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Abstract

We propose an optimization approach to weak approximation of stochastic differential equations with
jumps. A mathematical programming technique is employed to obtain numerically upper and lower
bound estimates of the expectation of interest, where the optimization procedure ends up with a poly-
nomial programming. A major advantage of our approach is that we do not need to simulate sample
paths of jump processes, for which few practical simulation technique exist. We provide numerical re-
sults of moment estimations for Doléans-Dade stochastic exponential, truncated stable Lévy processes
and Ornstein-Uhlenbeck-type processes to illustrate that our method is able to capture very well the
distributional characteristics of stochastic differential equations with jumps.
MSC: 60H10, 65C30, 60G51, 90C22.
Keywords: Doléans-Dade stochastic exponential, Lévy processes, stochastic differential equations, trun-
cated stable process, Ornstein-Uhlenbeck-type process, polynomial programming, weak approximation.

1 Introduction

Stochastic differential equations have long been used to build realistic models in economics, finance, biol-
ogy, the social sciences, chemistry, physics and other fields. In most active fields of application, dynamics
with possible sudden shift have become more and more important. To model such shifts, one would like
to employ stochastic differential equations where the underlying randomness contains jumps. Regardless
of its practical importance, the theory and the computational techniques of the stochastic differential equa-
tions with jumps have not been developed as thoroughly as in the diffusion case. As nice references on the
subject, we refer to Applebaum [1], Bass [2] and Situ [21].

From a practical point of view, the sample paths approximation of stochastic differential equations has
been a central issue for the purpose of numerical evaluation and simulation on the computer. There are two
notions of the approximation; strong and weak approximations. On one hand, strong approximation schemes
provide pathwise approximations E[∥XT −X∆

T ∥2]≤C∆β , where ∆∈ (0,1) is the maximum stepsize of a time
discretization {X∆

t : t ∈ [0,T ]}, where C is a positive constant and β is the order of the approximation. The
strong approximation is used for scenario analysis, filtering or hedge simulation. For applications such as
derivative pricing, on the other hand, the computation of moments or expected utilities, we need to estimate
the expected value of a function of marginals, or a functional of sample paths. In those cases, the so-
called weak approximations are sufficient, that is, |E[V (XT )]−E[V (X∆

T )]| ≤ C∆β , where V is a suitable
smooth function satisfying some polynomial growth condition at infinity. Other applications of the weak
approximation include the computation of functional integrals, invariant measures, and Lyapunov exponents.
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Theoretical properties of time discretization schemes are mostly studied for the diffusion case. See Kloeden
and Platen [9] for detailed investigations. For stochastic differential equations with jumps, the weak rate of
convergence of Euler-Maruyama schemes is studied, for example, in Liu and Li [12], Kubilius and Platen
[10], Protter and Talay [17], and Jacod et al. [5]. Jump-adapted discretization is investigated, for example,
in Bruti-Liberati and Platen [4], Higham and Kloeden [6] and Mikulevičius and Platen [13], while jump
adaptation is only valid in the compound Poisson framework.

The main purpose of this paper is to propose a new approach to weak approximation of stochastic dif-
ferential equations with jumps. Unlike Monte Carlo simulations with time discretization approximation
of sample paths, we employ a mathematical programming technique to obtain numerically upper and lower
bounds of the expectation of interest, where the optimization procedure ends up with a polynomial program-
ming. To this end, we follow the idea of Primbs [16] that reduces computation of bounds to an optimization
problem.1 Note that the framework of [16] only deals with the pure diffusion setting, that is, without jump
component, for which standard Monte Carlo methods are often sufficient. In contrast, few efficient sim-
ulation techniques exist for jump processes. Due to the complexity of the Ito formula for general jump
processes, we need to carefully examine whether resulting optimization problems are practically solvable.
Fortunately, as we will demonstrate in what follows, our approach covers various jump processes of practical
interest.

The rest of this paper is organized as follows. Section 2 discusses our motivation by demonstrating dif-
ficulties and limitations of time discretization approximation, which our approach may get around. Section
3 introduces and studies our optimization approach to the weak approximation. Section 4 provides three
numerical examples to illustrate that our method is able to capture very well the marginal distributions of
stochastic differential equations with jumps via moment estimation. Finally, Section 5 concludes.

