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Abstract 

 

Land surface models are integral components of General Circulation Models (GCMs), 

consisting of a complex framework of mathematical representations of coupled biophysical 

processes. Considerable variability exists between different models, with much uncertainty in 

their respective representations of processes, and their sensitivity to changes in key variables. 

Data assimilation is a powerful tool increasingly being employed to constrain land-surface 

model predictions with available observation data. The technique involves the adjustment of 

the model state at observation times with measurements of a predictable uncertainty, in order 

to minimize the uncertainties in the model simulations. By assimilating a single state variable 

into a sophisticated land surface model, this review investigates the effect this has on 

terrestrial feedbacks to the climate system; thereby taking a wider view on the process of data 

assimilation, and the implications for biogeochemical cycling, thus being of great relevance 

to the Intergovernmental Panel on Climate Change (IPCC) 5
th

 Assessment Report. 
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1. Introduction 

 

Pioneering work such as Charney et al. (1975) on the link between vegetation loss in sub-

Saharan Africa and drought persistence highlighted the role feedback mechanisms between 

the land-surface and atmosphere play in determining climate. Numerous studies since (Zeng 

et al. 1999; Friedlingstein et al. 2001) have reinforced our knowledge of how land-surface 

properties change in response to climatic forcing, the magnitude of which itself is influenced 

by the land-surface changes.  Indeed, vegetation change is accompanied by soil moisture 

change; which can lead to changes in properties such as surface albedo and evaporation, 

resulting eventually in precipitation changes through the soil moisture feedback (Koster et al. 

2004; Zhang et al. 2008; Liu et al. 2009). These complex feedbacks between the terrestrial 

ecosystem and climate have been extensively studied using land-surface models, but remain 

poorly understood. 

Land surface models calculate the surface to atmosphere fluxes of heat, water and 

carbon; and update the state variable of the surface and sub-surface layers (Cox et al. 1999).  

They are crucial components of General Circulation Models (GCMs) influencing cloud cover, 

precipitation, and atmospheric chemistry, with these coupled systems representing key tools for 

predicting the likely future states of the Earth system under anthropogenic forcing (IPCC 

2007). However, representation of highly complex biophysical processes in land-surface 

models over highly heterogeneous land surfaces with limited collections of mathematical 

equations, and the tendency of over-parameterisation, infers a degree of uncertainty in their 

predictions (Pipunic et al. 2008). Moreover, a substantial portion of this uncertainty may be 

attributed to the representation of land-surface feedbacks within coupled climate models 

(Notaro 2008). 

Even if atmospheric greenhouse gas concentrations were stabilised, the long-memory 

effect associated with the climate system means anthropogenic warming would continue 

through future decades and centuries. However, large uncertainties remain with respect to our 

understanding of biogeochemical cycle feedbacks, diminishing our ability to accurately 

model climate forcing. Significant progress has been made in reducing uncertainties 

associated with atmospheric change, but further consideration of the long-term changes in 

atmospheric chemistry, and the consequences of the associated climate forcing, remains a 

priority (Dameris et al. 2005; Cracknell and Varotsos 2007; Varotsos et al. 2007). To this end 

improving the estimations in land-surface models of feedbacks to the climate system 

represents a pertinent objective. Data assimilation may be viewed as an optimum solution for 

such improvements. 

Data assimilation is a method of minimising some of the uncertainties inherent in all 

land-surface models due to their approximation of the complexity in the terrestrial ecosystem. 

Observations, if available, from sources such as Earth Observation (EO) satellites, can be 

integrated into the model to update a quantity simulated by the model with the purpose of 

reducing the error in the model formulation. The correction applied is derived from the 

respective weightings of the uncertainties of both the model predictions and the observations. 

There has been much research focused on data assimilation into land-surface models in 

previous years. Particular attention has been paid to assimilation of land-surface temperature 

(LST) to constrain simulations of soil moisture and surface heat fluxes. These assimilation 

studies include the use of variational schemes (Caparrini et al. 2003); and variants of the 

Kalman Filter sequential scheme, such as the Ensemble Kalman Filter (EnKF) (Crosson et al. 

2002; Huang et al. 2008; Pipunic et al. 2008; Quaife et al. 2008), first proposed by Evensen 

(1994). 

