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Abstract

Radial basis functions (RBFs) have been successfully applied for the last four decades for

�tting scattered data in Rd, due to their simple implementation for any d. However, RBF

interpolation faces the challenge of keeping a balance between convergence performance and

numerical stability. Moreover, to ensure good convergence rates in high dimensions, one has

to deal with the di�culty of exponential growth of the degrees of freedom with respect to the

dimension d of the interpolation problem. This makes the application of RBFs limited to few

thousands of data sites and/or low dimensions in practice.

In this work, we propose a hierarchical multilevel scheme, termed sparse kernel-based in-

terpolation (SKI) algorithm, for the solution of interpolation problem in high dimensions. The

new scheme uses direction-wise multilevel decomposition of structured or mildly unstructured

interpolation data sites in conjunction with the application of kernel-based interpolants with

di�erent scaling in each direction. The new SKI algorithm can be viewed as an extension of

the idea of sparse grids/hyperbolic cross to kernel-based functions.

To achieve accelerated convergence, we propose a multilevel version of the SKI algorithm.

The SKI and multilevel SKI (MLSKI) algorithms admit good reproduction properties: they

are numerically stable and e�cient for the reconstruction of large data in Rd, for d = 2, 3, 4,

with several thousand data. SKI is generally superior over classical RBF methods in terms

of complexity, run time, and convergence at least for large data sets. The MLSKI algorithm

accelerates the convergence of SKI and has also generally faster convergence than the classical

multilevel RBF scheme.

i



ii

Dedicated to:

my mother, my wife, my children

AND

in the memories of
my father and my brother.



Acknowledgements

In the Name of ALLAH, Most Gracious, Most Merciful. May ALLAH shower His count-

less blessing and peace upon all His messengers and prophets sent from time to time

for the guidance of mankind and, in particular, the last prophet Hazrat Muhammad

(peace be upon him (PBUH)), who has always been and will always be the main source

of inspirations and guidance in all walks of life.

I would like to thank all the good people who made this thesis, in particular, and my

stay in Leicester, in general, a success. The foremost amongst these has been my super-

visor, Dr. Emmanuil Georgoulis. It has been an immense privilege to work with someone

of the very highest intellectual calibre. I must record my gratitude to Dr. Emmanuil

Georgoulis for his support, patience, enthusiasm, inspiration and critical thinking. His

insight, precision, and distrust for gratuitous abstraction have enormously inuenced my

development as a mathematician. His friendly, caring and understanding nature always

helped me to get through even at the times I was discouraged. In spite of his many

commitments, he has always been generous with his time.

I am grateful to all the honourable sta� members of the mathematics department

for their help. I wish to thank Prof. Jeremy Levesley, the head of department, for his

valuable ideas, suggestions and discussions throughout my studies in Leicester.

Certainly this work would not have been possible without the help of my family.

I salute and express my deep appreciation to my caring and loving parents for their

training, support, encouragement, prayers and dreams for my success during the whole

of my life. My warmest thanks go to my beloved wife Nusrat Subhan and our lovely

and fabulous daughters Javeria Subhan, Maria Subhan and Munazza Subhan. During

the course of my stay in the UK, I remained completely unable to look after my family,

and am indebted to my brilliant wife, who provided me with her continuous patience,

encouragement and support by looking after herself and our children in the best possible

way.

I am unable to thank my kind father Haji Saudagar and caring brother Faiz-ur-

Rahman, this dissertation is dedicated to their memories. May Allah keep their souls in

eternal rest and peace in heaven.

I wish to thank all my honourable teachers, from primary to the current level of

iii



iv

my education, for the important impact they have had on my career. I would also like

to extend my appreciation and thanks to all my relatives, friends and fellow research

students for their support and helping hands.

My profound gratitude goes to my sponsor, the Higher Education Commission (HEC)

of Pakistan for fully funding my studies of this degree in the UK. Finally, I wish to thank

my employer, the Higher Education Department of Khyber Pukhtoonkhwa, Pakistan for

granting me study leave to undertake this programme.

Fazli Subhan,

Leicester, England, UK.

July, 2011.



Contents

Abstract i

Acknowledgements iii

Notations and abbreviations xiv

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1

1.1 Objectives, Outline and Results . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Main achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Radial Basis Functions 11

2.1 The scattered data interpolation problem . . . . . . . . . . . . . . . . . . 11

2.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 RBF interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Anisotropic RBF interpolation . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Hyperbolic Crosses and Sparse Grids 27

3.1 Piecewise linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Hierarchical multilevel subspaces . . . . . . . . . . . . . . . . . . 27

3.2 Hyperbolic cross products/sparse grids . . . . . . . . . . . . . . . . . . . 31

3.2.1 Approximation order and size of sparse grid spaces . . . . . . . . 34

3.3 Sparse grid combination technique . . . . . . . . . . . . . . . . . . . . . . 35

4 Sparse kernel-based interpolation 38

4.1 Sparse kernel-based interpolation . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Stability of SKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Numerical Experiments for d=2 . . . . . . . . . . . . . . . . . . . . . . . 43

v



CONTENTS vi

4.3.1 Examples with Gaussian RBF . . . . . . . . . . . . . . . . . . . . 47

4.3.2 SKI simulations on ALICE, a computer with more RAM . . . . . 52

4.3.3 SKI with non Gaussian RBFs . . . . . . . . . . . . . . . . . . . . 54

4.4 SKI on perturbed grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Multilevel Sparse Kernel-Based Interpolation 63

5.1 Multilevel classical RBF interpolation . . . . . . . . . . . . . . . . . . . . 64

5.2 Multilevel sparse kernel-based interpolation . . . . . . . . . . . . . . . . 65

5.3 Stability of MLSKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Examples with Gaussian RBF . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Examples with non Gaussian positive de�nite RBFs . . . . . . . . 71

5.4.3 Examples with conditionally positive de�nite RBFs . . . . . . . . 72

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 High dimensional sparse kernel-based interpolation 82

6.1 MLSKI with Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 3-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.2 4-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Numerical examples with non Gaussian positive de�nite RBFs . . . . . . 92

6.2.1 3-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 4-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Examples with conditionally positive de�nite RBFs . . . . . . . . . . . . 101

6.3.1 3-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 4-variate interpolation . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusions and future work 111

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Outlook and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 116



List of Figures

2.1 The separation and the �ll distance for 35 Halton points. . . . . . . . . . 15

2.2 Radial Basis Functions, in the compactly supported RBFs 1=c, is their

support radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Gaussian RBF and the corresponding anisotropic Gaussain RBF, with

shape parameter 0.5 and center at (0.5, 0.5) . . . . . . . . . . . . . . . . 25

3.1 Piecewise bilinear basis function �l;i on Xl with l = (2; 1), i = (3; 1): . . . 29

3.2 Subspaces Wl for space V3;2 . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Subspaces Wl for space V
s
3;d, d=2 . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The full and sparse grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Sparse Grid Ys
7;3, of level 7 in 3D . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Sparse grid as superposition of coarser full grids . . . . . . . . . . . . . . 36

3.7 Sparse grid Ys
4;2 as a combination of coarser full grids . . . . . . . . . . . 36

4.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 RMS-error versus N(for RBFs) and SGnodes (Top row) and RMS-error

versus CPU-Time (Bottom row): Gaussian SKI (Green), RBF interpola-

tion (Red) with safe condition numbers . . . . . . . . . . . . . . . . . . . 49

4.3 Gaussian SKI (Green) RBF interpolation (Red) with large condition num-

bers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 RMS-error versus SGnodes (SKI) and N (RBF): SKI(Green) and RBF-

full grid (Red) with safe condition numbers (Top row) and with large

condition numbers (Bottom row) . . . . . . . . . . . . . . . . . . . . . . 56

4.5 RMS-error versus SGnodes (SKI) and N (RBF): SKI(Green) and RBF-full

grid (Red) for PD (Non Gaussian) and CPD RBFs, with safe condition

numbers (Top row) and with large condition numbers (Bottom row) . . . 57

4.6 RMS-error versus SGnodes: Regular sparse grid SKI (Green) and and SKI

on perturbed sparse grid (Red), using Gaussian with c = 0:45 producing

safe condition numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



LIST OF FIGURES viii

4.7 Full grid (Black dots), Perturbed full grid (Blue stars) and Perturbed

sparse grid (Red small circles) of level 3. . . . . . . . . . . . . . . . . . . 59

5.1 First six sparse grids in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 RMS error versus elapsed time using Gaussian RBF: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), with safe condition

numbers, evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . 69

5.3 RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF: SKI

(Green), RBF (Red), MLSKI (Black) and multilevel RBF (Cyan), with

safe condition numbers , evaluated at 25; 600 Halton points. . . . . . . . 70

5.4 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . 73

5.5 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . 74

5.6 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . 75

5.7 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . 76

5.8 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . 77

5.9 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \r3" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 25; 600 Halton points. . 78

5.10 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 25; 600

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES ix

5.11 Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 25; 600

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Sparse grid Ys
5;3of level 5 in [0 1]3. . . . . . . . . . . . . . . . . . . . . . . 85

6.2 RMS-error versus CPU-time using Gaussian RBF: SKI (Green), RBF

(Red), MLSKI (Black), MLRBF (Cyan), with safe condition numbers.

Error evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . 86

6.3 RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF:

SKI (Green), RBF (Red), MLSKI (Black), MLRBF (Cyan), with safe

condition numbers. Error evaluated at 125,000 Halton points. . . . . . . 87

6.4 RMS-error versus CPU-time using Gaussian RBF: SKI (Green), RBF

(Red), MLSKI (Black), MLRBF (Cyan), with safe condition numbers.

Error evaluated at 194,481 uniformly distributed points. . . . . . . . . . 90

6.5 RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF:

SKI (Green), RBF (Red), MLSKI (Black), MLRBF (Cyan), with safe

condition numbers. Error evaluated at 194,481 Halton points.. . . . . . . 91

6.6 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . 93

6.7 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . 94

6.8 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers ,

evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . 95

6.9 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . 96

6.10 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 194,481 Halton points. . . . . . . . . . . . . . . . . . . . . . 97



LIST OF FIGURES x

6.11 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 194,481 Halton points. . . . . . . . . . . . . . . . . . . . . . 98

6.12 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 194,481 Halton points. . . . . . . . . . . . . . . . . . . . . . 99

6.13 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 194,481 Halton points. . . . . . . . . . . . . . . . . . . . . . 100

6.14 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . 102

6.15 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \r3" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 125,000 Halton points. 103

6.16 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 125,000

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.17 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 125,000

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.18 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), ML-

SKI (Black) and multilevel RBF (Cyan), with safe condition numbers,

evaluated at 194,481 Halton points. . . . . . . . . . . . . . . . . . . . . . 106

6.19 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 194,481

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES xi

6.20 Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), evaluated at 194,481

Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



List of Tables

2.1 Globally supported Radial Basis Functions. . . . . . . . . . . . . . . . . . 18

2.2 Wendland's compactly supported Radial Basis Functions. . . . . . . . . . 19

2.3 Wu's compactly supported Radial Basis Functions. . . . . . . . . . . . . 20

3.1 Approximation and Complexity of Sparse grids . . . . . . . . . . . . . . 35

4.1 SKI results using Gaussian RBF with shape parameter c = 0:45 for each

level, test function Franke2D, on 160� 160 equally spaced evaluation grid. 47

4.2 RBF interpolation results using Gaussian RBF with shape parameter c =

0:5� 2n, test function Franke2D, on equally spaced 160� 160 evaluation

grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 SKI results using Gaussian RBF with shape parameter c = 0:45 for each

level, test function Franke2D, evaluated at 25; 600 Halton points. . . . . . 48

4.4 RBF interpolation results using Gaussian RBF with shape parameter c =

0:5� 2n, test function Franke2D, evaluated at 25; 600 Halton points. . . . 50

4.5 RBF interpolation results using Gaussian RBF with shape parameter

c=0:4� 2((5=7)n), test function Test1-2D, evaluated at 25; 600 Halton points. 50

4.6 SKI results using Gaussian RBF with shape parameter c=0:29 for each

level, test function Test1-2D, evaluated at 25; 600 Halton points. . . . . . 52

4.7 SKI results from ALICE using Gaussian RBF with shape parameter

c=0:45 for each level, test function Franke2D, evaluated at 25; 600 Halton

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 RBF interpolation results from the HPC ALICE using Gaussian RBF

with shape parameter c = 0:5� 2n, test function Franke2D, evaluated at

25; 600 Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 SKI, using GIMQ, with c = 0:21 for each level, using test function Test1-