2 Motivation

Let us begin this section with general notations which will be used throughout the paper. Let N be the
collection of natural numbers with N0 := N∪{0}. We also use the notations R0 := R \ {0} and R+ :=
(0,+∞). For k ∈ N, ∂k indicates the partial derivative with respect to k-th argument. We denote by Ckt ,kx

the class of continuous functions with continuous differentiability of kt-time for the first argument and of
kx-time for the second argument. We denote by L→ the weak convergence of random processes in the space
D([0,+∞);R) of càdlàg functions from [0,+∞) into R equipped with the Skorohod topology. We henceforth
fix (Ω,F ,P) as our underlying probability space.

Let X0 be given in R and let T > 0. Consider a one-dimensional stochastic differential equation

dXt = a0 (t,Xt)dt +a1 (t,Xt)dWt +
∫
R0

b(t,Xt−,z)(µ −ν)(dz,dt) , t ∈ [0,T ], (2.1)

where {Wt : t ≥ 0} is a standard Brownian motion and where µ is a Poisson random measure on R0 whose
compensator is given by the Lévy measure ν , that is, a σ -finite measure defined on R0 satisfying

∫
R0
(|z|2 ∧

1)ν(dz) < +∞. Here, we assume that for each t ∈ [0,T ], the functions a0(t,x), a1(t,x) and b(t,x,z) in
(2.1) satisfy the usual conditions such as at most linear growth and Lipschitz so that the solution of (2.1)
is well defined. We henceforth equip our underlying probability space with the natural filtration (Ft)t∈[0,T ]
generated by {Xt : t ∈ [0,T ]}. Let X be the support of the stochastic process {Xt : t ∈ [0,T ]} defined by
(2.1), that is,

X := inf{B ∈ B(R) : P(Xt ∈ B, t ∈ [0,T ]) = 1} .

Our interest throughout this study is in computing the expectation

E [V (τ,Xτ)] ,

1See also Lasserre et al. [11] for the dual formulation called generalized moment problems.
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for V : [0,+∞)×R 7→ R such that E[|V (τ,Xτ)|] < +∞, where τ is an (Ft)t∈[0,T ]-stopping time taking
its values in [0,T ]. To demonstrate some difficulties and limitations of time discretization approximation
of stochastic differential equations with jumps, let us begin with a simple setting with X0 > 0, τ = T ,
a0(t,x) = a1(t,x)≡ 0, and b(t,x,z) = xz, that is, (2.1) reduces to a Doléans-Dade stochastic exponential

dXt = Xt−

∫
R0

z(µ −ν)(dz,dt), X0 > 0, (2.2)

which is a martingale with respect to its natural filtration. Assume further that the Lévy measure ν is defined
only on (−1,+∞). It holds by the Ito formula that

d lnXt =−
∫
(−1,+∞)

zν (dz)dt +
∫
(−1,+∞)

ln(1+ z)µ (dz,dt) ,

or equivalently, in the canonical form,

Xt = X0 exp
[
−t
∫
(−1,+∞)

zν (dz)+
∫ t

0

∫
(−1,+∞)

ln(1+ z)µ (dz,ds)
]
. (2.3)

It follows from the expression (2.3) that Xt > 0, a.s. For the computation of E[V (T,XT )], a standard tech-
nique is the Monte Carlo simulation with sample generations of the marginal XT . Let us discuss typical
difficulties in simulation of XT .

(i) In most cases, the marginal XT is simulated via the time discretization of the sample paths of {Xt : t ∈
[0,T ]}. It is however rare to know how to simulate the increments

∫ t2
t1

∫
R+

z(µ −ν)(dz,dt), with few
exceptions such as gamma processes and stable processes. Moreover, the use of Euler-Maruyama
schemes may ruin intrinsic properties of {Xt : t ≥ 0}, such as the non-negativity of sample paths.

(ii) The simulation knowledge of increments
∫ t2

t1

∫
R+

z(µ −ν)(dz,dt) is in general not equivalent to that
of the increments with an arbitrary stepsize. In contrast, this problem never appear in the diffusion
case due to the Gaussian scaling property.

(iii) We may alternatively simulate the sample paths based upon (2.3) using a shot noise representation
of Poisson random measure µ(dz,ds). (See Rosiński [18] for details.) However, as in the case of
increments, it is difficult to find a shot noise series representation in a convenient form. In addition,
it is not sensible to generate random sequences for each sample path, in particular when the series is
infinite.

