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Wave scattering problem by many bodies is studied in the case when the bod- 7

ies are small, ka � 1, where a is the characteristic size of a body. The limiting 8

case when a → 0 and the total number of the small bodies is M = O(a−(2−κ)), 9

where κ ∈ (0, 1) is a number, are studied. C© 2011 American Institute of Physics. 10

[doi:10.1063/1.3555192] 11

I. INTRODUCTION 12

Many-body scattering problem in the case of small scatterers embedded in an inhomogeneous 13

medium has been solved in Refs. 3 and 4 under the following assumptions: 14

ka � 1, d = O
(
a

2−κ
3

)
, ζm = h(xm)

aκ
, (1)

where a is the characteristic size of the small bodies, k = 2π/λ = ω/c0 is the wave number, and 15

c0 is the wave speed in free space, κ ∈ (0, 1) is a parameter one can choose as one wishes, d is 16

the distance between neighboring particles, h(x) is a piecewise-continuous function in a bounded 17

domain D ⊂ R3 with a smooth boundary S, �h = h2 ≤ 0, h = h1 + ih2, xm ∈ Dm is an arbitrary 18

point, Dm is a small body, Sm is its surface, N is the unit normal to Sm , 1 ≤ m ≤ M , M is the total 19

number of the embedded small bodies in D, the unit normal N points out of Dm , ζm is the boundary 20

impedance in the boundary condition, 21

∂u

∂N
= ζmu on Sm, 1 ≤ m ≤ M ; u = uM , (2)

and the distribution of small bodies in D is defined as 22

N (�) := 	Dm⊂�1 = 1

a2−κ

∫
�

N (x)dx[1 + o(1)], a → 0, (3)

where N (�) is the number of small bodies in an arbitrary subdomain � ⊂ D, N (x) ≥ 0 is a 23

piecewise-continuous function, and for simplicity it is assumed that Dm = B(xm, a) is a ball centered 24

at the point xm , of radius a. The scattering problem, solved in Refs. 3 and 4, consisted of finding the 25

solution to the equation, 26

[∇2 + k2n2
0(x)]um = 0 in R3 \

M⋃
m=1

Dm, (4)

satisfying boundary conditions (2) and the radiation condition, 27

uM = u0 + vM ,
∂vM

∂r
− ikvM = o(

1

r
), r := |x| → ∞. (5)
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Here, u0 is the solution to problem (4) and (5) in the absence of the embedded particles, i.e., the28

solution for the problem with M = 0,29

[∇2 + k2n2
0(x)]u0 = 0 in R3, (6)

where n2
0(x) is the refraction coefficient in the absence of embedded particles, n2

0(x) = 1 in the30

region D′ := R3 \ D, and31

u0 = eikα·x + v0,
∂v0

∂r
− ikv0 = o

(
1

r

)
, r → ∞, (7)

where α ∈ S2 is the direction of propagation of the incident plane wave, and S2 is the unit sphere32

in R3.33

We are interested in the behavior of the scattering solution as a → 0 and the wavenumber k > 034

is arbitrary fixed. In other words, the physical assumption that the dimensionless parameter ka is35

very small, ka << 1, corresponds in our work to a study of the mathematical limiting procedure36

a → 0.37

It was proved in Refs. 3 and 4, that, as a → 0, the limiting field u does exist and solves the38

equation,39

[∇2 + k2n2(x)]u = 0 in R3, (8)

where40

n2(x) ≡ n2
0(x) − 4πk−2h(x)N (x). (9)

Therefore, in the limit a → 0, under the constraints (1)–(3), the limiting medium, obtained by41

the embedding of many small particles, has the refraction coefficient n2(x), given by (9). Since the42

functions h(x) and N (x) are at our disposal, subject to the restrictions N (x) ≥ 0, �h(x) ≤ 0, it is43

possible to create any desired refraction coefficient n2(x), �n2(x) ≥ 0, by choosing h(x) and N (x)44

suitably.45

It is assumed that the term “piecewise-continuous” function f in this paper means that the set46