2D, on 160� 160 equally spaced evaluation grid. . . . . . . . . . . . . . . 55

4.10 SKI using MQ, with c = 0:4 for each level, using test function Test1-2D,

on 160� 160 equally spaced evaluation grid. . . . . . . . . . . . . . . . . 58

xii



LIST OF TABLES xiii

4.11 SKI results: sparse grid is perturbed by adding random numbers from

(0; 2�level=4), using Gaussian RBF with c = 0:45 for each level, test func-

tion Franke2D, on 160� 160 equally spaced evaluation grid. . . . . . . . 60

4.12 SKI results: sparse grid is perturbed by adding random numbers from

(0; 2�level=4), using Gaussian RBF with c = 2hr=3, using test function

Franke2D, on 160� 160 equally spaced evaluation grid. . . . . . . . . . . 60

5.1 Multilevel SKI results from ALICE, using Gaussian RBF with c = 0:45

for each level, test function Franke2D, evaluated at 25; 600 Halton points. 71

6.1 SKI results from ALICE c = 2hr

3
, using test function Franke3D, evaluated

on 125,000 Halton points. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 MLSKI results from ALICE , using Gaussian RBF with c = 2hr

3
, test

function Franke3D, evaluated at 125,000 Halton points. . . . . . . . . . . 88

6.3 SKI interpolation results from HPC ALICE, using Gaussian RBF with

c = 2hr

3
, using test function Test1-4D, evaluated at 194,481 Halton points. 109



Notations and abbreviations

Notation

[�(A)] The condition number of a matrix A with respect to a given matrix norm . . . 12

[�max] Maximum singular value of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

[�min] Minimum singular value of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

[�max] Maximum eigenvalue of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

[�min] Minimum eigenvalue of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

[�dm] The space of d-variate polynomials of degree not exceeding m . . . . . . . . . . . . . . . . 14

[hX;
] The �ll distance of the data corresponding to the data sites X in 
 . . . . . . . . . 14

[qX ] The separation distance of the data sites X in a given domain . . . . . . . . . . . . . . . . 14

[brc] The largest integer that does not exceed r, where r 2 R . . . . . . . . . . . . . . . . . . . . . . 17

[dre] The smallest integer not less than r, where r 2 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

[C2k(Rd)] Space of smooth functions on Rd of smoothness order 2k . . . . . . . . . . . . . . . 19

['A(k � k)] Anisotropic radial basis function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

[Xp;(
)] The space of all functions with derivatives up to order  in Lp(
) . . . . . . . 28

[Xl] Anisotropic d-dimensional grid with mesh size 2�l, l 2 Nd . . . . . . . . . . . . . . . . . . . . . 28

[Vn;d] The discrete space of piecewise d-linear basis functions associated with the equally

spaced grid of level n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

[V s
n;d] The sparse grid space of level n corresponding to the discrete space Vn;d . . . . .32

[Ys
n;d] Sparse grid of level n in d-dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

[SAl
(x)] The anisotropic RBF interpolant to the data on the sub-grid Xl corresponding

to the ARBF 'A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

xiv



Notation and abbreviation xv

[Sc
n(�)] Sparse Kernel base interpolant of level n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

[MQ] The RBF
p
1 + c2r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

[GIMQ] The RBF 1
(1+c2r2)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

[IMQ] The RBF 1p
1+c2r2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

[IQ] The RBF 1
1+c2r2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

[ALICE] Computer cluster of the University of Leicester . . . . . . . . . . . . . . . . . . . . . . . . . . 52

[WE32] The RBF '3;2(r) = (1� cr)6+(35c2r2 + 18cr + 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 54

[TPS2] The RBF r2log(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

[TPS3] The RBF r4log(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

[TPS4] The RBF r6log(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Abbreviation

[RBF] Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

[CSRBF] Compactly Supported Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

[DOF] Degrees Of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

[PDE] Partial Di�erential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

[SKI] Sparse Kernel-based Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

[ARBF] Anisotropic Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

[MLSKI] Multilevel Sparse Kernel-based Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

[PD] Positive De�nite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

[CPD] Conditionally Positive De�nite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

[GSRBF] Globally Supported Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

[CSRBF] Compactly Supported Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

[RMS] Root Mean Squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

[HPC] High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

[MLRBF] Multilevel Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

[FEM] Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Notation and abbreviation xvi

[FDM] Finite Di�erence Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Chapter 1

Introduction

Multivariate scattered data interpolation and approximation is an important area of sci-

ence and engineering that has many applications such as mapping problems in geodesy,

geophysics and meteorology [56], [57], [58], [59], solution of partial di�erential equa-

tions [28], [29], [66], [67], �tting of potential energy surfaces in chemistry, coupling of

engineering models with sets of incompatible parameters, non uniform sampling, e.g.,

medical imaging [18], [96], mathematical �nance such as option pricing [78], computer

graphics, e.g., representation of surfaces from point information such as laser rang scan

data and image warping [1], [48], learning theory, neural networks, data mining [47], [4]

and optimization.

In practice, the number of parameters or dimensions can go up to hundreds or may

be even up to several thousands in some cases. Even with the most modern and fast

developing computing technology, it is di�cult and, sometimes, impossible to perform

direct computer simulations of many large problems, especially in high dimensional

settings. The main reason is the limitation of the computer memory and long simulation

time.

Hence it is of crucial importance to develop e�cient techniques and tools for sim-

ulating in computational mathematics, starting from tasks like how to de�ne sets of

points to approximate, interpolate, or to integrate certain classes of functions as good

as possible, up to the numerical solutions of di�erential equations. This work concerns

the development of a new interpolation method for the interpolation of high dimensional

(large) data sets.

Let f jX = [f(x1); :::; f(xN)]
T 2 RN ; sampled from an unknown function f : Rd !

R at a �nite point set X = fx1; :::;xNg � R
d, d � 1. The interpolation problem

consists of �nding a suitable function s : Rd ! R; (called the interpolant), satisfying the

interpolation conditions

s(xi) = f(xi); 1 � i � N: (1.1)

1
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The fact that xj`s (the data sites) are allowed to lie in d-dimensional space Rd

means that the formulation of the above problem allows to cover many di�erent types

of applications. If d = 1; the data could be a series of measurements such as heat of a

body, taken over a certain time period, thus the data sites would correspond to contain

time instances, or it could be a property that change only with altitude. For d = 2;

we can think of the data being obtained over a planar region, and so xj correspond to

the two coordinates in the plane. For instance, we might want to produce a map which

shows the rainfall in the country we live in based upon the data collected at weather

stations located through out the country. For d = 3; we might think of an extension

of this situation into space over the globe. One of the possibilities is that we could

be interested in the temperature/pressure or any other chemical or physical property

inside some solid body. Higher-dimensional examples might not be that intuitive, but a

multitude of them exist, e.g., in areas such as:

� �nancial mathematics, where the price of an option based on d underlying stocks

can be computed through solving the d-dimensional Black � Scholes equation.

� molecular biology, is the chemical balance in a cell. There, the dimensions are the

di�erent substances that interact and inuence the system.

� quantum mechanics, the number of dimensions in a system is proportional to the

number of particles within a molecule.

Radial basis function (RBF) interpolation is a powerful tool for approximating and

interpolating multidimensional data and/or when the data is scattered in its domain.

Over the last four decades RBFs have been a fast growing research area and found to be

widely successful for interpolation of scattered data, not only in mathematics but also in

the applied sciences community. RBFs interpolation originated in the 1970's [56], [57],

[58] and since that time has been successfully used in a variety of applications. In RBF

interpolation the space from which the interpolant is chosen changes with the data sites

of interpolation. Thus, the Mairhuber counter-example (which states that any method

for which the interpolant does not change with data sites is doomed to fail for at least

one choice of N � 2 in Rd, d � 2) does not apply. Despite the attractive properties

of RBFs such as nice convergence, easy implementation and their spatial dimension

independence, the direct computation of RBF interpolation can be cumbersome. The

respective linear system of the global RBFs turns out to be full in most cases. Moreover,

the interpolation system is usually ill-conditioned as data density increases [31], [81],

[82]. This instability can be circumvented by using more peaked basis functions, or

compactly supported basis functions but at the cost of accuracy; even then only for

moderate number N . On the other hand, using RBFs depending on a scaling parameter
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called the shape parameter such as Gaussians and multiquadrics etc, good accuracy is

achieved with small shape parameter (at RBFs). However, in this case the interpolation

matrix becomes ill-conditioned and this results in very large interpolation coe�cients,

which can cause cancelation of terms when they are combined to get the interpolant.

This may result in loss of evaluation accuracy. So even for small data sets, we have to

have a compromise on accuracy for achieving stability. This is known as the principle of

uncertainty [81]. So, a balance between the stability and convergence of RBF schemes

is an issue of concern. The compactly supported RBFs produce sparser linear system,

but this sparsity is lost as higher convergence rates are sought.

Solving the RBF system by non-customized methods such as Gaussian elimination,

(exploiting symmetry) requires O(N3) ops and O(N2) storage. Moreover, a single

direct evaluation of the interpolant requires O(N) operations. Experience with RBF

interpolants on small problems has been almost universally positive. However, their

applications to large problems with 10,000 or more centers have been limited due to

prohibitive computational costs. For example, a problem with data size 20,000 requires

approximately 1:5GB of core memory, and 1013 ops, which is impractical. So, large N

implies unacceptable computational cost. On the other hand, the bad conditioning of

the interpolation matrix makes the results unreliable.

It is now accepted, that direct methods are inappropriate for problems with N �
10; 000 [7].

The RBFs literature contains many comments on the desirable properties of RBF

interpolants and their computational di�culties. Here we quote some of them:

� [27] \The global interpolation methods with Duchon's \thin plate splines" and

Hardy's multiquadrics are considered to be of high quality; however, their appli-

cation is limited, due to computational di�culties, to �150 data points."

� [84] \Practical problems often arise with many more than 10,000 data sites; for

example, in aeromagnetic survey work it is common to have 50,000 to 100,000

observations in a single data set. We believe that such problems will inde�nitely

remain beyond the scope of thin-plate splines."

� [36] \The most accurate results of registration of images with local distortions were

obtained by using the surface spline mapping functions. As shown below, their

direct use has extreme computing complexity and is not suitable for practical

applications."

These limitations make the use of classical RBF methods restricted to only few

thousands of data sites, but practically large scale problems often arise with tens of

thousands of data sites. For example, in aero-magnetic survey work it is common
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to have more than 50,000 data sites. So RBFs su�er from instabilities on one hand

and the complexity issue on the other. Therefore it is natural to design strategies

to prevent such instabilities and limitations. To address the phenomenon of these

practical di�culties attached with RBFs schemes, several techniques/remedies have

been suggested. Some of these techniques are such as methods of domain decompo-

sition [26], [75], the introduction and application of compactly supported radial basis

functions (CSRBFs) [80], [82], [92], [95], [30], [23], [22], [24] etc., multilevel interpolation

methods [35], [65], preconditioning strategies such as local approximate cardinal func-

tion, least square approximate cardinal functions and domain decomposition together

with approximate cardinal functions [73], [10], [7], [75], [69], [72], [34] etc. Fast and

e�cient methods for RBF interpolation can be found in [26], [75], [7], [8]. In [75], [7],

approximate cardinal function pre-conditioner, a fast multiply and GMRES iterative

approaches are combined to give a fast �tting RBF method. A domain decomposi-

tion method is given in [8], whereby the domain is subdivided into smaller overlapping

domains.