Coupled GCM land-atmosphere models are important tools for climate change prediction 

and for assessing climate feedbacks over future decades and centuries. However, due to large 



uncertainties with respect to these feedbacks - an example being cloud formation - a 

concerted effort is required to improve the modelling of water, energy and carbon exchanges 

in these coupled systems, by optimising prediction of key variables, such as soil moisture. 

The assimilation of observations to improve the quantification of soil moisture has long been 

an objective of the hydrological community (Crosson et al. 2002; Crow and Wood 2003; 

Huang et al. 2008). Margulis and Entekhabi (2003), for instance, assimilated skin and air 

temperature, plus relative humidity, to optimise the water and energy budgets of a coupled 

land surface-atmospheric boundary layer model. Pipunic et al. (2008) also demonstrated 

enhanced model estimates as a result of integrating EO observations into their land-surface 

scheme, with improved predictions of latent and sensible heat fluxes. This focus on the 

moisture states of models illustrates the importance attributed to the longer memory 

characteristics in coupled systems. Optimisation, as a result of data assimilation, thus presents 

an opportunity to improve our ability to predict water and energy fluxes from the land-surface 

to the atmosphere, with the prospect of reducing climate feedback uncertainty. Moreover, the 

application of data assimilation in understanding and quantifying feedbacks in the climate 

system is not just restricted to land-atmosphere interactions. The role of marine sediments 

and ocean biogeochemistry in the long-term regulation of atmospheric carbon has driven the 

development of data assimilation techniques in these systems; resulting in improved 

parameter estimation (Annan et al. 2005), and enhanced calibration of ocean-atmosphere 

models (Ridgwell et al. 2007) through, for example, the integration of phosphate and 

alkalinity observations. However, as in any coupled chaotic system, minor changes in a single 

characteristic can have far reaching effects. 

This paper considers the sensitivity of related characteristics to the model update of a 

single variable, through the process of data assimilation. In section 2, LST over two regions 

of the African continent: an area of West Africa (17°W to 20°E longitude, 4°N to 20°N 

latitude); and an area of North Africa (10°W to 33°E longitude, 20°N to 30°N latitude); is 

integrated into the state-of-the-art land surface model JULES (Joint UK Land Environment 

Simulator), developed by the UK Met Office, during the period 1
st
 January to 31

st
 May 2007. 

The effect on soil moisture is discussed in section 3, whereby the model simulations are 

compared with European Remote Sensing Satellites (ERS-1 and ERS-2) scatterometer top 

soil moisture observations. Finally, in section 4, the implications of the data assimilation 

exercise on surface energy, water, and carbon fluxes are considered. 

 

2. Land surface temperature 

 

LST is the radiative skin temperature of the land, with wide-ranging influences on several 

biophysical processes of the terrestrial biosphere: such as the partitioning of energy into 

ground, sensible and latent heat fluxes (Sellers et al. 1997; Huang et al. 2008) and the 

emission of long-wave radiation from the surface (Rhoads et al. 2001; Trigo et al. 2008); the 

physiological activities of leaves (Sims et al. 2008); surface dryness (Sandholt et al. 2002; 

Snyder et al. 2006); and stomatal conductance (Sellers et al. 1997); and its reported response 

as an effect of El Niño Southern Oscillation (ENSO) (Manzo-Delgado et al. 2004). Sensible 

heat flux (H) is a function of the difference between surface and air temperature (Rhoads et 

al. 2001). Latent heat flux (LE), on the other hand, is a function of surface temperature due to 

the influence LST expends on vapour pressure deficit (Hashimoto et al. 2008). Within the 

surface balance equation, LE and H are tightly coupled, in which an increase in one is usually 

at the expense of the other. 

LST also has a role to play in the hot topic of fire modelling within land surface models. 

For example, it is related to fuel moisture content (Chuvieco et al. 2004), and in combination 

with other environmental variables can be applied in predicting fire occurrence and 



propagation (Manzo-Delgado et al. 2004). This is particularly crucial for Africa, where 

climate scenarios remain highly uncertain (Williams et al. 2007), most notably in the fire 

dominated savannas. Here cloud-free LST pixels from the Spinning Enhanced Visible and 

InfraRed Imager (SEVIRI) instrument onboard the Meteosat Second Generation (MSG) 

geostationary satellites, centred over the equator at an altitude of 36000km, is integrated into 

the JULES model over two regions of the African continent - West Africa and North Africa - 

for a five month period of 2007. 

