with Wald 95% confidence intervals (§3.4).  The heterogeneity of the 

effect across NICUs will be tested by adding an indicator variable representing NICU of care 

and an interaction between NICU and the variable of interest into the logistic model.  This 

will be reported using the p-value for the interaction term.  Finally, the estimated standardized 

mortality ratios for each unit will be reported, obtained using the deviation parameterized 

model (§5.5.2), and confidence intervals estimated using the method proposed by Hosmer and 

Lemeshow (1995) described in §5.8.6. 

 

6.3 Summary Measures of Model Fit 

With any model, it is important to investigate how well the model fits the data used.  Such 

investigations can be put into one of two broad categories: summary measures of 

goodness-of-fit and diagnostic approaches looking at the influence of individual observations.  

Suggested summary measures of model checking are discussed here, whereas model 

diagnostics are considered in §6.6. 
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There are three main summary measures used to investigate the fit of a logistic regression 

model.  The Receiver Operating Characteristic (ROC) Curve is used to quantify the 

discriminatory ability of the model, that is, its ability to distinguish between deaths and 

survivors.  The Hosmer & Lemeshow goodness-of-fit test is used to investigate the calibration 

of the model.  Cox’s measures of calibration and refinement allow a more detailed assessment 

of the calibration of a model but only on new data.  Each of these is described in more detail. 

6.3.1 Receiver Operating Characteristic (ROC) curve 

A plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) at all 

cut-off values is a useful, and well-used, guide to the discriminatory ability of a model.  Such 

a curve is known as a Receiver Operating Characteristic Curve, or, more usually, ROC curve. 

The area under such a curve (AROC) is equivalent to the proportion of times that, given all 

possible pairings of one survivor and one death, the model would predict a higher probability 

of death for the observed death than for the observed survivor. 

As a guide to interpreting the values of the area under a ROC curve, the following categories 

have been suggested (Hosmer & Lemeshow, 2000:162): 

 AROC = 0.5  this suggests no discrimination 

  0.7 ≤  AROC < 0.8 acceptable discrimination 

 0.8 ≤  AROC < 0.9 excellent discrimination 

 AROC ≥ 0.9  outstanding discrimination 

Although not explicitly stated by the authors, this grading implies that a value of AROC of less 

than 0.7 should be considered as unacceptable discrimination. 

6.3.2 Hosmer & Lemeshow goodness-of-fit χ2 statistic 

The calibration of a model is a measure of its ability to predict the observed outcome rates.  

The approach proposed by Hosmer & Lemeshow (1980) to quantify the calibration of a 

logistic regression model involves dividing the observations into g groups according to the 

value of their predicted probabilities.  The observed and expected number of deaths can then 

be compared across all groups.  The proposed statistic is given by (Hosmer & Lemeshow, 

2000:148): 
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The number of groups, g, is usually 10 but can take a smaller value when there are less than 

ten variable patterns.  It has been shown that, when the fitted model is correct, Ĉ  is 

approximated by the 2−χ g  distribution (Hosmer and Lemeshow, 1980).  Hence, large values 

of Ĉ , and small p-values, indicate a lack of fit of the model. 

There is evidence that the value of the test statistic depends on the cut-offs used and may not 

detect certain types of lack-of-fit (Hosmer et al, 1997).  However, the test will identify major 

problems, is simple, easy to explain and available in logistic regression routines in most 

statistical packages, for example the SAS PROC LOGISTIC option LACKFIT (SAS 

Institute Inc., 1999:1961-1962). 

6.3.3 Cox’s measures of calibration and refinement 

A model-based method to assessing the calibration of a predictive model was first proposed 

by Cox (1958) and can be informative in quantifying the calibration of a model in data other 

than those used to derive the model parameters.  In this approach, a logistic regression model 

is estimated by regressing the logit of the observed mortality on the logit of the expected 

probability of death: 
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Hence, α is a measure of the overall calibration of the model when β = 1, and a measure of the 

calibration at π = 0.5 otherwise.   

The parameter β is known as the refinement parameter.  If β >1 then the πi show the right 

direction but do not vary enough; if 0 < β < 1 the πi vary too much; if β < 0 the πi show the 

wrong direction (Miller et al, 1991). 

As well as the numerical estimates for α and β, three hypothesis tests have been put forward to 

assess the fit of the model (Miller et al, 1993):  

(i) H0: α = 0, β = 1, an overall test of the predictions; 

(ii) H0: α =0|β = 1, a test of calibration given correct refinement; 
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(iii) H0: β = 1|α, a test of refinement given correct calibration. 

These hypotheses can be tested using likelihood ratio tests and for this thesis the SAS macro 

proposed by Miller et al (1993) was adapted and used. 

This methodology is only applicable when the model is being applied to data other than that 

used to derive the model.  The model is, by definition, calibrated to the data used for the 

modelling process and, therefore, α = 0 and β = 1 in this case. 

 

6.4 Potential Candidate Variables 

The Trent Neonatal Survey collects information on many variables (Appendix A).  Those 

variables thought to be uninfluenced by neonatal care were identified and a sub-group of these 

were to have been selcted for further investigation where there was evidence of an association 

with neonatal mortality (either from previous studies or from clinical knowledge).  However, 

in practice no variables were excluded at this stage as all identified variables were felt to be 

potentially associated with mortality. 

The candidate variables can be divided into three broad groups.  The first of these are the 

characteristics of the infant: gestational age at birth, birth weight, Apgar score, ethnic origin, 

base excess and sex.  The second group comprises perinatal factors: mode of delivery, 

antenatal steroid use, infection and fetal distress.  The final group of variables are those 

associated with antenatal factors: mother’s age, socio-economic status and mother’s gravidity.  

Variables that can be influenced by treatment or clinical decision by the neonatal team were 

not considered; for example FiO2, length of ventilation. 

Further details of these investigations are given in Appendix G. 

6.4.1 Gestational age at birth 

There is known to be a strong monotonic relationship between gestational age at birth of an 

preterm infant and neonatal mortality (Verloove-Vanhorick et al, 1986).  For TNS the 

following hierarchy was used to estimate gestational age (Bohin et al, 1999): 

i) Mother certain of her dates (most reliable); 

ii) Early dating scan 

iii) Late dating scan; 
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iv) Postnatal examination (least reliable). 

The linear relationship between gestational age and in-unit mortality was given by: 

iGi gestg .ˆˆˆ 0 β+β=  

0β̂  = 16.16 (s.e. 0.88) 

Gβ̂  = -0.66 (s.e. 0.03) 

where:  gest = gestational age at birth in completed weeks. 

(AROC = 0.881: Ĉ  = 3.70 ~ 2
5χ , p = 0.59). 

There was no statistical evidence that the relationship between gestational age at birth and 

death before discharge for NICU differed by unit: 2
15=χdf =10.19; p = 0.81. 

6.4.2 Sex 

There has been shown to be a difference in short-term mortality between newborn boys and 

girls, with boys showing a higher risk of death (Office of National Statistics, 2003b; Effer et 

al, 2002; Larroque et al, 2004; Stevenson et al, 2000; Shankaran et al, 2002; Italian 

Collaborative Group on Preterm Delivery, 1988).   

In the TNS data the in-unit mortality rates were very similar between the sexes:  

odds ratio (male vs. female) = 1.01 (95% CI: 0.79 to 1.30); p = 0.91. 

After adjusting for gestational age at birth, there was still no evidence that the value of the 

odds ratio differed from unity: 

odds ratio (male vs. female) = 1.18 (95% CI: 0.88 to 1.58); p = 0.27 

(AROC = 0.882: Ĉ  = 5.43 ~ 2
7χ , p = 0.61) 

There was also no evidence for a gestational age-by-sex interaction: p = 0.21, and no evidence 

that the odds ratios varied across the neonatal units; p = 0.93. 

6.4.3 Birth weight 

The weight of an infant at birth is known to be associated with its probability of survival 

(Alberman, 1991).  However, it has long been recognised that birth weight in itself is 

inadequate for predicting mortality (Van Den Berg and Yerushalmy, 1966).  Rather, it is the 
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rate of growth in conjunction with gestational age, i.e. birth weight for gestational age, that is 

more informative (Coory, 1997). 

To investigate any association between birth weight for gestational age and mortality a model 

including birth weight, gestational age and sex was constructed.  The use of fractional 

polynomials allowed a wide range of possible functions.  Using such an approach none of the 

interactions were statistically significant at the 10% significance level and the final model 

was: 

12
0 .ˆ.ˆ.ˆˆˆ −− β+β+β+β= iWiGiSi weightgestsexg  

 0β̂  = -9.79 (s.e. 0.48) 

 Sβ̂  = 0.36 (s.e. 0.16) 

 Gβ̂  = 3341.91 (s.e. 439.53) 

 Wβ̂  = 2763.44 (s.e. 299.56) 

 (AROC = 0.897: Ĉ  = 6.10 ~ 2
8χ , p = 0.64) 

There was no evidence that the relationship between birth weight and in-unit mortality 

differed between the units: p = 0.60 for an interaction between the inverse of birth weight and 

unit of care. 

The fractional polynomial model was used in this Section, but when more complex models 

are investigated later in this Chapter, gestational age and birth weight will be included using 

the raw data approach to allow the easier introduction of interactions with other variables. 

6.4.4 APGAR score 

The Apgar score was originally derived as a simple neonatal morbidity scoring system 

(Apgar, 1953) and was described in §4.4.8.  There is evidence for an association between low 

Apgar score and increased mortality, including in preterm infants (Casey et al, 2001; 

Weinberger et al, 2000).  Apgar scores are usually derived at two time points: one minute 

after birth and again at five minutes.  However, Apgar score at five minutes is unsuitable to be 

included in a model to investigate the quality of care as it is likely to be influenced by early 

neonatal care. 

There was evidence of an interaction between Apgar score at one minute and gestational age 

at birth: 
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iiGAiGiAi apgargestgestapgarg 1..ˆ.ˆ1.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 11.29 (s.e. 2.06) 

 Aβ̂  = 0.70 (s.e. 0.39) 

 Gβ̂  = -0.44 (s.e. 0.08) 

 GAβ̂  = -0.034 (s.e. 0.015) 

where: apgar1 = Apgar Score at 1 minute 

 gest = gestational age at birth in completed weeks. 

 (AROC = 0.900: Ĉ  = 15.99 ~ 2
8χ , p = 0.043) 

The value of the C-statistic suggests that there is some evidence that this model is a poor fit to 

the data, but there was no statistical evidence for a non-linear relationship.  There was also no 

evidence of different relationships between Apgar score at one minute and outcome between 

the units (p = 0.90). 

When the model with Apgar score at one minute and gestational age was used to indirectly 

standardize the in-unit mortality, there was a problem with Unit 9.  The only observed death 

at this unit had a missing Apgar score and was excluded from the model.  As there were then 

no observed deaths for Unit 9, there was quasi-complete separation of the data (§3.4) and the 

estimates became unstable and had large estimated standard errors.  To solve this problem 

Unit 9 was excluded from the analysis, although this problem is further investigated in §6.9.2. 

6.4.5 Ethnic origin 

The relationship between ethnicity and neonatal mortality is unclear: e.g. Iyasu et al (2002);  

Cooper et al (1993); Singh et al (1997); Berman et al (2001); Singh et al (1997); Berman et al 

(2001); Iyasu et al (2002). 

In this thesis, the Asian group has been relabelled as ‘South Asian’ to emphasise the fact that 

those categorised as Asian are from families originating in South Asia, more particularly from 

the Indian sub-continent.  Other Asian groups, such as Chinese or Filipino, are categorised by 

TNS as ‘Other’. 

There was evidence for a difference in mortality between infants of ‘European’ ethnic origin 

and those of ‘Asian’ ethnic origin: overall p = 0.017.  However, after the inclusion of 

gestational age in the logistic regression model, there was no longer evidence for a difference 
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between the ethnic groups: p = 0.19.  There was also no evidence for an interaction with 

gestational age (p = 0.85), nor for differences in the relationship between the neonatal units 

(p = 0.99).  

6.4.6 Congenital anomalies 

Although infants with lethal congenital anomalies have been excluded from all of these 

analyses, infants with anomalies not thought to be inevitably lethal have been included.  High 

rates of admissions of infants with congenital anomalies are likely to increase in-unit 

mortality (Sankaran et al, 2002).   

The unadjusted odds ratio of morality was 1.08 (95% CI: 0.64 to 1.82); p = 0.77.  With the 

introduction of gestational age into the model, there was evidence for a quadratic relationship 

between gestational age and mortality and for interactions between the presence of a 

congenital malformation and both linear and quadratic terms for gestational age: 

22

0

..ˆ.ˆ
..ˆ.ˆ.ˆˆˆ

gestconmalgest

gestconmalgestconmalg

iCGGiGG

iiCGiGiCi

β+β+

β+β+β+β=
 

 0β̂  = 58.62 (s.e. 41.41) 

 Cβ̂  = 74.39 (s.e. 37.65) 

 Gβ̂  = 5.15 (s.e. 2.98) 

 CGβ̂  = -5.74 (s.e. 2.69) 

 GGβ̂  = -0.11 (s.e. 0.05) 

 CGGβ̂  = 0.11 (s.e. 0.05) 

where: 




=
presenton malformati no if         0

 present   on malformati if         1
conmal  

 gest = gestational age at birth in completed weeks. 

(AROC = 0.891: Ĉ  = 7.15 ~ 2
5χ ,  p = 0.21)  

The addition of an interaction term into the logistic model showed no statistical evidence that 

the odds ratio varied across the neonatal units (p = 0.99).   
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6.4.7 Base excess 

For TNS, the maximum base excess in the first 12 hours of life is recorded.  Abnormal base 

excess has been shown to be associated with neonatal mortality in preterm infants (The 

International Neonatal Network, 1993; Maier et al, 1997; Garcia et al, 2000; Parry et al, 

2003b). 

Seven hundred and forty eight infants (24.7%) had missing values for base excess, of whom 

17 (2.3%) died.  While the true reason measurements are missing from TNS is unknown, 

anecdotal evidence suggests that in most cases base excess was not measured when it was felt 

likely to be in the normal range (Field, D.J.: Personal communication).  In this case, it may be 

appropriate to substitute the missing values with a ‘normal’ value.  Such an approach is 

commonly used with published risk-adjustment scores, for example PIM (Shann et al, 1997), 

SNAP (Richardson et al, 1993), MMPS (Daley et al, 1988).  Using this assumption, it was 

possible to categorise all of the observations according to their estimated base excess by 

putting those with missing values into the ‘normal group’.  The groups used here were those 

from the original CRIB score: >-7.0, -7.0 to -9.9, -10.0 to –14.9 and ≤ 15.0 mmol/L.  There 

was evidence of a difference in mortality rates between the groups (p < 0.0001), with 

increasing mortality with decreasing maximum recorded base excess.  The inclusion of 

gestational age showed evidence for an interaction between gestational age and maximum 

base excess group: p = 0.0003: 

 
iiGBiiGBiiGB

iGiBiBiBi

gestbaseexcessgestbaseexcessgestbaseexcess

gestbaseexcessbaseexcessbaseexcessg

.4.ˆ.3.ˆ.2.ˆ
.ˆ4.ˆ3.ˆ2.ˆˆˆ

432

4320

β+β+β+

β+β+β+β+β=
 

 0β̂  = 18.19 (s.e. 1.50) 

 2
ˆ

Bβ  = -2.81 (s.e. 2.63) 

 3
ˆ

Bβ  = -7.16 (s.e. 2.37) 

 4
ˆ

Bβ  = -7.06 (s.e. 2.69) 

 Gβ̂  = -0.76 (s.e. 0.06) 

 GB2β̂  = 0.12 (s.e. 0.10) 

 GB3β̂  = 0.32 (s.e. 0.09) 

 GB4β̂  = 0.135 (s.e. 0.10) 
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where: 


 =

=
                                                            else        0

    9.9-  to7.0-  excess base maximum if         1
2.baseexcess  



 =

=
                                                               else        0

    14.9-  to10.0-  excess base maximum if         1
3.baseexcess  



 ≤

=
                                                else        0

    15.0  excess base maximum if         1
4.baseexcess  

 gest = gestational age at birth in completed weeks. 

(AROC = 0.911: Ĉ  = 1.10 ~ 2
8χ , p = 0.98) 

The introduction of interaction terms between the units and base excess groups showed no 

improvement in the fit of the model: p = 0.98.   

6.4.8 Multiplicity of pregnancy 

There has been evidence presented that multiple birth is a risk factor amongst extremely low 

birth weight infants (501-1000g) (Shankaran et al, 2002).  However, there is also evidence 

that twins have better gestational age specific neonatal survival rates than singletons (Kiely, 

1998). 

Since there were a relatively small number of triplets, and only three deaths, a dichotomous 

variable was used: singleton or multiple birth. 

The TNS data showed decreasing mortality for multiple births, although this difference was 

not statistically significant: p-value = 0.17.  The effect of gestational age at birth was 

investigated using a logistic regression model and there was evidence of a gestational 

age-by-multiplicity interaction (p = 0.0065): 

 iiMGiGiMi gestmultiplegestmultipleg ..ˆ.ˆ.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 14.95 (s.e. 0.95) 

 Mβ̂  = 7.19 (s.e. 2.68) 

 Gβ̂  = -0.62 (s.e. 0.04) 

 MGβ̂  = -0.28 (s.e. 0.10) 

where: 




=
birth   singleton  if       0

birth     multiple if       1
multiple  
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 gest = gestational age at birth in completed weeks 

 (AROC = 0.885: Ĉ  = 4.97 ~ 2
8χ , p = 0.66) 

There was evidence that infants from multiple pregnancies do worse that singletons if born 

before about 26 weeks gestational age, but appear to do better if born after this time.  There 

was no evidence that the relationship between mortality and multiple birth was different 

between the units, after adjusting for gestational age (p = 0.99).   

6.4.9 Socio-economic status 

The postcode of the mother’s place of residence was recorded by TNS and could be used to 

investigate any association between area-based socio-economic deprivation and in-unit 

neonatal morality. 

The area-based deprivation scoring systems chosen was the Index of Multiple Deprivation 

2000 (IMD) published by the Department of the Environment, Transport and the Regions.   

The odds ratio for mortality for a unit increase in IMD was 1.00 (95% CI: 0.99 to 1.01), p = 

0.49.  When gestational age was included in the model (no evidence for an interaction by 

gestational age: p = 0.44) the odds ratio for a unit increase in IMD was 1.00 (95% CI: 0.99 to 

1.01), p = 0.89 (AROC = 0.886: Ĉ  = 5.55  ~ 2
7χ , p = 0.59).  There was no evidence that this 

relationship differed between units: p = 0.44.   

6.4.10 Antenatal corticosteroids 

The use of antenatal corticosteroids prior to preterm birth has long been known to reduce 

subsequent respiratory distress syndrome (RDS) (Liggins and Howie, 1972) and, therefore, 

neonatal mortality (Crowley, 2003).   

The estimated odds ratio for mortality, for infants of mothers given antenatal corticosteroids 

compared to those who were not, was 0.62 (95% CI: 0.47 to 0.81), p = 0.0004.  When 

gestational age was included in the model (no evidence for an interaction by gestational age: 

p = 0.46) the estimated odds ratio was 0.63 (95% CI: 0.45 to 0.87), p = 0.0047 (AROC = 0.883: 

Ĉ  = 6.01 ~ 2
6χ , p = 0.42).  There was no evidence that this relationship differed between 

units: p = 0.63. 
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6.4.11 Intrapartum monitoring 

The term fetal distress is an often-used description of problems during birth, although it has 

no clear definition.  In general, it describes the situation where the fetus is deprived of oxygen 

during labour or delivery, although this is often called acute fetal distress to distinguish it 

from sustained hypoxia during the pregnancy, which is usually termed chronic fetal distress.   

A number of different approaches have been advocated to try to detect fetal distress (Mead, 

1996) and six variables are collected in TNS to try to identify those deliveries where fetal 

distress occurred: ‘fetal distress’, ‘CTG abnormality’, ‘Doppler abnormality’, ‘abnormal scalp 

pH’, meconium present’ and ‘other’.  It has been suggested that such indirect measures that 

try to indicate hypoxia are poor predictors (Low et al, 1995b).  Therefore, an infant with any 

of the indicators recorded as abnormal was assumed to have experienced fetal distress. 

The estimated odds ratio for mortality was 0.90 (95% CI: 0.70 to 1.16), p = 0.42.  When 

gestational age at birth was included in the model there was evidence for a fetal distress by 

gestational age interaction (p = 0.016). 

 iiDGiGiDi gestdistressgestdistressg ..ˆ.ˆ.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 18.44 (s.e. 1.25) 

 Dβ̂  = -3.98 (s.e. 1.91) 

 Gβ̂  = -0.76 (s.e. 0.05) 

 DGβ̂  = 0.17 (s.e. 0.07) 

 (AROC = 0.886: Ĉ  = 4.80  ~ 2
7χ , p = 0.68)  

where: 




=
                                       otherwise      0

    recorded distress fetal ofsign  if       1
distress  

 gest = gestational age at birth in completed weeks 

There was no evidence that the relationship between reported fetal distress and mortality 

differed amongst the units (p = 0.96).  The estimated functions suggest that fetal distress was 

associated with mortality for infants born at 25 to 30 weeks gestational age (Figure G.33). 
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6.4.12 Mode of delivery 

There is conflicting evidence on whether caesarean section reduces mortality for preterm 

infants (Penn and Ghaem-Maghami, 2001).  Guidelines from the National Institute for 

Clinical Excellence (NICE) state that, because of the uncertainty over the outcomes from 

planned caesarean section for preterm births, planned caesarean sections “should not be 

routinely offered outside a research context” (National Institute for Clinical Excellence, 

2004:1.2.3.1).   

In order to obtain reasonably sized groups, the methods of delivery recorded by TNS were 

combined into three clinically homogeneous groups: vaginal delivery, labouring caesarean 

section and non-labouring caesarean section (Field, D.J.: Personal communication). 

Infants delivered by caesarean section had statistically significant higher rates of survival than 

those delivered vaginally: overall p-value = 0.0043.  However, once gestational age was 

included in the model (p-value for interaction = 0.25) the situation was reversed: infants born 

by vaginal delivery had the lowest gestational age specific mortality rates.  There was a 

difference between those deliveries where labour occurred (vaginal and labouring caesarean 

section) and those where it did not (both non-labouring caesarean section): 

Mode of delivery Odds ratio (95% CI)   p-value 

Vaginal   reference  

CS: labouring  0.59  (0.40 to 0.87)   0.0076 

CS: non-labouring 0.70  (0.53 to 0.92)   0.0092 

There was no evidence for an interaction between mode of delivery and NICU: p = 0.98.   

6.4.13 Mother’s age 

There is a large body of evidence that the risk of complications during pregnancy, and at 

delivery, increases with increasing maternal age (Fretts et al, 1995; Jolly et al, 2000; 

Temmerman et al, 2004).  However, the link between neonatal outcomes and maternal age is 

less clear, with some evidence that there is no increased risk of poor neonatal outcomes with 

increased maternal age (Berkowitz et al, 1990). 

There was no evidence for a relationship between a mother’s age and the infant’s risk of 

death: estimated odds ratio = 1.00; 95% CI 0.98 to 1.02; p = 0.98.  This did not change after 
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including gestational age at birth in the model: estimated odds ratio = 0.99; 95% CI 0.97 to 

1.02; p = 0.54 (AROC = 0.884: Ĉ  = 10.48  ~ 2
8χ , p = 0.23).  There was also no evidence that 

the relationship between the mothers’ ages and infant mortality varied in the different 

neonatal units: p = 0.25.   

6.4.14 Previous obstetric history 

The relationship between a mother’s obstetric history and the probability of mortality for a 

subsequent infant is unclear (Bai et al, 2002; Billewicz, 1973; Roman et al, 1978; Bakketeig 

and Hoffman, 1979).  In this thesis only the previous number of pregnancies (gravidity) was 

considered.  To avoid small numbers of observations in each group, the observations were 

divided into three categories: primagravida, secundigravida, multigravida. 

There was statistical evidence for difference in the mortality rates between the groups: 

p = 0.029.  However, once gestational age is included in the model (p-value for 

interaction = 0.28), there was no evidence for a difference between the groups in gestational 

age specific mortality rates: p = 0.58.   

6.4.15 Maternal or fetal infection 

Maternal or fetal infection is known to increase the risk of preterm birth and to increase 

mortality among preterm infants (Fung et al, 2003; Garite and Freeman, 1982; Ernest, 1998). 

The observed odds ratio for mortality was 1.23 (95% CI: 0.91 to 1.66), p = 0.18.  After 

adjustment for gestational age (p = 0.72 for interaction between infection and gestational age) 

the adjusted odds ratio was 0.84 (95% CI: 0.59 to 1.21), p = 0.34 (AROC = 0.882: Ĉ  = 4.11  ~ 
2
7χ , p = 0.77).  There was no evidence that the relationship between infection and gestational 

age differed by unit: p = 0.95.   

6.4.16 Summary of risk adjustment using TNS variables 

All of the variables discussed above were used in a final model (§6.5).  Although some 

variables did not reach the specified level of statistical significance, it is the clinical, not 

statistical, significance of the variables that is of interest.  For example, there was no 

statistical evidence for an association between infection and mortality, but adjustment for 

infection produced ‘significant’ changes to the estimated SMRs.  The influence of selected 

variables on the estimated SMRs was shown individually, and after adjustment for gestational 
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age, but their joint influence was of more interest.  A reduced model will be estimated in 

order to try to identify a more parsimonious model (§6.6). 

Other potentially important factors have been suggested in the medical literature but are not 

recorded by TNS and, therefore, not included in any modelling here.  These variables include 

sibship size (Bakketeig and Hoffman, 1979) and mean blood pressure (Jain and Fleming, 

2004).  The quality of antenatal care has also been proposed as a predictor of neonatal 

mortality (Vintzileos et al, 2002).  It was advocated that the absence of antenatal care was 

associated with higher neonatal death, after adjusting for maternal age, birth weight and 

gestational age.  However, this relationship was greater among term infants, ≥36 weeks: 

relative risk for death = 2.1 (95% CI: 1.8 to 2.4), than among preterm infants, 24-35 weeks: 

relative risk = 1.2 (95% CI: 1.1 to 1.3).  It is unknown whether these variables have an effect 

over and above the variables in the model. 

 

6.5 Full Model 

It has been argued that a predictive model should include all variables thought to be clinically 

important (Healthcare Quality and Analysis Division, 2002; Center for Health Services 

Research in Primary Care, 1996)  For this reason the first model contains all of the variables 

investigated in the previous Section. 

6.5.1 Model parameters 

Plausible clinical interactions between variables discussed in the previous Section were 

included where they were statistically significant at the 10% level.  Birth weight, gestational 

age and sex were included using the first model discussed in Appendix G.3, i.e.:  

2
0 .... tbirthweightbirthweighgestationsexg WWWGSD β+β+β+β+β= .   

This allowed gestational age to be included in the model as a linear term, enabling interaction 

with other variables to be included in a simple manner.  There were 282 observations with 

missing data that were omitted from the model, leaving 2502 survivors and 241 deaths.  The 

parameter estimates are shown in Table 6.1. 
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Table 6.1 Parameter estimates from full model 

Variable Group β̂  s.e. P-value 

Intercept  7.13 14.42  

Gestational age (week) Linear 
Quadratic 

0.24 
-0.013 

1.11 
0.021 

 

Sex Female 
Male 

Reference 
0.45 

 
0.18 

0.013 

Birth weight (g)  -0.0085 
0.0000025 

0.0013 
0.0000005 

 
< 0.0001 

Apgar at 1 minute  0.021 0.46  

Apgar*gestational age  -0.0053 0.0173 0.76 

Ethnicity European 
South Asian 
Other/unknown 

Reference 
0.13 

-0.15 

 
0.31 
0.30 

0.78 

Congenital malformation None 
Present 

Reference 
121.3 

 
56.0 

 

Congenial malformation * gestational 
age 

None 
Present 

Reference 
-9.12 

 
4.00 

 

Congenial malformation * gestation2 None 
Present 

Reference 
0.17 

 
0.07 

0.016 

Base excess > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
-2.00 
-7.98 
-8.05 

 
3.00 
2.83 
3.23 

 

Base excess * gestational age > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.087 
0.34 
0.37 

 
0.11 
0.11 
0.12 

0.0020 

Multiple birth Singleton 
Multiple 

Reference 
5.25 

 
3.11 

 

Multiple birth * gestational age Singleton 
Multiple 

Reference 
-0.19 

 
0.12 

0.10 

IMD  -0.0062 0.0054 0.25 

Corticosteroids No 
Yes 

Reference 
-0.36 

 
0.20 

0.073 

Fetal distress No 
Yes 

Reference 
-2.80 

 
2.58 

 

Fetal distress * gestational age No 
Yes 

Reference 
0.11 

 
0.096 

0.27 

Mode of delivery Vaginal 
CS: labouring 
CS: non-labour 

Reference 
1.73 
2.37 

 
3.87 
3.21 

 

Mode * gestational age Vaginal 
CS: labouring 
CS: non-labour 

Reference 
-0.065 
-0.071 

 
0.15 
0.12 

0.82 

Mother’s age (year)  -0.012 0.016 0.43 

Gravidity Prima 
Secund 
Terce 

Reference 
0.22 
0.40 

 
0.25 
0.22 

0.20 

Infection No 
Yes 

Reference 
-0.093 

 
2.56 

 

Infection * gestational age No 
Yes 

Reference 
0.010 

 
0.097 

0.92 
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6.5.2 Model checking 

The validity of the model was examined.  First, the goodness-of-fit of the model to the current 

data was investigated using assessment by deletion: i.e. deleting each observation in turn and 

re-estimating the model parameters (jacknife).  Diagnostic plots showing the resultant 

changes in the values of the Pearson chi-square statistic, deviance and parameter estimates 

were produced and inspected.  A deletion approach was also used to obtain jacknife predicted 

probabilities of the individual observations.  Finally, the calibration and discrimination of the 

model were investigated.   

Assessment by deletion 

Hosmer and Lemeshow (2000:176) have suggested various diagnostic plots that are useful for 

logistic regression models and each of these was investigated for the model. 

The first approach uses the change in the value of the Pearson chi-square statistic after the 

deletion of an observation ( 2X∆ ).  The value of the change is plotted it against the predicted 

probability for each observation.  The Pearson chi-square statistic is the sum of the Pearson 

residuals where the Pearson residual for observation i is given by: 

 ir  = [ ]








π−π
π−

ii

iid
ˆ1ˆ
ˆ

 

It can further be shown (Hosmer & Lemeshow, 2000:174) that, for observation i, the change 

in the value of the Pearson chi-square statistic is given by: 

  ( )i

i
i h

r
X

−
=∆

1

2
2  

where:  ih  is the ith diagonal element of the H matrix (i.e. the leverage). 

The reason for using 2
iX∆  instead of ir  is that positive values of ir  are from observations 

where id  = 1, and negative values are from observations where id  = 0.  Therefore, the sign of 

the residual does not carry any extra information and squaring the value emphasizes any lack 

of fit.   Such plots show observations with predicted probabilities far from the observed 

outcome.  These are sometimes plotted (as in Figure 6.1) with the size of the plotting symbol 

proportional to the standardized change in the value of the parameter estimates after the 

deletion of observation i ( iβ̂∆ ).   iβ̂∆  is given by: 
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  ( ) ( ) ( )111 ˆˆˆˆˆ
iii ββVXXβββ −′

′
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where:  V is the m x m diagonal matrix: diag ( ){ }ii π−π ˆ1ˆ ; 

X is the data matrix 

This can be shown (Pregibon, 1981) to be equivalent to: 
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This plot is useful in indicating the influence of any outstanding observation.   

The two observations noted in Figure 6.1 as being outliers were infants who died, but for 

whom the model suggested good prognoses: predicted probabilities of death of 0.00032 and 

0.0015.  Both of these infants were born at 31 weeks gestational age, at around 1600g birth 

weight, had high Apgar scores at one minute of life (7 & 9) and ‘good’ values for all other 

variables.  These values were check on the relevant TNS forms and found to have been 

entered onto the database correctly. 

Figure 6.1 Change in Pearson chi-square statistic 

 

The second diagnostic plot shows the change in deviance after the deletion of an observation, 

D∆  (Figure 6.2).  The deviance residual for observation i is given by: 

( )

( )
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and the deviance D is given by the sum of the deviance residuals: 

  [ ]∑
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The change in deviance can be shown to be approximated by (Hosmer & Lemeshow, 

2000:174): 

  ( )i

i
i h

d
D

−
=∆

1

2

 

The two observations with values of ΔDi greater than 12 are the same as those noted in Figure 

6.1.  The third observation with ΔDi > 10 was an infants born at 30 weeks, with good 

indicators for survival as measured by the model ( π̂  = 0.0060), who died before discharge. 

Figure 6.2 Change in deviance 

 

 

The third step is to consider the effect of removing each observation in turn on each 

parameter estimate, DFBETA.  In such situations, rather than refitting the model n times 

(where n is the number of observations) a one-step approximation to the parameter estimates 

is generally used (SAS Institute Inc., 1999:1957).  The MLE for the model parameters 

estimated without observation i ( 1ˆ
iβ ) is given by: 
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ˆˆ 1       (6.3) 

where: β̂  is the MLE of  parameter vector ( )Pβββ ,...,, 10  using all observations; 

  βV̂  is the estimated covariance matrix of β . 

The change in parameter estimates from removing observation i from the model is given by: 

( )
( ) i

i

ii
ii h

d
xVΔβββ β−

π−
==− ˆ

1
ˆˆ 11       (6.4) 

Hence, if 1
ipβ∆  is the pth component of the one-step difference (6.3) then the standardized 

difference for parameter p after deletion of observation i is given by: 

  ( )p

ip
iDFBETAp

βσ

β
=

ˆ

1Δ
 

where:  ( )pβσ̂  is the estimated standard error of parameter p from the full model. 

These values were plotted for each parameter in the model (Appendix H).  All of the values 

were less than 1.0, the minimum value suggested as signifying that an observation has a 

significant effect on the value of a parameter estimate (Hosmer & Lemeshow, 2000:180).   

However, here the value of the parameter estimates themselves were not of primary 

importance, rather it was the predicted probabilities of death that were of interest.  A change 

in the value in one parameter estimate can be offset by the change in value of one or more of 

the other parameter estimates, resulting in similar predicted values.  This is particularly true 

when there are interactions in the model, as in the model under consideration here.  A more 

interesting approach may be to consider changes in the vector of parameter estimates as a 

whole, quantified by iβ̂∆ .  This plot is shown in Figure 6.3. 

There were two observations with large values of iβ̂∆  relative to the other observations 

(Figure 6.3).  However, all took values of less than 1.0 and it has been suggested that 

observations with values of less than 1.0 are not likely to have a ‘significant’ effect on the 

estimation of the values of the parameter estimates (Hosmer & Lemeshow, 2000:180).  

Nevertheless, it was still of interest to identify the observations with high values, using 0.5 as 

an arbitrary cut-off. 
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Figure 6.3 Change in model parameter estimate values 

 

There were seven observations where iβ̂∆  > 0.5; six of whom died and one survived to 

discharge.  The infant who survived was born at 26 weeks and 660g with a very poor Apgar 

score at one minute of life and would have been expected to have a poor prognosis ( π̂  = 

0.74).  However, the infant was discharged home after 136 days on a neonatal unit.  Five of 

the other infants identified were of 30 to 32 weeks gestational age with good prognosis (as 

measured by the model: π̂  of 0.00032 to 0.077) who nevertheless died before discharge.  One 

of these was also identified as an outlier in Figure 6.1 and Figure 6.2.  The final observation 

identified was a small infants (24 weeks and 745g) but with other prognostic factors 

indicating a mixed prognosis (e.g. presence of congenital malformation and fetal distress, 

Apgar score of 6 at 1 minute, maximum base excess of -9.4): π̂  = 0.46 .  Inspection of the 

individual variable DFBETAs for this infant (Appendix H) showed relatively high values for 

congenital malformation (DFBETA = 0.58) and its interaction with gestational age (DFBETA 

= -0.56) and the square of gestational age (DFBETA = 0.54). 

