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Degrees. of unsolvability complementary between 

recursively enumerable degrees,. . 

Given a setsof mutually incomparable degrees and a"pair 

of, degrees a and b we say that S is. complementary between a 

and b whenever a is the greatest lower bound of the members 

of S and b is the least upper bound', -- A degree a is minimal 

if 0 is-the least'upper bound of the degrees strictly less than 

a. We obtain an indication of the variety of decision problems, 

to be found amongst degrees of a particular. type by, löoking at 

the pairs of degrees between which sets of degrees of that 

type are complementary. If S complementary between 0 and a 

we say that S is complementary below a" and we prove below that 

there is, a pair of minimal. degrees complementary below'011, 

Spector [8] showed that minimal degrees exist and Sacks. [6] 

constructed one below 0', the largest recursively enumerable 

degree. Shoenfield [7] proved that given any degree strictly 

between 0 and 0'we may find a minimal degree below`0'which 

is incomparable with it. Lachlan [3] proved that no pair-of 

recursively enumerable (r. e. ) degrees is complementary below 

01, even though there is a. pair of r. e. degrees complementary 

below some r. e, degree (see Yates [10] and Lachlan [3]). We 

construct below a pair of minimal degrees with, join 0'. Shoenfield's 

theorem is an immediate corollary of this. Since the. theorem 

yields a pair complementary below 0'we have that no dramatic 

generalisation of Lachlan's-theorem is possible. Related results, 

proved elsewhere are: (1) there is a pair of degrees complementary 

below any givenr. e. degree other than 0, (2) there is a r. e. 
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degree other than 0 below which no set of minimal degrees is 

complementary (although Yates .[ 11 J has shown there to be, 

countably many minimal predecessors for each non-zero. r. e. degree), 

(3) there are three. r. e. degrees complementary below 01. 

We take 10 [e ? 0] to be a standard enumeration of the 
e- 

partial recursive functionals. fl', 
es sC e, s, > 01 is a. double 

sequence of finite approximations to these functionals satisfying 

the following: is. a recursive set, (ii) 0, 
e sQ 

Oe s+1 

for each e and each s70, (iii) u for each e 0, 
e s> 0 e, s 

(iv) for each s is empty for 
r, 

all but a finite ' set of P, s 
.., 

numbers. The last condition is included in order to avoid, an 

infinite search occurring at a stage of the construction. 

will be a standard list of the recursively enumerable sets 

with double sequencer Re 
sI of approximations with properties 

similar to (i) - (iv),, above for [0eýs1. And {Fei is an 

enumeration of the partial recursive fu. netions, e ac. re having 

its recursive tower (Fe 
s[a 

> 01 of finite approximations. 

o- is, said to be a-. st_ ring µof: length n+1, if it is an initial 

segment (or beginning) C[n], of a characteristic function C; defined 

on exactly, n+1 numbers. If a, is a string of length n+ I and 

mn we write o-[m] for the beginning of ur of length m+1. - If 
4. Ll 

we write ' jh(cr) for the length of a- and y(o-i , Lr2 for the least 

number y for which cri (y) v-a (y), there is a natural ordering 

of the strings defined by: 

< 
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- 
.. e�. , o-, = Q-ý or 1h1 )<Ih (tea ). or ], h (Q) ) 

lh(o-2) and o- (Y(o-, 
, o"ä <L r2 (Y (a-, rL'p) 

).. 

Define an ordering < on the ordered"pairs of strings by: 

(ci 
'0 p. 

). < (ir1 
r? ra) 

[yýo ]? < (Yýýr,. 'ýv- )-1] or ' 

a-, [Y (Q", c"2) -1]= it, [y (v, 
, ý'a) -1] fand c, < 'vr, or o, Ir, 

and o-2 < 7r? . 

This will enable us to talk of the least pair of strings 

with a given property. 

is the string defined nowhere and 0 and I are the 

strings with domain 101 and respective ranges j 01 and {1. °' °'- 

o- *T is the string defined by: 

ý*x if x< 1ho', 

a- *T (x), = T(x- lhcr) if 1hcr< x< lhcr +_1hr, 

undefined otherwise. .. 

If o- and r are beginnings of some characteristic function C 

then we say that a- and r are compatible, and write a- cT or 

Q Lr according as, -'; 1ho-<-', 1hr or°.. Ih? -<<-1ho-.,, Otherwise -acand 

T are incompatible. 

A tree 7 isamapping from the strings-, into : the' strings, , ry } 

such that if T(T * i) is defined where i is 0 or 11 then so are 

T(T * I- i) and T(T), and such that the partial ordering 
A :. 

1 
psi 

:s h' a. i3w` 
1Y ý wp w h: :AC= tl r fi 

s 

induced on the range. 
, 
of T by the ordering c on the domain of T 

p, C 
coincides, with the ordering cSon the range of T. The terms 
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'recursive tree' and 'partial recursive tree' will be used 

a natural informal way. 

IfT(r*0)v (r*1) (=T(T*0)j, T(-r*1I)) are defined 

then they comprise the sy zy gy on T based on T(T). 

Otherwise if T(? -) is defined then T(om) is an end string for T. 

A string a- is compatible with a tree T if, cr lies on T 

(i. e., is in the range of T) or is an extension of an end 

string for T. T' is-compatible with T if every string on T' 

is. compatible with T. 

We say that two strings ar, ,a split T for e, through if 

o-, , X2 DT and 0e (cr1 
, x) (a-s , x). and 0e (o-, , x) , fora , x) are 

defined and unequal. a-t va-2 sp lit ?- for e through x at staue a 

if a, , o-a D T and 0e, (a-i 
, x), (an, 

, x) are defined. and unequal 

Then c, 'u split T for e through x if and only if on 9, ora split 

T for e through x at some stage s> 0 since ve =u0 
s 

e'fl 0 

and that if' or, 'tea split T for e through x at stage s then 

a-, , arg split r for e through x at every stage s' >s because, 

IvIess' a oess' 

Before proving the main theorem wo give a. short proof 
r. 
of a. weaker result. 

THEOREM 1. There is a pair of degrees complementary below To 

PR00P: Let D be a set of"degree 21 
, such that D is recursive 

in every infinite subset of'D (i. e., D is intro-reducible in 

the sense of, [2] ). We construct at stages n>0 beginnings, an, 

ßn of characteristic functions A and B respectively and take the 
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required pair to be the degrees of A and B. For each n 

we will have lh(an) = lh(pn). Strings a and 8 with a :) an 

and p On are said to be admissable at stage n+1, if* for 

no x y, th(an) do we have cc (x) and p (x) defined and each 

equal to 0. 

Stage to of the construction. 

Define 

7.0 = the least number in D. 

-'n+1 " the least element of D greater than 

lh fa4n+3). 

Let a2 a4e_1 and p2 104e_11 comprise the least pair of 

strings admissable at stage Le with lha = lhp =- xe" 

Define 

a4e, 04e =a*0, (3 *0 respectively . 

Stage 
e+1. 

Look for the least triple (p, x, s) (under some recursim 

ordering) for which ß 04e and e a(ß, x) im defined and 

such that if 0e (p, x) =I then p (x) /- 0. 

If no such (p, x, s) exists set 

aUe+1' -84e+1 " alle *1* 104e *1 respectively. 

Otherwise let a, ß1 be the least pair with a oche, -3' ß1 

c t,, 6 admissable at stage 4e+ 1 with p' a p, lh(a) = lh(p I) 

and such that a(x) is defined and is not equal to 0a(6. ýx). 
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Define 

a4e+1' 04e+1 `a -' 10' respectively. 

Stage 4e+ 2. 

The same as stage i. e+ 1 but with (x and p interchanged and 

.e+2, 
li. e-+ 11 written. for 4e + 1,4e respectively. 

Stage 4e + 3. 

Let (min) be the eth pair of'numbers (in some recursive 

ordering). 

We look for the. least quadruple (ßI 
, ß2, x, s) for which 

p", p split 4e+2 for n through x at stage s. 

If 
, 
(p1 , pa, x, s) does not exist set 

a4e+3' 04e+3 ý a4e+2 * 1ý' ß4e+2 * 11 respectively, and 

otherwise look for the least pair (a 
, s) with a 0'4e+2 such that 

or, pi and oc, (3R are admissable pairs and 4 a(a vx) is, defined. 

If a exists let /3i be the least of the strings ßY'p such that 

l> a(a 9 x) 4 en(ß i#X) 

axd take to be the least admiasable pair of strings of equal 

length with a* pa and 

Define 

'4e+3' 0 e+3 =a'Q respectively. 

Otherwise take ae+3' ß4e+3 to be the least pair of admissable strings 

of equal length with a e+3 Da e+2 and 04e+3 04 etznd with 
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1h (a 4e+3) > lh (p') + 1h(ß'). 

LEMMA 1. A and B are recursive in 0'. 

PROOF: We examine the questions asked during the construction. 

The result will follow from the fact that they are uniformly 

recursive in 0' and in what we have defined at previous stages 

of the construction so that we could define an, ßn by a 

recursion schema using 0' recursive functions. 

(1) - (4) below correspond to the stages Le to L. e+3 of the 

construction. 

(1) We require the number x, which depends only on 

De 01 and on the strings cc4e_, and 04e_I already defined 

(the admissable pairs form a recursive set). 

(2) The set of, triples (p, x, s) that we are interested 

in is a r. e, set-qualified by a predicate recursive in c 4e 

and ß4¢' 

(3) Similarly for the triples (cL, x, a). 

(! }) The quadruples (ß1 
, p2, x, a) and the pairs (a 

1, s) 

each form the intersection of an an, ßn recursive set and a 

fixed r. e, set. 

It follows that if we write a= deg A and b= deg B then 

a Lt h 

LEMMA 2.0'< a u, b. 

PROOF: If we inspect the construction we find: that the. only 

stages at which we fail to choose an admissable paix a, p 
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as extensions, of an# On respectively are the stages 4e >0 

when. 0'4e' ß4e are chosen to be adnmisaable apart from the fact 

that 

a4e (xe) _ Poe (xe. ) = 0. 

This means that A rte B is a subset of D and is, infinite since 

infinitely many numbers e are chosen. Since D is intro=reducible 

we have DCT An B where deg AuB<aub. 

It follows, from lemmas 1: and 2 that 01= aub. 

LEMMA 3. a and b are incomparable. 

PROOF: Assume that 

lý . e(B) 

for some number e. 

If a triple (p, x, s) exists satisfying stage 4e+ 1 of the 

construction then we have that v 
e((34e+1' x) is defined and is 

not equal to ae+1, which would mean that *c(B; x)-ý A(x). 

So for every pair (p 
,g x) such that p; ". p4e and 0e (ß 1, x) 

is defined we have that =I which implies that A is 

empty, contradicting the fact that AnB is. an infinite subset 

of D. 

LEMMA L.. If om (A),, 'Znn(B) are total and am(A) = On(B) then 

m(A) 
is recursive. 

PROOF: Let (m, n) be the eth pair of numbers. Then at stage 
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4e+3 we look for a pair ß' 
., 

ß-2 which split ßLe+2 for n 

through some number x at a stage s]0. If p1, p2 do not 

exist then 0, 
n(B) will be recursive. In order to compute 

0n (B, x. ) for a given. number x we need only generate 

recursively the functionals 
n& s 

and also the extensions a 

of 04e+2, and if for some such a- and some s >, 0 we have 

$ 
(o-, x) =c 

then we have that 

0n(B, x) = ö. 
. 

Otherwise there is a beginning p- of B,, which we can choose 

to. properly extend 04e+2' for which 

en (p, x) = ö'' 4 ö, 

so that for some s* >a we have 

ný $ , x) = dß' ä= 5'ns 
s* 

%', X) 

(since On =u On, 
s and 0n,, 

s c O'n, 
s+1 

for each s) and 

so ß, cß` split ß e+2 
through x for n at stage s*. 

Say (ß' 
, p1 , x, s) exists. 

If (a, s) does not exist then since p' , (x 4e+3 and ß, a4e+3 

are admissable pairs, at stage 4e+3 and lha4e+3> maxl lhßil iai or 21 

there can be no extension a' of 0c4e+3 for which om(c ', x) is 

defined, so that 0m(A, x) is not defined. 
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If a exists then by choice of "4e+3 and '64e+3 we have that 

en(94e+3' x)' 'ffi(c +3, x) 

are defined, and unequal so that 

0rl (B) 'M (A). 

It follows. from the lemma that anb exists.. and is equal 

to 0. 

We can adapt the proof so as, to replace O, Oby, e, e' for 

any given e? 0. This has the corollary that every degree is 

a non-trivial meet of a pair of degrees. Lachlan [31 has 

shown that if c is, r. e. and-strictly below 0' then we cannot 

in general choose-the pair of degrees to be r. e., But we 

can ask: 

(1) Is every degree below 0' a non-trivial meet of 

two degrees below 0'? s, or 

(2) Is there some general class of r. e. degrees with 

non-trivial r. e. meets (e. g., Robert Robinson's low degrees [5])? 

Sacks [6] examines lattice embeddings for the degrees as 

a whole and Lachlah [4] and Thomason [9] obtain results about 

lattice embeddings in the r. e. degrees, but little is known 

about embeddings which preserve greatest and least elements 

in the degrees below 0' or in the r. e. degrees between two 

comparable r. e. degrees. 

THEOREM 2. There exists a pair-of minimal degrees with least 

upper bound 0'. 
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PROOF: Let f'be a recursive function which enumerates 

without repetitions a r. e, set D of degree 0'. At stages, 

sr0 we construct 'strings a8 and a" and take the pair of 

degrees to be the degrees, of Ac and A' where 

A3 (x) = lim$ aQ (x) 

for each i<1: and each x. The strings a8 and a' will be chasen 

to lie on certain finite trees ess with =i: ý 4 where at 

any given stage s. ') 0 there will only be a finite number of' 

these trees different from O. 

If o- ca8:, for some p< 1 then o- is said to have rank e 

of' the pth kind at stage s+1 where e is the least number fcr 

which 

o- Te 
s 

¶6) 

for some ö<1. We order the pairs (e, p) lexicographically 

upwards. - 

The method : by which we make AO, A' to be of minimal degree 

is a construetivisation of that of Spector's in [8] but 

different from that of [11] in that not every sy zygy defined 

at a stage 2s +p- 1> 0 will be a splitting on a tree Teta 

pair-for e, and also in that we will not expect the limit 

trees 

= lim Te 
S S$ 

to be partial recursive, although if AP lies on an infinite 

splitting portion of Te then we will be able, to select a 

partial recursive splitting subtree of TP on which AP also lies. 
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If Tels(i-), say, is defined and has been chosen as. a member 

of sy zy gy which splits for e then if there is no 8Z ygy 

for TQ 
,s 

based on Tý 
s(T) which splits for e at stage a we 

rr 

say that Teýs(ý-) is a boundary string for Týýs at stage s. 

The method by which we make D recursive in the join of 

the degrees of. A° and At is to ensure that if there is a stage 

s such . that Te+1 $ and Tie+1 
s(0) are beginnings of Ac and A' 

sr 

respectively then 

DS(e) = D(e) 

where DS = (f(k) lkC sj. 

Stage'0 of the construction. 

Define 

TPýýý =1 

for each p=0 or 1. 

TP. 
e, 0 

Define 

(the identity tree) 

otherwise. 

aö _ for each p=0 or 1.. 

Stage 28 +'p + 11. 

Define 

Tp I. 
s+1 - 

Assume that Ti9s+1 has been defined for each i<e and that 

Tess+1 ýTý has been defined where r is a string other than OS and 
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that 

8+l (T )_$ cT . 
We may now base a sy zygy on TE 

s 
(T) at stage s+1 through 

one of the following cases: 

Case I. 

Let Tc 
a(i-) 

have rank k of the pth kind at stage s+1. 
0 

Assume that Te 
a(T * 0), (T * 11) are defined and are 

s 

compatible with each tree Ti, 
s+1 with i<e. 

Also assume that one of the following hold: 

(1) T, 
s 

(T * 0), (T * 1) split for e at stage s+1,, or 

(2) there is no pair of strings o-I , z2. Tý 
s(T) which split 

s 

for e at stage s+1 and which satisfy the follovting conditions: 

(i) 0i , tea are compatible with every tree TiqB+1 with 

i<e and neither of o-, , cc, properly extend a boundary string 

Ti (sr) with i<e and 
,, s+1 

C'p8(T) 
C 11, 

s+1 
(TT)Y 

(iii if o-, or o-, extends some prohibited string ir 

(a term to be defined later) where 

Teý6(T) c lr 

then we may free ir by stretching a string of rank ke of the 
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(1-p) th kind where 

(k, 
p p)< (k*, 1 -P)s 

(iii) by defining 

°"' '°ra = Te, 
s+1 

(T * 0) s 
(T * 1) 

respectively we do, not make some string jr of rank k* of the 

qth kind at stage s+1 liable to require attention at a_ stage 

greater than 2s+ p+I (again a term to be defined later) through 

a number e' > k* where 

(k, P) > (k*, q) Q-n d cl <II or- 

(3) Tees (T) a8 " 

We define 

Re 
, s+1 

(, r * 0), Cr -* 1) = Tý 
s s(T * 0), (? - * 1) respectively. 

Case II. 

Assume that case I does, not hold and that none of (1) - (3} 

of case I holds. 

So there does exist a pair cri, a2 as. described in (2). 

We define 

Te, 
e+1 

(T * 0) s 
(T ýr 1) = o'ý ýý a 

respectively, and we require a string of rank k* of the 

(1-p) th kind at stage s+1 to free all the prohibited strings 

ir such that 

jC 
B(, r) cvC0"ý 
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or T'e 
8(T) circa- , 

s 

where we choose k* to be the largest possible such number. 

Case III. 

If cases I and II do not hold but 

Te, 
s(T) a as 

define 

Te, 
s+1. 

is * 0) , 
(T *". 1) = al 9 a'2 

respectively where a' 9 s; -, is the least pair of incömpati'ble 

strings. which extend Te $(T)- and which are. compatible with 

every tree Ti, 
s+i with i<e. This concludes case III. 

We say that e* is liable to require attention through x. I 

for a at stage 2s+ p+1 if 

DS(x- 11) 1 

and e* is the largest number for which there is a string 

a- D Te, q 
s+p . q(0) which Is incompatible with each Tw (0) 

y w< s, 

such that 

I -q(o) a cx 
1 -q . .w 

Tx. a+p q) 

and which is. compatible with each tree Tips+p-q swah that 

i<e*" 

At stage 2s. +p+1 we make a string jr of rank k* of the qth 

kind- liable to.. *reauire attention at a stage areäter than 2s+p+1_ 
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if at the end of stage 2s+p+1 we have that k*t k** are liable 

to require attention through some x- 1 for q, 1-q respectively 

at stage 2a+ p+Z, and 

(k*, 4)1 (k**, 1-q). 

Assume now that the extensions. arr. qo-, of Tý 
s+11 

(T) as 

described in 1(2) do exist except that (iii) fails, to hold. Then 

cri or a-, extends a string, Txpt(0) where t<s and x- 1 is greater 
s 

than the rank of Tep 
sa(T),. 

If e* is liable to require attention 

through x- 11 for p at stage as +p+1 we require * 
,5 

(O) to be 

stretched at stage at stage. 2s + -p +1 unless this, has already 

been done at some earlier stage for the potential sy zygy a-, , o-2, 

The new number enumerated in D at stage s+1 

Let 

f(s+1) = x-1.. 

If Te* 
ss(0) 

is liable to require attention through x-1 at' stage 

2&+ p+ 11 for some e* J0 then Tý* (0) requires attention-at stage 
PS 

2s + IJ + 11 through x- 11_. We will try to ensure at every subsequent 

stage w>s that we either have 

TXýt(0) aw or Txtt(0) aW P 

for each t<s, and so as to achieve this certain strings 

Tt(0), TXýt(0) with t<a may become strings prohibited through X, 
- X. 9 

At stage 2s+ p we may have required some: string to free a 

prohibited. string it where we defined. extensions, of, some string 
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through case II at stage 2s+ p one of which extended it. Assume 

that u was prohibited at stage 2s +p by virtue of being a 

string Ty, t(0) for some y; t where t< t' and f(t' + 1) = y- I 

Then we choose Te. 
s(0) 

in a similar way to that above to be 
s 

a string for which there is a proper extension a- compatible 

with all the trees Ti, 
ß with-i < e* and incompatible with 

each string Tylt(0) such that t< t' and 

T'-P(O) 1-p Typt (O) S. s+p-1' 

And. Te 
pa 

(0) is the string which is required to free it at stage 

2s+p+l if' (and only if) T 
s+i 

(0) is defined and Te *s (O) 
s 

(1) 
s vs 

and crr are compatible with each tree Ti 
s+1 with i<e. Also 

we have that each string Ty, t(0) with t, <, t' and 

-p (O) a1 +p-1 

is prohibited through y at each stage t* > 2s +p such that we 

have not-required Tyst(0) to be freed at a stage t. ** auch that 

tý t*w > 28. + p. 

