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Abstract

A new scheme is proposed that combines Autoregressive (AR) modelling techniques 

and pole-related spectral decomposition for the study of incipient single-point bearing 

defects for a vibration based condition monitoring system. Vibration signals obtained 

from the ball bearings from the High Vacuum (HV) and Low Vacuum (LV) ends of a 

dry vacuum pump run in normal and faulty conditions are modelled as time-variant 

AR series. The appearance of spurious peaks in the frequency domain of the vibration 

signatures translates to the onset of defects in the rolling elements. As the extent of 

the defects worsens, the amplitudes of the characteristic defect frequencies’ spectral 

peaks increase. This can be seen as the AR poles moving closer to the unit circle as 

the severity of the defects increase. The number of poles equals the AR model order. 

Although not all of the poles are of interest to the user. It is only the poles that have 

angular frequencies close to the characteristic bearing defect frequencies that are 

termed the ‘critical poles’ and are tracked for quantification of the main spectral 

peaks. The time varying distance, power and frequency components can be monitored 

by tracking the movement of critical poles. To test the efficacy of the scheme, the 

proposed method was applied to increasing frame sizes of vibration data captured 

from a pump in the laboratory. It was found that a sample size of 4000 samples per 

frame was sufficient for almost perfect detection and classification when the AR 

poles’ distance from the centre of unit circle was used as the fault indicator. The 

power of the migratory poles was an alternative perfect classifier which can be used 

as a fault indicator. The analysis has been validated with actual data obtained from the 

pump. The proposed method has interesting potential applications in condition 

monitoring, diagnostic and prognostic-related systems.
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1. Introduction

Bearing failures are one of the most common reasons for breakdown of rotating 

machines in industry today. Bearing defects manifest themselves as either excessive 

wear or damage in the rolling ball elements as well as in the inner/outer races of the 

bearings [1]. Fault identification of a ball bearing-related phenomenon using 

conditional maintenance techniques has been the subject of extensive research for the 

last two decades [2-4]. One of the possible approaches to fault monitoring of the 

bearings is the processing of vibration signals obtained from the external housings in 

which the bearings are mounted for extraction of diagnostic features [5]. This 

technique is more commonly known as vibration signature analysis and there are 

many conventional procedures based on time harmonic and power spectrum analysis 

that have shown considerable success in detecting failures in machine components [6, 

7]. If the bearings are in good condition, the distribution of the demodulated vibration 

signals is Gaussian-like. When the bearings are damaged, the appearance of cracks 

and spallings disturbs the signals, modifying its distribution. Wide band impulse-like 

signals are generated when the bearings pass over the defect points at a frequency 

determined by shaft speed, bearing geometry and defect location. The defective 

bearings’ vibration signatures are spread across a wide frequency band and are easily 

masked by noise and frequency components generated by the machine. Theoretical 

models of single and multiple point defects of the vibration produced by a faulty 

bearing under constant and varying radial loads, have been established by McFadden 

and Smith [8, 9]. Their model takes into account the impulse series generated by a 

point defect in a bearing modelled from first principles as a function of the rotation 

and geometry of the bearing, the modulation of the periodic signal caused by non-

uniform bearing load distribution, the transfer function of the vibration transmission 

from the rolling element bearing to the transducer, as well as the exponential decay of 

vibration.

Raw vibration signals obtained from rotating machinery are usually 

complicated and immediate information for fault detection is not available. In 

diagnostic and prognostic applications, there exist a wide variety of models, 

algorithms and tools for data pre-processing and analysis to extract the useful 

information from the raw signals. Amongst these different time and frequency domain 
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based diagnostic techniques, vibration analysts often rely on the Power Spectral 

Densities (PSDs) of vibration data to monitor the health of moving parts of machinery 

as this method provides the most useful information. The spectral components allow 

the identification of several types of faults. Common failures such as bearing faults 

and gear problems can be detected by trending major frequency components and their 

amplitudes. Most of the frequency domain methods used in industry today are based 

on the FFT (Fast Fourier Transform) technique [10]. However, the FFT-based 

spectrum analysis method suffers from some shortcomings. One of its major setbacks 

is that a large number of frequency components have to be monitored due to the 

complexity of the system. A standard approach in evaluating an instantaneous 

frequency implies the computation of the whole spectrum first and then estimation of 

the amplitude of a particular frequency of interest. For instance, if ball bearing defect 

frequencies [3] such as BPFO (Ball Pass Frequency of Outer Race), BPFI (Ball Pass 

Frequency of Inner Race), BSF (Ball Spin Frequency) and FTF (Fundamental Train 

Frequency, also known as Cage Frequency) are to be detected, FFT spectra are 

computed and then the spectra are filtered to monitor the presence of the fault 

frequencies. Such a process can firstly be time consuming as whole frames of data 

have to be estimated. Secondly, it can be power intensive as it involves processing 

time proportional to NN 2log  computations where N  is the sample size. Another 

concern of the FFT technique is that a large enough sample size has to be used for the 

spectral estimation for reasonable resolution capabilities as the resolution of the FFT 

is inversely proportional to the frame size utilized [11]. This might not be appropriate 

in real time applications.

