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Abstract 
 
The Berge equilibrium concept formalizes mutual support among players motivated by the altruistic social value 
orientation in games. We prove some basic results for Berge equilibria and their relations to Nash equilibria, and we 
provide a straightforward method for finding Berge equilibria in n-player games. We explore some specific 
examples, and we explain how the Berge equilibrium provides a compelling model of cooperation in social 
dilemmas. We show that the Berge equilibrium also explains coordination in some common interest games and is 
partially successful in explaining the payoff dominance phenomenon, and we comment that the theory of team 
reasoning provides alternative solutions to these problems. 
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1. Introduction 

This article focuses on the Berge equilibrium concept and explores its relevance to 
cooperation in social dilemmas and to the related phenomenon of coordination in common 
interest games. These are among the most familiar problems in social, political, and economic 
life, and they are poorly understood, although cooperation, including its evolution and 
maintenance, is arguably “the most important unanswered question in evolutionary biology, and 
more generally in the social sciences” (May, 2006, p. 109). Berge equilibrium can be viewed as 
an implication of the altruistic social value orientation of interdependence theory, just as Nash 
equilibrium is an implication of the individualistic orientation. Berge equilibrium has not 
previously been explored in the social and behavioral sciences, although it offers potentially 
useful insights into altruism, cooperation, and coordination. 

A fundamental assumption of classical game theory, and of decision theory in general, is that 
decision makers are invariably motivated to maximize their individual utilities, relative to their 
knowledge and beliefs at the time of acting. Recent developments in psychological and 
behavioral game theory have shown that this assumption cannot be true if individual utilities are 
interpreted narrowly as objective payoff gains or losses, measured in monetary units, for 
example. Players in strategic games do not invariably try to maximize their individual objective 
payoffs but sometimes appear to be motivated by other-regarding utilities that take account of 
the payoffs to their co-players. In particular, it is now widely acknowledged that considerations 
of fairness and reciprocity influence strategy choices, and various implications of this have been 
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explored by Rabin (1993), Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Arnsperger 
and Varoufakis (2003), and others. 

In the Prisoner’s Dilemma game, experimental investigations have provided overwhelming 
evidence that human decision makers do not invariably choose the Nash equilibrium strategies 
that are mandated by game theory. In the simplest type of Prisoner’s Dilemma game, two players 
each choose between a cooperative strategy, providing a benefit b to the co-player at a cost c to 
the cooperator, and a defecting strategy that entails no benefit or cost to either player. Provided 
that c < b, this payoff function yields a simple (decomposable) version of the familiar Prisoner’s 
Dilemma game. Mutual cooperation results in each player receiving a net payoff of b – c, and 
this is preferable to the zero payoff for mutual defection. But both players nevertheless have a 
temptation to defect, because a unilateral defector receives the best payoff—the benefit b without 
any cost—while a unilateral cooperator receives the worst payoff, paying the cost c without any 
benefit. (This method of specifying a Prisoner’s Dilemma game highlights the fact that 
cooperation can be viewed as mutual altruism, where altruism is defined in the usual way as 
acting to benefit another individual at some cost to oneself.) Defecting is a dominant strategy in 
the sense that it yields a better payoff irrespective of whether the co-player cooperates or defects, 
and it follows that this is the only rational way to play an unrepeated or one-shot Prisoner’s 
Dilemma game. What makes the game a genuine dilemma is the fact that each player receives a 
better individual payoff if both cooperate than if both defect. Despite the dominance of the 
defecting strategy, people cooperate frequently in experimental Prisoner’s Dilemma games and 
in multiplayer versions of the game (Colman, 2003). In the closely related Centipede game, most 
players also avoid the (subgame-perfect) Nash equilibrium and behave more cooperatively or 
altruistically, even when very large financial incentives are at stake (Parco, Rapoport, & Stein, 
2002); and in the Ultimatum game, players almost always behave more cooperatively or 
altruistically than is required by the subgame-perfect Nash equilibrium (Camerer & Thaler, 
1995). 

In all such games, intuition and experimental evidence strongly favor strategy choices that 
deviate systematically from those mandated by motivations that are purely selfish in terms of 
objective payoffs. That decision makers are invariably motivated to maximize their individual 
objective payoffs is a tacit assumption so deeply embedded in the judgment and decision making 
research tradition that researchers sometimes have difficulty even recognizing that they are 
making it, but there are circumstances in which even pure altruism seems entirely natural. For a 
homely example, a doting grandparent playing a board game with a child might be motivated 
solely to maximize the child’s payoffs in the game and may therefore play to lose—technically, 
playing the game in misère mode. It is not difficult to think of interactive decisions in which, on 
commonsense grounds, we should expect both or all players to choose altruistic strategies. As a 
benchmark example for this article, consider a jazz-loving man married to a classical music 
lover. Suppose that each wishes to choose a musical recording as a wedding anniversary present 
for the other, knowing that they will inevitably spend many hours listening to the music together. 
Here, we should intuitively expect each spouse to maximize the other’s payoff by choosing the 
other’s favorite type of music. In game-theoretic terms, both players would still be maximizing 
their own individual utilities, as required by expected utility theory, but those utilities would be 
altruistic rather than selfish. 

Although altruism may be relatively uncommon in everyday life, there is extensive empirical 
evidence that it can be elicited reliably by exposing research participants to certain 
circumstances, such as the plight of a suffering victim calculated to elicit empathic emotions (see 
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Batson & Shaw, 1991, for a critical review of many of the classic studies). For example, Batson 
and Ahmad (2001) asked participants to choose second in a one-shot Prisoner Dilemma game, 
knowing that the co-player had already defected. In a treatment condition in which participants 
were induced to feel empathy for the co-player who had recently suffered a painful relationship 
break-up, 45% cooperated, compared to 0% in a control condition. Among the other factors that 
are known to be associated with altruism is reciprocity: in many types of interaction, altruistic 
behavior is essentially linked to an expectation of reciprocal altruism from the recipient (Brosnan 
& de Waal, 2002; Trivers, 2005). 

Altruistic behavior is well documented in nonhuman species. A familiar example observed in 
many species of birds is the distinctive alarm call that they emit when they spot predators, such 
as hawks (Maynard Smith, 1965). Alarm calls alert other members of the flock, enabling them to 
take appropriate evasive action, but such behavior provides no benefit to the alarm-caller itself; 
on the contrary, there is persuasive (though indirect) evidence that, by attracting the predator’s 
attention, the alarm-caller actually reduces its own chances of survival (Marler, 1955, 1959). It is 
now widely acknowledged that alarm calling provides a true example of altruistic behavior in 
nature (Wilson & Evans, 2008). 