The recorded observations for all of these infants were checked against the TNS forms and no 

discrepancies were found. As these were genuine observations and it was decided that they 

should be included in all modelling.   

Internal model validation 

While the influence of individual observations on the value of parameter estimates is of 

interest, of more importance in this thesis is the stability of the individual predicted 

probabilities of death before discharge.  This can be investigated using internal cross 
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validation of the model but this can be undertaken in several ways.  Often the approach is to 

split the data into groups, either at random or by using some other methods, for example odd 

and even identification numbers (Cole et al, 1991).  The values of the model parameters are 

then estimated using part of the data (‘training set’).  These estimates are then applied to the 

other part of the data (‘test set’) and which is then inspected for predictive ability.  However, 

such data splitting methods are weak, as the two sets will usually be similar other than for 

random variation.  A more robust approach is to use a ‘deletion’ approach.  This involves 

excluding a single observation or group of observations (e.g. single unit) in turn.  The model 

parameters are estimated with each observation (or group of observations) deleted and are 

then used to obtain a predicted probability for the deleted observations.  These probabilities 

are then compared to the predictions from the model that used the whole data.  It has been 

suggested that the ‘leave-one-out’ approach is superior (Altman and Royston, 2000) and this 

was the approach taken here.  Such jacknife predicted probabilities were estimated using the 

one-step estimates outlined above (6.2) and are shown in Figure 6.4.  There was good 

agreement between the predicted probabilities from the model and the jacknife estimated 

probabilities. 

Figure 6.4 Cross-validated predicted probabilities 

 

 

Calibration of the model 

As the parameter estimates from this model were used to obtain indirectly standardized 

mortality rates, it is the calibration of the model, its ability to assign ‘correct’ mortality 

probabilities, that is of particular importance.  There was no evidence of poor calibration from 

the Hosmer & Lemeshow goodness-of-fit test (§6.3.2): Ĉ  = 11.69 ~ 2
8χ , p = 0.17.  An 
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alternative approach to investigating the calibration of a model, that may offer a deeper 

insight into the calibration of the model, is to plot calibration curves.  This is similar in 

approach to the Hosmer and Lemeshow goodness-of-fit test (§6.3.2) in that the observations 

are divided into strata and the observed and expected mortality are compared within each 

stratum.  However, such calibration curves differ in two respects from the usually applied 

version of the Hosmer and Lemeshow test.  First, rather than being divided into 

approximately equal sized strata, the observations are divided according to the value of the 

predicted probabilities.  Second, the differences between the observed and expected number 

of deaths are inspected visually to gain a deeper understanding of any deficiencies in the 

model.  These values are plotted and then inspected and compared with a diagonal line 

representing perfect predictive ability (Rowan et al, 1993b).  There is obviously uncertainty 

around the lines in such calibration plots but it is unclear how this uncertainty can be 

quantified.  One possibility is to repeatedly model bootstrap samples of the data but, as has 

been discussed elsewhere in this thesis, such an approach is computationally intensive and has 

not been persued here.  Therefore, the plots are shown without any indication of the size of 

the errors. 

Figure 6.5 suggests that this model was very well calibrated as the observed and expected 

number of deaths are very similar across all values of predicted mortality.  To investigate 

whether this property holds over all gestational ages, calibration plots for two groups split by 

gestational age are shown in Figure 6.6. 

 

Figure 6.5 Calibration plot: full model 
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Figure 6.6 Calibration plots by gestational age group 

(a)     Less than 29 weeks gestational age (b)     29-32 weeks gestational age 

  

 

For those infants born at 29 to 32 weeks, although the best-fit line approached the line of no 

difference (i.e. 45º), some of the points fell far from it (Figure 6.6b).  This was likely to be 

because most of the predicted probabilities are very small for this group (mean = 0.016, 

maximum = 0.51) and the poor appearance of the calibration plot may, in part, be due to the 

small number of observations with high predicted probabilities.  To reduce the influence of 

these few observations, the plot was re-drawn using different strata: (0 ≤ π < 0.01); (0.01 ≤ π 

< 0.02); (0.02 ≤ π < 0.03); (0.03 ≤ π < 0.04); (0.04 ≤ π < 0.05); (0.05 ≤ π < 0.1); (0.1 ≤ π < 

0.2); (0.2 ≤ π < 0.3); (0.3 ≤ π < 0.5); (0.5 ≤ π ≤ 1.0) (Figure 6.7). 

Figure 6.7 Calibration plot: 29-32 weeks gestational age 
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There was still some evidence that the model overestimated mortality.  However, the 

difference between the calibration line and the reference line was small, especially over the 

range of predicted mortality obtained from the model. 

Discrimination of the model 

The ability of a predictive model to discriminate between outcomes is usually measured by 

the area under the Receiver Operator Characteristic (ROC) curve (§6.3.1).  ROC curves for 

the model are shown in Figure 6.8, together with curves for two subsets of infants defined by 

gestational age. 

Figure 6.8 ROC curves for ‘full’ model 

 

The value for the area under the ROC curve for all of the data was 0.940 (s.e. = 0.007); such a 

value has been described as ‘outstanding’ (Hosmer & Lemeshow, 2000:162).  When the 

observations are considered by gestational age the values were 0.861 (s.e. = 0.014) for the 22 

to 28 week infants and 0.893 (s.e. = 0.040) for the 29 to 32 week infants, both considered 

‘excellent’.  It was noted that both of these values were less than that for all of the data.  This 

was because gestational age was a very strong predictor of mortality and analysing 

sub-groups based on gestational age reduced its effect. 

All of these values compared well with the values for gestational age alone: all infants AROC = 

0.881; 22-28 weeks AROC = 0.752; 29-32 weeks AROC = 0.641. 

Estimated Standardized Mortality Ratios 

After adjusting for all of the variables, the lower limit of the estimated 95% confidence 

interval for Unit 6 is still greater than one (Figure 6.9).  It is also of interest to note the 

estimated interval for Unit 16, which now has its lower limit at just below the value one. 
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Figure 6.9 Estimated Standardized Mortality Ratios: full model 

 

6.6 Reduced Model 

Some of the variables in the full model, described in the previous Section, did not reach 

statistical significance at the 10% level.  While it is recognised that this does not mean that 

they are not clinically important, nor that they do not have an impact on the estimated SMRs, 

the introduction of variables into a logistic regression model increases the variance of the 

parameter estimates (Robinson and Jewell, 1991).  Therefore, it may useful to remove 

unnecessary variables from the model, to see if the precision of the parameter estimates 

increases without substantially changing the point estimates. 

6.6.1 Model selection method 

The process of model selection is important, as different methods can often produce different 

‘optimal’ models (Agresti, 1990:218-219).  The first choice of a data driven method to model 

selection is the ’best subsets’ approach, although this can require the estimation of many 

parameters in many models resulting in problems for some statistical packages (Hosmer and 

Lemeshow, 2000:134-135).  This was the case with these data.  It was, therefore, decided to 

use forward stepwise model selection.  The process starts from the null model and terms are 

added according to the value of the score chi-square statistic.  The term with the largest value 

is included in the model if it is statistically significant.  At each step terms may also be 

removed from the model if their removal, as measured by the Wald test, does not produce a 

statistically significant change in model fit (SAS Institute Inc., 1999:1945-1946).  The process 

continues until no other term is added to the model or if the term just added is the only one to 

be excluded.  For this analysis the significance levels for inclusion and exclusion were both 
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set at 10%.  To obtain the reduced model, all of the variables in the full model were 

considered for inclusion, as were quadratic terms for gestational age and birth weight, and all 

possible two-way and three-way interactions.   

Although such data-driven model selection procedures are commonly used (Armitage and 

Berry, 1994:321-322; Hosmer and Lemeshow, 2000:116), it is acknowledged that their use 

can induce problems (Harrell, 2001:56-57).  One of these arises from the multiple 

comparisons made during the model selection procedure, leading to p-values that are too 

small.  However, for this analysis it was the accuracy of the predicted values that was of 

principal importance, rather than the statistical significance of the included variables or the 

composition of the set of included variables themselves, and so this was not a problem 

(Bland, 1995:323).  While a clinically plausible model may increase the confidence of 

potential users of the model, this is not an aim of the modelling process here. 

6.6.2 Reduced model 

All data without missing values for the variables in the model were included.  The final 

‘reduced’ model was estimated using 2885 observations (Table 6.2). 

Table 6.2 Data in reduced model 

  Observed  Missing 
Unit Infants Died (%) Infants Died 

1 205 21 (10.2) 7 0 
2 265 24 (9.1) 18 6 
3 38 2 (5.3) 0 0 
4 139 5 (3.6) 3 1 
5 322 38 (11.8) 11 3 
6 372 51 (13.7) 6 3 
7 227 22 (9.7) 16 7 
8 104 4 (3.9) 20 4 
9 32 0 (0) 3 1 
10 141 5 93.6) 5 0 
11 421 55 (13.1) 24 7 
12 190 5 (2.6) 6 0 
13 126 2 (1.6) 10 1 
14 85 1 (1.2) 5 1 
15 122 10 (8.2) 2 0 
16 96 6 (6.3) 4 0 

Total 2885 251 (8.7) 140 34 
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The final model contained terms for gestational age, sex, birth weight (up to quadratic), Apgar 

score at one minute, base excess and an interaction between base excess and birth weight 

(Table 6.3).  An interaction between maximum base excess and birth weight was the only 

term included here but not in the full model. 

Table 6.3 Parameter estimates: reduced model 

Variable Group β̂  s.e. P-value 

Intercept  12.40 1.32  

Gestational age (week)  -0.28 0.06 < 0.0001 

Sex Female 
Male 

Reference 
0.40 

 
0.17 

0.022 

Birth weight (g) Linear 
Quadratic 

-0.0096 
0.0000024 

0.0013 
0.0000005 

 
< 0.0001 

Apgar  -0.13 0.04 0.0004 

Base excess > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
-0.55 
-1.32 
-0.72 

 
0.76 
0.64 
0.83 

 

Base excess * birth weight > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.0010 
0.0026 
0.0029 

 
0.0009 
0.0007 
0.0008 

0.0002 

(AROC = 0.932: Ĉ  = 6.43 ~ 2
8χ , p = 0.60) 

 

6.6.3 Model checking 

The validity of the reduced model was examined using the same approach as that in §6.5.2. 

Assessment by deletion 

There were four observations that were poorly predicted by the model, as measured by 

changes in the Pearson chi-square statistic ( 2X∆ ) upon deletion of the observation from the 

model (Figure 6.10).  Inspection of these observations revealed that they were all infants of 

high gestational age (30 to 32 weeks), of appropriate birth weight (1485 to 1980g), and within 
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the range of base excess measurements considered to be normal, but who died before 

discharge from neonatal care.  Each had a low predicted probability of death from the model 

(≤ 0.005) and, therefore, a large residual.  These included the two observations noted with 

high values for 2X∆  from the full model (Figure 6.1). 

Figure 6.10 Change in Pearson chi-square statistic 

 

The same four observations also had relatively high values for the change in deviance ΔD 

(Figure 6.11).  Three of these observations were those found to have large values of ΔD from 

the full model (Figure 6.2).  The values recorded for these observations were checked against 

the TNS forms and were found to be genuine observations.   

Figure 6.11 Change in deviance 
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All of the values of the DFBETAs were less than 1.0 (Appendix H), the minimum value 

suggested as signifying that an observation has a significant effect on the value of a parameter 

estimate (Hosmer & Lemeshow, 2000:180).   

Once again, it was not the values of the parameter estimates themselves that were of primary 

importance, rather it was of more interest to consider changes in the vector of parameter 

estimates as a whole; iβ̂∆ .  In absolute terms the values were not large as all fell below 0.50.  

However, there were two observations with large values of iβ̂∆  relative to the other 

observations (Figure 6.12).  One of these was one of the four observations identified in the 

previous plots.  The other observation related to a relatively heavy (2250g) 32 week infant 

with a good Apgar score (9) but poor maximum base excess (-11.6mmol/L).  Inspection of the 

individual DFBETAs for this observation (Appendix H) showed relatively high values for 

birth weight (-0.29) and the square of birth weight (0.33).  While relatively extreme, none of 

the values were large in absolute terms. 

Figure 6.12 Change in model parameter estimate values 

 

 

Internal model validation 

The jacknife predicted probabilities were estimated using the one-step estimates outlined 

above (6.2) and are shown in Figure 6.13.  There was good agreement between the predicted 

probabilities from the model and the jacknife estimated probabilities (Figure 6.13). 
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Figure 6.13 Cross-validated predicted probabilities 

 

 

Calibration 

The calibration of the model was investigated using the same approach as that described for 

the full model (§6.5).  The calibration curve for all of the data is shown in Figure 6.14.  There 

was good agreement between the observed and predicted mortality rates.  Curves for two 

groups based on gestational age were also investigated (Figure 6.15). 

Figure 6.14 Calibration curve: reduced model 
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Figure 6.15 Calibration curves by gestational age group: reduced model 

(a)    ≤ 28 weeks gestational age (b)    ≥ 29 weeks gestational age 

  

 

Once again the calibration of the model is questionable for those infants born at 29 weeks or 

over (Figure 6.15 b).  However, there were only five observations with a predicted probability 

of death greater than 0.3, of which only one was greater than 0.4, so it was difficult to draw 

definitive conclusions from this plot. 

Discrimination of the model 

The ability of the model to discriminate between outcomes was investigated using the area 

under the Receiver Operator Characteristic (ROC) curve (§6.3.1).  The value for the area 

under the ROC curve for all of the data was 0.932 (s.e. = 0.008), only slightly less that that 

estimated for the ‘full’ model (i.e. 0.940).  When the observations were considered by 

gestational age, the values were 0.846 (s.e. = 0.015) for the 22 to 28 week infants and 0.878 

(s.e. = 0.037) for the 29 to 32 week infants, both considered ‘excellent’ (Figure 6.16). 
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Figure 6.16 ROC curves: reduced model 

 

 

Estimated Standardized Mortality Ratios 

When SMRs were estimated using the reduced risk-adjustment model, the lower limit of the 

estimated 95% confidence interval for Unit 6 still took a value greater than one (Figure 6.17). 

Figure 6.17 Estimated standardized mortality ratios: reduced model 

 

 

6.7 Comparison of ’Full’ and ‘Reduced’ Models 

It is of interested to compare the predicted values from the two models presented in the 

previous Sections: ‘Full’ and ‘Reduced’ (Figure 6.18). 
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Figure 6.18 Predicted probability of mortality by risk-adjustment model 

 

There were some differences between the predicted values from the two models.   However, 

as was seen in Figure 6.5 and Figure 6.14, the majority of predicted values, for both models, 

were less than 0.1.  If the individual differences are inspected (Figure 6.19), it can be seen 

that, although there are some large differences, most are less than 0.01.  In addition, these 

differences seem to follow a symmetrical (and leptokurtic) distribution. 

Figure 6.19 Differences in predicted mortality by model 

 

It was concluded that these differences were unlikely to alter any conclusions regarding the 

performance of an individual unit.  Inspection of the estimated SMRs (Figure 6.9 and Figure 

6.17) revealed minor differences between the estimates from the two models (Figure 6.20).  In 

both cases, only Unit 6 did not have an estimated 95% confidence interval that contained the 

value one. 



RISK-ADJUSTED MORTALITY 

BRADLEY MANKTELOW PHD THESIS 225 

Figure 6.20 Estimated SMR: full model and reduced model 

 
   Full model 
   Reduced model 

Although, in this case, the estimated SMRs were similar, there may be some evidence that 

important risk-adjustment variable were missing from the reduced model.  The observed, 

unadjusted, mortality rates showed a trend of increasing rates with increasing unit size, as 

measured by the number of infants (Figure 4.1).  This reflected the increased morbidity of 

infants in the larger units, as the sicker infants are often transferred from small units to large 

centres when addition facilities are available.  This phenomenon is suggested by the increased 

mean predicted probability of death, as estimated by the full model, with increasing numbers 

of admissions (Figure 6.21). 

Figure 6.21 Mean predicted probability of death by number of admissions 

 

If the risk-adjustment model accounted for all potential confounders the correlation between 

mortality rates and units size would no longer exist, if the underlying mortality rates were the 

same for all units.  Under those circumstances a plot of SMRs against unit size would be 
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expected to show a ‘funnel’ pattern, with increased random variation associated with the 

small units.  This can be seen when the estimated SMRs from the full model are plotted 

against unit size (Figure 6.22).  This is a repeat of the methodology outlined in §3.3.2.  As 

discussed there, once risk-adjusted outcomes are investigated the error around an estimate 

becomes a function of both the number of observation in a unit and of its case-mix.  

Therefore, smooth confidence limits (as shown in Figure 3.4) do not exist. 

Figure 6.22 Estimated SMR by unit size: full model 

 

However, a plot using the estimated SMRs from the reduced model showed some evidence of 

an excess of small units with low risk-adjusted mortality rates (Figure 6.23).  This suggests 

that risk-adjustment was incomplete in this model and that clinically important variables were 

excluded from the reduced model. The relatively high mortality rates for the larger units 

shown in Figure 6.23 may result from genuinely higher rates in such units.  However, the lack 

of evidence for such a pattern from the full risk-adjustment model (Figure 6.22) contradicts 

such a conclusion. 

Figure 6.23 Estimated SMR by unit size: reduced model 
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6.8 Validation of ‘Reduced’ Model with 2003 Data 

Although the aim of this thesis was to investigate births from 2000 to 2002, it was of interest 

to determine whether the reduced model was appropriate for subsequent cohorts of births.  

Trent Neonatal Survey data for births in 2003 became available during the writing of this 

thesis, and applying the model to these data may give an insight to its merit. 

In 2003, there were 1108 infants admitted into Trent NICUs who met the inclusion criteria 

outlined in Chapter 2.  One hundred and two of these infants (9.2%) died before discharge.  

However, 102 had missing data (101 for missing Apgar scores at one minute, and one for 

birth weight).  This left 1006 infants of whom 91 died before discharge (9.0%). 

The parameter estimates from the ‘reduced’ model (Table 6.3) were used to obtain an 

estimated predicted probability of death for each infant.   

The area under the ROC curve indicated outstanding discrimination (AROC = 0.913: s.e. = 

0.017).   

The calibration of the ‘reduced’ model applied to TNS data from 2003 was investigated using 

a calibration plot (Figure 6.24) and the Hosmer & Lemeshow goodness-of-fit test ( Ĉ  = 24.23 

~ 2
8χ , p = 0.0021).  The total number of predicted deaths was 86.9, underestimating the true 

number of deaths (91).  The calibration plot suggested that the probability of death was 

underestimated for high-risk infants in particular. 

Figure 6.24 Calibration curve for ‘reduced’ model applied to 2003 data 

 

However, a plot such as Figure 6.24 is disproportionately influenced by a relatively small 

number of observations with high predicted probabilities.  An alternative plot can be created 
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using deciles of predicted risk, identical to those defined by the Hosmer and Lemeshow 

goodness-of-fit test (§6.3.2).  In this case, each point represented approximately equal 

numbers of observations (Figure 6.25).  There was still slight evidence that the model 

underestimated the risk of mortality for high-risk infants. 

Figure 6.25 Calibration plot using deciles of risk 

 

Further information on the calibration of the model could be obtained from Cox’s modelling 

approach as the model was derived using different data from the validation data set (§6.3.3).  

The estimated model parameters shown no statistical evidence of poor calibration: α̂  = 0.01 

(s.e. 0.17), β̂  = 0.95 (s.e. 0.08).  This was confirmed by the likelihood ratio tests (Table 6.4). 

Table 6.4 Likelihood ratio tests for calibration and refinement 

Null hypothesis Test Chi-square d.f. p-value 

H0: α = 0, β = 1 L(0,1) – L(α,β) 0.71 2 0.70 

H0: α =0|β = 1 L(0,1) – L(α,1) 0.33 1 0.57 

H0: β = 1|α L(α,1)– L(α,β) 0.38 1 0.54 

Although the likelihood ratio tests showed no evidence of poor calibration, the plots shown 

above suggested that re-estimation of the parameter estimates may be appropriate (Ivanov et 

al.  1999).  Therefore, the model parameters were re-estimated using the 2003 TNS data 

(Table 6.5). 

Most values for the parameter estimates were little different to those from the 2000-2002 data 

(Table 6.3).  The largest differences were associated with low values of recorded base excess.  

Due to the smaller sample size, i.e. only one year’s data, the standard errors were larger for 

the estimates based on the observations from 2003, leading to larger p-values. 
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Table 6.5 Parameter estimates for ‘reduced’ model from 2003 data 

Variable Group β̂  s.e. P-value 

Intercept  12.53 2.17  

Gestational age (week)  -0.31 0.09 0.0008 

Sex Female 
Male 

Reference 
0.01 

 
0.30 

0.97 

Birth weight (g) Linear 
Quadratic 

-0.0082 
0.0000025 

0.0017 
0.0000005 

 
< 0.0001 

Apgar  -0.17 0.07 0.010 

Base excess > -7.0 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
-0.57 
-2.04 
-2.48 

 
0.85 
1.84 
1.50 

 

Base excess * birth weight > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.0004 
0.0019 
0.0004 

 
0.0009 
0.0023 
0.0013 

0.79 

(AROC = 0.919: Ĉ  = 11.66 ~ 2
8χ , p = 0.17) 

The value of the area under the ROC-curve was high (AROC = 0.919: s.e. = 0.016) and the 

Hosmer & Lemeshow goodness-of-fit test showed no evidence of poor calibration (p = 0.17).  

The calibration curve, based on ten groups defined the value of predicted probability, showed 

slight evidence of poor calibration (Figure 6.26).   

Figure 6.26 Calibration curve for recalibrated 2003 data 
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However, once again each point represents a different number of infants and a small number 

of observations can influence the plot.  When the curve was redrawn using the cut-offs from 

the Hosmer & Lemeshow goodness-of-fit test the calibration appeared to be excellent (Figure 

6.27).  Therefore, once recalibrated the model described the 2003 TNS data well. 

Figure 6.27 Calibration curve for recalibrated 2003 data using deciles of risk 

 

 

6.9 Sensitivity Analyses 

Decisions have been made in the modelling process that may influence the results of the 

analysis.  First, in §5.3.1 the use of the ‘deviation from the mean’ parameterization for the 

neonatal units was proposed to reduce the influence of the larger units.  Second, infants 

without recorded Apgar scores at one minute were excluded from the analyses.  Also, a 

stepwise model selection procedure was used to obtain the reduced model.  These choices are 

explored in this Section.  The probabilities estimated by the reduced model are also compared 

to the probabilities obtained using CRIB and CRIB II as the risk-adjustment methods. 

6.9.1 Choice of parameterisation for the reference units 

The ‘deviation from the mean parameterization’ was chosen in order to reduce the influence 

of the larger unit by comparing the outcomes in the unit of interest with the mean outcome of 

the reference units.  This parameterisation gives equal weights to each unit rather than each 

infant.  While the reference log odds were given at the mean of the log odds of the reference 

units, there was concern that the log odds for each reference unit are not estimated with equal 

precision.  In particular, the very small units may have associated log odds with very large 
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variances.  Such poor estimates will affect the estimated mean log odds, particularly if there 

are a small number of reference units. 

In order to assess any bias introduced by poorly estimated unit effects, the ‘reduced’ model 

was repeated using the ‘rest of Region’ parameterisation described in §5.3.1.  The model to 

estimate the model parameters for the reference data βR was, where Unit j is the unit of 

interest: 

loge RiRiR
Ri

Ri βX+β=







π−

π
01

      (6.5) 

where:  XR is the design matrix for the risk-adjustment variables 

  βR  is the vector of parameter values for the risk-adjustment variables 

Hence, applying the parameter estimates to the observation from Unit j gives the estimated 

probability of death for an individual in unit j is: 
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Summing these gives the expected total deaths in Unit j: i.e. ∑
=

π
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i
i

1
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Since (6.4) has no term for the reference units, all of the reference observations are given 

equal weight.  This model was applied to the TNS data, using the risk-adjustment variables 

from the ‘reduced’ model Figure 6.28. 

Figure 6.28 Estimated SMRs from reduced model using ‘rest of Region’ parameterisation 
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When compared to the reduced model with deviation contrasts (Figure 6.17), this change in 

parameterization produced lower point estimates for the SMRs and lower values for the limits 

of the confidence intervals (Figure 6.30).  

Figure 6.29 Estimated SMR: deviation and ‘rest of Region’ parameterisation 

 
  Deviation paramerisation 
  Rest of Region parameterisation 

 This behaviour is the same as that seen in §5.3.1.  The change in parameterisation did not 

change the conclusions from the analysis: there was still evidence that Unit 6 has a SMR 

greater than unity. 

6.9.2 Missing Apgar scores 

The second modelling decision investigated was the inclusion of Apgar score at one minute in 

the model.  The primary reason for investigating the sensitivity of the model to the inclusion 

of this variable was that 139 (4.6%) of the infants did not have a value recorded, of whom 34 

(24.5%) died.  However, there are two other reasons to investigate this.  First, since the only 

death recorded for Unit 9 had a missing Apgar score, no SMR has been estimated for this 

unit.  Second, the use of Apgar score may be criticized as it may potentially suffer from poor 

inter-rater reliability (Letko, 1996; Livingston, 1990) or be open to deliberate manipulation. 

The reduced model was repeated without the inclusion of Apgar score at one minute and the 

SMRs estimated (Figure 6.30).  The exclusion of Apgar score did not alter the conclusions of 

the analyses.  There were only small changes to the point estimates and the confidence limits, 

and Unit 6 remained the only unit to have a lower limit for the 95% confidence interval above 

the value one. 
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Figure 6.30 Estimated Standardized Mortality Ratios: reduced model not including Apgar 

score at one minute 

 

6.9.3 Model selection procedure 

The model selection procedure for the reduced model developed in §6.6 was forward 

stepwise.  However, it is known that different selection methods can lead to different models 

(Bland, 1995).  To investigate the sensitivity of the data to the model selection procedure two 

further approaches were investigated: forward selection and backward elimination. 

Forward selection 

The forward selection method was similar to the forward stepwise method carried out in §6.6.  

However, in this case terms were not excluded from the model at subsequent steps once they 

had been included in the model.  As before, up to three-way interaction terms were considered 

for inclusion and the significance level for inclusion was set at 10%. 

The final model selected using this procedure was the same as the reduced model obtained 

using the forward stepwise method (Table 6.5). 

Backward elimination 

For the backward elimination approach all potential terms and interactions were first included 

in the model.  Terms were then removed from the model in order of their statistical 

significance.  One removed a term could not be reintroduced into the model.  The process 

stopped once only statistically significant terms remained in the model.  The significance 

level for elimination was set at 10%. 
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The model selected contained more terms (Table 6.6) than that obtained using the forward 

selection methods. 

Table 6.6 Model parameter estimates: Backwards selection 

Variable Group β̂  s.e. P-value 

Intercept  19.56 2.88  

Gestational age (week)  -0.48 0.11  

Sex Female 
Male 

Reference 
-1.33 

 
0.45 

 

Birth weight (g) Linear 
Quadratic 

-0.011 
0.0000029 

0.0015 
0.0000005 

 
< 0.0001 

Apgar at 1 minute  -0.076 0.095  

Ethnicity European 
South Asian 
Other/unknown 

Reference 
-0.61 
0.42 

 
0.61 
0.58 

 

Congenital malformation None 
Present 

Reference 
-2.01 

 
1.07 

 

Congenial malformation * ethnicity Present*European 
Present*South Asian 
Present*Other/unknown 

Reference 
0.41 
3.22 

 
1.12 
1.25 

0.037 

Base excess > -7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.50 

-1.94 
0.56 

 
1.04 
0.88 
1.27 

 

Base excess * Birth weight > -7.0 (mmol/L)* BWT 
-7.0 to –9.9 * BWT 
-10.0 to –14.9  * BWT 
≤ -15.0 * BWT 

Reference 
0.00073 
0.0019 
0.0013 

 
0.00096 
0.00073 
0.0011 

0.082 

Multiple birth Singleton 
Multiple 

Reference 
7.44 

 
4.48 

 

Multiple birth * Gestational age Singleton * gestation 
Multiple * gestation 

Reference 
-0.44 

 
0.18 

0.013 

Multiple birth * Base excess Multiple * > -7.0 
Multiple * -7.0 to –9.9 
Multiple*-10.0 to –14.9 
Multiple * ≤ -15.0   

Reference 
0.17 
2.18 
1.46 

 
0.73 
0.76 
1.03 

0.026 

IMD  0.00014 0.017  

IMD * Sex IMD * Female 
IMD * Male 

Reference 
0.042 

 
0.011 

0.0002 

IMD * Apgar at 1 minute  -0.0042 0.0024 0.073 

IMD * Base excess IMD * > -7.0 
IMD * -7.0 to –9.9 
IMD * -10.0 to –14.9 
IMD * ≤ -15.0 

Reference 
-0.030 
0.0058 

-0.031 

 
0.015 
0.015 
0.019 

0.063 

Corticosteroids No 
Yes 

Reference 
-7.11 

 
2.74 

 

Corticosteroids * Gestational age No 
Yes 

Reference 
0.25 

 
0.10 

0.013 

Fetal distress No 
Yes 

Reference 
-1.55 

 
0.50 

 

Fetal distress * Sex No * Male 
Yes * Male 

Reference 
0.71 

 
0.39 

0.072 

Fetal distress * Apgar at 1 minute No * APGAR 
Yes *APGAR 

Reference 
0.22 

 
0.081 

0.0073 
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Fetal distress * Congenital malform. Yes * None 
Yes * Present 

Reference 
1.92 

 
1.09 

0.078 

Mode of delivery Vaginal 
CS: labouring 
CS: non-labour 

Reference 
0.48 

-0.59 

 
0.73 
0.51 

 

Mode of delivery * Base excess CS:labour* > -7.0 
CS:labour* -7.0 to –9.9 
CS:labour*-10.0 to–14.9 
CS:labour* ≤ -15.0 
 
CS:non-lab* > -7.0 
CS:non-lab* -7.0 to–9.9 
CS:non-lab*-10.0 to–14.9 
CS:non-lab* ≤ -15.0 

Reference 
0.88 
1.42 
1.95 

 
Reference 

-0.16 
1.65 
2.56 

 
0.82 
0.88 
1.04 

 
 

0.56 
0.58 
0.93 

0.0094 

Mode * Multiple birth Vaginal * Multiple 
CS: labouring * Multiple 
CS: non-labour * Multiple 

Reference 
-1.70 
1.10 

 
0.99 
0.73 

0.032 

Mother’s age (year)  -0.011 0.018  

Mother’s age * Multiple birth Age * Single 
Age * Multiple 

Reference 
0.11 

 
0.05 

0.035 

Gravidity Prima 
Secund 
Terce 

Reference 
-0.59 
0.53 

 
0.43 
0.36 

 

Gravidity * Ethnicity Secund * European 
Secund * South Asian 
Secund * Other/unknown 
 
Terce * European 
Terce * South Asian 
Terce * Other/unknown 

Reference 
1.11 
0.21 

 
Reference 

-0.46 
-1.70 

 
0.87 
0.85 

 
 

0.76 
0.78 

0.049 

Gravidity * Mode of delivery Secund * Vaginal 
Secund * CS: labouring 
Secund * CS: non-labour 
 
Terce * Vaginal 
Terce * CS: labouring 
Terce * CS: non-labour 

Reference 
-0.59 
0.12 

 
Reference 

-1.40 
0.72 

 
0.84 
0.60 

 
 

0.68 
0.49 

0.043 

Infection No 
Yes 

Reference 
-0.18 

 
0.26 

 

Infection * Multiple birth Yes * Singleton 
Yes * Multiple 

Reference 
1.55 

 
0.67 

0.020 

 

Although the model showed good discrimination (AROC = 0.954), there was evidence of poor 

calibration ( Ĉ  = 34.88 ~ 2
8χ , p < 0.0001).  However, the value for the Akaike Information 

Criterion (AIC) was 888.99, compared to 971.38 for the model selected using forward 

stepwise and 930.81 for the full model. 

The predicted individual probabilities were compared to those from the forward stepwise 

model and those from the full model (Figure 6.31).  Although differences were noted most 

were small in value. 
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Figure 6.31  Predicted probability of mortality by risk-adjustment model 

  

  

However, the complexity of the model derived through backward elimination suggested 

statistical over-fitting of the data.  Although this model showed excellent discrimination, as 

measured by the area under the ROC-curve (AROC = 0.954), the improvement was slight 

compared to the full model (AROC = 0.940) and the model derived using forward selection 

methods (AROC = 0.932).  In addition, there was some evidence of poor calibration, not seen 

for the other two models.  This model was also more complex than the alternatives.  

Therefore, it appears to offer no advantage over either of the other models. 

6.9.4 Comparison with CRIB & CRIB II 

The neonatal mortality risk-adjustment method used most often within the UK is CRIB, and 

its update CRIB II (§4.4.1).  The approach taken in this thesis to develop a risk-adjustment 

model, rather than to use a pre-existing scoring system such as CRIB, was defended in §4.6.  

However, as described previously, TNS does collect data to allow the calculation of CRIB 

and, apart from temperature at admission, also CRIB II. 
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Temperature was not available here for two reasons: first, it had not previously been recorded 

by TNS (although collection was started in January 2004) and, second, it was felt that 

temperature at admission could be influenced by early neonatal care (§4.3).  Hence, the CRIB 

II risk-adjustment variables available were gestational age, birth weight, sex and base excess, 

with interactions between the first three of these variables included in the score.  In the model 

developed in Chapter 6 these same four variables wrere included, together with Apgar score at 

1 minute and an interaction between birth weight and base excess.   

The inclusion of Apgar score may be controversial, as it is open to manipulation, either 

intentional or unintentional.  On the other hand, Apgar score has been shown to be associated 

with mortality (§4.4.8).  Its advantage in this setting is that it is not based on gestational age 

or weight at birth and, therefore, may be able to grade the morbidity of infants of the same 

gestational age and weight.  While much of the mortality rates can be ‘explained’ by these 

two important variables, it is the ‘fine-tuning’ of risk adjustment scores that is difficult.  

However, in this case, it was shown that excluding this variable from the model did not alter 

the final conclusions (§6.9). 

To investigate any similarities between these risk-adjustment methods, two logistic regression 

models were estimated using CRIB and CRIB II as single explanatory variables and the 

predicted probabilities of death ( iπ̂ ) were estimated. 

In general, there was strong correlation between the predicted probabilities of death using the 

three approaches (Table 6.7).   

Table 6.7 Correlation of predicted values by risk-adjustment method 

Risk-adjustment Spearman’s rank correlation coefficient (ρ) 

CRIB & CRIB II 0.80 

CRIB & Model 0.85 

CRIB II & Model 0.94 

 

The similarity between the estimates from the risk-adjustment model developed in this thesis 

and those from CRIB II was not surprising as, as discussed above, the reduced model derived 

in this thesis (§6.6) is similar to CRIB II.  It should also be noted that for CRIB II the 

relationship between gestational age, birth weight and sex was derived using TNS data 

(Draper et al.  1999).   
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Figure 6.32 Comparison of predicted probabilities using CRIB and CRIB II 

 

Figure 6.33  Predicted probabilities using CRIB and CRIB II compared to reduced model 

  

 

Both the model derived using the data and the model with CRIB II showed no evidence of 

poor calibration, as measured by the Hosmer & Lemeshow Goodness-of-fit test (Table 6.8).  

All three models demonstrated excellent discrimination, with all three having areas under the 

ROC-curve of over 0.90.  However, the model derived in this thesis had the lowest value for 

the AIC. 

Table 6.8 Model fit statistics using different risk-adjustment methods 

 AROC H-L goodness of fit test AIC 

CRIB 0.923 11.2770 ~ 2
4χ : p = 0.024 1091.268 

CRIB II 0.914 4.2240 ~ 2
7χ : p = 0.75 1134.689 

Model 0.932 6.4330 ~ 2
8χ : p = 0.60 971.384 
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The use of CRIB or CRIB II (without temperature at admission) would not have changed the 

overall conclusions of the analysis, i.e. that Unit 6 had statistically extreme outcomes, but the 

estimates SMRs would have differed (Figure 6.34 & Figure 6.35). 