An interesting statistical signal processing alternative is to evaluate directly the 

frequencies of interest. In this case only those frequencies have to be estimated 

instead of the whole spectrum. This provides a reduction in computing time and effort 

facilitating real time estimation. In this study, characteristic bearing defect frequencies 

are extracted from the pole frequencies of a parametric time series AR model [12]. 

The AR model is used to decompose the signals into a set of poles which have a 

correspondence to the peaks of the signals PSDs. Using the AR estimation technique, 

it is not necessary to obtain the whole spectrum. Instead, the evaluation of the pole 

frequencies of interest from the derived AR parameters would suffice as AR 
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modelling allows spectral decomposition. This often just involves the calculation of 

the AR coefficients and the variance of the input vibration signal [13]. Small order 

AR models can efficiently estimate the pole frequencies which correspond to the 

poles of the bearing defect frequencies. The AR technique also only requires a 

fraction of the samples that are required by the FFT method for the same resolution 

[12]. When compared to the traditional FFT method, the resolution of the AR 

technique is higher due to its implicit extrapolated autocorrelation sequence. This 

means that smaller sample sizes can be used for PSD estimation. The positions of the 

poles, which are the roots of the AR coefficient polynomial, vary for every frame of 

vibration data and the time varying behaviour of the spectral components can be 

monitored by tracking the movement of the AR poles. Faults can be predicted by 

movement of poles in the complex plane as the pole positions are expected to move 

closer to the unit circle as the severity of the defect increases. From the position of the 

poles inside the unit circle, classification and quantification of the main spectral peaks 

of defect frequencies can be easily performed, leading to the possibility of having 

frame to frame monitoring of spectral parameters of interest.

In this paper, we present a study of fault identification through differences in 

the behaviour of the AR poles for vibration signals collected from two similar high 

speed dry vacuum pumps, one with a healthy set of bearings and another with a ball 

bearing with an inner race defect. The poles of the AR model are extracted as the 

feature relating to the characteristic bearing defect frequencies and a classification 

scheme based upon the position of the coordinates of the Autoregressive (AR) poles is 

proposed and tested with real data.

The organization of the paper is as follows. The paper first summarises the 

modelling aspects of the vibration signals based on tracking of AR pole movement on 

the parametric z domain. A description of the experimental hardware and data 

acquisition setup is then given. Experimental tests on vibration data obtained from a 

pump with normal bearings and damaged bearings are given. Receiver Operating 

Characteristics curves are plotted for increasing frame sizes of vibration data and the 

performance of the classification scheme is tested. Finally, the conclusions are 

presented. 
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2. The AR modelling technique

AR modelling belongs to a class of modern spectral analysis techniques, which is 

more generally known as Auto Regressive Moving Average (ARMA) time series 

modelling [10]. The AR method is the preferred method for this class since it is the 

best compromise between temporal resolution and speed, efficiency and simplicity of 

algorithms. An AR process of model order p  can be described by Eq. (1) where ka

are the AR parameters, ][te  is white noise with zero mean and variance 2  and t  is 

the discrete-time index [12]. The same equation expressed as a linear filter in the z-

transform domain is stated as Eq. (2).
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where ][zX  and ][zE  are the z-transforms of ][tx  and ][te  respectively. ][zH  is 

defined as the AR polynomial of the model transfer function relating the input to 

output and is denoted by Eq.(4).
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The poles, kp , are obtained by finding the roots of the AR coefficient 

polynomial in the denominator of ][zH . An AR model's transfer function contains 

poles in the denominator plus only trivial zeros in the numerator at 0z , so it is 
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referred to as an "all-pole" model. Since the coefficients of ][zH  are real, the roots 

must be real or complex conjugate pairs. The number of poles in the z plane equals to 

p , the AR model order.
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The pole representation of the AR model, Eq. (5), is better than the AR 

coefficient representation, Eq. (1), for fault detection as the AR filter coefficients ka

are not stable and are highly dependent on the filter order and do not reflect the signal 

properties. The poles kp  are more closely related to the spectral form and contain 

important information on the system condition. For a stable AR filter, all kp  must be 

less than 1 and the nearer the pole is to the unit circle, the higher the corresponding 

peak in the AR spectrum.

There are four main methods for the estimation of the ka  coefficients: Yule-

Walker, Burg, Least Squares Forward method and Least Squares Forward Backward 

method [12]. The AR parameters or the reflection coefficients are estimated in all 

these methods. Generally all the four estimation methods produce comparable 

estimates when using large data samples. However, for moderate sample sizes, 

differences may arise in the behaviour of the estimation methods, especially the Least 

Squares Forward method and the Least Squares Forward Backward method which can 

yield unstable models.

In this study, we have chosen the oldest way of estimating the AR parameters 

which is the Yule-Walker approach. The Yule-Walker method calculates the AR 

parameters recursively, using estimated autocorrelation functions up to order p. The 

Yule-Walker method with the Levinson-Durbin recursion was used to find the AR 

coefficients [12] by solving a set of linear equations. However, the Burg method is the 

most reliable and preferred estimation technique as it estimates the autocorrelation 

functions by minimizing the sum of squares of observed forward and backward 
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prediction errors. The Burg method provides reliable parameter estimates for practical 

data as it is guaranteed to be stationary and is less biased than the Yule-Walker 

method. The strong bias of Yule-Walker gives unacceptable errors in many 

applications and should not be used for processes with unknown characteristics [14].

However, in the current work it nevertheless did give useful results. It might be 

expected that the Burg method would have given better results.