Interdependence theory is based on the undeniable premise that the utilities determining 
players’ strategy choices in games do not invariably correspond to their objective payoffs (for 
reviews, see Rusbult & Van Lange, 2003; Van Lange, 2000). The motivations of players in two-
player games are described in terms of social value orientations defined by payoff 
transformations. According to this approach, players’ other-regarding utilities U' are defined as 
functions of their own and their co-players’ objective payoffs U. If ui and uj are the objective 
payoffs to Players i and j in a two-player game, and si and sj are strategies chosen by Players i 
and j, then Player i is assumed to maximize a real-valued utility function ( , ) ( , ),i i j i i jU s s f u u′ =  
and Player i’s social value orientation is a property of the particular function fi. The 
individualistic orientation is represented by fi = ui, the altruistic orientation by fi = uj, the 
cooperative orientation by fi = ui + uj, the competitive orientation by fi = ui – uj, and the equality-
seeking orientation by fi = min {ui – uj, uj – ui}. The assumption is that players are invariably 
motivated to maximize their expected utilities, in any situations in which they find themselves, 
but that that these expected utilities are not necessarily individualistic—they may be altruistic, 
cooperative, competitive, or equality-seeking, depending on the psychological characteristics of 
the decision maker and the particular circumstances of the social interaction. We shall show that 
Berge equilibria arise in circumstances in which utility-maximizing players are motivated by the 
altruistic social value orientation. 

The individualistic social value orientation is the motivation tacitly assumed by decision 
theory and game theory, and the voluminous literature of orthodox game theory may be viewed 
as an exploration of its theoretical implications. The remainder of this article is devoted to a 
preliminary exploration of Berge equilibrium as a theoretical implication of the altruistic social 
value orientation. In Section 2, we formalize Berge equilibrium, examine some examples, derive 
some basic theoretical results, and propose a new model of cooperation in social dilemmas in 
terms of Berge equilibrium. In Section 3, we show how the Berge equilibrium solves 
coordination problems in some common interest games and partially explains the payoff 
dominance problem, and we argue that the cooperative social value orientation, in conjunction 
with the theory of team reasoning, offers a complete solution to these problems. In Section 4 we 
briefly review the sparse literature on Berge equilibrium and social value orientations. In Section 
5 we draw the threads together and summarize our conclusions. 
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2. Altruism and the Berge equilibrium 

The Berge equilibrium concept was introduced intuitively by Berge (1957, p. 20) and 
formalized by Zhukovskii (1985) in the context of differential games. Early literature, almost 
exclusively in Russian, focused on differential games. Berge equilibrium was not examined in 
conventional strategic games until recently (Abalo & Kostreva, 2004, 2005), and emerging 
recognition of other-regarding utilities in psychological and behavioral game theory (Bolton & 
Ockenfels, 2000; Fehr & Schmidt, 1999) has imbued it with contemporary relevance. 

We consider a game1 
( ) ( ): , , ,i ii N i N

G N S U
∈ ∈

=  
where N = {1, 2, ..., n} is the set of players, Si denotes the strategy set of Player i, and Ui is the 
utility function of Player i. We assume that n ≥ 2 and that each Si is finite and contains at least 
two strategies. We write ,ii N

S S
∈

=∏  and we interpret Ui as a function Ui : S →  representing 

the Player i’s objective payoffs. We call s = (s1, s2, ..., sn) ∈ S a strategy profile, but we shall also 
be interested in the incomplete strategy profile 

( )1 2 1 1, , , , , , .i i i n j
j i

s s s s s S− − +
≠

= … … ∈∏s  

We use the natural notation 
( ) ( )1 2 1 1, , , , , , , , .i i i i i i nU s U s s s s s s− − += … …s  

We call a strategy profile s* ∈ S a Berge equilibrium if, writing ( )1 2, , , ns s s∗ ∗ ∗ ∗= …s , we have 

 ( ) ( ),i i i iU s U−
∗ ∗≤s s  (1) 

for all s–i ∈ S–i and for all i ∈ N. In other words, if the players have chosen a strategy profile that 
forms a Berge equilibrium, and i sticks to the chosen strategy but some of the other players 
change their strategies, then i’s payoff will not increase. 

For Nash equilibrium (Nash, 1950, 1951), we have 

( ) ( ),i i i iU s U∗ ∗
− ≤s s  

for all si ∈ Si and for all i ∈ N. A Nash strategy is a best reply to co-players who also play Nash 
strategies, yielding the best payoff to a player who chooses it, given the strategies chosen by the 
co-player(s), whereas a Berge strategy yields the best payoffs to co-players who also play Berge 
strategies. The key difference is that, in Nash equilibrium, an individual player’s deviation from 
the equilibrium can reduce that player’s own payoff whereas, in Berge equilibrium, a deviation 
by one or more co-players can reduce the payoff to a player who does not deviate. 

Zhukovskii and Chikrii (1994) specify a further condition. Let us write 
( )max min , ,

i ii i

i i i iSs S
U sα

− −

−
∈∈

=
s

s  

so that αi is i’s maximin security level, that is, the maximum payoff that i can guarantee to obtain 
regardless of the choices of the other players. Zhukovskii and Chikrii stipulate that 
 ( )i iUα ∗≤ s  (2) 

for all i ∈ N. If a Berge equilibrium strategy profile s* also obeys (2), then we shall call s* a 
Berge–Vaisman equilibrium (for reasons to be explained in Section 4). 
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In interdependence theory, the altruistic social value orientation, in which Player i is assumed 
to maximize the utility function ( , ) ( , ) ,i i j i i j jU s s f u u u′ = =  has been defined only for two-player 
games. Berge equilibrium may reasonably be interpreted as an implication of the altruistic 
orientation, generalized to n-player games with otherwise standard game-theoretic assumptions, 
because in both cases every player is motivated to maximize the payoff(s) to the other player(s) 
and every player chooses strategies accordingly. 

We illustrate these ideas by finding a simple sufficient condition for a Berge equilibrium to 
be a Berge–Vaisman equilibrium. We need the following version of a standard lemma. 

 
Lemma 1. With the notation that we have introduced,  

( ) ( )max  min ,   min  max ,
i i i ii i i i

i i i i i is S s SS S
U s U s

− − − −

− −
∈ ∈∈ ∈

≤
s s

s s  

for all i ∈ N. 
 