We define Te 
s+1 

(0) 
v 

(1) at stage 2s+p+1 if Te, 
s+1 

(0) is 

defined and is not equal to a 
$+1 

Cann (a). 

Assume that Tee 
a(0), 

(1) are defined and are compatible 

with every tree Ti 
g+1 with i<e. 
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If e requires. attention because f(s+1) = x- 11 or if Tc 
S(0) 

is 
s 

required to free a string ?r where Tr is prohibited by virtue 

of being a string TX t (0) for some tCs, or if Te 
s(0) 

is 

required to be stretched because we would have defined strings 

Ti, 
s+1(T * 0), (T * 1) through case II apart from the fact that 

Ti 
8+1 

(T' * 0) or (, r * 1) extends a string TX t(0) for some 
sv 

t<s then let a- D Tes 
s(0) 

be the least string incompatible 

with each Typt(0) for 

tCýt t'(f(t'+1) = y-1 or t'=s) 

and Ty, 
9 
t (0) 2 as+P 9 

where zy<x where z is chosen to be the least number for 

which there exists such a string and such that cr is compatible 

with each. tree Tips+1 with i<e. 

Define 

TePs+1 (0), (ý1) = o'' Te 
s 

ý1) 

respectively and in the former case every string TX t(0) with 

t s. and 

1-q 1- Tx, t()as 6(P+q) +8 

becomes prohibited through x. 

We now inductively make changes in the definitions of' some of 

the strings Tits+4T), i< ei Assume that the necessary changes 

have been made on all trees TýtB+I, j<i. Let Tips+i (z) be 

the least string such that either Ti 
s+1('7) 

is not compatible 
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with some tree T3ps+l with j<i, or 

Tes 
8(0) c Ti 

s+1(r) ca 
s 

and Ti 
s+1-(, r) 

is a boundary string for i at stage s+1. If 

no such string exists we make no changes. Otherwise we 

re-define 

Ti, 
8+1 

(T) = °`' 

and TP (T * 1r) is. undefined for each ?rn. We say that J, s+1 

es+1(0)). 
Te 

s(0) 
is stretched to cr Tp 

fs 

Otherwise we define 

Te, 
s+1(0), 

(1) e 
$(0), 

(1) respectively. 

Case (b). 

If Tý 
$(0), 

(1) are not defined and compatible with 
s 

every tree Ti 
s+1 

i< e, let cri , cr, be the .. least pair of 

incompatible extensions of Tits+i(ý) compatible with every 

tree Tips+l with i<e where if one of these strings extends 

no string Tý (0) with t<a we take it to be ma . s 

Define 

Te 
s+1 

(0), (1) respectively. 

In either of cases (a) or (b) if 

Te, 
s+1 

(Q)., (1) T'eý$(0), (1 ), 
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define 

(cßý 
s 

(ý 
ra sP+1 

TP 
e9 s+ e+1', s+1 

otherwise merely defining 

13 Te 
s+i 

ýý - Te+1 
, s+I 

ý' 

LEMMA 5. For each number e>0 and. each pGI 

Tß(0) = limn TP 
$(0) 

is defined.. 
s 

PROOF: First of all we show that there is a stage-after 

which T13 
s(0), 

(1) do not change other than by being stretched. 

As inductive hypothesis we take: 

(i) for all s-> some t Ti 
$(0), 

(1) change value only 
P 

through being stretched if (i, q) < (e, p), 

(ii) Dt* [el = D[e] 

where t=at *+ q* + 11p 

(iii)' for each i< some el<es, if, a>t then 

TF (0), (1) do not change value because of the definition of e, s 

a new eyzygy. for Ti 
w at a stage 2. w +p-I> 2s +p-1. 

s 

We inductively verify . the validity of 
, 

the *hypothesis 

for every el <e and from this obtain the first"part of the 

step in the main induction. 

We may assume that at no stage s>t is Te 1, e(0) 

stretched. To see this. we look at the three ways in which 
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Te-p (0) might be stretched: 1, a 

1. TP 
_ 5(0) m4y be required to free some prohibited 

% 

string Zr through the definition of strings on a tree/case II. 

But in order that this should happen the string for which 

new extensions are defined must have rank k where 

(k, 1-p) < (e- 11, P)" 

And this means, that some string T, 1 -7p *s (0) where 
s 

(e*, 1- P) < (e, P) 

changes; at a stage a> t* and not through being stretched which 

contradicts (i) of the inductive hypothesis. 

2. e- 1 may require attention at some stage greater than 

t for p. 

We show that this can happen at most a. finite number of times. 

At stage t*e-1 can only be liable to require attention through 

a finite number of numbers x-I since T t' 
(0) is only defined 

s 

for a finite number of numbers x with t' < t, and e-I can only 

require attention at most once through each of these numbers. 

Also : it is easy to see that if TX t, 
(0) is defined for no 

s 
t' Ct then e-1' cannot. require attention through x-I at a stage 

2s+p+l;. > t. Since p- 1 is not liable to require attention 

through x-1 at stage t and since 

Dt* [e) = D[el, 
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we must define extensions at some stage >t of some string 

Ti of rank e' which renders e- 1 liable to require 

attention. This is because it e-1 becomes liable to require 

attention through x- 1 through some e' requiring attention 

at a stage t' >t through a number x' - 1i then we have x< x' , 

since if a string of rank e' is stretched to be incompatible 

with each string onto which the x'th tree of'the rth kind maps 

0 at stages 2u+ r+I< t' = 2s' +r+1. where 

1-r 1-r 
as'+r p- x, 

tu+1(0) 

then it will be stretched to be incompatible with all such 

strings of greater rank. And x> x' since otherwise by the 

construction. there can have been no string of rank> e' of 

the rth kind incompatible with each T (0) defined before 
u s 

stage t' with 

a 
1, -r 
a' +r x, u 

and compatible with all the ith trees at stage t' with i< e'. 

So at some stage t' >t we base a sy zygy on a string 

Ti, 
s+1 

ýrý of rank e' of the qth kind at stage s+ 1 which renders 

e- 1 liable to require attention at some stage greater than t. 

There are two possibilities: 

(a) (e', q) i (e - 1, p). 

But this cannot happen since 

D [e] D[e] 
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and because Ti 
s+1 

(T * 0), (T * 1) are defined through case 

II and must satisfy condition (2) (iii) of the construction 

at stage t'. 

(b)' As for case 1, above we cannot have 

ýeý, q) < (e - 1.. P) 

because of (i) of the inductive hypothesis. 

We may require TeP1, 
s(0) 

to be stretched at a stage 

2s+p+1> t. 

This means that there are potential extensions cr4 ,a of 

a string Te 
S. 

(T) which satisfy all the requirements of case 
s 

II at stage 2s+ p+1 except for (iii) where Tp, (r)is of rank 

th 
e-I of the p kind at stage s+ I. Then the assumption 

implies that if e* is liable to require attention through 

x-1 for 1-p at stage 2s +p . i- 1 where T_1,5(O) is required 

to be stretched because one of the potential- extensions ar, or 

crn extends a string TX 
w 

(0) with w, <, a then x>e and 
s 

(e*, 1- p) 

and e- I is liable to require attention through x- I 'for p 

at stage 2s+ p+1. 

(e*. 
* 1-P) < (e - 1, P) 

since no alterations are made to trees. of the (1-P)th kind. at 

stage 2s +p+I and so if by taking 

a-' ' °-n " Te' 
s+i 

(T * 0), (T *1) 
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respectively we would have made a string jr of rank k* of the 

qth kind liable to require attention at some stage greater 

than 2s + p+ I then we have 

(e-1, p)> (k*, 9. ) 

We show that there can only be finitely many such numbers x, 

or more specifically, if e*, e-1 are liable to require attention 

for 1-p, p respectively through x-1 at stage 2s+ p+1>t 

where 
(e*, 1-P) < (e-1 

s P) 

then e*, e-1 are liable to require attention for 1-p, p 

respectively through x- I at stage t. This is because if, 

the former holds, then e- 1 is, liable to require attention 

through x-1 at stage 2s + p+ 1 and from part 2. we know that 

in this case e-1 must have been liable to require attention 

through x- 1 at stage t. 

Lastly we notice that Te_1,. 
s(0) can only be stretched by 

being required to be stretched at a finite number of stages 

through a given numbe-r x- 1, for if Te_1 
s(0) 

is stretched 

through being required to be stretched at a stage 2s, + p+ 1>t 

through x-I then e- 1 is not liable to require attention 

for p through x-1 at stage 2-8+ P+ 3 since x>e, and in fact 

is not liable to require attention for p through x-1 at a stage 

>2s +p+3 by a similar argument to that in which we limited 

the relevant numbers x- I to a finite set. 

So Te_10$(0) is stretched at no stage 2s+ p+I>t 

and hence by the inductive hypothesis Te(0) exists where 
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Te (0) = lim$ Te, 
8 

(0) = lima Te-1 
,s 

(0) 

and Tet( Ta(o). 

We may assume that for all i. < e either there is a string Ti 

for which 

TVs(Ti) 
= Te o) 

for all s, > tw or else Tý 
s 

(0'", )- lies on T9e for no 8> t'ý. 

If Te 
8(0), 

(1) are to change at a stage 2s+ p +-I >t other 
s 

than through being stretched we must at stage 2s+p+1 have 

dips+1 (T i 0)s (Ti 1) Ti, 
s(T1 * 0), ('ri * 1) 

respectively for some i<e. 

We take as the hypothesis for a sub-induction: 

There is a stage 2t(i) + p+ I>t such that for each 

j<i either for each s>t (i) Týý(ýý * 0), (T3 * 1) split s 

Tý 
Os(, 

r2) for j at stage s+1 or TP, 
s'(z-i * 0), (T * 1) split for 

j at no stage s+1 > t(i)'; 

and also for each j<i, each it n if for some s> t(i) and 

every it' *q with q< 11 and it' *qc it we have that T$ (T j* Tr' ýr q) 

(ýý Tr' 1-q) split R`ý 
s 

(Ti) for j at stage s+1 and are not 

(r * 7r) boundary strings for a- tree Tkj 
s with k-< j then T 

'9W 

changes at no stage 2w+ p+I> '2s +p+1 except as a , result 

of'being stretched. 
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There are two possibilities for-the number i: 

(a) at no stage 2s+p+ 1> 2t(i) + p+ 1 do we define strings 

Tips+1 (T1 0) ý 
(Ti *1) which split Ti 

s 
(Ti) for i at stage 

s+ I., In this case the next stage of the induction follows 

immediately. 

(b )' at a stage 2s+p+1 > 2t(i)+p +I the strings 

T,, 
8+i 

(Ti * 0), (-'* 1) are defined and split for i at stage 

s+1. 

If Lr1 '0 2 are respective extensions of Tips+1 (Ti * 0)' 

then a-j , a-2 split for i at each stage w+ I >, s+ I. This means 

that if there is a stage w+ 1>s+1 such that Ti, 
w+1. 

(, r 
i* 0) 

do not split for i at stage w+ 1 then at some stage 2u+ p+1 

2s. + p+1 we must have 

(Ti', 
u+i 

(Ti * 0), (ci * 1)) "Ti 
2, u 

(Ti * 0) 9 (r1 * 1) ) 

other than as a result of a member of the latter sy zygy being 

stretched at a stage 2u+ p+1. That is we must define strings 

Tj, 
u+1 

(7r * 0), (? r *1) through case II at stage 2u + p+ 1 

where j<i and Tý*u(1r) is. a boundary string for some tree ý'ku 

with kj and where 

Týýu(Tr) c Ti 
u(T' * q) 

r 

for some. qC1 (If Tý, 
u(7r) 

is not such a boundary string then 
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we weuld, 40flna Bt a bo-. dft. r, -, j- string for Sem 
,u 

t Epp k, u4: t 

MIS r1_ PP (: ý 
-tý-}- j, u ipu 

r er -'t Tf-TP suc oun j, u 

we would define strings Tp (Ir' * 0), (v' * 1) through j, u+1 

case II where v'e ir and by the construction this would preclude 

such definition for Tutu+1 (ii * 0), (it * 1) at stage 

2u+p + 1). 

Since u> t* we have 

Ti 
u(, r = Ti (Ti) 

and so 

Ti, 
u('ri) c T5--n , 

and since u>t (i) we cannot have it = Ti by the inductive 

hypothesis which means that 

Ti, 
u(Ti) cT 

ýu(7r) 
c Ti, 

u 
(Ti * q) 

for some q<1. 

Choose v>s to be the least number for which we have 

that T jrv+, 
j 

(jr) is. a boundary string for a tree Tk, 
v+1 with 

kCj and for which we-have that 

(Ti g; )' Ti, 
v+1 

(Ti) C ý'j: 
vº+1 

('T) C Ti 
+1 

Let 

Tj, 
v+1 

(ir) _ Tp. 
qv+1, 

(Tr 
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There are now three possible ways in which the first part 

of the next step of the sub-induction can fail with 

t(i+ i) = s: 

(i) either 

Tks 
, 
(Try') c Tisv(7i) 

k n(ir 
) alters through stretching at stage 2v+ p+1, or and Tp 

s 

_! 
L 

F(r1 * q) c Tksv(7r 

and Ti (Ti * q) alters_. through stretching at stage 2v+ p+1, 

(ii) Tk,, 
v+1 

(ir*) is defined at stage 2v+ p+1 through 

case II of the construction, 

(iii) Tk, 
vv 

(ir* 0), (7r* * 1) split for k at stage v, but 

TkPv+1 do not split for k at stage v+1. 

If the first part of (i) occurs then 

TP 
V. +1 

(ir*) = Ti, 
v+1 

Cý"i 

if the latter is to be defined. 

For the second part we notice that if 

Tiv+1 (-i * q) :) Tk, 
v+1 

(, W 

then by the nature of the stretching operation. k,,. v+1 
(lr*) 

cannot be a boundary string for Tk., 
v+1' 
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If (ii) holds then there is a ir" c r* such that 

Tk, 
v 

(ir' )c Tk, 
v+1 

(V*) C Ti, 
v+1(Ti * q) and such that 

Tk 
V(Tr') 

is a boundary string for a tree Tk, 
q+l 

with 
ss 

ký <k<j. 

Arguing as above we must also have 

Tvv(or )c Tk., V(ýr' 

which contradicts the choice of v. 

Finally (iii) cannot occur since by the second part of 

the hypothesis of the sub-induction it would mean that there is 

a r' * q' where q' < 1; such that 

7kcIr' *q' CIT* *r 

for some r<I and such that Tp 
ý, 

(ar' * q' ), (ýr' *1- q') do. 
s 

not split for k at stage v. And this would imply by definition 

of case II of the construction that we have a string 

Tk 
v(Tk * o-) c TP ' (sr*-) 

j, kiv 

with o- n0 which is a boundary string for some tree Tkv with 
s 

k' C lc'< j. 

Since 

and 

Tp, 
y(T Cr) 

pV(Tk) 
= Ti q(Ti 

T, 
v(1r*) c Tp. ýu (? i * q) 

this contradicts the definition of v again. 



- 30 - 

The second half of the (i+1) th 
step of the sub-induction 

proceeds exactly as does the proof of the first half when 

case (b) applies. The only difficulty is that we must deal 

with the relevant splitting pairs Tp (Tr * 0) , 
Or *1) on i, s+1 

Ti, 
s+1 above Tips+1 (Ti) by induction on the length of ir 

where the base of the induction is given by the first part 

of the sub-induction. 

It follows that t(e) exists. 

Let i<e be the greatest number for which Tint(e)+1 

(Ti * Of (-ri * 1) are defined and split for i -at stage t(e) +t 

Then from the proof of the sub-induction, for each w> t(e) 

we have 

Týow (Ti*0), (Ti*1)cTiw+1 (Ti*0), (i-i*1) 

respectively and if i<j<e and Tý, 
w+i 

(T3 * 0), ýT *1) 

are defined then 

Tj, 
w+1 

(T3 * 0), (T-j * 1) = TiPw+1 (Ti * 0), (Ti *1) 

respectively. 

So at each stage 2w +p+1> 2t(e) + p+ I we have 

T+1 (0), (1) ;1T 12 
't(e)+1 

(0)s (1) 
e, 

respectively where we only fail to have equality when 
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TP 
W*1 

(0), (1) have been stretched for some reason. 

As in the proof of-the first part of the sub-induction we never 

have a boundary string ir for a tree T 
aw+l 

with j<e where 

TP w+1 (e, ) c it c Te 
w+1 

(0) 
s 

or, Te, 
w+1 

(0) c 'r c Te, 
w+1(1 

ý 

and hence 

Te w+1 
(0), (11) Te 

W. 
(0), (1) respectively for each w5 t(e) 

and Te 
w(0) j, 

(1) only change value at a stage 2w+ p +'I through 
s 

being stretched. 

It follows easily from the lemma that lima Te 
s- exists 

s 

for all e and for each p<1. 
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From the proof of lemma 5 we have that limn Te, 
5 

(0) 

exists for each e, p. If there is a stage t such that 

Te, 
5 

(-r) c as 

for no a>t then by the construction if 

(Te, 
s+1(r'» 

0), (T * 1) )4 (Te, 
e(T 

» 0), (T * 1) ) 

for some s>t other than through a member of the sy z yg y 

being stretched we have that Te, 
w(T * 0), (T ýr 1) are 

defined for no w>s. And since we only stretch strings 

TP95(0) such that 

Ti, 
s(0) c aP 

at stage 2m +p+1, we cannot stretch Te, 
e(T * 0), 

(T * 1) at a stage s>t. 

if 

TP (T) S. (X 

for each s>a stage t we notice that if T has length 

K then neither of Te, 
s(T * 0) or (T * 1) have rank 

greater than e+K+1 at any stage is > 0. Hence 

limb Te 
8(Ir * 0), (T * 1) exist since lima Te+K+1, 

s(0) 

exists. 

LEMMA 6. D is recursive in-the recursive join of 

A° and A: L. 

PROOF: Since -' lim$ Te 
a 

(0) exists for each e>0, and' 

each p=0 or 1 we have that if 
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A°, A1 = lime aO15 , lima aP 

respectively then A°, A1 are well defined sets of degree 

less than or equal to 0'. 

We show that whenever e(e) is a number for which 

Te+1, 
s(e)(0) and Tý+l, 

s(e)(0) are respective beginnings 

of A° and A' it happens that 

Ds(e)(e) = D(e). 

The lemma follows from the fact that the whole construction 

proceeds uniformly recursively and from the fact that there 

always exists such a number e(e). 

Assume that there are numbers a and e such that 

eED 

but for which 

D. (e) =i 

and TP 
+1, a(0) 

is a beginning of AP for each number 

p<1. 

Let 

5W= An (eE Ds+11) 

so that e< a* and either some number e(O) requires 

attention thrQugh e at step 2aß +1 or some number 

e(Y) requires attention through e at step 2s* + 2. 

We need only verity that some number e* 30 is liable to 

require attention through e for 0 or 1, at stage 2eß+ 1 

or stage 2s* +2 respectively, which is easy since at 

worst we can take 

e(P) =0 

for each. p=0 or 1. 
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To prove this for each p<1 take as inductive hypothesis: 

Tö 
w(0) 

is defined and if 
s 

To, 
w(0) _ Ir 

then for some string or we have that IT * a* is incompatible 

with each Te+1, 
u(0) with u<w. 

The base of the induction is given by w=1 since 

Tö, 1 
(0)9(1. ) are defined for each p<1 but Ty, 

u(0) 
is 

defined for no numbers y, u, p where 

y>0,0 <p <I and 0 <u<I. 

Assuming that the induction fails let the hypothesis 

hold for w=W but not for w=W+1, and let 

To 
, W(0) = fl 

and let II *Z be incompatible with each Te+j, 
u(0) with 

uKW. So 

II ýr Ec TP 
+1 "W+1 

(0 

or 
Tö, W+1 

(O) 'n" 

If 

II EC TPe+1, W+i 
(0) 

then they hypothesis holds for w=W+1 with 

IT *= Te 
+1, W+1(1)' 

We cannot have 

n*Z= Te+1, W+1ýýý 
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unless the hypothe5ie hold for w= W+ 1 with more than 

one string o- (say E and e) since by the construction 

of Te 
+ 1, W+1(O) ,, 

(i ) we would not have au<W+I for 

which 

Te+1 
, u'0) c Te+1, W+1 

unle8e 

Te+1, 
u(0) c Te+1, W+1(ý)" 

So if 

nxE= Tý+1, w+1 
ý0ý 

the hypothesis would follow for w=W+1 with 

cr = 
e. 