Using RBFs with a scaling parameter called the shape parameter such as Gaus-

sians and multiquadrics etc, good accuracy is achieved with small shape parameter (at

RBFs), if the attached instability is addressed. So it is of importance to have sta-

ble algorithms for small shape parameters, one such method is the Contour-Pade [40]

of Fornberg and Wright, while another one is the RBF-QR method [39] developed for

the case when the nodes are distributed over the surface of a sphere by Fornberg and

Piret. Very recently, two stable algorithm for the evaluation of Gaussian RBF inter-

polant with at kernels have been introduced, one by Fasshauer and Mccourt [32] and

one by Fornberg, Larsson and Flayer [38]. In [38], the RBF-QR approach of [39] has

been implemented in cases of 2-dimensional domains. RBF-QR method works for tens

of points in one dimension, hundreds of points in two dimensions, and thousands of

points in three dimensions. In [32], the authors present stable Gaussian interpolation in

R
4. These methods address the stability issues and are in general still limited to small

problems and/or lower dimensions.

In [75], [7], it was shown that the combination of a suitable approximate cardinal

function preconditioner, a fast multiplication, and GMRES iterations, make the solution

of large RBF interpolation problems orders of magnitude less expensive in storage and

operations. These authors present a fast �tting method for large N and show that it

is now possible to �nd fast �tting coe�cients for a data set (e.g a geophysical data)

containing 20,000 points in less than 2 minutes. Domain decomposition method is

another approach to address the e�ciency and complexity issues. For example, in [8],

an algorithm based on overlapping domain decomposition is used to solve a problem of

size 10,000 in 7 seconds and the authors claim that existing code has been successfully
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used to �t data sets of up to 5 million points in 2 dimensions, and up to 250,000 points

in 3 dimensions.

The implementation of RBFs on a computer is quite simple and insensitive to the

dimension d of the data set space. This makes RBFs a potentially e�ective tool for

application to high dimensional problems, if the size and complexity challenges described

above are addressed. This work aims at addressing these challenges.

1.1 Objectives, Outline and Results

1.1.1 Motivation and objectives

Numerical simulations on gridded data are generally speaking limited to low dimensions.

This limitation is known as the curse of dimensionality, a term due to Bellmann [9].

The computational expense of representing an approximation with a given accuracy �,

depends exponentially on the dimension d of the space Rd of the problem considered. For

instance, to solve an interpolation problem on a uniform grid over a bounded domain 


� Rd; the complexity estimate translates O(Nd) degrees of freedom, where N is size of

the input data on the full grid. This is the reason for restriction to very few dimensions

as stated above, even on the most modern and e�cient machines. For example, for the

resolution of 33 points in each coordinate direction for 6-dimensional problem, we need

more than 109 degrees of freedom (DOF).

The issue of the curse of dimensionality can be circumvented to some extent by

imposing stronger assumptions on the smoothness of the functions under consideration.

Hyperbolic cross spaces were introduced in early 1960's, for example, Smolyak [86] and

Babenko [2] in the context of numerical integration. In [86] and [2] the extra smoothness

assumptions were used to construct quadrature rules for high dimensional functions

based on the so called hyperbolic cross products.

More recently, Zenger in 1991 [97] introduced sparse grid methods for the solution of

PDEs. These methods have also been used for interpolation and approximation [3], [90],

[85], [52], [70] and are closely related in spirit with the hyperbolic cross product idea.

The sparse grid method is based on a hierarchical basis (a representation of a discrete

function space which is equivalent to the conventional nodal basis) and a sparse tensor

(hyperbolic cross) product construction. Sparse grid methods have been introduced in

the context of numerical methods for the solution of partial di�erential equations (PDEs)

for �nite di�erence methods [51], [53] and �nite volume methods [61].

Sparse grid methods allows for a massive reduction of the amount of storage to solve a

problem with given accuracy, provided the underlying functions to be approximated are

su�ciently smooth. In particular, instead of the standard Sobolev spaces, the solution
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lies in the anisotropic Sobolev spaces (also known as Mixed Sobolev spaces). The sparse

grid methods have been extended to non smooth solutions by adaptive re�nement [51].

However, hyperbolic cross/sparse grid spaces consist of shifts of more than one basis

function. This makes the use of analogous to hyperbolic cross/sparse grid-type ideas

in the context of RBF interpolation particularly cumbersome. This is because, apart

from the technical di�culties in implementing such interpolation procedures, there is

no underlying theory for the solvability of the resulting interpolation problem. We note

that in [83] hyperbolic cross products in one dimensional RBFs have been considered.

The purpose of this thesis is to present a new kernel-based interpolation method

which overcomes the computational complexity and conditioning di�culties presented

by large RBFs interpolation problems in higher dimensions. The new scheme uses

direction-wise multilevel decomposition of structured or mildly unstructured interpo-

lation data sites in conjunction with the application of kernel-based interpolants with

di�erent scaling in each direction. The new algorithm, which we name Sparse Kernel-

based Interpolation (SKI) algorithm can be viewed as extension of the idea of sparse

grids/hyperbolic cross to kernel-based functions.

The main idea is the use of anisotropic RBF interpolation in conjunction with the

hyperbolic crosses in the form of the, so called, sparse grid combination technique.

The combination technique [54] is a sparse grid representation where partial solu-

tions are evaluated on a certain sequence of coarser grids and the solution is obtained

by linearly combining these partial solutions. By combining several partial approxima-

tions based on the translates of the same basis function, it is possible to achieve good

approximation of smooth functions while keeping the memory requirements low. The

dependence of the combination technique on the translates of the same basis function,

makes it attractive for application in the context of d-variate RBFs. Due to the parallel

nature of the combination technique and the practical insensitivity of RBF to the di-

mension parameter d, blending the two ideas could potentially prove to be e�ective for

large and/or high dimensional problems. This is the idea the main motivation for the

proposed sparse kernel-based interpolation method stems from.

In the context of RBF interpolation, the property that in each partial interpolation

problem the basis functions is translation of a single function is of crucial importance to

ensure the provable well-posedness of the interpolation problem. Due to the anisotropic

nature of the data in the partial approximation in the combination technique, we make

use of anisotropic radial basis function (ARBF) interpolation. ARBFs have proven to

be e�ective to the interpolation of anisotropic data sets or functions [19], [20], [6]. Due

to the insensitivity of the ARBFs to the dimension parameter d and the elementary

nature of each partial ARBF interpolation problem, the implementation of the new

method is straightforward in Rd for any d. The naturally parallel nature of the new
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method by solving the partial problems on the coarse data sets independently, makes it

perfect for implementation in parallel fashion on modern high performance computing

systems. The SKI method has shown to be e�ective for the solution of large problems:

on an ordinary laptop computer it can solve an interpolation problems of moderate

size of order 13; 000 (on an ordinary computer) and even more than 60,000 (on a high

performance computer) nodes in smaller times and nearly with the same accuracy when

compared to the classical RBFs interpolation in two dimensions. The computational

savings become more evident in high dimensions: we have also implemented the method

to high dimensional interpolation problems in Rd for d = 3, 4 with very encouraging

numerical results.

The method is further extended to its multilevel version termed multilevel sparse

kernel-based interpolation (MLSKI). The classical multilevel interpolation scheme intro-

duced by Iske and Floater [35] and further studied by Iske, Levesley and Hales in [63],

[65] and [55], makes use of hierarchical nested decomposition of the data. In the context

of SKI, the nestedness property of the nodes in the partial approximations up to the �nal

level corresponding to the data to be interpolated, gives rise to a natural implementa-

tion of the MLSKI. In principle, we follow the scheme given in [35] to recover the global

features of the data by evaluating the sparse kernel-based interpolant on the sparse

grid of level one and then recovering its local behavior by interpolating the residuals on

the subsequent sparse grids. The multilevel application accelerates the convergence of

SKI. MLSKI is faster and superior in convergence than the multilevel RBF interpola-

tion. In addition MLSKI has the same nearly one-dimensional complexity of SKI and

is, therefore, capable of solving larger and/or high dimensional problems.

1.1.2 Main achievements

The SKI and MLSKI algorithms aiming at high dimensional interpolation are proposed.

We perform extensive numerical experiments by implementing the proposed SKI and

its multilevel version to interpolate several d-variate functions for d � 2: In our experi-

ments, we have implemented the na��ve RBF approach to solve the partial interpolation

problems in the SKI scheme. Thus, it is fair to compare our method with the na��ve

RBF interpolation method, as we shall do through out all the experiments reported in

this thesis. We remark that the fast RBF methods mentioned above can be applied to

accelerate SKI. The implementation of the method in all our experiments, on ALICE

(computing cluster of the University of Leicester) as well as on an ordinary computer,

has been done in Matlab and in serial. We use a desktop computer \Core 2 Duo CPU

@ 3.16GHz 3.17GHz and 3.24GB of RAM" for d=2, 3. For d=4, we use ALICE to be

able to run many experiments at the same time by accessing as many nodes of ALICE.
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Each experiment was run in serial on a single node (having a pair of quad-core 2.67GHz

Intel Xeon X5550 CPUs and 12GB of RAM) which is equivalent to a more powerful

desktop computer. Thus all the CPU timing and the problem size shown here relate to

computations that can be run on an ordinary computer mentioned above. Moreover, we

are going to report separately the largest size of the problem that SKI can solve on a

single node of ALICE for d =2, 3, 4 in Sections 4.3.2, 5.4.1.1(a), and in Tables 6.1, 6.2,

6.3.

The 2-dimensional results with direct SKI, are presented in Chapter 4, and they con-

�rm the generally superior performance of SKI over the classical RBFs interpolation.

The SKI visits some nodes more than once, but is still faster when machine time is

considered as a function of the sparse grid nodes irrespective of the fact that this redun-

dancy is included or excluded. SKI outperforms RBF in terms of accuracy as function of

machine time. As for as the computations remain stable, the convergence is also faster

if considered as a function of the input data size. When implemented on an ordinary

computer mentioned above, SKI can solve an interpolation problem on a sparse grid of

level up to 10, having 13,313. On a single node of ALICE, SKI solves interpolation on

sparse grids of level up to 12, having more than 60,000 nodes for d=2. A single node of

ALICE corresponds to a more power full desktop computer. Henceforth, ALICE should

be understood as a desktop computer with more RAM. SKI algorithm generally shows

better e�ciency in terms of accuracy, complexity and the run time over the classical

RBF method when the computation is stable.

SKI having nearly one-dimensional complexity, is capable of solving even larger in-

terpolation problems in higher dimensions. We continue implementing the algorithm

for the interpolation of a range of d-variate functions for d=3, 4. These high dimen-

sional numerical results recon�rms the, generally, superior performance of the scheme

observed in the 2-dimensional experiments. On an ordinary machine, the scheme can

solve interpolation problem on sparse grids of level 8 containing 21,249 nodes for d=3.

When d=4, SKI can solve interpolation on a sparse grid containing 52,993 nodes. In

our experiments on ALICE, the maximum size of a d-variate interpolation problem that

SKI can solve is 114,690 for d=3 and 331,780 nodes for d=4. The corresponding full

grids would have sizes of order 109 and 1011 respectively. On the other hand, due the

d-dimensional complexity the maximum size of classical RBF interpolation problem in

our experience on ALICE is only nearly 15,000 regardless of the dimension. Hence SKI

has better complexity in particular when it comes into high dimensional interpolation

problems. The numerical results presented in Chapter 4 and Chapter 6, show that SKI

algorithm is not only faster but also often superior in terms of convergence (it might be

slower in some cases if error is considered as a function of the input data size), stability

and complexity to the classical RBF interpolation in Rd for d � 2.



1.1 Objectives, Outline and Results 9

The SKI algorithm has been implemented with a wide range of RBFs. The use of

positive de�nite RBFs such as Gaussian and inverse multiquadrics as basis functions ad-

mit good convergence, and among them the best convergence is observed with Gaussian.

The slower convergence of SKI with inverse multiquadrics as the basis function, agrees

with the superior convergence of Gaussian over inverse multiquadrics in the context

of direct RBF interpolation. Among the conditionally positive de�nite (CPD) RBFs

such as multiquadrics (MQ), poly-harmonics and radial powers, MQ produces nearly

same convergence as the inverse multiquadrics. For other CPD RBFs such as thin plate

splines, the convergence is either very slow or the scheme does not converge at all.