 

2.1. MSG-SEVIRI data 

 

SEVIRI acquires an image every 15 minutes, at a spatial resolution of between 3km and 5km 

for the African continent. LST is generated by the Satellite Application Facility on Land 

Surface Analysis (LandSAF) using a Generalized Split Window (GSW) algorithm (Madeira 

2002) for channels IR10.8 and IR12.0, as a linear function of clear-sky top-of-the-atmosphere 

(TOA) brightness temperatures. Within each scene, bareground and vegetation emissivities, 

previously assigned to land cover classes (Peres and DaCamara 2005) are averaged, and 

weighted with the fraction of vegetation cover retrieved by the LandSAF (Garcia-Haro et al. 

2005) to estimate channel surface emissivity. 

Independent data assessment of the GWS algorithm against a set of radiative transfer 

simulations indicated a bias free algorithm, with  random errors increasing in response to 

increasing viewing zenith angle (Trigo et al. 2008), with a reported accuracy of 1.5K 

(Sobrino and Romaguera 2004) for most simulations between nadir and 50°. Since clouds 

scatter and absorb infra-red radiance, LST retrieval requires identification of cloudy / part 

cloudy pixels. Clear sky pixels are identified by the LandSAF through the application of a 

cloud mask which makes use of software developed in support to Nowcasting and Very 

Short-Range Forecasting Satellite Application (NWC SAF; http://nwcsaf.inm.es); with this 

information being represented in quality control flags. A complete description of the LST 

retrieval algorithms can be found in the LandSAF product user manual (available at 

http://landsaf.meteo.pt/). 

 

2.2. Model description and data assimilation 

 

The JULES land surface model, which has been described elsewhere (Cox et al. 1999; Alton 

et al. 2007) in considerable detail, is the community version of MOSES (Met Office Surface 

Exchange System). It is becoming increasing important to the UK ecological modelling 

community since it can be coupled to the Hadley Centre GCM or driven by its output. 

Briefly, JULES is terrestrial gridbox model of a fine temporal resolution, in which each 

gridbox is composed of nine surface tiles: five plant functional types (PFTs) - broadleaf trees, 

needleleaf trees, C3 grasses, C4 grasses, and shrubs; and four non-vegetation types - urban, 

inland water, bare soil and ice. Each gridbox is profiled into four soil layers, which are 

homogeneous over the gridbox, with soil thermal characteristics being functions of soil 

moisture. Prognostic soil fields are updated from values for the previous time step using the 

mean heat and water fluxes over the time step; whereby the total soil moisture content within 

each soil layer is incremented by the evapotranspiration extracted directly from the layer by 

plant roots, the diffusive water flux flowing in from the layer above, and the diffusive flux 

flowing out to the layer below (Cox et al., 1999). Furthermore, the Clapp and Hornberger 

(1978) relations for hydraulic conductivity and soil water suction are applied in the model. 

The physical processes are driven by meteorological data, which update the state 

variables typically every 30 or 60 minutes; whereas the biophysical parameters remain 

constant over the duration of each model run. The output from JULES includes numerous 



variables depicting the state of the land-surface surface in terms of water, energy and carbon 

fluxes. At each timestep the grid box LST is derived from the sum of the individual tile 

surface temperatures multiplied by their respective fractional covers within the grid box. 

Whereby the surface energy balance equation for each tile, defined by Cox et al. (1999), is 

given by equation (1): 

 

SWN + LW↓ - σTs
4
 = H + LE + G0      (1) 

 

Where SWN is the net downward short wave radiation, which is derived from the surface 

albedo, LW↓ is the downward long wave radiation, σ is the Stefan–Boltzmann constant, Ts is 

the surface temperature, H is the sensible heat flux, LE is the latent heat flux, and G0 is the 

heat flux into the ground. 