If 

Tö, w+i(O) ý 11 

then since 

Tp1, W= Tpl, W+ 1=I 

for each p<1 it must happen that Tö, W(0) in stretched 

to Tö, W+1 
(0) at stage 2W +p+1. If 

Tö, W+1 
(0) c fl *E 

then the inductive step follows using 

IT*0" fl» Z 

again. if 

To, W+1(0) 2 II *E 

then we may take for w=W+1 

'Sr= Tö, W+1(0) , o'_ it *q 

for some q<1 such that aW+4 is incompatible with 

Tr*q. 
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By the construction if Tö, W+1(O) is incompatible with 

II *E then since n*E satisfies the hypothesis for 

w=W we must have that Tö, W+l(0) »q satisfies the hypothesis 

for w=W+1 for some q<1. 

So e (p) requires attention at step 2s* +p+1 for some 

p<1 which means that 

q)a Te+1, 
s(0 s +1 

For some q<1. 

Let t» > is be the least number such that 

qq Te+1, 
s(0) Luv+1 

for each q<I and each w> t''. 

Inspection of the construction gives us that at each stage 

greater than 2s* +p+I for each u<s+I if 

Te+1 
u(0) c aw 

for some q<1 then Te 
+1, ü(0) is a string prohibited 

through e+i for some q' < 1, and so at each stage 

2w +p+1> 2t» +p+I there is a string c' prohibited 

through e+1 such that 

o, c ao or Cr c aw+j W+i 

By the construction if there is a string c' prohibited 

through e+1 for q at the end of stage 2t* +q+1 

where 

o- c a! * +1 

but 
cr at1 
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then this cannot occur through a string Tee`st `ýrý 

being stretched where 

Te 
, t. 

(r) cc 

and 

0- C Te* tt +1 
(r) c t. aq, +1 

This is because as in the proof of the above eB-t-he 

ahe*e induction we can show that there is an extension 

of Te# t#(T) compatible with each tree Ti t +i with 
ss 

i< e* but incompatible with each istring 
Tý+1 

ßu(0) 
such 

that 

Te+1, 
u(0) 

Te 
9t* 

(r) 

and u< s* + 1. By the choice of t* there is no 

string Te+1, 
v(0) with v< s' +1 and 

T 
, 

(0) c Tq* 
e+1 v e. t 

and so by the definition of the stretching operation 

o- Tee', t*+i . 
This means that we require a string to free a' at stage 

2t» +q+2. And each string Te+q, 
u(0) with u< e* 

and 
qq Te+1 

, u'ß 
/c at +1 

becomes prohibited for I-q at stage 2t» +q+2. 

We construct a function E(2w +r+ 1) where r<I 

which we take to be undefined for 

2w +r+1 2t» +q+1, 

and take as inductive hypothesis : 
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At stage 2w +r+1> 2t* +q+I we define strings 

Te', 
w+1(T 

0), (T * 1) through case II of the construction 

resulting in a requirement for a string to free a string 

prohibited through e+I at stage 2w +r+2 where 

Te,, 
w+1 

has rank E(2w*+ r+ 1) and 

(E(2w +r+ 1), r) < (E(2w + r), 1 - r) 

if E(2w + r) is defined. 

We examine stage 2W +R+1 assuming the result 

for each stage 2w +r+I with 

2W + R+ I> 2w+ r+ I> 2t» +q+1 

At stage 2W + R+ 1a string of rank k is required to 

free a string o' prohibited through e+1 and all strings 

Te+1 
, u(0) with u< s* and 

T1-R (0) S 1-R 
e+1 u aw+R 

are prohibited for R at stage 2W +R+I by virtue of 

the fact that extensions of some string of rank k' were 

defined at stage 2W +R through case II where 
(k', 1-R) < (k, R) . 

We can only fail to free a- if we define strings 

Te'W+1(T * 0), (T * 1) through case II for some e' >0 

one of which extends a string a' prohibited through e+1. 

Blut in this case we require a string to free a-' at stage 

2W +R+2, and since such a string cannot have rank greater 

than k', and by the conditions laid down for case II of 

the construction we must have that 

(k' 
, 1-R) > (rank Tý, 

'W+1 
(T), R) 
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If E(2W + R) is defined so that 

k' = E(2W + R) 

we obtain the result by defining 

E (2W +R+ 1) = rank Te ,P W+1 
(? ) 

1hit from this we see that we have obtained an infinite 

descending sequence of numbers and so there is no such 

t» and the lemma follows. 

LEMMA 7. A° and Al are of minimal degree. 

PROOF: We show for each p<1 

if Oe(Ap) is total then either 

or AP is recursive in 0e(A). 

the degrees of A° and Al are 

from the fact that 0' is neith 

and each e>0 that 

4ý 
e(AP) 

is recursive 

It will follow that 

minimal by lemma 6 and 

er recursive nor minimal. 

We say that trees T and T' are mutually compatible 

if T(O) and T'(ßß) are compatible and (considering a tree 

as an array of strings) we have that 

Eala'eT and a- T'(O)l 

is compatible with 

j 1crI o- e T' and 02T() 

and vice-versa. We write T- T' 

We describe a uniformly recursive set of trees 

{s 
e`e, s>0,1>p>01 

whose members have the following properties: 

(1) °" E e, 
s- 

fie, 
s+1 "' °- is an end string for k? 

and there is a string a" such that -O a-' and 

p E e, 
s+1 
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(2) 
eP +1, s 

P te, 
s 

for each e, s, p, 

(3) ! 'P - TP 
e, s - e, s 

for each e, s, p and no string Q' on ke 
s 

is a boundary 

string for a tree TP 
s with i<e unless or is an end 

s 

string for ke 
ss 

(Li. ) either *e 
,s 

is a splitting tree for e at 

stages s>0 or there are only finitely many pairs of 

strings a1 , 0'2 such that for some s0 

(r1'a-2 E ess 

and a :L, or, split for e at stage s 

(5) for each e, p we have that 

to = lima -kp 
' 

exists and contains infinitely many beginnings of AP 

Assume that has been defined for each 
r.. 

e<e*+1 and each s>0 for some given p<I 

(We take Tp 
,s=I 

for each s>0 and each p< I) . 

If for every 

item 1AP[n] I n>01 

there is a pair 

Ted+1 (T * 0), (T 

which split IT for e* +1 

the least number for which 

Te*+1, 
s(e*+1) 

(T) 

I)E *e 

define s(e* + 1. ) to be 

there is a string 

TQ 
+1 

(T) e Te n to#, 
s (e' +1 
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I 
and take IT(e* + 1) to be the least such string 

Te 
+1 s (e' +1 )(T) which is a beginning of AP. There 

must be such a string as long as we can prove (5) for 

tee and since by the construction every beginning of AP 

is compatible with Te. #+1 and since by assumption there 

is a string 

TP +1 
(T) Ee 

Then 'i'ce+1 
PB 

is defined to be empty if s< s(e* +1) 

and otherwise is the set of strings 

ITe' 
+1, s(T) E kp 

e#, g 
for each Te 

+1, s(T''ýq) 

with q<1 and IrcT +1, s(Tl*q) 
Te 

+1, s(T) we have 

that T#+1, 
s(T'*q), 

(T' *1-q) split for e» + 11 

arranged in a tree-like array. 

Otherwise choose a 

7rE teen(Ap[n]I n>01 

such that no pair 

Tee . *+1 (70), (r*1) e 

split IT for e» + 1. 

Define s(e* + 1) to be the least number for which there 

is a 

Tä'ß+1, 
e(e +1) 

(ý) Te 
+1 

(T) 6en týi, 
s(e*+i ) 

with 

Tee+1 (T) Dar 
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if such a number exists and take IT(e* + 1) to be the 

least such string 

Tee+1 (T) C AP . 

And if s(e* + 1) is still not determined take it to be 

s (e*) and take 7r(e* + 1) = IT . 

In both of the latter cases Te, 
+1 s 

is nowhere 
s 

defined for s< s(e* + 1) and is 

iTOP 
, $(T) 2 Tr(e +1) 

otherwise with the tree ordering induced by to 
,s 

We now verify the facts (1) - (5) for 

e. P. 
+1, $ s> 0l 

using these facts for each set 

I%sI s>01 

with e< e* and also using any relevant details arising 

from the inductive definitions. 

From the uniform recursiveness of the approximating 

trees and from (1) it will follow that each 'ke is 

'almost' partial recursive so that by a modified Spector- 

type argument the lemma will follow from (4) and (5). 

We distinguish three cases in the definition of 

II-e+1s1s%0 and treat each in turn. 

Case 1. Say 

Te 
+1s(? 

) TeO+1s(ß') e*+1, 
s+1 

From the definition of es for e< e* +I we see 
s 
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that if Te 
B(cr) 

is a boundary string for Teig and 
s 

TP (a) cE e, s 

for some string EE Fe 
s 

then 
s 

Te 
ss 

(a-) 6 to 
ss 

or 

Te, 
s(a) 

c 7r(e) 

In the former case Te 
s(a-) 

is an end string for 
s 

,es by (3) and so 

Tess (°r) ¢ PP 
ee+1ss 

and and in the latter case Te 
s(o) 

is a boundary string for 
s 

Te, 
s+1 

by the choice of zr(e) . This means that 

Tee'+1 
, s+1 

(? ') is defined and 

Te*+1, 
s+1 

(T') TP+1, 
s(r' 

) 

since Te +1, s(T') can only change through being stretched. 

And since only boundary strings are stretched we have that 

Tee+1 
,s 

(T') is a boundary string for some tree Te 
s with 

e< e* +1 and so by (3) and the definition of +1 ,s 

we have that Te#+1ss (T') is an end string fore 
+1ss 

Since Tee+1, 
s 

(T') is a member of a splitting By zygy 

for e* +1 at stage s, T#+1 
s+1 

(T') is a member of 

sy zygy splitting for e* +1 at stage s+ 1 

Finally 

Tee+1, 
s+1 

(T' )6e`, 
s+1 

since otherwise let e< e*+ 1 be the least number for 
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which 

Te+1 
, s+1 

ýTý 
ep e, s+1 ' 

Say there is a string II which is a boundary string 

for Te, 
s+1 where 

II c T+1 
, s+1 

(T'ý 

Then by_definition of the stretching operation we must 

have 

II C Tee-+1, 
s(T') = to 

+1, s(T) 

which contradicts (3) by definition of ' eý+1, 
s " 

, kp will be defined through case (1) since otherwise 

every end string for kp 
ess+1 

is an end string for to-1ss+1 

So Ted-+1 
s+1(T') 

lies on Te 
s+1 and there is an end 

ss 

string II for a tree 'fie' 
, s+1 with e' <e such that 

i, nc Ted+1, 
s +1 

ý? 

which contradicts the way in which we chose e. 

This proves (1) for ek +1. 

We obtain t 
+1 ,scs 

directly from. the 

construction. 

To see-that 

P , kp 
e* +1 , B- 

Te*+1 
,s 

for each s we first note- that every string on Te 
+1, s 

also lies on Te*+1, 
s and so Tee-+1 

s 
is compatible 

with Tee+1, 
s and Ted+1, 

s(ß') and T 
e+1 ts(ý) 

are 

compatible by the construction. 
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Assume that 

j °- I o- e Tee+1 
s and a- 'kP sý` s 

is not compatible with e+1, 
s 

Then for some Te*+1ss with 

Tee+1, s(T) 
e 

s(ß') 

we have that Te*+1, 
s(r) neither lies on tee+1ss 

nor extends an end string for ke+1, 
s 

So for some 

ýe 
'+1(ý) = Tee'+1 

, s(T' 

we have that 

ec Tee+1, 
s(T) c e*+1, 

s(Tr) 

which by the definition ofe +1, s 
implies that 

Tee+1 
, s(r) ýi 'k e 

,s 
Let e be the least number such that 

Tee`+1ssýýý 0 kp 
e, s 

Since 

PP 
e+1, s- e, s 

so that 

Te*+1, 
s(T) 

Te. 
s(0) 

we must have *e 
s 

defined by means of case I and 

so by the definition of 'fies and the fact that 

Tee. 
+1 ýs(T) 

c to 
+1, s( 

IT) 

we have that Te*+1 
s(T) 

lies on Te 
S. 

Say 
ss 

Tee'+1 
s(T) = Te, 

$(ir' 
) 

s 
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where 

-kP (0) c Teýs(ir') cI PP 
e, s e., s 

some Ir" . Then by the definition of ts 

Tess(ir') 
es 

since 

Tee. 
+1 Vs 

(r) E e', s 

for each e' < e, which is a contradiction. 

Now let 

-ke +1 v$(T) 
c tee-+1, s('r') 

some T', be a boundary string for a tree Te 
e with 

s 

e< e* + 1, and choose e to be the least such number. 

Since 

,PP e', s ý Pe 
+1, s 

for each e' e* +1, e'ý+1, 
s 

(T) is an end string 

for no tree fie, 
s with e' < e» +I By the definition 

of a case I construction to 
s cannot be defined as a 

s 
splitting tree for e. But neither of the other cases can 

hold since Tee+1 
ss 

(T) being a boundary string for Te 
s 

would contradict the choice of s(e) and ir(e). 

By the definition ofe +1 we have that 'e*+1 
ss 

is a splitting tree for e» +1 at each stage s>0. 

From the proof of (1) we see that if ''ems+ 
,s 

(T) 

is defined and is not an end string for " e*+1 
,s 

then 

+1, sýTý "' e+1, 
wýýý 

'pp 
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for each w >,, s, and if te+1 
8 

(T) is an end string 

for Tee 
+1 ,w 

then for some o' we have that for each 

w>s 

e +1 P(T) 
= Te*+1 

, w(r) 

where Ter+1, 
w(r) 

is defined and changes only by virtue 

of being stretched. Since lams Tee+1 
,s 

(a-) exists so 

does lams tee+1 
S 

(T) 
P 

By definition 

zr(e* + 1) fie. +1(0) 
is a beginning of A. Let ke+1 (T) be some beginning 

of AP where 

tee. 
+1 

(T) =T 
P* 

+1 
(o-) 

Since case I applies there is a pair 

Tee`-+1 (a-* p* 0), (a-* p* 1) e leer, 

which split Ted+1 (a-) for e* + 1. By the second part 

of (3) we deduce that Te*+1 (o-* 0). (a-* 1) split 

Te* 
+1 

(o') for e» + 1, and since 

Te*+1 (a-) c AP 

Te. *+1 (Cr* q) is a beginning of AP for some q<I. 

So as in the proof of the first part of (3) and by (5) 

for each tree Te with e< e* +1 we have that 

Te*+1(o*q) E *e 

for each e< e* + 1. This means that Tee. 
+1 

(r) is a 

boundary string for no tree Te with e< e* + I. 
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We show that Tee+1 (a* 1- q) lies on each tree ýe 

with e <e» + 1. 

Assume that e is the least number for which 

Ter+1 (u*]. Te 

so that ke is defined by, case I and 

Te*+1 ((r) = Te (p) 

for some p. 

Since Te*+1 (cr* 0), (a-* 1) split for e» +1 and 

since Te* 
+1 

(a) is not a boundary string for Te but 

Te(p) is a member of a pair which splits for e by 

definition of Te we have that 

Te*+1 (tr* 1- q) E Te 

Otherwise we would have that for some string Ir Te(p* 7r) 

is a boundary string for Te 

and 

Tee-+1 (o-) c Te (p * 9) C t1 
(9-* 1 

which would contradict condition (i) of case II of the 

main construction. From this we get 

Te#+1 (a, * 1- q) Ee 

a contradiction. So the definition of e implies 

that 

Te*+1(a*0)r (ý'»1) e -ke +1 

and so there are beginnings of AP of arbitrarily long 

length on ie 
+1 
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Cases 2 and 3. 

The only real difference between these cases lies 

in the definition of ir(e» + 1). which will appear in 

the proof of (5). 

If 

ET 'r e +1 ps e-$'+l ,s +1 

then by the definition of 7kP*+1 
, s+1 we have that 

°r E -kp - PP 
e', s e0`, s+1 

and so by the inductive hypothesis a- is an end string 

for kp* *s and for some p we have that 

(P) o" 

By the definition of ke 
+1 , s+1 

, kP (p) 
e*, s+1 

E e, 
*+1, s+1 

since 

e 
, s+1 

(P) n 1T(S* + 1. ) 

By definition we have 

e 
+1, s c 

te, 
s " 

By the choice of 1r(e* + 1) there is no pair 

Te'*+1, 
s+1 

(r* 0)' (r 1) Ee 
9s+1 

above IT(e» + 1) which is defined through case II. 

So for each string T and each number s such that 

Te'*+1 
, s+1 

(T* 0) , 
(T* 1) are defined and compatible with 

ir(e** + 1) and are beginnings of. strings on ýý 
s +l 

there is a string Ir and a number e< e* +1 for which 
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Te, 
s+1 

(1T), (1T'ß 0)' (1T* 1) are defined and equal to 

Ted+1, 
s+1 

(T), (T* 0)9(T* 1) respectively. So the tree 

T consisting of those strings o' such that 

a, ETP e*+l, s 

and o' is compatible with I'(e» + 1) and Cr is 

a beginning of a string on Tet+1,8 is mutually 

compatible with Te -, s. 
Also 

TPý1` N ''P* 
e )t -e ,s 

by the inductive hypothesis and 

-PP" N kp 
e, s -e +1, s 

by definition of *e 
+1 ,s 

Hence 

, PP *+1, s -T 

which implies that 

TP ^0 - e'#+1, s 

Since 

Te#+1 
vs 

implies that 

T1,8()= 1T(e'ý + 1) e 'fie +1 ,s 

the first part of (3) follows for e* + 1. 

Since 

pP eý+1, 
s - ey, 

s 

and there are no boundary strings for trees Te, 
s 

with e< e* on ''e*ps other than end strings, and 

since there are no boundary strings for Te on e+1 
0s 
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te', 
s since case 2 or 3 applies, the second part of 

(3) follows. 

We show that the second part of (4) holds for 

, Pe* 
+1 and treat cases 2 and 3 separately. 

Assume that tee+1 
,s 

is defined through case 2 at 

each stage s >,,, O but that there are infinitely many 

pairs 

a-i' cr2 Ee 

which split for e» +1 

We know that -e*+1 (O) is a beginning of AP and lies 

on Te#+1 and that no string on `ke*+1 which is not an 

end string for 'fie +1 
can be a boundary string for a tree 

Te with e< e» + 1. Also we know that there is no pair 

Te*, 
+1 

(-r* 0), (Ts. 1) e to +1 

which split for e» + 1. 

So there are infinitely many pairs Lri, cr2 such that at 

some stage s>0 we have : 

(a) tri , oß'2 E tee+1, 
B 

(b) ai, O2 split ke*+1, 
s(ß) 

for e' +1 at stage 

s where 

-ke"+1 
, 
s4)c as , 

(c) Te*+1, 
s(T) 

is defined and 

Te'ý+1, 
s(T) = del+1, 

s(ß') = Te*+1 (T) 
' 

(d) if Ir c (ri or o"2 and it is a boundary string 
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for a tree Te 
s 

for some e< e* +1 then 
s 

IT c Te 
+1 ,s' 

Since we have (3) for each e< e* +I (a) 

gives that a1 and o'a are compatible with each tree 

Te 
8 with e <e»+1 

s 

Looking at case II of the main construction we see 

that either: 
[1] there are infinitely many beginnings of AP 

which are beginnings of, strings 7r prohibited at a 

stage s >,, O where we are unable to free Tr at stage 

s+1 other than by stretching a string of rank k 

of the (1- p) 
th kind where 

(k'ß, 1- p) < (rank Te*+, ý ,s, 
p) 

(since by lemma 6 no beginning of AP is prohibited at 

infinitely many stages), or 

[2] at stage 2s +p+1 we have 

Te*+1 
,s 

(T) =Tee+1 (T) 

and there are strings (ri and q*2 on. IF -+1 B which 

we would define to be Te. *+1, s+1 
(r* 0), (T 1) respectively 

if it were not for the fact that condition (iii) for case 

II does not hold for o'1, T29 where we can choose (c 
., 

O'a) 

and s to be as large as we like. 

To see that. [1] does not apply we notice that for 

each x there can only be finitely many prohibited strings 

TX t(0) and that since 

TP =P Te 
lima Te 

ss 
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exists for each e there are only finitely many strings 

TXot(o) cTe.. s(O) 

at some stage s>0 with 

(e- 1,1- p) < (rank. Te, 
+1, $(T), P) " 

So eventually we must be. able to choose our splitting pair 

a a2 such that if 

Tx t(0) or Txqt(0) c a-s 

where TX t 
(0) is prohibited then TX, t(0) can be freed 

by stretching a string Te; ps(0) where 

(e-1,1-p) < (e', 1-p) . 