Apart from the encouraging performance of SKI on structured grids, its convergence

on mildly irregular sparse grids is also observed.

Following the ideas of Floater and Iske [35], the multilevel sparse kernel-based inter-

polation is capable of accelerating the convergence of SKI by several order with same

complexity and linear time. A series of numerical experiments with a wide range of

RBFs for MLSKI to interpolate a d-variate function for d=2, 3, 4 can be found in Chap-

ter 5 and Chapter 6. We observe from its numerical performance that the proposed

MLSKI interpolation method is superior in terms of convergence, run time, and com-

plexity as compared to classical multilevel RBF interpolation. The implementations of

the methods in all our experiments, on ALICE as well as on an ordinary computer,

have been done in Matlab and in a serial way. Since the proposed method is perfect

for implementation in parallel on modern high performance computing (HPC) systems,

its generally superior performance in terms of run time and complexity could be more

visible if implemented in parallel.

1.1.3 Outline

This dissertation is organized as follows.

In Chapter 2, we give an overview of the RBF interpolation. This family of basis

functions provides us with the main tools for our methods in this work.

In Chapter 3, linear sparse grid spaces are discussed followed by an introduction to

their indirect version the so called combination technique.

In Chapter 4, we introduce the sparse kernel-based interpolation (SKI) method. The

SKI is computed by evaluating anisotropic RBF interpolants on subsets of the data

set and then linearly combining following the combination technique ideas. Numerical

results for a range of RBF interpolants are presented. We make a distinction between

Gaussian RBF and others as, Gaussian RBF has tensor product nature. Sparse grid

techniques [11], [97], [54], [14] are based on hierarchical tensor product multi-linear

basis.
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In Chapter 5, the multilevel version of the new sparse kernel-based interpolation

MLSKI is presented. In high dimension, achieving a high degree of accuracy could be

di�cult but this might be required in some problems. The purpose of the multilevel

sparse kernel-based interpolation is to accelerate the convergence of SKI algorithm. The

implementation of MLSKI is somewhat analogous to the standard multilevel RBF inter-

polation [35], [63], [65], [55]. SKI is naturally �t for multilevel settings as the data sets

used in each level of the SKI algorithm are nested.

In Chapter 6, we perform 3-variate and 4-variate interpolation of 4-dimensional and 5-

dimensional data, respectively. We compare our results for direct and multilevel versions

of the sparse kernel-based method to the classical and multilevel RBF interpolation

(MLRBF).

In Chapter 7, we draw some conclusions on the new developments presented in this

work and we discuss the overall performance of the proposed methods. Finally we briey

discuss our plan about future research and ideas on possible extension of the current

results.



Chapter 2

Radial Basis Functions

2.1 The scattered data interpolation problem

The scattered data interpolation problem reads: given a set of measurements (called the

data sets) obtained at certain locations (called data sites), we are interested in �nding a

rule (e.g., an unknown function) which allows us to deduce information about the process

we are studying also at the locations di�erent from those at which measurements are

available. In other words, the objective is to �nd a function s(�) which is a good �t to the
given data. One way of constructing such a function s(�) is by requiring that s(�) passes
through the data, i.e., matches the given measurements at the corresponding locations.

This approach is called interpolation.

De�nition 2.1 (Scattered data interpolation) Given data (xi; yi); i = 1; : : : ; N ,

with xi = (x1; : : : ; xd) 2 Rd, yi 2 R, �nd a smooth function s : Rd ! R such that

s(xi) = yi, i = 1; : : : ; N where s is a suitable function called interpolant to the data.

A common approach to solve the scattered data interpolation problem is to assume

that the interpolant s(�) is a linear combination of certain basis functions, �i(x); i =

1; : : : ; N; i.e.,

s(x) =
NX
i=1

ci�i(x) x 2 Rd: (2.1)

Then the interpolation conditions

s(xi) = yi; i = 1; : : : ; N; (2.2)

lead to the linear system

Ac = y; (2.3)

11
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with

A = [�j(xi)] 2 RN�N ; 1 � i; j � N , c = [c1; : : : ; cN ]
T 2 RN , y = [y1; : : : ; yN ]

T 2 RN :

A unique solution of this problem exists, if and only if the interpolation matrix A

is non singular and the well-posedness of the problem depends upon the choice of the

basis functions f�j : j = 1; : : : ; Ng. In the next section, we recall some of the basic con-

cepts such as positive de�niteness, matrix norm, condition number of a matrix, stability

of a linear system etc, that will be useful for the understanding of the solution and

implementation of the interpolation problem.

2.2 Basic concepts

De�nition 2.2 (lp-norm) Let A : Rn ! R
m and v 2 Rn. The p�norm or lp�norm,

p � 1 of matrix A induced by the vector norm k � kp is de�ned as

kAkp = max
v2Rnnf0g

kAvkp
kvkp ;

where, kvkp = f
Pn

i=1 jvijpg
1

p :

Some of the commonly used norms are, kvk2 = fPn
i=1 jvij2g

1

2 ; kAk2 =
p
�(ATA);

kvk1 =
Pn

i=1 jvij; kAk1 = max1�j�n
Pm

i=1 jAijj; kAk1 = max1�i�m
Pn

j=1 jAijj and
kvk1 = max1�i�n jvij:

De�nition 2.3 (Condition number of a matrix) The condition number of a ma-

trix A with respect to any matrix norm k � k is de�ned as

�(A) = kAkkA�1k:

In the 2-norm, the condition number �(A) is given by

�(A) = kAk2kA�1k2 = �max

�max
;

and, in particular, when A is positive de�nite it becomes �(A) = �max

�min
:

The condition number of a matrix or a linear system is of fundamental importance

in computations. Conditioning is a measure of the sensitivity/stability to the pertur-

bations made by the algorithm used to solve the problem on a computer. In practice

perturbations in the input data are unavoidable, for instance caused by the rounding-o�

errors due to machine precision. A problem sensitive to small perturbations is termed as

ill-conditioned and it su�ers from instabilities when solved on a machine. A numerical

algorithm is stable if the output depends continuously on the input data.
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To see this, consider the linear system

Ay = b: (2.4)

Let us perturb the right side of (2.4) from b to ~b and let ~y be its new solution, then it

can be shown ([62],[89],[87],[49],[91]) that

�y

kyk � �(A)
k�bk
kbk ; (2.5)

where �y = ky� ~yk is the error corresponding to the perturbation �b = kb� ~bk in the

right side b:

If the matrix A in (2.4) is perturbed from A to ~A then one gets [91]

�y

kyk � �(A)
k�Ak
kAk ; (2.6)

where �A = kA � ~Ak is the perturbation in the matrix A: So from inequalities (2.5)

and (2.6), we see that if �(A) = O(1), the system (2.4) is not sensitive to small

perturbations in A and in b and is, therefore, well-conditioned. The bounds in (2.5)

and (2.6) are sharp at least theoretically, that is there exist b, �b,x, �x, A, �A for which

equality holds in (2.5) and (2.6). If 1n �(A) < 1, we might get large �y
kyk for small

�b
kbk . In this case (2.4) is called ill-conditioned. If �machine denotes the machine precision

then the relative error is given by

ky � ~yk
kyk = O(�(A)�machine) (2.7)

Equation (2.7) shows that we might be losing blog10(�(A))c digits in computing the

solution y, where for any real number r, brc stands for the largest integer that does

not exceed r. Practically due to the, so-called, e�ective well conditioning [21], the

relative error might be substantially smaller than that predicted by the bounds given

in (2.5) and (2.6); however due the error propagation, it may not be possible to always

quantify or guarantee this e�ective well conditioning in the case of large �(A) when the

interpolation step is only one part of a numerical algorithm.

De�nition 2.4 (Multi-index notation) Let N0 denote the set of non-negative in-

tegers. A d-dimensional multi-index is a d-tuple � = (�1; : : : ; �d) 2 N
d
0: For x =

(x1; : : : ; xd) 2 Rd, we de�ne j�j = �1 + � � �+ �d; x
� = x�11 � x�22 � � �x�dd ; and

D� =

�
@

@x1

��1

� � �
�

@

@xd

��d

=
@j�j

@x�11 : : : @x�dd
:
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Let us denote by �dm the space of d-variate polynomials of degree not exceeding m. The

polynomial space �dm has the following properties (see, e.g., [94]).

Theorem 2.5 The mononomials x 7! x� x 2 Rd , � 2 Nd
0 are linearly independent

and dim�dm =

 
m+ d

d

!
:

De�nition 2.6 (Condition of unisolvancy) The data sites X = fx1; :::;xNg � R
d

with N � M = dim�dm are called �dm-unisolvent if the zero polynomial is the only

polynomial from the space �dm that vanishes on all of them.

For instance, �21 = span(1; x1; x2) , x1; x2 2 R, is a bivariate linear space and dim�21 = 3.

Every polynomial in �21 describes a plane in the three dimensional space and this plane

is uniquely determined by three points if and only if these points are not collinear. Thus

three points in R2 are �21 -unisolvent if and only if they are not collinear.

A generalization of this fact, that can be found in [94], [31], is the following theorem.

Theorem 2.7 Suppose that fl0; l1::::lmg is a set of m + 1 distinct lines in R2 and that

X = fx1; :::;xMg is a set ofM = dim�2m = (m+1)(m+2)=2 distinct points such that the

�rst point x1 lies on l0, the next two points x2 and x3 lie on l1 but not on l0, next three

points x4, x5 and x6 lie on l2 but not on l0 and l1, and so on, so that last m+ 1 points

lie on lm but not on any of the previous lines l0; l1::::lm�1. Then X is �2m-unisolvent.

De�nition 2.8 (Fill distance) We de�ne the �ll distance of the data corresponding

to the data sites X in 
 hX;
 by

hX;
 = sup
x2


min
xj2X

kx� xjk2:

The �ll distance is used as a measure of the data distribution. A geometric interpretation

of the fill distance is given by the radius of the largest open ball inside 
 that does not

contain a data site. This decreases by increasing the number of uniformly distributed

data sites.

De�nition 2.9 (Separation distance) We de�ne the separation distance of the data

sites X in a given domain qX by

qX =
1

2
min
i6=j
kxi � xjk2:

The separation distance is sometimes also referred to as the packing radius. Physically

the separation distance is the maximum r > 0 such that all the open spheres fx 2
R
d : kx� xjk2 < rg do not overlap as shown in Figure 2.1.



2.2 Basic concepts 15

Figure 2.1: The separation and the �ll distance for 35 Halton points.

Radial basis functions (which we are going to discuss later in this chapter) are the

basic tools used in this work. All popular choices of these basis functions are not of the

same kind in the context of the well-posedness of the the associated interpolation system.

For the clarity of our later discussion about the well posedness of the resulting linear

system, we briey discuss the notions of positive de�nite function, conditionally positive

de�nite function and the associated matrices such as positive de�nite and positive semi-

de�nite.

De�nition 2.10 (Symmetric positive de�nite matrix) A real symmetric matrix A

is called positive semi-de�nite if its associated quadratic form is non negative, i.e.,

cTAc =
NX
j=1

NX
k=1

cjckAjk � 0

for c = [c1; :::; cN ]
T 2 RN : If the above quadratic form is zero only for c � 0, then A is

called positive de�nite.

De�nition 2.11 (Positive de�nite (PD) functions) A continuous real function � :
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R
d ! R is called positive semi-de�nite on Rd if and only if

NX
i=1

NX
j=1

cicj�(xi � xj) � 0

for any N pairwise di�erent points x1; :::;xN 2 Rd, and c = [c1; :::; cN ]
T 2 RN . The

function � is called positive de�nite on Rd if the above quadratic form is zero only when

c � 0.