M of discontinuities of f is of Lebesgue’s measure zero and, if S is a subset of this set such that f47

is unbounded on S, f |S = ∞, then f grows not too fast as x tends to S48

| f (x)| ≤ c

[dist(x,S)]ν
, 0 ≤ ν < 3, c = const ≥ 0, (10)

so that the integral
∫

D f (x)dx exists as an improper integral.49

This paper is related to:3 its goal is to develop a theory, similar to the one in Ref. 3, for a different50

governing equation51

L0u0 := ∇ · (c2(x)∇u0) + ω2u0 = 0 in R3, (11)

where the wave speed c(x) = c0 = const in D′ := R3\D, the complement of D in R3, and c(x) is52

a smooth and strictly positive function in D. The speed c(x), in general, has S as its discontinuity53

surface. In this case, Eq. (11) is understood in the distributional sense as an integral identity,54 ∫
R3

(−c2(x)∇φ∇u0 + ω2φu0)dx = 0 ∀φ ∈ C∞
0 (R3). (12)

Alternatively, one may understand Eq. (11) as the following transmission problem:55

L0u+
0 = 0 in D, u+

0 = u0 in D, (13)

56

L0u−
0 = 0 in D′, u−

0 = u0 in D′, (14)

57

u+
0 = u−

0 , c2
+(x)

∂u0

∂N+ = c2
−(x)

∂u0

∂N− on S. (15)

The transmission conditions (15) together with Eqs. (13) and (14) are equivalent to problem58

(12). Existence and uniqueness of the solution to (13)–(15) was proved in Ref. 6.59
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The scattering problem, we are interested in, can be stated as follows: 60

L0u = 0 in R3\
M⋃

m=1

Dm ; u = uM , (16)

61∂u

∂N
= ζmu on Sm, 1 ≤ m ≤ M, (17)

62

u = u0 + v, vr − ikv = o(
1

r
), r → ∞. (18)

In Sec. II problem (16)–(18) is investigated and the limiting behavior of u as a → 0 is found. 63

We conclude this Introduction by a brief derivation of the governing Eq. (11). 64

The starting point is the Euler equation, 65

v̇ + (v,∇)v = −∇ p

ρ
, (19)

where v is the velocity vector of the sound wave, p = p(ρ) is the static pressure, ρ is the density, 66

and 67

∇ p = c2(x)∇ρ, (20)

where c(x) is the sound speed. 68

Let the material in D be initially at rest, v = v(x, t) be a small perturbation of the equilibrium 69

zero velocity, the density be of the form ρ = ρ0 + ψ(x, t), where ρ0 is the equilibrium density of 70

the material, which is assumed to be constant, and ψ and v are small quantities of the same order of 71

smallness. 72

The continuity equation is 73

ψ̇ = −∇ · (ρ0v), (21)

where the term ∇ · (ψv) of the higher order of smallness is neglected. Differentiating (21) with 74

respect to time yields 75

ψ̈ = −∇ · (ρ0v̇). (22)

Under the same assumptions about ρ = ρ0 + ψ(x, t) and v, the term (v,∇)v in (19) is of the 76

higher order of smallness and is, therefore, neglected. Multiplying (19) by ρ and neglecting the term 77

ψ v̇ of higher order of smallness yields the acoustic momentum equation, 78

ρ0v̇ = −∇ p. (23)

Substituting (20) in (23) gives 79

ρ0v̇ = −c2(x)∇ψ, (24)

where the relation ∇ρ = ∇ψ was used. This relation is exact for a constant ρ0. 80

Substituting (24) in (22) yields 81

ψ̈ − ∇ · (c2(x)∇ψ) = 0. (25)

If ψ = e−iωt u, then (25) reduces to Eq. (11). 82

II. THE SCATTERING PROBLEM 83

In this section, problem (16)–(18) is studied. Assumptions (1) and (3) are still valid. 84

Let G be the Green’s function for the operator L0, 85

L0G(x, y) = −δ(x − y) in R3. (26)

G satisfies the radiation condition 86

∂G

∂|x| − ikG = o(
1

|x| ) as |x| → ∞. (27)
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The following result from Ref. 5 will be used.87

Theorem 1: In a neighborhood of a point of smoothness of c(x), one has88

G(x, y) = 1

4π |x − y|c(x)
(1 + o(1)), |x − y| → 0. (28)

In a neighborhood of the point x ∈ S, where S is a smooth discontinuity surface of c(x), one89

has90

G(x, y) =
{ 1

4πc+(x) [r
−1
xy + bR−1 + o(1)], y ∈ D,

1
4πc−(x) [r

−1
xy − bR−1 + o(1)], y ∈ D′.