Again the fact that there are only finitely many 

strings 

TX, t(o) c Te, 
s(O) 

at some stage s b'` with 

(e- 1,1 - p) < (rank Te 
+1 s(T), p) 

s 

implies that we can only make strings of rank e with 

(e. 1- p) < (rank Te*+1 
s(r), p) 

s 

liable to require attention through a finite set of numbers. 

Let X-I be the largest such number. If we take t* to 

be a stage such that 

TX, 
s(0) = TX(O) 

for each q<1 each s> t' then [2) cannot- occur at a 

stage 2s +p+1> 2t» +p+I since in this case a string 

of rank less than X of the pth kind would be required to 

be stretched at stage 2s+ p+1. 
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If the second part of (4) does not hold for 

I, e*+1 then *e+1 is not defined through case 3. 

If there is no string Tee+1(T) such that 

TPe# 
+1 

(T) e rev 

then since A lies on 1, P and by the construction 

either A lies on Te*"+1 or some beginning of A is an 

end string for Tee+1 we have that for some t» > 0, 

some T, each s>t, Te' 
+1 ,s 

(T) is defined and 

Te*+1, 
s(? 

) -Tee`+1, s-1 
(T) 

and there is no sy zygy for T. 
+1 ,s 

based on 

Te' 
+1, s(T) which contradicts case III of the construction 

of Tee` 
+1, s 

Since (5) holds for e= e» (5) holds for e= e* +1 

The end of the proof is a straight-forward modification 

of the arguments of [8]. 

Assume that *e+1 is defined through case 2 or case 3. 

Choose a to+1 (O) above which no pair of strings on 

to+1 split for e 

Define 

s (x) = ACS[ e, 
s 

((r, x) is defined with a* E e+1 
,s 

and 

Q : ). 7t] and X= 7'1 Oe, 
s (x) (cr, x) is defined with 

°- E -ke+1 
,s 

(x)' 0- IT] and 

f(x) ýeýs(x) (X, x) 
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if f is partial recursive and since A? is on 'PP e+1 

! 
e(A) 

is total then f is recursive. 

Say f Oe' Then for some beginning A[n] of A 

and some x>0 we have A[n] e *e 
+l and 0e(A[n], x) 

is defined and 

4ý 
e, a(x)(X, X) ? 4ý 

e(A[n]x) . 

So by (1) and (5) there is a Cr X such that aEe 

and o', A[n] split Ir for e, a contradiction. 

Assume that 'fie +1 
is defined through case 1. We 

show how to compute arbitrarily large beginnings of A 

whenever 0e(A) is total by asking questions uniformly 

recursive in Oe(A). Assume that A[n] is given where 

A[n] = to+1 
,s 

(T) 

for some s>, 0, some T 

Wait until to+1, t(T» 0), (T* 1) are defined for some 

t>s, so that 

e+1 
t 

(T) 2 A[n] 

by (1) and is a beginning of A by (5), which implies that 

, PP+l, t(, r* q) cA 

for some q<1. By the construction *e+1, t(T'ý 0), (T* 1 

split for e through some x>0 at stage t and so 

-ke+1 
,t 

(T» q) is a beginning of A where 

to+1, t(r* q) A[n] 

and 

0 
e, t/ýe+1, txý 
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Hence 

A <T ýe(A) 

COROLLARY (Shoenfield). There is a minimal degree below 0' 

incomparable with any given degree strictly between 0 and 0'. 

Another problem concerning joins is that of characterising 

the joins of degrees of sets satisfying particular separation 

properties. Also does theorem 2 remain true when we Include 

the degrees of partial functions? Case [1] has shown that 

the degrees constructed in the proof of theorem 2 will not be 

minimal partial degrees. 
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Minimal degrees and the lump oreraton 

The-jump a' of a degree a is defined to be the 

largest degree recursively enumerable in a in the 

upper semi-lattice of degrees of unsolvability. Friedberg 

[1] showed that the equation a= x' is solvable if and 

only if a> 0', Sacks C5) showed that we can find a 

solution of a= x' which is < 0' (arid in fact is r. e. ) 

if and only if a> at and is r. e, in 0'. Spector [7) 

constructed a minimal degree and Sacks [53 constructed 

one < 0'. So far the only result concerning the relationship 

between minimal degrees and the jump operator is one due 

to Yates [9] who showed that there is a minimal predecessor 

for each non-recursive roe. degree, and hence that there 

is. a minimal degree with jump 0'. In §1 we obtain an 

analogue of Friedberg's theorem by constructing a minimal 

degree solution for a= x' whenever a> 0'. We incorporate 

Friedberg's original number theoretic device with a 

complicated sequence of approximations to the nest of trees 

necessary for the construction of a minimal degree. In 

§2 we show that any hope for a result analagous to that 

of Sacks. on the jumps of r, e, degrees cannot be fulfilled 

since 0" is not the jump of any minimal degree below 0'. 
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We use a characterisation pf the degrees below 0' with 

jump 0" similar to that found for r. e* degrees with 

jump 0" by Robert Robinson Finally in §3 we give 

a proof that every degree a< 0' with a'= 0" has a 

minimal predecessor. Yates [9] has already shown that 

every non-zero r. e, degree has a minimal predecessor, but 

that [] there is a non-zero degree; <, 0-' with no minimal 

predecessor-. 

. ems 

§11 Every complete degree is the completion of a minimal degree. 

As usual we will construct a sequence of partial 

recursive trees. It will be necessary to resort to stage by 

stage approximations to these trees, and we present an 

alternative method to that of Yates. in 19]. 

If Aca we may take a' to be the degree of the 

domain of J(A) where J is 'the partial'- reeursige functional 

defined by 

J(A; x) =py TSA ((x)t. 
s(x)2, y) 

where we. write J(A; x) for J(A) (x). It is easily, seen 

that dom S(A) is r. e. in A and that every set r. e. in A 

(and so every set r.. e,, , in any Sr a) Is one-one reducible 

to dom J(A). We define 
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JS(A, x) = pY (y <s and T, A ((x)t, (x)2 
9 Y))" 

Then dom Ja is finite and we have 

J(A; x) = liens Ts(A; x). 

THEOREM 1 Let c> 4'. Then there exists a minimal 

degree b such that ä'= c. 

PROOF: Using Friedberg's completeness theorem let be 

a degree such that a' = c. Let JC be an enumeration 

recursive in a of a set C of degree c. With regard to 

strings and trees we follow the notation of [8]. We write 

T(T), (T') for T(? -''). At the end of stage s10 

there will be constructed ä. finite number of finite trees 

TLrsI, o- a string, and a string ßs will be chosen to- lie on 

certain of these trees. Let T-= lima Tor, s and B= lima ßs" 

Then if a- = C[m] some m, either B will lie on To, or there 

will be an end string (i. e., a well defined string o- ('j-) 

for which T. (r * 0), (r * t) are not defined) on. Tc, which 

is a beginning-of B. Let K(or) = the length of a-. We will 

try to ensure that if tI, (cr) e+1;, then Tor, s is a splitting 

tree 'for. e., but this will not necessarily happen. Ta-, s (T) 

is said to be a boundary string for o- at. stage s if 

Q 
T8 Cr) was defined as a member of a splitting pair for, e, 

but T13(T* 0), Cr * 11) were not. A string a- is said. -to be. 

compatible with a tree. T if either-or lies on T or a- is an 
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extension of-some end string for. -T. - 

be ordered lexicographically upwards. 

= FAY (a-, (Y) Al Q'2 (Y) ). 

The strings; S, will 

Let "y(a'1,02) . 

L jý 
ý 

ýýH Ný N (i1'ß 

o. S of n ýo aý ̀ , ý. 30J 

f, v4 ovi 

At stage s let o- be the longest string such that 

TD TQ, 
ý s 

(n), where n is the null string. Then we say that 

T is. of rank cr at stage a and. w6 write R(Tos) = tr. It 

will follow from the construction that R is a recursive 

function. We now give the- construction. 

Stage 0 

Define. Tn, o (n) =ß. Týýo(T) is undefined otherwise. 

Stage s+1 

Definition of Tn, s+1 

For each r such that Tn, s (T) is defined, set 

In, s+1 (, -) =Tn, s (? ) 
. 

If Tn, s (r) is defined but Tn, s(T * 0), (T *1)... are not 

atible be the least pair of' Incomp defined, let 
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strings Tn. 
9 G 

(T) buch that if R(Tns 
s 

(T), s) = or, then 

k for each pm such that t (TAB 
s 

(T)) <Pm 

i=1,2, k> 0, r<(((o-), 

a-i(Pm) =0 o-(m) = 0. 

Define Trn, 
s+fi 

(T 0), (T 1) . o-ý , ýý respectively. 

Definition of ' Tý, 
ýs+ý 

where c- Dn 

We assume that T7r, s+l is. defined for each 7T c a-. 

Assume that o- = a-# * i, i=0 or 1, and that 

Ta-, 
a+, ý 

(n) is not a; end string for Q,, 
s+'1 " >> 

If or has a valid follower ir, set 

ö-, 
s+'I 

(n) = Jr. 

Otherwise set 

To-ý 
s+1 

ýý_T; 
s+1 

(i) 
. 

Assume now that. ýýs has not been cancelled: otherwise 

stage s+11 is, now completed for ýý 
s+, ý. If ä, 

$(T) BROW is 
s 

So, �¬. Tt we: may define extensions through one of the following 

three cases: ' 

I. Tý 
P $(? - * 

0), (T * 1) are defined and compatible with '-Act+ 

tree Tom, 
$+1,7r e art and either: 
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(i) T-n, 

or (ii) TL -8 ('-* 0), (r* 1) were defiiied through case III 

or (iii) there. do not exist strings o-1 , o-, such that 

lie on Tný 
s+1ý' 

2) o-r o are compatible _with every tree Tý 
13 +1' ir e a- , 

3) for every boundary string o-' c o-1 or o-, on a tree 

Tý, 
ý s+ý ,nc or, we have o'' e o,., 

s+1 
ýTý' 

split T0-9 
8+1 

(z-) for e at stage s+ 1, 

no Lr ,i=1,2, is prohibited for T 
s. 

(T) at stage s+1. 
s 

Define T, 
ý s+, ý 

(T * Or (T * 0) 

In cases II, III we only consider strings Tree+1 (T) Q 

T, 
s 

(n) für some o'. 
L7 ) 

II. Case I does not hold, TDn. and there do exist strings 

as defined incase I (iii). 

Define 

Tý, 
ý +, ý 

Cr * 0) , 
(? - * . 

1) = oýr ý crn respectively. 

III. Cases I, II do not hold and either 

_ (a) T=n, 

or- (b) there do exist strings as defined in (iii) except 

that 3) does not hold. 
r 
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Let irr , Ira be the Ie ast pair of incompatible strings 

To 
13 

() compatible with every tree Tý 
05+1 , 7r c oý. 

Define Ta, 
j 8+1 

(T * 0) ý 
(T * 1) 

.= 7rß q era respectively. 

For each string o--* 0, cr *I followers may be appointed 

which will be. concerned with-ensuring that limn J$(/3a;, e) 

exists where. lh(or) = e+1. 

Prohibited strings may be. associated with a given follower. 

Once appointed a. follower and its-associated prohibitions 

will remain until cancell6. d. We say- a, follower ?- of a-- *i 

is valid at stage s+f- if T (0) (1)=T 
8(0), 

(11) 

respectively, and T is compatib]a with each tree T,,,,, 1,, 7r"c or. 

There are now, for. each Tý8+1 (i), 1=0,1, two cases to 

consider: 

Case. 1` . There exists° a follower v of cr *i which is not valid. 

Cancel it and all associated. prohibtitions. 

Casey 2. 
_ 

There exists no follower-of o- * i, but there is a 

string, i- T-, (i) such that i- lies on Tn s+, 'w is 

compätible with every 'tree T8+1 rc o-9 and tT,, +, 
(v; e) La., 

defined. 

Appoint 7r the. c- * i. All strings D Tw 
'8+1 

(n) 

incompatible with it are prohibited at each stage' w+1J for 
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atrings of rank D o- - at stage w, w s+1 , until v- is, 

cancelled. Cancel all trees T-, 
+11, and all 0y 

followers and prohibititiona associated with these trees. 

Definition of ß$+, 

Let r be the largest string such that o- is a beginning 

of C8+1 and a,., 
S+1 

(n) is defined. 

Set Qs+fi = ý, 
s+ý 

ýný" 

LEMMA For each string o-, 

Tc, (n) = lint ý, 
ý te(n) exists. 

PROOF: Let o= = o-' * 1, i=O or 1. It is sufficient. to 

show that there is a stage s such that for each s+1 > s*, 

, 
s+1 

(i) is defined through case I and Q, 
ss+1i 

is not 

cancelled. We assame that t is such that for each jr S x1 p 
if there exists ar (7r) for which Tr (T(1r) )= Ta,, (n) 

then Tý, 
ý + 

(, r) ' Tý, 
-; 

(n) 
, 

for each s+1 j t. If TO-, 
.. 8+1 

(i ) 

is, defined other than through case I for s+1 > t we must have 

either: 

If n* Q) 4 Aafi» oA ®t e +-ý}ýs t rý, esse I- 'or-- 

1 ö-; 
s+1 

iz cancelled, 

or. (a. ) for some o-, c o-' and (T), where 

T0- 
0s 

(n) ö-ý 
, s+1 

(s) c Ta- 
p8 

(i) 
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T1, 
s+1 

(T * 0), (z- * 1) are defined through case II. 

We first note that no tree ä. 
j 8+1, 

is 

cancelled for s+1 > t, by the definition of t, and so 

(1) does not occur. Tr Gsonnt 

For inductive hypothesis we assume that for each/c-c, or' there 

is a stage t- such that either T 
rý s+11 

(, r(ir) * 01 (r(ir) * I) 

(T(ir) * 0), (T(Zr) *A) are defined for no s+1 > t* or T? 
t', s+1j 

T1rq s 
(T(ir) * 0), (r(Tr) * 11) respectively for each a >. t*. 

We show that there is a stage s* such that this holds with 

t* replaced by a* and it replaced by a. The first stage of 

the.. induction' is trivial since Tn, 
a("r) defined -+ Tnv*v+1 (T) ° 

T (T) for each v>s, rn, v 

Say Tri' 
, $+1 

('-(o-1) * 0), (T(o-i) * 1) become defined 

at stage s+1 > t` through case II. In order that these 

values be re-defined at a stage u+1> s+1 we must have for 

some it c oI, some T, some v+1 with s+11 < v+ I u+1, that 

T7r, v ('r) is a boundary string and T(T (Ti)) c TWP. (T) c 

('70* 
i) * i), say, and T 

(rý o) 
TQ, 

i 
s+1 T-, u+1. 

( 1), 
(re 

defined 

through case II at stage u+1:. (If Tr,, 
v(i-) 

is not a boundary 

string we would define extensions of some Tý, 
ýý, 

(T' ), 'r' c i-, 

through case II at stage u+1). 

We cannot have T= z(n) by the inductive hypothesis. And so 
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we. cannot have T 

r, v 
(T) c TQ 

1 's+1 
(T(o-+1) * i) by 

requirement 3) of case II. So in this case 

To"ý 
' s+1 

(T (o'1) * 0) s 
(T (a'i) 1) = Q. 

1 
(T (o'j) * 0) , 

(T (Cri) * 1) 

respectively. 

Assume that ý, 
1 s+1. 

(T (a'1) * O) p (T(Q-+) * 1) become 

defined at stage s+1' > t* through cape III but never through 

case Iii at a stage u+1 >s+I. Then let it c v-* be the 

largest string for which z-(ir) is defined. and. 7(T(ß-) * 0), 

(? (ir) * 1. ) exist. 

_exist. We have -, 
s 8+1 

(z (01) 0), * 
(ý- (01) ' 1) 

T 
r(T(7r) * 0) ý 

(T(i-) * 1) respectively 

TQ, 
1 

(i-(cr, ) * 0), (r(a-I) * 11) respectively. 

(This follows from the minimality requirement for the 

extensions defined through case III). 

If neither' of our assimptiona is_ correct the induction 

follows trivially. 

In any case we have the stage s* as required. From now 

on we take the s* corresponding to a, = cr' . 

We now show that there is a a. tage- w> e* such that TQ 
s+1. 

is 

cancelled for no s+1 > w. Assume that Ta-.. 
8+11 

is cancelled 
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at a stage s+11 > s*. Then TL,, 
u+li can only be cancelled 

at a stage u+I > s+11 if the. follower of o- (say jr) appointed 

at stage s+11 becomes invalid at some stage v+l-> s+l. 

By the definition of sv jr cannot become incompatible with 

a tree Tom, 
s+ý o .ýc o-ý through definition of extensions 

of "a string on a-I 
P s+, ' of rank c Amd we prohibit all 

strings incompatible with mr as candidates for extensions of 

strings of rank 2 v-'* So jr never becomes invalid and T 
0-. 081+1 

is cancelled for no s'+1 >s+1>s. ý. This completes the 

proof. 

We now note that for given o-j, T. * 

lh(R(T,, 
ýsCT), 

s)) < lh(o-) + lh (? -), 

so if TT�ý 
s+t 

(T) ý- 
s(T) 

for infinitely many sp we must 
s 

have TO-, 
* s 

(T) c ý1 (n) for some o-' and infinitely many S. 

But since limn T'$ (n) exists, this cannot happen, and so 
0 

lima T 
a, s(i-) exists for all c-, T. It also follows from the 

lemma that 'lims ßs exists and so B= limn ßs is, a set of 

degree, g a' = e. 

LEMMA 2 b' < ý. 

PROOF: {pg1 is. an 'enumeration, of B uniformly recursive in a. 

So we need only show that limn J8(ßs, e) exists for each e to 
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prove that b' < a' = e. 

Assume that TQ� 
*i 

(n) is a beginning of B where 

lh(o-) = e+1. Then there is a stage t such that Ta, 
*$ 

(n) 

T0. 
Wi 

(n) and ps 
_D 

TQ, i 
(n) for all s>t. Say at stage 

s>t we have Ja(ps; e) is defined. Then at, stage s+1 we must 

have a valid. follower sr of o-* i since T0� i s+i 
(n) = T. i(n). s 

It cannot become invalid, by a similar argument to that 

in lemma 11. And this means that for each oý'. 2 o- * i, 

Ta,, (n) 2 it, and since Ja(Ir; e) is defined we have Ta, (ps,; e) 

is defined for all s> s, .. ý. ýT (&.; e) 

LEMMA C< b'. 

- PROOF: We show that 

ecC 4-º (E k4) (k)k> 
k* 

(Pe ke B) and 

(k*) (Ek)k> 
k* 

(Pek e B). 

Assume that C[e. ] = u-. Then there is a stage-t and a string 

?r such that Tn, 
8(1r) = Q. ý s 

(n) = ý�(n) for all s>t. This 

means that all. strings on.,. To will lie on- Tri above T(it), and, 

since R(Tn a(Tr),, s) = a- for a>t, for all strings TT(IT * T) 
.r' 

we have Tn (7r * T) (Pek) =C (e) 
nk 

whenever T, (Ir * r) (p ek) is defined, for large enough k. Bfr 

our choice of Qa we eventually have Qs Tom, s(n) for all large 
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enough sp and for all rD o-, T 
. 

(n) lies on ý, v and 

so the lemma follows, 

LEMMA B is of' minimal degree. 

PROOF: B is not recursive since b'= e>0: We need 

only show that for each number e either e(B) 
is 

recursive or B<T Oe(B)' 

We write F-, (T) for the full subtree of T above T. 

We write Sp.. (Tm, for the ' subtree of" Tv, 
q is above 7r 

given by: Ta 
,t a(r * i) E '137r (T(ro 

a) 
if, and only if 

TQ. 
ý a 

i) 7r, and either uT 8(r* 
i) or 'Týý$(i-) eSp (T ) 

P o', s 

TQ, 
S, S(r * i) was, defined through case II. 

For each e>0 we construct a tree Te+I = lima Te+1 
ss 

satisfying the following: 

(1) for all s, Te*. ýý5 a Te+11, 
a+1 

(an& so Te+ is 

partial recursive )t 

(2) 
. either Te+l is a splitting tree for e or there. 

is a string pcB on 'Be+t such that, no pair af' string s 

on Te+ý above p split p for e. 

(3 B lies on *l each eq, 
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(4) iP Te11, 
s 

(yr), rDn, is. a boundary string for some 

Tals, lh(o) C e+1 , then Te+1, s(7r* 
0), Ir * 1) are not defined, 

ý5ý If Te1, 
s 

(10 has no other extensions defined then 

Te+1ý 
s 

(yr) is a boundary string for Ts some o- such that 
sss 

lh (cr) = e+1. 