Proof. Fix i ∈ N. We have 

( ) ( ),   max ,
i i

i i i i i iS
U s U s

− −
− −∈

≤
t

s t  

for all si ∈ Si. It follows that 
min ( , )  min  max ( , )  min  max ( , )

i i i i i ii i i i
i i i i i i i i is S s S t SS S

U s U s U t
− − − −

− − −∈ ∈ ∈∈ ∈
≤ =

t t
s t t  

and 
max  min ( , )  min  max ( , ).

i i i ii i i i
i i i i i is S t SS S

U s U t
− − − −

− −∈ ∈∈ ∈
≤

s t
s t  

Substituting si for ti and si for ti, we obtain 
max  min ( , )  min  max ( , ).

i i i ii i i i

i i i i i is S s SS S
U s U s

− − − −

− −
∈ ∈∈ ∈

≤
s s

s s            

 
Having examined α as defined in (2), it is natural also to examine 

( )max min , .
i ii i

i i i is SS
U sβ

− −
−∈∈

=
s

s  

The following theorem tells us that, if αi ≤ βi for all i, then a Berge equilibrium is a Berge–
Vaisman equilibrium. 
 
Theorem 1. Suppose that the game discussed above has 

( ) ( )max min , max min ,
i i i ii i i i

i i i i i iS s Ss S S
U s U s

− − − −
− −∈ ∈∈ ∈

≤
s s

s s  

for all i ∈ N. Then any Berge equilibrium is a Berge–Vaisman equilibrium. 
 
Proof. Suppose that s* is a Berge equilibrium. By definition, 

( ) ( ),i i i iU s U∗ ∗
− ≤s s  

for all s–i ∈ S–i and all i ∈ N. It follows that 
( ) ( )max , ,

i i
i i i iS

U s U
− −

∗
−∈

∗ ≤
s

s s  

and consequently 
( ) ( )min max , .

i i i i
i i i is S S

U s U
− −

−
∗

∈ ∈
≤

s
s s  

Applying Lemma 1, we obtain 
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( ) ( )max  min , ,
i ii i

i i i iSS
U s U

− −
−∈

∗

∈
≤

ss
s s  

or, in more abbreviated notation, βi ≤ Ui(s*). If αi ≤ βi for all i ∈ N, then αi ≤ Ui(s*) for all i, and 
therefore s* is a Berge–Vaisman equilibrium.           
 

If Player i adopts a Berge strategy, then why should the other altruistically motivated players 
follow suit by playing their own Berge strategies? Consider a player j who plays a non-Berge 
strategy sj ≠ sj*. According to the defining condition (1), we have: 

( ) ( ), , , ,i i i j j i i i j jU s s U s s∗ ∗ ∗ ∗ ∗
− − − −≥s s  

for all i ∈ N and sj ≠ sj*. By playing a Berge strategy, j maximizes i’s utility and, because this 
applies to every i ∈ N, j maximizes the utility to all the other players in the game as well. 
Furthermore, by playing Berge strategies, the other players also maximize j’s utility. In other 
words, in a Berge equilibrium, every player i maximizes the utilities of the co-players N \ {i}, 
and i’s utility is simultaneously maximized by those co-players. In a Berge–Vaisman 
equilibrium, because of Condition 2, it is also the case that a selfishly motivated player could not 
obtain a better payoff by defecting unilaterally. Given standard game-theoretic knowledge and 
rationality assumptions, this stronger Berge–Vaisman equilibrium can therefore arise even if it is 
common knowledge in a game that every player but one is altruistically motivated and one is 
selfishly motivated. But reciprocity in the absence of altruism cannot explain the Berge–Vaisman 
equilibrium on its own, because if all players are selfishly motivated, then they will be motivated  
to select Nash rather than Berge–Vaisman equilibria.  

 
(a)  P2 

  W2 Y2 

P1 
W1 2, 4 4, 1 

Y1 3, 2 1, 3 

    

 
 

 (b)  P2  P2 

  C2 D2  C2 D2 

P1  
C1  0, 0, 1 2, 0, 0  1, 0, 1 3, 0, 0 

D1  0, 0, 1 0, 1, 0  0, 1, 0 0, 1, 0 

  C3  D3 

  P3 
 

Fig. 1. Two games without Berge equilibria: (a) Gibbard’s two-player game; (b) an arbitrary three-player game. 
 
2.1. Examples of Berge equilibria 

Not all games have Berge equilibria, as shown by the following two-player and three-player 
games. Fig. 1(a) shows Gibbard’s (1974) game, a 2 × 2 game lacking (in pure strategies) both 
Nash equilibria and Berge equilibria. Gibbard’s interpretation is of two players living together 
and choosing either white (W) or yellow (Y) as a color to decorate their bedrooms. Player 1 is a 
nonconformist who prefers to have a different color from Player 2, whereas Player 2 is a 
conformist who prefers to have the same color as Player 1; and secondary to these preferences, 
each player prefers white to yellow. Representing the players’ preferences from best to worst by 
the ordinal numbers 4, 3, 2, and 1, the payoffs are as shown in Fig. 1(a). The lack of any Berge 
equilibrium is confirmed by the following strict inequalities, covering all four possible outcomes, 
each violating Condition (1) in the definition of the Berge equilibrium above: 
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U1(W1, W2) < U1(W1, Y2); 
U2(W1, Y2) < U2(Y1, Y2); 
U2(Y1, W2) < U2(W1, W2); 
U1(Y1, Y2) < U1(Y1, W2). 
 
Fig. 1(b) shows a 2 × 2 × 2 game with Nash equilibria at (C1, C2, C3), (C1, D2, C3), 

(C1, C2, D3), and (C1, D2, D3). In spite of this plethora of Nash equilibria, the game has no Berge 
equilibrium, because each of the following strict inequalities violates Condition (1): 

 
U1(C1, C2, C3) < U1(C1, C2, D3); 
U1(C1, C2, D3) < U1(C1, D2, C3); 
U1(C1, D2, C3) < U1(C1, D2, D3); 
U2(C1, D2, D3) < U2(D1, D2, C3); 
U2(D1, C2, C3) < U2(D1, C2, D3); 
U3(D1, C2, D3) < U3(C1, C2, D3); 
U3(D1, D2, C3) < U3(C1, C2, C3); 
U3(D1, D2, D3) < U3(C1, C2, D3). 
 

The first inequality shows that the outcome (C1, C2, C3) cannot be a Berge equilibrium, because 
Player 1 receives a better payoff in the outcome (C1, C2, D3), where Player 3 has switched to D, 
violating Condition (1), and so on for each of the eight possible outcomes of the game in order, 
forcing the conclusion that the game has no Berge equilibrium. 

Restricting attention to symmetric 2 × 2 games in which both players have strict preferences 
among the four outcomes, and representing their payoffs once again by the ordinal numbers 4, 3, 
2, and 1, there are exactly 12 such ordinally distinct symmetric 2 × 2 games to consider 
(Rapoport, Guyer, & Gordon, 1976). It turns out that each of these games has at least one Nash 
equilibrium and at least one Berge equilibrium, as detailed below. 