De�nition 2.12 (Conditionally positive de�nite (CPD) functions) A continuous

real function � : Rd ! R is said to be conditionally positive de�nite of order m (CPDm)

on Rd if and only if

NX
i=1

NX
j=1

cicj�(xi � xj) > 0

holds for all possible pairs (c; X) of choices for c = [c1; :::; cN ] 2 RN n f0g and X =

fx1; :::;xNg � Rd satisfying the vanishing moments conditions

NX
j=1

cjP (xj) = 0;

for all P 2 �dm�1.

Some important properties of positive de�nite/positive semi-de�nite/conditionally

positive de�nite functions are list below:

� A conditionally positive de�nite function of order m = 0 on Rd, is positive de�nite

on Rd

� If �1(:); � � � ; �d(:) are positive de�nite and integrable on R. Then the tensor prod-

uct function

�(x) = �1(x1) � � ��d(xd); x = (x1; � � � ; xd) 2 Rd;

is also positive de�nite.

� A function that is conditionally positive de�nite of orderm on Rd is also condition-

ally positive de�nite of any higher order. In particular, a positive de�nite function

is always conditionally positive de�nite of any order.

� The product of two (and hence a �nite number) of positive de�nite functions is

also positive de�nite.
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� If �1(:); � � � ;�d(:) are positive semi de�nite, cj � 0, j = 1; � � � ; n, then �(�) =
c1�1(�) + � � � + cn�n(�) is also positive semi de�nite and is positive de�nite if one

of the �j(�)0s is positive de�nite together with the corresponding positive cj.

We have listed here few elementary properties of positive de�nite functions. More

details can be found in the review article [88].

We continue with restricting the discussion to basis functions with radial symmetry.

De�nition 2.13 A function � : Rd ! R is called radial provided there exist a univariate

function ' : [0;1) ! R such that �(x � xj) = '(r), where r = kx � xjk and k � k is
some norm on Rd (usually the Euclidean norm).

This de�nition says that � at any point x 2 Rd at certain distance from a �xed

point xj 2 Rd (or the origin) is constant. The �xed point xj is called its center. Hence

� is radially symmetric about its center. An interesting property of radial functions

for applications is the fact that the interpolation problem becomes insensitive to the

dimension d of the space in which the data sites lie. Instead of having to deal with a

multivariate function � (whose complexity will increase with increasing space dimension

d), we can work with the same univariate function ' for all choices of d. One only needs

to evaluate the distances of the points from the given center of the basis function.

Here the radial basis functions '(jj � �xjjj) are translates/shifts of a conditionally

positive de�nite radial function ' : [0;1) ! R of order m. While there may be cir-

cumstances that suggest choosing the centers xj di�erent from the data sites, in most

cases we pick the centers to coincide with the data sites. Of course, one can envision

many other ways to construct an N -dimensional data-dependent basis for the purpose of

interpolation. The use of shifts of one single basic function '(jj�jj) makes the radial basis
function approach elegant in practice, and the respective mathematical theory tractable.

In Table 2.1, we list some of the most commonly used globally supported radial

basis functions (GSRBFs) [64]. In Table 2.1 m is the order of the conditionally positive

de�nite RBF on Rd, K�(r) is a modi�ed Bessel function of order � > 0, and for any real

number r; brc stands for the largest integer that does not exceed, while dre denotes the
smallest integer not less than r.

Among the GSRBFs listed in Table 2.1 the Gaussian, multiquadrics and inverse

multiquadrics have a parameter c, which adjust the shape of the RBF and is therefore

usually called its shape parameter. A smaller value of c causes the function to become

atter, while increasing c leads to a more peaked RBF and, therefore, localises its in-

uence. The radial symmetry and shape dependence of some radial basis functions is

shown in Figure 2.2.
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Table 2.1: Globally supported Radial Basis Functions.

Radial Basis Function '(r) = Parameters Order m

Gaussians e�(cr)
2

c > 0 m � 0

Matern r�K�(r) � > 0 m � 0

Exponential e�cr c > 0 m � 0

Radial powers r� � > 0, � =2 2N m � d�
2
e

Polyharmonic Splines (�1)k+1r2klog(r) k 2 N m � k + 1

Multiquadrics(MQs) (1 + c2r2)
�
2 � > 0; � =2 2N; c > 0 m � d�

2
e

Inverse Multiquadrics(IMQs) (1 + c2r2)
�
2 v < 0; c > 0 m � 0

Figure 2.2: Radial Basis Functions, in the compactly supported RBFs 1=c, is their

support radius.
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We note that the interpolation matrix in (2.13) associated to GSRBFs is always

full and therefore the computational e�ciency becomes una�ordable as the size of the

problem grows. There also exist families of radial basis function with compact sup-

port. In order to have a sparser linear system for the interpolation problem, compactly

supported radial basis functions (CSRBFs) have been introduced. These compactly

supported function were introduced by Wu [95] and further developed and modi�ed by

Wendland [92, 94]. The CSRBFs are positive de�nite (CPD) of order m = 0 on Rd but

only for �xed maximal d-value given in Table 2.2.

Wendland's functions, as de�ned in [92], are of the form

'd;k(r) =

(
Pd;k for r 2 [0; 1];

0 for r � 1;
(2.8)

with a univariate polynomial Pd;k of degree bd=2c + 3k + 1. Clearly support of this

function is normalized to the unit interval [0; 1]. Moreover 'd;k(r) 2 C2k(Rd). Some of

the Wendland compactly supported RBFs are given in Table 2.2

Table 2.2: Wendland's compactly supported Radial Basis Functions.

Dimension d Radial Basis Function C2k

d = 1

'1;0(r) = (1� cr)+ C0

'1;1(r) = (1� cr)3+(3cr + 1) C2

'1;2(r) = (1� cr)5+(8(cr)2 + 5cr + 1) C4

d � 3

'3;0(r) = (1� cr)2+ C0

'3;1(r) = (1� cr)4+(4cr + 1) C2

'3;2(r) = (1� cr)6+(35(cr)2 + 18cr + 3) C4

'3;3(r) = (1� cr)8+(32(cr)3 + 25(cr)2 + 8cr + 1) C6

d � 5

'5;0(r) = (1� cr)3+ C0

'5;1(r) = (1� cr)5+(5cr + 1) C2

'5;2(r) = (1� cr)7+(16(cr)2 + 7cr + 1) C4
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Wu's compactly supported positive de�nite function are constructed in [95]. As in

the case of Wendland's functions, Wu's function are also positive de�nite on Rd but only

for �xed maximal d-value given in Table 2.3. Some of the Wu's function are given in

Table 2.3.

Table 2.3: Wu's compactly supported Radial Basis Functions.

Dimension Radial Basis Function C2k

d = 1  2;0 = (1� cr)5+(1 + 5cr + 9(cr)2 + 5(cr)3 + r4) C4

d � 3  2;1 = (1� cr)4+(4 + 16cr + 12r2 + 3(cr)3) C2

d � 5  2;2 = (1� cr)3+(8 + 9cr + 3(cr)2) C0

d = 1  3;0 = (1� cr)7+(5 + 35cr + 101(cr)2 + 147(cr)3 + 101(cr)4 + 35(cr)5 + 5(cr)6) C6

d � 3  3;1 = (1� cr)6+(6 + 36cr + 82(cr)2 + 72(cr)3 + 30(cr)4 + 5(cr)5) C4

d � 5  3;2 = (1� cr)5+(8 + 40cr + 48(cr)2 + 25(cr)3 + 5(cr)4) C2

d � 7  3;3 = (1� cr)4+(16 + 29cr + 20(cr)2 + 5(cr)3) C0

d � 5  4;2 = (1� cr)7+(48 + 336cr + 928r2 + 1120r3 + 720r4 + 245r5 + 35r6) C4

d � 7  4;3 = (1� cr)6+(64 + 384cr + 640r2 + 515r3 + 210r4 + 35r5) C2

d � 9  4;4 = (1� cr)5+(128 + 325cr + 345r2 + 175r3 + 35r4) C0

The symbol (�)+ denotes the cuto� function de�ned as follows

(x)+ =

(
x for x � 0;

0 for x < 0:
(2.9)

2.3 RBF interpolation

Consider a data vector f jX = [f(x1); :::; f(xN)]
T 2 RN of function values, sampled from

an unknown function f : Rd ! R at a �nite point set X = fx1; :::;xNg � Rd, d � 1.
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We de�ne the RBF interpolant s by

s(�) =
NX
j=1

cj'(jj � �xjjj) + P (�); P 2 �dm�1; (2.10)

Further, we denote by M := dim�dm�1 and by p1; :::; pM a basis of �dm�1:

In the case of a positive de�nite radial basis function, we can choose m = 0. Nev-

ertheless, addition of a polynomial P of total degree at most m � 1, guarantees the

exactness of the interpolation for f 2 �dm�1:
To specify cj and P , we impose the interpolation conditions

sjX = f jX ;

on the interpolant s to get

NX
j=1

cj'(jjxk � xjjj) +
MX
l=1

dlpl(xk) = f(xk); for 1 � k � N: (2.11)

Conditions (2.11) form a linear system ofN equations withN+M unknown variables:

the coe�cient vector c = [c1; :::; cN ]
T 2 RN of the major part and d = [d1; :::; dM ]T 2 RM .

To eliminate the additionalM degrees of freedom, we add the followingM constraint

conditions:
NX
k=1

ckpl(xk) = 0; for 1 � l �M: (2.12)

The linear system of M +N equations given by (2.11) and (2.12) can be written as

 
A';X PX

P T
X O

! 
c

d

!
=

 
f jX
0

!
; (2.13)

where

A';X = ['(jjxk � xjjj)]1�j;k�N 2 RN�N ; (2.14)

PX = [pl(xk)]1�k�N;1�l�M 2 RN�M ; (2.15)

O = Null matrix 2 RM�M ; (2.16)

0 = Null vector 2 RM : (2.17)

We now discuss the existence of a unique solution to the above interpolation problem.

Suppose m = 0, i.e., ' is positive de�nite. In this case, appending a polynomial to

interpolant s as given in (2.10) is not a requirement and this interpolant reduces to the
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simpler form,

s(�) =
NX
j=1

cj'(jj � �xjjj): (2.18)

The interpolation conditions

sjX = f jX
give the following simpler system (as opposed to (2.13))

A';Xc = f jX ; (2.19)

where A';X , c; and f jX have the same meaning as discussed above.

Since ' is positive de�nite, the matrix A';X is positive de�nite, hence (2.19) has a unique

solution.

Suppose now that m � 1; i.e., investigate the solvability of the augmented problem

given by (2.13).

Before discussing the solution of (2.13), we consider its corresponding homogenous

system:

A';Xc+ PXd = 0; (2.20)

P T
Xc = 0: (2.21)

Multiplying (2.20) by cT , we get

cTA';Xc+ (P T
Xc)

Td = 0;

and using (2.21), we deduce

cTA';Xc = 0: (2.22)

The fact that ' is CPD of order m � 1 and c satis�es the constraints implies that

c � 0 and so equation (2.20) becomes PXd = 0.

This implies d = 0, provided that PX is injective, i.e., if the point set X is �dm�1-

unisolvent (see De�nition (2.6)). So the corresponding homogenous system has unique

solution [c;d]T = 0; if X is �dm�1-unisolvent. This guarantees the non-singularity of the

matrix A.

Hence the well-posedness of the RBF problem is guaranteed by imposing the con-

dition that the set of centers has to contain �dm�1-unisolvent subset. This is a mild

condition that can be easily met in most cases of practical interest.

Among the RBFs given in Table 2.1, the most popular in applications are the mul-

tiquadric (MQ) '(r) =
p
c2 + r2 with m = 1, the thin plate splines (TPS2) '(r) =

r2log(r) (which is a member of the polyharmonic spline family) with m = 2, the Gaus-

sians '(r) = e�c
2r2 with m = 0, and the inverse multiquadrics (IMQ) '(r) = 1p

c2+r2



2.4 Anisotropic RBF interpolation 23

with m = 0. Although MQ is CPD of order m = 1, the associated interpolation problem

without the additional constant polynomial part has unique solution [74]. If c = 0 the

MQ boils down to the RBF '(r) = r which also produces an interpolation system which

remains non singular when no polynomial term is included in the the interpolant.