(6) if TeT1, t 
(n) is defined we do not define strings 

Tx, 
s+l 

(T * 0), (T * 1) at step s+1 through cases II or III 

if, Taýj 
s+1 

(z) c Tell, 
s+f, 

(n) and s+1 > t. 

We now give the construction of the neat of trees IT * I* 
e, s 

When defining T we assume the properties (1) - (6) 

for trees Ti $'iCe+1. We verify, these properties for 

Te+i, s after the construction. 

First of all we define. 

Tag = TIIj 
s 

far all B. 
s 

The properties (1) - (6) follow immediately for '.. 
08 0 

Assume now that Ti*s Is> 
0 have been defined for each i<e+1. 

Let o- be the beginning of C of length e+11. There are three cases 

to consider: 

(i) there is a string ir on Te* such that u is a beginning 

of B and for no o�ý 
$ 

(T) do we have Tom, 
e 

(T)"-D ir, 



- 15 - 

(ii) B lies on a, and there is a string r on Te* such that 

r is a. beginning of B and for no T" -(, r) defined through 

case II do we have T, ýs(? 
) it and ýýs(T) lies on Tes 

ss 

(iii) otherwise. 

Define the least jr satisfying (i) if (i) holds 

7r(e+1) = the least 7r satisfying (ii) if (ii)-holds 

the least Tc�(T) such that Tý('-) lies on 
Te* and is. a beginning' of B and such that 
Ts, 

Ps(7) 
is never cancelled if (iii) holds. 

s(e+1) = µs (T0-ý, 
B(r) = Ta�(T) each To�(--) c irr(e+ 1)) 

r(e+11) 
(Te, 

a) 

SPir(e+1) ( Lr, 
s 

undefined for 

if. (i) or (ii} hold, for each 

s> s(e+1), 

n Te*a otherwise, for each s> s(e+1i ). 

s <. s(e+1). 

We now verify facts (1) (6) for 7 
e+1 

(1) If Te* 
g 

Fir(e+1) (Teei) then the result follows from 

, fir, * 

Assume Te+1;, 
s 

is. defined through the second clause and 

Te: i , is 
(ýr) is defined = TLr 

a(w), say. By the definition of 

Te+ ýýa, TQ�O (w) is never cancelled. Since Ta,, 
s 

(cu) wa s 
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defined through case III, we will have Tcr 
p s+j 

(w) TQ, 
S, $() 

7e 
s+1 

Te 
s 

(and s. o Te+ I s+'1 
(T) = Te+'I 

9s 
('r)) unless 

there is some- string T 
O'P 5(w' 

), c"' c a-, Tý1 (w') c T., 
s(w), 

for which T 1(w' * 0), (w' * 11) become defined AT (w' * 0), 

respectively. 

Moreover TO 
s+i 

(w' * 0); (co' *: 11) must be defined through 

case II since otherwise the minimality requirement of' case III 

implies that ' 
s+1(w') 

is incompatible with T 
a(cu) ýa 

contradiction. Thia; means: that To-, 
s , 

(a') is a boundary string 

for TCr "s 

Because (4) holds for all i< e+? I, TQ�; 
a(cal) 

does not lie on 

Te, 
a " 

Since (6) hol" for all i< e+11 we do not have T (ce') cT* (ný 
07-PS Q9ß 

So no string TT (w') exists. 

(3) By the construction T: 
+1(n) 

is a beginning cf. B. 

The result follows immediately if T7e* = Fu. (e+1, ) (Tý*) since 

B'; lie a on T. 

Assume Te*i is, defined through the second clause and Te+i (, r) 

is an end string for Te+,. which is a beginning of B. Then we 

have. TCr(T') = e+1 
Cr) aoxne,, 7' . Since. TQ, satisfies case (iii) 

there is some ca a T' such that Tý, (w * 0), (w * 1) are defined 

through case II and 7 (cw * i), say, lies 
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on Te*. Since (4) holds for Te*, we must have'w = r'. 

And since Tý (T' * 0), (T' * 1) do not lie: on Te+I we 

have Tr(-r' * (1 - i)) does not lie on Te*" But T8* c Tom, 

some o-' c a-_ and Tý, is compatible with each T r' c a, 

so, Ta- is compatible with TeI. � This means that there 

is some end string'Te* (0-i) such that T0- (T' )c Te* (0j) c 

TC. (T' * c, - W. 
Bu-t (5) holds for Te* and this contradicts 'the definition 

of Ta'(T' * (i - i) )through case jr. 

(lý) If (i) holds for T,,, (4) follows for Te: i from the 

fact that (4) holds for Te*. 

If (ii) holds, we know that (LE) holds, for Te*. 

Also we know that no T17,2 13+1 
Cr) D it (e+1) is defined through 

case II and lies on 7ess+1" So no such string can be a 

boundary string for ms's+ and (4) follows for g+1 

If (iii) holds the result follows by the construction 

of TQ, and the definition of BP. 

(5) If Te+19s = Te, Fir(e+t) (Te, 
s) 

the result 

follows immediately. 

Otherwise, assume that Te*1 a 
(, r) is an end string for 
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Te+1 
8 

but not for Te*8a By definition of Sp, we 
ss 

have Te+1, 
s 

(T) TQ,, $(ir) some vr where ä, 
ß$(7r) 

was 

defined through case II. In order to contradict (5) we 

must have ý�- 
s 

(n * 0), (ir * 1) defined through case II0 

but Tc,, 
s 

V 
(ir * i), say,,,, Te * 

s. 
Arguing as in the last 

part of (3) we see that there is an end string Te*s (or, -I ) 

such that Ta,, 
s 

(7r) c Te, 
s 

(Q", ) c ý, 
$ 

(7r * i). 

Sinne (5) holds for Tes*B, this contradicts the definition 

of Tcros (r * 3) through case II. 

(6) This follows by the definition of 7r(e+1 ), s(e+i ). 

(2) If TQ+1 Sp, 
zr(e+1 ) (0j ll Te then Te+i isa 

splitting tree for e by the construction of T0ý and the 

definition of Sp. 

Assume (i) holds and let a-ts (? ) c 7r(e+1), s> s(e+1), 

be the end string on T. which is a beginning of B. Above 

we proved that there is a string o-` such that R(T,,, 
& 

(r) 
1, a) o'' 

for all a> s(e+1). This means that we only prohibit 

strings as extensions for T(T) through followers of 

strings ors, and so such prohibitions are finite in 

number. Let pD 7r(e+1) eßc B# be a string such 'that no 

. string above a is prohibited as an extension for TC7-ýs(T) 
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Say some pair of strings a-, ' O. Dp on T:, 
8+1 spli fqr 

e at stage s+1. Then since Tess+j is compatible with 

Tom' 
, s+1iß each o-' C ý. * we. must define strings TP, 

I $+1 

(T * 0)p (T * 1) through cases II or III, which iß a 

contradiction. 

If (ii) holds, we take Tr(T) D ir(e+1 ) to be the least 

such beginning of B on T*. Then Tcrp8(T * 0)p (T * 1. ) 

never become defined through case IT. Let ßp Tcr(T) cBcB 

be a string such that no string above p is prohibited as 

an extension for Q, (T). 

Then say some pair of strings o-, , oý-ý Z) 0 on Tee 
8+1 split 

for e at a stage s+1; > s(e+i ). We cannot define extensions 

of a string ýt 
s+I 

Cr') c TA(T) since s+11 > s(e+1). So 

Tc., 
s+ýi 

(r 0), (, r * 1) are defined through case II since 

o-, , cra lie on Te 
8+'ß' 

T©, 
s+ý 

is compatible with each TO-j, 
8+1 

with or' c ¢r, and since (4) holds for Te8+1: This completes 

the proof. In order to see that b is minimal, we nee& only 

apply lemmas 1#2 of [6]. i 

We need to use Yates' theorem that there Are minimal degrees 

with jump 0' to complete our result since we have not taken 

any specific atepa to ensure that B Ia not recursive, They 
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would have beenafairly routine diagonalisation of the 

recursive functions, but cumbersome. 

§2 No high degree is minimal 

Let A= lima As be a set of degree < 0'. We define 

CA(n) =ps (Aa[n] = A[n] ) 

The enumeration JA61 (in the weak sense) is, said to be high, 

if CA dominates every recursive function and A is said to 

be high if it has an enumeration (in the weak sense) which 

is high. For recursively enumerable sets. this is the same 

as the definition of Robert Robinson [LI]. First of all 

we need the following lemma which is analagous to theorem 

3 of cliff 
. 

LEMMA If a< 0' and a' = 0"., then there is a high 

set A recursive in a. 

PROOF; Let a satisfy the hypothesis of the lemma. 

Prom (4] we have a total function f of degree a which 

dominates every recursive function. Let if81 be a sequence 

of finite functions such that for each n, lime f8(n) = f(n). 

Define p(m, e) = 2e ? 
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Let Iej$(Y) =XAz (z <a and T1(e, y. z))" 

Then lims1 e1s (y) =j e} (y) for each e,, y ?0 where 

lei (y) is the eth partial recur. iive function. 

Define s(m, e) = is ([e() is defined for all y with 

p(m, e) <y< p(m+1, e)) 

Aa(n) = 0. (=n`= p(m, e'-) ̀ sömeie and 

ßßI j y) is defined for all y, p(m, e) <y< p(m+1, e) 

and f$ (p(m, e)) and a are both > max 1 e1 (y) [p(m, e) <y 

p(m+1, e)1 + s(m, e), 

1 otherwise 

Let A= 1imaA8. 

A is recursive in f since to, find out whether 

A (p(m, e)) =0 we look for the least stage aW -such that 

f(p(m, e))< 8* or- s(m, e) = s*. 

If the latter holds . A(p(m, a)) =0 if and only if 

f(p(m, e)) > max U{efl(y)jp(m, e) <y< p(m+1, e)} + s*. 

If thisoccurs before s(m, e) is defined then A(p(m, s)) _ 'G 

Assume now that le} is a recursive function not dominated 

by CA. 
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If A(p(nt, e)) '= 0, then 

p(m, e) <Y< P(m+1, e)" 

CA(y) >I ej (y) for each y, 

So A(p(m, e)) _I for infinitely many m. 

But this means that for infinitely many m, 

f(p(m, e)) < 
, max IIeI (y) I P-(m, e) <r< p(m+i, e)) + s(nipe). 

Since [e] is total, s(m, e) is recursive for e fixed and 

so f fails to dominate a recursive function, which 

contradicts the choice of f. 

THEOREM 2 There is no minimal degree a< 0' such 

that a'= 0". 

PROOF: Let a< 0' and a'. 0". Let A be a high set 

'recursive ih a and let [As1B )0 be a high enumeration 

for A. 

With regard to fuznetionals we follow the notation and- 

practice of [31. Idele> 
0 will be a standard enumeration 

of the partial reeursive functionals, and 10eß 
s] ep$. 0 will 

be. a uniformly recursive sequence of' approxin. ationsto these 

functionais. That iss liras 0e#s = 0e and 0e,, 
ac 

4ýe, 
a+ 

each s. tT 
---_ý. isa UAlfo"m" y--2eeupe# e 

Et r MB t1rfl8, to standaH e iinere t nn i Re 1>u3-will be 

IýUn, ctiOno' . Sz. That Trr t% - 
ýeP 

s+- 

-ea-ah-. S. JRep 
sI ep e> 0 is a uniformly recursive set of 

approximations to a standard enumeration [Re 
e) 0 of the 
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recursively enumerable sets. For convenience we assume 

that for all but a finite set of numbers e. Re and 
ys 

are are empty at stage s. We construct stage by stage 

a non-recursive set recursive in A in which A is not 

recursive. As in [3] the device we use to demonstrate 

the recursiveness of this set in A is to define its 

characteristic function =e (A) where 6 is a partial 

recursive functional = lima e where eB is a finite set 

of axioms defined. by stage s. It will be" clear from the 

construction that U is consistent. Again following 

[33-we will use finite-sets of' numbers called recauirements', 

to preserve certain values. 0e s 
(e$(A5); y) with yes > 0. 

s 

We use the same symbol for a set or its characteristic 

function. 

The conditions to be satisfied will be given the following 

orders 

2e :e (A) Re 

(where s denotes the complement of a) 

2e±1� :Aý Oe (e (A)). 

We now give the construction. 

Ste_ Q. 
_ 

Define' e (AQ [x]; x) = 1, " all x. 



Page 
missing 
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Stete. Followers may be appointed at-step s+1. 

We will say that a follower x of a number n 
is realised at step s+1 if either: 

i n= 2e and xe Re 
s 

or (ii) if o- is the precondition of x, there are stiings 

a-, , 0-2 n o- of equal length which split o- for e at. 

stage s+1. 

We define s(x) to be the least stage at which x is 

realised if such a stage exists. At stage s(x), if x 

follows' a number - 2e+11 , Q-i # O-2 are appointed to be 

partners of, x and x is said to be the predecessor of (a-, 
, a-2 ). 

If o,, r a-2 split through wp say, (that is fie, a+1 
(a,, ; w) 

ýeýs+1 (cra'w)) w is said to be the instigator of ; co 

Assume that o-, is such that Oe,, s(x) 
(o-1; w) A 0. Then at 

stage s(x) we set up a requirement of order 2e+1 to make 

ý-ý. a beginning of e (A) if vEA and a-2 a beginning of 

8 (A) otherwise. 

If x follows a number 2e, then at Stege. s(x) we 

set up a requirement of order 2e to make ®(A; x) = 0. 

Followers x of n may become invalid at step s+'1 if x 

is realised at step s+1 . but A[x] = AS'jx] for some 

t< s(x), or if x has precondition a- and for some y such 

that o-(y) is defined,. ¢-(y) .4 ea (A$+, ; y). A, number n 

requires attention at- step s+1' if a follower of order n 

becomes realised at- step - s+1 or if every follower of n- Avg 
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invalid, and n is the least such number. If n requires 

attention at step W. cancel all followers and. 

requirements of order > n. If n requires attention 

through the first part of the definition, let y be the 

least number greater than any number which has been in 

some requirement at a stage <s+ 11. Appoint y to follow n. 

If n= 2e + 1, let x(y) be y- 1 if there is no existing-, 

invalid follower of n, and otherwise let x(y) be the 

least follower of n such that 8B(A5)[x) has not been used 

as an intial segment of a precondition of a follower of n. 

The precondition of y (and of all requirements associated 

with y) is defined by 

®s(A z) for z x(y) 

1 for x(y) <z<Y. 

A requirement of order 2e+1 is associated with y to make: 

®(A; z) = 11 for all z, x(y) <z < y. 

Befinition of new axioms 'for 8 at step s+1 

If z is in no requirement and A (As+1; z) is as yet 

undefined, enumerate in 0 the axiom 

e (A. 
� 

[ z]; Z) =1 

Assume that we have taken steps to satisfy all requirements 

of order < no 

if n= 2e, for each realised follower y for which 

8 (As+1; y) is undefined, set 
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e (A"� [ yJ ; 9') = o: 

If n= 2e+1, look for the least follower y(with precondition 

o-) of n such that for every z such that O(z) is defined, 

® (As+1; z) is not defined or is defined = a-(z), and if 

y is realised then 8 (. As+1; y) is not defined. For each of 

these z' s such that e (As+1; z) is not defined there will be 

a requirement to set. 8 (A; z) I ,, by definition of y. 

For each such z enumerate in e the axiom 

®(A��[zl; Z. ) = 1. 

If y is realised, enumerate in 8 the axiom 

8 (A, 
+, 

[max(ctr, y)j; z) = ors (z) or o-2(z) according as 

°r E As+1i or erf As+, , for each z, '> y such that wj (z) ý 

a-2 (z) are defined. For all z in a requirement of order n 

such that ®(As+1; z) is still not defined, set 

e(As+1[Z]' Z) 1. 

This completes the construction. 

It can be easily verified by following through the 

construction that 0 is a consistent partial recursive 

functional, and since ®(A) is total, defines a set of degree 

<a_ 

LEMMA-6 Each number n requires attention at only a finite 

number of stages. 
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PROOF: Assume the lemma for each number < n. If 

n. = 2e and n requires attention at an infinite number 

of stages, infinitely many followers y must be appointed 

to follow it, all but a finite number must be realised 

at a step a(y) and for all but a finite number A[y] = At(y] 

foiv some 't < s(y). Define a recursive function by 

0 if x is never a realised follower of it, 
f(x) 

L s(x) otherwise. 

Then CA does not dominate f which contradicts the fact 

that [As1 is a high enumeration for A. If n= 2e+1 and 

n requires attention at an infinite number of stages, there 

must be requirements of order n set up to make e(A; x) 

for all but a finite number of x' s>0. For suffiently 

large x, if a requirement is set up at stage s(x) to make 

®(A; x) = 11, it can only fail because At[x] for some t< s(x). 

This is because every action we take relative to the 

partners of a realised follower eventually fails. This 

means that for all sufficiently large x, ®(A; x) _ 1, 

otherwise we could define a recursive function not dominated 

by CA in the same way as above. By the construction 

infinitely many followers y of n will be defined with a 

precondition which is a beginning of e(A) and every one must 

become realised at a stage s(y) but we must also have that 

A[y] = At[y] for some t< s(y) in order that mare followers 
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be. appointed. And this means that we may define. a 

recursive function f by 

I s(y) if y is a follower whose precondition 

f(x) = is a beginning of 6 (A). 
q 

0 otherwise. 

We Pee that CA does not dominate f. which is a 

contradiction. 

It follows from the lemma that O (A) ,6 Re for all e and 

so 9 (A) is not recursive. 

LEMIM 7AT® (A). 

PROOF: A= Oe (e (A)) for no e. since there must eventually 

be a follower y of n= 2e+1 which is valid at every 

sufficiently large stage, by lemma I. If y is never 

realised, 0e(®(A)) is either not total or is recursive since 

the precondition of y is a beginning of e (A). If y is 

realised at some stage let w-be the instigator of y. Then 

we will have A(cs) 00 (©(A); cr) since we set up requirements 

to- ensure this and A. [y] A[y] ford no t < s(y). 

This completes the proof of the theorem. 

It seems possible to make ®(A) high also,, which means 

that - a: is very -far from being minimal. It would. ' be 
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interesting to see some structural difference between 

the high degrees and the r. e. degrees with jump 0"t since 

they appear to have so much in common. For instance 

we conjectim e that every high degree is the join of two 

degrees strictly less than it, and we show in §3 that 

every high degree has a minimal predecessor. 

The question is still open as to what are the jumps, 

of the minimal degrees below 0', as it is for other types 

of'degrees constructed by tree arguments. Jockush [2] 

showed that every degree with jump 0" is. hyperhyper- 

immune, and that there is a hyperhyper immune degree a such 

that all = 0", but it is not certain whether there is a 

hyperhyper immune degree < 0' with jump < 0': We hope for 

strong answers and conjecture that every degree a r. e. in 

0' such that 0'< c< 0" is the jump of'a minimal degree 

below 0'. 

§3 Every high degree has a minimal predecessor 

Combining techniques introduced in §1 and §2 we prove: 

THEOREM 3 Let a be a degree < 0' such that a' = 011. 
Then there exists a minimal degree b such that b<a. 

PROOF As in theorem 2 we. take A to be a high set of 

degree < a. We include steps to make B not recursive and 

it will be seen how such steps could have been incorporated 

into the construction of'theorem 1. We define certain 
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treea T' 
e,, s+i at stage 

concerned with ensuring 

function of a set then 

B is recursive in 0e(B) 

ensuring that if je} is. 

set then B4 [e]. 

a+1? where a tree T2e+1 will be 

that iF 0e(B) is, the characteristic 

Dither 0e(B) is recursive or 

and T2e+2 will be cork erned with 

the characteristic function of a 

The boundary state, R(Te+1s$(T)), of a string Te+1ss(? ) 

is now defined to be the set 

ITeýs(1r) ý e' < e. and Tei,, 
s(1r) c Te+1, 

s(T) and 

Te, 
s(l-) 

is a boundary string for Te, 
s} , where Te 

$(T) s 

is now said to be a boundary string 
S forA T 

ess(T) was defined 

through case II originally but Te, 
S 

(T * O) p 
Cr * 1) were. not. 

We write R(Teý+1 R(Te2 
+1 , 

S(Ta 
)) if 

Te 
pl s 

(1') I Tess ( ') ER (Tei 
.1j, s 

(, r, )) and < min (e 
i, ea) l 

TIS 
$ 

(ý) 
- ý( 

Te 
s 

(n) 
.R 

(Tee 
+1 s 

('r )) and e. '< min (e, 
, e2 

We now give the construction. 

Stage 0_ Defines: Tot $I 
(the identity tree) for all s. 