In six cases, Nash and Berge equilibria coincide, as shown in Fig. 2, where the Nash-Berge 
equilibria are shaded. Some of these games are sufficiently well known to have familiar names: 
Rapoport (1967) originally named Fig. 2(b) Hero, and Fig. 2(d) Leader; and Sen (1969) named 
Fig. 2(f) the Assurance game. 

 
(a)  P2 

  C2 D2 

P1 
C1 4, 4 3, 2 

D1 2, 3 1, 1 
 

 (b)  P2 

  C2 D2 

P1 
C1 2, 2 4, 3 

D1 3, 4 1, 1 
 

 (c)  P2 

  C2 D2 

P1 
C1 4, 4 2, 3 

D1 3, 2 1, 1 
 

  
  
  
  

     
(d)  P2 

  C2 D2 

P1 
C1 2, 2 3, 4 

D1 4, 3 1, 1 
 

 (e)  P2 

  C2 D2 

P1 
C1 4, 4 2, 1 

D1 1, 2 3, 3 
 

 (f)  P2 

  C2 D2 

P1 
C1 4, 4 1, 2 

D1 2, 1 3, 3 
 

 
Fig. 2. Ordinally distinct symmetric 2 × 2 games in which Nash and Berge equilibria coincide. The Nash-Berge 
equilibria are shaded. 
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Four of the games have multiple Nash equilibria and unique Berge equilibria, or vice versa, 

as shown in Fig. 3. Fig. 3(a) is sometimes called the Chicken game, after an interpretation by the 
philosopher Bertrand Russell (1959, p. 30) of a dangerous game in which two motorists speed 
toward each other on a head-on collision course, and if either player swerves out of the way, then 
that player is shown to be “chicken.” It is sometimes called the Hawk-Dove game, after a 
biological interpretation by Maynard Smith and Price (1973) of conventional and escalated 
fighting in animals, or the Snowdrift game, after a scenario suggested by Sugden (1986, p. 128) 
in which two motorists on a lonely road, both equipped with shovels, are stuck in a snowdrift. It 
has Nash equilibria at (D1, C2) and (C1, D2) and a unique Berge equilibrium at (C1, C2). Fig. 3(b) 
is the Stag Hunt game, named after a passage in Rousseau (1755, Part II, paragraph 9), in which 
two hunters have to cooperate to catch a stag, but each is tempted to chase after the lesser prize 
of a hare, which can be caught without the other’s cooperation, and it was introduced into the 
literature of game theory by Lewis (1969, p. 7); it has Nash equilibria at (C1, C2) and (D1, D2) 
and a unique Berge equilibrium at (C1, C2). Fig. 3(c) shows a game with a unique Nash 
equilibrium at (C1, C2) and multiple Berge equilibria at (C1, D2) and (D1, C2). The game in Fig. 
3(d) has a unique Nash equilibrium at (C1, C2) and multiple Berge equilibria at (C1, C2) and (D1, 
D2). 

 
(a)  P2 

  C2 D2 

P1 
C1 3, 3 2, 4 

D1 4, 2 1, 1 
 

 (b)  P2 

  C2 D2 

P1 
C1 4, 4 1, 3 

D1 3, 1 2, 2 
 

 
 
 
 

   
(c)  P2 

  C2 D2 

P1 
C1 3, 3 4, 2 

D1 2, 4 1, 1 
 

 (d)  P2 

  C2 D2 

P1 
C1 4, 4 3, 1 

D1 1, 3 2, 2 
 

 
Fig. 3. Ordinally distinct symmetric 2 × 2 games with multiple Nash equilibria and unique Berge equilibria (a and b) 
or unique Nash equilibria and multiple Berge equilibria (c and d) 
 

The two remaining cases, shown in Fig. 4, are games with unique Nash equilibria and unique 
but distinct Berge equilibria. Game 4(a) has a unique Nash equilibrium at (C1, C2) and a unique 
Berge equilibrium at (D1, D2). Game 4(b) is the Prisoner’s Dilemma game, first named by 
Tucker (1950/2001), with a unique Nash equilibrium at (D1, D2) and a unique Berge equilibrium 
at (C1, C2). 
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(a)  P2 

  C2 D2 

P1  
C1  3, 3 4, 1 

D1  1, 4 2, 2 
 

 (b)  P2 

  C2 D2 

P1  
C1  3, 3 1, 4 

D1  4, 1 2, 2 
 

 
Fig. 4. Ordinally distinct symmetric 2 × 2 games with unique Nash equilibria and non-coinciding unique Berge 
equilibria. 

It is clear that Berge equilibria are sometimes more numerous than Nash equilibria, 
sometimes less numerous, and sometimes equally numerous, although even in the last case Berge 
and Nash equilibria do not necessarily coincide. Our exhaustive survey of ordinally distinct, 
symmetric 2 × 2 games gives an indication of how common Berge equilibria are in these small 
games. In Section 2.3 below, we shall show that Berge equilibria are ubiquitous in a class of n-
player games frequently encountered in social, economic, and political interactions in everyday 
life. 
 
2.2. Relations between Berge and Nash equilibria 

We now examine the relation between Berge equilibria and Nash equilibria. Recall that, with 
our usual notation, s* is a Nash equilibrium if  
 ( ) ( ),i i i iU s U∗ ∗

− ≤s s  (3) 

for all si ∈ Si and all i ∈ N. In other words, if the players have chosen a Nash equilibrium 
strategy profile, and if i changes to a different strategy and the other players do not, then i’s 
payoff will not increase. 

In the particular case of two-player games, there is a high degree of symmetry between the 
Nash and Berge conditions. Intuitively, players in a two-player game may be thought to 
interchange their payoff functions, in some sense, when they switch between Berge and Nash 
equilibria. We clarify and formalize this idea in the following lemma. 

 
Lemma 2. The strategy profile s* in the two-player game 

{ } ( ) ( )1 2 1 2: 1, 2 , , , ,G S S U U=  
is a Berge equilibrium if and only if it is a Nash equilibrium in the game 

{ } ( ) ( )1 2 1 2: 1, 2 , , , ,G S S V V=  
with V1 = U2 and V2 = U1. 
 
Proof. It suffices to observe that the statement 

( ) ( )1 2 1 1 21, ,U s s U s s∗ ∗ ∗≤ and ( ) ( )* * *
2 1 2 2 1 2, ,U s s U s s≤  

for all s1 ∈ S1, s2 ∈ S2, and the statement 
( ) ( )2 2 2 1 21, ,V s s V s s∗ ∗ ∗≤ and ( ) ( )* * *

1 2 21 1 1, ,V s s V s s≤  

for all s1 ∈ S1, s2 ∈ S2, are equivalent.           
 