Figure 6.34 Estimated standardized mortality ratios adjusted for CRIB 

 

Figure 6.35 Estimated standardized mortality ratios adjusted for CRIB II 

 

The use of CRIB or CRIB II would not have offered any advantage over the model developed 

in this Chapter, except perhaps for ease of use.  On the other hand, the development of models 

in this Chapter has ensured that risk-adjustment has fully taken into account neonatal 

outcomes within the Trent Region. 

In fact, the similarity between CRIB II and the reduced model lends confidence to both 

methods. 
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6.10 Bayesian Analyses 

To illustrate a Bayesian approach, the reduced model was re-estimated to obtain the parameter 

estimates using Gibbs sampling, specifically using the WinBUGS software (§3.2.2) 

(Spiegelhalter et al.  1999b).  All of the data were included, where possible, and vague prior 

distributions were specified for all hyper-parameters: Normal(0, 10002).  Five chains, with 

diverse starting values, were inspected over a 1,000 iteration ‘burn-in’ was used to ensure 

sampling from the correct target distributions (Figure I.1).  Once this had been confirmed a 

further 10,000 iterations were sampled to provide the parameter estimates.  The WinBUGS 

code used is shown in Appendix I.1. 

Estimation of parameter estimates for all data 

The parameter estimates from the Bayesian model are shown in Table 6.9.  The equivalent 

estimates from the classical model are shown for comparison, but the estimated value of the 

intercept has changed from Table 6.3 as the Bayesian model used gestational age centred at 

30 weeks, to reduce autocorrelation in the sampled values. 

Table 6.9 Bayesian fixed effects parameter estimates 

  SAS WinBUGS 
Variable Group β̂  s.e. β̂  s.e. 

Intercept  -4.94 0.43 -5.01 0.43 

Gestational age 
(week) 

 -0.28 0.06 -0.29 0.05 

Sex Female 
Male 

Reference 
0.39 

 
0.17 

 
0.41 

 
0.17 

Birth weight (g) Linear 
Quadratic 

-2.44 
2.37 

0.66 
0.49 

-2.54 
2.31 

0.64 
0.48 

Apgar  -0.13 0.04 -0.13 0.04 

Base excess >-7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.88 
2.62 
3.62 

 
0.61 
0.47 
0.51 

 
0.83 
2.63 
3.66 

 
0.63 
0.47 
0.51 

Base excess  
* birth weight 

>-7.0 (mmol/L) 
-7.0 to –9.9 
-10.0 to –14.9 
≤ -15.0 

Reference 
0.95 
2.63 
2.90 

 
0.86 
0.68 
0.79 

 
0.89 
2.62 
2.91 

 
0.89 
0.68 
0.79 
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The estimates for the parameters were very similar to those obtained using the classical 

approach.  Density, auto-correlation and trace plots for each parameter are shown in Appendix 

I.1.  There was no evidence of poor mixing or inappropriately high auto-correlation for any of 

the parameter estimates. 

Estimation of SMRs 

The ‘reduced’ model was then used to obtain risk-adjusted SMRs for all of the units, through 

the model described in § 5.8.4 (5.54), where for Unit j: 
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nj is the number of observations in Unit j 

βR0 is the estimate of the mean log odds of the reference units obtained from a 

logistic regression model with the reference data; see (5.4). 

βR is the vector of parameter estimates for the risk-adjustment variables 

obtained from a logistic regression model with the reference data 

The parameter estimates Rβ̂  are obtained using data from the other 15 units: 

   k
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++= ββ XβR  

X is the design matrix for the risk-adjustment variables and the unit indicator 

variables Ik follow the deviation parameterization described in §5.3.1. 

The prior distributions were specified for all of the model parameters: βR0, βR, β0, βj.  As was 

shown in §5.8.4, the choice of distribution was important as some of the units had very few 

observations (Spiegelhalter et al.  1999a).  The parameter βR0 represented the log odds of 

deaths, for the reference population, where the values of the risk-adjustment variables are 

zero.  The observed values for gestational age and birth weight were centred (at 30 weeks and 
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1500g respectively) to reduce auto-correlation of the parameter estimates between iterations, 

and so βR0 represented the log odds of deaths for an infant born at 30 weeks and 1500g, and 

with all other variables taking the value zero.  The previously estimated probability of death 

for a girl born at this weight and gestational age was 0.01 (Draper et al.  1999), giving log 

odds of deaths of 6.4
01.01

01.0log −≈






−e .  This value was selected as the mean of the prior 

distribution for βR0 but with a large variance: βR0 ~ Normal(-4.6, 10002). 

The vector βR contains the parameters values for the risk-adjustment variables for the 

reference population on a log odds scale.  In the modelling here, each component of βR was 

given the prior distribution Normal(0, 10002).  The distribution Normal(0, 1) was specified as 

the prior probability distribution for each of the parameter estimates (βk) for the unit indicator 

variables, as discussed in §5.8.4. 

The equivalent parameters for the unit of interest are given by β0 and βj.  The data available to 

estimate values for the parameters were sparse for all but a few units.  Since, a priori, there 

was no reason to assume that the parameter values for the unit of interest were different from 

those of the reference population, the mean of the prior distributions for the unit of interest 

were specified as the value of the reference population estimates but with a smaller variance 

than the parameters of the reference units: e.g. β0 ~ ( 0
ˆ

Rβ ,10).  Since the estimates were 

obtained in a single model, the value of 0
ˆ

Rβ  used was the current value at each iteration.  The 

cut() function was used in the WinBUGS code to avoid the potential for flowback, thus 

avoiding any possibility of the data from Unit j influencing the parameter estimates for the 

reference population. 

Alternative informative prior distributions could have been chosen derived from elicited 

beliefs, previous years’ data, or an adaptation of ‘sceptical priors’ (Spiegelhalter et al. 1994; 

Parmar et al. 2001).  However, the aim here was to illustrate the potential usefulness of a 

Bayesian approach, rather than to specifically investigate the influence of prior distribution on 

estimates obtained from this model. 

The posterior probability that the value of the SMR was under 3
2 , or over 2

3 , was estimated 

by monitoring the proportion of sampled values that lay outside these limits.  An example of 

the WinBUGS code used is given in Appendix I.2.  There was no evidence in any of the 

models for poor mixing or high auto-correlation (plots not shown). 
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Table 6.10 Bayesian estimated SMRs: reduced model 

Unit Estimated SMR    (95% CI) P(SMR<2/3) P(SMR>3/2) 

1 1.23 (0.92 to 1.64) 0.0003 0.085 

2 1.00 (0.69 to 1.40) 0.016 0.0073 

3 1.32 (0.67 to 2.36) 0.023 0.33 

4 1.52 (0.71 to 2.80) 0.018 0.52 

5 1.16 (0.87 to 1.52) 0.0002 0.029 

6 1.44 (1.13 to 1.83) <0.0001 0.37 

7 1.29 (0.91 to 1.78) 0.0001 0.18 

8 0.63 (0.26 to 1.19) 0.56 0.0021 

9 1.6 x 10-4 (1.5x10-10to1.44) 0.95 0.23 

10 0.75 (0.32 to 1.40) 0.37 0.013 

11 1.16 (0.89 to 1.48) <0.0001 0.019 

12 0.57 (0.22 to 1.12) 0.66 0.0017 

13 0.49 (0.09 to 1.51) 0.70 0.014 

14 0.30 (0.02 to 0.96) 0.90 0.0012 

15 1.11 (0.66 to 1.68) 0.026 0.077 

16 1.47 (0.71 to 2.57) 0.018 0.47 

 

Figure 6.36 Estimated standardized mortality ratios: Bayesian reduced model 

 

The values of the estimated SMRs (Table 6.10) were similar to those from the classical model 

(Table 6.3).  These small differences made no qualitative difference to the conclusions that 

could be drawn from the model through the estimated 95% confidence intervals, except in 

two cases.  In the Bayesian analysis the upper limit of the credible interval for Unit 14 fell just 
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below the value 1.00.  It has previously been shown in this thesis that the method of Hosmer 

& Lemeshow tends to produce confidence intervals with high values for the upper limits 

(§5.6).  This was especially true for small units, such as Unit 14.  The second difference is 

that, using the Bayesian approach, it was possible to estimate a SMR, and credible interval, 

for Unit 9.  This is discussed further in §6.11. 

A further advantage of the Bayesian approach is that probability statements could be made 

about the SMR: the probability that the true value of the SMR for each unit lies below 3
2 , or 

over 2
3  is shown in Table 6.10.  Smoothed posterior density functions are shown in Figure 

6.37.  Unit 4 was more likely than not to have a true SMR of over 2
3 : i.e. P(SMR> 2

3 ) > 0.5, 

while Units 8, 9, 12, 13 and 14 showed similar evidence for low SMRs. 

Figure 6.37 Smoothed posterior probablilty density functions for SMR 
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Comparison with frequentist approach 

The estimation of posterior probability distributions allowed straightforward clinical 

interpretations to be placed on model parameters, rather than solely relying on statistical 

criteria.  In both the frequentist and the Bayesian reduced models, Unit 6 had a 95% 

confidence (credible) interval that excluded the value one (Figure 6.38).  In the Bayesian 

analysis the estimated credible interval for Unit 14 also did not contain the value one but this 

was not seen in the frequentist analysis.  The tendancy for the Hosmer & Lemeshow method, 

of estimating confidence intervals for the SMR, to produce high upper limits has been noted 

previously (Figure 5.19). 

However, the Bayesian model also identified Units 8, 9, 12, 13 and 14 (where P(SMR< 3
2 ) > 

0.5) and Unit 4 (where P(SMR> 2
3 ) > 0.5) as units ‘more likely than not’ to have clinically 

extreme risk-adjusted mortality rates.  Therefore, the Bayesian approach potentially allows 

small units with extreme rates, but large confidence intervals, to be identified for further 

investigation, as well as the identification of large units with statistically significant, but 

clinically unimportant, rates. 

Figure 6.38 Frequentist and Bayesian estimated SMRs: reduced model 

 

 

6.11 Units with no observed deaths 

Unit 9 was excluded from the frequentist analyses estimating the SMRs, in §6.5, §6.6 because 

there were no observed deaths for this unit once observations with missing data were 

excluded.  The absence of deaths caused problems both when the unit was part of the 

reference population and when it was the unit under investigation.  In this case, imputation of 
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the missing Apgar value would have allowed the inclusion of all observations in the model 

(Zhang, 2003), and thus solved the problem of no events.  However, in other cases there may 

be units that genuinely have no observed deaths (or, although more unlikely, no observed 

survivors) over the time period under investigation.  This is particularly a problem when short 

time periods are used, the event is rare, or when the providers encounter small numbers of 

patients.  However, the problems outlined below are mathematical.  In principle, units with no 

observed deaths, and, indeed, with no observed survivors, should be included in the analyses 

as these are likely to be units with extreme performances. 

Part of reference population 

When using the deviation parameterization model set out in (5.4) (§5.3.1), the absence of 

observed deaths in a reference unit produces quasi-complete separation of the data.  This 

results in unstable parameter estimates from the logistic regression model (§3.4).  A potential 

solution is to use a different parameterization of the model that does not include parameters 

for the individual reference units, for example the ‘rest of Region’ and ‘weighted’ models 

illustrated in §5.3.1.  An alternative approach is to use a random effects model (§5.10), which 

would not require the estimation of unit-specific model coefficients.  However, potential 

disadvantages of both of these approaches have been discussed (§5.3.1 & §5.10) and it is 

unclear which method would be the most appropriate.  In this thesis such units (i.e. Unit 9) 

were excluded from the reference population, but it is recognised that, using such an 

approach, the mortality rate in the reference population may be upwardly biased. 

Unit under investigation 

Investigating outcomes in units with no observed deaths, such as Unit 9, presents a problem 

as some of the methods of estimating confidence intervals for the SMR discussed in §5.6 

cannot be used.  The three methods based on the Normal approximation that only include the 

uncertainty from the observed number of deaths (i.e. ‘with CC’, ‘without CC’ and ‘full’) can 

be applied to such units, as the uncertainty is quantified by [ ]( )∑ π−π ii 1 .  This approach has 

been taken by both the New York State Department of Health (2004) and Papworth Hospital 

(Papworth, 2005) for the reporting of results for cardiac surgeons.  However, it was shown in 

§5.7 that such methods perform poorly when the observed SMR is far from the null 

hypothesis (i.e. unity).  When applied to Unit 9 the estimated 95% confidence intervals were: 

 ‘With CC’  (-4.16 to 4.16) 

‘Without CC’  (-2.90 to 2.90) 
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‘Full’   (0.24 to 10.80) 

The first two methods produce intervals symmetrical about the point estimate for the SMR 

(i.e. zero), when negative values are implausible.  The coverage properties of such intervals 

are unknown, but are likely to be very poor.  The ‘full’ method generated a lower limit for the 

confidence interval that was greater than the point estimate (see also Appendix C.4).  This is 

clearly inappropriate. 

The other frequentist approaches set out in §5.6 would fail when the unit of interest has no 

observed events.  Both of the bootstrap methods would only produce simulated values for the 

SMR of zero, since the sample numerator would always be zero.  The extensions to the 

Normal approximation method proposed by Hosmer & Lemeshow (1995) and by Zhou & 

Romarno (1997) cannot be used as they require devision by the observed number of deaths; 

see (5.45) and (5.53). 

The Bayesian model developed in §5.6.4 offered a solution.  When applied to Unit 9 (using 

the conditions given in §6.10) the estimate for the SMR was 4106.1 −×  (95% credible interval: 
10105.1 −×  to 1.44), with P(SMR < 3

2 ) = 0.95 and P(SMR > 2
3 ) = 0.023.  However, it is 

unclear how sensitive these estimates are to the choice of prior distributions.  Alternative, 

plausible, prior distributions for β0 were investigated, keeping all other prior distributions the 

same as in §6.10.  The estimates for the SMR and the reported posterior probabilities were all 

sensitive to the choice of prior distribution (Table 6.11). 

Table 6.11 Estimated SMR for Unit 9 given various prior distributions 

Prior distribution 
β0 

SMR (95% CI) P(SMR < 3
2 ) P(SMR > 2

3 ) 

N(βR0, 10) 1.59 x 10-4 (1.54x10-10 to 1.44) 0.95 0.023 

N(0, 10) 2.64 x 10-3 (1.68x10-8 to 1.90) 0.91 0.039 

N(0, 102) 2.70 x 10-3 (1.80x10-8 to 1.91) 0.92 0.036 

U(-5, 5) 5.50 x 10-4 (3.12x10-10 to 1.61) 0.93 0.029 

 

An alternative Bayesian approach proposed only included the uncertainty from the expected 

number of death (Austin et al, 2001; Austin, 2002), that is, the numerator is the observed 

number of deaths.  From (6.6) this is given by: 
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  nj is the number of observations in Unit j 

βR is the vector of parameter estimates obtained from a logistic regression 

model with the reference data 

βR0 is the estimate of the mean log odds of the reference units obtained from a 

logistic regression model with the reference data; see (5.4). 

However, it was observed in §5.8.5 that uncertainty from the observed number of deaths (i.e. 

the numerator of the SMR) dominates the estimation of the variance for the SMR.  Ignoring 

this source of uncertainty would result in estimated credible intervals being too narrow.  

Indeed, the application of this approach to the simulated datasets described in §5.7 resulted in 

95% credible intervals with coverage rates for the various scenarios from 37% to 73%.  

Further developments and extensions 

The existence of units with no observed deaths presents particular problems to the modelling 

approach developed in this thesis.  The exclusion of Unit 9 from the reference population in 

the final models is unlikely to have ‘significantly’ affected the results for the other units.  The 

absence of an estimated SMR for Unit 9 is unfortunate, as this unit is then excluded from the 

Regional monitoring process.  However, for such a small unit it is unlikely that there would 

be statistical evidence that its true SMR is not unity, as suggested when Apgar score was 

excluded from the model (§6.9).  This may allow, with caution, the reporting of intervals 

based on the Normal approximation, such as the ‘with CC’ interval illustrated above.  Should 

such a situation arise with a large unit, then the methodology used to estimate the confidence 

interval may become more important.   

The Bayesian estimates reported above showed a probability of 0.95 that the true SMR was 

below 3
2 , even though the 95% credible interval contained unity.  If true, then this is an 
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important conclusion, although the result from this particular analysis must be treated with 

caution because of the effect of the choice of prior distributions. 

It is clear that it is important that such units are not excluded from analyses as, potentially, 

there may be important lessons to be learnt from them. 

6.12 Chapter Summary 

In this Chapter variables recorded by TNS and thought to be associated with in-unit mortality 

were investigated.  Estimated SMRs, with 95% confidence intervals, were obtained for each 

unit, where possible.  A model including all of these variables was produced (§6.5), together 

with a reduced model with variables selected according to their statistical significance (§6.6).  

Both models showed good discrimination and calibration.  There was evidence from these 

models that Unit 6 had an in-unit mortality rate greater than the units in the rest of the Region 

(§0).  When recalibrated, the reduced model performed well with TNS data from 2003 (§6.8) 

and the conclusions held when an alternative parameterization of the reference model was 

used and when Apgar score at one minute was excluded from the model (§6.9). 

In §6.10 a Bayesian model was developed and illustrated.  This approach allowed the use of 

probability statements for the outcome statistics, in this case P(SMR< 3
2 ) and P(SMR> 2

3 ), in 

addition to the estimation of point estimates and credible intervals.  Although Unit 6 was the 

only unit whose 95% credible interval did not contain unity, there was evidence that Units 8, 

9, 12, 13 and 14 were more likely than not to have a SMR under 3
2 , while Unit 4 showed 

similar evidence for SMRs over 2
3 . 

Finally, the problem of no observed deaths, encounted with Unit 9, was discussed and 

possible solutions outlined (§6.11). 



DISCUSSION & CONCLUSIONS 

BRADLEY MANKTELOW PHD THESIS 250 

Chapter 7: DISCUSSION & CONCLUSIONS  

7.1 Chapter Overview 

The structure and main findings of this thesis are described in §7.2.  The clinical and 

statistical implications of this work are discussed in §7.3.  In §7.4 the limitation of this study 

are described and identified potential further work is outlined in §7.5.  Section 7.6 comprises 

the conclusions drawn from this work. 

 

7.2 Summary 

7.2.1 Overall structure 

The aim of this thesis was to critically review, and where appropriate develop, statistical 

methods in order to identify the most appropriate methods for the estimation of summaries of 

in-unit mortality rates for neonatal intensive care units in the former Trent Heath Region.  In 

particular, mortality rates for infants born at less than 33 weeks gestational age, in the years 

2000 to 2001, admitted to each unit were investigated and compared to the combined 

mortality rate of the other units.   

The three stages of the process of producing such profiles were described in Chapter 1: 

measurement, analysis and action.  Chapter 2 comprised an introduction to the data analysed 

in the thesis and their source, the Trent Neonatal Survey (TNS).  The unique nature of these 

data was highlighted, together with the need for their proper analysis.  This Chapter also 

contained a brief description of neonatal care, its organization and issues relevant to neonatal 

mortality.   

In Chapter 3 various statistical methods that may have a function in the production of 

provider profiles were described and illustrated.  Simple methods that may be useful in 

preliminary data analyses were described and illustrated in §3.3.  However, such methods are 

inadequate for a comprehensive investigation of in-unit mortality rates and it was suggested 

that logistic regression models provided a more flexible and robust approach.  Other statistical 

methods that may be useful in provider profiling using binary measures, but were not 

appropriate for the data in this thesis, were also briefly described (§3.5). 
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While the statistical methods described in Chapter 3 quantify the random variation in the 

observed in-unit mortality rates, a unit may have an extreme rate due to the morbidity of the 

population admitted.  The need to account for any differences in the population structures 

between the units that may cause differences in observed mortality rates was explained in 

Chapter 4.  Published risk-adjustment scores were identified, appraised, and their use 

discussed.  It was stated that none of these pre-existing scoring systems were suitable for the 

data in this thesis and that risk-adjustment would be through a specifically derived logistic 

regression model. 

The selection of the most appropriate summary statistic was considered in Chapter 5.  Odds 

ratios were illustrated first.  At the same time, three approaches to the parameterisation of the 

reference units were explored and the use of deviation contrasts in subsequent analyses was 

justified.  Difficulties exist in the interpretation of odds ratios, and summary measures derived 

from standardization have a clear clinical interpretation.  For this reason, direct and indirect 

standardization were described and compared in §5.4.  Mortality ratios using directly 

standardized outcomes (Comparative Mortality Figure) and indirectly standardized outcomes 

(Standardized Mortality Ratio) were described and illustrated using the TNS data.  The use of 

the SMR for this thesis was argued.  The properties of various methods proposed for 

estimating confidence intervals for the SMR, together with a Bayesian approach proposed 

here, were investigated through a simulation study and the use of the method from Hosmer 

and Lemeshow (1995) was proposed for this thesis.  Random-effects models were also 

illustrated and discussed. 

Chapter 6 comprised an investigation into the relationship between in-unit mortality and 

infant, perinatal and antenatal factors.  Each variable recorded by TNS and thought, a priori, 

to be associated with mortality was investigated separately and then with other variables 

thought to interact with it, usually gestational age.  These variables, and proposed 

interactions, were then included in a single logistic regression model and SMRs, with 95% 

confidence intervals, for the units estimated.  A reduced model was also estimated using a 

forward selection method.  Also in Chapter 6, model checking and validation methods were 

described and applied to the models, and a Bayesian approach to estimating the model 

parameters was developed. 
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7.2.2 Final modelling approach 

The main analysis of the thesis employed logistic regression modelling to estimate 

standardized mortality ratios for each unit.  The use of logistic regression models provided a 

powerful and flexible methodology that allowed risk-adjustment. 

Standardized mortality ratio and confidence interval 

The results were expressed as standardized mortality ratios (SMRs).  The SMR has an 

intuitive interpretation that is widely understood.  The two main difficulties with this 

approach are that SMRs cannot be directly compared between units, and the lack of an 

accepted method to calculate confidence intervals.  Section 5.5.3 explored the first problem, 

noting that, in practice, any bias introduced by population differences among the units is 

usually small.  Methods to estimate confidence intervals for the SMR were explored through a 

simulation study and by applying them to the TNS data.  The method used subsequently in 

this thesis (Hosmer and Lemeshow, 1995) was shown to have adequate coverage properties. 

Parameterization of the reference units 

Deviation contrasts were used for the reference units to allow the estimation of indirectly 

standardized mortality rates for each unit.  This parameterization reduced the influence of the 

larger units, while ensuring the most efficient estimation of covariate effects. 

7.2.3 Main results 

Although the primary aim of the thesis was to identify appropriate statistical methods, 

risk-adjusted mortality rates were estimated for the units.  The main results are set out in this 

Section. 

Frequentist analysis 

The two main models from this thesis are the ‘full’ and ‘reduced’ models from Chapter 6.  In 

these models, neither of the estimated 95% confidence intervals for the SMR associated with 

Unit 6 contained the value one.  No other unit had a 95% confidence interval that did not 

contain unity for either the ‘full’ or the ‘reduced’ model.  These models provided evidence 

that Unit 6 has a risk-adjusted mortality rate higher than the other units.  This conclusion held 

true both when an alternative parameterization of the reference units was specified and when 

Apgar score at one minute was removed from the model. 
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Bayesian analysis 

The values of the estimated SMRs, and 95% confidence intervals, were similar between the 

‘reduced’ models using classical and Bayesian approaches, although in the Bayesian analysis 

the 95% credible interval for Unit 14 did not contain the value one.  However, probability 

statements about the SMRs were available from the Bayesian models.  The probability that 

the true value of the SMR was greater than 2
3  was over 0.5 for Units 4.  In other words, it 

was more likely than not that their true SMR was over 2
3 .  There were five units where the 

probability that the true SMR was under 3
2  was more than 0.5: Units 8, 9, 12, 13 and 14. 

Results for Unit 9 

Unit 9 was not included in the main frequentist models of Chapter 6: ‘full’ and ‘reduced’.  

The only infant admitted to Unit 9 who died before admission had no observed value for 

Apgar score at one minute, one of the variables in the final risk-adjustment model.  Since all 

of the observations from that unit that could be included in the model then had the same 

outcome, quasi-complete separation of the data occurred and MLE for the model parameters 

became unstable (§3.4).  The exclusion of Unit 9 from the main analyses may have meant it 

not being identified as having an extreme mortality rate.  Although it is difficult to imagine a 

scenario where a unit with only one recorded death is identified as having a high mortality 

rate, a low number of deaths may indicate a low rate.  However, a model without Apgar score 

at one minute, but including Unit 9, was reported in §6.9.  The estimated SMR showed a wide 

confidence interval for Unit 9 and no evidence for a particularly low SMR. 

 

7.3 Discussion   

7.3.1 Clinical importance of the thesis 

The desire to monitor the performance of health care providers is understandable.  This thesis 

has illustrated, discussed and developed methods to compare the rates of in-unit mortality in 

sixteen neonatal intensive care units. 

Although the discussion and application of the statistical methods has emphasised their use in 

neonatal medicine, these methods are applicable to all medical disciplines and to a wide range 

of binary performance indicators, be they measures of process, structure or outcome.  Much 

of the thesis is also relevant to indicators measured on other scales, for example categorical, 
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ordinal or continuous.  The need for adequate risk-adjustment holds for all provider profiling 

and results need to be reported in a clinically useful manner that can be understood by all 

potential users.  

7.3.2 Comparison with previous studies 

The aim of the thesis was to identify the most appropriate statistical methods to allow the 

reporting of in-unit mortality rates of neonatal units compared to the other units in the region.  

Provider profiling is undertaken by many organizations in a range of medical specialities.  In 

this Section the analyses illustrated in this thesis are compared to recent high-profile profiling 

exercises and to the current reporting of mortality rates in the Trent Neonatal Survey annual 

report. 

Trent Neonatal Survey annual report 

Currently, the analyses for the TNS annual report use indirect standardization through logistic 

regression models and report the SMR for each unit.  Until 2002 the observed and expected 

number of deaths were reported, but since then the standardized mortality ratio has been 

published.  The models use the ‘rest of Region’ parameterization described in §5.3.1 and 95% 

confidence intervals are estimated using the Normal approximation method, without the 

continuity correction (The Trent Infant Mortality and Morbidity Studies, 2003). 

The risk-adjustment method is the CRIB II score (§4.4.1), without the component for 

temperature at admission, as discussed above.  The TNS annual report contains four analyses 

of in-unit mortality by neonatal unit, each undertaken using a different population: i) 20-32 

weeks gestational age; ii) 20-32 weeks gestational age excluding post-natal transferred 

infants; iii) 25-32 weeks gestational age; iv) 25-32 weeks gestational age excluding post-natal 

transferred infants.  Such sub-group analyses have not been undertaken in this thesis, but the 

methods illustrated here can be used for such investigations. 

Bristol Royal Infirmary inquiry 

From 1998 to 2001 a public inquiry was held to investigate mortality following paediatric 

cardiac surgery at Bristol Royal Infirmary (Department of Health, 2000).  Concerns had 

previously been raised of a high death post-operative rate (Delamothe, 1998).  The inquiry 

included statistical analysis of mortality rates at Bristol compared to similar centres in the 

UK.  The statistical analysis of these data comprised three analyses of increasing complexity: 

referred to as ‘one’-, ‘two’- and ‘three’-star analyses (Spiegelhalter et al.  2002).  The 
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‘one’-star analysis was equivalent to the ‘rest of region’ parameterisation described in §5.3.1, 

in that outcomes at Bristol Royal Infirmary were compared to the pooled outcomes from the 

other centres.  Their ‘two’-star analysis was a fixed effects logistic regression model with a 

term for each centre.  Such a model was not illustrated in this thesis, as the weighted models 

illustrated were felt to be superior as they reduced the influence of the largest units.  The 

‘three’-star model developed for the analysis was a hierarchical logistic model that allowed 

heterogeneous between-centre variability across different risk-adjustment strata.  Hierarchical 

modelling was discussed in §5.10. 

These analyses used routine hospital episode statistics, which only allowed risk adjustment by 

the type of operation performed.  Such analyses have drawn criticism (Gibbs et al.  2002), but 

there is some evidence that this form of adjustment is sufficient for cardiac surgery (Jenkins et 

al.  2002; Aylin et al.  2005).  Aylin et al had previously found that hospital episode statistics 

had given similar results to analyses using the UK cardiac surgical register (Aylin et al, 

2001a).  However, such statistics are likely to be insufficiently detailed for neonatal intensive 

care, making a data collection system such as TNS necessary. 

Although Bayesian methodology was employed, little attention was given to the usefulness of 

Bayesian posterior probabilities.  As has been demonstrated in this thesis, their use can 

encourage the use of clinical, rather than statistical, criteria to judge providers. 

Adult Cardiac Surgical  

The largest on-going profiling exercise is that undertaken by the New York State Department 

of Health (New York State Department of Health, 2004), which started collecting and 

publishing information on mortality rates after coronary artery bypass surgery in 1989.  Rates 

are published for both hospitals and individual surgeons.  Data are collected for the profiling 

and risk-adjustment is through a study-specific model.  The results are reported as 

risk-adjusted mortality rates (RAMR), which are SMRs multiplied by the overall statewide 

mortality rate.  Ninety-five percent confidence intervals are also reported, although it is 

unclear how these are estimated.  The methodology used closely corresponds to that applied 

in this thesis.  The major difference is that the SMR is multiplied by the overall mortality.  

This, it is claimed, “…is the best estimate, based on the statistical model, of what the 

provider’s mortality rate would have been if the provider had a mix of patients identical to the 

statewide mix.” (New York State Department of Health, 1998a).  However, it has been shown 

in this thesis that this is not necessarily true as a statistic based on indirect standardization, 
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such as the SMR and RAMR, are weighted by the providers case-mix.  The reporting of the 

RAMR only serves to veil this difficulty. 

As in the USA, adult cardiac surgery has taken the lead in the publication of the performance 

of individuals (Society of Cardiothoracic Surgeons of Great Britain and Ireland, 2005).  From 

2005, 30-day mortality rates of individual surgeons following cardiac surgery will be made 

public.  These will be published annually for heart surgery centres and for individual surgeons 

on a rolling three-year basis (Department of Health, 2002a)117). 

While the methods to be used for the national reporting of results are currently unknown, 

several hospitals have independently published risk-adjusted mortality rates for surgeons.  

However, the presentation of these results has not been consistent.  The Manchester Heart 

Centre (Manchester Heart Centre, 2005) presented the data as cusum plots, with the Parsonnet 

score used for risk adjustment (Parsonnet et al, 1989).  St George’s Hospital, London 

presented the results for individual surgeons as cumulative plots of the difference between the 

observed and expected mortality, without confidence intervals (St George’s Hospital, 2005).  

In this case, the EuroSCORE was used for risk-adjustment (Roques et al, 2003).  The results 

for Papworth Hospital, Cambridge also used the EuroSCORE but compared rates of observed 

and expected death for an entire financial year (Papworth Hospital, 2005). 

Although the approach used by Papworth Hospital most closely matches that presented in this 

thesis, the reporting of indicators for individual surgeons differs from that of TNS.  First, the 

results for surgeons are more likely to be available continuously, allowing the used of 

methods such as cusum plots and VLAD (§3.5).  Although the reporting of results for 

individual surgeons is not uncontroversial, since other factors affect the outcome of a patient, 

i.e. the anaesthetist, intensive care medical and nursing staff (Keogh et al, 2004), the surgeon 

has a level of impact on the patient that a neonatal consultant does not (Field et al, 2002).  

Therefore, although some of the issues discussed in this thesis are relevant to the profiling of 

cardiac surgeons (e.g. risk-adjustment, confidence intervals, presentation), the most 

appropriate statistical method may be different. 

Dr Foster 

Other work that receives a large amount of attention is the information published annually by 

the Dr Foster organization (Dr Foster, 2004) and reproduced in the Sunday Times newspaper 

(Sunday Times, 2004b).  Their analyses are based on aggregated routine data rather that 

purposely collected information.  The use of data collected for purposes other than profiling 
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can be unreliable (Bridgewater et al, 2002).  In addition, aggregated data are used to construct 

linear regression models to estimate SMRs, called a “Mortality Index” (§3.5).  However, it 

has long been known that correlations at a group level may not represent correlations at the 

individual level: the ecological fallacy (Robinson, 1950; Selvin, 1958).  Therefore, since TNS 

data are collected on individuals, the methods in this thesis are superior to that employed by 

the Dr Foster organisation. 

7.3.3 Implication for policy 

Usefulness of provider profiling 

The ultimate question is whether health care provider profiles, such as that outlined in this 

thesis, are useful: for example to staff, patients or funders.  The general answer must be that 

profiling has an important role in allowing providers, and others, to see where their 

performance (or at the very least, outcomes) lies in relation to a reference.  Without this, the 

quality of the care provided cannot be adequately assessed.  However, while profiling is 

desirable in principle, it is not as clear whether this is true in practice.  Such profiles have 

many potential difficulties and it must be determined whether these problems result in any 

conclusions being meaningless, or worse, misleading.   

To quantify the quality of care offered in a NICU, the measure to be investigated should be 

both specific and sensitive to the care given.  Although mortality is likely to be reliably 

recorded, it is unclear whether it is the most desirable outcome in all cases.  However, the 

methods considered in this thesis are applicable to any choice of binary indicator. 

The effectiveness of the retrospective profiling of neonatal intensive care units has been 

questioned (Parry et al, 1998).  Parry et al investigated annual mortality rates in nine NICUs 

in the UK over six years and demonstrated that the variation in rates over time was greater 

than the variation between units.  This, they concluded, meant “Annual league tables are not 

reliable indicators of performance or best practice”.  Instead, it was recommended that 

prospective studies to investigate the association between outcome and units characteristics, 

such as volume, staffing levels, training and expertise, be considered.  While such studies 

would undoubtedly be useful, the type of profiling set out in this thesis still has a role in 

monitoring outcomes.  Whatever the workload or staffing levels of a unit, the practice and 

organisation of the neonatal team will nevertheless influence the quality of care that an infant 

receives.  The subtleties of the most appropriate treatment in each circumstance are unlikely 

to be agreed and some measure of outcome would be necessary (§1.3.1). 
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Parry et al used annual mortality rates, which resulted in small samples for the units: the 

annual number of infants for all nine units ranged from 389 to 490.  The number of infants 

admitted to individual units in their study ranged from 11 to 127 infants, with between 0 and 

25 observed deaths.  Such small numbers are likely to display large random variation and 

three-year averages were used in this thesis to overcome the problem.  However, the use of 

data covering several years may mean that results are out-of-date when published and 

unlikely to reflect current practice.  Whether this is true depends on any changes in practice or 

organisation over that time.  In either case, if such profiling exercises are seen as 

opportunities to identify best practice then the identification of the characteristics of the best 

performers can aid the improvement of all units.  If substantial changes had occurred in units 

then the effect of these changes on clinical outcomes can be assessed.   

Identification of units with extreme rates 

In this thesis Unit 6 has been identified as potentially having a high risk-adjusted mortality 

rate.  This unit had been identified from previous TNS annual reports and an internal 

investigation into clinical practices is underway.  In addition, the Bayesian analysis in this 

thesis has identified other units, including three with potentially low mortality rates that may 

be worthy of investigation.  However, improvements to the reduced model are required to 

confirm these results. 

7.3.4 Statistical considerations 

The methods outlined in this thesis are all based on statistical analyses.  The relevant data are 

collected, statistical methods applied and then inferences made about the neonatal units.  

However, this is not the only approach that could have been taken.  It could be argued  “… 

that a definitive assessment of quality must be based on a knowledge of all the particulars in a 

case, so that an assessor recognised to have superior skill can reconstruct in his own mind 

the conduct of care that he would have recommended under the circumstances.” 