It is worth noting that we have only shown the well-posedness of the problem when

one uses the Euclidean distances in de�ning s. The case for 1-norm and d = 2, can

produce singular interpolation matrix, if the data points are vertices of a closed poly-

gon [71]. This was further studied in [5], where the well-posedness in more general form

with p-norm, p 2 (0; 1) was proven. In [5] it was also shown that, if both p and the di-

mension d exceed 2, then it is possible to construct sets of distinct points which generate

a singular interpolation matrix.

The interpolation matrix in (2.13) is usually full, and, moreover when the num-

ber of interpolation points N is large, then the corresponding linear system is usually

ill-conditioned. This numerical instability may not come from the interpolation prob-

lem but from the basis used being nearly linearly dependent as the separation distance

decreases. Solving this system by ordinary methods such as Gaussian elimination ex-

ploiting symmetry requires O(N3) ops and O(N2) storage. These computational costs

are unacceptable for large N . So RBFs su�er from instabilities on one hand and from

complexity on the other.

We have few stable algorithms for RBFs interpolation with shape parameters result-

ing atter basis functions. One of such methods is the Contour-Pade [40] and another

one is the RBF-QR method [39]. Very recently, two stable algorithm for the evaluation

of Gaussian RBF interpolant with at kernels have been introduced by Fasshauer and

Mccourt [32] and by Fornberg, Larsson and Flayer [38]. In [38], the RBF-QR method

presented in [39] has been implemented for two dimensional data. RBF-QR works for

tens of points in one dimension, hundreds of points in two dimensions, and thousands of

points in three dimensions. These method address the stability issues, but are in general

limited to small problems and/or lower dimensions.

In [75], [7] it was shown that the combination of a suitable approximate cardinal

function pre-conditioner, a fast multiplication, and GMRES iteration, make the solution

of large RBF interpolation problems orders of magnitude less expensive in storage and

operations. Domain decomposition method is another approach to address the e�ciency

and complexity issues [8].

2.4 Anisotropic RBF interpolation

It is common to have data sets whose variation in one direction is much slower or faster

than that in the other directions. It is also possible that the distribution of the data sites
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in the domain is anisotropic. The RBFs are radially symmetric having hyper-spheres

as their level surfaces. To interpolate/approximate data with anisotropy of any of the

kinds discussed above, anisotropic radial basis functions have been introduced and used

in practice [6], [19], [20]. Anisotropic radial basis functions have hyper-ellipsoids as their

level surfaces and are therefore also known as elliptic basis functions. The application of

anisotropic basis functions have proved to be numerically e�ective for local �tting [19],

[20].

De�nition 2.14 Let '(k � �xjk) be any given RBF with its center at xj 2 R
d and

A 2 R
d�d be a suitably chosen invertible matrix, then the anisotropic radial basis

function (ARBF) 'A(k � k) is de�ned as

'A(k � �xjk) = '(kA(� � xj)k):

The ARBF 'A(k�k) coincides with '(k�k) when A is the d�d identity matrix. When

A is non scalar matrix, (i.e., A 6= kId, k 2 R), the basis function 'A(k � k) is not radially
symmetric, but it is still symmetric about its centre xj. The axes of symmetry of the

level sets of 'A depends upon the construction of the non singular matrix A. In general,

the level sets of 'A are hyper-ellipsoids with their centers coincident with the center of

the anisotropic RBF. In the case in which A is a scaling matrix (i.e., a diagonal matrix

with positive diagonal entries), these hyper-ellipsoids will have their axes parallel to the

co-ordinate directions. Gaussian RBF and the corresponding anisotropic Gaussian RBF

centred at (0.5, 0.5) for A =

 
25 0

0 22

!
are exempli�ed in Figure 2.4.

We now discuss the solution of an anisotropic interpolation problem. Suppose X =

fx1; : : : ;xNg � 
 � R
d and f(xi; yi) : xi 2 X; i = 1; : : : ; Ng is the given data. Let

' be a conditionally positive de�nite radial function of order m; and let fp1; : : : ; pMg
be a basis of the polynomial space �dm�1 and �nally A 2 R

d�d be a suitably chosen

invertible matrix.

The anisotropic radial basis functions interpolant SA is de�ned as:

SA(x) =
NX
j=1

cj'A(kx� xjk) +
MX
k=1

dkpk(Ax); x 2 
: (2.23)

If we impose the interpolation conditions

SA(xi) = yi; i = 1; : : : ; N; (2.24)
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Figure 2.3: Gaussian RBF and the corresponding anisotropic Gaussain RBF, with shape

parameter 0.5 and center at (0.5, 0.5)

the additional constraint conditions

NX
j=1

cjpk(Axj) = 0; k = 1; : : : ;M; (2.25)

and, �nally, de�nig the set of transformed data sites fu1; : : : ;uNg; where ui = Axi; i =

1; � � � ; N; we get the following linear system.
NX
j=1

cj'(kui � ujk) +
MX
k=1

dkpk(ui) = yi; i = 1; : : : ; N: (2.26)

NX
j=1

cjpk(uj) = 0; k = 1; : : : ;M: (2.27)
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The non singularity of the transformations matrix A and the �dm�1-unisolvency of the

data sites fx1; : : : ;xNg imply that the set fu1; : : : ;uNg of transformed data sites is also

�dm�1-unisolvent. This guarantees the welposedness of the above linear system. Thus

the existence of a unique solution to the linear system given by (2.24) and (2.25) of the

anisotropic RBFs interpolation problem is guaranteed by the same �dm�1-unisolvency

condition on the data sites as required for the classical RBFs interpolation problem, as

long as the transformation matrix A chosen to be non singular (discussed in detail in

Section 2.3). We refer to the recent paper [6] for the error analysis of anisotropic RBF

interpolation.



Chapter 3

Hyperbolic Crosses and Sparse

Grids

We review the linear hyperbolic cross product spaces and the related sparse grid method

based on multi-linear basis functions. The key idea is the use of hyperbolic cross prod-

uct spaces. The use of such approximation spaces is known since the early 1960's [2],

[86]. In [86], Smolyak studied quadrature formulas based on a tensor product of lower-

dimensional operators. More recently the sparse grid methods, introduced by Zenger [97]

in 1991 have been applied to the numerical solutions of partial di�erential equations in

the context of �nite di�erence and �nite element methods.

3.1 Piecewise linear interpolation

We discuss the interpolation of smooth functions by using piecewise d-linear hierarchical

bases based on tensor products. Let 
 := [0; 1]d and u : 
 ! R. Let � 2 Nd
0 be a

d-dimensional multi-index, i.e., � = (�1; : : : ; �d) where �j 2 N0; j = 1; : : : ; d; with its

1-norm and 1-norm de�ned respectively, as:

j�j1 =
dX

j=1

�j and j�j1 = max
1�j�d

�j:

3.1.1 Hierarchical multilevel subspaces

For p 2 [2;1], we de�ne the following spaces:

Xp;(
) = fu : 
! R : D�u 2 Lp(
); j�j1 � g

and

Xp;
0 (
) = fu 2 Xp;(
) : uj@
 = 0g;

27
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i.e., Xp;(
) is the space of all functions with derivatives up to order  in Lp(
) and

Xp;
0 (
) is the subspace of Xp;(
) consisting of those functions u that vanish on the

boundary @
 of the domain 
.

For u 2 Xp;(�
) and for a multi index �, with j�j1 � , we de�ne

juj�;1 = kD�uk1

and

juj�;2 =

�Z
�


jD�uj2dx
�1
2 :

We de�ne the family of anisotropic d-dimensional grids fXl : l 2 Nd
0g on 
; where

l = (l1; : : : ; ld) 2 Nd
0 with mesh size hl = (hl1 ; : : : ; hld) = 2�l = (2�l1 ; : : : ; 2�ld);

that is, the grid Xl has di�erent, in general, but equidistant nodes in each individual

coordinate direction. The multi-index l with zero components are required only for

de�ning hierarchical multi-linear basis corresponding to the boundary when the solution

u is not zero on the boundary. Hence, Xl consists of the following points:

xl;i = (xl1;i1 ; : : : ; xld;id) = i � hl; 0 � i � 2l;

or

xlj ;ij = ijhlj = ij2
�lj ; where 0 � ij � 2lj ; 1 � j � d:

In what follows, the multi index l will be the index associated with the grid Xl, a

point xl;i or a basis �l;i, while the multi-index i will be associated with the location of

xl;i in Xl.

We consider the standard one dimensional linear function (also known as the hat

function) � : R! R with

�(x) = (1� x)+ =

(
1� jxj if x 2 [�1; 1];

0 ; otherwise;
(3.1)

and we de�ne the scaled piecewise linear basis functions �lj ;ij(xj) by

�lj ;ij(xj) := �(
xj � ijhlj

hlj
) = �(2ljxj � ij): (3.2)

The support of �lj ;ij(xj) is given by

supp(�lj ;ij) = [xlj ;ij � hlj ; xlj ;ij + hlj ] = [(ij � 1)hlj ; (ij + 1)hlj ]:

We de�ne the piecewise d-linear basis function �l;i as the tensor product of the scaled



3.1 Piecewise linear interpolation 29

linear basis functions �lj ;ij(�) in each dimension, viz.,

�l;i(x) =
dY

j=1

�lj ;ij(xj) (3.3)

An example of piecewise bilinear basis functions for d=2 is shown in Figure 3.1.

Figure 3.1: Piecewise bilinear basis function �l;i on Xl with l = (2; 1), i = (3; 1):

We de�ne the space Vl of piecewise d-linear basis functions associated with the grid

Xl by

Vl = spanf�l;i : 0 � i � 2lg: (3.4)

Finally we de�ne the index set

Il =

(
i 2 Nd

0 : ij = 1; : : : ; 2lj � 1; ij is odd; 8 j = 1; : : : ; d; lj > 0

and ij = 0; 1; ij is odd; 8 j = 1; : : : ; d; lj = 0

)
: (3.5)

In the case in which the function to be interpolated is zero on the boundary, Il is given

instead by

Il =
n
i 2 Nd

0 : ij = 1; : : : ; 2lj � 1; ij is odd; 8 j = 1; : : : ; d; lj > 0
o
: (3.6)

We de�ne the space Wl as follows

Wl = span f�l;i : i 2 Ilg (3.7)
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Note that Wl is equivalent to the di�erence space:

Wl = Vl n
dM

j=1

Vl�ej ; (3.8)

where ej is the j-th unit vector in Rd, using the convention that Vl = f0g if lj = �1
for at least one j 2 f1; : : : ; dg. Then, from (3.7) and (3.8) we deduce

Vl =
M
k�l

Wk =
l1M

k1=0

: : :

ldM
kd=0

Wk (3.9)

for k = (k1; : : : kd). This suggests a di�erent grouping

f�l;i : i 2 Ik; k � lg (3.10)

for the hierarchical basis of Vl:

For any positive integer n 2 N, such that li = n for i = 1; � � � ; d, then Vl is the space
of piecewise d-linear basis functions associated with the equally spaced grid of level n

and we denote it by Vn;d. Hence

Vn;d =
M

jkj1�n
Wk; =

nM
k1=0

: : :
nM

kd=0

Wk; (3.11)

for k = (k1; : : : kd), so that we have

f�l;i : i 2 Ik; jkj1 � ng;

as the hierarchical basis of the space Vn;d. This space for n=3 and d=2 is exempli�ed in

Figure 3.2. Hence we can represent each u 2 Vn;d as follows

u(x) =
X
jlj1�n

ul; ul =
X
i2Il

cl;i�l;i(x); with �l;i 2 Wl (3.12)

where the cl;i are the coe�cients of the hierarchical tensor product basis representation.

The number of basis required is thus (2n + 1)d which is the same as for the nodal

(multilinear spline) basis.