We now extend part of this result to n-player games, but first we need to introduce some 
additional notation. If σ : N → N is a permutation, then we say that σ is a derangement if σ(i) ≠ i 
for all i ∈ N. If G is our general game 
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( ) ( ): , , ,i ii N i N
G N S U

∈ ∈
=  

and σ is a derangement, we can define an associated game 
( ) ( ), ,: i ii N i N

G N S Vσ ∈ ∈
=  

with Vi = Uσ(i). (Here, once again, players interchange payoff functions.) 
 
Theorem 2. If s* is a Berge equilibrium in the game 

( ) ( ): , , ,i ii N i N
G N S U

∈ ∈
=  

then it is a Nash equilibrium in every game Gσ with derangement σ. 
 
Proof. Suppose that s* is a Berge equilibrium in G. Fix i ∈ N and let σ be a derangement. If we 
can show that 

( ) ( )* *
( ) ( ),i i i iU s Uσ σ− ≤s s  

for all si ∈ Si and all derangements σ, then the required result will follow. By symmetry, we need 
only consider the case i = 1, σ(i) = 2. 

By the definition of Berge equilibrium, 
( ) ( )* *

2 2 2 2,U s U− ≤s s  

for all s–2 ∈ S–2. Thus 
( ) ( )2 1 2 3 2 1 2 3, , , , , , , ,n nU s s s s U s s s s∗ ∗ ∗ ∗ ∗… ≤ …  

for all sk ∈ Sk and all k ∈ N, k ≠ 2. In particular, 
( ) ( )2 1 2 3 2 1 2 3, , , , , , , ,n nU s s s s U s s s s∗ ∗ ∗ ∗ ∗ ∗ ∗… ≤ …  

for all s1 ∈ S1, and the required result follows.           
 

If we write Eσ for the set of Nash equilibria of Gσ and B for the set of Berge equilibria of G, 
then we have proved that 

,B Eσ⊆   
where σ ranges over all derangements of N. The following corollary follows immediately. 
 
Corollary 1. If any of the games Gσ with derangement σ has no Nash equilibrium, then the 
corresponding game G has no Berge equilibrium and B = ∅. 
 

We now provide a link between Berge equilibria in n-player games and Nash equilibria in 
some associated two-player games. Consider our general game 

( ) ( ): , , .i ii N i N
G N S U

∈ ∈
=  

For every j ∈ N, we define an associated two-player game 
{ } ( ) ( ): , , ( ), ( ) , ( ), ( ) ,j A C A CG A C T j T j V j V j=  

with 
( ) ( ), ,A j C jT j S T j S−= =  

and 
( )( ) ( ) ( )( ) ( ), , , , , .A j j i j j C j j j j j

i j
V j s U s V j s U s− − − −

≠

= =∑s s s s  
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We write Ej for the set of Nash equilibria in the game Gj. 
 
Theorem 3. With the notation just introduced, 
 .j

j N

B E
∈

=   

 
Proof. We begin by showing that B ⊆ Ej for every j ∈ N. By symmetry, it suffices to show that B 
⊆ E1. We write TA = TA(1), TC = TC(1), VA = VA(1), and VC = VC(1). 

Suppose s* ∈ B. By definition of Berge equilibrium, we have 
( ) ( )*,i i i iU s U∗

− ≤s s  

for all s–i ∈ S–i and all i ∈ N. Rewriting, we have 
( ) ( )1 2 1 1, , , , , , ,i i i i n iU s s s s s s U∗ ∗

− +… … ≤ s  

for all sk ∈ Sk (k ≠ i). In particular, 
( ) ( )* * * * * *

1 2 1 1, , , , , , ,i i i i n iU s s s s s s U− +… … ≤ s  

for all s1 ∈ S1 and i ≠ 1. Summing over i ≠ 1, we get 
( ) ( )1 2 1 1

1 1
, , , , , , , ,i i i i n i

i i
U s s s s s s U∗ ∗ ∗ ∗ ∗ ∗

− +
≠ ≠

… … ≤∑ ∑ s  

and it follows that 
( ) ( )1 1,A AV s V∗ ∗

− ≤s s  

for all s1 ∈ S1. 
On the other hand, because 

( ) ( ),i i i iU s U∗ ∗
− ≤s s  

for all s–i ∈ S–i and all i ∈ N, we have, in particular, 
( ) ( )1 1 1 1, .U s U∗ ∗

− ≤s s  
Therefore 

( ) ( )1 1,C CV s V∗ ∗
− ≤s s  

for all s–1 ∈ S–1. This shows that s* is a Nash equilibrium of G1, as required. 
We have shown that .jj N

B E
∈

⊆   Now suppose that .jj N
E∗

∈
∈s   We wish to show that 

s* ∈ B, that is 
( ) ( )*,i i i iU s U∗

− ≤s s  

for all s–i ∈ S–i and all i ∈ N. By symmetry, it suffices to show that 
( ) ( )*

1 1 1, iU s U∗
− ≤s s  

for all s–1 ∈ S–1. But, taking VC = VC(1), this is precisely the statement 
( ) ( )1 1,C CV s V∗ ∗

− ≤s s  

for all s–1 ∈ S–1, guaranteed by the fact that s* ∈ E1. It follows that 
.j

j N

B E
∈

=             
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Remark. Theorem 3 establishes that the Berge equilibria of an n-player game G can be 
determined by finding the common Nash equilibria in the associated two-player games Gσ. Well 
known procedures are available for finding Nash equilibria in two-player games; therefore 
Theorem 3 suggests a straightforward procedure for finding Berge equilibria in n-player games. 
Corollary 1 shows that if any of the two-player games Gi has no pure-strategy Nash equilibrium, 
then the n-player game G has no Berge equilibrium. 
 
2.3. Interpreting cooperation 

The Prisoner’s Dilemma game shown in Fig. 4(b) is widely interpreted as a game-theoretic 
model of cooperation, with the C strategies representing cooperation and the D strategies 
defection or non-cooperation. It is generally agreed that (D1, D2) is the uniquely rational strategy 
profile, but a large volume of experimental evidence reveals that cooperation is commonplace in 
this game. In most published experiments, approximately half the observed strategy choices are 
cooperative, even in experiments with unrepeated or one-shot Prisoner’s Dilemmas (Colman 
1995, chap. 7, 2003; Sally, 1995). 

Whether or not C is interpreted as cooperative or altruistic, Berge equilibrium offers a 
theoretical model of the empirical findings. If players are altruistically motivated to be mutually 
supportive, rather than to pursue their individual self-interests in terms of objective payoffs, and 
if they expect their co-players to be motivated similarly to themselves, then it makes sense for 
them to choose Berge strategies as a means of achieving that goal. In the Prisoner’s Dilemma 
game, if both players simultaneously choose Berge strategies, then each receives a better payoff 
than if both choose dominant Nash strategies. With the payoffs shown in Fig. 4(b), for example, 
each player receives 3 units in Berge equilibrium, but only 2 units in Nash equilibrium. Altruistic 
mutual support pays better than selfish individualism, provided that both players adopt it. 