The PSD of the output signal, ][zP , is a function of the PSD of the input 

signal ][zPe , which is noise. ][zP  is defined as
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The PSD of white noise is a constant and is given by its variance 2  and t , the 

sampling interval, which is the inverse of the sampling rate sf .
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Each pair of complex conjugate poles in Eq. (8) has a one to one relationship with a 

peak in the AR spectrum, ][zP , in the z domain. A p th order AR model with p  poles 

will have a maximum of m  peak frequencies where 2pm   when p  is even and 

2)1(  pm  when p  is odd. Not all poles give rise to sharp peaks in the AR 
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spectrum. Only the poles which are close to the unit circle give rise to sharp peaks in 

the AR frequency spectrum (see Fig.1). The other poles are equally distributed around 

the unit circle to create an equiripple ‘flat’ PSD estimation. The symmetry with 

respect to the real axis is related to the fact that the signals have real values and this 

advantage can be conveniently exploited by disregarding the poles in the negative 

imaginary plane, reducing the redundancy of poles in the pole tracking method.

Each pole kp  has a phase k  and a magnitude kr which is the distance of the 

pole from the origin and kr1 which is the distance of the pole from the unit circle 

(see Fig.2). By knowing the pole position inside the unit circle, the central frequency 

kf  of each peak can be obtained from the phase k  of the pole if the sampling 

frequency sf  is known (Eq. (9)). Since the AR time series is quasi steady stationary, 

the positions of the poles vary with every frame of data. The trajectory mapped out by 

the poles can be quantified by finding the area traversed by the poles over a period of 

time. This aspect can be used as a parameter to indicate the condition of the bearing. 

The area mapped out by a characteristic bearing frequency pole will be different 

depending on whether they were obtained from no-fault or faulty conditions. The area 

mapped out by the migratory poles is given by Eq. (10).

      2ReImtan2 1 s
kkkk

fzzf   (9)
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2
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The power associated with each spectral pole kp  is estimated from the residues 

of the complex poles as proposed in [15]. The transfer function in Eq. (5) can be 

rewritten as a partial fraction expansion. The residue (Eq. (11)) is simply the 

coefficient of the one-pole term  111  zpk  in the partial fraction expansion of 

kpzatzH ][ . Each residue kr  provides an estimate of the integrated power in 

the neighbourhood of the spectral frequency kf  associated with pole kp . The spectral 

power kP  of the pole kp (Eq. (12)) is obtained by multiplying real part of the residue 
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term with the variance of the driving AR time series 2 and the scale factor n . 2n

for complex conjugate poles and 1n  for real poles at either 0 Hz or at the Nyquist 

frequency.
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3. Laboratory setup and data acquisition

This section contains a description of the test equipment and instrumentation used for 

obtaining the test signals used for the experimental phase of the work. A multistage 

IGX dry vacuum pump based on the ‘Roots and Claws’ principle [16] was used as the 

rotating machine. The schematic of the pump, the sensors used for capturing the data 

and the set-up of the data acquisition system are shown in Fig.3. 

The pump has a single row of deep groove ceramic bearings at both the High 

Vacuum (HV) and Low Vacuum (LV) ends. Such dry vacuum pumps are the pump of 

choice in semiconductor and clean room environments where corrosive gases are 

abundant, temperatures are high and effluents resulting from the processes can cause 

seizure of the pumps. With constant use, it is possible that the ceramic bearings will 

fail over time because of their operation in such harsh running conditions. Whilst the 

design of dry vacuum pumps has remained relatively the same over the last ten years, 

more emphasis is being employed in the evolution of intelligent pumping systems 

with embedded sensors and self-diagnostic capabilities as dry vacuum pumps have 

become a critical part of the Integrated Chip (IC) wafer manufacturing process. Pump 

failure can contribute to the significant loss of valuable products eg. loss of IC wafer 

batches which produce significant financial losses. Also customers are affected by the 

inconvenience of down time. Hence high reliability and availability have become 

primary customer requirements and early detection of incipient faults is vital to avert 

costly failures and unscheduled maintenance.
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To simulate a fault condition in the dry vacuum pump, a test bearing which 

had a single point defect on the inner race was mounted on the HV end. The 

acceleration signal was captured on the pump housing directly over the bearing casing 

on the HV for normal (no-fault) and faulty conditions using two different types of 

accelerometers, namely, a surface micromachined accelerometer ADXL105 and a 

Brüel and Kjær (B&K) 4370V accelerometer which were mounted radially on the 

pump running at 105 Hz [17]. The signals from the ADXL105 were filtered with an

8th order low pass elliptic anti-aliasing filter with a cut-off frequency of 10 kHz and an 

attenuation of 70 dB in the stop band. The vibration signals from the Brüel and Kjær 

4370V were conditioned using a Brüel and Kjær 2692 preamplifier that includes a 10 

kHz lowpass filter. The analogue to digital conversion was performed with a 16-bit NI 

6034E Analogue to Digital Converter (ADC) card. The sampling rate was set to 40 

kHz and varying lengths of signals were acquired. The data were then downsampled 

to 2 kHz as it was known that the frequencies of interest lie in the range from 0-1 kHz. 