Te+1,0 is undefined for all e>0. Define ßo = n. 
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Stage s+1 

Definition of Te+1. 
s+1 

We assume that Te, 
s+l 

is defined fozr- each el <e+1. 

Assume that Te 
s +, 

(n) is not an end string for Te 
s+'I' s 

We write cr N Aa if there is some v<u such that 

or c ßv and A, 
7[ 

lh (a-) ] Au[ lh (or) ý. 

If for some i< I we have Te 
a+1 

(i) ^' As+fi" 

define Te+iss+1 (n) = Te 
s+i 

(i )' 

Otherwise let Tess+1 (i) be a string which is not prohibited 

for e+1 at stage s+1 and set 

Te+l., 
s+li 

(n) = Tess+1(i)' 

(It will follow from the construction that such a string 

exists). 

Assume now,, that Te+l 
,, s+1 

(T) is defined = Te+1, 
s 

(T )' 

We may now define extensions of Te+1, 
s+1('r) 

through one of 

the following cases: 

Case I Te+1, 
s(T * C), CT * 1) are defined and are compatible 

with every tree Ted 
$+l , e* < e+ 1, and either: Mr=n 

or (ii) Te+1 
#s 

(T * 0) , 

(r * 1) are valid potential, ectensions of Te+1 
, s(T) with 
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boundary state R (Te+1 

or (iii) there do not exist valid potential extensions 

cr, , a-, of Te+l 
s(? -) with boundary state R(Te+'I 

s+1 
(1-) )" 

Define Te+1, 
s+1 

(T*O), (T*1) = Te+1, 
a(T*O)p 

('jr*1) respectively. 

In cases II, III we only consider strings Te+i, 
s+1(T) Q Qs' 

Case II Case I does not hold, 7- n, and there do exist 

strings o-I , o-a . as defined in I(iii). 

Define Te+1, 
s+1 

(T * 0), (T * 1) ý a-, o-. a respectively. 

Case III Cases Ip II do not hold and either 

(a) r'=n 

or (b, ) there exist potential extensions of Te+1, 
s(T) with 

boundary state R(T 
e+1 sf'I 

ýT))' 

or (e) there exist strings oý a-a satisfying the following : 

are compatible with every tree Te; 
s+1, e' < e+I , 

(2) if R(Te+1:, 
s+1 

(T)) =a then min(y(ß, r1 ), y (ß8, Q"2 )) > 

the largest number m for which fe+1ýý(m) is so far defined, 

(3) if e+1 ý 2k+1 some k, then o-I , o- split Te+1 
, a+1 

(ý) 

for k at stage s+1. 

(4) if e+1. = 2k+2 some k, then Te+1, *s+1(T) is not a boundary 

string for Te+fi, 's+1 
(ie. for as much of Te+1, 

s+1 as has been 
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constructed) and for some number i we have a-, (i), o-2 (i), 

jki 
s+1 

(i) are defined and cri (i) cr2 (i) { ki 
a+ , 

(, ). 

Let Tr,., ire be the least pair of incompatible strings 

D Te+1ss (T) compatible with every tree Te, ' s+1' el< e+ 1, 

Define Te+i, 
s+1 

(T * O)' (T *1)= n1 , Ire respectively. 

Definition of potential extensions for TB+i. 
s+1"ýýý 

Assume that Te+1 
, s+1 

(T) is defined and R (Te+l 
, s+1 

(T)) = a. 

If '' (T) was originally defined through case III (a) '^ 
e+1, s+i 

or III (b), or Te+i, 
s+i 

(T) isa boundary string for some 

tree Te, 
, s+i with e' < e+11, then we may define numbers 

p(Te+l', s+1. 
(T), a), q(Te+1, s+1 

(, r), a). we consider such strings 

Te+1, 
s+l(T) 

in their lexicographical ordering. 

, o+1(T) was originally defined through case III (a) If Te+1. 

or III (b) and T= T' *i. say, def im 

} P Te+1 
, s+1. 

(ý)' a) = max 0,9. (T 
e+1, s+1 

(T ')' R (Te+i 
, $+1 

(T))) 

If TQ+1", 
a+1 

(T) is a boundary string for some Te 
e+1, e' < e+1, 

define 

Ih (Te+1, 
s+1(r))" 

If f .41, (T), a)) is defined and T (I) does e+1, a e+1, s e+1, s 

not have potential extensions. in boundary state a, or if 

q(Te+i 
, s(T), a) is net defined, let m= the largest number 

m for which fe+i, 
a(m) 

is so far defined, and set 
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q(Te+i, s+1 
(T), a) = m+1;. 

Otherwise set 

q(Te+1, s+1(r)' a) = i(Te+1, s(r), a). 

For strings Te+i, 
s+1(r) satisfying the above we may now 

define strings Eý, II. 

II (Te+l 
, s+1 

(T)p a). is defined to be the least string 
.1 

such that 

(1) th (a-) q (Te+1, 
s+1 

(T)sa) 

(2) Te+1ý, 
s+1 

(T), 

(3) Lr is compatible with each tree Te, 
s+1, e' < e. +1. 

V (Te+i, 
e+1 

(r), a) is defined to be the least string o- 

satisfying (1) - (3) above and also 

(4) , cr is compatible with any string jr such that it N As+, j 

and P(Te+i 
, s+1 

(T), a) < y(c-, 1r) <q (Te+1., 
s+1 

(-r), a), 

(ý) for each u< s+1, if 1e+11ýs+1 (T) = Te+T, 
u 

(T), 

R(Te+1., 
u(T)) =a and z' (Te+i, 

u(-r)o a) is defined, 

then Z' (Te+i., 
u(T), 9 a) a. 

We say that each string ;r such that 

Y(E' (Te+11, 
s+11 

(T)9 a) I ir) > P(Te+1 
, s+T(r)-9 a) and 7r is 

incompatible with E' (Te+ii, 
s+1 

(-r) 
p a) is prohibited *er- 
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for each number e' > e+1 at stage s+i. Now assume that 

Te+1 
, s+1 

(T) satisfies the above hypothesis and that 

there are no potential extensions with bounclarý state cx 

associated with Te+1 
, s+1 

(T ), and that `re+1 
, s+1 

(T) Qps 

Assume that there are strings a-, to-v, satisfying III 

(c) (1), (3) and (4) above, and also satisfying 

(2)' or, , a-n II (Te+1, 
s+1 

(T), a ), 

(5) for every boundary string o-' e o-, or or, on a tree 

Te, 
c+1 ' e' < e+1. we have o"' c `re+1 

, s+1 
(T )' 

(6) cr, , o-. are not. prohibited for e+1 at stage s+1 , o-, 

now become potential extensions of T 
e+1 , s+i 

(T) with 

boundary state a and remain so at each stage t> s+11 for 

which Te+l 
, s+l 

(T) = Te+1 
,t 

(T)- 

We define 

f 
e+11 

(y) = s+1 for each y, <, q(Te+1 
, s+1 

(T) 
va 

) such 

that fe+1 
pa 

(y) is not already define d.. 

0-t ,r are said to be valid at each stage t> s+1 fcr which 

Te+1, t(T) - Te+1, 
s+1(T)' 

(jr) (Te+1, jT) C IT -1, (I ~ At -. ir is compatible with 

p-, or o- ) ), cr, , c-a are compatible with each tree 

Test t e' < e+ I, and neither of o-, , a-2 are prohibited 
s 

for e+1 at stage t. 
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Definition of p 
s+1 

Define ß s+1 = Tess+11(n) where a is the largest number 

for which Tess+1 (n) is defined. 

LFG Te lima Te 
$ exists for each e. 

s 

PROOF By the construction T. = I. 

Assume that Tel exists for. each e' < e+1. Then lima 

Te 
s(o), 

(i) exist and are defined. By the construction 

we have Te+1(n) = Te(0) or Te(1). 

Assume now that Tre+1(? ) exists and is defined. We prove 

that im Te+1ss(T * 0), (r * 1) exist. Let t be 

such that for each el <, e+1. if there exists a string 

lr(e') for which Te, (lr(e' )) = Te+1 (T) then Teds (7r(e' )) = 

Te, (e')) for each s>t. Also for each e' < e+1 if 

T, 
e, 

(7r(e') * 0), (7r(e') * 1) are defined then Teýs(7r(e' )* 0), 

(7r(e') * 1) = Te, (7r(e') * 0), (7r(e') * Il) respectively 

for each s>t. If R(Te 
+1 ., 

t+l(T)) -cc then R(Te+ý 

for each s>t. 

Now say there are potential extensions Lr, , o-, of Te+1, 
s(T) 

with boundary state a at a stage s* > t. By the 
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inductive hypothesis Lim8R(Te, 
a(a-)) exists for each a- and 

s 

each e' < e+1:, and because of clause (4)' in the definition 

of Z, , limaE' (Ted 
a(Lr), 

R(Te., 1 s(r) 
IF(- 

H sr 
)3 [max (lh(a-1) ii < 2) ý 

also exists. Therefore if e-1, or a-a is prohibited at 

infinitely many stages through Te, 
s(r)s' 

there. is a stage 

w>a such that o-r or a2 is prohibited for all u>w. 

Since by the definition of' p, q, a.,, , 0-2 can only be prohibited, 

through finitely many strings Te's (a-), it follows that 

there is a stage t such that either ar-,, a-9 are never 

prohibited for u> t*, or such that, a-1 , an are prohibited. 

at every stage u> t*. Finally we either have a-, or o-g A 

or not,, and 0-is, a-2 are compatible with every tree Tel p e' C e+11, 

or not. So there is a stage cW' > t* such that o', , o',, are 

- valid at. no stage u> w*or svc, 4 t1At 0-, ir. a. r . Lr0. IJ for a11 stA9esu>u 

Let e. ' be the largest number <e+1 for which Te, (lr(e') * 0) j, 

(ir(e') *, I) are defined. If the former holds then e+1, (r * 0), 

(ý- 1)' = ors , or, respectively. If the latter holds, or if 

there do not exist auch potential extensions, 

Te+ii(T * 0)' Cr * 1) = Tel (v(e') * 0), (ir(e') * 'Q) respectively, 

or- Te+1l(T*O)' (T*1) exist and are not defined. 

LEMMA 9B is recursive in A. 
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PROOF In order to compute B[m], say, we merely follow 

througim the construction until we have a stage s at 

which lh((3$) >m and A8[m] = A[m]. T"hgn ps[m] NA and 

p, [m] c B. This is because of the way in which we define 

Te+1, 
s+1(n) 

is. designed to achieve this, and because our 

objective cannot be defeated by what we do on trees 

Te, , e. ' < e+1, by our-definition of validity of' potential 

extensions. 

LEMMA 10 B is of minimal degree. 
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PROOF The proof follows that of-lemma 1ý. 

FF is defined as in lemma L1.. Splr(Tý, 
s) 

Is, defined in 

the. same way as we defined 
ý$). 

Spy, (Ta 

Again we construct trees Te+1 ,a> 00 satisfying: 

(11) fis in lemma ti., 

(2) as in lemma ! ýý 

(5) as in lemma ! j,, 

(1ý) if Te+i (? r. ), Ir n, is a boundary string for some 

Tel , e' < 2e+3, then Te+1 (lr* 0), (Tr * ii) are not. defined, 

(5) If Te+i (jr) has no extensions defined then Te+i (1r) 

is a boundary string for Ta, j some el< 2e+3. 

(6) if Te+i, t 
(11) is defined we do not define strings 

Tee+3, 
s+il '(T * 0), (i )- - (T * 1) at step a+1 through cases 

II or III if Tae+3, 
s+1. 

(T) c Te+1, 
s+1: 

(n )" and s+1 t. 

Assume that { Tip 
gý ý0 have beeri defined for each i<e, + 1,. 

There are three cases to consider: 

(i) there ia. a string o on Te such that c- is a beginning: - 

of E and for no T2e+3, 
B(r) 

do we have T2e+3, 
a(T) crt 

(ii)` B- lies on T2-e+3 and there is a string d- on. Tot such 
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that o- is a beginning of B and for no T2e+3.. 
e(r) v- do 

we define potential extensions for T2e+3,, 
s(T) which 

lie on Te 
ss, 

(iii) otherwise. 

Define 

it(e+1) 

the least iaa euch that no potential 

extensions which lie on T* are associated 
s 

with strings T2e+2, 
s(x) 2 mr at any stage 

s> 0 if (i) holds, 

similarly if (ii) hold s, 

the least jr cB such that j- lies on Te and 

no potential extensions which lie on T* 
s are elp 

associated with strings T2e+2! $(T) 2 7r at 

any stage a? 0 and such that for each 

T2-e+3, 
a(T) 7r if potential extensions a,, , o-R 

are defined for Tae+3fiBand lie on T*s 
s 

t pr 
r "" T and 

f eve 

then r 
ýýr) 

sm- 
'_, 

o:: 
'I Y1 A'I'P11t i11_ 

1i x 
s 

Ytpnainn; 

ý X, v 0; nrP 

+AjBfineA 

: f'ov Ti e {yýrr 

and 1iP an lr* then 
a, v2 = 28±j`'r * 0), (7' *1 
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L 
1. 

respectively, if (iii) holda. 

/` 
Te+3 Cýý 

s(e+1) _ ýts(u 12 s --' Tee+3, 
u("-)iýfor each T2e+3(T) c Tr(e+1: )) 

F7r(e+1) (Tess, ) if (i) or (ii) hold, for each 

Te+1, 
s =s>s 

(e+i), 

CSprr(e+1 )(T)n Te5s) V Te+1i, 
s-11 otherwise, 

for s> s(e+9 }, 

undefined for a<s. (e+I). 

The cone of the argument is contained in the following: 

SUB-LEMMA ir(e+1) is a well-defined string for each e>0. 

PROOF We first show that there is a string it cB such that no 

potential extensions on Te'ýs are associated with a string 

T2-e+2, s 
(T) for T2e+2s 

s 
ýT) 7r and a 0. 

Assume otherwise. For each 72e+2(T), lime R (T2e+2 
s(ir)) exists 

by lemma 8. Let T2e+2(T) be such that T2e+2(T) c B. T2 
e+2(T) E T* 

R(T2e+2(T)) as, say, and such-that if 
_. 
f2e+2jx is total then 

R(T2e+2, s 
(T *O))=a -º q(T2e+2, s. 

(r * cr), a) > X where "f 2 
(x} 

<, p s (Aa[ x] A[x]) for each x> X. 
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We show that there is some T'2e+2ss(T') ;2 T2e+2(T) such 

that T2e+2,, 
s 

('T') c B, R (T2e+2, 
s 

(T! )) =at 

ý(T2e+2, s 
(z'), a) cB and potential extensions 

LT-1 , Q-a of' T2e+2, 
$(r') are appointed at stage s. Bfr our 

assumption and sinne (4) holla for e' < e+'U we must 

at'some stage s appoint potential extensions of 

T2e+2 
$(T) of boundary state a. .. 

Let T' be such that 

lh(T2e+2. (T' )) > 1h (ßE, ), 72 e+2 (ýr'') c B. R(T2e+2 ("' )) =a. 

Such a -' exists because of the way in which we define 

p, by our assumption, and by (3) and (4) for e' <'e + 1. 

We have R(T2e+2 (r')) =CC aince all potential extensions 

of strings T2e+2 (o-) c T2e+2 (T') must eventually be. 

always invalid by the assumption. It also follows from 

(4) and the assumption that the potential extensions 

ý-ý Q-ý are defined. We need only show. that II(T2e+2('r' ), a) c B. 

To see this we note that for any string oý on TQ there is 

a 'minimal' path on Te above o", M(Te, x)p say. Then we 

will have 

fl(T2e+2 (, rl ), a) C M(T:, T2e+2 (T')) where 

Q(T2e+2(, r' ), a) =1 ims II(T2e+2rs(r'), ac) (which exists 
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since T2e+2(T') has potential extensions or boundäry state 

a defined)., 

The only way in which we can have II(T2e+2(T'), a) B is 

if we have some stage w such that ßw D Tie+2(T'), Qw is 

incompatible with M(Te ýT2e+2 (T')) and pw N-A. There are 

three possibilities: 

(i)ý we define extensions o-'' crR through case case II on 

some tree at stage w where a-, , °'' 72e+2 (, rand. 

ý-, , o-, are incompatible with II(T2e+2, 
w(T' 

), cc)' 

(ii) we define extensions cr, , a-, through case II on 

some tree at stage w where or, I o"a 72e+2 (v' ), 

any� a-.. are compatible with 1(72e+2, 
w("' cc) but 

11(T2e+2, w(ß'' 
)sa) f (T2. 

e+2(T' 
)s, a ), 

(iii) we define extensions a1, a-., through case II on 

some tree at stage w where o-j , (r. T2e{2(7' ), o-�. , o-a 

are compatible with II(T 
+2 w(r' 

), a) and u 
' Ta Ti ýS. T 

ý. ' (T2e+2, 
w(T� 

)a) c 11 (T2e+2(T' a )" 

Assume (i) hold. 's. We are only interested in the case when 

Q-a are extensions for. a string Tegw (vý) c fl(T2e+2, w(ß-' 
)'ýc ) 
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We cannot have e' < ge +2 since R (T2e+2, 
w(T')'(X) 

is 

compatible with each tree Te,, 
w, e' < 2e + 2. If e' = 2e+2 

then our definition of extensions is, only relevant If case 

(ii) or case (iii) holds. If we have e-' > 2e +2 we 

will have (by our use of prohibited strings) 

fl(TZe+2, w('') 0 a) R" (rr2e+2, 
'w(r' 

)9 a), and so case 

(1)ý (ii) or (iii) must occur-at some atage w' < we This 

means that we need only consider cases (ii) and (iii). 

Assure (ii) holdes. This can only happen if 

n(T2e+2, w(T'), a) z Te', 
w(a-), some a-, some e' < 2e+2, where 

R(Te, 
#w(cr) 

)= cr' Na and we eventually define Te, (cr * 0)ß 

(Qr 1) through case II. By definition 1T(TeI 
, W(Lr)' a') is 

compatible with II(T2e+2w(T' ), a) " Also, by the construction 

we have A[ q(Te, (a'), a')]i AL 9. (Te,. ((r), a') ] (since 

CA dominates fe' 
,, a, 

) and so we do not have It(T2e+2, w(z' 
), a) N A, 

Assume (iii)' holds. We are only-interested in extensions 

of strings Tegw(a-) where e. ' > 2e +2 and T2e+2 (T' )c 

Te'w(er) c 11 (T2e+2(T' a )" To see the occurz+ence of' (iii) 

does, not, lead to the assumed ßw N A. ire' merely follow through 

the construction and note that q(T2 2 
('r), (X) Is defined 

j e+ s 

and eac2 timte we have 
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q(T2e+2, w+1 
('r )' a) > q(T2+2, w 

(Ti ), a) or 

q(T2e+2#w+11 (T' )' a) defined for the first time with 

TS 7ý r-' , where T, = 'r2 *i say, we. set 

f2e+2, 
a 

(q(T2e+2, 
w(Tr, 

), a)) = w+ i or f2e+2,, 
a 

(q(T2e+21, 
w(Ta 

)'a ) 

w+1 respectively. 

This ensures, since CA dominates f 2e+2, a, 
that 

(T2e+2ýTý 1ýc ý(T2e+2ýrýý ýaý for each T, .T'. 

The rest of the proof of the sublemma'follows by a similar 

argument. The hardest part, finding the first splitting 

pair which remains valid, follows the above proof. The 

extensions. above the first pair will remain valid by our 

use of f2e+3, a' 

It follows from the Sublemma (incorporating the argument 

of (2) of lemma 4) that B is not recursive. 

The proof of the facts (1) - (6) is very similar to that 

of-lemma 1i and we leave the necessary adjustments to the 

reader. 
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Initial segments of the degrees containing non- 

recursive recursively enumerable degrees 

In recent work we have looked at the degrees below 

0' and tried to find some property of them not shared 

by the degrees below any other non-zero r. e. degree. We 

feel that we should be able to identify 0' by some simple 

structure of the degrees surrounding it. This approach 

has had only limited success. It was shown by Yates [6] 

and by Lachlan (Li. ] that there exist two* non-zero r. e. degrees 

with g. l. b. 0, but by Lachlan [4] that there is no pair 

of incomparable r. e. degrees with g. l. b. 0 and l. u. b. 0'. 

"The present author showed [2] that 0' is the join of two 

minimal degrees but that not every non-zero r. e, degree is 

such a join. Another promising instrument is provided by a 

theorem of Yates (see [8]) that there is a non-zero r. e. 

degree which cannot be "cupped-up" to 0' by any other r. e. 

degree <-0'. 