Here LST was assimilated into JULES for a five month period from 1
st
 January to 31

st
 

May 2007, by applying EnKF sequential data assimilation, which applies a Monte Carlo 

approach. The exact methodology, which has been applied previously (Ghent et al. 2009a; 

Ghent et al. 2009b), is described comprehensively in Ghent et al. (2009b), with the EnKF 

approach implemented according to Evensen (2003). To give a brief overview though, at 

each timestep, model estimates are nudged towards the observations based on the respective 

state and observation error covariance matrices, P and R. The correction to the forecast state 

vector is determined by the Kalman gain matrix K defined by equation 2: 

 

K = P
f 
H

T 
[ H P

f 
H

T
 + R ]

-1
        (2) 

 

Where H is the observation operator relating the true model state to the observations, taking 

into account the observation uncertainty. The Kalman gain matrix is applied to the difference 

between the model estimates and the observations according to equation 3: 

 

ψ
a
 = ψ

f
 + K (Hψ

t
 - Hψ

f
 + ε)       (3) 

 

Where ψ
a
 is the updated model estimate, ψ

f
 is the forecast state vector, ψ

t
 is the true model 

state, and ε is the observation uncertainty. The estimate of the model state following the 

update is taken as the mean of the ensemble members, with the uncertainty indicated from the 

variance around the mean. The observation error covariance matrix is a measure of the 

ensemble spread of observations, with randomly generated perturbations constructed using 

the observation uncertainty of 1.5K for SEVIRI LST (Sobrino and Romaguera 2004). The 

distribution of the model ensemble spread, from an ensemble size of 50 in this case, 

determines the state error covariance matrix, thereby avoiding the expensive integration of 

the standard Kalman Filter. In this study, only perturbations to the meteorological forcing 

data, generated from normally distributed random number perturbations with zero mean and 

unit variance, following the Box-Muller transform method (Box and Muller 1958), and scaled 

to each variable were considered. Uncertainties in model parameterisation or initial 

conditions were not taken into account. 

Meteorological forcing variables were taken from generated 6-hourly National Centers 

for Environmental Prediction (NCEP) reanalysis datasets (Kalnay et al. 1996); with 

precipitation data calibrated from monthly Tropical Rainfall Measuring Mission (TRMM) 

precipitation data (Kummerow et al. 1998). The model itself was run at an hourly timestep 

over the five month assimilation period, with a spatial resolution of 1° x 1°. Land-cover 

change was not considered in this experiment, so the fractional coverage of the surface tiles 

were derived from International Geosphere-Biosphere Programme (IGBP) land-cover classes 

and mapped onto JULES according to Dunderdale et al. (1999). Initial conditions were set 



from an equilibrium state following a 200-year spin-up cycle; with soil parameters derived 

from the International Satellite Land-Surface Climatology Project (ISLSCP) II soil data set 

(Global Soil Data Task 2000). To quantify the influence LST assimilation has on the state of 

the modelled land surface the changes in several variables were examined: soil moisture; 

evapotranspiration (ET); and net primary productivity (NPP). 

 

3. Soil moisture 

 

The partitioning of available energy into sensible heat (H) and latent heat (LE), driven by 

changes in the surface temperature, is influenced by the vegetative cover and the available 

soil moisture (Smith et al. 2006). Temperature change in soil is dependent on thermal 

conductivity and heat capacity. A dry soil heats up more rapidly than wet soil, since the heat 

capacity of water is higher than that of air, which occupies a much greater percentage of the 

volume in dry soil. A wet soil surface loses more LE, whereas a dry soil surface loses more 

H.  

Soil moisture exhibits a significant memory, which can persist for many months, 

prolonging and intensifying pluvial and drought events (Notaro 2008). Moreover, soil 

moisture feedbacks can regulate climate change and increase our predictability of seasonal 

climate, yet the strength and regional significance of this feedback remains poorly understood 

(Zhang et al. 2008). Evidence for soil moisture – climate feedbacks includes the relationship 

between soil moisture and precipitation; evaporation; air temperature; and cloud cover 

(Findell and Eltahir 1997; Zhang et al. 2008). 