(29)

where91

b :=c+(x) − c−(x)

c+(x) + c−(x)
, rxy := |x − y|, R =

√
ρ2 + (|x3| + |y3|)2, (30)

92

ρ =
√

(x1 − y1)2 + (x2 − y2)2. (31)

The origin of the local coordinate system lies on S, the plane x3 = 0 is tangent to S, c+(x) and93

c−(x) are the limiting values of c(x) when x → S from inside (and outside) of D.94

In Ref. 5, the operator L0 corresponds to the case ω = 0. However, in Ref. 3 it is proved that95

adding to L0 a term q(x)G(x, y) with a bounded function q does not change the main term of the96

asymptotic of G as x → y.97

The solution to problem (16)–(15) is sought in the form98

u = u0 +
M∑

m=1

∫
Sm

G(x, t)σm(t)dt. (32)

For any σm ∈ L2(Sm), the function u, defined in (32), solves Eq. (16) and satisfies the radiation99

condition (15), since G does. Therefore, (32) will be the solution to problem (16)–(15) if σm are100

such that the boundary conditions (17) are satisfied. Uniqueness of the solution to problem (16)–(15)101

follows from essentially the same arguments as in Ref. 3, see the proof of Theorem 1 in Ref. 3.102

The boundary conditions (15) imply103

ueN + Amσm − σmc−1
m

2
= ζmue + ζm

∫
Sm

G(s, t)σm(t)dt, (33)

where104

cm := c(xm), ζm = h(xm)/aκ ,

and105

ue(x) := u(m)
e := u0(x) +

∑
m ′ �=m

∫
Sm′

G(x, t)σm ′ (t)dt. (34)

The field u(m)
e is called the effective (self-consistent) field. It is the field acting on the mth particle106

from all other particles and from the incident field u0.107

The operator Am is the operator of the normal derivative of the single-layer potential,108

T σm :=
∫

Sm

G(x, t)σm(t)dt,

at the boundary S, and109

∂T σm

∂N− = Aσm − σmc−1(xm)

2
, Aσm = 2

∫
Sm

∂G(s, t)

∂Ns
σm(t)dt, s ∈ Sm, (35)
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In Eq. (35), ∂T σm
∂N− is the limiting value of the normal derivative on Sm from outside of Dm . 110

Equation (35) is well known from the potential theory in the case c(x) = 1 and G(x, y) = eiωrxy

4πrxy
, 111

rxy := |x − y|. 112

If c(x) �= 1, then by Theorem 1, one may consider T and A as the operators, corresponding to 113

c(x) = 1, divided by c(xm), because c(s) is assumed smooth in D, and, therefore, it varies negligibly 114

on the small distances of the order a. 115

The basic idea of solving the scattering problem (16)–(18) is to use a representation of the 116

scattered field as a sum of single layer potentials and transform this representation to a sum of two 117

terms of which one is much larger than the other asymptotically, as a → 0, (cf. Ref. 3). 118

The approach is to reduce the solution of the many-body scattering problem by small bodies 119

to finding some numbers rather than the unknown functions σm , 1 ≤ m ≤ M . If M is very large, 120

it is practically impossible to use the usual system of boundary integral equations for finding the 121

unknown σm . 122

Let us rewrite Eq. (32) as follows: 123

u = u0(x) +
M∑

m=1

G(x, xm)Qm +
M∑

m=1

∫
Sm

[G(x, t) − G(x, xm)]σm(t)dt, (36)

where 124

Qm :=
∫

Sm

σm(t)dt, (37)

and prove that 125∣∣∣∣G(x, xm)Qm

∣∣∣∣ �
∣∣∣∣
∫

Sm

[G(x, t) − G(x, xm)]σm(t)dt

∣∣∣∣, a → 0; d1 < |x − xm |, (38)

where a � d1 � d. 126

The region d1 < |x − xm | clearly tends to D as a → 0. The main term of the asymptotics of the 127

function σm(t), as a → 0, does not depend on t ∈ Sm , it is a constant with respect to t depending on 128

a, equal to Qm

4πa2 . (see Ref. 3). 129

Let us explain why the above inequality (38) holds. Its left-hand side is O(|Qm |/|x − xm |), 130

while its right-hand side does not exceed maxz∈B(xm ,a) |∇zG(x, z)|a|Qm |. 131

One has 132

max
z∈B(xm ,a)

|∇zG(x, z)| = O(max{ 1

|x − xm |2 ,
k

|x − xm | }).