Now we state an important result related to hierarchical representation of Vn;d by

the spaces Wl, taken from [11].
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Lemma 3.1 For u 2 X2;2
0 (
), the estimate for its component ul 2 Wl is given by

kulk22 � C(d)2�4jlj1juj22;2;

where, juj22;2 = kD2uk22 =
R
�

jD2uj2dx

Figure 3.2: Subspaces Wl for space V3;2

3.2 Hyperbolic cross products/sparse grids

We now use the hierarchical representation of the d-linear functions space Vl to de-

�ne the hyperbolic cross product/sparse grid spaces. The representation of u as given

in (3.12) and Lemma 3.1 shows that the upper bound of kulk2 is proportional to 2�2jlj1

and the inuence that u gets from the support of the basis functions �l;i in Wl. The

idea of hyperbolic cross product/sparse grid methods is to exclude the basis functions

with comparatively smaller inuence in the discrete space Vn;d of level n to get the
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corresponding sparse grid space.

If we replace jlj1 by jlj1 in (3.11-3.12), we obtain the sparse grids space V s
n;d � Vn;d

de�ned by

V s
n;d =

M
jlj1 �n

Wl; (3.13)

whose basis is given by f�l;i; i 2 Ik; jkj1 � ng: Thus, every u 2 V s
n;d has the following

representation

u(x) =
X

jlj1 � n

ul; where ul =
X
i 2 Il

cl;i�l;i: (3.14)

The basis for V3;d, d = 2; is given in Figure 3.2, while the basis for the sparse grid

space V s
3;d, d = 2; is given in Figure 3.3.

Figure 3.3: Subspaces Wl for space V
s
3;d, d=2

The grid created as a result of the approximation space V s
n;d is the sparse grid of level

n in d-dimensions, which we denote by Ys
n;d, corresponding to a full grid of level n in
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the domain 
 2 Rd. The full grid and sparse grid corresponding to Vn;d and V
s
n;d for the

cases n=3, 4 and d=2 are given in Figures 3.4 and 3.5.

Figure 3.4: The full and sparse grids
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Figure 3.5: Sparse Grid Ys
7;3, of level 7 in 3D

When the function is zero on the boundary, we consider the sparse grid space V s
0;n;d

instead of V s
n;d, which is de�ned by

V s
0;n;d =

M
jlj1�n+d�1

Wl:

3.2.1 Approximation order and size of sparse grid spaces

The hyperbolic cross/sparse grid method substantially reduces the computational com-

plexity at a moderate cost in terms f accuracy, allowing for the numerical treatment

of problems with d � 2. We reiterate that the approximation theory for sparse grids

requires stronger smoothness conditions in comparison to the full tensor product approx-

imation spaces. In particular, the so called anisotropic Sobolev norms are used instead

of the standard Sobolev norms [11]. In [11], it is shown that the dimension of Vn;d is

given by jVn;dj = O(2nd), while the dimension of V s
n;d is given by

jV s
n;dj = O(2nnd�1)

= O(h�1n (log(h�1n ))d�1); for hn = 2�n:

The full grid multi-linear approximation using the space Vn;d has O(h2) = O(2�2n)
accuracy in the case of su�ciently smooth functions, while with sparse grids based on
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multi-linear basis functions, this accuracy decreases only by a logarithmic factor to

O(h2(log h�1)d�1) = O(2�2nnd�1):

These results are summarized in Table 3.1. The dimension of the sparse grid space is far

less than the full grid space, while the accuracy decreases only by a logarithmic factor.

The small number of degrees of freedom results in the reduction of computation and

storage requirements. This advantage becomes more prominent as the dimension of the

problem increases.

Table 3.1: Approximation and Complexity of Sparse grids

Full grid Sparse grid

degrees of freedom O(2nd) O((2nnd�1))
Approximation order O(2�2n) O(2�2nnd�1)

3.3 Sparse grid combination technique

As we saw, the sparse grid/hyperbolic cross product spaces consist of translations of

di�erent basis functions belonging to the spaces Wl, de�ned above. This renders the

use of these ideas in the context of RBF interpolation particularly cumbersome. This

is because, apart from the technical di�culties in implementing such interpolation pro-

cedures, there is no underlying theory for the solvability of the resulting interpolation

problem. Moreover, the implementation of direct sparse grid/hyperbolic cross methods

requires the construction of new computer codes.

The sparse grid combination technique is an indirect way of constructing the sparse

grid discretisations by making use of the known full grid methods, hence allowing for

the use of existing full grid codes. The sparse grid combination technique for linear

interpolation was introduced by Griebel, Zenger and Bungartz [54], [13], [14]. A sparse

grid, Ys
n;2; can be be represented as superposition of several much coarser but full grids

Xl; with jlj1 � n: This combination is described in Figures 3.6 and 3.7. By combining

several smaller approximations based on the translates of the same basis function, it is

possible to achieve an acceptable approximation and keep the memory requirements low.

Hence, this is potentially a very attractive property in the context of RBF interpolation

problem.

To this end, we consider the interpolation problem of a function u on a certain

sequence of anisotropic grids Xl, l = (l1; : : : ; ld), with di�erent but equidistant mesh
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Ys
4;2 = X4;1

� X3;2 	 X3;1

� X2;3 	 X2;2

� X1;4 	 X1;3

Figure 3.6: Sparse grid as superposition of coarser full grids

=

� 	

� 	

� 	

Figure 3.7: Sparse grid Ys
4;2 as a combination of coarser full grids

size in each coordinate direction. For this purpose we consider all grids Xl such that

j l j1 = l1 + : : :+ ld = n� q; q = 0; : : : ; d� 1; lj � 0;

The discrete partial interpolant on Xl with respect to the nodal basis function �l;i(x)

is given by

ul =
2l1X
i1=0

� � �
2ldX
id=0

cl;i�l;i(x):

These partial interpolants ul obtained on the di�erent coarser full grids Xl are then

linearly combined according to the following combination formula [25], [54], [44]:

un(x) =
d�1X
q=0

(�1)q
 
d� 1

q

! X
jlj1=n+(d�1)�q

ul(x): (3.15)
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For instance, the last formula has the following structure

for d = 2 :

un =
X

jlj1=n+1
ul �

X
jlj1=n

ul (3.16)

and, for d = 3 :

un =
X

jlj1=n+2
ul � 2

X
jlj1=n+1

ul +
X
jlj1=n

ul: (3.17)

Thus, only interpolation problems on standard grids need to be treated and the sparse

grid interpolant is obtained by a simple linear combination.

Remark 3.2 Note that each full grid space contains translations of the same basis func-

tion. This is of crucial importance for the construction of the new fast algorithm pre-

sented in Chapter 4.

The sparse grid combination technique has mainly two advantages over direct classical

as well as direct sparse grid methods. Firstly, obtaining the partial solution ul on the full

grids Xl of small resolution allows the possibility of using the existing codes. Secondly,

the discretisation on the small (but full and anisotropic in general) grids can be done in

a completely parallel fashion. This makes the combination technique perfectly suited for

implementation on the modern high performance computing systems [50], [44], [46], [42].

The combination technique makes use of some nodes several times but still it is making

use of the same data sites as required for the direct sparse grid approach. However,

compared to the full grids, it still requires very small amount of memory storage and it

performs well for large data, especially in high dimensions. The combination technique

has been successfully applied to give better e�ciency in terms of stability, complexity

and the run time at the cost of negligible loss of accuracy. Some recent developments

on the combination technique can be found in [45], [60], while application to a number

of di�erent problems has appeared, such as solution of multidimensional options pricing

PDEs [42]and machine learning [43].



Chapter 4

Sparse kernel-based interpolation

Due to their simple structure and insensitivity of their implementation to the dimension,

RBFs are potentially a strong tool for high dimensional interpolation problems. The

convergence rates of RBF interpolation are directly related to a measure of the data

density, for example the �ll/seperation distance of the full grid. By keeping the �ll and

separation distance �xed, the grid size and, hence the size of the interpolation problem

grows exponentially with dimension d of the problem space. For example, a uniform

grid in [0; 1]d � R
d with �ll distance h = 1=N , where N is the number of points in

each direction, has size (h�1 + 1)d. This makes RBFs useful in practice only for low

dimensional problems and feasible in high dimensions only for small grids.

As discussed in Chapter 3, sparse grid/hyperbolic cross methods address the restric-

tions on the data size for linear interpolation at the cost of losing only a logarithmic

factor in convergence when applied to high dimensional interpolation. Direct sparse

grid methods based on the tensor product of one-dimensional standard RBFs have been

considered in [83], where the error analysis has been given based on the resulting tensor-

product nature of the basis functions, but no numerical assessment of the resulting

methods was given there in. Unlike the approach in [83], the scheme we are going to

propose is based on the standard d-variate RBFs in conjunction with an indirect sparse

grid method, the so called, combination technique.

The direct sparse grid/hyperbolic cross spaces are spanned by translates of di�erent

basis functions. In the context of d-variate RBFs, this makes the method impractical,

as the solution of the resulting interpolation problem may not be guaranteed. The

combination technique for multilinear sparse grid interpolation described in Section 3.3

is based on translations of the same basis function. Motivated by this observation, we

propose a new interpolation method termed Sparse Kernel-based Interpolation (SKI)

method. The method is based on anisotropic radial basis function interpolation on

partial grids in conjunction with a combination technique inspired by the corresponding

ideas for linear interpolation described above. The new SKI method turns out to be

38
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very e�cient and stable even for the interpolation of large data in higher dimensions.

4.1 Sparse kernel-based interpolation

Let 
 := [0; 1]d; and let u : 
 ! R i.e. u(x) 2 R, for x = (x1; : : : ; xd) 2 
. Let

f(xi; ui); ui = u(xi); i = 1; � � � ; Ng; be the data to be interpolated sampled from the

unknown function u at a �nite point set X = fx1; :::;xNg � 
. The interpolation

problem consists of �nding a suitable function (called the interpolant), s : Rd ! R

satisfying the interpolation conditions

s(xi) = u(xi); 1 � i � N: (4.1)

We de�ne a family of standard anisotropic d-dimensional grids. For a multi-index

l = (l1; : : : ; ld) 2 Nd; we de�ne the family of grids:

fXl : l 2 Ndg � 
;

with uniform mesh size hl = (hl1 ; : : : ; hld) = 2�l := (2�l1 ; : : : ; 2�ld): Henceforth, we

will be using the multi-index l with non zero components. This is because the use of

zero components in l is not a requirement for the combination technique, in particular,

in the context of solving interpolation problem. Hence Xl consists of the points:

xl;i = (xl1;i1 ; : : : ; xld;id);

with

xlj ;ij = ijhlj = ij2
�lj ; where 0 � ij � 2lj ; 1 � j � d:

In particular, if hli = 2�n; i = 1; � � � ; d; Xl becomes a uniform full grid of level n, having

size N=(2n + 1)d and is denoted by Xn. Next we consider the sequence of sub-grids of

Xn

fXl : jlj1 = n; � � � ; n+ (d� 1)g ;

where n is the level of the grid. Xl is in general anisotropic with its mesh size given by

h = 2�l = (2�l1 ; � � � ; 2�ld);

and the number of nodes N l in Xl is given by

N l =
dY
i=1

(2li + 1):



4.1 Sparse kernel-based interpolation 40

As discussed in Chapter 3, the sparse grid Ys
n;d of level n in 
 � Rd is obtained by the

superposition of these sub-grids (e.g., Figures 3.6, 3.7).

We want to evaluate the interpolant at the constituent sub-grids Xl. Due to the

anisotropy of the grids, we use anisotropic RBFs, 'A(k � k), of the kind discussed in

Chapter 2. The transformation matrix, A = Al, associated with the basis function

'A(k � k) controls its anisotropy. Using 'A(k � k), resulting anisotropic RBF interpola-

tion problem is guaranteed to be well-posed for any choice of Al as long as it remains

non singular. Corresponding to each anisotropic grid Xl, Al is specially constructed so

that it scales (stretches or contracts) the level sets of the anisotropic RBF in order to

counteract the anisotropy of the grid Xl. In other words, the anisotropic grids Xl and

the transformation matrix Al should be correlated in the sense that the two anisotropies

cancel each other e�ect to an optimal extent. For the purpose of using the combination

formula in the implementations of our algorithm, for the choice of each small grid Xl :

l = (l1; : : : ; ld) in the sequence of the anisotropic full grids, we construct the trans-

formation matrix Al 2 Rd�d to be a diagonal matrix with its main diagonal given by

(2l1 ; : : : ; 2ld); i.e., 0
BBBB@

2l1 0 � � � 0

0 2l2 � � � 0
...