The most extensive study on soil moisture effects - the Global Land-Atmosphere 

Coupling Experiment (GLACE) (Koster et al. 2004; Guo et al. 2006) – involved a 12 

Atmospheric General Circulation model (AGCM) intercomparison illustrated that the strong 

land-atmosphere coupling lies mainly in the ability of soil moisture to affect evaporation in 

the transition zones between dry and wet climates (Zhang et al. 2008). Identified hotspots 

include, the Sahel, the northern United States, and southern Europe. Furthermore, the 

feedback among Intergovernmental Panel on Climate Change (IPCC) AR4 models was 

assessed over Europe (Seneviratne et al. 2006), with a positive correlation between soil 

moisture and precipitation. In other words, high soil moisture will support enhanced 

evaporation, increasing atmospheric water content and eventually leading to increased 

rainfall; although this temporal response depends on sub-grid condensation processes within 

global models, and therefore can vary substantially (Koster et al. 2004). Moreover, the 

strength and impact of soil moisture feedbacks are likely to differ between El Niño and La 

Niña events (Seneviratne et al. 2006; Notaro 2008); with vegetation interactions also being a 

substantial influence (Sellers et al. 1997). 

Future climate change, driven by increased greenhouse gas concentrations, are likely to 

enhance hydrological responses in these hotspots of strong positive soil moisture feedback 

(Notaro 2008). In respect of this, the importance of global soil moisture retrieval, and 

assimilation into hydrological and biophysical models, has received much recent recognition 

(Crow et al. 2005; Reichle and Koster 2005; Parajka et al. 2006; Parajka et al. 2009). Here 

modelled and assimilated soil moisture estimations and are compared with ERS scatterometer 

top soil moisture observations. 

 

3.1. ERS-Scatterometer data 

 

The ERS-1 and ERS-2 scatterometers are active C-band (5.6 GHz) microwave instruments, 

providing backscatter measurements sensitive to the surface soil water content without being 

affected by cloud cover. The surface soil moisture data (SSM) are retrieved, in a discrete 



12.5km global grid, from the radar backscattering coefficients using a change detection 

method, developed at the Institute of Photogrammetry and Remote Sensing at the Vienna 

University of Technology. Scatterometer estimates are used to model the incidence angle 

dependency of the radar backscattering signal. Backscattering coefficients are normalised to a 

reference incidence angle of 40°, with these coefficients scaled between the driest and wettest 

observations over the long-term to produce relative SSM data ranging between 0% and 

100%; with uncertainty detailed with a soil moisture noise model (Naeimi et al. 2009). 

The ERS scatterometer (ESCAT) soil moisture dataset used here has undergone previous 

validation experiments. Wagner et al. (1999) tested the SSM dataset with gravimetric soil 

moisture measurements over field sites in the Ukraine and found mean correlations of 0.45 

(0–20 cm profile) and 0.41 (0-100 cm profile). Furthermore, Ceballos et al. (2005) performed 

a more extensive validation using a network of 20 soil moisture stations located in western 

Spain. They found a correlation of 0.75; with a root mean square error (RMSE) (0–100cm 

profile) between the scatterometer data and the average soil moisture of 2.2%. However, use 

of this dataset comes with the caveat that in extreme climates, such as desert regions, biased 

estimates may be derived, with azimuthal viewing geometry not taken into account during 

retrieval (Bartalis et al. 2006). 

 

3.2. Comparison Model-ESCAT 

 

In this study modelled soil moisture from the JULES model is compared with SSM 

scatterometer values in the top 5cm of the soil from two separate ERS receiving stations 

generating SSM ‘observations’ for northern hemisphere Africa: Maspalomas, covering West 

Africa; and Matera, covering North Africa. Since 2001, coverage of southern hemisphere 

Africa did not begin until mid-July 2008, and therefore is not considered during our 

assimilation period. Figure 1(a) and figure 1(b) illustrate the comparison for both the 

modelled state and the assimilated state carried out over the five month assimilation period. 

The SSM ‘observations’ derived from ERS scatterometers for both West Africa and North 

Africa are lower than the equivalent modelled by the JULES land-surface model. It is clear 

following assimilation that the updated model estimates are closer to the ‘observation’ values. 