Even the issues (i) and (iii) may not arise in the pure diffusion case. For example, a simple linear form
dXt = XtσdWt can be rewritten in the canonical form Xt = X0 exp[−σ2/2+σWt ], which is easy to simulate.
We will give concrete illustrations for those issues in Section 4.1.

3 Optimization approach to estimation of upper and lower bounds

In this section, we formulate a mathematical programming problem, which yields upper and lower bounds
of the expectation E[V (τ,Xτ)] of the model (2.2). Our framework is completely different from the afore-
mentioned Monte Carlo simulations, in the sense that we generate no random variates.

We are now in a position to introduce our optimization approach to the weak approximation. It holds by
the Ito formula that for f ∈C1,2([0,T ]×X ;R),

d f (t,Xt) = A f (t,Xt)dt +∂2 f (t,Xt)a1(t,Xt)dWt +
∫
R0

Bz f (t,Xt−)(µ −ν)(dz,dt), a.s., (3.1)
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where

A f (t,x) := ∂1 f (t,x)+∂2 f (t,x)a0(t,x)+
1
2

∂ 2
2 f (t,x)a1(t,x)2

+
∫
R0

(Bz f (t,x)−∂2 f (t,x)b(t,x,z))ν(dz),

and for z ∈ R0,
Bz f (t,x) := f (t,x+b(t,x,z))− f (t,x) .

If

E
[∫ τ

0
(∂2 f (t,Xt)a1(t,Xt))

2 dt
]
<+∞,

and if

E
[∫ τ

0

∫
R0

(Bz f (t,Xt))
2 ν(dz)dt

]
<+∞, (3.2)

then the stochastic process { f (t,Xt)− f (0,X0)−
∫ t

0 A f (s,Xs)ds : t ∈ [0,T ]} is a square-integrable martin-
gale with respect to the filtration (Ft)t∈[0,T ]. We can then derive the associated Dynkin formula, for any
(Ft)t∈[0,T ]-stopping time τ taking values in [0,T ],

E [ f (τ,Xτ)]− f (0,X0) = E
[∫ τ

0
A f (s,Xs)ds

]
.

Remark 3.1. The formula (3.1) is not in a standard form given in the literature, while this can be obtained
in a straightforward manner. (See, for example, Applebaum [1].) Note also that we have not imposed
any conditions on the jump component for the validity of (3.1). In fact, we will shortly need to impose
conditions for optimization problems of our interest to be well defined, which are, much stronger than,
sufficient to guarantee that (3.1) is well defined.

Throughout this paper, we freeze the stopping time τ = T . As soon as one finds an f ∈ C1,2([0,T ]×
X ;R) such that A f (t,x)≤ 0 on X and f (T,x)≥V (T,x) on X , we get

E [V (T,XT )]≤ E [ f (T,XT )]≤ f (0,X0).

Clearly, the deterministic value f (0,X0) serves as an upper bound of E[V (T,XT )]. To minimize this upper
bound f (0,X0), we now turn to the optimization problem

min f (0,X0)
s.t. f (T,x)≥V (T,x) on X ,

A f (t,x)≤ 0 on [0,T ]×X ,
f ∈C1,2([0,T ]×X ;R).

This optimization problem is very difficult to solve since the function class of f and V are too broad. To
simplify the above optimization problem, we restrict the function f to be polynomial in both t and x, that is,
in the form

f (t,x) = ∑
B(0,0)

ckt ,kxt
kt xkx , (3.3)

where
B(l,m) :=

{
(kt ,kx) ∈ N2 : l ≤ kt ≤ Kt , m ≤ kx ≤ Kx

}
,

for some fixed natural numbers Kt and Kx and for a sequence {ckt ,kx}B(0,0) of constants. For convenience in
notation, we henceforth denote by Cp the class of polynomial functions of the form (3.3). (It is certainly
more precise to denote the class by CKt ,Kx

p instead, while we suppress Kt and Kx in what follows. There is
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no possibility of confusion since they are fixed throughout implementation of each optimization.) We also
need to set V to be a piecewise polynomial in both t and x, and both a0 and a1 are in Cp([0,T ]×X ;R). We
have now arrived at the following optimization problem

min f (0,X0)
s.t. f (T,x)≥V (T,x) on X ,

A f (t,x)≤ 0 on [0,T ]×X ,
f ∈Cp([0,T ]×X ;R).