We present here another approach, namely that of looking 

at the initial segments of the degrees containing 0'. We know, 

from Sacks' splitting theorem [5] and Friedberg's completeness 

theorem [3], that if an initial segment with a largest element 

contains 0' then the largest element is the join 'Of a pair of 

incomparable elements of the initial segment. We construct 

below a non-zero r. e, degree for which this does not hold.. With 

respect to strings and trees we follow the notation of [7]. 

With respect to the partial recursive functionals 0i, i>0, 

we follow the notation and practice of [4]. 
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THEOREM. There is a non-recursive r. e, degree a and a degree 

b, a<b<0, such that a is the l. u. b. of the degrees 

strictly less than b. 

PROOF: The construction will be carried out at stages 0,1,2,... . 

At stage a we will construct trees Te, 
s, 1, Te, 

s, 2,..., Te, 
s, m 

for certain e's and define Te. 
s = TerBrm. This will be done 

in such a way that Te = Lima Ters exists for each e. 

At stage sa string QQ will be chosen to lie on certain 

of the trees Tess. B will be the set whose characteristic 

function is Limsß5. If B lies on Te then there will be a 

partial recursive sub-tree of Te on which B also lies. When 

. 
8g is chosen there will be a string a8 of equal length 

associated with 0ß (written a» p$). This will be done in 

such a way that : (1) if a8 » /38 , at ~ Ot and fts n Pt then 

as. at, (2) if Qs N as, Qt M at, t>s, then (a8(n) =0 -º at(n) = 0) 

for all n such that at(n) is defined. A. consists of the numbers 

for which at(n) =0 for some t<a, and A will be the limit of 

A8 with respect to a. T(T) is said to be an end string for T 

if T(T) is defined and T(T * 0), (T * 1) (= T(T » 0), T(T * i)) 

are not defined. 

We say a string T is comyatible with As if for any a 

associated with an initial segment of T, a is compatible with 

the characteristic function of A6. T is said to be comyatible 

with a tree T if either T lies on T or 'r is-an extension of 
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some end string on T'. 

Step 0. Define T_1,0 =1 (the identity tree), Te, 
o 

being 

undefined for eý 0. Define ß. - ao (the null-string). 

Step s+1. As usual we say a-,, qo-jý s plit g- for e through x at 

step s+ 1i if a, G r2 ,: T and 0e, 
s+1 

((t; x) are defined and 

unequal. 

Firstly define T_,,, 
+,,, = T_,,, * Assume that T_1 

, s+i , e+i 

To, s+1, elee***""", 
Ti, 

s+1, e-i'"""""""""""", 
Te-1, 

s+1,1 
have 

been defined. Assume also that Te, 
s+1,1(0), 

(0), (1) have 

been defined and are equal to Te(0), (1) respectively. 

Assume now that Te, 
s+1,1 

(T) has been defined but Te, 
s+1 

(T * 0), 

(r ýr 1) have not and Te, 
s+1 ,1 

(r) = Te, 
s 

No T0,51,1( T* 0) , 

(T * T) may now become defined through one of the following 

cases. 

Case I. Each of Tes 
$(T * 0), (T * 1. ) is defined and is compatible 

with every tree Tips+1, 
e-i' 

i<e. 

Define Tess+1s1 (, r-* 0)' (? *. ii )= Tess (r * 0), (T *ý) 

respectively. 

Case II. Case I does not apply and T 
es 

(, r) is not terminal 

or dormant (both terms to be defined later). Look for 
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Q-, , Q-2 Te, 
B 

(T) such that o-, , o-a are compatible with As, o-i, o 

are compatible with each Ti 
, s+1 , e-i' 

i<e, split 

Tess(r) for e at stage s+1. and one of the following subcases 

holds: 

(a) for each i<e such that Tess(T) c Tiss+1se-i (7r * 0) 

for some string r, we either have that Ti, 
s+i , e-i(7r * 1) is 

incompatible with A$ or we have some J. i<j<e and a 

string ir' such that TJ., 
s+1 , e- j 

(ir') a Ti, 
s+1 , e-i 

(7r * aý , 

(b) o-, oor,;, do not satisfy (a). 

We take action through case II according to the first of 

the two possibilities which obtains. We will have 

Tý, 
s+1, d+1-j = Tj, 

s+1, e-j unless otherwise stated below. 

(a) Define T., 8+1 ,1 
Cr * 0), (T * 1) = o-. , a-, respectively. 

Also we inductively make changes in some of the values of 

Tiss+1,, e-i above Te. 
s(ue). 

Let j be the least number such that 

cr. properly extends an end string Tjp 
s+l , e_ j 

N. )o. Define 

Tj, 
s+1, e+1-j(V4) = Cr. 

(We will say-that T j,, s+l, e-j(V4) 
is stretched to o-, ). 

Assume that for some i, J<, i<e, we have defined 

Ti, s+1 , e+1-i above Te, 
s 

(-r) 

(where a proper extension of Te 
s(T) 

lies on Ti 
ýss 
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Let i' be the next such i. Let S= ITiýss+1se 
i'(7r)l 

(Ti', 
s+i, e-i' 

(er) Q a-, and Ti ,, s+1, e-i'. 
(ir) does not lie 

on some Th, 
s+1, e+1-h' 

h< ip such that or, lies on 

Th, 
s+1, e+1-h) and (Ti', 

s+l, e-i' 
Eire is an end string c a, but 

ý-ý) . If S is empty we make no alterations to the values of 

Ti's+1, 
e-i' above Te, 

s(, r). 
Otherwise let Ti's+1, 

e-i' 
(sr) be 

the string in 3 of least length. Define Ti' 
, s+1 .. e+1-i' 

(7r) - °*', ' 

Ti' 
, s+1 e+1-i' 

(IT * ir') undefined for all 7r' 

We deal similarly with a-,. 

(b) Let j<e be the greater number such that there is a 

(least)string Tjvs+1, 
e-j(r) a Te,, 

s(T) such that, say 

T j, s+1 , e- j 
(0r * 0) is defined and c a-, , orp and there is no 

proper: extension of T J, s+1 , e_ j 
(a-) on any Th, 

s+1 , e-h' 
J< hC e, 

and Tj, 
s+1, e_j 

(a- * 1) is compatible with As. Re-define 

Te, 
s+1,1(T) u Tj, 

s+1, e-j 
(ý 1) and let Te, 

s+1,1 
(T) be 

terminal. Associated with the terminal string Te, 
s+1,1(T) 

will be the predecessor Tes 
s 

(T) 
t partners o-. 'a, 2 and instigator ^r 

x where cr, 'o . split for e through x. Te,, 
s+1(T) will remain 

terminal under all subsequent stretching until further notice. 

Also all strings on T1,8+1, 
e-i, 

i<j, properly extending 
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Te 
8(T) and compatible with o', Q'a become dormant until Te, t(T 

changes at some step t> s+ 1 other than through stretching. 

Case-Ill. Te, 
s+1,1(T) 

is terminal, and there exists some 

a- Tess+i, i(T) such that a is compatible with each 

Ti, 
s+1, e-i' 

i<e, cr is compatible with A. and 0e., 
s+1(o"; a) 

is 'defined where x is the instigator of Te, 
s+1,1 

(T). We see 

if the, partners and the-predecessor of Te,, 
s+1,1(, r) are still 

compatible with every Ti, 
s+1, e-i' 

i<e. If not, we look for 

extensions of Te, 
s+i, i(T) through case II. Otherwise we 

11 

re-define Te, 
s+i, 1(T) = the predecessor of Tess+j, j(T) and 

define Te, 
s+i, i 

(T * 0) = o- and stretch certain strings 

Ti, 
s+1, e-i(1t) with (the new) Te, 

s+i, i(T) c Ti, 
s+t, e-i(IT) c a- to 

equal a in the same way as we did for the o'1 of case II(a). 

Let v-1, day, be a partner such that 0e, 
s+i 

(°'1 ; x) 4 'Ze s+1(°, ; _) 

where -x is the instigator of Te, 
e+i ,i 

(T), Define Te, 
s+i, 1 

(T -k 1) = a- 

and again stretch certain strings on proceeding trees to equal o'i. 

In either case Tes+i1(T) is no longer terminal and we no longer 

have any dormant strings associated with T 
ea+i, i(r)" 

Construction of Te. 
e+1.1(0), 

(1) when Te. 
s+1.1(0) #4 '6s+1 

(Te., 
8+1vj(O), 

(i) are not defined otherwise). 

(1) Te, 
a(0), 

(iI) satisfy case I above. Set T 
eVs+1,1 

(0), (i) a 

Teps(0), (i) respectively. If e does not require attention 

define Te+1, 
s+1,1(O) = Te+1, 

s(0) ' Te, 
e+1, i(k) for some k<1. 
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(ii) Tess(0), (1) do not satisfy I and e =, Af, say. 

Look for cr, , Lrv D Tess (0) such that a,, , cr. > are compatible with 

As, o�o, are incompatible and compatible with each 

Ti, 
s+1, e-i' 

i<e, and such that a-i, cr, satisfy II (a) above. 

Action is taken under II(a) for 

segment of the characteristic function 

length with each of Te, 
s+1,1(a), 

(1)' 

number for which a-. (x) p o-? (x), x bee 

We associate the initial 

of AB of appropriate 

Let x be the least 

omes the follower of 2f 

and remains so as long as Te. t(0), 
(1) are equal to Te, 

s+1,1(0), 
(1) 

respectively at stages t> s+1. 

(iii) Tee (0)v (1) do not satisfy I and e= 2f + 1. 

If e is satisfied we proceed as in case (ii) except that all 

mention of the followers is omitted. Otherwise look for 

r4 Te, 
s 

(0) satisfying (ii) and also such that there exist, 

an x such that a-4 (x), a-2 (x) are defined and no string of length 

x has been associated with a string on a tree Te t for any 

e or for any t< s+ 1, and x is not in any requirement of order 

< e. As in subcase (ii) we take the action under II(a) for 

a-,, , a-,. Also associate with a-, - a string of equal length which is 

an initial segment of the characteristic function of As. x 

becomes the follower of 2f +1 and remains so as long as 

Te t(0), 
(1) are equal to Te, 

s+1 1(0), 
(1) respectively at stage 

t>8+1. 

A follower x of e is said to require attention at step s+ I 

if e= 2f and of, s+i 
(As; x) is defined = ßs (x), or if e = 2f+1 and 
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of 
s s+1 

(N; x) is defined and is equal to a8(x) where ccs ~ Qs. 

Construction of ßs+1 . 

Let e be the least number such that either the follower 

of e requires attention or Te, 
s+1, i(O)v 

(1) have been defined 

other than through sub-case (i) (or both). If the former holds 

and Teee+1,1 (k) c pa, define ßs+1 = Te, 
s+1,1 

(1-k), and if 

e 2f appoint a requirement of order e to preserve Of, s+1 

(As; X). If e= 2f +1, e now becomes satisfied and x is 

enumerated in As+1 and associated with: Te, 
s+1,1(1 - k) is an 

initial segment of the characteristic function of As+1 of 

appropriate length. If the former does not hold, for e= 2f 

define Qa+1 = Te 
8+1 1 

(0) and for e= 2f +I where e has follower 

x, define p 
e+ jo 

(as defined in case (iii) above) When 

p s+i 
has been chosen on Te, 

s+1,1., say, we sat Ti, 
s+i ý Ti, 

e+1, e+1-i 

for all i<e, and define Te+1 
., s+1 

(0) 
ß 
88+1. Tg, 

s+1 
is 

undefined everywhere else for g>e. 

LEMMA 1. If Te = Lims Tess exists and there is an infinite path 

on Te above Te(T), then there exist incompatible strings Oq a 

and at>0 such that for all s> ty Te 
s 

(T * or, ) (T * o-,, ) are 
s 

defined and compatible with A$. 
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PROOF: Assume that the number of strings o-- c Te(T) lying 

on Te(T) lying on Te are m in numbers. Let t be such that 

for all s> t� Te, 
s(T) = Te(T) and for each 2p + 1<, e+m, 

2p +1 is either satisfied at step t or is never satisfied. At 

soma step sJt there will be strings Tess(o- 0), (a- 1) 

defined for the first time equal to the strings Te(o- * 0), (or * 1) 

respectively, where Te(o-) lies on an infinite path on Te above 

Te(T). In order to contradict the lemma we must have 

incompatible strings a, , av, N Te(a, * 0), (o- * 1) respectively 

at some stage u> s. This can only happen through some 

e' >e+m becoming satisfied at stage u. But in order for 

this to happen, we must associate initial segments of the 

characteristic function of Au with strings on Te corresponding 

-to the strings Ti, 
u(0), 

(1). e, <, i<e+m, and since there 

are only m strings on Te below Te(T), there must be Te+msu(0)' 

(1) = Te, u 
Or * 0), (7r * 1) respectively associated with Au 

through case (ii) where T®(r) c Tesu(7T) c T. (cr). Since 

whenever we subaequentlu satisfy some i>e+m, the follower used 

will not have been associated with any TJov(0), (1), j<i, 

at an earlier stage v, and since Te 
u(? r). e Te(Lr), the lemma 

s 

follows. 

In order that the construction of A, B may be seen to be 

well-defined, we should note that if at stage s Te 
s(T) 

is 

defined and compatible with A8, then if Te,, 
$(T * 0), (T * 1) are 
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defined, then at least one of them is compatible with A8. 

LEMMA 2. Lims Tess exists for all e. 

PROOF: Assume that dims Tiss exists for all i<e. The 

existence of Te(q), (O 
, 

(1) follows easily and we will only 

prove the existence of limits of' extensions of Te(T), T cß. 

If Tess (T) is undefined for all s>t, say, then so are 

Te., e(T * 0), (T * 1). Assume that L, im Te 
s(T) exists, and 

s 

that T 
es 

(T * 0), (T * 1) are defined for some s greater than 
s 

any given N. Let j be the: greater number less than e such 

that there are (least) incompatible extensions Ti(7r * 0), 

(ir * 1) of Te (T) on 71 compatible with A, such that there is 

no proper extension of Ti(7r) on Ti for any i with j<iC eo 

Lett be such that for all s>t: 

('1Te (T) =T e(r), 
(2) if there is no proper extension of 

,s 

Tj(r) on Ti (i < e) then there is no proper extension of 

Tý(yr) on Ti 
ps, 

(3) if there is a (least) pair of proper extensions 

Ti(W * 0), (w 1), i C j, of Ti (i) compatible with A. then 

Tiss(cu * 0), (w * 1) = Ti(w * 0), (w * 1') respectively and are 

compatible with As. We first show that if a pair of extensions 

Te s 
(T * 0), (T * 1) of Te(r) change only by stretching at 

s 

stages s >, ssay, > t, then Te(T ýe 0), (T * 1) exist and are 

extensions of T 
es 

* (T * 0), (T * 1) respectively. Let, m be as 
s. 

in Lemma 1. Then Te, 
s(T * 0) can only be stretched to strings 
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on trees Ti such that e<i<e+ in. So if Te 
$(? - * 0) is 

stretched infinitely often there must be some i, e<i< e+ m, 

such that Tess(T * 0) is stretched at infinitely many stages 

u to a string on Ti, 
u, and so theye must be some 0-, i such 

that e <i < e+m and at infinitely many stages u> s* we have 

Ti, 
u+1 

(Lr ) r, Te(T) and Ti 
, u+i 

(a- * 0) g Ti 
,u 

(Q' * 0). Let k 

be the least such i, and ar the least such sequence for k. Then 

we can choose s' > s* such that Tksu (o") only changes by 

stretching after stage s' and hence an ä such that Tksu(o-) = Tk(or) 

s and such that for no i. e<i< kp u> s' do for all u> 

we have Ti, 
n+1 

(jr) . Te(T) and Ti, 
u+1 

(? r * 0) g Ti, 
u(z r * 0). 

For all u>s and i, e, <, i<k, if we choose a new pair 

T k, u 
(or * 0), (o- * I) such that Tj 

u 
(n) c Tk, 

u 
(a- * 0), (a- * 1) 

i 

we will either stretch extensions of T1,. 
u 

(ir) to equal Tk., 
u(o * 0), 

(o- ýr 1) or no extensions of Ti, 
u 

(7r) ever become defined, or 

say, Ti, 
u 

(ir*0)cTk, 
u 

(o-*0), (o-*. 1) (and so Ti, u 
(r*0)c 

Te(i-)). Therefore Tk, 
u 

(a- * 0) (and Tksu (0' * 1) similarly) will 

never change except through stretching. By the above, if the 

limits of Te. 
s 

(r * 0), (T * 1) are not to exist they must change 

at some stage s+1 > t other than through stretching, and so we 

define Tess+1 (T 0), (r * 1. ) o', ýý"a ; Ti Or * 0), (Tr' * I) 

respectively, and stretch any strings on trees Tips+1, i< if 

likely to extend incompatibly with cr, ,o" Therefore Tess, (T * 0) 
I 

(T ýr 1) only change by stretching at stages s'> s+ 1. 
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LEMMA 3. A is recursively enumerable and b< 0'. 

PROOF: From the construction and lemma 2. 

LEMMA 4.2 < a<b. 

PROOF: The steps we take to make a/0 and ba succeed since 

Te exists for all e. To compute A(m) from knowledge of B. 

carry though the construction until a string ßs is defined 

which is a beginning of B and has length greater than m. Then 

there is a string cc sNp 
of length greater than in and a 

8(m) = A(m). 
B 

LEMMA 5. For each e, if 0e (B) is total then either Oe(B) Is 

recursive in A or B is recursive in 0 
e(B). 

PROOF: Te is a splitting tree for e although not necessarily 

partial recursive. If B lies on Te we show how to compute B 

from Oe(B). Let kip iCm, be the numbers <e such that B lies 

on Tk Let t be such that for each i<e such that there is an 

end string Ti (iri) which is a beginning of B we have for each 

s>t 2'i (lri) is an end string for Tis 
8. 

Assume that T® 
ss 

(T) 
, 

s> to, is known to be -a beginning of B where the length of Te, 
s(T. 

) 

is greater than the maximum of the lengths of the strings 

Ti(ii). We'wait for some stage s'>, s such that Te, 
sg(T * 0), 

(T 1) are defined and lie on every Tk;, i<, m. Then 
i 

Te's, (T * Or (T * 1) split for e and since they can only change 

by stretching one of them is a beginning of Bp and we can decide 

this with help from 0 
e(B). 

If B does not lie on Te. then we 
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cannot have a terminal string on Te as beginning of B, and 

so we know that there is a beginning p of B such that there 

is no pair o-, , 0-2 p compatible with A and compatible with 

every Ti, i < e, such that o-, , o-2 

to be > max f length of Ti (iri) I 

split for e. We may take p 

To compute 0e (B; x) for 

xý length of p, we need only look for a string TCss(T) a p, 

sýt, such that Te 
s(T) 

lies on every Tk 
is, 

i<m, Te, 
s(T) 

is compatible with A, and O'e,, s 
(Te, 

s 
(r); x) is defined. 

There are various ways in which we might try to improve 

the theorem. A strong result seems to be precluded by recent 
t 

work which indicates that we cannot make a' = 0". A starting 

point would be to show that a can be any r. e. degree with jump 

0". For this we might use the characterization of the z2 sets 

with jump < 0" given in [1]. On the other hand, treating such 

initial segments as interesting objects in themselves, one 

might, for instance, look for an analogue of the 'nth Chinese 

lantern' (see [7]). 

t ,Cf, ý-3 #1 Uft, 

r 
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The degrees of sets bounded- truth-table 

reduc ible to creative sets 

Introduction il 

By degree we mean degree of recursive unsolvability 

K is defined to be the set 1zl (Ey)T ((z)1, (z)a, y)l. 

Recursively axiomatizable first-order theories tend to be 

creative, and form a many-one degree determined by K[5I. 

There is a richness of structure for the degrees below 0', 

and in particular for the recursively enumerable (r. e. ) degrees, 

but although all r. e. degrees are degrees of recursively 

aziomatizable first-order theories [ 2. ] or of diophantine 

sets [ 4-, 7 ], we are unable as yet to find such non-recursive 

decision problems which can be approached other than through a 

decision procedure for K. We look at the degrees below 0' 

through a consideration of the ways in which they can be 

obtained from K under different reducibilities. A lot is 

already known about the sets one-one (or many-one) reducible 

to K, these being just the r. e. sets. Taking K under 

bounded truth-tables (a notion first studied by Post [6 )) 

we obtain another class of seta uniformly recursive in of, 

namely the Boolean algebra formed from the r. e. seta and their 

complements (see [ IS p. 317)). We can characterise the members 

of this class as the sets corresponding to predicates of the 

form: these exist exactly m, or mo or ........ or mt n-tuples 

(Ys, 
........, Yn) for which R(z, Yj, .. ' .. "", Yn), where R, 

is recursive. It seems possible that we might. be able to 

replace R by a diophantine predicate. We give a construe- 

tivised version of a theorem of Shoenfield [q] from which 
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arises a set btt- reducible to K which is not contained 

in a r. e. degree. The theorem already gives a degree 

recursive in 0' containing no set bt t- reducible to K. 