Prior to downsampling, the vibration signals were also pre-processed by amplitude 

demodulation [18]. If there is noise or other higher level vibrations generated by the 

other machine components, there is a chance that the harmonics of the defect 

frequencies may be buried in the spectrum of the other components. To overcome this 

limitation, the technique of amplitude demodulation is recommended. This involves 

two basic steps 1) bandpass filtering around one of the resonant peaks where there is 

structural resonance 2) applying the Hilbert transform to the bandpassed signal to 

obtain the squared envelope [19]. This technique improves the signal-to-noise ratio of 

the signal of the vibration signatures for a more effective detection of bearing defects.

4. Relating AR pole positions with characteristic bearing defect 
frequencies

Formulas have been developed to calculate bearing defect frequencies for every 

bearing geometry, inner raceway, outer raceway and rolling elements [20]. For a 

bearing with a stationary outer race and inner rotating race, characteristic defect 

frequencies (Eqs. (13) to (16)) can be obtained for flaws in the outer race, inner race, 

ball bearings or in the cage as follows [3].
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The five bearing parameters that must be known to calculate the bearing defect 

frequencies are, DB - ball or roller diameter, DP - pitch diameter, BN - number of 

rolling elements,  - contact angle and f - shaft rotational frequency.

The specifications for the BOC Edwards IGX dry vacuum pump that was used as the 

test bed in these experiments are: number of balls = 9, pitch diameter = 46.2 mm, ball 

diameter = 9.5 mm and contact angle = 24.97 degrees. Using the standard reference 

formulas, the theoretical ball bearing defect frequencies BSF, BPFO, BPFI and FTF 

were estimated to be around 492 Hz, 384 Hz, 561 Hz and 43 Hz respectively when the 

pump’s running speed was set to 105 Hz.

The characteristic bearing defect frequencies can be transformed to pole locations in 

the z domain. As an example, consider the case of a defective bearing with an inner 

race crack set to rotate at 105 Hz. The theoretical relative AR pole phase angles k

can be worked out if the sampling rate is known and in this case, the sampling rate sf

used was 2000 Hz. The angle of the theoretical pole locations of the characteristic 

bearing defect frequencies are then worked out in degrees to be as shown in Fig.4 

using Eq. (17).
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The angles of the AR pole locations are related to the characteristic bearing defect 

frequencies. For a fixed rotating speed, the AR pole angles are fixed as they are 

determined by the geometrical shape of the ball bearings used but the distances of the 

pole locations from the unit circle are determined by the levels of vibration at that 

particular frequency. It is known that, as defects appear on the ball bearings and their 

severity increases with time, the amplitudes of the vibrations of characteristic bearing 

defect frequencies also increase (see Fig.5). The appropriate alarm level for the

vibration signal can be determined from standards such as the IS0 10816 [21] and ISO 

7919 [22]. These can be translated to relative allowable amplitudes and alarm levels 

and hence corresponding pole displacements for the characteristic ball bearing defect 

frequencies.

The distance parameter of the poles can be used as a useful indicator to 

classify between faulty and non-faulty conditions. The frequencies of the 

characteristic bearing defect frequencies also do not remain the same due to variations 

of the speed of the machines resulting in pole angle variations in the z domain. The 

area of the region swept by the loci of the migratory poles can be used as another 

useful fault indicator for diagnostic purposes. The power parameter is another good 

indicator as it is reflective of the energy content of the bearing signal studied. The 

vibration signal of a defective bearing is normally much higher than the vibration 

signal obtained from good bearings as the energy of certain frequency bands are 

excited due to the presence of faults. 

In reality, a bearing with an inner race fault has BPFI occurring at 555 Hz

which is slightly less than 561 Hz (where 561 Hz is obtained from Eq.(14) ). It was 

observed that the rotating speed of the pump’s rotor shaft, on which the bearing case 

was directly connected to, was often less than the set speed of the pump due to rotor 

slip. It varied with external running conditions like the ultimate pressure of the inlet of 

the pump. In this case, the actual speed achieved by the pump was 104.12 Hz 

(corresponding to a slippage factor of 1% - slippage is typically less than 5%). The 
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running speed of the pump had to be determined accurately for the diagnostics 

scheme, as this was the frequency which was used in the calculations of the bearing 

defect frequencies [23]. This effect was taken into consideration when translating the 

bearing defect frequencies into pole positions.

4.1. Fault detection using AR spectra

Fig.6 shows an example of the spectra for the data with the implanted inner 

race fault on the HV end for the demodulated vibration signal plotted using both AR 

(Eq. (8)) and FFT techniques for frame sizes of N 4000 samples. For the AR 

spectra, a model order of 10 was used. By careful examination, one can see that there 

is one major sharp spectral peak at the BPFI line. The dominant peak corresponds to 

the inner race defect frequency (BPFI) of 556 Hz and is clearly evident in both FFT 

and AR spectra.

5. AR pole-based monitoring

The proposed method of monitoring consists of two phases: training and detection. It 

is assumed that S bearing faults are to be monitored. These bearing faults can be 

BPFO, BPFI, BSF, FTF or even multiples of these depending on the application to be

studied. The idea is to compare the frequency, distance, area and power of the poles of 

the AR model in different time segments. It was required to choose a certain model 

order that adequately represents the demodulated vibration data for all time segments. 