(3.4)

Suppose, for a moment, that there is no jump in the formulation (3.1), that is, b ≡ 0 as in the setting of
[16]. Then, A f is trivially polynomial, and consequently the entire setting (3.4) reduces to a polynomial
optimization problem. Let us return to our setting with jumps. It turns out that A f is not necessarily
polynomial due to the jump component. We can circumvent this difficulty by decomposing the coefficient b
as

b(t,x,z) = b1(t,x)b2(z), (3.5)

where b1 ∈Cp([0,T ]×X ;R) and where b2 : R0 7→ R such that∫
R0

|b2(z)|k ν(dz)<+∞, k = 2, . . . ,kx. (3.6)

and then, a simple algebra yields

A f (t,x) = ∑
B(1,0)

ckt ,kxkttkt−1xkx + ∑
B(0,1)

ckt ,kxt
kt kxxkx−1a0(t,x)

+
1
2 ∑

B(0,2)
ckt ,kxt

kt kx(kx −1)xkx−2a1(t,x)2

+ ∑
B(0,2)

ckt ,kxt
kt

kx−2

∑
k=0

kxCkxkb1(t,x)kx−k
∫
R0

b2(z)kx−kν(dz).

Since the integral
∫
R0

b2(z)kx−kν(dz) is independent of t and x, the optimization problem (3.4) falls in the
framework of polynomial programming.

In general, polynomial optimization problems are still NP hard. However, if the degrees Kt and Kx are
fixed, sum of squares relaxation techniques enable us to solve the problem efficiently. Let us here briefly
describe this relaxation procedure in a setting with X = R+, the value function V being polynomial and
ckt ,kx = 0 for kt +kx > 2n, where n is a positive integer. Let q(t,x) be a vector consisting of (n+1)(n+2)/2
monomials of the form tkxl such that k ≥ 0, l ≥ 0 and k+ l ≤ n. Instead of the original problem (3.4), we
will solve

min f (0,X0)
s.t. f (T,x) =V (T,x)+q(t,x)TQ1q(t,x)+ xq(t,x)TQ2q(t,x),

A f (t,x) =−q(t,x)TQ3q(t,x)− xt(T − t)q(t,x)TQ4q(t,x),
{Qk}k=1,...,4 are positive semidefinite matrices,

(3.7)

where decision variables are not only f but also Qk’s. This formulation serves as a relaxation of the original
problem (3.4) since the equalities in (3.7) imply the inequalities in (3.4), due to the positive semidefinite-
ness of Qk’s. The optimization problem (3.7) can be rewritten as an optimization problem under a set of
linear equalities and semidefiniteness constraints. This problem conversion is automatically executed by
SOSTOOLS. The resulting problem can be solved with semidefinite programming, for which several well-
established solvers exist.
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Remark 3.2. The decomposition (3.5) and the integrability condition (3.6) are sufficient to guarantee that
the Ito formula (3.1) is well defined. If b2(z) = θz for some constant θ , then (2.1) is called a Lévy-driven
stochastic differential equation, since then the jump component reduces to∫

R0

b(t,Xt−,z)(µ −ν)(dz,dt) = θb1(t,Xt−)
∫
R0

z(µ −ν)(dz,dt),

where the integral of the right hand side corresponds to a Lévy process.

To obtain a lower bound of E[V (T,XT )], we wish to find a g ∈ Cp([0,T ]×X ;R) via the polynomial
programming

max g(0,X0)
s.t. g(T,x)≤V (T,x) on X ,

A g(t,x)≥ 0 on [0,T ]×X ,
g ∈Cp([0,T ]×X ;R),

(3.8)

in a similar manner to (3.4). Let us remind again that our optimization approach yields upper and lower
bounds of E[V (T,XT )] without sample paths simulation.

Remark 3.3. The conservativeness of sum of square relaxation has been intensively studied, for example,
in Parrilo [14]. It is known that in most settings, the relaxation error can be made arbitrarily small by em-
ploying more sophisticated relaxation techniques than those applied in (3.7), in return for rapidly increasing
computation burden. Let us also discuss the conservativeness caused by restricting bounding functions f
and g to polynomials Cp([0,T ]×X ;R). A similar issue has been discussed in the framework of generalized
moment problems, which is the dual formulation of ours, for example, in Lasserre et al. [11]. They show that
the gap between optimal upper and lower bounds converges to 0 as the degrees of moments tend to infinity,
under suitable conditions on underlying random elements. In fact, thanks to the duality of formulations, this
issue can be addressed in a similar manner. Error analysis of this type is, however, not necessarily informa-
tive in the framework of semidefinite programming, since it is impossible in practice to solve semidefinite
programming problems of arbitrarily high dimension. For this reason, it seems more worthwhile to examine
effectiveness of our approach through numerical experiments, which we will demonstrate in Section 4.