(Donabedian, 1978)  While it may be possible that such an approach using a review of notes 

may be possible for a relatively small number of cases (such as is undertaken by CEMACH 

into maternal deaths), to carry out such a task for in-unit deaths for an entire Region is 

probably impossible in terms of time and cost, let alone the agreed definition of the 

appropriate method of care in all circumstances.  Thus, a statistical approach is likely to be the 

only one that can practically be taken. 
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DeLong et al (1997) identified eight statistical methods that may be useful in provider 

profiling. These methods were identified and numbered in a flow-chart: reproduced here as 

Figure 7.1. 

Figure 7.1 Possible risk-adjustment methodologies 
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Methods 1 to 5 use an externally derived risk-adjustment algorithm, either to directly obtain 

the expected probability of death for each infant (methods 1 & 2) or to use the value of the 

external linear predictor as a covariate in a new logistic regression model (methods 3, 4 & 5).  

No suitable risk-adjustment scores existed for the TNS data (discussed in Chapter 4) so these 

approaches were not pursued in this thesis.  However, methods 6, 7 and 8 would have been 

possible with the TNS data as they involve using internal data to risk-adjust.  DeLong et al’s 

method 6 is analogous to the ‘rest of Region’ parameterisation discussed in §5.3.1.  For 

method 7 indicator variables for the providers are included in the model together with the 

risk-adjustment variables.  The final model, model 8, is a random effects approach pursued in 

§5.10 and discussed further below. 
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Random effects models 

Although illustrated in §5.10, it was felt that the reduced true positive rate encountered with 

such models was inappropriate for the profiling exercise in this thesis.  The aim of these 

analyses was to identify units that may potentially have extreme mortality rates and may 

benefit from further, clinical based, investigations.  The units were anonymised, as they are in 

the Trent Neonatal Survey annual reports, to eliminate the fear that a unit would be identified 

as an outlier before a full clinical investigation could be undertaken. 

Propensity score 

It has been suggested that propensity score methods offer a more robust approach to 

risk-adjustment in provider profiling (Huang et al, 2005).  Propensity score methods were 

developed in econometrics, where they are often known as the ‘Hickman Adjustment’ 

(Hickman and Hotz, 1989), and were introduced into medical research by Rubin (1997).  The 

method comprises the estimation of predicted probabilities of being in the ‘intervention’ 

group using the risk-adjustment variables: the propensity score.  The observations are then 

divided into groups (usually quintiles) and the observations compared both within these 

groups and by the estimation of an overall, weighted, effect.  Such methods are particularly 

useful where there is little overlap in the values of covariates between the two ‘intervention’ 

groups. 

While this method is potentially very useful in provider profiling, it was not considered useful 

for the data in this thesis.  In particular, the small number of observations in some units meant 

that there would be insufficient data to apply the methods. 

Residual confounding 

As with all observational studies, there is the potential for confounding to remain in the final 

models, and to be the reason for extreme risk-adjusted mortality rates observed.  The 

morbidity of a newborn is a highly complex phenomenon that statistical models are very 

unlikely to be able to capture exactly.  However, the statistical model used does not have to be 

accurate in that it replicates the biological processes within a mathematical framework, 

although it does help if it is clinically plausible.  Rather, the statistical model should 

adequately predict the outcomes modelled.  The final models used in this thesis demonstrated 

high discriminatory ability (‘full’ model AROC = 0.94; ‘reduced’ model AROC = 0.92) and 

good calibration, both as measured by the Hosmer & Lemeshow goodness-of-fit test (‘full’ 

model p = 0.17; ‘reduced’ model p = 0.17) and by calibration plots. 
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Multiple Testing 

The issue of multiple significance testing has not been raised, so far, in this thesis.  The aim of 

the analyses in this thesis is not to compare each unit with every other, giving therefore 

216 C  = 120 comparisons.  Rather, the 16 comparisons between each unit and the others as a 

whole were of interest.  It can be argued that in such circumstances the true experiment-wise 

Type I error rate was ( ) 56.005.011 16 =−−  (Motulsky, 1995:120).  The simplest approach to 

adjusting the Type I error rate is to use a Bonferroni correction and divide the required 

experiment wide P-value by the number of comparisons.  Alternatively, to ensure a true 

experiment-wise Type I error rate of 0.05, each comparison-wise significance probability 

should have been ( )16 05.011 −−  = 0.0032 and 99.68% confidence intervals estimated.  

However, such an approach means that the statistical significance of a comparison will 

depend on the number of other units being considered (Perneger, 1998).  In this thesis, the 

global hypothesis that none of the units differ from the rest of the Region is not the hypothesis 

of interest and the 5% significance level should not be applied to this hypothesis (DeLong et 

al.  1997).  In addition, any reduction in the rate of Type I errors results in an increase in the 

rate of Type II errors. 

 

7.4 Limitations of the Study 

Confidence interval estimation for SMR 

In the thesis the standardized mortality ratio (SMR) was proposed as the most appropriate 

summary statistic.  However, the lack of an accepted method to obtain a confidence interval 

for the SMR was described in §5.6 and the properties of various methods were explored.  The 

method felt to offer the best coverage properties, the bootstrap method, was found to be 

inappropriate when there were small numbers of outcomes, and the method proposed by 

Hosmer and Lemeshow was used instead.  Although this method demonstrated good coverage 

rates (close to the nominal 5% level) the intervals were often one-sided with high values for 

the upper limits, especially for small units.  This may lead to small units with low mortality 

rates not being identified. 
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Measure of the quality of care? 

It is important that any profiling answers the correct question and different users will have 

different questions.  Perhaps at its most basic, clinicians may be most interested in processes 

and patients interested in outcomes.  In other works, clinicians want to know that they are 

doing the right thing and patients want to know that they are getting the best outcomes.  It is 

arguable that measuring mortality does not provide an answer to either of these questions.  

Death rates may not sufficiently reflect the quality of the care given, and survival at any costs 

may not be the best outcome in all circumstances.  It is vital not to mimic the drunk in the 

joke who searches for his lost keys under a street lamp rather than where he lost them 

because, he rationalises, “There is more light over here.”  Mortality may be an easy indicator 

to monitor but, in neonatal medicine, survival at all costs may not be a sensible goal. 

Missing values 

Although the Trent Neonatal Survey ensures high quality data collection through the 

employment of specialist neonatal nurses, some values were missing from the data.  In 

particular, values of maximum base excess in the first 12 hours of life and Apgar score at one 

minute of life were missing from a large proportion of observations (24.7% and 4.6% 

respectively).  Observations with missing values for base excess were assumed to have values 

within the normal range.  It was felt that in most cases the value had not been calculated as it 

was felt to be unremarkable.  However, this assumption has not been validated and departure 

from this assumption may bias the results. 

Observations with missing Apgar scores were excluded from analyses when necessary.  The 

reasons that the Apgar scores were missing are unknown, as a score is routinely given to each 

newborn infant.  The major effect on excluding these observations was the need to exclude 

Unit 9 from such analysis as the only observed death had a missing Apgar score.  The 

introduction of any biases into the model through the exclusion of these observations is 

unknown (see §7.5). 

Poor care or deliberate actions 

The methods described in this thesis are proposed to try to identify ‘good’ and ‘poor’ clinical 

practice.  As such, they are not designed to try to identify acts of murder by health care 

workers.  Unfortunately, the existence of health care professionals who murder is not 

unknown: perhaps, as has been suggested, health care produces more serial killers that all 
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other professions put together (Kinnell, 2000).  Two recent cases have received a lot of media 

attention.   

In 2000 the GP Harold Shipman was convicted of the murder of 15 of his patients although 

the official enquiry concluded that Shipman had murdered 215 patients, with a “real cause to 

suspect” that he might have been responsible for a further 45 deaths (The Shipman Enquiry, 

2002:197).  These murders were carried out from March 1975 to June 1998. 

The second recent case is that of Beverly Allitt, a nurse convicted in 1993 of murdering four 

children, attempted murder of a further three and causing grievous bodily harm to another six.  

All of these attacks took place on the children’s ward of Grantham and Kesteven Hospital in 

Lincolnshire over 58 days from February to April 1991 (Dyer, 1994). 

These two cases are very different: one a GP for the most part in a single-handed practice who 

killed for over 20 years, the other in a hospital for less than two months.  The procedures 

required to identify such behaviour in the future are likely to depend on the setting (Baker et 

al.  2003; James and Leadbeatter, 1997).  Although the methods set out in this thesis may pick 

up such murders they are unlikely to be either the most effective or efficient ways. 

 

7.5 Further Work 

Analyses of sub-groups 

This thesis has used a single summary statistic (the SMR) to describe the deviation of a unit’s 

risk-adjusted mortality from the rest of the units in the Region.  However, the use of a single 

statistic may hide extreme rates in sub-groups of infants: for example, a high rate in one group 

could be balanced by a low rate in another leading to an unremarkable SMR.  The analyses of 

clinically important sub-groups can help to identify this type of scenario.  For units with 

extreme values for the overall SMR, such sub-group analyses can also help to identify for 

which infants their outcome differs from the other units. 

Random effects modelling 

The debate over the choice of fixed or random effects modelling is unresolved.  The results 

from any TNS analysis of mortality rates are anonymous to all but the relevant neonatal unit, 

as these results are intended as indicators for further investigation. In these circumstances, the 

likely reduction in the false positive rate, observed from a random effects model, would not 
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compensate for the missing opportunities that result from the increased false negative rate 

(§5.10).  

 The choice of model should take into account the costs associated with each type of error 

(Draper and Gittoes, 2004) and further work is required as the relative sizes of these error 

rates are unknown for these data.  Currently, the NICUs are anonymised when mortality rates 

are reported (The Trent Infant Mortality and Morbidity Studies, 2003), as in this thesis.  

However, it is unknown whether such a policy will be permitted if named data are requested 

under the Freedom of Information Act 2000.  If named data are to be published there may be 

pressure to use statistical methodology that reduces the Type I error rate, such as random 

effects modelling. 

Bayesian models 

The Bayesian model described and illustrated in Chapter 6 produced results similar to those 

from the frequentist analysis but also allowed probability statements to be made about the 

SMR.  A further advantage of Bayesian methods is the ability to formally include prior 

information into the model.  Further investigate into the choice of prior distributions for the 

model parameters and their influence on the parameter estimates would shed light on the 

usefulness of such models in provider profiling.   

Variable selection for a reduced model 

Although the reduced model developed in Chapter 6 showed good calibration and 

discrimination, it was suggested in §7.3.4 that important variables might be missing.  When 

compared to the results from the ‘full’ model, there was an excess of small units with low 

estimated values for the SMR.  Further work is required to find which variables, when 

included in the reduced model, can overcome this problem. 

If such a model can be obtained it may be useful to develop it into a general mortality 

risk-adjustment score.  Problems with existing scores were discussed in Chapter 4.  To be of 

use, such a score must be appropriate for populations other than TNS.  It is unlikely that a 

data-driven model selection method, such as forward selection by statistical significance as 

used in this thesis, would produce such a generalizable model (Harrell, 2001:56-60).  A more 

sophisticated approach would be more likely to produce a reliable model (Harrell, 2001:79-

82).  Such a model could then be converted to a clinical score (Cole, 1993).  However, data 

other than from TNS would be required to investigate the generalizability of the model. 
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Zero observed deaths 

The difficulties encountered when a provider presents with no observed events were discussed 

in §6.11.  The statistical methodology used here resulted in Unit 9 being excluded from the 

final frequentist analyses (§6.5 & 6.6), both as part of the reference population and as the unit 

investigated.  Although various solutions were suggested for both situations, each of these has 

limitations.  Further work is required to identify the most appropriate methods (both Bayesian 

and Frequentist) for the analysis of such data, as such units are likely to occur more frequently 

with the wider adoption of profiling. 

 

7.6 Conclusions 

The aim of this thesis was to identify, critically appraise, and where appropriate develop, 

statistical methods appropriate for the analysis of in-unit mortality for the TNS data.  The use 

of standardized mortality ratios as the summary statistic is entirely appropriate.  Although 

direct comparisons between the units are not the primary aim of the analysis, there is no 

evidence that such comparisons would result in grossly misleading conclusions.  The full 

risk-adjustment model showed both excellent discrimination and calibration. 

A Bayesian approach has been demonstrated that offers advantages of being able to both 

formally include prior information and to derive probability statements for the SMRs.  

However, the sensitivity of the estimates to changes in the prior distributions needs to be 

investigated further before this approach is considered for the TNS annual report. 

Although the identification of outlying units was not the primary aim of this thesis, evidence 

has been show that Unit 6 had a high death rate that was statistically significant at the 5% 

level.  The Bayesian model also showed that Units 8, 9, 12, 13 and 14 (low) and Unit 4 (high) 

might also merit further investigation. 

Recommendations for future TNS annual reports 

The current method of reporting of death rates in the TNS annual reports was described in 

§7.3.2.  This thesis has shown that the reporting of mortality through SMRs is appropriate.  

However, the use of deviation parameterizations of the reference units would remove the 

greater influence of the larger units and ensure that each unit has equal influence on the 

reference mortality rates.  In addition, it has been shown that the use of the Normal 

approximation method to estimate confidence intervals is likely to mean previously reported 
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intervals are either too large or too small for those units with SMRs away from unity.  The use 

of the method proposed by Hosmer & Lemeshow would produce more reliable confidence 

intervals.  These two changes are simple to implement for the annual report and are 

recommended to be implemented in the next report. 

The risk-adjustment proposed in the ‘reduced’ model is similar to the method currently 

utilized for the TNS annual report.  The current method is likely to be sufficient until further 

work has been undertaken on the ‘reduced’ model. 

The use of Bayesian methods has been shown to advantageous, particularly as probability 

statements can be made concerning the estimated standardized mortality ratios.  Further work 

is required into the choice of prior distributions and a recommendation that such methods be 

used in the TNS annual reports is withheld until more work has been carried out.  However, 

should these methods prove to be robust, a Bayesian approach should be applied to the 

analysis of TNS data. 
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Appendix A:   TRENT NEONATAL SURVEY 

QUESTIONNAIRE 

Figure A.1 Trent Neonatal Survey Report Form 
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Appendix B:   NEONATAL MORTALITY RISK 

SCORES 

 

Clinical Risk Index for Babies (CRIB) (The International Neonatal Network, 1993) 

Factor Score 

Birth weight (g)  

>1350 0 

851-1350 1 

701-850 4 

≤700 7 

Gestation (wk)  

>24 0 

≤24 1 

Congenital Malformation*  

None 0 

Not acutely life-threatening 1 

Acutely life-threatening 3 

Maximum base excess in first 12 h (mmol/L)**  

>-7.0 0 

-7.0 to -9.9 1 

-10.0 to -14.9  2 

≤-15.0 3 

Minimum appropriate FiO2 in first 12 h  

≤0.40 0 

0.41-0.60 2 

0.61-0.90 3 

0.91-1.00 4 

Maximum appropriate FiO2 in first 12 h  

≤0.40 0 

0.41-0.80 1 

0.81-0.90 3 

0.91-1.00 5 

*  Excluding inevitable lethal malformations. 
** For example -3.0 mmol/L scores 0, -16.0 mmol/L scores 3. 
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Clinical Risk Index for Babies (CRIB) II (Parry et al.  2003b) 

Male infants 

Birth weight (g)            
2751-3000           0 
2501-2750          1 0 
2251-2500         3 0 0 
2001-2250         2 0 0 
1751-2000        3 1 0 0 
1501-1750      6 5 3 2 1 0 
1251-1500     8 6 5 3 3 2 1 
1001-1250  12 10 9 8 7 6 5 4 3 3 

751-1000  12 11 10 8 7 7 6 6 6 6 
501-750 14 13 12 11 10 9 8 8 8 8  
251-500 15 14 13 12 11 10 10     

 22 23 24 25 26 27 28 29 30 31 32 

Female infants 

Birth weight (g)            
2751-3000           0 
2501-2750          1 0 
2251-2500         2 0 0 
2001-2250         1 0 0 
1751-2000        3 1 0 0 
1501-1750      6 4 3 1 0 0 
1251-1500     7 5 4 3 2 1 1 
1001-1250  11 10 8 7 6 5 4 3 3 3 

751-1000  11 10 9 8 7 6 5 5 5 5 
501-750 13 12 11 10 9 8 8 7 7 7  
251-500 14 13 12 11 10 10 10     

 22 23 24 25 26 27 28 29 30 31 32 

 

Factor Score 
Temperature at admission (°C)  
≤29.6 5 
29.7 to 31.2 4 
31.3 to 32.8 3 
32.9 to 34.4 2 
34.5 to 36.0 1 
36.1 to 37.5 0 
37.6 to 39.1 1 
39.2 to 40.7 2 
≥40.8 3 
Maximum base excess in first hour (mmol/L)**  
<-26 7 
-26 to -23 6 
-22 to -18 5 
-17 to -13 4 
-12 to -8 3 
-7 to -3 2 
-2 to 2 1 
≥3 0 
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Score for Neonatal Acute Physiology (SNAP) II (Richardson et al, 2001) 

Variable      Points    β 

SNAP II 

MBP 20-29 mmHg    9    0.88 
MBP <20 mmHg    19    1.94 
Lowest temperature 95-96ºF   8    0.81 
Lowest temperature <95ºF   15    1.55 
PO2/FiO2 ratio 1.0-2.49   5    0.49 
PO2/FiO2 ratio 0.3-0.99   16    1.57 
PO2/FiO2 ratio <0.3    28    2.80 
Lowest serum pH 7.10-7.19   7    0.71 
Lowest serum pH <7.10   16    1.57 
Multiple seizures    19    1.87 
Urine output 0.1-0.9 mL/kg/h   5    0.46 
Urine output <0.1 mL/kg/h   18    1.82 
(Constant)         (-4.69) 

 

Supplemental points to compute SNAPPE II 

Birth weight 750-999g   10 
Birth weight <750g    17 
Small for gestational age (<3rd percentile) 12 
Apgar score at 5 minutes <7   18 
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National Therapeutic Intervention Scoring System (NTISS) (Gray et al. 1992)  

Item Subscore 

Respiratory  
Supplemental oxygen 1 a  

Surfactant administration 1 
Tracheostomy care 1 b 
Tracheostomy placement 1 b 
CPAP administration 2 a 
Endotracheal intubation 2 
Mechanical ventilation 3 a 
Mechanical ventilation with muscle relaxation 4 a 
High-frequency ventilation 4 a 
Extracorporeal membrane oxygenation 4 

Cardiovascular  
Indomethacin administration 1 
Volume expansion (≤15 mL/kg) 1 c 
Vasopressor administration (1 agent) 2 d 
Volume expansion (>15 mL/kg) 3 c 
Vasopressor administration (>1 agent) 3 d 
Pacemaker on standby 3 e 
Pacemaker used 4 e 
Cardiopulmonary resuscitation 4 

Drug therapy  
Antibiotic administration (≤2 agents) 1 f 
Diuretic administration (enteral) 1 g 
Steroid administration (postnatal) 1 
Anticonvulsant administration 1 
Aminophylline administration 1 
Other unscheduled medication 1 
Antibiotic administration (>2 agents) 2 f 
Diuretic administration (parenteral) 2 g 
Treatment of metabolic acidosis 3 
Potassium binding resin administration 3 

Monitoring  
Frequent vital signs 1 
Cardiorespiratory monitoring 1 
Phlebotomy (5-10 blood draws) 1 h 
Thermoregulated environment 1 
Noninvasive oxygen monitoring 1 
Arterial pressure monitoring 1 
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Item Subscore 
Central venous pressure monitoring 1 
Urinary catheter 1 
Quantitative intake and output 1 
Excessive phlebotomy (>10 blood draws) 2 h 

Metabolic/nutrition  
Gavage feeding 1 
Intravenous fat emulsion 1 
Intravenous amino acid solution 1 
Phototherapy 1 
Insulin administration 2 
Potassium infusion 3 

Transfusion  
Intravenous gamma globulin 1 
Red blood cell transfusion (≤15 mL/kg) 2 i 
Partial volume exchange transfusion 2 
Red blood cell transfusion (>15 mL/kg) 3 i 
Platelet transfusion 3 
White blood cell transfusion 3 
Double blood cell transfusion 3 

Procedural  
Transport of patient 2 
Single chest tube in place  2 j 
Minor operation 2 k 
Multiple chest tubes in place 3 j 
Thoracentesis 3 
Major operation 4 k 
Pericardiocentesis 4 l 
Pericardial tube in place 4 l 
Dialysis 4 

Vascular access  
Peripheral intravenous line 1 
Arterial line 1 
Central venous line 1 

 
Superscript letters represent mutually exclusive variables 
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National Institute of Child Health and Human Development (NICHHD) 

(Hobar et al. 1993a) 

 

( ) ( ) ( ) ( )
( ) ( )apgarmale

blackraceSGABWDeath
×+×+

×−×−×−=
971.0656.0

450.0491.0422.0606.2
                        

logit
 

Where:   

BW (birth weight)   per 100g increase 

SGA (small for gestational age) 


 <

          otherwise        0
centile 10 if         1 th

 

blackrace (race)   




 otherwise        0
black    if         1

 

male (gender)    




 otherwise        0
    male if         1

 

apgar (1 minute Apgar score)  


 ≤

 otherwise        0
       3  if         1
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Berlin Score (Maier et al. 1997) 

Variable Range/Grade Score 

Birth weight (g) 1250-1499 3 

 1000-1249 6 

 750-999 9 

 < 750 12 

Grade of respiratory distress syndrome 0 0 

 I 2 

 II 4 

 III 6 

 IV 8 

Apgar score at 5 minutes > 8 0 

 7 to 8 2 

 5 to 6 4 

 3 to 4 6 

 < 3 8 

Artificial ventilation No 0 

 Yes 8 

Base excess at admission (mmol/l) ≥ -2.0 0 

 -2.1 to -5.0 1 

 -5.1 to -8.0 2 

 -8.1 to -10.0 3 

 < -10.0 4 
 

( ) ( ) ( ) ( )
( ) ( )BEVENT

APGARRDSBWDeath
×+×+

×−×+×−−=
37.053.0

55.071.084.07.3
                        

logit
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Silkin 12-hour Score (Sinkin et al. 1990) 

 

Variable Score (β) 

Birth weight (g) -1.89 

Gestational age (weeks) -0.21 

Apgar score at 5 minutes -0.25 

Peak inspiratory pressure at 12 hours (cm H2O) 0.13 

(Constant) (8.12) 

 



APPENDIX A:  TRENT NEONATAL SURVEY QUESTIONNAIRE 

BRADLEY MANKTELOW PHD THESIS   282 

 Neonatal Mortality Prognosis Index (Garcia et al. 2000) 

( ) [ ]( ) ( ) [ ]( )
( ) ( ) ( )BESMCM

KIRBYOCABWGADeath
×+×+×+

××+×+××+−=
8662.09792.00718.1

6673.15002.26839.21410.3 2

                         
logit

 

Where:  

GA (gestational age)    


 ≤

       otherwise        0
 weeks32 if         1

 

BW (birth weight)    


 ≤

   otherwise        0
 1500g  if         1

 

CA (cardiac arrest)    




 otherwise        0
    male if         1

 

O2 (oxygen saturation)   


 ≤

 otherwise        0
  84%  if         1

 

KIRBY (paO2/FiO2 ratio)   


 ≤

 otherwise        0
  842 if         1

 

MCM (major congenital malformations) 




 otherwise        0
present if         1

 

S (sepsis)     




 otherwise        0
present if         1

 

BE (base excess)    


 ≤

 otherwise        0
   10-  if         1
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Apgar Score (Apgar, 1953) 

 

  Score  
 0 1 2 

Heart rate Absent <100 bpm  >100 bpm 

Respiratory effort Apnoeic Irregular or shallow 
breathing 

Good 

Reflex irritability Nil Some Grimaces, coughing 
or sneezing 

Muscle tone Flaccid Good Spontaneously flexed 
arms and legs which 

resist extension 

Colour Blue Body pink but 
extremities blue 

Pink, including 
extremities 
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 Transport Risk Index of Physiologic Stability (Lee et al. 2001) 

  Score 

Temperature:  <36.1 or >37.6 8 

 36.1-36.5 or 37.2-37.6 1 

 36.6-37.1 0 

Respiratory status: Severe (apnea, gasping, intubated) 14 

 Moderate (RR >60/min &/or SpO2 <85) 5 

 None (RR <60/min &/or SpO2 >85) 0 

Systolic BP (mmHg): <20 26 

 20-40 16 

 >40 0 

Response to noxious stimuli: None, seizure, muscle relaxant 17 

 Lethargic response, no cry 6 

 Withdraws vigorously, cries 0 
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Appendix C:   ADDITIONAL DETAILS 

FROM THESIS 

Appendix C contains additional details from the thesis.   

First, the choice of Beta(1.25, 3.25) as a prior distribution in §3.4.2 is justified. 

Second, Silcock’s proof that his Property 1 does not hold for the standardized mortality rate is 

reproduced: as discussed on Page 132 (Silcock, 1959).   

Next, the derivation of one of the solutions to Equation 5.31 is given.   

Finally, the estimation of the lower 95% confidence limit for Unit 9, using the ‘full’ normal 

approximation method, and referred to in §6.11 is shown. 

 

Appendix C.1 Selection of Beta(1.25, 3.25) as a prior distribution for 

Unit odds 

The aim was to find the Beta distribution with the maximum value for the probability 

P(π<0.02), given that the modal value of the distribution was 0.1. 

The modal value for a Beta distribution (πM) is given by: 

  
2

1
−δ+γ

−γ
=πM  

Hence, in this case: 

89

2
11.0

−γ=δ

−δ+γ
−γ

=

 

The cumulative distribution function (CDF) for the Beta distribution is given by: 

 ( ) ( ) ( ) dtttxF
x 1

0

1 1 −δ−γ −
γΓαΓ
δ+γΓ

= ∫  
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Since it is not straightforward to maximise for this express algebraically, satisfying the 

relationship between γ and δ given above, a graphical approach was taken in order to identify 

values of γ and δ that maximise P(π<0.02) and πM = 0.1 (Figure C.1). 

Figure C.1 P(π<0.02) for a Beta distribution where πM = 0.1 

 

The region of the maximum can be seen more clearly in Figure C.2. 

Figure C.2 Maximum P(π>0.02) for a Beta distribution where πM = 0.1 

 

For convenience the value γ = 1.25 was chosen, giving the distribution Beta(1.25, 3.25) to be 

used as the prior distribution. 
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Appendix C.2 Silcock’s Property 1 applied to the standardized 

mortality rate (Page 132) 

Consider the ratio of standardized mortality ratios for two populations, a and b, standardized 

to population R: 

∑

∑

∑

∑

=

=

=

=

π

π

π

π
=

b

b

a

a

n

i
bibi

n

i
Ribai

n

i
Riai

n

i
aiai

b

a

p

p

p

p

SMR
SMR

1

1

1

1 .  

Of interest is whether b
bi

ai ≤
π
π

≤α . 

So, given: Uu
Ri

ai ≤
π
π

≤  

and  Vv
Ri

bi ≤
π
π

≤  

it can be seen that since the SMR is a weighted average of these stratum specific ratios we 

have: 

  USMRu a ≤≤  

and  USMRu b ≤≤ . 

This gives: 

  
v
U

SMR
SMR

V
u

b

a ≤≤  

It can be written that i
Ri

ai xu +=
π
π

 and i
Ri

bi yV −=
π
π

, where 0≥ix  and 0≥iy . 

Now consider the least value of the set 
bi

ai

π
π

, i.e. α: 

V
u

yV
xu

bi

Ri

Ri

ai

bi

ai >
−
+

=
π
π

π
π

=
π
π

=α .  

except in the special case where x = y = 0. 
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This argument can be repeated for the upper limit to give: 

  
v
U

V
u

<β<α<  

Hence, the ratio of the SMRs can vary outside the interval  (α,β) contrary to Property 1. 

The special case x = y = 0 is now considered. 

First, if x = y = 0 for all i, then: 

  Riaai k π=π , Ribbi k π=π  and 
b

a

bi

ai

k
k

=
π
π

. 

Hence,  
b

a

b

a

k
k

SMR
SMR

=  

Second, the case where x = y = 0 for some i only requires that 
Ri

ai

π
π

 takes its lower limit for the 

same stratum as 
Ri

bi

π
π

 takes its upper limit, together with a similar condition for the other 

limits.  Such a situation is very unlikely to occur in practice. 
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Appendix C.3 Derivation of the solution for the lower limit in Equation 

5.31 (Page 145) 
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The solutions can be found using the quadratic formula: 
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Appendix C.4 Estimation of the lower 95% confidence limit for the 

Standardized Mortality Ratio for Unit 9 using the ‘full’ normal 

approximation method (Page 247) 

The lower limit for a confidence interval for the Standardized Mortality Ratio (SMR) is given 

by, see (5.43): 

∑
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To calculate the lower limit of a 95% confidence interval for Unit 9, using the complete data 

for the reduced model (Table 6.31): 
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Appendix D:  SAS PROGRAMMES 

This Appendix contains four SAS programmes.  The first two are macros written for this 

thesis: boot_rank estimates 95% percentile confidence intervals for the observed rank of each 

NICU (Page 53) and weighted: estimates weighted odds ratios (Page 100).  The third 

programme shown is taken from Luft & Brown (1993) and is their method for calculating 

exact p-values for the difference between observed and expected mortality (Page 119).  The 

final programme investigates the relationship between gestational age, birth weight and sex 

using the ratio of the observed birth weight to the gestation-sex specific mean (Page 397). 

 

Appendix D.1 SAS macro boot_rank (Page 53) 
%macro boot_rank; 
data all_out; 
run; 
%do i=1 %to 1000; 
 proc surveyselect data=phd.tns method=urs out=sample outhits noprint 
   sampsize=(212 283 38 143 333 378 243 124 35 146 445 196 
136 90 124 100); 
  strata c_hosp; 
 run; 
  
 proc means data=sample nway noprint; 
  class c_hosp; 
  var died; 
  output out=out mean=rate; 
 data out; 
 set out; 
  replicate=&i; 
 data all_out; 
 set all_out out; 
 run; 
%end; 
 
proc rank data=all_out out=rank; 
 by replicate; 
 var rate; 
 ranks rank; 
run;  
proc sort data=rank; 
 by c_hosp; 
proc univariate data=rank noprint; 
 by c_hosp; 
 var rank; 
 output out=final pctlpre=P_ pctlpts=2.5,50,97.5; 
proc print data=final; 
run; 
 
%mend boot_rank; 
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Appendix D.2 SAS macro weighted (Page 100) 
 
%MACRO weighted; 
 
%*******************************************************************; 
%* This macro uses weighted logistic regression to estimate odds    ; 
%* ratios for unit treatment effects                                ; 
%*******************************************************************; 
 
proc printto log="nul:"; 
data or; 
run; 
 
%do j=1 %to 16; 
 
 *Admission in each unit; 
 proc means data=tns nway noprint; 
 where c_hosp^=&j; 
  class c_hosp; 
  var died; 
  output out=total n=n; 
 
 *Mean number of admissions; 
 proc means data=total nway noprint;  
  var n; 
  output out=meansize mean=meansize; 
 data _null_; 
 set meansize; 
  call symput( 'meansize', put(meansize, best10.) ); 
  
 *Calculate weight for each unit; 
 data total;      
 set total; 
  wt=&meansize/n; 
 
 *Apply weight for each observation; 
 proc sort data=tns; 
  by c_hosp; 
 proc sort data=total; 
  by c_hosp; 
 data weighted;     
 merge tns total; 
  by c_hosp; 
  indicator1=(c_hosp=&j); *Indicator variable; 
  if c_hosp=&j then wt=1; *Weight for unit of interest; 
 
 proc logistic data=weighted outest=unit_or covout descending; 
 class indicator1 / param=ref ref=first; 
  model died = indicator1 gest; 
  weight wt; 
 run; 
 
 data unit_or; 
 set unit_or; 
  where _NAME_ in ('died' 'indicator11'); 
  keep indicator11; 
 proc transpose  data=unit_or  
     out=unit_or; 
 data unit_or; 
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 set unit_or; 
  unit=&j; 
  odds_ratio=round(exp(col1),.01); 
  lower_limit=floor(100*exp(col1-1.96*sqrt(col2)))/100; 
  upper_limit= ceil(100*exp(col1+1.96*sqrt(col2)))/100; 
  if odds_ratio<1 then 
   p_value=round(2*(probnorm(col1/sqrt(col2))),.001); 
  else 
   p_value=round(2*(1-probnorm(col1/sqrt(col2))),.001); 
 run; 
 
 data or; 
 set or unit_or; 
 run; 
 
%end; 
 
proc printto; 
 
proc print data=or noobs; 
 where odds_ratio^=.; 
 var unit odds_ratio lower_limit upper_limit p_value; 
run; 
 

%MEND weighted; 
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Appendix D.3 Luft & Brown (1993) method for calculating exact 

p-values for the difference between observed and expected mortality 

(Page119) 
 
* THIS PROGRAM USED A PATIENT-LEVEL DATASET, SORTED BY 
 HOSPITAL ID ("HOSPID"). IT HAS A VARIABLE CALLED "DIED", WHICH 
 IS A BINARY VARIABLE (1=YES, 0=NO) AND A VARIABLE CALLED 
 "P", WHICH CONTAINS THE PREDICTED MORTALITY SCORE. 
 IT CALCULATES FOR EACH HOSPITAL 1) PL, THE LOWER TAIL PROBABILITY OF 
 OBSERVING D DEATHS OR FEWER AND 2) PU, THE UPPER TAIL PROBABILITY OF 
 OBSERVING D DEATHS OR MORE. 
 IF THERE ARE 15 OR FEWER DEATHS IN A GIVEN HOSPITAL, IT CALCULATES 
 THE EXACT PROBABILITY. OTHERWISE, IT CALCULATES THE PROBABILITY 
 USING A NORMAL APPROXIMATION.; 
DATA TEMP; 
SET __________ (KEEP = HOSPID DIED P); *FILL IN INPUT DATA SET NAME; 
BY HOSPID; 
RETAIN SUMDIED SUMPRED SUMPQ SUMPATS LAST0-LAST15; 
IF DIED=. OR P=. THEN DELETE; 
* WHEN STARTING A NEW HOSPITAL, RESET THE RUNNING TOTALS; 
IF FIRST.HOSPID THEN DO; 
 SUMDIED=0; 
 SUMPRED=0; 
 SUMPQ=0; 
 SUMPATS=0; 
END; 
* INCREMENT THE RUNNING TOTALS; 
SUMDIED=SUMDIED+DIED; 
SUMPRED=SUMPRED+P; 
SUMPATS=SUMPATS+1; 
Q=1-P; 
SUMPQ=SUMPQ+(P*Q); 
* ONLY DO THE EXACT PROBABILITY CALCULATIONS WHILE THERE ARE 15 OR;  
* FEWER DEATHS IN THIS HOSPITAL; 
IF SUMDIED<=15 THEN DO; 
 ARRAY CURRENT {*} PROB0 - PROB15; 
 ARRAY LAST    {*} LAST0 - LAST15; 
 IF FIRST.HOSPID THEN DO; 
  CURRENT{1} = Q; 
  CURRENT{2} = P; 
 END;  
 ELSE DO;  
  CURRENT{1} = LAST{1}*Q; 
  IF SUMPATS <= 15 THEN DO; 
   DO  J=2 TO SUMPATS; 
    I=J-1; 
    CURRENT{J} = (LAST{I}*P) + (LAST{J}*Q); 
   END; 
   * THE VALUE OF J IS NOW SUMPATS+1; 
   CURRENT{J} = LAST{J-1}*P; 
  END; 
  ELSE DO J = 2 TO 16; 
   I = J - 1; 
   CURRENT{J} = (LAST{I}*P) + (LAST{J}*Q); 
  END; 
 END; 
 DO I=1 TO 16; 
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  LAST{I} = CURRENT{I}; 
 END; 
END; 
IF LAST.HOSPID THEN DO; 
 IF SUMDIED > 0 THEN DO;  * NORMAL APPROXIMATION; 
  PL = PROBNORM((SUMDIED +0.5-SUMPRED) / SQRT(SUMPQ)); 
  PU = 1-PROBNORM((SUMDIED -0.5-SUMPRED) / SQRT(SUMPQ)); 
 END; 
 ELSE DO;     * EXACT PROBABILITY; 
  IF SUMDIED = 0 THEN DO; 
   PU=1; 
   PL = CURRENT{1}; 
  END; 
  ELSE DO; 
   SUMPROBS = 0; 
   INDX = INT(SUMDIED + 0.0001); 
   DO I=1 TO INDX; 
    SUMPROBS = SUMPROBS + CURRENT{I}; 
   END; 
   PU = 1 - SUMPROBS; 
   PL = SUMPROBS + CURRENT(INDX+1); 
  END; 
 END; 
 OUTPUT; 
END; 
KEEP HOSPID SUMPATS SUMDIED SUMPRED PL PU; 
PROC PRINT DATA=TEMP; 
RUN; 
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Appendix D.4 Relationship between mortality and gestation-sex specific 

birth weight (Page 397) 

This programme is an example of the modelling approach used in §6.3.3 to investigate the 

relationship between mortality and gestational age, birth weight and sex.  The example shown 

here relates to the use of the ratio of observed birth weight to the estimated gestation-sex 

specific mean. 
 
proc means data=tns nway noprint; *OBSERVED MEAN BWT FOR GESTATION & 

class gest;     VARIANCE; 
 var bwt; 
 output out=var var=var; 
 
proc glm data=var;   *SMOOTHED BWT VARIANCE FOR GESTATION; 
 model var=gest|gest; 
 output out=weight p=est_var; 
 
data weight;    *CALCULATE WEIGHT=1/VAR; 
set weight; 
 weight=1/est_var; 
 
proc sort data=tns;   *ADD WEIGHT TO ORIGINAL DATA; 
 by gest; 
proc sort data=weight; 
 by gest; 
data tns; 
merge tns weight; 
 by gest; 
 
proc glm data=tns;   *SMOOTHED MEAN BIRTH WEIGHT FOR  

model bwt=gest|gest gest|sex;  GESTATION & SEX; 
 weight weight; 
 output out=ratio p=mean_bwt; 
 
data ratio;     *CALCULATE RATIO OF BWT TO MEAN; 
set ratio; 
 ratio=bwt/mean_bwt; 
 label gest=' Gestation' bwt='Birthweight (g)'; 
run; 
 
 
 
proc logistic data=ratio descending; 
class sex /param=ref ref=first; 
 model died=sex|gest|gest|ratio|ratio|ratio/selection=stepwise lackfit 

   slentry=.1 slstay=.1; 
 output out=ratio p=step_ratio; 
run; 
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Appendix E:  WINBUGS MODELLING 

This Appendix contains some of the WinBUGS programmes used in this thesis and model 

diagnostics.  The first (model prob) was used to estimate the in-unit probability of death 

(§3.4.2).  The second model estimated deviation odds ratios (model or)  (§5.3.2).  Finally, 

further details from the random-effects modelling are given in Appendix E.3. 