Selection of the model order in the AR process is of critical importance. Too low an 

order produces a smoothed estimate, while too high an order may cause spurious 

peaks and spectral line splitting. For the purpose of the fault detection tool, the 

optimum model order was first determined for both the normal and faulty data using 

order selection criteria (please refer to authors’ related work on finding the optimum 

order for the vibration signals [24]). A 10th order AR model was found sufficient to 

study the behaviour of the demodulated ADXL105 vibration signals mounted on the 

HV end for a pump operating in normal conditions and also for a pump fitted with a 

bearing with defects. Each bearing fault state is hence modelled by an AR model with 

a fixed model order of p 10.



14

Training Phase:

1. Each training set of vibration data was then formed constituting an observation of 

the data when there are no faults in the bearings. First, the AR parameters are 

found for the bearings in a healthy condition and subsequently, 2 , the variance 

of the input signal in the no-fault condition is also derived. 

2. Changes in the condition of the ball bearing and the non-stationarity of the 

varying signal cause deviations in the AR coefficients which in turn result in 

deviations in the AR pole positions. The positions of the AR poles vary in every 

frame. The AR poles, which are the roots of the AR coefficient polynomial, are 

obtained per frame of data. There are p  poles when a model order of p  is used. 

3. Out of these, the critical poles for each characteristic bearing defect frequency,

are found. There is a one to one mapping between the characteristic bearing 

defect frequencies and the angular frequencies of the critical poles (Eq. (17)). The 

poles of interest, which have angles closest to the angles corresponding to the 

characteristic bearing defect frequencies, are termed the ‘critical poles’ and are 

monitored. 

4. Next, parameters   are derived from the critical poles in the normal condition. 

The parameter   can be the area of the region swept by the migratory loci of the 

critical poles, their distances from the centre of the of unit circle or the power of 

the critical poles. The parameters   reflect the characteristics of the time 

invariant spectral parameters and comprise important information of the system 

condition. The impulses produced by ball bearings with defects will be modelled 

by the changing system dynamics and this in turn will be reflected in the 

parameters  . The parameters   are the conditional indicators that discriminate 

between the damaged and non-damaged bearings.

Detection phase:

Boundary conditions can be established using the known angles of 

characteristic defect frequencies and acceptable levels obtained from standards and 

this can help the optimum threshold for the classification boundary to be determined.

Once the boundary conditions for the healthy signal are extracted and normalised for 

the healthy condition, the procedure is repeated for the detection phase with vibration 

signals from a test bearing. If the test bearing is a bearing with a defect, the parameter 
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  of the critical poles will not normally be within the acceptable levels of the 

established boundary conditions (refer to Fig.7) or will be above a certain 

predetermined threshold. A reasonable threshold level can be chosen based on the 

probabilities calculated from the training data. In this case, the threshold value was 

determined using Receiver Operating Characteristics (ROC) analysis.

One important and useful measure of the performance of any diagnostic test is 

ROC curve analysis. A threshold is determined for separation of data into two classes 

based on some decision parameter and depending on whether the subject falls below 

or above the cutoff level, the subject is termed ‘positive’ or ‘negative’. In reality, 

there will be some overlap between the two classes of data and depending on the 

position of the threshold, some subjects will be misclassified as ‘false positives’ and 

‘false negatives’. The sensitivity and specificity of the data are defined as

decisionspositiveactuallyofNumber

decisionspositivetrueofNumber
ySensitivit 

(18)

decisionsnegativeactuallyofNumber

decisionsnegativetrueofNumber
ySpecificit 

(19)

ROC curve analysis can be established by taking the parameters   as the fault 

indicators, and then working out the condition and fault patterns of the ball bearings. 

Depending on what defect the bearing has, such as whether it is a defect on the inner 

race or outer race, the defect can be identified. The above explained diagnosis 

approach is under the assumption that only one fault is present. However in reality, 

multiple faults can develop simultaneously. In such a case, the scheme can be easily 

modified to incorporate the diagnosis of multiple faults.

5.1. A diagrammatic illustration of the procedure

Tracking the parameters   is performed by processing each raw time domain sample 

through the stages shown in the diagram of Fig.8. This diagram summarises all the 

key steps in processing the data and the major stages in obtaining the fault indicators 
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from the mapped critical poles. The AR coefficients are obtained from each time 

sample with fixed model order of 10 and subsequently, the AR pole positions per 

frame of data are also derived. The critical poles corresponding to the bearing defect 

frequencies are identified. From the positions of the AR critical poles, parameters 

are derived. The parameters   are compared with those obtained from non-faulty 

conditions and the bearing is diagnosed to be whether in faulty condition or not.

6. Results

The loci of the critical poles (BPFI) on the z plane were tracked in different time 

segments, considering the mean and standard deviations of the parameters  , seeking 

differences between results for damaged and undamaged bearings (see Fig.9). Frame 

sizes of 4000 samples were used and 100 frames of data each of length 2 s were 

subsequently processed to monitor the movement of the BPFI pole corresponding to 

the inner race defect frequency. A 10th order AR model was used to estimate the 

parameters for successive segments. The distance of the BPFI pole from the origin, 

power of the BPFI pole, the angle mapped by the BPFI pole and the cumulative area 

traversed by the BPFI pole were plotted for the vibration data for both normal and 

faulty conditions. The mean   standard deviation distance of the BPFI poles from the 

origin in the non faulty case was 0.8005   0.0580. The mean   standard deviation 

distance of BPFI poles from the origin in the faulty case was 0.9303   0.0148. It can 

be seen than the mean distance of the BPFI poles was much larger for the faulty 

condition than in the normal case. This will be seen as bigger amplitude of spectral 

peaks associated with critical poles (amplitude of spectral peaks is proportional to the 

inverse of the distance of a pole to the unit circle) when the AR spectrum is plotted 

for the faulty condition. 