4 Numerical illustrations

In this section, we test our method on a Doléans-Dade stochastic exponential, a truncated stable subordinator
and a process of Ornstein-Uhlenbeck type, all with no diffusion component, that is, a1(t,x) ≡ 0. We here
estimate moments of those processes, which are available in closed form for the sake of comparison. In
the numerical examples presented hereafter, we utilized MATLAB SOSTOOLS combined with SeDuMi
[15, 22], using a computer with a Pentium 4 3.2GHz processor and 2 GB memory.

4.1 Doléans-Dade stochastic exponential driven by gamma process

Set X0 > 0, a0(t,x) = a1(t,x) = 0, b1(t,x) = x, b2(z) = z, and

ν(dz) = a
e−bz

z
dz, z > 0,

for a > 0 and b > 0, that is a gamma Lévy measure. In this setting, (2.1) reduces to a Doléans-Dade
stochastic exponential (2.2). It is clear that E[XT ] = X0. Moreover, we have E[X2

t ] = X2
0 e

a
b2 t , since by the

Ito-Wiener isometry,

E
[
X2

T
]
= X2

0 +
∫
R+

z2ν(dz)E
[∫ T

0
X2

t dt
]
= X2

0 +
a
b2

∫ T

0
E
[
X2

t
]

dt,
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where the interchange of the integrals holds by the Fubini theorem with the almost sure non-negativity of
X2

t . (For more details, we refer to Applebaum [1].)
On one hand, Euler-Maruyama schemes do not guarantee the non-negativity of sample paths. To il-

lustrate this, let N ∈ N and ∆ := T/N, and consider the equidistant time discretization approximation of
{Xt : t ∈ [0,T ]}, that is,

Xk∆

X(k−1)∆
= 1+ γk(a∆,b)−a∆/b, (4.1)

where {γk(a,b)}k∈N is a sequence of iid gamma random variables with the common distribution ba/Γ(a)ya−1e−bydy
on R+. With a choice of (a,b,∆) satisfying 1− a∆/b < 0, discretized sample paths may drop below zero.
Such numerical experiments produce a misleading result E [XT ]≪ X0.

On the other hand, based upon the canonical form (2.3) with a shot noise series representation due to
Bondesson [3], sample paths can be simulated as

Xt = X0 exp

[
−t

a
b
+

+∞

∑
k=1

ln
(

1+ e−
Γk
aT

Vk

b

)
1(Tk ≤ t)

]
, t ∈ [0,T ], (4.2)

where {Γk}k∈N are arrival times of a standard Poisson process, where {Vk}k∈N is a sequence of iid standard
exponential random variables, and where {Tk}k∈N is a sequence of iid uniform random variables on [0,T ].
It is, however, not sensible to generate this infinite series for each sample path.

By noting that X =R+ and
∫
R+

zkν(dz) = a(k−1)!/bk for k = 2,3, . . ., it holds that for f ∈Cp([0,T ]×
R+;R),

A f (t,x) = ∑
B(1,0)

ckt ,kxkttkt−1xkx + ∑
B(0,2)

ckt ,kxt
kt xkx

kx−2

∑
k=0

kxCk
a(kx − k−1)!

bkx−k .

We can check the condition (3.2) by

E
[∫ T

0

∫
R+

Bz f (t,Xt)ν(dz)dt
]
= E

∫ T

0

∫
R+

(
∑

B(0,1)
ckt ,kxt

kt Xkx
t

kx

∑
k=1

kxCkzk

)2

a
e−bz

z
dzdt

 .
By the Fubini theorem, it thus suffices to have E[X2Kx

t ] < +∞ for each t ∈ [0,T ]. In view of (2.3), it holds
that for each kx ∈ N,

E
[
X2Kx

t

]
≤ X2Kx

0 E
[

exp
(

2Kx

∫ T

0

∫
R+

ln(1+ z)µ(dz,ds)
)]

= X2Kx
0 exp

[
T
∫
R+

(
e2Kxz −1

)
a

e−b(ez−1)

ez −1
dz

]
<+∞.