 

Appendix E.1 WinBUGS model PROB 

This model estimated the unadjusted probability of in-unit death for each NICU in §3.4.2.  

The data were aggregated for each NICU: 
n[] died[] 
212 21 
283 30 
38 2 
142 6 
333 41 
378 54 
243 29 
124 8 
35 1 
146 5 
445 62 
196 5 
136 3 
90 2 
124 10 
100 6 
END 

 

The code below illustrates the model with Uniform(0,1) specified as the prior distribution for 

the probability of death for each NICU but other distributions were also used: 
 

model prob { for (j in 1:16) {  
   died[j] ~ dbin(p[j],n[j]) 
   p[j] ~ dunif(0.0,1.0) 
} } 

 

Trace plots showing the value of jπ̂ , j ∈ {1,3,5}, for the first 1,000 iterations (Figure E.1) 

and plots of the Brooks-Gelman-Rubin statistic (Figure E.2) for five chains are shown below, 

with Uniform(0,1) specified as the prior distribution for the probability of death for each 

NICU. 
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Figure E.1 Trace plots for five chains for model PROB 
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Figure E.2 Plots of Brooks-Gelman-Rubin statistic for model PROB 
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Appendix E.2  WinBUGS model OR 

The WinBUGS code reproduced below was used to estimate the deviation odds ratios 

reported in §5.3.2.  Trace plots (Figure E.3) and Brooks-Gelman-Rubin statistic plots (Figure 

E.4) for five chains over the first 1,000 iterations are also shown for the parameters from the 

logistic regression model. 
 
model or { for (i in 1:3025) {  
   died[i] ~ dbern(p[i]) 
 

c_gest[i] <- gest[i]-30  # Centre gestational age 
 
logit(p[i]) <- b0 + b1*i1[i] + b2*i2[i] + b3*i3[i] + b4*i4[i]  

+ b5*i5[i] + b6*i6[i] + b7*i7[i] + b8*i8[i] 
+ b9*i9[i] + b10*i10[i] + b11*i11[i] + b12*i12[i] 
+ b13*i13[i] + b14*i14[i] + b15*i15[i]  
+ bg*c_gest[i] } 

 
lor1 <- b1*(16/15)  # Calculate estimated log odds ratio for Unit 1 
or1 <- exp(lor1)   # Calculate estimated odds ratio for Unit 1 
over1 <- step(or1-2)  # Indicator odds ratio >2 for Unit 1 
under1 <- step(0.5-or1)  # Indicator odds ratio <0.5 for Unit 1 
 
Repeat for other units 
 
lor15 <- b15*(16/15) 
or15 <- exp(lor15) 
over15 <- step(or15-2) 
under15 <- step(0.5-or15) 
 
lor16 <- (-16/15)*(b1+b2+b3+b4+b5+b6+b7+b8+b9+b10+b11+b12+b13+b14+b15) 
or16 <- exp(lor16) 
over16 <- step(or16-2) 
under16 <- step(0.5-or16) 
 
 
# Prior distributions for parameter estimates 

b0 ~ dnorm(0,1.0E-6) 
b1 ~ dnorm(0,1.0E-6) 
b2 ~ dnorm(0,1.0E-6) 
b3 ~ dnorm(0,1.0E-6) 
b4 ~ dnorm(0,1.0E-6) 
b5 ~ dnorm(0,1.0E-6) 
b6 ~ dnorm(0,1.0E-6) 
b7 ~ dnorm(0,1.0E-6) 
b8 ~ dnorm(0,1.0E-6) 
b9 ~ dnorm(0,1.0E-6) 
b10 ~ dnorm(0,1.0E-6) 
b11 ~ dnorm(0,1.0E-6) 
b12 ~ dnorm(0,1.0E-6) 
b13 ~ dnorm(0,1.0E-6) 
b14 ~ dnorm(0,1.0E-6) 
b15 ~ dnorm(0,1.0E-6) 
bg ~ dnorm(0,1.0E-6) } 
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Figure E.3 Trace plots for five chains for model OR 
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Figure E.4 Plots of Brooks-Gelman-Rubin statistic for model OR 
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Appendix E.3 Random Effects Modelling 

In this section details are given for the two approaches to model specification in WinBUGS.  

The differences in sampling properties are illustrated with plots of the Brooks-Gelman-Rubin 

statistic (R) and of the sampled values (trace plots) over the first 1,000 iterations.  Values for 

the parameters β0, βG and σ2 are shown, together with δ1 as an example, as all values for δ 

showed similar properties. 

First specification 

The parameter β0 was included in the linear predictor and the mean of the random effect 

distribution was set to zero: 
{for (i in 1:3025)  { 
 

c_gest[i] <- gest[i]-30 
 
died[i]~dbern(p[i]) 
logit(p[i])<- b0 + bg*c_gest[i] + delta[c_hosp[i]] } 

 
 

for (j in 1:16) { 
 

delta[j]~dnorm(0,tau) } 
 

b0~dnorm(0,1.0E-6) 
bg~dnorm(0,1.0E-6) 
tau <- 1/sigma2 
sigma2~dunif(0,1000)  } 
 

Five chains were run from diverse starting points.  However, after 1,000 iterations there was 

evidence that the chains were not yet sampling from the same sample space, except for βG 

(Figure E.5). 

Figure E.5 Brooks-Gelman-Rubin statistic and trace plots: first model specification 
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Second specification 

However, if the parameter β0 was specified as the mean of the random effect, and no intercept 

included explicitly in the fixed part of the model, the chains showed good mixing (Figure 

E.6). 
{for (i in 1:3025)  { 
 

died[i]~dbern(p[i]) 
 

c_gest[i] <- gest[i]-30 
 

logit(p[i])<- bg*c_gest[i] + d[c_hosp[i]] } 
 
 

for (j in 1:16) { 
 

d[j]~dnorm(b0,tau)  
 
delta[j] <- (d[j] – b0) } 

 
b0~dnorm(0,1.0E-6) 
bg~dnorm(0,1.0E-6) 
tau <- 1/sigma2 
sigma2~dunif(0,1000)  } 
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Figure E.6  Brooks-Gelman-Rubin statistic and trace plots: second model specification 
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Appendix F:   SIMULATED MORTALITY 

RATIOS 

This appendix contains further details from investigations into possible methods to estimate a 

confidence interval for a standardized mortality ratio (§5.7).  In Appendix F.1 SAS macros 

and WinBUGS code from the simulation study are shown.  The macro scenario was used to 

produce the simulated data sets, and the macros n_approx, ratio_bca, h_l, z_r and full_boot, 

together with the given WinBUGS code, were used to estimate the 95% confidence intervals 

for the SMRs. 

Appendix F.2 explores the observed distributions for the SMR.  The observed mean, 

minimum and maximum values of the simulated SMR are shown for each scenario.  The 

observed distributions, together with Normal and Log-Normal probability plots, are plotted 

for the nine scenarios where the reference population has 1,000 observations (i.e. nR = 1000).  

The upper and lower limits of the simulated 95% confidence (credible) intervals are compared 

for various methods where nj = 100 and nR = 1000. 

The coverage properties of the methods are given in Appendix F.3.  Tables F.2 to F.4 shown 

the proportion of simulated intervals that did not contain the value of the true SMR.  More 

details are given in Tables F.5 to F.12, where the proportion of intervals falling wholly above 

and below the true value for the SMR are reported for each method. 
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Appendix F.1 SAS macros & WinBUGS code 

The following SAS macros and the WinBUGS code were used to simulate the data discussed 

in §5.7 and to estimate the 95% confidence intervals for the SMR. 

Simulating the data 
%MACRO scenario(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2); 
%*******************************************************************; 
%* This macro creates the data used for the simulation study into   ; 
%* methods to estimate confidence intervals for the standardized    ; 
%* mortality ratio.  The variables to be specified when calling the ; 
%* macro are:                                                       ; 
%* nsim: number of simulated data sets (set at 1000 in the thesis)  ; 
%* Ngroup1: size of target data set (50, 100 and 200)               ; 
%* alpha1:  value for intercept for target data in model            ; 
%* beta1:   value for slope for target data set in model            ; 
%* Ngroup2: size of reference data set (500, 1000 and 2000)         ; 
%* alpha2:  value for intercept for target data in model            ; 
%* beta3:   value for slope for target data set in model            ; 
%*******************************************************************; 
 data score; 
   score = 1; output; 
   score = 1; output; 
   score = 1; output; 
   score = 1; output; 
   score = 1; output; 
   score = 1; output; 
   score = 1; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 2; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 3; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 4; output; 
   score = 5; output; 
   score = 5; output; 
   score = 5; output; 
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   score = 5; output; 
   score = 5; output; 
   score = 6; output; 
   score = 6; output; 
   score = 6; output; 
   score = 6; output; 
   score = 7; output; 
   score = 7; output; 
   score = 7; output; 
   score = 8; output; 
   score = 8; output; 
   score = 9; output; 
   score = 10; output; 
 
 data data (drop=i j); 
 set score; 
   do sim=1 to &nsim;   %*No. simulations; 
      do i=1 to (&Ngroup1/50); %*Target data; 
    group=1; 
       output; 
      end; 
      do j=1 to (&Ngroup2/50); %*Reference data; 
       group=2; 
       output; 
      end; 
   end; 
 
 proc sort data=data; 
   by sim group; 
 
 data data; 
 set data; 
   if group=1 then do; 
      prob=1/(1+exp(-(&alpha1+&beta1*score))); 
      e_prob=1/(1+exp(-(&alpha2+&beta2*score))); 
     observed=rand('bernoulli',prob); 
   end; 
   if group=2 then do; 
     prob=1/(1+exp(-(&alpha2+&beta2*score))); 
     observed=rand('bernoulli',prob); 
  end; 
 run; 
%MEND scenario; 
 
%scenario(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 

 

 

Normal approximation methods 
 
%MACRO n_approx(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2); 
%*******************************************************************; 
%* This macro uses the Normal approximation method to estimate      ; 
%* confidence intervals for the standardized mortality ratio.       ; 
%* The data has previously been created using the 'scenario' macro. ; 
%* The variables to be specified when calling the macro are:        ; 
%* nsim: number of simulated data sets (set at 1000 in the thesis)  ; 
%* Ngroup1: size of target data set (50, 100 and 200)               ; 
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%* alpha1:  value for intercept for target data in model            ; 
%* beta1:   value for slope for target data set in model            ; 
%* Ngroup2: size of reference data set (500, 1000 and 2000)         ; 
%* alpha2:  value for intercept for target data in model            ; 
%* beta3:   value for slope for target data set in model            ; 
%*******************************************************************; 
 proc printto log="nul:"; 
 
 data data; 
 set data; 
  if group=1 then m_observed=.; 
   else m_observed=observed; 
 
 %do j=1 %to &nsim; 
 
   proc logistic data=data descending outest=est&j covout noprint; 
     where &j=sim; 
     model m_observed = score; 
     output out=p&j pred=pred; 
 
   data p&j;       %* CALCULATE THE VARIANCE FOR EACH OBSERVED; 
   set p&j; 
     where group=1; 
     s2=pred*(1-pred); 
     i=1; 
  run; 
  
   proc iml; 
     use work.p&j; 
       read all var{s2} into s2; 
      v=diag(s2); 
       read all var{i} into one; 
      var_o=one`*v*one; 
     create var&j var{var_o}; 
     append; 
   quit; 
 
   proc means data=p&j sum noprint nway; 
     var pred observed prob e_prob; 
     output out=pred&j sum=/autolabel; 
 
   data count&j; 
   merge pred&j var&j; 
 
   proc append base=run_count 
                data=count&j  
                force; 
 
   proc datasets nolist; 
     delete count&j est&j p&j pred&j var&j; 
   run; 
 
 %end; 
 
 data run_count; 
 set run_count; 
   where pred^=.; 
    ratio=observed/pred; 
    true=prob/e_prob; 
   upper=(observed+1.96*sqrt(var_o))/pred; 
    under=(upper<true); 
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    lower=(observed-1.96*sqrt(var_o))/pred; 
     over=(lower>true); 
    outside=(under=1 or over=1); 
 
 proc means data=run_count mean n; 
  where observed>0; 
   var ratio outside under over; 
  title "n=&nsim, Group1=&Ngroup1, alpha1=&alpha1, beta1=&beta1, 
Group2=&Ngroup2, alpha2=&alpha2, beta2=&beta2"; 
 run; 
 proc printto; 
%MEND n_approx; 
 
 
%n_approx(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 
 

NOTE: This macro uses PROC IML whereas it would probably have been more 

straightforward to have summed the values of the variable s2 using a procedure such 

as PROC MEANS.  However, the macro has be written in this way to follow the 

macros written to implement the methods proposed by Hosmer & Lemeshow and by 

Zhou & Romano.  In practice these three macros can be combined into a single one.  

They have been show separately here for clarity. 

 

 

BCa Bootstrap method 
%MACRO ratio_bca(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2); 
%*******************************************************************; 
%* This macro uses the bca bootstrap method to estimate             ; 
%* confidence intervals for the standardized mortality ratio.       ; 
%* It uses two macros available from the SAS website: boot & bootci ; 
%* The data has previously been created using the 'scenario' macro. ; 
%* The variables to be specified when calling the macro are:        ; 
%* nsim: number of simulated data sets (set at 1000 in the thesis)  ; 
%* Ngroup1: size of target data set (50, 100 and 200)               ; 
%* alpha1:  value for intercept for target data in model            ; 
%* beta1:   value for slope for target data set in model            ; 
%* Ngroup2: size of reference data set (500, 1000 and 2000)         ; 
%* alpha2:  value for intercept for target data in model            ; 
%* beta3:   value for slope for target data set in model            ; 
%*******************************************************************; 
 proc printto log="nul:"; 
 %include 'k:work\phd\ratio ci\output\bootstrap\sas macros.sas'; 
 data data; 
 set data; 
  if group=1 then m_observed=.; 
   else m_observed=observed; 
 
 %do j=1 %to 1000; 
   proc logistic data=data descending noprint; 
   where sim=&j; 
      model m_observed = score; 
      output out=pred pred=pred; 
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    data analyze; 
    set pred; 
      where group=1; 
    run; 
 
  %MACRO ANALYZE(data= , out= ); 
    proc means data=&data nway noprint; 
       var observed pred; 
       output out=totals sum=; 
     %bystmt; 
   data totals; 
   set totals; 
     ratio=observed/pred; 
     %bystmt; 
     keep ratio _sample_; 
   data &out; 
   set totals; 
   run; 
   %mend; 
 

%boot(data=analyze,samples=2000,random=123, stat=ratio, 
print=0, chart=0) 

 
  %bootci(bca,alpha=.05, print=0); 
 
  data bootci; 
  set bootci; 
   where name='ratio'; 
  data ratio; 
  set ratio work.bootci; 
   keep value alcl aucl; 
  run; 
 %end; 
 data ratio; 
 set ratio; 
  under_bca=(aucl<1); 
  over_bca=(alcl>1) ; 
  outside_bca=(under_bca=1 or over_bca>=1); 
 proc means data=ratio mean n; 
   var value outside_bca under_bca over_bca; 
  title "n=&nsim, Group1=&Ngroup1, alpha1=&alpha1, beta1=&beta1, 
Group2=&Ngroup2, alpha2=&alpha2, beta2=&beta2"; 
 run; 
 
 proc printto; 
%mend ratio_bca; 
 
%ratio_bca(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 
 

NOTE: This macro uses two other macros (boot & bootci) available from the SAS 

Institute website (www.sas.com). 
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Method proposed by Hosmer & Lemeshow (1995) 
 
%MACRO h_l(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2); 
%*******************************************************************; 
%* This macro uses the Hosmer & Lemeshow's method to estimate       ; 
%* confidence intervals for the standardised mortality ratio.       ; 
%* The data has previously been created using the 'scenario' macro. ; 
%* The variables to be specified when calling the macro are:        ; 
%* nsim: number of simulated data sets (set at 1000 in the thesis)  ; 
%* Ngroup1: size of target data set (50, 100 and 200)               ; 
%* alpha1:  value for intercept for target data in model            ; 
%* beta1:   value for slope for target data set in model            ; 
%* Ngroup2: size of reference data set (500, 1000 and 2000)         ; 
%* alpha2:  value for intercept for target data in model            ; 
%* beta3:   value for slope for target data set in model            ; 
%*******************************************************************; 
 proc printto log="nul:"; 
 
 data data; 
 set data; 
  if group=1 then m_observed=.; 
   else m_observed=observed; 
 
 %do j=1 %to &nsim; 
 
   proc logistic data=data descending outest=est&j covout noprint; 
     where &j=sim; 
     model m_observed = score; 
     output out=p&j pred=pred; 
 
   data p&j;       %* CALCULATE THE VARIANCE FOR EACH OBSERVED; 
   set p&j; 
     where group=1; 
     s2=pred*(1-pred); 
     i=1; 
  run; 
  
   proc iml; 
     use work.p&j; 
       read all var{s2} into s2; 
      v=diag(s2); 
       read all var{i} into one; 
       read all var{i score} into x; 
   use work.est&j; 
    read all var{Intercept,score} into s  
      
 where(_NAME_=*{"Intercept","score"}); 
       var_o=one`*v*one; 
       var_pi=one`*v*x*s*x`*v*one; 
   create var&j var{var_o var_pi}; 
     append; 
   quit; 
 
   proc means data=p&j sum noprint nway; 
     var pred observed prob e_prob; 
     output out=pred&j sum=/autolabel; 
 
   data count&j; 
   merge pred&j var&j; 
 
   proc append base=run_count 
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                data=count&j  
                force; 
 
   proc datasets nolist; 
     delete count&j est&j p&j pred&j var&j; 
   run; 
 
 %end; 
 
 data run_count; 
 set run_count; 
   where pred^=.; 
    ratio=observed/pred; 
    true=prob/e_prob; 
    var_lnR=(var_o/(observed**2))+(var_pi/(pred**2)); 
    upper_HL=exp(log(ratio)+1.96*sqrt(var_lnR)); 
   under_HL=(upper_HL<true); 
    lower_HL=exp(log(ratio)-1.96*sqrt(var_lnR)); 
    over_HL=(lower_HL>true); 
   outside_HL=(under_HL=1 or over_HL=1); 
 
 proc means data=run_count mean n; 
  where observed>0; 
   var ratio outside_HL under_HL over_HL; 
  title "n=&nsim, Group1=&Ngroup1, alpha1=&alpha1, beta1=&beta1, 
Group2=&Ngroup2, alpha2=&alpha2, beta2=&beta2"; 
 run; 
 proc printto; 
%MEND h_l; 
 
 
%h_l(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 
 

 

 

Method proposed by Zhou & Romano (1997) 
 
%MACRO z_r(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2); 
%*******************************************************************; 
%* This macro uses the Zhou & Romano's method to estimate           ; 
%* confidence intervals for the standardised mortality ratio.       ; 
%* The data has previously been created using the 'scenario' macro. ; 
%* The variables to be specified when calling the macro are:        ; 
%* nsim: number of simulated data sets (set at 1000 in the thesis)  ; 
%* Ngroup1: size of target data set (50, 100 and 200)               ; 
%* alpha1:  value for intercept for target data in model            ; 
%* beta1:   value for slope for target data set in model            ; 
%* Ngroup2: size of reference data set (500, 1000 and 2000)         ; 
%* alpha2:  value for intercept for target data in model            ; 
%* beta3:   value for slope for target data set in model            ; 
%*******************************************************************; 
 proc printto log="nul:"; 
 
 data data; 
 set data; 
  if group=1 then m_observed=.; 
   else m_observed=observed; 
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 %do j=1 %to &nsim; 
 
   proc logistic data=data descending outest=est&j covout noprint; 
     where &j=sim; 
     model m_observed = score; 
     output out=p&j pred=pred; 
 
   data p&j;       %* CALCULATE THE VARIANCE FOR EACH OBSERVED; 
   set p&j; 
     where group=1; 
     s2=pred*(1-pred); 
     i=1; 
  run; 
  
   proc iml; 
     use work.p&j; 
       read all var{s2} into s2; 
      v=diag(s2); 
       read all var{i} into one; 
       read all var{i score} into x; 
   use work.est&j; 
    read all var{Intercept,score} into s  
      
 where(_NAME_=*{"Intercept","score"}); 
       var_o=one`*v*one; 
       var_pi=one`*v*x*s*x`*v*one; 
   create var&j var{var_o var_pi}; 
     append; 
   quit; 
 
   proc means data=p&j sum noprint nway; 
     var pred observed prob e_prob; 
     output out=pred&j sum=/autolabel; 
 
   data count&j; 
   merge pred&j var&j; 
 
   proc append base=run_count 
                data=count&j  
                force; 
 
   proc datasets nolist; 
     delete count&j est&j p&j pred&j var&j; 
   run; 
 
 %end; 
 
 data run_count; 
 set run_count; 
   where pred^=.; 
    ratio=observed/pred; 
    true=prob/e_prob; 
  var_R=(ratio**2)*(var_o/(observed**2))+(var_pi/(pred**2)); 
  upper_ZR=ratio+1.96*sqrt(var_R); 
  under_ZR=(upper_ZR<true); 
  lower_ZR=ratio-1.96*sqrt(var_R); 
  over_ZR=(lower_ZR>true); 
  outside_ZR=(under_ZR=1 or over_ZR>=1); 
 
 proc means data=run_count mean n; 
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  where observed>0; 
   var ratio outside_ZR under_ZR over_ZR; 
  title "n=&nsim, Group1=&Ngroup1, alpha1=&alpha1, beta1=&beta1, 
Group2=&Ngroup2, alpha2=&alpha2, beta2=&beta2"; 
 run; 
 proc printto; 
%MEND z_r; 
 
 
%z_r(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 
 

 

 

Bootstrap method 
%MACRO full_boot(nsim, Ngroup1, alpha1, beta1, Ngroup2, alpha2, beta2);; 
 proc printto log="nul:"; 
 data limits; 
 data data; 
 set data; 
   if group=1 then m_observed=.; 
    else m_observed=observed; 
 proc sort data=data; 
  by group; 
 run; 
 
  %do sim=1 %to 10; 

proc surveyselect data=data method=urs sampsize=(50 1000) 
out=boot outhits rep=10; 

   where sim=&sim; 
   strata group; 
  proc sort data=boot; 
   by replicate; 
    proc logistic data=boot descending noprint; 
    class replicate / param=glm ref=last; 
      model m_observed = score; 
   by replicate; 
      output out=pred pred=pred; 
   proc means data=pred nway noprint; 
      where group=1; 
   class replicate; 
      var observed pred; 
      output out=totals sum=; 
  data totals; 
  set totals; 
   ratio&sim=observed/pred; 
    keep ratio&sim replicate; 
  proc univariate data=totals noprint; 
   var ratio&sim; 
   output out=final pctlpre=P_ pctlpts=2.5,97.5; 
  data limits; 
  set final limits; 
  run; 
 %end; 
 
 data limits; 
 set limits; 
 where P_2_5>.; 
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  under_boot=(P_97_5<1); 
  over_boot=(P_2_5>1) ; 
  outside_boot=(under_boot=1 or over_boot>=1); 
 proc means data=limits mean n; 
   var outside_boot under_boot over_boot; 
  title "n=&nsim, Group1=&Ngroup1, alpha1=&alpha1, beta1=&beta1, 
Group2=&Ngroup2, alpha2=&alpha2, beta2=&beta2"; 
 run; 
 proc printto; 
  %mend full_boot; 
 
 
%full_boot(1000,  50, -2.5, 0.2, 500, -2.5, 0.2); 

 

 

Bayesian method 
model ci { 
 for (j in 1:1000) { 
    for (i in 11:20) {   # Reference data 
 
# Estimate model parameters from reference data 
     obs[j,i] ~ dbin(p[j,i],total[j,i]) 
     logit(p[j,i]) <- b0[j] + b1[j]*score[j,i] } 
 
 
   for (i in 1:10) {  # Data from unit of interest 
 
# Calculate expected 'p' using b0 & b1 estimated above  
    logit(tpp[j,i]) <- b0[j] + b1[j]*score[j,i] 
   
# Number of expected events at each value of 'score' (p * n) 
    pp[j,i] <- tpp[j,i] * total[j,i] 
     
   
# Estimate model parameters b2 &p3 from reference data  
   obs[j,i] ~ dbin(op[j,i],total[j,i])  
   logit(op[j,i]) <- b2[j] + b3[j]*score[j,i]  
   
# ‘Observed’ using estimated prob from second logistic model  
    n.obs[j,i] <- op[j,i]*total[j,i] }  
 
 
   sum.pp[j] <- sum(pp[j,]) # Sum of predicted  
   s.ob[j] <- sum(n.obs[j,]) # Sum of observed 
   ratio[j] <- s.ob[j]/sum.pp[j] # Ratio of interest 
   b0[j] ~ dnorm(0,1.0E-6) 
   b1[j] ~ dnorm(0,1.0E-6) 
   b2[j] ~ dnorm(0,1.0E-6) 
   b3[j] ~ dnorm(0,1.0E-6)  } } 
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Appendix F.2 Distribution of simulated standardized mortality ratios 

The observed mean, minimum and maximum values of the simulated SMR are shown for 

each scenario (Table F.1).  The size of the reference population is given by nR and the size of 

the unit of interest is nj. 

Table F.1 Distribution of simulated standardized mortality ratios 

   nR  
   500  1000  2000 

nj Group Mean   (Range) Mean   (Range) Mean   (Range) 

Ratio =  1       

50 1 0.16 (0.02 – 0.40) 0.16 (0.02 – 0.34) 0.16 (0.02 – 0.32) 

 2 0.16 (0.11 – 0.22) 0.16 (0.12 – 0.20) 0.16 (0.14 – 0.19) 

100 1 0.16 (0.07 – 0.28) 0.16 (0.05 – 0.29) 0.16 (0.06 – 0.29) 

 2 0.16 (0.11 – 0.21) 0.16 (0.13 – 0.20) 0.16 (0.13 – 0.19) 

200 1 0.16 (0.09 – 0.24) 0.16 (0.08 – 0.23) 0.16 (0.09 – 0.27) 

 2 0.16 (0.11 – 0.21) 0.16 (0.12 – 0.20) 0.16 (0.13 – 0.18) 

Ratio ≈  1.37       

50 1 0.22 (0.06 – 0.40) 0.22 (0.06 – 0.48) 0.22 (0.06 – 0.40) 

 2 0.16 (0.11 – 0.21) 0.16 (0.13 – 0.20) 0.16 (0.14 – 0.19) 

100 1 0.22 (0.10 – 0.35) 0.22 (0.10 – 0.37) 0.22 (0.10 – 0.36) 

 2 0.16 (0.11 – 0.21) 0.16 (0.12 – 0.20) 0.16 (0.13 – 0.18) 

200 1 0.22 (0.13 – 0.33) 0.22 (0.13 – 0.31) 0.22 (0.14 – 0.30) 

 2 0.16 (0.11 – 0.22) 0.16 (0.12 – 0.20) 0.16 (0.14 – 0.18) 

Ratio ≈  0.71       

50 1 0.11 (0.02 – 0.28) 0.11 (0.00 i – 0.30) 0.11 (0.00 ii – 0.22) 

 2 0.16 (0.11 – 0.23) 0.16 (0.12 – 0.20) 0.16 (0.13 – 0.19) 

100 1 0.11 (0.02 – 0.22) 0.11 (0.03 – 0.22) 0.11 (0.03 – 0.24) 

 2 0.16 (0.10 – 0.21) 0.16 (0.13 – 0.19) 0.16 (0.13 – 0.18) 

200 1 0.11 (0.05 – 0.18) 0.11 (0.05 – 0.19) 0.11 (0.06 – 0.20) 

 2 0.16 (0.11 – 0.22) 0.16 (0.13 – 0.20) 0.16 (0.13 – 0.19) 
i Five data sets with zero observed events ii Two data sets with zero observed events 

The observed distributions are plotted for the nine scenarios where nR = 1000, together with 

Normal and Log-Normal probability plots (Figure F.1). 
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Figure F.1 Simulated Standardized Mortality Ratios 

SMR = 1, nR = 1000 

nj = 50 

 
nj = 100 

 
nj = 200 
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SMR ≈ 1.37, nR = 1000 

nj = 50 

 
nj = 100 

 
nj = 200 
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SMR ≈ 0.71, nR = 1000 

nj = 50 

 
nj = 100 

 
nj = 200 
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Figure F.2 Upper limits of SMR 95% confidence (credible) intervals by method: SMR ≈ 

1.37, nj = 100 and nR = 1000 
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Figure F.3 Upper limits of SMR 95% confidence intervals by method: SMR ≈ 0.71, n j = 

100 and nR = 1000 
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Figure F.4 Lower limits of SMR 95% confidence intervals by method: SMR ≈ 1.37, n j = 

100 and nR = 1000 
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Figure F.5 Lower limits of SMR 95% confidence intervals by method: SMR ≈ 0.71, n j = 

100 and nR = 1000 
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Appendix F.3 Coverage of estimated intervals 

Tables VI.ii to VI.iv show the proportion of simulated intervals that did not contain the value 

of the true SMR for each scenario. 