 
Table 1. Payoff function for a three-player Prisoner’s Dilemma. 
 
Number choosing C Number choosing D Payoff to each C-chooser Payoff to each D-chooser 

3 0 3 – 
2 1 2 4 
1 2 1 3 
0 3 – 2 

 
This property of the Prisoner’s Dilemma game generalizes to n-player social dilemmas, 

formalized independently by Hamburger (1973) and Schelling (1973). The payoff functions of a 
three-player Prisoner’s Dilemma are shown in Table 1. A generalized n-Player Prisoner’s 
Dilemma (n ≥ 2), including the three-player game shown in Table 1, is defined by the following 
three properties: 

(1). Every player’s strategy set comprises two strategies: C (cooperate) and D (defect). 
(2). The D strategy is strictly dominant for every player—every player obtains a higher 

payoff by choosing D than C, irrespective of the number of co-players choosing C. 
(3). The dominant D strategies intersect in a Pareto-inefficient Nash equilibrium, the outcome 

being better for every player if all players choose C than if all choose D. 
The two-player Prisoner’s Dilemma game meets this definition and is therefore a special case 

of the more general n-Player Prisoner’s Dilemma. In two-player and n-player social dilemmas, 
joint defection is the unique Nash equilibrium, and joint cooperation the unique Berge 
equilibrium. In the game shown in Table 1, if all players choose their dominant D strategies, then 
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the payoff to each player is 2 units in Nash equilibrium; but if all players choose their C 
strategies, then the payoff to each is 3 units in Berge equilibrium. Social dilemmas with the 
strategic structure of the n-Player Prisoner’s Dilemma game are ubiquitous in everyday social, 
political, and economic life, from conservation of scarce resources to wage inflation and global 
warming. Situations in which individuals are tempted to act selfishly, but everyone ends up 
worse off if everyone acts selfishly than if everyone cooperates, are remarkably common. 

A class of decomposable n-Player Prisoner’s Dilemma games can be characterized as 
follows. Let each of the n players receive an amount c for choosing C and an amount d for 
choosing D; in addition, let each player lose an amount e for every player in the game who 
chooses D. In the game shown in Table 1, c = 3, d = 5, and e = 1. In the two-player version 
shown in Fig. 4(b), c = 3, d = 6, and e = 2. We can express the payoff to a D-chooser when all 
co-players choose C as d – e , the payoff to a D-chooser when all co-players choose D as d – ne, 
the payoff to a C-chooser when all co-players choose C as c, and the payoff to a C-chooser when 
all co-players choose D as c – (n – 1)e. The defining properties of the generalized decomposable 
n-Player Prisoner’s Dilemma game are the inequalities 

d – e > c > d – ne > c – (n – 1)e. 
Simplifying, we find that n > 1, which means simply that the number of players must be two or 
more, and combining the inequalities, we arrive at 

1 ,d c n
e
−

< <  

which is a generating formula for a decomposable n-Player Prisoner’s Dilemma game of any 
size. Any such game has a unique Nash equilibrium representing joint defection and a unique 
Berge equilibrium representing joint cooperation. That joint cooperation is a Berge equilibrium 
follows from the fact that c > c – ke for all k (0 < k < n), satisfying the definition (1) of a Berge 
equilibrium provided earlier. 

A large body of empirical evidence reveals that cooperation is very common, even in 
unrepeated n-Player Prisoner’s Dilemma games (Camerer & Fehr, 2006; Colman, 1995, chap. 9, 
Colman, 2003; Sally, 1995; Suleiman, Budescu, Fischer, & Messick, 2004), and these findings 
are difficult to understand within the conceptual framework of game theory. In social dilemmas 
of all sizes, Berge equilibrium offers a model of cooperation that has not been explored by 
previous researchers. Players motivated by the altruistic social value orientation may select 
Berge strategies in the expectation that other players will act similarly, knowing that if these 
expectations are fulfilled, then the mutually supportive players will end up better off, even in 
terms of objective payoffs, than if they had followed the game-theoretic logic of strategic 
dominance and Nash equilibrium. 
 
3. Coordination in common interest games 

One of the most serious limitations of game theory, and a major reason for its notorious 
indeterminacy, is its frequent failure to provide a rational justification for the selection of payoff-
dominant Nash equilibria. Consider the game shown in Fig. 5(a), a version of the Stag Hunt 
game discussed at length by Harsanyi and Selten (1988, pp. 355-363). Both (C1, C2) and (D1, D2) 
are Nash equilibria, and both players prefer (C1, C2), yielding payoffs of (9, 9), to (D1, D2), 
yielding payoffs of (7, 7). The Nash equilibrium (C1, C2) payoff-dominates (D1, D2) because it 
yields a better payoff to both players than does (D1, D2) or, to put it differently, because (C1, C2) 
Pareto-dominates (D1, D2). Nevertheless, the indeterminacy of game theory is revealed in this 
game, because game theory provides neither player with any reason to choose the C strategy, in 
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spite of its intuitive appeal. Player i has no reason to choose Ci in the absence of a reason to 
expect Player j to choose Cj. 

 
(a)  P2 

  C2 D2 

P1  
C1  9, 9 0, 8 

D1  8, 0 7, 7 
 

 (b)  P2 

  C2 D2 

P1  
C1  18, 18 8,  8 

D1  8,  8 14, 14 
 

 
 
 
 

   
(c)  P2 

  H2 L2 

P1  
H1  2, 2 0, 0 

L1  0, 0 1, 1 
 

 (d)  P2 

  H2 L2 

P1  
H1  4, 4 0, 0 

L1  0, 0 2, 2 
 

 
Fig. 5. Aumann’s Stag Hunt game; (b) Aumann’s Stag Hunt game after cooperative payoff transformation; (c) Hi-
Lo matching game; (c) Hi-Lo matching game after cooperative payoff transformation. 

 
Formally, if e and f are two Nash equilibria in any game, then e strictly payoff-dominates f if 

Ui (e)  >  Ui (f) 
for all i ∈ N. Any game with multiple Nash equilibria, including one that payoff-dominates all 
others is called a common interest game (Aumann & Sorin, 1989). The payoff dominance 
principle is the assumption that if an equilibrium e payoff-dominates all others in a common 
interest game, then rational players will choose and play the component strategies of e. Harsanyi 
and Selten (1988) proposed this principle (together with a secondary risk dominance principle) 
as an axiom of rationality in their general theory of equilibrium selection in games, though only 
provisionally and reluctantly (see their comments on pp. 362-363), acknowledging that it 
provides no explanation for the powerful intuition that payoff-dominant equilibria should be 
selected by rational players. 