This implies that Kx can be taken arbitrarily large.
Here, we test our optimization approach on estimation of E[Xt ] = X0 and E[X2

t ] = X2
0 e

a
b2 t . Numerical

results are presented in Table 1. The two numbers given in the row “SDP” indicate upper and lower bounds
obtained through our optimization approach. Note that when X is unbounded, we must choose Kx ≥ p for
the estimation of the p-th moment because of the constraint f (T,x) ≥ xp for x ∈ X . In view of this, we
choose the minimal degree Kx = p. We also set Kt = p. It took at most 1 second to solve each optimization
problem to obtain a bound. We can see from Table 1 that even such a low degree polynomial function
achieves tight upper and lower bounds. For comparison purpose, we also provide 99%-confidence intervals
of Monte Carlo simulations based upon 50000 iid samples. The “MC (ES)“ rows present intervals obtained
through the Euler-Maruyama Scheme (4.1) with equidistant stepsize of 1e-2, while the “MC (SR)“ rows
give results through the Series Representation (4.2) with truncation of the infinite series to 100 per unit
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time. Recall that Euler-Maruyama schemes produce some amount of discretization error, while an infinite
shot noise series representation provides an approximative simulation method as well due to truncation of
the infinite series. Any large sample size in Monte Carlo simulations can never be in competition with
our results since the upper and lower bounds obtained through our method form nothing but the 100%-
confidence interval. By taking into account the computing time required for the Monte Carlo simulations,
the superiority of our optimization approach is evident.

t = 1 t = 2 t = 3

E [Xt ]

True Value 1.0000 1.000 1.0000
SDP 1.0000 – 1.0000 1.0000 – 1.0000 1.0000 – 1.0000

MC (ES) [0.9973, 1.0021] [0.9951, 1.0021] [0.9934, 1.0022]
MC (SR) [0.9986, 1.0036] [0.9959, 1.0028] [0.9942, 1.0029]

E
[
X2

t
] True Value 1.04545 1.09296 1.14263

SDP 1.04541 – 1.04550 1.09294 – 1.09300 1.14249 – 1.14288
MC (ES) [1.0347, 1.0531] [1.0727, 1.1099] [1.1073, 1.1703]
MC (SR) [1.0388, 1.0565] [1.0744, 1.1029] [1.1178, 1.1593]

Table 1: Numerical results for Doléans-Dade stochastic exponential with X0 = 1 and (a,b) = (0.1,1.5).

4.2 Short- and long-range behaviors of truncated stable subordinator

Set X0 = 0, a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, and

ν(dz) =
1

z1+α 1(z ≤ η)dz, z ∈ R+,

for some α ∈ (0,1) and η > 0, and a0(t,x) =
∫
R+

zν(dz). Then, the stochastic differential equation (2.1)
reduces to

Xt =
∫ t

0

∫
R0

zµ(dz,ds),

that is, a truncated stable subordinator.
Here, in view of Houdré and Kawai [7] and Rosiński [19], we test our method on short- and long-range

behaviors of truncated stable processes, by looking into convergence in terms of moments. Due to the
truncation of Lévy measure, its marginal has a finite moment of every polynomial order. (See Theorem 25.3
of Sato [20], for example.) For every t > 0, its moments of up to fourth order are given by

E [Xt ] =
∫
R+

zν(dz) = t
η1−α

1−α
,

E
[
(Xt −E [Xt ])

2
]
= t

∫
R+

z2ν(dz) = t
η2−α

2−α
,

E
[
(Xt −E [Xt ])

3
]
= t

∫
R+

z3ν(dz) = t
η3−α

3−α
,

E
[
(Xt −E [Xt ])

4
]
= t

∫
R+

z4ν(dz)+3
(

t
∫
R+

z2ν(dz)
)2

= t
η4−α

4−α
+3
(

t
η2−α

2−α

)2

.

First, for the short-range behavior, we can prove that as h ↓ 0,{
h−1/αXht : t ≥ 0

}
L→
{

X (α)
t : t ≥ 0

}
,
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where {X (α)
t : t ≥ 0} is a stable subordinator with Lévy measure z−1−αdz on R+. To apply our optimization

method to the first and the second moments, it is sufficient to first compute moments of Xht , and to multiply
next a scaling related to h. Clearly, X = R+. We have for f ∈Cp([0,T ]×R;R),

A f (ht,x) = ∑
B(1,0)

ckt ,kxkt(ht)kt−1xkx + ∑
B(0,1)

ckt ,kx(ht)kt
kx−1

∑
k=0

kxCkxk ηkx−k−α

kx − k−α
.