The mean   standard deviation of the power of the BPFI poles in the non 

faulty case was 9.570 410   2.831 410  and in the faulty case 0.0369   0.0086 

respectively. Clearly the power of the faulty poles is much larger than for the non-

faulty case. The power and distance of the poles from the origin are related and are 

dependent on each other. Though the distance and power of the BPFI critical poles 

can be used as effective indicators for fault classification, the power is a better 

classifier than the distance since it incorporates the variance term of the signal (which 
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is equal to the energy of the signal and energy of the faulty signal is much more than 

the non-faulty one). In the example shown, the power seemed to increase with time as 

the number of frames monitored increased. This is not surprising as the amplitude of 

vibrations also increased with time due to the pump heating up and increased friction 

of the bearings when it was running for a longer time. 

The mean angle of the BPFI pole was 1.6117 radians (513 Hz) and 1.7441 

radians (555 Hz) for normal and faulty condition respectively. The average mean 

angles of the BPFI poles in both cases were nearly the same. However the mean 

standard deviation of the angles of the BPFI poles for the normal condition 

(  k 0.3094) was much larger than for the faulty case (  k 0.097). The mean 

standard deviation of the BPFI angles can be used as an indicator for fault 

classification to distinguish between the no-fault and defective cases as the difference 

between them is significant. The changes in the frequency content of the characteristic 

defect frequencies can be quantified by using AR modelling by looking at the 

corresponding changes in the angles of the BPFI poles. The cumulative area traversed 

by the migratory faulty BPFI poles (less than 0.01) was also markedly much smaller 

than the case for the non-faulty condition (0.2). This is because when there is a BPFI 

fault the pole corresponding to the BPFI frequency remains at almost the same 

position, since there is a vibration at BPFI. When there is no BPFI fault the so called 

‘critical pole’ is simply the pole closest to the BPFI angular frequency, but since there 

is no strong vibration at that frequency the non-faulty BPFI poles move considerably 

from frame to frame.

In order to model the changes in the vibratory signatures, the critical poles are 

obtained for 2 different frame sizes for both normal and faulty conditions. Fig.10 (a 

and b) shows the BPFI poles plotted for a frame size of 2000 samples. Fig.10 (c and 

d) shows the BPFI poles plotted for a frame size of 5000 samples. The BPFI pole was 

chosen as the dominant pole as the fault condition studied was the case of a pump 

fitted with a bearing with an inner race fault. If other bearing defects are to be 

monitored, the corresponding critical pole positions relating to the characteristic 

defect frequencies of significance can be tracked. The AR identification method 

placed the faulty BPFI critical poles centred around 555 Hz. There was a significant 

difference in the spread of the poles for the cases of damaged and undamaged 
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bearings respectively. For the faulty condition, the spread of the poles was more

concentrated and nearer to the unit circle for both frame sizes. For the non-faulty 

BPFI poles, the spread of the poles was much wider. When one compares Fig.10 (b 

and d), they were plotted using the same data but it can be seen the frame size used 

can have an effect on the location of the coordinates of the AR poles. The difference 

obtained is probably due to the fact that when a bigger frame size was used, the 

mapping of the poles seems to be more deterministic and definite. For Fig.10 (d), the 

location of the BPFI poles seems to be either on the right or left of the BPFI 

characteristic defect frequency. In reality, the demodulated vibration data from a good 

bearing looks more like white noise and there is no actual significant peak and hence 

no corresponding BPFI pole in that sense. Because of our definition of the critical 

pole been the closest pole to the characteristic defect frequency and hence the BPFI 

pole in this case, the method has located the poles which happen to be closest in 

angular frequency to the BPFI frequency. The frequency variation of the characteristic 

bearing defect frequency (BPFI) was much less for the faulty data than the normal 

data. The complex conjugate poles fell closer to the unit circle for vibration data 

obtained from faulty conditions. For normal data, the amplitudes of the dominant 

poles (moduli) were considerably smaller than their counterparts for the faulty case.

6.1. Sensitivity, Specificity and ROC curve analysis

ROC curve analysis was used to determine suitable threshold levels for the fault 

indicators such as the AR poles distances from the centre of unit circle and the AR 

poles power for faulty and normal cases. The distribution of the normal and faulty AR 

poles power and distance is shown in Fig.11 and Fig.12 as histograms. A frame size 

of 2000 samples was used for these. In terms of power, a near perfect classification 

can be seen. When the power (using Eq. (12)) of the AR poles of the vibration data of 

the good bearings were tracked, it can be seen that they all had power values of less 

than 0.005. But when the power of the AR poles of the vibration data of the bearing 

with an inner race defect was tracked, the faulty poles’ power had a wide distribution. 