Indeed, for West Africa a 27.4% reduction in RMSE, from 16.8vol% to 12.2vol% between 

the model soil moisture estimates and the ERS scatterometer SSM ‘observations’ resulted 

from the assimilation process. For North Africa, the reduction in RMSE between the model 

soil moisture estimates and the ERS scatterometer SSM ‘observations’ as a result of the 

assimilation process was 32.2%, from 14.6vol% to 9.9vol%. The modelled and assimilated 

runs were repeated 50 times over each region respectively; and paired t-tests performed on 

the mean RMSEs showed that these reductions in RMSE were significant at the 99% 

confidence level. 

It is therefore evident that the process of data assimilation has produced a systematic 

reduction in the model predictions of soil moisture over both West Africa and North Africa 

for the period 1
st
 January – 31

st
 May 2007. The implication is that this reduction may affect 

the predictions of heat, water, and carbon fluxes from the land-surface to atmosphere. When 

coupled to the Hadley Centre GCM this altered change in the strength of the soil moisture – 

climate feedback could influence the predictions of seasonal and interannual climate. 

 

4. Biogeochemical cycles 

 

The main aim of this investigation is to understand and quantify the impact a change in LST 

has on the water, heat, and carbon fluxes from the surface to the atmosphere. It has been 

shown that integrating SEVIRI LST into the JULES land-surface model for the first five 



months of 2007 over much of northern hemisphere Africa resulted in a mean reduction in 

surface soil moisture during this period. We now consider the effect this integration, taking 

the case of West Africa as an example, has on further key fluxes of the water and carbon 

cycles respectively - ET (figure 2) and NPP (figure 3). Unmistakeable mean reductions are 

observed for both these fluxes over the assimilation period. 

LST and the partitioning of surface energy into H and LE is a function of varying surface 

soil moisture and vegetation cover. Predominantly vegetated surfaces are associated with 

lower maximum LST values than bare soil (Weng et al. 2004), with surface roughness a 

factor (Sandholt et al. 2002). This is because increases in surface temperatures are associated 

with increases in H, and due to the surface balance equation more energy is partitioned into 

LE for higher vegetative cover; whereas higher H exchange is more typical of sparsely 

vegetated surfaces. LE is enhanced with increased ET, which is controlled by stomatal 

conductance (Essery et al. 2003). Stomatal conductance is affected by the quantity of 

photosynthetically active radiation (PAR), but is also critically linked to the availability of 

moisture in the soil. A reduction in soil moisture below a critical value causes a partial 

closing of stomata on the underside of leaves to reduce water loss. The subsequent decrease 

in ET results in a decrease in LE, since the drop in humidity reduces the humidity gradient 

between the surface and atmosphere, reducing the evaporative cooling causing an increase in 

H and thus surface temperature (Crucifix et al. 2005). 

ET is an important climate system feedback between the land-surface and the 

atmosphere in that soil moisture anomalies can translate into precipitation anomalies through 

the ET rate (Shukla and Mintz 1982). This feedback on the precipitation regime could 

significantly influence the occurrence and persistence of pluvial and drought conditions, 

which in turn influences the distribution of vegetation and thus surface albedo, subsequent 

surface evaporation and the terrestrial carbon stocks. The terrestrial carbon cycle feedback 

may be an important component of future climate change (Melillo et al. 2002), with 

experiments such as Cox et al. (2000) inferring that these feedbacks could significantly 

influence climate change over the course of the next few decades. A reduction in soil 

moisture and associated reduction in ET impacts upon the carbon balance, leading to a 

reduction in NPP as suggested by Rosenzweig (1968) who postulated, in general, a positive 

relationship between ET and NPP. With interannual variability of NPP greater than that of 

heterotrophic respiration over Africa (Weber et al. 2009), the implication of a reduction in 

NPP over a region would be a corresponding reduction in net ecosystem productivity, and 

hence an altered carbon balance. However, large uncertainties in both the sign and magnitude 

of the carbon cycle feedbacks remain, because of model simplification of the complex 

terrestrial system. 