The structural features of this proper extension of the 

r. e. degrees'are very like those of the r. e. degrees. Since 

the proofs are rather long, we do not give them here. We 

could have looked at the degrees of sets truth-table reducible 

to K, but these are not uniformly recursive in 0', and the 

structure of their degrees has as many irregularities as do 

the degrees of the t predicates. For instance it is 

easily seen that both of the methods to appear so far [I, 0] 

for deriving sets of minimal degree by recursive approximation 

give sets tt- reducible to K. Perhaps all the degrees below 

01 are degreee of sets tt- reducible to K? 

There are degrees bt t- reducible to K other than the 

r. e. degrees 

A str1ruz is a restriction, A[n) say, of a characteristic 

function A to an initial segment of the integers of length n+ 1, 

some n. We take Itele ? Oj to be a standard enumeration of 

the partial recursive functionals., We may consider % to consist 

of a countable collection of equations of the form 0®(o', z) = y, 

o' a string. Then there is a double sequence. {0eP 
B1 e, s 01 of 

finite sets of equations satisfying : (i) (oetsi is uniformly 

recursive, (ii) for each s, 0o is empty for all but a v, 

finite number of e's, (iii) Oe, 
s s fie, 

e+ I ' 
'l° 

pe" 
For each e, , is define (iv) 0e =ý0 

ei 

each e, each e, 
Wege= dom ee, 

e 
('&). 

4 
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Then (We 
dI e, a> 01 is a double sequence 

to a standard enumeratiorL. (Wel e> 01 of 

satisfying the four conditions obtained from 

above. Finally, we assume the existence of 

of the triples (e, f, g) where e, t, g are 

or approximations 

the roe, seta, 

modifying (t) - (iv) 

a recursive ordering 

natural numbers. 

THEOREM There is a set bt t- reducible to K whose degree 

is not recursively enumerable. 

PROOF: We construct a set A=Bnd where B, C are r. e., 

satisfying the following (ordered) set of conditions: 

10g (A) ý we or Zr. (og(A)) + Al e, t, g>0]. 
The style of presentation Is that of [3]. 

We define eight recursive objects: 

(1) a string a is acceptable at stage a+1, i. e., Ace (a, s+ 1), 

if for each x we have 

(_) ), oc(x) 0 -º (t) (t <e -º At(z) Ati 

(2) a triple (e, f, g) is said to require attention oP the 

first kind at stage s+1, i. e., Reg1 (e, g, a+ 1), if 
Foil (e, f, go e) is undefined, 

(3) a triple (e, t, g) is said to require attention or the 

second kind at stage s+1, i, e. , Rega (e, t, g, s+ 1), jr there 

is a string a such that Acc (a, s+ 1) and for each z for 

which a(z) is defined, a(z) f A5(z) -º z> Pros (e, 1, g, e) 

or z= Poll (e, t, g, s) and a number y such that 0g, 
g(a, 

i) is 

defined for each i<y and 

0fr 
8 

(O6r 
s 

(a) (Y], Foll(e, S, g, s)) is defined and 

0 
g, e 

(a, i) = We, 
e(i) 

for all i<y or for some i<y, 

0g, 
19 

(a, i) = We (i) =0 and Sat (e, r, g, s+ 1) does not hold, 
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(4) (e, f, g) is said to reQuire attention at stage e+1, 

i. e., Req(e, f, g, s+ 1) if (et fog) is the least triple'for 

which RegL (e, f, g, e+ I) vi=1 or 2. 

(5) (e, f, g) is satisfied at step s+1, i. e., Sat e, f, g, s+ i) p 

if Regs (e, f, g, t) and Req(e, f, g, t) hold for some t< s+ 1 

and . Foll(e,, f, g,. t) = Foll(e, S, g, s) and if (a, y) is the pair 

for which Re q' (e, r, g, t) holds them for some i<y 

%, 
$(i) or 

'Ir, 
a 

Poll (®, r, 6, s)) /- As (Foll(e, f, 6, s)). 

Lastly we define three recursive functions by induction on S. 

i 

10 

iII 
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Stage 0 

Pres (e,: C, g, 0) =0 each e, f, g (Pres is a preserving function), 

Poll (e, f, g, 0) is undefined, each (e, f, g), 

4 (x) =1 each x. 

Stage a+1 

, 
Assume Req, (e, f, g, s+ 1) . 

For each (e', f', g') > (e, f, g), 

poll (e', f', g', s+1) is undefined. 

For each (e' , fl, g') < (e, 
, 
f, g) p 

set Pros (el 
pf1 p 9', s+1) PreB (e'', g' p e) , 

Poll (e lp t1 
v g1 p 8+i) = Poll (e f, ' 

g' , 8) " 

There are now two cases. 

(I) R 8q' (e, r, s, , s+1). 

Define 

Poll (e, t, g, s+1) =1+ max[Pres (e', r',, g'., a) [ 

any (8', f1,91)) 

Pres (e', t'', g', s+1) each (e', t', g') > (e, r, g), 

As+1 ° A9. 

(II) R so (e, f, g, a+1). 

Define 

. 
Foll(e, f, go s+1) Poll (e, f, 'go s). 

sub-case 
(a) 0 

(o 
0 i) LS wGe, 

eti, for all fC y' 

1 
9913 

Define 
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As+1 (Poll (e, fp gi $)) =0 if 0 f0, e4 g, s(a) 
[Y], 

Foll (e, f, gg s)) = 1, 

L1 otherwise. 

Otherwise set 

As+1 (x) =a (x) if a (x) is defined, 

As(x) otherwise. 

Let Free (e', F', g' , 8+1) 

=, max (Prey (el,, f' , g' , a) , any (el,, fl,, g') , 

max (xla (x) defined } for each 

e' , r', 9 ') (er f, g). 

sub-case (b). If 0 
g, e 

ýa, i) We: 
e(i) 

0 for some < y, set 

Aý+j (x) =a (x) for each x for which a (x) is defined As(x) 

otherwise. 

Define *Pres(e' , f' , g' , a+1) as in subcase (a) for each 

(e'ºf10 gI )> 

EM A= lima Äe is btt-reducible to 0' .. 

OF: Define 

Al lxi (E s >, 0) (xE AB) 

A2 zi 1x1 (Ee1 9 82 7 0) (aý < sý and Aas (x) < Aej (x) )1 

Then, Alp AP are recursively enumerable. 

We show that AaA, n Ali 

obviously A' naA. 
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Assume xc. Abut x, ýA1 rvXao 

Since xE A' we must have xe A2 . 

Let a be the least number for which A8(x) < Aa+j(x). 

Then at stage a+ 1ý Re 2 (ep f, g s, s+1) for some (e, f, g). 

There are two cases to consider, 

(1) Poll (eoS, 9# s) 4 x. 

Sy definition of Pre& (e# !Ig0 a) in part (Y) 
- above and by the 

conditions put on a in the definition of it e ala (etr g s+1), 

ron(d, t r,, go, a) =, x for no (a# IVjg< (err,, 6)" 

And for each (e', t' j go) > (e, t g), 

Fo11 (e' 0 f'# g' # e+i) im undefined. 

Also Area (e, f, go a+11) 5 xp ao by (I) above Voll tee i r' 

for no (e' f f' , g' ), no a' > s+i. Since any a used in (Yi) at 

any stage s' > s+1 must be aoeeptable at btage aft we move onto 

Ca86! 
R 

(2) Poll (elf, gf e) =X# 

Then x4 Pres (e, f, g) s) o 

Say sub-case (b) applies at stage b+16 

Then As+1 (i) t* ct (i) for each i< 1h tx l and since 

Pre E; fie, fjg a+1) th a, we have ýSýsý (Alp ) j) p" Werg1 (j) 0 

and at (e, f) gp s') for each at ja unless itet. (el 
0fI) Bi 0 w* i) 

some (e' ; fI , g' )< (e) t1 some * >'' so 80 rdr `i o' do Vie 

have 151 s änd It eq (d 
Itj 13 #D I+ il) ön&x, to Pon, -` (a-) ri$bBl )1 

ýö that x, - Ap oo tra'rY tö' the gesUmptibrne 
t 

ý; once A txý Cdr xbw atisr süß-cape (a) a ip1ies at Etage s41 
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either x< [h a' for some a' such, that 8-bqa (e' ý f' 0 g' , t+1), 

Req (e', f', g', t+i) hold for some e', f', g', t, ' t< a, 

through a pair (a"t y') and a' (x) ý At (x) 1 or _Reg! 
(elf ,gq t+1) 

holds for some t<a where x= Poll (e, f,, g, t) and sub-case 

(a) applies. The latter must hold since. if the former holds, 

poll (e, ft g, t) ?Lx implies that x= Poll (q, f, g, s) 

Press (e' 
0 fg', t+1) > (h, a', or het, f1, g') < (e, f, g) implies 

F. 
that Poll (e# f, g, t+1) is undefined and so Poll '(e; f, gf a) > 

t(fie#f, 
g# 

= xj or (e #fp go) > (e j fpg) implies that 

Pes (e' ý t' # g', t) > Prea (e, f, g0 t) Poll (e, f, gp' t) 

and since Poll (a'# f' , go # t) 4 x, and by def4nition of Reg2 , 

we have At+1 (x) = At(x) a 11. 

Assume Req$ (e, f, g, t+1) holda through (a, y). Then 

Ogrjc, i) M Wet(s) for all i<y. By definition of Reep 

Sat (er f, gi e+1) does not hold. So Og#e(Aaii) m WagB(i), eaoh 

3 <r and Or e 
(w,,, (r), x) - As (x). But by definition of 

At+1, 

fr, t 
(o. 

g, t 
(a) ti], x) 4 At+i (X). 

So We, a(t) 
< wert(i) some i< Yp or A8(x) ý At+1, (, i)` 

9o Asýxf 1ý At+1'() or Ogit (4 6 i) ,' Wer 
e(i) m 00 -Some i< y" 

in either case Regs (e, t', g9 t' +i) must hold through sub-oase 

(b) for some V# t< t' < a#, and as above we cannot have 

Req (ejf# g1 s+i) and xa Poll (e, f, g, s)I a oontradiotiono, 

it follows from the lemma by a simple induction that for each 
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(e, f, g) we have Req (e, f1, g, a) for only finitely many numbers 

s. From this it follows that 0 (A, i) ý We(i), some i, ýor 

YW5 X) 4 A(x), some x, and so A ¢T We.. 
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Minimal upper bounds for ascending sequences of degrees 

G. E. Sacks [1] asked whether there is a uniformly 

enumerable ascending sequence of degrees which has as one 

of its minimal upper bounds another r. eo degree. We show 

below that the answer is 'yes'. 

Let [': 
eI 

be a standard enumeration of the partial recursive 

functionals. We will need a uniformly recursive double 

sequence {0e 
s of finite approximations to keI such that 

s 

Oess 0ess+1 for each e, s and such that for each s 0e 
s 

is 

empty for all but a finite number of e' s. Define for each e. 

Fe = 0e(O), Fes, s - Oe, s(O). 
Then IFej is a standard list of 

the partial recursive functions with suitably well-behaved set 

of approximations EP5ss». 

Let p be a recursive injection of the pairs of integers 

into the integers. 

Simu['to"na. *w3Ij 
THEOREM . There is a sequence ofXr. e. degrees (bi} and a r. e. 

degree a such that a is recursive in no finite subset of''{bi}g 

bi is recursive in a for each i, and for each a<ac is not an 

upper bound for Ihi is 

PROOF: We enumerate at stages 0,1,2,..., s,... finite sets 

As, Bi, 
ß, 

i>0, such that, if A=v As, Bi= u Bi 
. 6, 

then` 
s>0 s>0 

the following objectives are satisfied: 
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A4D(u B), i, k> 0, 1 0< k< jk 

Bi =ýý (ý1(A)) -* A<Týi (A) 
" 

The first group of conditions are the objectives of the 'first kind, 

the second those of the second kind. (Since all the sets A. Bi, 

i>0, will be disjoint'we may use the union in place of the 

more usual recursive join operations). We will assume some 

recursive ordering of the objectives so that we may talk 

during the construction of 'the mth objective'. The mth objective 

will be said to be satisfied at sta ge s+1 if m has required 

attention at some stage t+ I < s+ I and no objective below m 

has required attention at a stage t' + 1,9 t+ I< t' +1< B+1. At 

stage 0 we have A. = Bito each i>0, and there are no 

obstacles of any order, and no objective has any followers. At 

the stages 2s+ 1>0 we are concerned with the objectives of the 

first kind. m requires attention at stage 2s+ 1 if m is not 

satisfied at step 2s+ 1 and there exists a number p(m, n), n>, 0, 

which is greater than any obstacle of order less than m and is 

less than the -failure of m at stage 2s +1v where the failure of 

m at stage 2s+ 1 is defined to be (for appropriate i,,, j) the 

least number x for which AS(x) 14 OiPs( 
0< 

uj Bk, 
s' x). The 

reference of m at stage 2s+ 1 is the least number z for which 

Oi, s( 
Bk, 

s 
[z], x) is defined for'each number x less than 

0<k<j 

the failure of m at stage 2s + 1, the reference of m is appointed 

to be an obstacle of order m, and p(m, n) is enumerated in 

A, 
+1 

or not according as 0i. 
9s( 0< k3 

Bk 
s, p(m, n)) =1 or not. 

s 
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At stages 2s+ 2>0 we are concerned with objectives of the 

second kind. Firstly certain numbers p(m, n) may become 

followers of such objectives. If m is of the second kind 

then the failure of m at sta ge 2t is defined to be the least 

number x for which Bi 
tt(x) 

0 t(zi, t(At), x)for appropriate 

i, j. Assume that p(m, n) is less than the failure of m at some 

stage 2t< 2s+ 2 and that A3[p(m, n)] A As+1[p(m, n)]. -Appoint 

p(m, n) to follow m and associate with p(m, n) an entry condition 

C -Dieu+1 (Au+1) ) for each o- such that o- is the string of 

least length fc' which o- c 0iqt (At) at a stage 2t < 2s+ 2 for which 

ýz j, t 
(.: 

i, t(At), p(m, n)) is defined. This entry condition may 

become satisfied in an obvious sense at a stage 2u+ 2> 2t. We 

say that m requires attention at stage 2s+ 2 if m is not 

satisfied at stage 2s+ 2 and there is a follower p(m, n) of m 

greater than any obstacle of lesser order one of whose entry 

conditions is satisfied. Also m is the least such number. 

Enumerate p(m, n) in Bi, 
s+1 or not according as 

o j, s+1 
(,: 

i, s+1 
(As+1 ), p(m, n)) =1 or not. Set up an obstacle 

z of order m where z is the least number for which 0J1,8+1 

(oi, 
s+1 

(As+1[Z])" p(m, n)) is defined. 

Lemma 1. Each number m only requires attention finitely often. 

PROOF: By induction. If there is a stage t such that no 

objective less than m requires attention at a stage greater than 

t, then if m requires attention'at a stage w>t. m is 
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satisfied at every stage >w and cannot require attention at 

any stage > w. 

LEMMA 2. For each i., k>:, 0 we have 

A ýi 0< k< j 
Bk) 

PROOF: Let the above condition be the mth objective and let t 

be as in lemma 1. Let K be the largest of the obstacles of 

order less than m set up at any stage >0 (K must exist since 

t does and since obstacles of order m' are only set ap at stages 

at which m' requires-attention). We may assume that m is not 

satisfied at step t+ 1. Let p(m, n) be the least such number, 

greater than K such that p(m, n, ) 0 At. If the failure of m at 

each stage >t is not greater than p(m, n) then we cannot have 

A=(uB). Let 2u +I be the least stage greater than 1 0< k< jk 

t at which the failure of m is greater than p(m, n). m is not 

satisfied at stage 2u +I and so m requires attention at stage 

2u + 1. At the end of this stage we have 

( 
i ýu 

uB 
0< k< jk , p(m, n)) 

'8 
is. defined and is not equal to 

Au+1 (p (m, n) ). Since m is satisfied at each stage > 2u+ 1 and 

since an obstacle greater than the least z for which 

(U Bk [z], p(m, n)) is defined is associated with m, i'u 0< k< j 'u 

we have 0i(0< 
k< iBk' 

p(m, n)) defined p A(p(m, n) ). 

LEMMA 3. For each i, jJ0 if Bi =ýý(, z. i 
(A)) then A is 

recursive in oi(A). 
4' 
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PROOF: Let Bi = 01(01 (A)) -+ A <T 0 i(A) be the mth objective 

and let t and K be as in lemma 2. As in lemma 2 we assume 

that the failure of m is not bounded since otherwise there is 

nothing to prove. We show how to compute an arbitrary value 

A(x) using some beginning of 01(A). As in lemma 2., m can 

be satisfied at no stage > t. Let p(m, n) be greater than, x 

and greater than K and let p(m, n) 19 Bist. Let 2s* +2 be 

the least such stage greater than t for which p(m, n) is less 

than the fai]ure of m at stage 2s* and for which, if z is the 

least number for which 0* (0iß$*(AB*)[z), p(m, n) is 

defined we have that 0isS*(A$*)[z] is a beginning of Oi(A). 

Now say As*(x) 4 A(x). In this case we would have at some 

stage w+1> s* that Aw [p(m, n)] Aw+1[p(m, n)], and at the 

beginning of stage 2w +2 we would appoint p(m, n) as a follower 

of m with (0 
its*(A8*)[z] c Oi, 

u+1( 
ü+1)) as one of its entry 

conditions. By definition of s*, at some stage u}w, this 

entry condition will be ratified, m will require attention at 

stage 2u+ 2, and we define 

Bi, 
u+1(P(m, 

n)) ý ýDj, u+1(0i, u+1(ü+i)' p(m, n))`and set up an 

obstacle of order m to protect the right hand side of this 

definition. This would give B1(p(m, n)) z>(o(A)q p(m, n)), 

contrary to assumption. 

LEMMA 4" For each iBi is recursive in A. 

PROOF: It will be convenient to assume that we have included in *L 
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construction steps to make limb (Dis8(As, x) exist for all numbers 

i, x>0. We can do this since by lemma 1 our actions with 

regard to a particular objective only involve finite injury 

of higher objectives. So there is a number s* such that for 

all s> s*, x> Of if Oi, 8(As, x) is defined then i(A, x) 

is defined. First of all we notice that the only numbers 

enumerated in Bi are followers of mth objectives of the form 

Bi = ýý(ýi(A)) --> A <T o1(A), We compute Bi"(p(m, n)) with 

aid from A. Let f be 0 i(A) or the longest string a oi(A) 

according as 0i(A) is total or not. We can also assume 

knowledge of the graph of f. To begin with we look for a stage 

u>8* for which we have 

A [p(mpn)] = A[p(m, n)]. 

If Bi, 
u(p(m, n)) =0 then Bi(p(m, n)) = 0. If p(m, n) is not a 

follower of m at stage 2u+ 2 and Bisu(p(m, n)) 1, then 

Bi(p(m, n)) = 1. Say that Bi, 
u(p(m, n)) =1 and p(m, n) is a 

follower of m at stage 2u+ 2. Since p(m, n) can acquire no more 

entry conditions at any stage s) 2u + 2, we look at the entry 

conditions associated with p(m, n) at stage 2u+2. We look for 

a stage w such that if k+ I is the lesser of the length of f 

and of the largest of the lengths of the strings o- involved in 

entry conditions associated with p(m, n) at stage 2u + 2, 

then 0iOw(Aw)[k] is well-defined and if z is the least number 

for which Oi, w(A v[ z]) [k] is well-defined then Aw(z]' = A[ z]. 

Obviously Oi,, V(A 
(k] is a beginning, of f for all it > w. This 
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means that if no entry condition associated with p(m, n) involves 

a string or c f, then Bi 
w(p(m, n))= B1(p(m, n)) since any entry s 

condition associated with p(m, n) must become satisried before 

stage 2w+ 2. No entry condition involving a string a- of length 

greater than that of f can become satisfied by our choice of 

s. If there is associated with p(m, n) at stage 2w+ 2 an 

entry condition 

(a- c i, u+1 
ü+1) 

with a- c f, then this entry condition is satisfied at each stage 
(p(m, n)) /0 then at some stage 2u +27 2w + 2, and if Bism 

2u +2> 2w +2M will require attention and p(m, n) will be 

enumerated in Bi, unless an obstacle greater than p(m, n) of 

order less than m is set up in which case B1(p(m, n)) = 1. We 

can tell which occurs by following through a finite number of 

stages of the construction. 

It seems unlikely that any degree below 01 is a minimal 

upper bound for an ascending sequence uniformly recursive in 

that upper bound. 
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