They had values ranging from 0.015 to 0.065. Although there was no overlapping of 

the values. Hence the power indicator of the AR poles can be used as a ‘perfect’ fault 

classifier. For the distance of the AR poles from the origin of the unit circle, the 

normal poles had a distribution ranging from 0.4 to 0.95. The faulty poles had a 
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distribution ranging from 0.81 to 0.97. There was some overlapping between the two 

classes. For instance, if 0.9 was chosen as the threshold level to determine if the poles 

corresponded to the case of damaged or non-damaged bearings, there is a chance that 

some normal poles with a distance of more than 0.9 are misclassified as faulty poles 

and vice versa. However it was noted that the frame size used did have an effect on 

the amount of overlapping between the two classes of data and hence the sensitivity 

and specificity of the analysis. Fig.13 shows the distribution of normal and faulty 

poles for the distance indicator but for a bigger frame size of 5000 samples. It can be 

seen that there is less overlapping between the classes compared to Fig.12 and hence 

less chance of misclassification.

6.2. Frame size versus increase in accuracy of classification

The diagnostic effectiveness of the decision parameter (the distance of the 

critical poles from the origin in the unit circle) was estimated by constructing a curve 

of sensitivity against specificity for windows of increasing frame sizes of 1100 to 

5000 samples. The poles with a distance from the origin smaller than the threshold 

were termed the ‘true negative’ (non-faulty data). The poles with a distance from the 

origin greater than the threshold were termed the ‘true positive’ (faulty data). The task 

then becomes one of discriminating between the faulty and non-faulty data. The upper 

ROC curve is for a frame size of 5000 samples and the lower curve is for 1100 

samples per frame. The corresponding ROC curve for the AR BPFI poles distance 

indicator is shown in Fig.14. Each point on the curve represents the combination of 

true negatives against false positives estimated for a given threshold of the parameter. 

The aim is to maximise detection probability while minimizing false alarm rates. A 

good test curve is one for which sensitivity rises rapidly and 1- specificity hardly 

increases at all until the sensitivity is high. Using a frame size of 2000 samples gives a 

sensitivity of 92% and a 1-specificity of 8%. If it is desired to increase both sensitivity 

and specificity, a bigger frame size can be used. Frames with 4000 samples 

(corresponding to 2 s of data collection) produced excellent results with sensitivity 

and specificity of 99%. This means that the undamaged and damaged bearing with the 

inner race defect can be distinguished with almost 100% accuracy. It is obvious that 

as the frame size increases the improvement in the classification also increases. The 

sensitivity and specificity versus distance curves for a frame size of 4000 samples are 
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shown in Fig.15. For example, selecting a distance value of 0.885 as threshold, leads 

to a sensitivity of 99% and a specificity of 99%.

7. Conclusions

A formal framework for automated assessment of bearing faults using AR pole 

positions has been established. Metrics in the form of area, angle, power and distance 

of the AR pole positions (parameters  ) were defined for fault detection purposes. By 

quantifying the values of these parameters  , bearing faults can be identified. The 

characteristic bearing frequencies were modelled and mapped using the AR method. 

The critical poles are defined as those poles which are the closest in terms of angular 

displacements from the characteristic bearing frequencies poles’ positions. It is 

proposed that the parameters   are then compared with the baseline figures obtained 

from healthy bearings to detect the presence of faults. A higher power and a bigger 

distance from the origin of the AR poles will be indicative behaviours of faulty 

bearings.

The AR pole representation allows a more straightforward quantitative 

estimation of the spectral parameters and facilitates the understanding of the intrinsic 

spectral characteristics of the process. There is a one-to-one correspondence between 

the position of the AR poles and the spectral peaks. By studying the movement of 

poles in the complex z-plane, the development and progression of bearing faults can 

be monitored. It was shown, with experimental results that the AR poles move closer 

to the unit circle as the severity of the defects increase. The application of the 

proposed scheme enabled the detection of the damaged bearings with an inner race 

defect with a 100 % detection rate when a frame size of more than 4000 samples was 

used when the distance of the critical poles was used as the fault indicator. With a 

smaller sample size of 2000 samples, a lower detection rate of 92% was achieved. 

When power was used as the fault indicator, a 100 % detection rate was obtained even 

for small sample sizes such as a sample size of 2000 samples, indicating that this 

processing methodology is very effective even for short data records. The simplicity 

of the use of the classification parameters  , the short length of data needed for the 

diagnostics (2 seconds) and the obtained specificity and sensitivity of the 

classification scheme reveal the relevance and usefulness of model based diagnostics 

system in the classification of normal and faulty bearings. Results show that tracking 
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the movement of the AR critical poles as a maintenance decision-making criterion, 

this method can be used effectively to detect changes in the frequency and power of 

the faulty bearings and consequently differentiate pumps running in normal and 

defective working environments. 

It is speculated that the proposed  technique would also be usable for other types 

of machines or machine elements as long as a model for the system can be obtained 

and the frequencies of likely localised faults can also be calculated. It is also 

speculated that this technique would be useful even if have no a priori knowledge of 

the behaviour of non-faulty pumps as when there is a localised fault, this can be seen 

as the concentrated clustering of poles around a localised frequency in the unit circle 

and this behaviour is characteristic of the existence of a propagating fault as can be 

seen in Fig.10 (c). Hence with the use of the proposed detection tool, the current state 

of a structure or machine element can also be detected without any information about 

its undamaged or initial state.
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Fig.1. Monitoring the peaks obtained from the AR model. In this case, AR model order 
was 8 and sampling frequency was 2000 Hz. Notice that it is only the pole nearest to the 

unit circle that gives rise to a sharp peak in the AR spectrum.