 

Table F.2 Coverage of estimated 95% confidence interval: SMR = 1 

nj Source of  nR 

error Method 500 1000 2000 

50 Observed only 
 
 
 
Observed & 
Expected 
 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.042 
0.066 
0.038 
0.075 
0.067 
0.057 
0.074 
0.066 

0.037 
0.063 
0.032 
0.067 
0.065 
0.057 
0.070 
0.063 

0.027 
0.047 
0.024 
0.059 
0.051 
0.047 
0.061 
0.066 

100 Observed only 
 
 
 
Observed & 
Expected 
 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.046 
0.065 
0.040 
0.061 
0.047 
0.037 
0.043 
0.042 

0.050 
0.067 
0.044 
0.067 
0.051 
0.055 
0.065 
0.063 

0.034 
0.047 
0.030 
0.047 
0.047 
0.042 
0.048 
0.047 

200 Observed only 
 
 
 
Observed & 
Expected 
 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.080 
0.093 
0.072 
0.086 
0.042 
0.049 
0.045 
0.047 

0.045 
0.059 
0.038 
0.059 
0.042 
0.034 
0.036 
0.036 

0.048 
0.060 
0.042 
0.056 
0.046 
0.048 
0.054 
0.052 
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Table F.3 Coverage of estimated 95% confidence interval: SMR ≈ 1.37 

nj Source of  nR 

error Method 500 1000 2000 

50 Observed only 
 
 
 
Observed & 
Expected 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.090 
0.128 
0.053 
0.089 
0.073 
0.108 
0.088 
0.074 

0.059 
0.093 
0.034 
0.064 
0.060 
0.082 
0.068 
0.065 

0.056 
0.092 
0.035 
0.062 
0.085 
0.086 
0.066 
0.056 

100 Observed only 
 
 
 
Observed & 
Expected 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.087 
0.113 
0.055 
0.076 
0.055 
0.080 
0.058 
0.052 

0.050 
0.129 
0.055 
0.090 
0.078 
0.114 
0.073 
0.066 

0.070 
0.096 
0.044 
0.057 
0.068 
0.083 
0.056 
0.055 

200 Observed only 
 
 
 
Observed & 
Expected 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.171 
0.190 
0.113 
0.129 
0.072 
0.120 
0.061 
0.061 

0.105 
0.122 
0.071 
0.085 
0.073 
0.096 
0.054 
0.051 

0.081 
0.102 
0.046 
0.058 
0.066 
0.081 
0.044 
0.045 
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Table F.4 Coverage of estimated 95% confidence interval: SMR ≈ 0.71 

nj Source of  nR 

error Method 500 1000 2000 

50 Observed only 
 
 
 
Observed & 
Expected 
 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.017 
0.025 
0.026 
0.059 
0.046 
0.018 
0.076 
0.072 

0.012 
0.018 
0.019 
0.050 
0.039 
0.017 
0.066 
0.068 

0.007 
0.012 
0.014 
0.051 
0.031 
0.011 
0.082 
0.079 

100 Observed only 
 
 
 
Observed & 
Expected 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.024 
0.034 
0.045 
0.068 
0.040 
0.022 
0.060 
0.057 

0.022 
0.030 
0.035 
0.057 
0.040 
0.026 
0.060 
0.063 

0.028 
0.034 
0.043 
0.070 
0.038 
0.034 
0.068 
0.065 

200 Observed only 
 
 
 
Observed & 
Expected 

Normal (with CC) 
Normal (without CC) 
Normal (‘full’) 
BCa bootstrap 
Hosmer & Lemeshow 
Zhou & Romano 
Bayesian 
Bootstrap 

0.028 
0.041 
0.052 
0.068 
0.025 
0.017 
0.047 
0.040 

0.028 
0.033 
0.047 
0.065 
0.031 
0.020 
0.053 
0.053 

0.021 
0.035 
0.047 
0.059 
0.028 
0.022 
0.059 
0.055 

 

 

 

 

More details on the coverage properties of the methods are given in Tables F.5 to F.12.  The 

proportion of intervals falling wholly above and below the true value for the SMR are 

reported for each method. 
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Table F.5 Normal Approximation (with continuity correction) 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.010 0.027 0.007 
 Over 0.032 0.010 0.020 
100 Under 0.011 0.018 0.013 
 Over 0.035 0.032 0.021 
200 Under 0.031 0.018 0.021 
 Over 0.049 0.027 0.027 

Ratio ≈ 1.37     
50 Under 0.037 0.026 0.026 
 Over 0.053 0.033 0.040 
100 Under 0.036 0.050 0.030 
 Over 0.051 0.054 0.040 
200 Under 0.065 0.047 0.033 
 Over 0.106 0.058 0.048 

Ratio ≈ 0.71     
50 Under 0.000 0.000 0.000 
 Over 0.017 0.012 0.007 
100 Under 0.008 0.004 0.011 
 Over 0.024 0.018 0.017 
200 Under 0.009 0.010 0.010 
 Over 0.019 0.018 0.011 

 

Table F.6 Normal Approximation (without continuity correction) 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.019 0.022 0.018 
 Over 0.047 0.041 0.029 
100 Under 0.019 0.026 0.020 
 Over 0.046 0.041 0.027 
200 Under 0.035 0.021 0.028 
 Over 0.058 0.038 0.032 

Ratio ≈ 1.37     
50 Under 0.059 0.046 0.039 
 Over 0.069 0.047 0.053 
100 Under 0.052 0.064 0.046 
 Over 0.061 0.065 0.050 
200 Under 0.078 0.054 0.039 
 Over 0.112 0.068 0.063 

Ratio ≈ 0.71     
50 Under 0.003 0.001 0.001 
 Over 0.022 0.017 0.011 
100 Under 0.010 0.007 0.015 
 Over 0.024 0.023 0.019 
200 Under 0.016 0.013 0.016 
 Over 0.025 0.020 0.019 
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Table F.7 Normal Approximation (“full”) 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.008 0.007 0.006 
 Over 0.030 0.025 0.018 
100 Under 0.010 0.015 0.011 
 Over 0.030 0.029 0.019 
200 Under 0.028 0.014 0.017 
 Over 0.044 0.024 0.025 

Ratio ≈ 1.37     
50 Under 0.015 0.011 0.015 
 Over 0.038 0.023 0.020 
100 Under 0.022 0.021 0.018 
 Over 0.033 0.034 0.026 
200 Under 0.043 0.031 0.014 
 Over 0.070 0.040 0.032 

Ratio ≈ 0.71     
50 Under 0.003 0.001 0.002 
 Over 0.023 0.018 0.012 
100 Under 0.014 0.008 0.015 
 Over 0.031 0.027 0.028 
200 Under 0.020 0.017 0.021 
 Over 0.032 0.030 0.026 

 

Table F.8 BCa Bootstrap 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.034 0.034 0.035 
 Over 0.041 0.033 0.024 
100 Under 0.024 0.032 0.027 
 Over 0.037 0.035 0.020 
200 Under 0.036 0.028 0.030 
 Over 0.050 0.031 0.026 

Ratio ≈ 1.37     
50 Under 0.042 0.035 0.031 
 Over 0.048 0.029 0.031 
100 Under 0.034 0.048 0.030 
 Over 0.042 0.042 0.027 
200 Under 0.051 0.039 0.024 
 Over 0.078 0.046 0.034 

Ratio ≈ 0.71     
50 Under 0.029 0.026 0.037 
 Over 0.030 0.024 0.014 
100 Under 0.038 0.029 0.037 
 Over 0.030 0.028 0.033 
200 Under 0.036 0.027 0.031 
 Over 0.032 0.038 0.028 
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Table F.9 Hosmer & Lemeshow 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.000 0.000 0.000 
 Over 0.067 0.065 0.051 
100 Under 0.000 0.000 0.000 
 Over 0.047 0.045 0.047 
200 Under 0.006 0.006 0.006 
 Over 0.036 0.036 0.040 

Ratio ≈ 1.37     
50 Under 0.000 0.000 0.000 
 Over 0.073 0.060 0.085 
100 Under 0.009 0.013 0.006 
 Over 0.046 0.065 0.062 
200 Under 0.020 0.022 0.011 
 Over 0.052 0.051 0.055 

Ratio ≈ 0.71     
50 Under 0.000 0.000 0.000 
 Over 0.046 0.039 0.031 
100 Under 0.000 0.000 0.000 
 Over 0.040 0.040 0.038 
200 Under 0.000 0.000 0.000 
 Over 0.025 0.031 0.028 

 

Table F.10 Zhou & Romano 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.016 0.021 0.018 
 Over 0.041 0.036 0.029 
100 Under 0.009 0.021 0.018 
 Over 0.028 0.027 0.024 
200 Under 0.017 0.013 0.021 
 Over 0.032 0.021 0.027 

Ratio ≈ 1.37     
50 Under 0.047 0.040 0.035 
 Over 0.061 0.042 0.051 
100 Under 0.033 0.055 0.039 
 Over 0.047 0.059 0.044 
200 Under 0.044 0.041 0.033 
 Over 0.076 0.055 0.048 

Ratio ≈ 0.71     
50 Under 0.000 0.001 0.001 
 Over 0.018 0.016 0.010 
100 Under 0.007 0.005 0.015 
 Over 0.015 0.021 0.019 
200 Under 0.003 0.006 0.010 
 Over 0.014 0.014 0.012 
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Table F.11 Bayesian 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.044 0.042 0.041 
 Over 0.030 0.028 0.020 
100 Under 0.023 0.036 0.030 
 Over 0.020 0.029 0.018 
200 Under 0.026 0.020 0.032 
 Over 0.019 0.016 0.022 

Ratio ≈ 1.37     
50 Under 0.050 0.035 0.031 
 Over 0.038 0.029 0.031 
100 Under 0.029 0.043 0.032 
 Over 0.029 0.030 0.024 
200 Under 0.025 0.030 0.019 
 Over 0.036 0.024 0.025 

Ratio ≈ 0.71     
50 Under 0.052 0.040 0.064 
 Over 0.024 0.026 0.021 
100 Under 0.038 0.036 0.049 
 Over 0.022 0.024 0.027 
200 Under 0.027 0.030 0.036 
 Over 0.020 0.023 0.023 

 

Table F.12 Bootstrap 

nj   nR  
  500 1000 2000 

Ratio = 1     
50 Under 0.047 0.044 0.048 
 Over 0.019 0.019 0.018 
100 Under 0.026 0.037 0.032 
 Over 0.016 0.026 0.015 
200 Under 0.027 0.023 0.034 
 Over 0.020 0.013 0.018 

Ratio ≈ 1.37     
50 Under 0.048 0.044 0.038 
 Over 0.026 0.021 0.018 
100 Under 0.026 0.045 0.035 
 Over 0.026 0.021 0.020 
200 Under 0.029 0.030 0.026 
 Over 0.032 0.021 0.019 

Ratio ≈ 0.71     
50 Under 0.058 0.057 0.072 
 Over 0.014 0.011 0.007 
100 Under 0.042 0.043 0.041 
 Over 0.015 0.020 0.024 
200 Under 0.027 0.032 0.039 
 Over 0.013 0.021 0.016 
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Appendix F.4 Further details of Bayesian estimate of SMR for TNS 

data 

This is an example of the models used to investigate the sensitivity of the values of the model 

parameters and the SMR to the choice of prior probability distributions in §5.8. 

 
model ci { for (i in 101:3025) {  # Reference data    
     died[i] ~ dbern(p[i]) 

c_gest[i] <- gest[i]-30  # Centre gestational age 
 
# Estimate model parameters from reference data 

logit(p[i]) <-  br0 + b2*i2[i] + b3*i3[i] + b4*i4[i] + 
b5*i5[i] + b6*i6[i] + b7*i7[i] + b8*i8[i] + 
b9*i9[i] + b10*i10[i] + b11*i11[i] + b12*i12[i] + 
b13*i13[i] + b14*i14[i] + b15*i15[i] + 
brg*c_gest[i]     

 } 
 
for (i in 1:100) {    # Data from unit of interest 

       
   c_gest[i] <- gest[i]-30  # Centre gestational age 
 

# Calculate expected 'p' using br0 & brg estimated above 
logit(pp[i]) <- br0 + brg*c_gest[i] 

   
# Estimate model parameters b0 & bg from unit of interest 

died[i] ~ dbern(op[i]) 
logit(op[i]) <- b0 + bg*c_gest[i]    

 }  
# Calculate SMR 

sum.pp <- sum(pp[])   # Sum of predicted  
sum.ob <- sum(op[])   # Sum of observed 
ratio <- sum.ob/sum.pp   # Ratio of interest 

 
# Prior distributions 
  b0 <- logit(g) 

br0 <- logit(gr) 
g ~ dbeta(0.25,4.75) 
gr ~ dbeta(0.25,4.75)  

 
brg ~ dnorm(0,1.0E-6) 
bg ~ dnorm(0,1.0E-6) 

 
b2 ~ dnorm(0,1.0E-6) 
b3 ~ dnorm(0,1.0E-6) 
b4 ~ dnorm(0,1.0E-6) 
b5 ~ dnorm(0,1.0E-6) 
b6 ~ dnorm(0,1.0E-6) 
b7 ~ dnorm(0,1.0E-6) 
b8 ~ dnorm(0,1.0E-6) 
b9 ~ dnorm(0,1.0E-6) 
b10 ~ dnorm(0,1.0E-6) 
b11 ~ dnorm(0,1.0E-6) 
b12 ~ dnorm(0,1.0E-6) 
b13 ~ dnorm(0,1.0E-6) 
b14 ~ dnorm(0,1.0E-6) 
b15 ~ dnorm(0,1.0E-6) } 
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Figure F.6 Plots of Brooks-Gelman-Rubin statistic for Unit 16 
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There was a potential problem in the estimation of β0 and βG for Units 3 and 9 because of 

quasi-complete separation of the data.  Trace plots for Unit 3 are reproduced, from the third 

scenario, below showing that within the 1,000 iteration burn-in the five chains were all 

sampling from the same sample space well before the end of the burn-in (Figure F.7).  This 

was confirmed by plots of the Brooks-Gelman-Rubin statistic (Figure E.4).  Similar plots 

were obtained for Unit 9. 

Figure F.7 Trace plots for burn-in: Unit 3 

b0 chains 1:5

iteration
1 250 500 750 1000

  -30.0

  -20.0

  -10.0

    0.0

 
bg chains 1:5

iteration
1 250 500 750 1000

  -15.0

  -10.0

   -5.0

    0.0

 



APPENDIX F:  SIMULATED MORTALITY RATIOS 

BRADLEY MANKTELOW PHD THESIS   341 

Figure F.8 Brooks-Gelman-Rubin statistic plots for burn-in: Unit 3 
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The five chains were then run for a further 10,000 iterations and the Brooks-Gelman-Rubin 

statistics calculated.  Once again there was no evidence that the chains were no sampling from 

the same distribution. 

Figure F.9 Brooks-Gelman-Rubin statistic plots for sampled iteration: Unit 3 
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Appendix G:  RISK-ADJUSTMENT VARIABLES 

This appendix gives additional details of the investigation into potential risk-adjustment 

variables summarised in §6.4. 

Maximum likelihood estimates of the model parameters, and odds ratios where there is no 

variable interaction, are reported.  The heterogeneity of the effect across NICUs was tested by 

adding an indicator variable into the logistic model representing NICU of care and an 

interaction between NICU and the variable of interest.  This is reported using the p-value for 

the interaction term.  In addition, SMRs for each unit are reported using the deviation 

parameterization models described in Chapter 5 and 95% confidence intervals estimated using 

the method of Hosmer & Lemeshow (1995) (§5.6.2). 

The area under the ROC curve (AROC) and the Hosmer & Lemeshow goodness-of-fit test 

statistic ( Ĉ ), and associated p-value, are reported for each model, but more detailed model 

checking was considered in §6.6 where a final model was developed. 

Appendix G.1 Gestational age at birth 

For preterm births the gestational age of an infant at birth has a strong monotonic relationship 

with neonatal mortality (Verloove-Vanhorick et al, 1986).  However, in almost all cases the 

exact day of conception is unknown and, therefore, must be estimated.  There are three 

approaches to estimating the gestational age of an infant: mother’s dates, ultrasound scan and 

postnatal examination.  Each of these is discussed below. 

Mothers’ dates 

Although the standard definition of gestational age is the time from the onset of the last 

normal menses to the date of birth, the estimation of gestational age is not straightforward. 

The reported date of onset of the Last Menstrual Period (LMP) before pregnancy can be 

incorrect for a number of reasons, including irregularities of the menstrual cycle, individual 

variations in the length of the cycle, preconception amenorrhea following oral contraceptives, 

implantation bleeding or other bleeding in pregnancy, and recall error by the mother (Gjessing 

et al, 1999).  Such discrepancies are more common among preterm (and post-term) births than 

with term births (Kramer et al, 1988; Mustafa and David, 2001).  In addition, there is some 

evidence for digit preference in reported LMP dates amongst women (Waller et al, 2000).  In 
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particular, the 15th was recorded as the date of onset of LMP two-and-a-half times more than 

expected, but such number preferences are likely to introduce only small discrepancies into 

the data.  There is also evidence that errors in gestational age estimated using the mothers’ 

dates are more frequent in certain groups; e.g. younger mothers and smokers (Savitz et al, 

2002; Yang et al, 2002). 

Ultrasound scan 

To try to overcome such problems in using the date of onset of the last menstrual period, early 

(≤ 20 weeks) ultrasound measurements of fetal dimensions can be used to estimate gestational 

age.  Such scans are now part of routine antenatal care in the United Kingdom and there is 

evidence that the routine use of scans has clinical benefits (Neilson, 2003).  To estimate 

gestational age, it is recommended that fetal crown-rump length be used at 10-13 weeks and 

the biparietal diameter (BPD) used beyond 14 weeks gestational age (National Collaborating 

Centre for Women's and Children's Heath, 2003:34). 

However, although such measurements are useful, they, too, are only estimates of true 

gestational age.  Their accuracy is dependent on many factors, including the charts used to 

estimate gestational age from fetal measurements (Altman and Chitty, 1997; Hadlock et al, 

1982; Eriksen et al, 1985; Campbell and Newman, 1971), the accuracy of the measurements 

taken by the radiographer and even the position of the fetus (Altman and Chitty, 1997).  The 

assumption is also made that all fetuses of the same size are of the same gestational age and, 

therefore, any variation in fetal size will be interpreted as differences in gestational age 

(Henriksen et al, 1995).  Although BPD has a smaller inter-individual variation than other 

fetal measurements, there is still some variation between fetuses of the same (true) gestational 

age (Rabelink et al, 1994).  Female fetuses tend to be smaller than male at the same age and 

so are more likely to be judged younger (e.g. by an average 2.5 days (Kallen, 1995) or 1.5 

days (Tunon et al, 1999)), as are fetuses of younger mothers, smokers, multiparous women 

and women with low educational levels (Källén, 2002).  The tables by Altman and Chitty 

(1997) report an uncertainly in the estimation of gestational age using BPD of some 10 to 12 

days for fetuses estimated to be of 16 to 19 weeks gestational age. 

As well as such random errors, there is also evidence for a systematic difference between 

gestational ages estimated using LMP dates compared to those estimated from fetal 

measurements.  An amenorrheic cycle just before conception, or spotting around the expected 

time of the first missed period, can result in estimates of gestational age that are either one 
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month too large or too small (Joseph et al, 2001).  However, some studies have found only a 

small proportion of such discrepancies (Altman and Chitty, 1997; Yang et al, 2002).  The 

more general trend is that, even for women with a normal last menstrual period, estimates of 

gestational age from ultrasound scans tend to be lower that those from LMP dates (Oja et al, 

1991; Mustafa and David, 2001; Yang et al, 2002).  Such discrepancies are, on average, quite 

small, e.g. 2.8 days (Savitz et al, 2002), and are probably due to delayed ovulation (> 14 

days), which is more common that early ovulation (< 14 days) (Yang et al, 2002). 

Although various methods have been derived to try to combine information from both LMP 

dates and BPD estimates (Blondel et al, 2002), these have not been used with the data in the 

Trent Neonatal Survey.   

Postnatal examination 

Before estimates of gestational age were routinely available from ultrasound scans, and 

currently when such scans have not been performed, and where there was uncertainty over the 

LMP dates, gestational age at birth was estimated by physical examination of the infant.  Sola 

and Chow have published an interesting short review of the history of such methods (Sola and 

Chow, 1999).  Of the methods proposed two predominate: the Dubowitz Scale (Dubowitz et 

al, 1970) and the New Ballard Score (Ballard et al, 1991), an expansion of the original 

Ballard Maturation Score (Ballard et al, 1979) to include preterm infants.  One problem with 

such methods is that they assume that all fetuses develop at the same rate.  It has been shown 

that these scores perform poorly with preterm infants, with gestational age estimated using 

these scores generally exceeded that estimated using known LMP dates: mean differences 

ranging from 1.3 to 3.3 weeks (Donovan et al, 1999; Wariyar et al, 1997). 

Estimation of gestational age in TNS data 

The estimates of gestational age recorded by the Trent Neonatal Survey are those taken from 

the mothers’ and infants’ notes.  The estimate used, therefore, depends on the policy of each 

obstetric unit.  However the general procedure followed within the Region is to use the 

following hierarchy (Bohin et al, 1999): 

v) Mother certain of her dates (most reliable); 

vi) Early dating scan 

vii) Late dating scan; 

viii) Postnatal examination (least reliable). 
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This aims to use the ‘best available’ estimates.  Previous work with the Trent Neonatal Survey 

data has shown that about 36% of the gestational ages were amended, usually to the estimate 

from an early scan, before being recorded in the survey (Draper et al, 1999).  The proportion 

amended in the data used for this thesis is unknown. 

In addition, there is the potential for differential measurement error between the units, either 

because different dating methods are used or because of the different interpretation of 

ultrasound measurements.  The extent of such errors is not known, but since reported errors 

between gestational age estimated from mothers’ dates and scan data are only in the order of a 

few days (described above) this is unlikely to be the explanation of any differences found 

between the units. 

Association with in-unit mortality 

The proportions of infants dying before discharge by recorded gestational age at birth are 

shown in Table G.1.  Perhaps this is more clearly illustrated in Figure G.1.  Unsurprisingly, 

there is a clear trend for lower mortality with increasing gestational age. 

Table G.1 Observed mortality by gestational age at birth 

Gestational 
age 

22 23 24 25 26 27 28 29 30 31 32 

No. infants 7 48 94 143 177 207 296 312 428 578 735 

No. died  7 41 50 47 42 38 27 10 8 10 5 

Proportion  1.00 0.85 0.53 0.33 0.24 0.18 0.09 0.03 0.02 0.02 0.01 

 

Figure G.1 Observed Mortality by Gestational Age at Birth 
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When modelled within a logistic regression model, there is strong statistical evidence for such 

a relationship.  Although comprehensive model checking will not be discussed until §6.6, an 

inspection of the estimated function shows an approximately linear relationship between the 

logit of the probability of death before discharge and gestational age at birth.  There was a 

suggestion that at very early gestations (22 and 23 weeks) the linear function underestimates 

the true mortality.  However, the addition of higher value polynomials did not produce a 

statistically significant improvement in model fit (Gestation2, Wald χ2 = 1.53, p = 0.22). 

The use of fractional polynomials may provide some insight into the function by giving a 

wider range of possible shapes (Royston et al, 1999).  Such an approach attempts to find the 

best power transformation, usually from the candidate powers –2, -1, -0.5, 0, 0.5, 1, 2, 3, 

where x0 denotes logex.  More than one term (degree) representing any variable can be 

included in the model.  The powers are compared and the final model selected using changes 

in deviance.  Fractional polynomials are straightforward to apply using the FRACPOLY 

function in STATA.  However, there was no statistical evidence of an improvement in model 

fit, compared to the linear model, from non-linear models of degree 1 (p = 0.171) nor from 

moving to models of degree 2 (p = 0.738). 

Figure G.2 Observed and Modelled Logit by Gestational Age at Birth 

 

The linear relationship between gestational age and in-unit mortality was given by: 

iGi gestg .ˆˆˆ 0 β+β=  

0β̂  = 16.16 (s.e. 0.88) 

Gβ̂  = -0.66 (s.e. 0.03) 
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where:  gest = gestational age at birth in completed weeks. 

There was, therefore, strong evidence for a negative relationship between gestational age at 

birth and in-unit mortality.  Expressed as an odds ratio the estimated reduction in odds of 

in-unit death for each additional week of gestational age was 0.52 (95% CI: 0.48 to 0.55); 

p < 0.0001. 

The discriminatory ability of the model as measured by the area under the ROC curve (AROC ) 

was 0.881 (§6.3.1), and there was no evidence of poor calibration from the Hosmer & 

Lemeshow goodness-of-fit test: Ĉ  = 3.70 ~ 2
5χ , p = 0.59 (§6.3.2). 

The introduction of an interaction term between gestational age and NICU into the model was 

used to investigate the homogeneity of the relationship between NICUs across the region.  

The estimated odds ratios for mortality for the NICUs are given in Table G.2.  Although these 

varied, some were based on very small sample sizes and have large estimated standard errors. 

Table G.2 Log Odds Ratios for mortality for one week increase in gestational age at 

birth, by NICU 

Unit ĝ  (s.e.) 

1 -0.92 (0.17) 

2 -0.50 (0.08) 

3 -8.00 (31.49) 

4 -0.84 (0.25) 

5 -0.76 (0.11) 

6 -0.60 (0.08) 
7 -0.64 (0.10) 

8 -0.58 (0.17) 

9 -6.39 (24.51) 

10 -0.71 (0.24) 

11 -0.64 (0.08) 

12 -0.43 (0.19) 

13 -0.72 (0.27) 

14 -0.51 (0.32) 

15 -0.82 (0.22) 

16 -0.55 (0.20) 
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The estimated functions are shown in Figure G.3.  Despite these observed differences, there 

was no statistical evidence that the relationship between gestational age at birth and death 

before discharge for NICU differed by unit: 2
15=χdf =10.19; p = 0.81. 

Figure G.3 Estimated probability of death by gestational age at birth by unit 

 

The estimated standardized mortality ratios and 95% confidence intervals, after adjusting for 

gestational age, are shown in Figure G.4.  Three units had estimated 95% confidence intervals 

wholly above the value one: Units 6, 7 and 11.  There were no units with confidence intervals 

completely below the value one. 

Figure G.4 Estimated standardized mortality ratios adjusted for gestational age at birth 
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Appendix G.2 Sex 

There has been shown to be a difference in short-term mortality between newborn boys and 

girls, with boys showing a higher risk of death.  In the United Kingdom during 2001 the 

28-day death rate for boys was 4.0 per 1,000 live births and 3.3 for girls (Office of National 

Statistics, 2003b).  This difference has also been show to exist amongst preterm infants (Effer 

et al, 2002; Larroque et al, 2004) and cohorts defined by low birth weight (Stevenson et al, 

2000; Shankaran et al, 2002; Italian Collaborative Group on Preterm Delivery, 1988).  It has 

also been shown that male preterm infants receive higher levels of early medical intervention 

(Elsmén et al, 2004). 

Data from Sweden show an excess of male infants among preterm deliveries (Ingemarsson, 

2003).  This was also seen in the TNS data, where 1667 (55%) of the admitted infants were 

male.  There was one observation of unknown sex and this infant was removed from this 

analysis. 

Table G.3 Mortality by sex 

 Died Survived Total 
 n % n %  

Male 1509 90.5 158 9.5 1667 

Female 1230 90.6 127 9.4 1357 

Total 2739 90.6 285 9.4 3024 

In the TNS data the in-unit mortality rates were very similar between the sexes:  

odds ratio (male vs. female) = 1.01 (95% CI: 0.79 to 1.30); p = 0.91. 

After adding gestational age at birth to the model, there was an increase in the estimated odds 

ratio.  However, there was still no evidence that the value of the odds ratio differed from 

unity: 

odds ratio (male vs. female) = 1.18 (95% CI: 0.88 to 1.58); p = 0.27 

(AROC = 0.882: Ĉ  = 5.43 ~ 2
7χ , p = 0.61) 

There was also no evidence for a gestational age-by-sex interaction: p = 0.21, suggesting that 

there was a constant difference, on the logit scale, in mortality risk between the sexes.  The 

addition of an interaction term into the logistic model showed no evidence that the odds ratios 

varied across the neonatal units; p = 0.93.  Figure G.5 shows the estimated standardized 
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mortality ratios after adjusting for sex and gestational age at birth.  These are very similar to 

the results from adjusting for gestational age alone (Figure G.4). 

Figure G.5 Estimated standardized mortality ratios adjusted for sex and gestational age at 

birth 

 

Appendix G.3 Birth weight 

The weight of an infant at birth is known to be associated with its probability of survival 

(Alberman, 1991).  However, it has long been recognised that birth weight in itself is 

inadequate for predicting mortality (Van Den Berg and Yerushalmy, 1966).  Rather, it is the 

rate of growth in conjunction with gestational age, i.e. birth weight for gestational age, that is 

more informative (Coory, 1997). 

Mortality by birth weight for gestational age 

While, for births of all gestational ages, the marginal relationship between birth weight and 

neonatal mortality is reverse J-shaped (Wilcox and Russell, 1986), it is unclear whether such a 

relationship still exists conditional on gestational age at birth, particularly for preterm births.  

While there is plenty of evidence that small for gestational age infants experience poor 

outcomes, e.g. Regev et al (2003), Larroque et al (2004), there is conflicting evidence 

whether being large for gestational age is an indicator for poor prognosis.  Some studies have 

shown evidence of increased mortality with both increasing and decreasing birth weight for 

gestational age (Draper et al, 1999; Yerushalmy, 1970), while other studies have not (Wen et 

al, 2000; McIntire et al, 1999). 

Inspection of the observed log odds for mortality for the data in this thesis shows little 

evidence for an increased risk of mortality in large for gestational age infants (Figure G.6). 
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Figure G.6 Observed Logit(death) by weight and gestational age at birth 
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Distribution of birth weights conditional on gestational age 

The distribution of birth weight conditional on gestational age at birth is often assumed to 

follow a Normal distribution (Skjaerven et al, 2000; Altman and Chitty, 1997; Kramer et al, 

2001), although other distributions have been proposed, for example a log-Normal 

distribution (Oja et al, 1991). 

Figure G.7 shows the observed birth weights for infants born at 26 and 32 weeks gestational 

age, together with the estimated Normal and log-Normal probability curves for these data.  

The two estimated probability distributions are extremely similar.  Q-Q plots (Figure G.8) 

offer evidence that at 32 weeks gestational age the birth weights appear to follow a Normal 

distribution quite well, apart from a few high values.  However, at 26 weeks this is less clear, 

and there is a suggestion that the data are negatively skewed.  This may just be due to random 

variation, because of a smaller number of observations (177 at 26 weeks and 735 at 32 

weeks), but it may also be due to the characteristics of this population.  Infants born 

prematurely are an unrepresentative sample of all fetuses of that gestational age.  The very 

fact that they are born premature means that these infants are likely to be ‘unusual’ in some 

way: local data show that less than 2% of all infants born in Leicestershire from 2000 to 2002 

were born at 32 weeks or less.  There is some evidence that intrauterine growth retardation is 

an indicator for preterm birth (Ott, 1993; Lackman et al, 2001). 

Figure G.7 Observed birth weight at 26 and 32 weeks gestational age 

26 weeks gestational age 32 weeks gestational age 
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Figure G.8 Normal and LogNormal distribution Q-Q plots for observed birth weights at 

26 and 32 weeks gestational age 
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A further problem arises as it is known that average gestational age specific birth weight 

differs in various subgroups of infants, for example between sexes (Freeman et al, 1995), 

ethnic groups (Margetts et al, 2002), singleton and multiple births (Cohen et al, 1997).  It may 

be the case that the relationship between gestational age specific birth weight and mortality 

also differs between these groups. 

Birth weight specific mortality by sex 

The data available in this thesis were not sufficient to allow a detailed examination of all 

possible subgroups.  However, there were sufficient data to look at the differences between 

the sexes.  It can be seen from Figure G.9 that the observed mean birth weight by gestational 

age was consistency lower in girls than boys. 
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Figure G.9 Observed mean birth weight by gestational age and sex 

 

Figure G.10 shows both differences between the sexes in observed birth weight distributions 

and the observed mortality for those infants born at 26 weeks gestational age.  The number of 

infants is shown in 50g bands, but for the observed mortality 100g bands were used to try to 

reduce the noise in the data.   

There are two points to be noted from Figure G.10.  First, both distributions still show signs 

of left skewness.  Second, and more importantly, the difference in observed mortality seems 

to follow the difference in observed birth weights.  This can be seen more clearly in Figure 

G.11 where the observed birth weight for each observation has been transformed to the 

difference from the observed mean sex-specific birth weight: 793g for girls and 860g for 

boys.  It can now be seen that the mortality curves are more similar, as are the observed birth 

weight distributions.  This suggests that the differences between the sexes can be accounted 

for by allowing for the difference in average birth weight, and the analysis needs to take this 

into account (Wilcox and Russell, 1983; Wilcox and Russell, 1990). 
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Figure G.10 Observed mortality and number of infants at 26 weeks gestational age by birth 

weight 
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Figure G.11 Observed mortality and number of infants at 26 weeks gestational age by 

difference from sex-specific mean birth weight 

 

Modelling the relationship between birth weight and mortality 

The relationship between weight for gestational age at birth and neonatal mortality can be, 

and has been, modelled using a number of different approaches.  The simplest approach is to 

include main effects and interactions for birth weight, sex and gestational age into the model.  
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Alternative approaches, building on the relationship suggested in Figure G.11, involve using 

the difference between the observed weight and an estimated population mean (or median) 

birth weight for each gestational age, with such a difference expressed as an absolute 

difference (Draper et al, 1999), z-score or ratio (Kramer et al, 1999).  Each of these 

approaches is illustrated below. 

There are two other potential methods that were not investigated further here.  One was to use 

percentiles of birth weight. The other method that has been proposed (Van Den Berg and 

Yerushalmy, 1966) is to first categorise the observations into groups according to their weight 

at birth, for example in 100g groups (Paneth et al, 1982).  Then, within each of these groups 

the observations are ranked according to their gestational age at birth and divided into 

quartiles.  This method thus produces a measure of an infant’s gestational age for birth 

weight.  Although this may be a valid way to proceed, in terms of the statistical analysis 

(Paneth, 1992), it is felt that such an approach confuses the biological relationship between 

weight and gestational age at birth: “growth is size for age, not age for size” (Arnold, 1992) 

and will not be considered further here. 

One further point of note with this model is that both gestational age and birth weight are 

entered into the model as continuous variables.  The models as they exist here do not allow 

for ‘threshold’ effects for either variable; for example, a sudden change in the relationship 

between birth weight for gestational age and mortality at 26 weeks.  While such effects cannot 

be discounted completely, no evidence has been produced for their existence. 

The aim was to create a model that was both parsimonious and clinically meaningful, 

although both of these characteristics may be difficult to achieve together.  To investigate the 

possible approaches, each model (raw birth weight and the three methods looking at deviation 

from mean birth weight for gestational age: raw difference, z-score and ratio) was specified as 

a logistic regression model.  Using stepwise selection, with 0.10 as the entry and exit 

threshold level of statistical significance significance, a model was estimated for each 

approach allowing up to a quadratic term for gestational age, a cubic term for birth weight and 

all possible interactions.  The estimated mean birth weight for gestational age by sex was 

obtained from a weighted linear regression model (the SAS code for the z-score approach is 

shown in Appendix D.4 as an example). 

The final model for each approach is shown below, together with the estimated area under the 

ROC-curve (AROC) and the Hosmer & Lemeshow test statistic for lack of fit (C).  These 

statistics are measures of the discriminatory ability and the calibration of the model (§6.3). 
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The models selected and the estimated parameter values are given below. 

Observed birth weight:   

2
0 .ˆ.ˆ.ˆ.ˆˆˆ iWWiWiGiSi weightweightgestsexg β+β+β+β+β=  

 0β̂  = 12.24 (s.e. 1.13) 

 Sβ̂  = 0.36  (s.e. 0.16) 

 Gβ̂  = -0.34  (s.e. 0.05) 

 Wβ̂  = -0.0081  (s.e. 0.0009) 

 WWβ̂  = 2.3 x 10-6 (s.e. 0.3 x 10-6) 

(AROC = 0.897: Ĉ  = 4.35 ~ 2
8χ , p = 0.82) 

Difference from estimated mean birth weight for gestational age:   

iiWWGiiWGiWW

iWiGGiGi

gestdiffgestdiffdiff

diffgestgestg

..ˆ..ˆ.ˆ
.ˆ.ˆ.ˆˆˆ

22

2
0

β+β+β+

β+β+β+β=
 

 0β̂  = 47.14  (s.e. 1.0.46) 

 Gβ̂  = -2.94   (s.e. 0.77) 

 GGβ̂  = 0.041   (s.e. 0.014) 

 Wβ̂  = -0.018   (s.e. 0.005) 

 WWβ̂  = 3.8 x 10-5  (s.e. 1.4 x 10-5) 

 WGβ̂  = 5.3 x 10-4  (s.e. 0.1 x 10-4) 

 WWGβ̂  = 0.041   (s.e. 0.014) 

 (AROC = 0.898: Ĉ  = 5.69 ~ 2
8χ , p = 0.68) 

z-score:   

22
0 .ˆ.ˆ.ˆ.ˆˆˆ iWWiWiGGiGi zscorezscoregestgestg β+β+β+β+β=  

 0β̂  = 33.99 (s.e. 9.49) 

 Gβ̂  = -1.95  (s.e. 0.70) 

 GGβ̂  = 0.023  (s.e. 0.013) 
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 Wβ̂  = -0.52 (s.e. 0.07) 

 WWβ̂  = 0.20 (s.e. 0.03) 

(AROC = 0.897: Ĉ  = 5.83 ~ 2
8χ , p = 0.67) 

Ratio:    

iiWGiWWiWiGiGi gestratioratioratiogestgestg ..ˆ.ˆ.ˆˆ.ˆˆˆ 22
0 2 β+β+β+β+β+β=  

 0β̂  = 57.60 (s.e. 11.77) 

 Gβ̂  = -2.78 (s.e. 0.77) 

 GGβ̂  = 0.032 (s.e. 0.013) 

 Wβ̂  = -21.98 (s.e. 4.99) 

 WWβ̂  = 5.40 (s.e. 0.91) 

  WGβ̂  = 0.30 (s.e. 0.17) 

 (AROC = 0.898: Ĉ  = 2.86 ~ 2
8χ , p = 0.94) 

 

Although each model had good discriminatory ability, and there was no evidence of poor 

calibration, they differed in the number of parameters included in the model and in the 

predicted probabilities of death before discharge (Figure G.12).  

It is unclear which of the models described above is the most appropriate.  The model using 

z-scores showed a reversed J-shaped relationship for all gestational ages, although this is 

much less marked for 31 and 32 week.  Such a strong relationship was not apparent from the 

observed data.  The three other approaches all showed a monotonic, descending, relationship 

for early gestational ages (≤ 26 weeks) over the range of observed values.  There was a 

reversed J-shaped relationship at higher gestations, although this was not seen for 32 weeks in 

the difference model (Figure G.13).  However, despite these differences, the estimated area 

under the ROC-curve was extremely similar for all of the models, and little different from that 

estimated from the model with gestational age alone: 0.881.   
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Figure G.12 Estimated probabilities of death by birth weight for gestational age model 
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The models using the raw data and the z-score had the least number of terms in the model, 

with the former having the advantage that it was not necessary to estimate the mean 

sex-specific birth weight for each gestational age. 
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Figure G.13 Estimated probability of death by sex, gestational age and birth weight 
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One observation born at 28 weeks and a weight of 2370g died before discharge.  It was of 

concern that this observation may be unduly influencing the shape of the birth weight 

function.  Although the record values of the deleted observation were check with the original 

TNS questionnaire and found to be correct, this observation was removed and the four models 

derived again.   