On the other hand, in the long run, as h ↑+∞,{
h−1/2 (Xht −E [Xht ]) : t ≥ 0

}
L→{Wt : t ≥ 0} ,

where {Wt : t ≥ 0} is a (centered) Brownian motion with E[|W1|2] = η2−α/(2−α). In this case, X = R,
a0(t,x) = 0, and we take the form f (ht,Xht −E[Xht ]). Hence, we have

A f (ht,x) = ∑
B(1,0)

ckt ,kxkt(ht)kt−1xkx + ∑
B(0,2)

ckt ,kx(ht)kt
kx−2

∑
k=0

kxCkxk ηkx−k−α

kx − k−α
.

We present numerical results in Table 2 and in Table 3. Similarly to the previous example, for the estimation
of the p-th moment, we set Kt = Kx = p.

Unlike in the last example, we do not provide numerical results of Monte Carlo simulations due to
extremely large computing effort required. To the best of our knowledge, the only decent method for the
sample paths generation is based on its infinite shot noise series representation

{Xt : t ∈ [0,T ]} L
=

{
+∞

∑
k=1

(
η−α +

αΓk

T

)−1/α
1(Tk ≤ t) : t ∈ [0,T ]

}
, (4.3)

where {Γk}k∈N are arrival times of a standard Poisson process and where {Tk}k∈N is a sequence of iid
uniform random variables on [0,T ]. We have observed through our experiments that the infinite series
converges at an extremely slow rate. For instance, even in the shortest time case h = 0.01, at least 5000
jumps are required to obtain decent estimation results. This Monte Carlo simulation is too expensive to be
competitive against our optimization approach.

h = 1 h = 0.1 h = 0.01 h ↓ 0

E
[
h−1/α Xht

] True Value 5.000 8.8914 15.811 +∞
SDP 5.000 – 5.000 8.8914 – 8.8914 15.811 – 15.811 n/a

E
[
(h−1/α Xht)

2
] True Value 25.833 105.41 1083.3 +∞

SDP 25.833 – 25.833 105.41 – 105.41 1083.3 – 1083.3 n/a

Table 2: Numerical results for short-range behavior with X0 = 0, α = 0.8, η = 1, and t = 1.

h = 1 h = 5 h = 10 h ↑+∞

E
[(

1√
h
(Xht −E [Xht ])

)2
]

True Value 0.8333 0.8333 0.8333 0.8333
SDP 0.8333 – 0.8333 0.8333 – 0.8333 0.8333 – 0.8333 n/a

E
[(

1√
h
(Xht −E [Xht ])

)3
]

True Value 0.4545 0.2033 0.1437 0
SDP 0.4545 – 0.4545 0.2032 – 0.2033 0.1437 – 0.1437 n/a

E
[(

1√
h
(Xht −E [Xht ])

)4
]

True Value 2.3958 2.1458 2.1146 2.0833
SDP 2.3958 - 2.3958 2.1458 - 2.1458 2.1127 - 2.1150 n/a

Table 3: Numerical results for long-range behavior with X0 = 0, α = 0.8, η = 1, and t = 1.
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4.3 Process of Ornstein-Uhlenbeck type with gamma stationary distribution

Let ν be a Lévy measure on R+ such that
∫
R+

zν(dz) < +∞. Set a0(t,x) = −λx+
∫
R+

zν(dz) for some
λ > 0, a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, and X0 is independent of µ . Then, the stochastic differential
equation (2.1) reduces to

dXt =−λXtdt +
∫
R+

zµ(dz,dt),

which is called a process of Ornstein-Uhlenbeck type. Its strong solution is given in closed form

Xt = e−λ tX0 +

∫ t

0

∫
R+

e−λ (t−s)zµ(dz,ds). (4.4)

For simplicity, we fix X0 = 0, λ = 1 and ν(dz) = bae−bzdz, where a > 0 and b > 0. We can show that the
stationary distribution of {Xt : t ≥ 0} is gamma with probability density ba/Γ(a)xa−1e−bx defined on R+.
(See, for example, Sato [20] for more details.)