If |x − xm | � a and ka � 1, then 1
|x−xm | � a max{ 1

|x−xm |2 ,
k

|x−xm | }. Therefore, inequality (38) is 133

valid. 134

Let us choose the region |x − xm | � a to be |x − xm | ≥ d1, where d1 = O
(
a

2−0.5κ
3

)
, so one has 135

a � d1 � d as a → 0. We now want to prove that the input into the scattering solution u of the 136

terms in the second sum in Eq. (36), which lie in the region |x − xm | ≤ d1 is negligible as a → 0. 137

Since the distance between neighboring particles is O(d), one concludes that there is one particle 138

of radius a, centered at xm , and there are no other particles in the region a < |x − xm | ≤ d1 because 139

the distance between small particles is O(d) � d1. The input of one particle to the second sum in 140

(36) is the quantity of the order O(aa−2a2−κ ) as a → 0, i.e., O(a1−κ ). This quantity tends to zero 141

as a → 0. Here the term O(a−2) is the order of |∇zG(x, z)| when |z − xm | = O(a), and the term 142

O(a2−κ ) is the order of |Qm | [see (46) below]. This explains the order of the magnitude O(a1−κ ) of 143

the input of the particles which lie in the region a < |x − xm | ≤ d1 to the second sum in (36). Since 144

O(a1−κ ) is negligible as a → 0, one can neglect the second sum in (36) as a → 0. 145

Thus, the solution u of the many-body scattering problem can be written as 146

u = u0(x) +
M∑

m=1

G(x, xm)Qm, |x − xm | � a, (39)

with the error that tends to zero as a → 0. 147
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Consequently, the scattering problem is solved if the numbers Qm , 1 ≤ m ≤ M , are found. This148

simplifies the solution of the many-body scattering problem drastically because Eq. (32) requires149

the knowledge of the functions σm(t), 1 ≤ m ≤ M , rather than the numbers Qm , in order to find the150

solution u of the scattering problem.151

The next step is to derive the main term of the asymptotics of Qm as a → 0.152

To do this, we integrate (33) over Sm and neglect the terms of the higher order of smallness as153

a → 0.154

One has155 ∫
Sm

ueN ds =
∫

Dm

∇2uedx = (∇2ue)(xm)|Dm |, |Dm | = 4πa3

3
, (40)

where the Gauss divergence theorem was applied and a mean value formula for the integral over Dm156

was used.157

Furthermore,158 ∫
Sm

Aσmds = − 1

cm

∫
Sm

σmds = − Qm

cm
, (41)

where (cf. Ref. 3)159 ∫
Sm

Aσds := 1

cm

∫
Sm

ds
∫

Sm

∂

∂ Ns

1

4πrst
σ (t)dt = − 1

cm

∫
Sm

σ (t)dt. (42)

Thus, integrating (33) over Sm yields160

∇2ue(xm)|Dm | − c−1
m Qm = ζmue(xm)|Sm | + ζm

cm

∫
Sm

dtσm(t)
∫

Sm

ds
1

4πrst
, (43)

where |Sm | = 4πa2 is the surface area of the sphere Sm and formula (28) was used, namely, we have161

replaced G(s, t) by 1
4πrst

1
c(s) using the smallness of Dm , and we have replaced c(s) by c(xm) = cm162

because |xm − s| ≤ a and a is small.163

Using the identity164 ∫
Sm

ds
4πrst

= a if |s − xm | = a and |t − xm | = a, (44)

one gets from (43) the following relation:165

Qm(c−1
m + c−1

m ζma) = −4πζmue(xm)a2 + O(a3). (45)