The three models using differences from the estimated gestational age-sex mean (difference, 

z-score and ratio) remained in the same form, and the values of the parameters estimates 



APPENDIX G: RISK-ADJUSTMENT VARIABLES 

BRADLEY MANKTELOW PHD THESIS   364 

showed only small changes (details not shown).  However, the new model using the observed 

data directly (raw data) contained a cubic term for birth weight statistically significant at the 

10% significance level (p = 0.060): 

32
0 .ˆ.ˆ.ˆ.ˆ.ˆˆˆ iWWWiWWiWiGiSi weightweightweightgestsexg β+β+β+β+β+β=  

 0β̂  = 15.70 (s.e. 2.10) 

 Sβ̂  = 0.35  (s.e. 0.16) 

 Gβ̂  = -0.35  (s.e. 0.05) 

 Wβ̂  = -0.017  (s.e. 0.005) 

 WWβ̂  = 1.0 x 10-5 (s.e. 0.4 x 10-5) 

  WWWβ̂  = -2.1 x 10-9 (s.e. 1.1 x 10-9) 

(AROC = 0.897: Ĉ  = 3.41 ~ 2
8χ , p = 0.91) 

The new functions showed no evidence of increased mortality at high birth weight (Figure 

G.14). 

Figure G.14 Probability of death with outlier removed 

 

However, most differences between the two models were small, with only a few observations 

with high gestational age and birth weight changing their predicted probabilities of death to 

any great extent (Figure G.15).  As this model was not being used to obtain individual 

predicted probabilities, and the observation was believed to have been recorded correctly, the 

observation was included in all further analyses.  However, it is acknowledged that there is 
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still uncertainty in the predicted probability of death for infants born at 32 weeks gestational 

age at over 2500g. 

Figure G.15 Comparison of predicted probabilities, with and without outlier 

 

The use of fractional polynomials may provide some insight into the functions by giving a 

wider range of possible shapes.  The approach taken in this thesis was to investigate models 

up to second-degree fractional polynomials (that is, up to two terms for each variable) using 

an iterative process of first determining the optimum polynomials for each main effect and 

then investigating the interactions.  The process was repeated until a stable model is found, 

using the change in deviance. 

Using such an approach none of the interactions were statistically significant at the 10% 

significance level and the final model was: 

12
0 .ˆ.ˆ.ˆˆˆ −− β+β+β+β= iWiGiSi weightgestsexg  

 0β̂  = -9.79 (s.e. 0.48) 

 Sβ̂  = 0.36 (s.e. 0.16) 

 Gβ̂  = 3341.91 (s.e. 439.53) 

 Wβ̂  = 2763.44 (s.e. 299.56) 

 (AROC = 0.897: Ĉ  = 6.10 ~ 2
8χ , p = 0.64) 

The estimated probabilities of death from this model are shown in Figure G.16. 
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Figure G.16 Estimated probability of death (fractional polynomial model) 

 

The functions estimated using fractional polynomials (Figure G.16) appear to most closely 

match the cubic model using the observed values directly (Figure G.14).  In reality, there was 

little difference between all five models considered.  The discriminatory abilities, as measured 

by the area under the ROC-curve, are very close: ranging from 0.897 to 0.898 (compared to 

0.881 for gestational age alone).  Although detailed model checking was not carried out, no 

model showed evidence of poor fit using the Hosmer and Lemeshow goodness-of-fit test.  

The differences between the models in predicted values occurred for the infants with high 

birth weights for gestational age.  The fractional polynomial model was the simplest model 

considered, having only one term for each variable.  In addition, this model and the model 

using the observed values directly (raw data) it did not require the estimation of mean 

sex-specific birth weights for each gestational age.  For the other two approaches, the variable 

representing the infants’ sex was not included in the final model.  As a consequence, the final 

models did not contain the full model uncertainty: the uncertainty in the sex and gestational 

age-specific birth weights was ignored.   

The fractional polynomial model was used in this Section, but when more complex models 

are investigated later in the Thesis, gestational age and birth weight will be included using the 

raw data approach to allow the easier introduction of interactions with other variables. 

Using the fractional polynomial model, there was no evidence that the relationship between 

birth weight and in-unit mortality differed between the units: p = 0.60 for an interaction 

between the inverse of birth weight and unit of care.  The standardized mortality ratios 

obtained using this model are shown in Figure G.17.  Only one unit (Unit 6) had an estimated 

confidence interval wholly greater than unity. 
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Figure G.17 Estimated standardized mortality ratios adjusted for sex, birth weight and 

gestational age at birth 

 

 

  

Appendix G.4 APGAR score 

The Apgar score was originally derived as a simple neonatal morbidity scoring system 

(Apgar, 1953) and was described in §4.4.8.  There is evidence for an association between low 

Apgar score and increased mortality, including in preterm infants (Casey et al, 2001; 

Weinberger et al, 2000).  Apgar scores are usually derived at two time points: one minute 

after birth and again at five minutes.  A low Apgar score represents high morbidity and the 

rate of mortality declines with increasing Apgar scores  

In these TNS data the values of the infants’ Apgar scores generally (and unsurprisingly) rose 

from the first to the second evaluation (Table G.4).  There are, however, some scores that fell 

over this time period, and while these may indicate interesting pathology, the small number of 

such observations means that they are unlikely to be contributing to risk-adjustment as 

required here.  While change in Apgar score may be of prognostic use, it is likely to be 

influenced by early neonatal care.  This means that it is unsuitable to be included in a model 

to investigate the quality of care.  The same argument also holds for Apgar score at five 

minutes.  For this reason, only the Apgar score at one minute was considered further. 
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Table G.4 Number of infants by Apgar scores at 1 and 5 minutes after birth 

  Apgar Scores at 5 minutes  
  0 1 2 3 4 5 6 7 8 9 10 Total 

A
pg

ar
 S

co
re

s a
t 1

 m
in

ut
e 

0 4 1 1 3 2 2 2 2 1 0 1 19 

1 1 7 7 4 8 11 14 8 9 8 1 78 

2 0 1 11 6 8 18 21 15 24 12 4 120 

3 0 1 1 8 14 15 31 37 35 31 2 175 

4 0 0 0 1 3 10 23 40 46 58 14 195 

5 0 0 1 0 3 11 16 50 65 96 30 272 

6 0 1 0 0 0 2 11 36 113 141 31 335 

7 0 0 0 0 2 2 4 16 71 208 46 349 

8 0 1 0 0 0 3 0 5 52 351 93 505 

9 0 1 0 0 1 1 1 2 5 402 328 741 

10 0 0 0 0 0 0 0 1 1 1 35 38 

Total 5 13 21 22 41 75 123 212 422 1308 585 2827 

 

In these data the Apgar score was not obtained at one minute for 139 infants (4.6%).  These 

observations were excluded from the analysis.  As expected, for the remaining observations 

mortality rates fell with increasing Apgar Score (Table G.5). 

Table G.5 Mortality by Apgar score at 1 minute 

 Apgar Score 

 0 1 2 3 4 5 6 7 8 9 10 

Infants 19 81 122 180 199 282 342 364 507 750 40 

Died 9 26 34 43 24 31 23 26 21 13 1 

% died 47.4 32.1 27.9 23.9 12.1 11.0 6.7 7.1 4.1 1.7 2.5 

 

When Apgar score was included as a continuous variable in a logistic regression model there 

was strong evidence of a linear relationship with death before discharge (odds ratio for 1 point 

increase in Apgar score = 0.68; 95% CI 0.64 to 0.72, p < 0.0001), with no evidence for a 

nonlinear relationship (p = 0.56) (Figure G.18). 
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Figure G.18 Log Odds of death by Apgar Score at 1 minute 

 

There was evidence of an interaction between Apgar score at one minute and gestational age 

at birth: 

iiGAiGiAi apgargestgestapgarg 1..ˆ.ˆ1.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 11.29 (s.e. 2.06) 

 Aβ̂  = 0.70 (s.e. 0.39) 

 Gβ̂  = -0.44 (s.e. 0.08) 

 GAβ̂  = -0.034 (s.e. 0.015) 

where: apgar1 = Apgar Score at 1 minute 

 gest = gestational age at birth in completed weeks. 

 (AROC = 0.900: Ĉ  = 15.99 ~ 2
8χ , p = 0.043) 

The value of the C-statistic suggests that there is some evidence that this model is a poor fit to 

the data, but there was no evidence for a non-linear relationship.  There was also no evidence 

of different relationships between Apgar score at one minute and outcome between the units 

(p = 0.90). 

When the model with Apgar score at one minute and gestational age was used to indirectly 

standardize the in-unit mortality, there was a problem with Unit 9.  The only observed death 

at this unit had a missing Apgar score and was excluded from the model.  As there were then 

no observed deaths for Unit 9, there was quasi-complete separation of the data and the 

estimates became unstable and had large estimated standard errors.  To solve this problem 
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Unit 9 was excluded from the analysis.  Alternative approaches could have been adopted, 

such as imputation of the missing value or by using a different model (e.g. a weighted logistic 

regression model 

When the SMRs were estimated for the other units (Figure G.19), Units 5 and 6 had estimated 

confidence intervals that did not contain unity. 

Figure G.19  Estimated standardized mortality ratios adjusted for Apgar score at one 

minute and gestational age at birth 

 

 

Appendix G.5 Ethnic origin 

The relationship between ethnicity and neonatal mortality is unclear.  There is evidence from 

the USA that infants born to black mothers experience higher rates of mortality than those 

born to white mothers (Iyasu et al, 2002).  However, black infants have higher rates of 

preterm delivery and further evidence from the USA suggests that after adjustment for 

gestational age, or birth weight, black preterm infants experience lower mortality that white 

infants (Cooper et al, 1993; Singh et al, 1997) and have lower morbidity (Berman et al, 

2001).  There is some evidence of a similar phenomenon in the UK with higher neonatal 

mortality rates overall in Asian and West Indian populations, but not for preterm infants 

(Singh et al, 1997; Berman et al, 2001; Iyasu et al, 2002). 

In this thesis, the Asian group has been relabelled as ‘South Asian’ to emphasise the fact that 

those categorised as Asian are from families originating in South Asia, more particularly from 

the Indian sub-continent.  Other Asian groups, such as Chinese or Filipino, are categorised by 

TNS as ‘Other’. 
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Table G.6 Mortality by ethnic group of infant 

Ethnic group n died % 

European 2551 225 8.8 

South Asian 239 34 14.2 

Other/unknown 235 26 11.1 

 

There was evidence for a difference in mortality between infants of ‘European’ ethnic origin 

and those of ‘Asian’ ethnic origin: overall p = 0.017.  However, after the inclusion of 

gestational age in the logistic regression model, there was no longer evidence for a difference 

between the ethnic groups: p = 0.19 (Table G.7). 

Table G.7 Odds ratios for mortality by ethnic group 

Ethnic group Odds ratio (95% CI) p-value 

Unadjusted for gestational age   
European reference   

South Asian 1.72 (1.16 to 2.53) 0.0064 

Other/unknown 1.29 (0.83 to 1.98) 0.25 

Adjusted for gestational age   
European reference   

South Asian 1.35 (0.82 to 2.20) 0.23 

Other/unknown 0.72 (0.43 to 1.20) 0.21 

(AROC = 0.882: Ĉ  = 5.43 ~ 2
7χ , p = 0.61)   

 

There was no evidence for an interaction with gestational age (p = 0.85), nor for differences in 

the relationship between the neonatal units (p = 0.99).  

After adjustment for ethnic group and gestational age, Units 6, 7 and 11 had estimated 95% 

confidence intervals with lower limits greater than unity. 
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Figure G.20  Estimated standardized mortality ratios adjusted for ethnic origin and 

gestational age at birth 

 

 

Appendix G.6 Congenital anomalies 

The presence of infants with congenital anomalies can affect in-unit mortality rates in two 

ways.  First, an increased rate of prenatal diagnosis and pregnancy termination for congenital 

anomalies is likely to decrease in-unit mortality rates (Liu et al, 2002).  Second, high rates of 

admissions of infants with congenital anomalies are likely to increase in-unit mortality 

(Sankaran et al, 2002).  The TNS data allowed an investigation of the latter process but not 

the former. 

Although infants with lethal congenital anomalies have been excluded from all of these 

analyses, infants with anomalies not thought to be inevitably lethal have been included.  One 

hundred and sixty-nine infants were recorded as having a congenital anomaly: all of which 

were chromosomal anomalies. 

Table G.8 Mortality by presence of congenital malformation 

 Survived Died  Total 
 n % n %  

None 2588 90.6 268 9.4 2856 

Malformation 152 89.9 17 10.1 169 

Total 2740 90.6 285 9.4 3025 

The unadjusted odds ratio of morality was 1.08 (95% CI: 0.64 to 1.82); p = 0.77.  With the 

introduction of gestational age into the model, there was evidence for a quadratic relationship 
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between gestational age and mortality and for interactions between the presence of a 

congenital malformation and both linear and quadratic terms for gestational age: 

22

0

..ˆ.ˆ
..ˆ.ˆ.ˆˆˆ

gestconmalgest

gestconmalgestconmalg

iCGGiGG

iiCGiGiCi

β+β+

β+β+β+β=
 

 0β̂  = 58.62 (s.e. 41.41) 

 Cβ̂  = 74.39 (s.e. 37.65) 

 Gβ̂  = 5.15 (s.e. 2.98) 

 CGβ̂  = -5.74 (s.e. 2.69) 

 GGβ̂  = -0.11 (s.e. 0.05) 

 CGGβ̂  = 0.11 (s.e. 0.05) 

where: 




=
presenton malformati no if         0

 present   on malformati if         1
conmal  

 gest = gestational age at birth in completed weeks. 

(AROC = 0.891: Ĉ  = 7.15 ~ 2
5χ ,  p = 0.21)  

Figure G.21 Observed and estimated probability of death by presence of a congenital 

malformation and gestational age at birth 

 

It is unclear what interpretation can be put on such a relationship and potential reasons will 

not be pursued in this thesis.  One explanation may be varying incidence rates of different 

types of congenital malformations with increasing gestational age, but data are not available 

from TNS to explore this further.  The addition of an interaction term into the logistic model 
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showed no statistical evidence that the odds ratio varied across the neonatal units (p = 0.99).  

After adjustment, Units 6 and 7 had estimated confidence intervals that did not contain unity. 

Figure G.22 Estimated standardized mortality ratios adjusted for congenital malformation 

and gestational age at birth 

 

 

Appendix G.7 Base excess 

The base excess is the theoretical amount of acid that needs to be given to correct the blood 

pH: specifically, to titrate one litre of blood to pH 7.4 at a Pco2 of 5.3 kPa (Gray et al, 

1985:41).  A positive value indicates metabolic alkalosis and negative values indicate 

metabolic acidosis, with the normal range for newborn infants being –10 to –2 mmol/L (Tietz, 

1986:1815).  For TNS, the maximum base excess in the first 12 hours of life is recorded.  

Abnormal base excess has been shown to be associated with neonatal mortality in preterm 

infants (The International Neonatal Network, 1993; Maier et al, 1997; Garcia et al, 2000; 

Parry et al, 2003b). 

Analysis with observations with missing values excluded 

Seven hundred and forty eight infants (24.7%) had missing values for base excess, of whom 

17 (2.3%) died.  For the remaining 2277 infants, the median value for base excess was –

5.8mmol/L (mean = -6.5, minimum = -29.5, maximum = 20.1). 

Using the observations with known base excess, the unadjusted odds ratio of mortality for 

each unit increase in base excess was 0.83 (95% CI: 0.80 to 0.85); p < 0.0001.  There was no 

evidence for a non-linear relationship between base excess and mortality; the p-value for a 
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quadratic term for base excess being 0.13.  When gestational age was added to the model 

there was evidence for an interaction between base excess and gestational age (p < 0.001). 

iiBGiGiBi gestbaseexcessgestbaseexcessg ..ˆ.ˆ.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 19.36 (s.e. 2.03) 

 Bβ̂  = 0.51 (s.e. 0.17) 

 Gβ̂  = -0.82 (s.e. 0.08) 

 BGβ̂  = -0.025 (s.e. 0.006) 

where: baseexcess = base excess (mmol/L) 

 gest = gestational age at birth in completed weeks. 

 (AROC = 0.896: Ĉ  = 14.08 ~ 2
8χ , p = 0.080) 

There was no evidence of a different relationship amongst the units: p = 0.96. 

Figure G.23 Estimated standardized mortality ratio adjusted for recorded base excess and 

gestational age at birth 

 

Analysis with observations with missing values included 

The analysis above excluded 748 observations without recorded maximum base excess.  The 

Royal College of Obstetricians and Gynaecologists and the Royal College of Midwives issued 

a joint recommendation that consideration should be given to the routine measurement of cord 

blood gasses, which would allow the calculation of base excess (RCOG & RCM, 1999:22).  

However, a recent survey of obstetric units found that only 54% were following these 

recommendations (Waugh et al, 2001).  While the true reason measurements are missing from 
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TNS is unknown, anecdotal evidence suggests that in most cases base excess was not 

measured when it was felt likely to be in the normal range (Field, D.J.: Personal 

communication).  In this case, it may be appropriate to substitute the missing values with a 

‘normal’ value.  Such an approach is commonly used with published risk-adjustment scores, 

for example PIM (Shann et al, 1997), SNAP (Richardson et al, 1993), MMPS (Daley et al, 

1988).  That only 2.3% of those with missing base excess values died before discharge 

suggests that this may be true (Table G.9).  Using this assumption, it was possible to 

categorise all of the observations according to their estimated base excess by putting those 

with missing values into the ‘normal group’.  The groups used here were those from the 

original CRIB score: >-7.0, -7.0 to -9.9, -10.0 to –14.9 and ≤ 15.0 mmol/L.  The new CRIB II 

score uses more categories but it was felt that these might result in small counts for some 

groups.  In addition, a small number of groups meant that missing values were less likely to 

be allocated to the wrong group. 

Table G.9 Deaths by maximum base excess 

Max. base excess (mmol/L) Total Died (%) 

Missing values 748 17 (2.3) 
Known > -7.0 1412 81 (5.7) 
> -7.0 xii 2160  98 (4.5) 

-7.0 to –9.9 473 63 (13.3) 

-10.0 to –14.9 276 69 (25.0) 

≤ 15.0 116 55 (47.4) 

There was evidence of a difference in mortality rates between the groups (p < 0.0001), with 

increasing mortality with decreasing maximum recorded base excess (Table G.9).  The 

inclusion of gestational age showed evidence for an interaction between gestational age and 

maximum base excess group: p = 0.0003: 

 
iiGBiiGBiiGB

iGiBiBiBi

gestbaseexcessgestbaseexcessgestbaseexcess

gestbaseexcessbaseexcessbaseexcessg

.4.ˆ.3.ˆ.2.ˆ
.ˆ4.ˆ3.ˆ2.ˆˆˆ

432

4320

β+β+β+

β+β+β+β+β=
 

 0β̂  = 18.19 (s.e. 1.50) 

 2
ˆ

Bβ  = -2.81 (s.e. 2.63) 

                                                 

xii Missing values and known observations < -7.0 mmol/L 
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 3
ˆ

Bβ  = -7.16 (s.e. 2.37) 

 4
ˆ

Bβ  = -7.06 (s.e. 2.69) 

 Gβ̂  = -0.76 (s.e. 0.06) 

 GB2β̂  = 0.12 (s.e. 0.10) 

 GB3β̂  = 0.32 (s.e. 0.09) 

 GB4β̂  = 0.135 (s.e. 0.10) 

where: 


 =

=
                                                            else        0

    9.9-  to7.0-  excess base maximum if         1
2.baseexcess  



 =

=
                                                               else        0

    14.9-  to10.0-  excess base maximum if         1
3.baseexcess  



 ≤

=
                                                else        0

    15.0  excess base maximum if         1
4.baseexcess  

 gest = gestational age at birth in completed weeks. 

(AROC = 0.911: Ĉ  = 1.10 ~ 2
8χ , p = 0.98) 

The introduction of interaction terms between the units and base excess groups showed no 

improvement in the fit of the model: p = 0.98.  The estimated functions showed a ‘dose 

response’ pattern of higher mortality with decreasing base excess (Figure G.24). 

Figure G.24 Observed and estimated probability of death by base excess and gestational 

age at birth 
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From the estimated SMRs, there was statistical evidence that Units 6 and 7 had high mortality 

rates (Figure G.25). 

Figure G.25 Estimated standardized mortality ratios adjusted for base excess and 

gestational age at birth 

 

 

Appendix G.8 Multiplicity of pregnancy 

There has been evidence presented that multiple birth is a risk factor amongst extremely low 

birth weight infants (501-1000g) (Shankaran et al, 2002).  However, there is also evidence 

that twins have better gestational age specific neonatal survival rates than singletons (Kiely, 

1998).  The TNS records the number of fetuses in each pregnancy, allowing an investigation 

into the effect of multiple birth on mortality.  However, no other details are recorded, so it 

was not possible to investigate other related potential risk factors in multiple births, such as 

first-born versus second-born (Shinwell et al, 2004; Sheay et al, 2004), asynchronous delivery 

(Livingston et al, 2004), monochorionicity and discordant growth (Amaru et al, 2004). 

The TNS data showed decreasing mortality with increasing multiplicity, although these 

differences are not statistically significant: overall p-value = 0.23.  Since there were a 

relatively small number of triplets, and only three deaths, a dichotomous variable was used: 

singleton or multiple birth.  Once again there was no statistically significant difference 

between the groups (Table G.10).  However, this approach may be concealing differences by 

gestational age (Table G.11). 
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Table G.10  Unadjusted odds ratios for mortality by multiplicity of birth 

Multiplicity 
of birth 

Total Died (%) Odds ratio (95% CI) p-value 

Singleton 2288 225 (9.8) reference   

Twin 669 57 (8.5) 0.85 (0.63 to 1.16) 0.31 

Triplet 68 3 (4.4) 0.42 (0.13 to 1.36) 0.15 

       

Multiple xiii 737  60 (8.1) 0.81 (0.60 to 1.10) 0.17 

Table G.11 Mortality by multiplicity of pregnancy and gestational age 

Multiplicity 
of birth 

Gestational age at birth (weeks) 

22 23 24 25 26 27 28 29 30 31 32 

Si
ng

le
to

n n 5 38 78 106 138 151 237 241 317 439 538 

died 5 31 40 33 33 29 25 8 7 9 5 

(%) (100) (82) (51) (31) (24) (19) (11) (3) (2) (2) (1) 

M
ul

tip
le

 n 2 10 16 37 39 56 59 71 111 139 197 

died 2 10 10 14 9 9 2 2 1 1 0 

(%) (100) (100) (63) (38) (23) (16) (3) (3) (1) (1) (0) 

T
ot

al
 n 7 48 94 143 177 207 296 312 428 578 735 

died 7 41 50 47 42 38 27 10 8 10 5 

(%) (100) (85) (53) (33) (24) (18) (9) (3) (2) (2) (1) 

The effect of gestational age at birth was investigated using a logistic regression model and 

there was evidence of a gestational age-by-multiplicity interaction (p = 0.0065): 

 iiMGiGiMi gestmultiplegestmultipleg ..ˆ.ˆ.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 14.95 (s.e. 0.95) 

 Mβ̂  = 7.19 (s.e. 2.68) 

 Gβ̂  = -0.62 (s.e. 0.04) 

 MGβ̂  = -0.28 (s.e. 0.10) 

where: 




=
birth   singleton  if       0

birth     multiple if       1
multiple  

                                                 

xiii  Twins and triplets 
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 gest = gestational age at birth in completed weeks 

 (AROC = 0.885: Ĉ  = 4.97 ~ 2
8χ , p = 0.66) 

From both the observed mortality (Table G.11), and the model estimates, there appeared to be 

evidence that infants from multiple pregnancies did worse that singletons if born before about 

26 weeks gestational age, but appeared to do better if born after this time. 

Figure G.26 Estimated mortality by gestational age and multiplicity of pregnancy 

 

This may help to explain the conflicting evidence discussed earlier.  The very small infants, 

less than 1000g, tend to be born at very early gestational ages (see Figure 2.8): in the TNS 

data 74% of births below 1000g were at 27 weeks or less.  Another study, investigating births 

from 26 weeks onwards, showed a survival advantage for twins for all gestational ages except 

at 26 weeks (Kiely, 1998).  Such data, together with the finding in this thesis, suggest that 

there may be a crossing over of neonatal mortality curves at around 26 weeks gestational age. 

However, an explanation for this phenomenon is less clear.  Intersecting neonatal mortality 

curves have been observed for infants born at greater gestational ages (Cheung et al, 2000).  

Studying births at 28 weeks gestational age and over, Cheung et al observed higher neonatal 

(and perinatal and infant) mortality for singleton births up to around 37 weeks but lower 

mortality for singleton for births after this time.  Rather than their assumption that “… twins 

have better health than singletons initially …” such observations may just reflect the fact that 

twins tend to be delivered earlier than singletons, perhaps through the shortening of the 

cervix, (Sullivan and Newman, 2004).  Singletons are likely to have some pathological cause 

for their preterm birth other that lack of space in the uterus (Lie, 2000).  Whether there was 

some form of selection bias with the very preterm births observed here is impossible to know: 
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obstetric care may vary in the early stages of pregnancy, accounting for the differences, but no 

such variations are known.  However, the present work is interested in predicting the outcome 

of such deliveries to enable appropriate risk-adjustment, rather than an examination of the 

underlying causes.  The reason behind the observed pattern of mortality will not, therefore, be 

pursued further here. 

There was no evidence that the relationship between mortality and multiple birth was 

different between the units, after adjusting for gestational age (p = 0.99).  After adjustment for 

multiplicity and gestational age, Units 6, 7 and 11 had estimated 95% confidence intervals 

wholly greater than unity. 

Figure G.27 Estimated standardized mortality ratios adjusted for multiplicity and 

gestational age at birth 

 

 

Appendix G.9 Socio-economic status 

The Trent Neonatal Survey does not collect any information directly on the socio-economic 

status of an infant’s family: for example the National Statistics Socio-economic 

Classifications (NS SEC) or the Standard Occupational Classifications (SOC).  However, the 

postcode of the mother’s place of residence was recorded and can be used to investigate any 

association between area-based socio-economic deprivation and in-unit neonatal morality. 

The evidence for an association between socio-economic deprivation and neonatal mortality 

is equivocal.  While some previous studies have shown evidence of an association between 

neonatal mortality and increased deprivation (Martuzzi et al, 1998; Joyce et al, 2002; Guildea 

et al, 2001; Joyce et al, 2004), it has been suggested that this relationship does not hold for 
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infants born under 2500g (Leon, 1991; Bambang et al, 2000).  However, these studies have 

ecological study designs and, as such, do not show a direct relationship between deprivation 

and neonatal mortality for an individual and as such may be prone to the ecological fallacy 

(Selvin, 1958).  Other studies that looked at deprivation and neonatal mortality in individuals 

found no evidence for an association after adjustment for race, sex and gestational age (Paneth 

et al, 1982) nor for gestational age and birth weight (Manktelow and Draper, 2003).  The lack 

of evidence for an association in low birth weight infants, or after adjustment for gestational 

age, may occur because deprivation is associated with mortality through the increased risk of 

a preterm, or low birth weight, birth (Aveyard et al, 2002; Meis et al, 1995; Peacock et al, 

1995).  A Canadian study is currently underway to investigate possible causal pathways to 

explain the association between socio-economic deprivation and preterm birth at the 

individual level (Kramer et al, 2001). 

Several area-based deprivation scoring systems exist that could have been used for these data, 

for example the Townsend score (Townsend et al, 1988), the Jarman score (Jarman, 1983), 

the Index of Multiple Deprivation (IMD) (Department of the Environment Transport and the 

Regions, 2000).  The measure of socio-economic status chosen was the Index of Multiple 

Deprivation 2000 (IMD) published by the Department of the Environment, Transport and the 

Regions.  The Department of Social Policy and Social Work at the University of Oxford were 

commissioned to develop this score to provide an up-to-date measure of deprivation at 

electoral ward level.  Current versions of the Townsend and Jarman scores used data from the 

1991 census and, therefore, were more likely to be out-of-date than the IMD which also 

included more recent data.   

Each electoral ward had an overall IMD 2000 score, which is the sum of six weighted domain 

scores: income 25%; employment 25%; health & disability 15%; education, skills & training 

15%; housing 10%; and geographical access to services 10%.  A higher value of the score 

represents a higher level of socio-economic deprivation.   

The IMD 2000 has itself been updated to become the IMD 2004 (Office of the Deputy Prime 

Minister, 2003).  However, there are important differences between IMD 2000 and IMD 2004 

that make any direct comparisons, for example to investigate changes in deprivation over 

time, unfeasible.  First, the IMD 2000 ‘housing’ and ‘geographical access to services’ 

domains have been replaced with domains called ‘barriers to housing and services’ and 

‘living environment’, and a new domain of ‘crime’ has been added.  Second, IMD 2000 was 

electoral ward level statistic whereas IMD 2004 uses smaller Super Output Areas (SOAs).  
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While the latter difficulty may be partly overcome by averaging IMD 2004 scores over areas, 

the change in domains means that only the rankings of areas can be investigated rather than 

their absolute values.  Such investigations have found high correlations between the scores 

(Office of the Deputy Prime Minister, 2003:117-118). 

For this thesis, the Postcode Plus® software (AFD Software Ltd, 2004) was used to allocate 

observations to electoral wards using the full postcode subsectors (e.g. LE1 6TP) of the 

mother’s stated place of residence at the time of the birth.  It was not possible to match 106 

observations (9 deaths) to their appropriate electoral ward, either because the recorded post 

code was incorrect or because boundary changes made it impossible to match the post codes 

to wards with the available software.  The 2919 remaining observations were matched to 799 

different electoral wards.  A histogram of the observed IMD for these 799 wards is shown in 

Figure G.28 together with the equivalent histogram for all 8414 English wards.  Higher values 

of the IMD indicate higher values of deprivation. 

Figure G.28 Distribution of Index of Multiple Deprivation 2000 by electoral ward 

TNS data England 

  

The minimum IMD score for the TNS data was 3.54 (ranked 8282 out of 8414 for all English 

wards) and the maximum was 73.48 (42 out of 8414 for all English wards).  The median 

value for the 799 wards was 24.54, compared to 16.93 for England.  These data, therefore, 

covered almost the full range of values seen in England, but the average value was higher.  

Figure G.29 shows the value of the Index of Multiple Deprivation by electoral ward across the 

East Midlands.  The values have been categorised into five groups according to the observed 

quintiles of the data for the whole of England.  There were differences in deprivation, as 

measured by the IMD, between the different parts of the former Trent Health Authority area.  
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In particular, in the north and east of the Region areas of high deprivation predominated.  

However, a map such as Figure G.29 shows the score in relation to geographic area and not 

by population, and electoral wards tend to be small in area in high population urban areas and 

large in less densely populated rural areas. 

Figure G.29 Map of Index of Multiple Deprivation 2000 by electoral ward 

 

 

(This work is based on data provided through EDINA UKBORDERS with the support of the ESRC and JISC 

and uses boundary material which is copyright of the Crown.) 

Figure G.30 Observed mortality by Index of Multiple Deprivation 
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The odds ratio for mortality for a unit increase in IMD was 1.00 (95% CI: 0.99 to 1.01), p = 

0.49.  When gestational age was included in the model (no evidence for an interaction by 

gestational age: p = 0.44) the odds ratio for a unit increase in IMD was 1.00 (95% CI: 0.99 to 

1.01), p = 0.89 (AROC = 0.886: Ĉ  = 5.55  ~ 2
7χ , p = 0.59). 

There was no evidence that this relationship differed between units: p = 0.44.  After 

adjustment for IMD and gestational age three units (6, 7 and 11) all had estimated 95% 

confidence interval wholly above the value one. 

Figure G.31 Estimated standardized mortality ratios adjusted for Index of Multiple 

Deprivation and gestational age at birth 

 

 

Appendix G.10 Antenatal corticosteroids 

The use of antenatal corticosteroids prior to preterm birth has long been known to reduce 

subsequent respiratory distress syndrome (RDS) (Liggins and Howie, 1972) and, therefore, 

neonatal mortality (Crowley, 2003).  Some 40-50% of all births under 33 weeks are affected 

by RDS (Chiswick, 1995).  Guidelines from the Royal College of Obstetricians and 

Gynaecologists recommend that antenatal corticosteroids should be offered to women at risk 

of preterm delivery and that the optimal treatment-delivery interval is more than 24 hours but 

fewer than seven days after the start of treatment (Royal College of Obstetricians and 

Gynaecologists, 2004).  Infants of mothers not given corticosteroids are more likely, 

therefore, to have poorer prognoses. 

Table G.12 shows the proportion of infants whose mother received antenatal corticosteroids 

by hospital of birth (the codes used are the same as the codes used for the neonatal units 
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elsewhere in the thesis).  There was strong statistical evidence that these rates differ (p < 

0.0001) for the units investigated in this thesis; not including home births and those born 

outside of the former Trent Health Region.  It would be of interest to investigate these 

differences to see whether they are the result of policy differences or due to differences in 

referral patterns or other clinical differences in the mothers or infants.  However, this is not 

possible from TNS data and it will be merely reported that these differences still hold after the 

exclusion of in-utero transfers. 

Table G.12 Antenatal corticosteroids by hospital of birth 

Hospital of birth No. Infants No. antenatal 
corticosteroids 

(%) 

1 174 127 (73.0) 

2 260 190 (73.1) 

3 54 39 (72.2) 

4 138 123 (89.1) 

5 304 241 (79.3) 

6 347 269 (77.5) 

7 234 164 (70.1) 

8 119 98 (82.4) 

9 31 28 (90.3) 

10 132 113 (85.6) 

11 395 312 (79.0) 

12 191 174 (91.1) 

13 133 96 (72.2) 

14 85 61 (71.8) 

15 118 97 (82.2) 

16 89 70 (78.7) 

Home 25 1 (4.0) 

Out of Region 196 94 (48.0) 

Total 3025 2298 (76.0) 

Obviously such differences in the administration of corticosteroids in the units of birth are 

likely to be reflected in the neonatal admissions.  This can be seen in Table G.13.  The 

proportion of infants whose mothers have received antenatal corticosteroids ranged from 63% 

(Unit 3) to over 91% (Unit 4). 
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Table G.13  Antenatal corticosteroids by NICU of care 

Neonatal Unit No. infants No. antenatal 
corticosteroids 

(%) 

1 212 159 (75.0) 

2 283 184 (62.0) 

3 38 24 (63.2) 

4 143 130 (90.9) 

5 333 251 (75.4) 

6 378 287 (75.9) 

7 243 167 (68.7) 

8 124 102 (82.3) 

9 35 27 (77.1) 

10 146 122 (83.6) 

11 444 345 (77.7) 

12 196 169 (86.2) 

13 136 90 (66.2) 

14 90 65 (72.2) 

15 124 98 (79.0) 

16 100 78 (78.0) 

Total 3025 2298 (76.0) 

Observed mortality by antenatal corticosteroid use is shown in Table G.14.  Those infants 

who did not receive antenatal corticosteroids had a higher rate of mortality than those who 

did.  This may have been due to the beneficial effect of corticosteroid administration or it may 

have been because those who did not receive it were extremely sick infants who needed to be 

delivered quickly.  It is not possible to investigate this further with these data, nor is it 

possible to investigate the effect of the timing of corticosteroid use. 

Table G.14 Mortality by antenatal corticosteroid use 

Antenatal 
corticosteroids 

No. Infants No. died (%) 

Given 2298 192 (8.4) 

Not given 727 93 (13.4) 

Total 3025 285 (9.4) 

The estimated odds ratio for mortality was 0.62 (95% CI: 0.47 to 0.81), p = 0.0004.  When 

gestational age was included in the model (no evidence for an interaction by gestational age: 
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p = 0.46) the estimated odds ratio was 0.63 (95% CI: 0.45 to 0.87), p = 0.0047 (AROC = 0.883: 

Ĉ  = 6.01 ~ 2
6χ , p = 0.42).  There was no evidence that this relationship differed between 

units: p = 0.63.  When SMRs were estimated, adjusted for antenatal corticosteroid 

administration and gestational age, Units 6, 7 and 11 had 95% confidence intervals 

completely above the value one. 

Figure G.32 Estimated standardized mortality ratios adjusted for use of antenatal 

corticosteroids and gestational age at birth 

 

 

Appendix G.11  Intrapartum monitoring 

The term fetal distress is an often-used description of problems during birth, although it has 

no clear definition.  In general, it describes the situation where the fetus is deprived of oxygen 

during labour or delivery, although this is often called acute fetal distress to distinguish it 

from sustained hypoxia during the pregnancy, which is usually termed chronic fetal distress.  