Data assimilation is an exciting field of research offering significant benefits to land 

surface modelling. The rationale behind this technique is that although both sources of 

information – model and EO – are associated with uncertainty, the combination of the two 

sources is expected to reduce the resultant uncertainty. For highly changeable variables in 

time a land-surface model may produce more comprehensive coverage than an EO product, 

which can suffer from missing data or occasional instrumentation problems. However, since 

validated EO products can be shown to produce more realistic representations of the ground 

measurements, the integration of these into land-surface models may provide the best 

possible compromise. Furthermore, data assimilation is reliant on the accurate prediction of 

uncertainty in observations. EO products are generated using implicit or explicit assumptions, 

which may not be consistent with the assumptions made in a land-surface model, whereby 

biased observations will cause the model to depart from the correct state (Quaife et al. 2008). 

If remote sensing products are to be integrated more comprehensively into land surface 



models, then further validation work needs to be undertaken, with the accurate reporting of 

measurement uncertainty a priority. 

As highlighted in Pinheiro et al. (2006), to demonstrate how a small change can be 

influential: Brutsaert et al. (1993) report a 10% error in sensible heat flux as a result of an 

error of 0.5 K in LST; Moran and Jackson (1991) report a 10% error in ET as a result of a 1 

K error in LST; and Kustas and Norman (1996) suggest a LST error of between 1 to 3 K can 

lead to errors of up to 100Wm
-2

 in surface fluxes to the atmosphere. Due to the feedbacks 

between the land surface and the atmosphere it is clear how these comparatively minor 

uncertainties can produce significantly different climatic conditions. Climate change can lead 

to both positive and negative feedbacks to the climate system. It is therefore essential that we 

accurately represent these feedbacks in coupled land-surface model - general circulation 

model frameworks if we are to successfully predict future climate change. 

 

5. Concluding remarks 

 

These relationships, among others, suggest that the potential is there for LST to act as 

surrogate for assimilating other state variables into a land surface scheme. Indeed, demand 

for LST observations is increasing due to its importance in regional and global ecosystem 

studies, particularly its sensitivity to surface moisture conditions. Remotely sensed data from 

EO satellites offers the most feasible source of data to constrain and validate land surface 

models over large geographical regions, as this overcomes the limitation of sparsely available 

ground measurements. The significance of model predictions as a resource in climate policy 

decision making ensures the validation of increasingly employed data assimilation methods a 

priority. Moreover, care should be taken to quantify the changes in the entire ecosystem 

dynamics through updating of key variables. 

While assimilation of EO data into land-surface models offers the prospect of optimising 

estimates of key biogeochemical states, herein the danger lies. Unless a thorough 

understanding and validation of the model output is performed the possibility of the model 

being improved in one sense, in terms of reduced RMSEs against validation observations, but 

degraded elsewhere remains a distinct likelihood. In terms of the predictions of 

biogeochemical fluxes, the acknowledgement of the influence data assimilation of EO data 

has on the feedback from land-surface models to AGCMs is of great relevance to the IPCC 

5
th

 Assessment Report. 
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Figures 

 

Figure 1(a): Time series of modelled vs. assimilated mean daily soil moisture from the 

JULES land-surface model in the top 5cm of the soil profile over West Africa (17°W to 20°E 

longitude, 4°N to 20°N latitude) from 1
st
 January – 31

st
 May 2007. ERS scatterometer surface 

soil moisture observations from the top 20cm of the soil profile are plotted for comparison. 

 

 
Figure 1(b): Time series of modelled vs. assimilated mean daily soil moisture from the 

JULES land-surface model in the top 5cm of the soil profile over North Africa (10°W to 

33°E longitude, 20°N to 30°N latitude) from 1
st
 January – 31

st
 May 2007. ERS scatterometer 

surface soil moisture observations from the top 20cm of the soil profile are plotted for 

comparison. 

 

 



Figure 2: Time series of modelled vs. assimilated values of mean daily evapotranspiration 

(ET) from the JULES land-surface model over West Africa (17°W to 20°E longitude, 4°N to 

20°N latitude) from 1
st
 January – 31

st
 May 2007. 

 

 
Figure 3: Time series of modelled vs. assimilated values of mean daily net primary 

productivity (NPP) from the JULES land-surface model over West Africa (17°W to 20°E 

longitude, 4°N to 20°N latitude) from 1
st
 January – 31

st
 May 2007. 

 

 
 

 