Fig. 5(c) exposes payoff dominance in its simplest and most transparent form. In this Hi-Lo 
matching game, there are Nash equilibria at (H1, H2) and (L1, L2), and both players prefer (H1, 
H2). However, Player 1 has no reason to choose H1 in the absence of a reason to expect Player 2 
to choose H2, because if Player 2 were to choose L2, for whatever reason, then Player 1’s best 
reply would be L1. But Player 1 has no reason to expect Player 2 to choose H2, because the game 
is symmetric and Player 2 faces the identical dilemma, hence any attempt to justify such 
expectations leads to an infinite and inconclusive regress. Orthodox game theory provides no 
reason for either player to choose the cooperative H strategies.2 
 
3.1. Berge equilibrium, coordination, and payoff dominance 

Does the Berge equilibrium offer a solution to the payoff dominance problem? Surprisingly, 
although it provides a solution to the Stag Hunt game shown in Fig. 5(a), and to other similar 
games, it does not solve the Hi-Lo game shown in Fig. 5(c). The Stag Hunt game has a unique 
Berge equilibrium at (C1, C2), but the Hi-Lo game has Berge equilibria coinciding with the Nash 
equilibria at both (H1, H2) and (L1, L2), providing no remedy for game-theoretic indeterminacy 
and no insight into the intuitive appeal of the H strategies in this game. 
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Attempts to rationalize the payoff-dominant equilibrium (H1, H2) in Fig. 5(c) have all 
resorted to essential changes in the specification of the game, introducing either repetitions (e.g., 
Aumann & Sorin, 1989), a “cheap talk” stage during which players can make costless 
announcements before choosing their strategies (e.g., Farrell, 1988), modifications of the 
assumption that players know that they choose their strategies independently (e.g., Colman & 
Bacharach, 1997; Krueger, 2008; Krueger & Acevedo, 2007), or special modes of reasoning 
(Bacharach, 1999, 2006; Sugden, 1993, 2005). 

The cooperative value orientation offers a promising potential explanation for coordination, 
because it is interpreted in interdependence theory as the motive of Player i to maximize the 
collective utility function defined as the sum of the objective payoffs to Players i and j. However, 
it has three important limitations. First, it is defined for two-player games only, although the 
definition could be generalized to n-player games without difficulty. Second, in its simplest form 
it incorporates an implicit assumption that cooperatively motivated players assign equal weight 
to their own and their co-players’ objective payoffs. Whereas it seems reasonable to assume that 
players commonly assign some weight to their co-players’ objective payoffs, the stronger 
assumption of equal weights seems unnecessarily restrictive. Third and most important, it turns 
out to be powerless to explain the payoff dominance phenomenon. 

If both players are motivated by the cooperative value orientation, then, by definition, 
( ) ( ), , ,i i j i j i jU s s f u u u u′ = = +  

for all i, j ∈ N. Fig. 5(b) shows the Stag Hunt game with these payoff transformations applied. 
The transformed payoff matrix still has Nash equilibria at (C1, C2) and (D1, D2), and both players 
still prefer (C1, C2). Game theory provides no more reason for coordination in this transformed 
matrix than in the original (given) matrix: from a strategic point of view, nothing has changed. 
Fig. 5(d) shows that cooperative payoff transformations are of no help in solving the Hi-Lo 
game, leaving the strategic structure of the game unchanged. The cooperative value orientation, 
on its own, fails to explain coordination and the payoff dominance phenomenon, but with some 
crucial supplementary assumptions, team reasoning solves both problems. 

Theories of team reasoning (Bacharach, 1999, 2006; Sugden, 1993, 2005) offer general 
solutions to common interest games and to the payoff dominance problem, even in instances 
such as the Hi-Lo game where Berge equilibrium surprisingly fails, and they also complement 
the Berge equilibrium by offering an alternative model of cooperation in the Prisoner’s Dilemma 
and n-Player Prisoner’s Dilemma games. However, they require a radical departure from 
orthodox game theory, assuming as they do not only that players are motivated to maximize 
collective payoffs, as in the cooperative social value orientation, but also that they adopt a 
distinctive mode of collective reasoning from preferences to decisions. In orthodox game-
theoretic reasoning, players ask themselves: What do I want, and what should I do to achieve it? 
In team reasoning, they ask: What do we want, and what should I do to help achieve it? Even in 
the most challenging Hi-Lo game shown in Fig. 5(c), the answer is immediately obvious—We 
want (H1, H2) and, in my role as Player i, I should play my part in achieving it by choosing Hi. 
Team-reasoning players begin by searching for a profile of strategies that maximizes the 
collective payoff of the group of players. If one profile Pareto-dominates all others, then that 
profile obviously maximizes the collective payoff. More generally, and in the spirit of the 
cooperative value orientation, if there exists a strategy profile that maximizes the sum of payoffs 
to the individual players,3 then that profile is collectively optimal, even if it is not a Nash 
equilibrium. If the optimizing profile is unique, then team-reasoning players select and play their 
component strategies of it. If it is not unique, then the theory is indeterminate. Standard 
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individual reasoning is subsumed within team reasoning as a special case in which the team is a 
singleton. There is evidence from experimental games that team reasoning occurs quite 
frequently in practice (Colman, Pulford, & Rose, 2008). 
 
4. Related literature 

Previous research into the Berge equilibrium and social value orientations has been sparse, 
and the relevant literature is widely scattered. The Berge equilibrium concept was introduced 
intuitively by the French mathematician Claude Berge (1957) for noncooperative games (chap. 1, 
section 7) and coalition games (chap. 5, section 27) at a time when he was a visiting professor at 
Princeton University and a colleague there of John Nash, who was on an Alfred P. Sloan grant. A 
brief review of Berge’s book by Shubik (1961), published in Econometrica, could hardly have 
done more to discourage economists from reading it and may have contributed to its subsequent 
neglect in the English-speaking world: “The argument is presented in a highly abstract manner 
and no consideration is given to applications to economics. . . . The book will be of little direct 
interest to economists” (p. 821). 