Figure 1



Fig.2. Defining the parameters of an AR pole.
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Fig.3. Schematic of the complete data acquisition system. The ADXL105 and Brüel and 
Kjær 4370V accelerometers were mounted radially on point marked X on the dry 
vacuum pump, near the high vacuum end. 
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Fig.4. Theoretical location of characteristic defect frequencies in the z plane can be 
worked out with standard reference formulas if the bearing dimensions are known. 

Pump was set to 105 Hz and sampling frequency used was 2000 Hz.
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Fig.5. Typical movement of pole as defect becomes more severe (from 1 to 3) and 
amplitude of vibration of characteristic defect frequency begins to increase.
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Fig.6. FFT and AR Spectra for ADXL105 vibration signal obtained from a bearing with 
a seeded inner race fault. Speed of pump was set to 105 Hz. Sampling rate sf  was 2000 

Hz. A sample size of N  4000 samples was used. The BPFI (Ball Pass Frequency of 
Inner Race) at 556 Hz is clearly evident in both spectra at 555 Hz (lower than theoretical 

BPFI due to slip- see text). A model order of 10 was used for the AR spectrum.

Figure 6



Fig.7. Locus of a particular pole versus evolution of time. Note that pole is migratory 
and the area pole traverses can be calculated. Alarm level for the characteristic defect 

frequencies can be determined from standards such as the ISO 10816 and if pole crosses 
the alarm level, we can conclude that the defect is causing the characteristic frequency 

and hence the pole displacement is severe.
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Fig.8. Block diagram of the procedure for bearing fault detection using AR Pole 
Tracking.
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(d)

Fig.9. Monitoring parameters  . Pump running at 105 Hz. 100 frames of ADXL105 
vibration data used each of 2s length. A 10th order AR model was used (a) Distance of 
BPFI pole from origin. The distance of the BPFI pole for faulty conditions markedly 
much higher than in normal conditions. (b) Power of BPFI poles. The power of faulty 

poles much larger than the non-faulty poles. (c) Angle BPFI pole traverses. For normal 
condition, there was much variation in the BPFI angles but for faulty condition the 
variance was much less. (d) Cumulative area traversed by the BPFI poles. The area 
mapped out for normal condition was much larger than that for faulty condition.



(a) Frame size of 2000 samples. Faulty poles. (b) Frame size of 2000 samples. Non-faulty poles.

(c) Frame size of 5000 samples. Faulty poles. (d) Frame size of 5000 samples. Non-faulty poles.

Fig.10. Distribution of poles from a pump running in normal conditions (right) and for a 
case with a bearing which has an inner race fault (left). Dotted red line denotes BPFI 
frequency of 555 Hz. Note concentrated clustering of poles near unit circle for BPFI 

frequency at approximately 555 Hz for faulty data. Spread of poles is much larger for 
normal conditions.
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Fig.11. Distribution of Normal and Faulty Poles power parameter. Pole distribution is 
separated into two distinct regions. No Overlapping of Normal and Faulty Poles. Note 
these were plotted for frame sizes of 2000 samples. No ROC analysis necessary.
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Fig.12. Distribution of Normal and Faulty Poles using distance from the centre of unit 
circle as the decision parameter. Some overlapping of Normal and Faulty Poles. Note 

these were plotted for frame sizes of 2000 samples. If bigger sample sizes are used, less 
overlapping will occur.

Figure 12



Fig.13. Distribution of Normal and Faulty Poles using distance from the centre of unit 
circle as the decision parameter. Less overlapping of Normal and Faulty Poles. Note 

these were plotted for frame sizes of 5000 samples. 
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Fig.14. ROC curves for increasing frame sizes for the distance of the poles from the 
centre of the unit circle as a decision parameter. 
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Figure 15



(b)

Fig.15. Sensitivity (a) and Specificity (b) curves for a frame size of 4000 samples. Note 
that distance from centre of unit circle was used as a decision parameter. Even when 

using the distance as the diagnostic parameter, one can obtain 99 % sensitivity and 99% 
specificity for frames of 2 seconds duration.
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separated into two distinct regions. No Overlapping of Normal and Faulty Poles. Note 
these were plotted for frame sizes of 2000 samples. No ROC analysis necessary.

Fig.12. Distribution of Normal and Faulty Poles using distance from the centre of unit 
circle as the decision parameter. Some overlapping of Normal and Faulty Poles. Note 
these were plotted for frame sizes of 2000 samples. If bigger sample sizes are used, less 
overlapping will occur.

Fig.13. Distribution of Normal and Faulty Poles using distance from the centre of unit 
circle as the decision parameter. Less overlapping of Normal and Faulty Poles. Note 
these were plotted for frame sizes of 5000 samples. 

Fig.14. ROC curves for increasing frame sizes for the distance of the poles from the 
centre of the unit circle as a decision parameter.

Fig.15. Sensitivity (a) and Specificity (b) curves for a frame size of 4000 samples. Note 
that distance from centre of unit circle was used as a decision parameter. Even when 
using the distance as the diagnostic parameter, one can obtain 99 % sensitivity and 99% 
specificity for frames of 2 seconds duration.