If a → 0 and κ ∈ (0, 1), then166

ζma = h(xm)a1−κ = o(1), a → 0,

the term O(a3) in (45) can be neglected, and one gets the main term of the asymptotics of Qm as167

a → 0, namely,168

Qm = −4πh(xm)ue(xm)c(xm)a2−κ [1 + o(1)], a → 0. (46)

Therefore, (34), (39), and (46) yield169

ue(x) = u0(x) − 4π
∑

m ′ �=m

G(x, xm ′ )h(xm ′)ue(xm ′ )c(xm ′ )a2−κ [1 + o(1)]. (47)

Taking x = xm and neglecting o(1) term in (47), one gets a linear algebraic system for the170

unknown quantities um := ue(xm), 1 ≤ m ≤ M ,171

um = u0m − 4π
∑

m ′ �=m

G(xm, xm ′ )h(xm ′)c(xm ′ )um ′a2−κ . (48)

Let us now derive and use a generalization of the result proved originally in Ref. 3. This172

generalization is formulated as Theorem 2 below.173
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Consider the sum 174

I = lim
a→0

a2−κ

M∑
m=1

f (xm), (49)

where the points xm are distributed in D according to (3). 175

Assume that f (x) is piecewise-continuous and (10) holds. If f is unbounded, that is, the set S 176

is not empty, then the sum (49) is understood as follows: 177

I := lim
δ→0

lim
a→0

a2−κ

M∑
m=1,dist(xm ,S)≥δ

f (xm). (50)

Theorem 2: Under the above assumptions, there exists the limit (49) and 178

lim
a→0

a2−κ

M∑
m=1

f (xm) =
∫

D
f (x)N (x)dx. (51)

Proof of Theorem 2 is given at the end of this paper. 179

Applying Theorem 2 to the sum (47), one obtains the following result: 180

Theorem 3: There exists the limit, 181

lim
a→0

ue(x) := u(x),

and the limiting function solves the equation, 182

u(x) = u0(x) − 4π

∫
D

G(x, y)h(y)c(y)N (y)u(y)dy. (52)

Applying operator L0, defined in (11), to (52) and using the relations 183

L0G = −δ(x − y), L0u0 = 0, (53)

one obtains the following new equation for the limiting effective field u: 184

L0u = 4πh(x)c(x)N (x)u. (54)

This equation can be written as 185

Lu := ∇ · (c2(x)∇u) + ω2u − 4πh(x)c(x)N (x)u = 0. (55)

Therefore, embedding many small particles into D and assuming (1)–(3) , one obtains in the 186

limit a → 0 a medium with essentially different properties described by the new equation (55). 187

Let us now prove Theorem 2. 188

Proof of Theorem 2: 189

Let S be the subset of the set of discontinuities of f on which f is unbounded, let the assumption 190

(10) hold, and let 191

Dδ := {x : x ∈ D, dist(x,S) ≥ δ}. (56)

Consider a partition of Dδ into a union of small cubes �p, centered at the points yp, with the 192

side b = a1/3. One has 193

a2−κ

M∑
m=1,dist(xm ,M)≥δ

f (xm) =
∑

p

f (yp)[1 + o(1)]a2−κ
∑

xm∈�p

1

=
∑

p

f (yp)N (yp)|�p|[1 + o(1)]

→
∫

Dδ

f (y)N (y)dy as a → 0.

(57)
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Here in the second sum we replaced f (xm) by f (yp) for all points xm ∈ �p. This is done with194

the error o(1) as a → 0 because f is continuous in Dδ . In the third sum, we have used formula (3) for195

� = �p. The last conclusion, namely, the existence of the limit as a → 0, follows from the known196

result: the Riemannian sum of a piecewise-continuous bounded in Dδ function f (x)N (x) converges197

to the integral
∫

Dδ
f (x)N (x)dx if maxp diam�p → 0. In our case,198

diam�p =
√

3a1/3 → 0 as a → 0, (58)

so formula (57) follows.199

From the assumption (10) with ν < 3, one concludes that200

lim
δ→0

∫
Dδ

f (x)N (x)dx =
∫

D
f (x)N (x)dx. (59)

The integral on the right in (59) exists as an improper integral if ν is less than the dimension of201

the space, i.e., ν < 3. Therefore, formula (51) is established.202

Theorem 2 is proved. �203
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