It has been suggested that a strict definition should include a combination of hypoxia, 

hypercarbia and acidosis (Mead, 1996).  Such a reduction of oxygen in the blood (hypoxia) 

leads to an increase in carbon dioxide (hypercarbia), an increase in hydrogen ion 

concentration and, therefore, lower blood pH (acidosis).  Such acidosis can result in increased 

neonatal morbidity (Winkler et al. 1991; Low et al. 1994; Nagel et al. 1995; Low et al. 

1995a), although one of these studies has cast doubt on whether this still holds for infants 

born at less than 32 weeks gestational age (Low et al.  1995a).  There are several potential 

causes of fetal distress (Table G.15). 
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Table G.15 Causes of fetal distress 

Causes of fetal distress – from Beischer and Mackay (1978) 

Mother: Hypotension or shock from any cause 
Cardiovascular disease 
Anaemia 
Respiratory depression or disease 
Malnutrition 
Acidosis and dehydration 

Uterus: Excessive or prolonged uterine activity 
Vascular degeneration 

Placenta: Premature separation 
Vascular degeneration and infarction 

Cord: Compression 

Fetus: Infection 
Malformation 
Haemorrhage 
Anaemia 

Acute fetal distress may indicate an increased risk of perinatal mortality, cerebral palsy or 

neuro-developmental disability.  A diagnosis of fetal distress is used to try to identify chronic 

fetal hypoxia to allow intervention before it leads to mortality or neurological damage.  

However, an abnormal fetal heart rate is not necessarily an indication of hypoxia but could 

indicate other pathologies, such as uterine rupture or fetal thyrotoxicosis (Royal College of 

Obstetricians and Gynaecologists, 2001:30).  Indeed, it could be argued that the detection of 

fetal hypoxia, by EFM or Doppler, allows appropriate interventions to be carried out thus 

preventing, or at least limiting, any neurological disability.  Such interventions include 

increasing oxygen to the mother, changing the mother’s position, the use of tocolytic agents to 

relax the uterus, amnioinfusion and rapid delivery (Royal College of Obstetricians and 

Gynaecologists, 2001:58-61).  However, there is no evidence from clinical trials to indicate 

the most appropriate method to manage births where fetal distress is suspected (Hofmeyr and 

Kulier, 2003).  Good neonatal care can also often reverse the effects of acidosis (Eaton et al, 

1994). 

A number of different approaches have been advocated to try to detect fetal distress (Mead, 

1996) and six variables are collected in TNS to try to identify those deliveries where fetal 

distress occurred: ‘fetal distress’, ‘CTG abnormality’, ‘Doppler abnormality’, ‘abnormal scalp 

pH’, meconium present’ and ‘other’.  Each of these will be briefly investigated. 
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Fetal distress 

The first variable records whether any signs of fetal distress during labour were noted, usually 

through the monitoring of the fetal heart rate, either from electronic fetal monitoring (EFM) 

or auscultation, or the monitoring of fetal movement.  However, such observations may be 

poor indicators of fetal hypoxia and, therefore, of subsequent morbidity and mortality (Rosen 

and Dickinson, 1993; Parer, 2003).  For the TNS data, there was no evidence for an 

association between mortality and these recorded signs of fetal distress (Table G.16): odds 

ratio = 0.99 (95% CI 0.76 to 1.28); p = 0.95. 

Table G.16 Mortality by signs of fetal distress 

EHM No. infants No. died (%) 

None 1948 184 (9.5) 

Reported 1077 101 (9.4) 

Total 3025 285 (9.4) 

 

CTG abnormality 

The next question on the TNS questionnaire records whether any abnormalities were noted 

from cardiotocogramography (CTG).  This procedure looks in more detail at fetal heart 

function, with abnormalities falling into several different categories (Pearce and Steel, 

1987:124-135).  However, it is recognised that such fetal heart rate patterns can be difficult to 

interpret and such interpretation “… is significantly affected by intra- and inter-observer 

error” (Royal College of Obstetricians and Gynaecologists, 2001:51).  However, there is 

some evidence of an association between fetal heart rate in the 24 hours before birth and 

neonatal mortality (Ayoubi et al, 2002).  Information on the TNS form does not differentiate 

between the types of abnormality noted.  There was no evidence for an association between 

mortality and CTG abnormality: odds ratio = 0.82 (0.62 to 1.09) p = 0.17. 

Table G.17 Mortality by CTG abnormalities 

CTG No. infants No. died (%) 

Normal 2155 213 (9.9) 

Abnormal 870 72 (8.3) 

Total 3025 285 (9.4) 
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Doppler abnormality 

Ultrasound can be used to directly measure blood flow through the umbilical cord using 

Doppler frequency shift (Trudinger, 1999): intrapartum umbilical artery Doppler velocimetry.  

Although it has been suggested that Doppler velocimetry is a poor predictor of perinatal 

outcomes (Farrell et al, 1999), there was some evidence that abnormal patterns of blood flow 

are associated with increased neonatal mortality (Trudinger et al, 1991). 

Table G.18 Mortality by abnormal Doppler velocimetry 

Doppler No. infants No. died (%) 

Normal 2370 193 (8.1) 

Abnormal 355 48 (13.5) 

Missing 300 44 (14.7) 

Total 3025 285 (9.4) 

For those observations where Doppler velocimetry is known to have been carried out, there is 

strong evidence of an association between recorded abnormality and subsequent in-unit 

mortality: odds ratio = 1.76 (95% CI 1.25 to 2.48); p = 0.0009.  This association still holds if 

the observations with abnormal Doppler are compared to all of the rest of the observations: 

odds ratio = 1.61 (95% CI 1.15 to 2.24) p = 0.0049. 

Although these data indicate that abnormal umbilical artery blood flow was a predictor for 

mortality, the large proportion of infants did not undergo Doppler velocimetry (9.9%).  Since 

the mortality rate for those without Doppler velocimetry was the highest of the three groups 

shown in Table G.18, it is unlikely that this group comprised solely those births thought to be 

uncomplicated.  This makes the inclusion of Doppler velocimetry in a risk-adjustment model 

for all infants difficult. 

Meconium present 

A further observation recorded by TNS to try to identify fetal hypoxia is the presence of 

meconium (an infant’s first faeces usually passed after birth) in the amniotic fluid.  There is 

evidence in term infants of an association between meconium stained amniotic fluid and fetal 

hypoxia (Jazayeri et al, 2000), with meconium staining occurring in some 14% of all births 

(Ghidini and Spong, 2001). 

Although hypoxia can be a cause of a fetus passing meconium into the amniotic fluid in-utero 

through stimulation of the vagus nerve, other risk factors can be involved (Miller et al, 1975), 

including difficult delivery, umbilical cord complications, poor intrauterine growth and other 



APPENDIX G: RISK-ADJUSTMENT VARIABLES 

BRADLEY MANKTELOW PHD THESIS   392 

chronic medical conditions.  Meconium staining occurs predominately in term, or beyond, 

births and can be seen as an indicator of the increased maturation of the gastrointestinal tract.  

It is estimated that up to 30% of births beyond 42 weeks have meconium-staining (Creasy, 

1997:111).  The significance of meconium staining in very preterm births is less clear, with a 

recent small study showing a non-statistically significant increase in mortality for those 

infants with meconium staining: odds ratio 2.64 (95% CI 0.76 to 9.21) (Tybulewicz et al, 

2004). 

In addition to its association with hypoxia, the inhalation of the mixture of meconium and 

amniotic fluid by the infant can be a cause of Meconium Aspiration Syndrome (MAS) as the 

meconium traps air within the lungs and causes irritation to the airways.  However, it is 

estimated that only 11% of infants with meconium staining develop MAS and even some of 

these cases may have causes other than the meconium inhalation (Ghidini and Spong, 2001). 

The amount and type of meconium present in the amniotic fluid are important prognostic 

factors with fresh (green) meconium usually more associated with acute hypoxia than old 

(brown) meconium (Pearce and Steel, 1987:135).  However, data recorded by TNS only 

indicates the presence of meconium.  In these data there was no evidence of an association 

between the presence of meconium-staining of the amniotic fluid and subsequent in-unit 

mortality: odds ratio = 1.06 (95% CI 0.54 to 2.06); p = 0.87. 

Table G.19 Mortality by presence of meconium 

Meconium-staining No. infants No. died (%) 

None 2924 275 (9.4) 

Present 101 10 (9.9) 

Total 3025 285 (9.4) 

 

 

Other indicators of fetal distress 

Other significant events that may indicate fetal distress (e.g. cord prolapse, fetal distress in the 

other twin) are recorded by a separate question on the TNS form.  There was no evidence of 

an association between these other indicators of fetal distress and subsequent in-unit mortality 

(Table G.20): odds ratio = 0.99 (95% CI 0.76 to 1.28) p = 0.95. 
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Table G.20 Mortality by other indicator of intrapartum difficulties 

Other No. infants No. died (%) 

None 1948 184 (9.5) 

Reported 1077 101 (9.4) 

Total 3025 285 (9.4) 

 

Abnormal scalp pH 

The final indicator of fetal distress recorded by TNS is scalp blood pH.  This is a direct 

measure of acidosis and can be performed at an early stage of labour.  A sample of blood is 

taken directly from the fetus’s scalp when the fetus is in cephalic presentation, or the buttock 

if not (Al-Azzawi, 1990).   

A study using sheep, sampling scalp blood while simultaneously directly measuring the pH of 

the fetal preductal arterial blood, has shown evidence that the two sources of measurement 

correlated well (Morgan et al, 2002).  For TNS pH less than 7.25 was considered abnormal 

for all births, as there is evidence that blood gas levels are the same in otherwise 

uncomplicated preterm births as in term births (Ramin et al, 1989). 

Only five infants were recorded as having abnormal scalp pH of less that 7.25 (Table G.21).  

There is little statistical power to investigate an association between abnormal scalp pH and 

subsequent in-unit mortality: odds ratio for normal vs. abnormal = 2.45 (95% CI 0.27 to 

22.05) p = 0.41. 

Table G.21 Mortality by scalp pH 

Scalp pH No. infants No. died (%) 

Normal (≥ 7.25) 2379 220 (9.3) 

Abnormal (< 7.25) 5 1 (20.0) 

Missing 641 64 (10.0) 

Total 3025 285 (9.4) 

 

As scalp pH is a direct measure of blood gasses it is of interest to see how well the indirect 

measures of fetal distress correlate with abnormal scalp pH (Table G.22). 
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Table G.22 Scalp pH by other measures of fetal distress 

pH Distress CTG Doppler Meconium 
 Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal 

Normal 1476 903 1677 702 2098 281 2306 73 

Abnormal 3 2 2 3 5 0 5 0 

Missing 469 172 476 165 567 74 613 28 

Even allowing for the small number of infants with abnormal scalp pH, that there is little 

correlation with the different methods.  Indeed, for abnormal Doppler velocimetry and 

meconium staining no infant with recorded abnormality had abnormal scalp pH.  This may 

indicate that these indirect measures are of little use.  However, an association between 

abnormal umbilical artery blood flow and mortality has been demonstrated in these data. 

Combined indicator 

It has been suggested previously that such indirect measures that try to indicate hypoxia are 

poor predictors, generating a very high proportion of false positives (Low et al, 1995b).  The 

combined use of indicators may be of more use, for example performing fetal blood analysis 

when the CTG is abnormal (Saling, 1996).  As a final approach, an infant with any of the 

indicators recorded as abnormal was assumed to have experienced fetal distress (Table G.23). 

Table G.23 Mortality by fetal distress 

Fetal distress No. infants No. died (%) 

None 1822 178 (9.8) 

Reported 1203 107 (8.9) 

Total 3025 285 (9.4) 

The estimated odds ratio for mortality was 0.90 (95% CI: 0.70 to 1.16), p = 0.42.  When 

gestational age at birth was included in the model there was evidence for a fetal distress by 

gestational age interaction (p = 0.016). 

 iiDGiGiDi gestdistressgestdistressg ..ˆ.ˆ.ˆˆˆ 0 β+β+β+β=  

 0β̂  = 18.44 (s.e. 1.25) 

 Dβ̂  = -3.98 (s.e. 1.91) 

 Gβ̂  = -0.76 (s.e. 0.05) 

 DGβ̂  = 0.17 (s.e. 0.07) 
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 (AROC = 0.886: Ĉ  = 4.80  ~ 2
7χ , p = 0.68)  

where: 




=
                                       otherwise      0

    recorded distress fetal ofsign  if       1
distress  

 gest = gestational age at birth in completed weeks 

There was no evidence that the relationship between reported fetal distress and mortality 

differed amongst the units (p = 0.96).  The estimated functions suggest that fetal distress was 

associated with mortality for infants born at 25 to 30 weeks gestational age (Figure G.33). 

Figure G.33 Estimated mortality by recorded fetal distress and gestational age at birth 

 

When SMRs were estimated (Figure G.34), adjusted for fetal distress and gestational age, 

Units 6 and 7 had 95% confidence intervals wholly above unity. 

Figure G.34 Estimated standardized mortality ratios adjusted for fetal distress and 

gestational age at birth 
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Appendix G.12 Mode of delivery 

The reported mode of delivery is shown in Table G.24.  Twenty-five observations had 

unknown modes of delivery, none of whom died before discharge. 

Table G.24 Mode of delivery 

Mode of delivery No. infants (%) 

Vaginal Normal 1031 34.1 

 Low forceps 42 1.4 

 High forceps 25 0.8 

 Ventouse 4 0.1 

 Assisted breech 217 7.2 

Caesarean section Emergency: Labouring 480 15.9 

 Emergency: not labouring 1122 37.1 

 Elective 79 2.6 

Missing  25 0.8 

 

There is conflicting evidence on whether caesarean section reduces mortality for preterm 

infants (Penn and Ghaem-Maghami, 2001).  Observational studies using specific populations 

have been equivocal, with some evidence presented for increased survival following 

caesarean section (Naylor et al, 2001), one study showed no evidence for a difference in 

long-term survival between vaginally and caesarean section delivered infants (Wolf et al, 

1999) and a further study reported evidence for increased survival following vaginal delivery 

(Bauer et al, 2003).  A Cochrane review of clinical trials found no evidence for an increase in 

neonatal survival with elective labouring caesarean section when compared to a policy of 

caesarean sections only if a clear clinical indication arose (Grant and Glazener, 2003).  

However, this review comprised only three small studies, as such studies encounter 

difficulties in recruitment (Penn and Steer, 1990).  Guidelines from the National Institute for 

Clinical Excellence (NICE) state that, because of the uncertainty over the outcomes from 

planned caesarean section for preterm births, planned caesarean sections “should not be 

routinely offered outside a research context” (National Institute for Clinical Excellence, 

2004:1.2.3.1).  Seventy-nine infants from the TNS data were admitted following elective 

caesarean section (Table G.24) and these occurred at obstetric units in ten different hospitals. 
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For term births at least, labour may cause an increase in the white blood cell count of the 

infant (neutrophil leukocytosis) by delaying apoptosis and by increasing lipopolysaccharide 

(LPS) responsiveness (Molloy et al, 2004).  Such changes increase the immunological ability 

of the infant, thus decreasing the risk of infection and mortality.  It is not known whether 

labour promotes such physiological changes in preterm births, but it is known that premature 

infants have decreased neutrphil production compared to term infants (Carr, 2000), thus 

making potential labour-induced neutrophil leukocytosis especially important. 

In order to obtain reasonably sized groups, the methods of delivery recorded by TNS were 

combined into three clinically homogeneous groups.  In the light of the potential differences 

discussed above, the three categories were vaginal delivery (n = 1319, 44.0%), labouring 

caesarean section (n = 480, 16.0%) and non-labouring caesarean section (n = 1201, 40%) 

(Field, D.J.: Personal communication). 

Infants delivered by caesarean section had statistically significant higher rates of survival: 

overall p-value = 0.0043 (Table G.25). 

Table G.25 Unadjusted odds ratio for mortality by mode of delivery 

Mode of delivery No. 
infants 

No. 
died 

(%) Odds 
ratio 

(95% CI) p-value 

Vaginal 1319 151 11.5 reference   

CS: labouring 480 34 7.1 0.59 (0.40 to 0.87) 0.0076 

CS: non-labouring 1201 100 8.3 0.70 (0.53 to 0.92) 0.0092 

Total 3000 285 9.5    

 

However, the relative frequency of the modes of delivery changes with gestational age.  At 

very early gestational ages most births are vaginal deliveries.  As gestational age at birth 

increases, more infants are born by elective or non-labouring caesarean section (Figure G.35).  

Since mortality rates are much higher for the very earliest deliveries, gestational age may act 

as an effect modifier. Once gestational age was included in the model (p-value for 

interaction = 0.25) the situation was reversed: infants born by vaginal delivery had the lowest 

gestational age specific mortality rates (Table G.26). 
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Figure G.35 Mode of delivery by gestational age at birth 

 

 

Table G.26 Odds ratio for mortality by mode of delivery adjusted for gestational age 

Mode of delivery Odds ratio (95% CI) p-value 

Vaginal delivery reference   

CS: labouring 1.07 (0.67 to 1.68) 0.78 

CS: not labouring 2.42 (1.70 to 3.44) < 0.0001 

(AROC = 0.890: Ĉ  = 4.57  ~ 2
8χ , p = 0.80) 

This produced an interesting split between those deliveries where labour occurred (vaginal 

and labouring caesarean section) and those where it did not (both non-labouring and elective 

caesarean section).  

Figure G.36 Estimated mortality by mode of delivery and gestational age at birth 
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This may be because caesarean section without labour indicates that the fetus was having 

severe problems: there has been evidence presented that electively delivered preterm infants 

tend to be lighter than those from spontaneously labouring deliveries (Yudkin et al, 1987).  

On the other hand, the difference in outcomes may be because labour causes physiological 

changes in the fetus to its benefit.  However, the TNS data do not allow such an investigation. 

There was no evidence for an interaction between mode of delivery and NICU: p = 0.98.  

Standardized for gestational age and mode of delivery, Units 6 and 7 had 95% confidence 

intervals for the SMR wholly greater than unity. 

Figure G.37 Estimated standardized mortality ratios adjusted for mode of delivery and 

gestational age at birth 

 

 

Appendix G.13 Mother’s age 

There is a large body of evidence that the risk of complications during pregnancy, and at 

delivery, increases with increasing maternal age (Fretts et al, 1995; Jolly et al, 2000; 

Temmerman et al, 2004).  However, the link between neonatal outcomes and maternal age is 

less clear, with some evidence that there is no increased risk of poor neonatal outcomes with 

increased maternal age (Berkowitz et al, 1990). 

For the TNS data, the observed age of the mothers ranged from 13 to 50 years (mean and 

median 28.0 years).  There were 34 missing observations, of which 4 (11.8%) of the infants 

died before discharge.  Inspection of the observed mortality by maternal age shows no 

evidence for increased mortality with greater age (Figure G.38).  Indeed the very oldest 
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mothers (>40 years) appear to have the lowest rates of infant mortality, although the number 

of observations is quite small. 

Figure G.38 Mortality by mother’s age 

 

Using a logistic regression model, there was no evidence for a relationship between a 

mother’s age and the infant’s risk of death: estimated odds ratio = 1.00; 95% CI 0.98 to 1.02; 

p = 0.98.  This did not change after including gestational age at birth in the model: estimated 

odds ratio = 0.99; 95% CI 0.97 to 1.02; p = 0.54 (AROC = 0.884: Ĉ  = 10.48  ~ 2
8χ , p = 0.23).  

There was also no evidence that the relationship between the mothers’ ages and infant 

mortality varied in the different neonatal units: p = 0.25.  After adjustment Units 6 and 7 had 

95% confidence intervals for the SMR wholly above the value one (Figure G.39). 
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Figure G.39 Estimated standardized mortality ratios adjusted for mother’s age and 

gestational age at birth 

 

 

Appendix G.14 Previous obstetric history 

A mother’s previous obstetric history is usually quantified using gravidity and parity.  

Gravidity is defined as the number of previous pregnancies experienced by a woman.  Parity 

is defined either as the total number of previous live births and stillbirths or, for hospital 

in-patient statistics, the total number of pregnancies leading to at least one registerable birth 

(i.e. ≥ 24 weeks) (Macfarlane and Mugford, 2000:13-14).  The relationship between a 

mother’s obstetric history and the probability of mortality for a subsequent infant is unclear.  

There has some evidence presented for a U-shaped relationship between neonatal mortality 

and parity (Bai et al.  2002), seen in Figure G.40. 

Figure G.40 Neonatal mortality by parity (from Bai 2002) 
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However, Bai et al used a cross-sectional design for their study and this approach may be 

unsuitable.  Longitudinal study designs have reported decreasing rates of poor outcome with 

increased gravidity or parity (Billewicz, 1973; Roman et al, 1978; Bakketeig and Hoffman, 

1979).  Figure G.41 is produced using data from Bakketeig & Hoffman (1979) who studied 

all fetal deaths and live births at 16 weeks or more gestational age in Norway over the seven-

year period 1967 to 1973.  They were able to link births to the same mother in order to 

investigate the longitudinal relationship between previous pregnancies and subsequent 

outcomes.  The data shown in Figure G.41 show outcomes to mothers who had no 

pregnancies before 1967.  If the whole cohort is considered (black line) there is evidence for a 

U-shaped relationship similar to that in Figure G.40.  However, if the data are grouped 

according to ultimate sibship size there is evidence of decreasing perinatal mortality with 

increasing parity. 

Figure G.41 Perinatal mortality by parity (data from Bakketeig 1979) 

 

This decrease in mortality could be due to ‘self-selection’, with mothers tending to become 

pregnant again after a pregnancy with an adverse outcome and, on the other hand, a higher 

probability of stopping childbearing after a successful pregnancy (Bakketeig and Hoffman, 

1979).  Thus, it is important to know the outcomes of previous pregnancies, not just the 

number (Yudkin, 1980).  However, the true processes are not known. 

In this thesis, for simplicity, only the previous number of pregnancies was considered but it is 

acknowledged that this has limitations.  To avoid small numbers of observations in each 

group, the observations were divided into three categories: primagravida, secundigravida, 

multigravida. 
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Table G.27 Observed mortality by gravidity 

Gravidity Total Died (%) Odds ratio (95% CI) p-value 

1 1163 93 (8.0) reference   

2 737 66 (9.0) 1.13 (0.81 to 1.58) 0.46 

3+ 1125 126 (11.2) 1.45 (1.09 to 3.93) 0.0095 

There was statistical evidence for difference in the mortality rates between the groups: 

p = 0.029 (Table G.27).  However, once gestational age is included in the model (p-value for 

interaction = 0.28), there was no evidence for a difference between the groups in gestational 

age specific mortality rates: p = 0.58.  The predicted mortality rates are shown in Figure G.42.  

There was no evidence that the relationship between the groups and gestational age differed 

by unit: p = 0.74. 

Table G.28  Odds ratio for mortality by gravidity adjusted for gestational age 

Gravidity Odds ratio (95% CI) p-value 

1 reference   

2 1.09 (0.74 to 1.62) 0.65 

3+ 1.19 (0.85 to 1.67) 0.30 

(AROC = 0.883: Ĉ  = 5.85  ~ 2
8χ , p = 0.75) 

 

Figure G.42 Mortality by gravidity and gestational age at birth 

 

After adjustment Units 6, 7 and 11 had 95% confidence intervals for the SMR wholly above 

unity (Figure G.43). 
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Figure G.43 Estimated standardized mortality ratios adjusted for gravidity and gestational 

age at birth 

 

 

Appendix G.15 Maternal or fetal infection 

Maternal or fetal infection is known to increase the risk of preterm birth and to increase 

mortality among preterm infants (Fung et al, 2003; Garite and Freeman, 1982; Ernest, 1998).  

Many such infections are the result of preterm rupture of the membranes (Romero et al, 2003) 

and there is evidence that very preterm infants (<28 weeks gestational age) are at particularly 

increased risk of infection and mortality (Nelson et al, 1994). 

Table G.29 Mortality by maternal or fetal infection 

EHM No. infants No. died (%) 

None 2457 223 (9.1) 

Infection 568 62 (10.9) 

Total 3025 285 (9.4) 

The observed odds ratio for mortality was 1.23 (95% CI: 0.91 to 1.66), p = 0.18.  After 

adjustment for gestational age (p = 0.72 for interaction between infection and gestational age) 

the adjusted odds ratio was 0.84 (95% CI: 0.59 to 1.21), p = 0.34 (AROC = 0.882: Ĉ  = 4.11  ~ 
2
7χ , p = 0.77).  There was no evidence that the relationship between infection and gestational 

age differed by unit: p = 0.95.  After adjustment for infection and gestational age four units 

had confidence intervals wholly above the value one: Units 5, 6, 7 and 11 (Figure G.44). 
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Figure G.44 Estimated standardized mortality ratios adjusted for infection and gestational 

age at birth 

 

However, maternal or fetal infection, as recorded by TNS, is identified by the use of 

antibiotics in the mothers.  This definition was originally selected with the aim of identifying 

those with strong evidence of infection (Field, D.J.: Personal communication) but it is 

recognised that the use of treatment as the indicator to detect infection raises the clear 

possibility of differential measurement error across the neonatal units.  However, the TNS 

data do not allow an investigation into this question. 
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Appendix H:  DF BETAS 
In this appendix the DF BETAs from the ‘Full’ and ‘Reduced’ models are shown. 

 

 

Figure H.1 DFBETAs for Full Model 

Intercept Gestation 

  

Gestation2 Gender  
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Birth weight   (Birth weight)2 

  

Apgar Apgar*Gestation 

  

Congenital malformation Congenital malformation*Gestational age 
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Congenital malformation*Gestational age2 Base excess -7.0 to –9.9 

  

Base excess -10.0 to –14.9 Base excess <-15 

  

Base excess -7.0 to –9.9*Gestation Base excess -10.0 to –14.9* Gestation 
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Base excess <-15* Gestation Multiple birth 

  

Multiple birth*Gestational age IMD 
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Fetal distress* Gestation Mode of delivery: CS labouring 

  
Mode of delivery: CS non-labouring Delivery: CS labouring*Gestation 

  
Delivery: CS non-labouring*Gestation Mother’s age 

  

 

 

 



APPENDIX H: DF BETAS 

BRADLEY MANKTELOW PHD THESIS   411 

Secundgravid Tercegravid 

  

Infection Infection*Gestation 
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Figure H.2  DFBETAs for Reduced Model 

Intercept Gestation 
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Base excess -7.0 to –9.9 Base excess -10.0 to –14.9 

  
Base excess <-15 Base excess -7.0 to –9.9*weight 

  
Base excess -10.0 to –14.9* weight Base excess <-15* weight 
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Appendix I:   BAYESIAN RISK-ADJUSTED 

MODEL 
This Appendix shows WinBUGS code and diagnostic plots for the Bayesian modelling of the 

‘reduced’ model (§6.10).  First, code and plots are shown for the model to estimate the 

parameter values using all of the data: the results of this analysis are shown in Table 6.9.  

Second, an example of the code used to estimate the SMRs for each unit is reproduced, using 

Unit 1 as the example. 

Appendix I.1 Estimation of risk-adjustment parameter values using all 

of the data 

This code, and the subsequent plots, estimate the parameter estimates for the ‘reduced’ model 

described in §6.10. 
 

model reduced { 
  

  for (i in 1:2885) { 
  

  died[i] ~ dbern(p[i]) 
  

c_gest[i] <- gest[i]-30 
kg_bwt[i] <- (bwt[i]/1000)-1.5 

 
logit(p[i]) <- beta.int  
   + beta.g*c_gest[i]  
   + beta.s*gender[i] 
   + beta.a*apgar1[i] 

    + beta.w*kg_bwt[i] 
+ beta.ww*kg_bwt[i]*kg_bwt[i] 
+ beta.bg2*bg2[i] 
+ beta.bg3*bg3[i] 
+ beta.bg4*bg4[i] 

    + beta.bg2.w*bg2[i]*kg_bwt[i] 
+ beta.bg3.w*bg3[i]*kg_bwt[i] 
+ beta.bg4.w*bg4[i]*kg_bwt[i] 

 } 
 

beta.int ~ dnorm(0,1.0E-6) 
beta.g ~ dnorm(0,1.0E-6) 
beta.s ~ dnorm(0,1.0E-6) 
beta.a ~ dnorm(0,1.0E-6) 
beta.w ~ dnorm(0,1.0E-6) 
beta.ww ~ dnorm(0,1.0E-6) 
beta.bg2 ~ dnorm(0,1.0E-6) 
beta.bg3 ~ dnorm(0,1.0E-6) 
beta.bg4 ~ dnorm(0,1.0E-6) 
beta.bg2.w ~ dnorm(0,1.0E-6) 
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beta.bg3.w ~ dnorm(0,1.0E-6) 
beta.bg4.w ~ dnorm(0,1.0E-6) 

} 

Figure I.1 Brooks-Gelman-Ruben statistic plots 
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Figure I.2 Trace plots 
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Figure I.3 Density plots 
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Figure I.4 Auto-correlation plots 
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Appendix I.2 Estimation of unit specific SMR 

The WinBUGS code below is an example of the code used to estimate unit specific SMRs in 

§6.10.  Here, the code for Unit 1 is shown. 

 
model ci {for (i in 206:2853) { # Reference data 

  
died[i] ~ dbern(p[i]) 

 
c_gest[i] <- gest[i]-30 
kg_bwt[i] <- (bwt[i]/1000)-1.5 

 
# Estimate model parameters from reference data 
logit(p[i]) <- beta.int + risk[i]    

+ b2*i2[i]+ b3*i3[i]+ b4*i4[i]+ b5*i5[i] 
+ b6*i6[i]+ b7*i7[i]+ b8*i8[i]+ 10*i10[i] 
+ b11*i11[i]+ b12*i12[i]+ b13*i13[i] 

    + b14*i14[i]+ b15*i15[i] 
     
    risk[i] <-  beta.g*c_gest[i]  
      + beta.s*gender[i] 
      + beta.a*apgar1[i] 

+ beta.w*kg_bwt[i] 
+ beta.ww*kg_bwt[i]*kg_bwt[i] 

      + beta.bg2*bg2[i] 
+ beta.bg3*bg3[i] 
+ beta.bg4*bg4[i] 

      + beta.bg2.w*bg2[i]*kg_bwt[i] 
       + beta.bg3.w*bg3[i]*kg_bwt[i] 
       + beta.bg4.w*bg4[i]*kg_bwt[i]  
     

} 
 
 
  for (i in 1:205) {  # Data from unit of interest 
 

c_gest[i] <- gest[i]-30 
kg_bwt[i] <- (bwt[i]/1000)-1.5 

      
# Calculate expected 'p' using parameters estimated above 
 
logit(pp[i]) <-   beta.int  

    + beta.g*c_gest[i]  
    + beta.s*gender[i] 
    + beta.a*apgar1[i] 
    + beta.w*kg_bwt[i] 

+ beta.ww*kg_bwt[i]*kg_bwt[i] 
    + beta.bg2*bg2[i] 

+ beta.bg3*bg3[i] 
+ beta.bg4*bg4[i] 

    + beta.bg2.w*bg2[i]*kg_bwt[i] 
+ beta.bg3.w*bg3[i]*kg_bwt[i] 
+ beta.bg4.w*bg4[i]*kg_bwt[i]     

 
      

# Estimate model parameters from unit of interest 
 

died[i] ~ dbern(op[i]) 
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op[i] <- exp(logit.op[i])/(1+exp(logit.op[i])) 
logit.op[i] <-   ibeta.int  

    + ibeta.g*c_gest[i]  
    + ibeta.s*gender[i] 
    + ibeta.a*apgar1[i] 
    + ibeta.w*kg_bwt[i] 

+ ibeta.ww*kg_bwt[i]*kg_bwt[i] 
    + ibeta.bg2*bg2[i] 

+ beta.bg3*bg3[i]  
+ beta.bg4*bg4[i] 

    + ibeta.bg2.w*bg2[i]*kg_bwt[i] 
+ ibeta.bg3.w*bg3[i]*kg_bwt[i] 
+ ibeta.bg4.w*bg4[i]*kg_bwt[i] 

     
}  

 
 # Calculate SMR 

sum.pp <- sum(pp[])   # Sum of predicted  
 

sum.ob <- sum(op[])   # Sum of observed 
 

ratio <- s.ob/sum.pp   # SMR 
 

over <- step(ratio-1.5) 
under <- step(0.666667-ratio) 

 
 # Prior distributions 

beta.int ~ dnorm(-4.6,1.0E-6) 
beta.g ~ dnorm(0,1.0E-6) 
beta.s ~ dnorm(0,1.0E-6) 
beta.a ~ dnorm(0,1.0E-6) 
beta.w ~ dnorm(0,1.0E-6) 
beta.ww ~ dnorm(0,1.0E-6) 
beta.bg2 ~ dnorm(0,1.0E-6) 
beta.bg3 ~ dnorm(0,1.0E-6) 
beta.bg4 ~ dnorm(0,1.0E-6) 
beta.bg2.w ~ dnorm(0,1.0E-6) 
beta.bg3.w ~ dnorm(0,1.0E-6) 
beta.bg4.w ~ dnorm(0,1.0E-6) 
 
b1 ~ dnorm(0,1) 
b2 ~ dnorm(0,1) 
b3 ~ dnorm(0,1) 
b4 ~ dnorm(0,1) 
b5 ~ dnorm(0,1) 
b6 ~ dnorm(0,1) 
b7 ~ dnorm(0,1) 
b8 ~ dnorm(0,1) 
b9 ~ dnorm(0,1) 
b10 ~ dnorm(0,1) 
b11 ~ dnorm(0,1) 
b12 ~ dnorm(0,1) 
b13 ~ dnorm(0,1) 
b14 ~ dnorm(0,1) 
b15 ~ dnorm(0,1) 
 
beta.int.c <- cut(beta.int) 
beta.g.c <- cut(beta.g) 
beta.s.c <- cut(beta.s) 
beta.a.c <- cut(beta.a) 
beta.w.c <- cut(beta.w) 
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beta.ww.c <- cut(beta.ww) 
beta.bg2.c <- cut(beta.bg2) 
beta.bg3.c <- cut(beta.bg3) 
beta.bg4.c <- cut(beta.bg4) 
beta.bg2.w.c <- cut(beta.bg2.w) 
beta.bg3.w.c <- cut(beta.bg3.w) 
beta.bg4.w.c <- cut(beta.bg4.w) 

 
ibeta.int ~ dnorm(beta.int.c,1.0E-1) 
ibeta.g ~ dnorm(beta.g.c,1.0E-1) 
ibeta.s ~ dnorm(beta.s.c,1.0E-1) 
ibeta.a ~ dnorm(beta.a.c,1.0E-1) 
ibeta.w ~ dnorm(beta.w.c,1.0E-1) 
ibeta.ww ~ dnorm(beta.ww.c,1.0E-1) 
ibeta.bg2 ~ dnorm(beta.bg2.c,1.0E-1) 
ibeta.bg3 ~ dnorm(beta.bg3.c,1.0E-1) 
ibeta.bg4 ~ dnorm(beta.bg4.c,1.0E-1) 
ibeta.bg2.w ~ dnorm(beta.bg2.w.c,1.0E-1) 
ibeta.bg3.w ~ dnorm(beta.bg3.w.c,1.0E-1) 
ibeta.bg4.w ~ dnorm(beta.bg4.w.c,1.0E-1) 

} 
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Appendix J:  ADDITIONAL GRAPHICS 

In this Appendix two plots are reproduced that have been used to compare hospitals.  The first 

is an example of Radar plots proposed by Leary et al. (2002) and the second is Florence 

Nightingale’s Coxcomb. 

 

Figure J.1 Radar plots  

(Leary et al.  2002) 

 



APPENDIX J: ADDITIONAL GRAPHICS 

BRADLEY MANKTELOW PHD THESIS   425 

Figure J.2 Coxcomb 

(Reproduced from www.florence-nightingale-avenging-angel.co.uk/Coxcomb.htm.) 
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