By noting that X = R+ and
∫
R+

zkν(dz) = ak!/bk for k ∈ N, it holds that for f ∈Cp([0,T ]×R+;R),

A f (t,x) = ∑
B(1,0)

ckt ,kxkttkt−1xkx +
(
−x+

a
b

)
∑

B(0,1)
ckt ,kxt

kt kxxkx−1

+ ∑
B(0,2)

ckt ,kxt
kt

kx−2

∑
k=0

kxCkxk a(kx − k)!
bkx−k .

The condition (3.2) holds for each Kt and Kx, since for each t ∈ [0,T ],∫ t

0

∫
R+

e−λ (t−s)zµ(dz,ds)≤
∫ T

0

∫
R+

zµ(dz,ds), a.s.,

where the right hand side is an infinitely divisible random variable, whose Lévy measure has an exponential
decay at infinity.

We test our method on the distribution transition via moment estimations of E[Xt ] = (1 − e−t)a/b,
E[X2

t ] = (1− e−2t)a/b2 +(1− e−t)2a2/b2, and limt↑+∞E[X3
t ] = Γ(a+ 3)/(b3Γ(a)). Numerical results are

presented in Table 4. We set Kt in the same manner as in the previous example. It is well known that
computing effort required for solving a polynomial optimization problem through sum of squares decompo-
sition significantly increases as the polynomial has larger degrees. In our experiments, however, even with
a relatively large setting Kx = 10, computing time was at most 2 seconds.

Since the Lévy measure ν here is finite, sample paths can be simulated in the exact sense through a
standard compound Poisson generation applied in the expression (4.4). To compare our methods with such
a typical Monte Carlo technique, we also provide 99%-confidence interval based on 1000000 iid samples.
As can be observed, even with the extraordinarily large number of samples, the 99%-confidence intervals
are far from comparable with our results.

5 Concluding remarks

In this paper, we have developed a new approach to the weak approximation of stochastic differential equa-
tions with jumps, through an optimization problem yielding upper and lower bounds of the expectation of
interest. It is a major advantage that our approach provides bounds without sample path simulation of jump
processes, for which few practical simulation technique exist. In most numerical experiments which we
have conducted, we have obtained fairly tight bounds without taking very large degrees of bounding poly-
nomial functions. We conjecture that the tightness of upper and lower bounds may be ruined when the value
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t = 1 t = 2 t = 3 t ↑+∞

E [Xt ]
True Value 0.042141 0.057644 0.063348 0.06667

SDP 0.042141 – 0.042141 0.057644 – 0.057644 0.063347 – 0.063348 n/a
MC [0.041733, 0.042747] [0.056985, 0.058058] [0.062879, 0.063967] n/a

E
[
X2

t
] True Value 0.040205 0.046953 0.048347 0.04889

SDP 0.040205 – 0.040205 0.046952 – 0.046955 0.048331 – 0.048347 n/a
MC [0.039618, 0.041484] [0.045721, 0.047600] [0.047666, 0.049604] n/a

E
[
X3

t
] True Value n/a n/a n/a 0.06844

SDP 0.061217 – 0.061268 0.066812 – 0.066886 0.068009 – 0.068051 n/a
MC [0.059161, 0.064966] [0.063362, 0.068839] [0.066005, 0.071926] n/a

Table 4: Numerical results with X0 = 0 and (a,b) = (0.1,1.5). The intervals are 99%-confidence interval
with 1000000 iid samples.

function has a highly complicated form, while this could be overcome by relaxing the bounding polynomial
functions to piecewise polynomial functions.

In this paper, we have only dealt with stochastic differential equations whose marginal has finite mo-
ments of up to a sufficiently large polynomial order. There are, however, various interesting examples that
do not meet such moment conditions, such as stochastic differential equations driven by stable Lévy pro-
cesses and the Heston stochastic volatility model even in the pure diffusion case. In particular, the latter
example entails a multidimensional formulation, which will be a numerically challenging problem due to
the high dimensionality of semidefinite programming. Those issues will be addressed in our subsequent
paper [8].

Besides extensions and improvements of our present approach, it would certainly be worthwhile to
apply our method to practical problems, such as option pricing and calibration in finance, the probability
tail estimation, and so on.
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[19] J. Rosiński, Tempering stable processes, Stochastic Processes and their Applications, 117(6) (2001) 677-707.
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