Berge’s (1957) book was translated into Russian in 1961, and Zhukovskii (1985) later 
formalized the equilibrium in the context of differential games. Condition (2) was first suggested 
by Zhukovskii’s doctoral student Konstantin Vaisman and adopted by Zhukovskii and Chikrii 
(1994, pp. 119-143) in a book published later in the same year, also in Russian. Research into the 
Berge equilibrium did not spread beyond the borders of the former USSR until Abalo and 
Kostreva (2004, 2005) published the first existence theorems for pure-strategy Berge equilibria 
in strategic-form games based on an existence theorem for differential games proposed by Radjef 
(1988). Radjef, who was a student of Zhukovskii, was one of many Algerian students trained in 
Russian Universities, and that is why research published in Russian journals has been 
disseminated in some French journals by Algerian researchers. Nessah, Larbani, and Tazdaït 
(2007) and Larbani and Nessah (2008) showed the conditions set by Abalo and Kostreva to be 
insufficient to prove the existence of a pure-strategy Berge equilibria, and they proposed a new 
existence theorem. The Berge equilibrium has, up to now, received only a small amount of 
attention from mathematicians and virtually none from economists and other social and 
behavioral scientists. 

The concept of social value orientations, interpreted in terms of payoff transformations, was 
introduced by Messick and McClintock (1968) and McClintock (1972), who focused attention 
initially on individualistic, cooperative, and competitive orientations. The idea was developed in 
interdependence theory by Thibaut and Kelley (1959), Kelley and Thibaut (1978), and Kelley, 
Holmes, Kerr, Reis, Rusbult, and Van Lange (2003). Research revealed that individual 
differences in baseline social value orientations are relatively stable over time (Kuhlman, Camac, 
& Cunha, 1986), correlate significantly with personality descriptions given by friends and 
roommates (Bem & Lord, 1979), and are predictive of activities in everyday life such as 
volunteering for worthy causes (McClintock & Allison, 1989). A century earlier, Edgeworth 
(1881, pp. 102-104) had introduced the idea of other-regarding payoff transformations in a 
slightly more general form, in which Player i maximizes the utility function U'(si, sj) = fi (ui, uj) = 
pui + (1 – p)uj, where 0 ≤ p ≤ 1. Here, p and 1 – p represent relative weights that i assigns to ui 
(own) and uj (co-player’s) objective payoffs, respectively. Economists who have explored other-
regarding utilities have generally reverted to this more general interpretation (e.g., Camerer, 
1997, pp. 169-170; Fehr & Schmidt, 1999; Rabin, 1993). 
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5. Conclusions 
Berge equilibrium provides a compelling model of cooperation in social dilemmas, including 

the Prisoner’s Dilemma and n-Player Prisoner’s Dilemma games. It deserves to be taken 
seriously, because an understanding of cooperation is an important goal, and especially because 
orthodox game theory has failed to explain experimental findings on cooperation adequately. 

A Berge equilibrium occurs when players are mutually supportive in a game. It is thus 
reminiscent of the concepts of solidarity and mutual aid suggested by the Russian anarchist Peter 
Kropotkin (1902): 
 

Love, sympathy and self-sacrifice certainly play an immense part in the progressive development of our moral 
feelings. But it is not love and not even sympathy upon which Society is based in mankind. It is the 
awareness4—be it only at the stage of an instinct—of human solidarity. It is the unconscious recognition of the 
force that is borrowed by each man from the practice of mutual aid; of the close dependency of every one’s 
happiness upon the happiness of all; and of the sense of justice, or equity, which brings the individual to 
consider the rights of every other individual as equal to his own. (p. 5) 

 
Berge equilibrium is a theoretical implication of the altruistic social value orientation, in 

which players have utility functions that motivate them to maximize each other’s objective 
payoffs. Together with otherwise standard game-theoretic assumptions of rationality and 
common knowledge, this implies the emergence of Berge equilibria in games in which they 
exist. The existence of pure altruism has been debated by philosophers for centuries (see, e.g., 
Bentham, 1789; Comte, 1851/1875; Hume, 1739-1740), and there are skeptics who have argued 
that selfish egoism or individualism must be tautologically true, because people’s actions reveal 
their individual preferences. Samuelson (1993), the originator of revealed preference theory, 
dismissed this view as mere casuistry: 

 
When the governess of infants caught in a burning building reenters it unobserved in a hopeless mission of 
rescue, casuists may argue; “She did it only to get the good feeling of doing it. Because otherwise she wouldn’t 
have done it.” Such argumentation (in Wolfgang Pauli’s scathing phrase) is not even wrong. It is just boring, 
irrelevant, and in the technical sense of old-fashioned logical positivism “meaningless” (p. 143). 

 
Pure altruism is evidently not the most common social value orientation in strategic interactions; 
but its existence cannot be ignored, and there are circumstances in which it seems entirely 
natural. Accumulating experimental evidence, reviewed in the Introduction (Section 1), makes it 
difficult to deny that there are circumstances in which altruism is a regular occurrence. In our 
benchmark game outlined informally in the Introduction (Section 1), altruism and Berge 
equilibrium seem intuitively compelling. 

We have shown how the Berge equilibrium provides a natural model of cooperation in n-
Player Prisoner’s Dilemmas, and how it can also model coordination in some common interest 
games, although it is inadequate in the sharpest challenge, the pure coordination Hi-Lo matching 
game. The cooperative social value orientation, in which players are motivated to maximize their 
collective payoff, explains cooperation in social dilemmas and might be expected to explain 
coordination in common interest games. However, it turns out to be inadequate to explain 
coordination without additional theoretical apparatus provided by theories of team reasoning. 

Berge equilibrium and team reasoning are both powerful theories of mutual support in 
games. They model two of the most important forms of social collaboration, namely cooperation 
in social dilemmas and coordination in common interest games. Team reasoning has received at 
least some attention from researchers in the social and behavioral sciences; Berge equilibrium 
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has hitherto received virtually none, but our preliminary exploration suggests that it merits 
further investigation. 
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Footnotes 
 

1 We exclude from consideration mixed extensions in which players can choose probability distributions over their 
pure strategy sets. This article focuses on elementary games in which players can choose pure strategies only. 
 
2 Player i cannot solve the payoff dominance problem by applying the principle of insufficient reason, assuming that 
Player j is equally likely to select Hj or Lj, and concluding on this basis that Hi is a best reply. In game theory, the 
players’ rationality is assumed to be common knowledge, and it follows from this that, if Player i’s reasoning were 
valid, then j would anticipate it and would play Hj, the best reply to Hi, with certainty. Player i would anticipate this 
reply, refuting i’s initial assumption that the probability of Hj was 1/2 and undermining the basis of i’s argument for 
choosing Hi. The same reductio proof works against any argument based on assigning subjective probabilities to j’s 
strategies (Colman, 2003; Colman, Pulford, & Rose, 2008). 
 
3 In these circumstances, it makes no sense for players to weight their own and their co-players’ payoffs unequally, 
because they are maximizing a collective payoff function. 
 
4 The original has “conscience”—obviously an error by an author whose native tongue was not English. 
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