...
. . . 0

0 0 � � � 2ld

1
CCCCA

To this end, the anisotropic RBF interpolant SAl
(x) corresponding to the sub-data

on the sub-grid Xl is given by.

SAl
(x) =

N lX
j=1

cj'(kAl(x� xj)k) +
MX
k=1

dkpk(Alx); x 2 
; (4.2)

and it is such that

SAl
jXl

= ujXl
:

The sub-grid interpolants SAl
(x) are then linearly combined according to the tech-

nique [54], [44] given by the following formula to get the sparse kernel-based interpolant

Sc
n(�) of level n. More speci�cally the Sparse Kerenel-based Interpolant is de�ned by

Sc
n(x) =

d�1X
q=0

(�1)q
 
d� 1

q

! X
jlj1=n+(d�1)�q

SAl
(x): (4.3)

The combination formula (4.3) can also be found in the earlier work of Delvos [25], where

it was used in the context of Lagrange interpolation.
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We summarize the sparse kernel-based interpolation method in the following algo-

rithm.

Algorithm 4.1 (Sparse kernel-based interpolation algorithm)

Input: Sparse grid data, f(xi; ui); ui = u(xi); and xi 2 
 � Rdg; for i = 1; � � � ; N :

1: Obtain the constituent anisotropic sub-grids

1a: Construct a sequence of indices Sn:

Sn =
�
l = (l1; � � � ; ld) 2 Nd : jlj1 = n; � � � ; n+ (d� 1)

	
:

1b: sequence of sub-grids An: Construct the sequence of anisotropic sub-

grids of Xn

An = fXl : l 2 Sng :

such that Xl has mesh size given by

h = 2�l = (2�l1 ; � � � ; 2�ld):

and the superposition of these sub grids is the sparse grid Ys
n;d.

2: Iterpolate the sub problems Evaluate the anisotropic interpolant SAl
(�) on

each Xl 2 An.

3: Combine the partial interpolants, SAl
: The interpolant Sc

n(�) on the sparse
grid Ys

n;d of level n is given by the formula:

Sc
n(�) =

d�1X
q=0

(�1)q
 
d� 1

q

! X
jlj1=n+(d�1)�q

SAl
(�):

Output: The interpolant Sc
n on Ys

n;d, which approximates the sparse grid data.

The proposed scheme uses a dimension-wise multilevel decomposition of interpola-

tion data sites in conjunction with the application of kernel-based interpolants SAl
(�)

with di�erent scaling in each direction. The new SKI algorithm can be viewed as an ex-

tension of the idea of sparse grids/hyperbolic crosses to kernel-based functions. The SKI

approximant Sc
n, being combination of ARBF-interpolants, makes the implementation

of the algorithm on a computer quite straightforward: an existing RBF computer code

with relatively small modi�cation can be used. We feel that ill-conditioning problem of

the na��ve RBF approach still remains. However, due to the grided con�guration of the

sub-problems, this instability is somewhat mild and can be circumvented by choosing

suitable scaling of the anisotropic kernel used in the algorithm. The stability of SKI
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will be be discussed separately in Section 4.2. Due to the d-dimensional complexity,

the size of the largest na��ve RBF interpolation problem which can be solved on a given

computer stays the same regardless of the dimension, while SKI has the advantage of

nearly one-dimensional complexity. Hence the capability of SKI of addressing the com-

plexity may be more attractive in higher dimension. Moreover, the parallel nature of

SKI for solving independent sub-problems together with the dimensional insensitivity

of RBFs makes the two seemingly di�erent approaches attractive for large and/or high

dimensional problems. SKI algorithm having the properties of a less expensive interpo-

lation method, could provide prominent computational savings in practice. Since the

SKI method is very suitable to be implemented in parallel, it could prove to be more

e�ective for high dimensional discretisation specially when implemented in parallel on

high precession modern computing systems.

4.2 Stability of SKI

The numerical stability of SKI method can be measured by the maximum condition

number of the constituent partial interpolation problems. The error estimates of the

RBF interpolation are usually expressed in terms of the �ll distance hX;
 of the data

sitesX in its domain 
 [94], [31]. The �ll distance hX;
 itself is not a direct measure of the

instability, because only two close enough points in X can produce a badly conditioned

system irrespective of hX;
 being quite big. For a positive de�nite matrix, the condition

number is given by, �(A) = �max

�min
: The upper bound for the maximum eigenvalue �max,

given in [31] in terms of the problem sizeN is �max � N'(0); where ' is a positive de�nite

RBF. Hence for a uniform grid X, �max grows proportional to h
�d
X;
 and hence �max is not

the main cause of the badly conditioned interpolation system. On the other hand, the

lower bound of minimum eigenvalue �min decreases exponentially with the separation

distance qX of the data set in the given domain 
 and also changes with the support

radius in the case of CSRBFs or the shape parameter in the case of GSRBFs [94], [31]. A

list of Lower bounds for �min for a range of RBFs in terms of the separation distance qX

can be found in Table 12.1 in [94]. So the problem size, the separation distance and the

shape parameter (which adjust the support) of the RBF cause the growth in the condition

number. Among the mentioned causes, shape parameter (or the support radius) of the

RBF and qX need more attention, while the problem size is of secondary importance.

In [56], [41], [15], [17], [16], [68], the authors suggest several ways for choosing the shape

parameter. The dependence of the stability on the shape has been addressed in [40], [39],

[32], [38], where stable algorithms for RBF interpolation with small shape parameters

have been proposed. In [79], an algorithm called, \leave-one-out" cross validation, for

choosing a good shape parameter was proposed by Rippa. According to this algorithm,
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the optimal shape parameter is chosen by minimizing the least squares error of the �t

by removing part of the data and then comparing with the known values at the removed

data points. This is done by �nding interpolants to the data by leaving one data out,

and hence the dependence of the error on the data function is also taken into account

in Rippa's algorithm.

In SKI, we �rst adjust the support of the ARBF 'Al
(�) = '(kAl(��xj)k) used in the

partial interpolant SAl
(�) by choosing Al according to the anisotropy of the constituent

anisotropic sub-grid Xl . The anisotropic interpolant SAl
(�), discussed in Section 2.4, is

equivalent to the standard RBF interpolant on the equally spaced grid AlXl, provided

we choose the transformation matrix Al = diag(2l) corresponding to anisotropic sub-grid

Xl. Hence, the ratio of the �ll distance hAlXl;
 to the separation distance qAlXl
is
p
2.

Eventually, for the shape dependent RBF such as Gaussian, MQ, GIMQ etc we also

need to adjust its shape parameter c. This is done by choosing

c =
2hr

Kd
;

where,

hr =
hYs

n+1;d
;


hYs
n;d

;

; and Kd is a constant,

for SKI on level n. For example, for the sparse grids of level 1 to 10 and d = 2, the

numbers hr up to 4 places of decimal are given in the following array: hr = f0.707,
0.5872, 0.8514, 0.5872, 0.8514, 0.5872, 0.8514, 0.5872, 0.8514, 0.5872 g: With these

parameters, the condition number do grow relatively slowly, thus suggesting that the

method is non stationery. The choice Kd = 1, produces nearly ideal condition numbers

(O(1)) but with resulting low accuracy, while the choice Kd = 3; produces safe condition

numbers (� 1010) and admit good convergence. For Kd � 3, condition number tend to

become bigger and result in unstable computations. In our experiments, we �nd that

a suitably chosen constant value for c can also ensure stable implementation of SKI.

For example, c = 0:45 for Gaussian, c = 0:4 for MQ, c = 0:21 for GIMQ, c = 0:25 for

IMQ and c = 0:25 for IQ results in stable computations with a slowly growing condition

number in the range of our experiments.

4.3 Numerical Experiments for d=2

A list of of 2D test functions, we have used for generating data to be interpolated in the

numerical experiments to follow is given below.
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� Franke2D:

F1(x1; x2) =
3

4
e(�(9x1�2)

2�(9x2�2)2

+
3

4
e�((9x1+1)

2)=49�((9x2+1)2)=10

+
1

2
e�((9x1�7)

2)=4�(9x2�3)2

�1
5
e�((9x1�4)

2)=4�(9x2�7)2 :

� Test1-2D: G1(x1; x2) = 42x1(1� x1)x2(1� x2):

� Sinc2D: H(x1; x2) =
Q2

i=1
sin(�xi)
�xi

:

� Test2-2D: G2(x1; x2) = (r2 + r4) log r; r =
p
x21 + x22:

� Test3-2D: G3(x1; x2) =
1
2
x2 cos

4 (4(x21 + x2 � 1)) :

� Test4-2D: G4(x1; x2) =
q

18
�
e�(x

2
1
+81x2

2
):

The function Franke2D is generally known as Franke's test function and can be found

in RBF literature, e.g.[94]. Test1-dD and SincdD for any d 2 N can be found in [31].

Test2-2D is sum of the polyharmonic splines r2 log r and r4 log r. Test3-2D and Test4-2D

can be found in [20] and [6] respectively. These function are exempli�ed in Figures 4.1.

In all our numerical experiments, SKI interpolants are evaluated at either 160� 160

equally spaced points or 25,600 Halton points (these are uniformly distributed random

points) in the the domain [0; 1]2 � R2. We evaluate on the Halton points, because the

data is on a grid. In our experiments, we have implemented the na��ve RBF approach to

solve the partial interpolation problems in the SKI scheme. Thus, it is fair to compare

our method with the na��ve RBF interpolation method, as we shall do through out all the

experiments reported in this thesis. We remark that the fast RBF methods mentioned

above can be applied to accelerate SKI. This is also worth mentioning that we compare

SKI on sparse grids with na��ve RBF on full grid. This is because the convergence of the

na��ve RBF approach on sparse grids is not very encouraging in our experience.

Recalling the dependence of relative error on the condition number described in (2.7),

we de�ne the condition numbers is safe, when it is � 1010 and we de�ne the condition

numbers is large if it is� 1010. In the RBF interpolation, we choose the shape parameters

proportional to the data density to so that the stability can be ensured. If \N" is the

size of a full grid of level n 2 N in the bounded domain [0; 1]d, we have n = N1=d � 1.

Henceforth, we use c = C � 2n with a suitably chosen constant C for RBF and MLRBF

interplation. We use a range of shape parameters , resulting in safe condition numbers as

well as in large condition numbers. In the numerical examples, \L1-err" is the maximum



4.3 Numerical Experiments for d=2 45

modulus error, i.e., ku� ~uk1 , \RMS-error" is the standard root mean squared (RMS)

error, i.e.,

qPNeval
k=1 juk�~ukj2

Neval
, where u is the exact solution, ~u is the approximate solution

and \Neval" is the size of the evaluation grid.

In SKI results, \SGnodes" denote the number of SKI nodes used, \DOFs(SG)"

denotes the total number of times the SGnodes are visited (as some of them are re-visited

several times) and \Cond no" stands for the maximum 2-norm condition numbers among

the interpolation sub-problems required for combination to evaluate the SKI interpolant

Sc
A(�). \N" stands for the number of centers used in RBF interpolation. \Err at nodes"

is the L1-error at the RBF centres (in the case of RBF interpolation) or it is the L1-

error at the SGnodes (in the case of SKI interpolation). We evaluate \Err at nodes" in

order to check whether it is zero (as it should be zero in a stable interpolation) or not.

The Sparse Kernel-based Interpolation can be implemented by relatively easy modi-

�cation to an existing RBF code. For the choice of each sub-grid Xl : l = (l1; : : : ; ld),

we construct the transformation matrix Al 2 Rd�d to be a diagonal matrix with its main

diagonal given by (2l1 ; � � � ; 2ld) 2 Rd. While choices for chosing c in SKI have been

discussed in Section 4.2.

We perform extensive numerical experiments for d=2, by interpolating data gener-

ated from the following test functions, Test1-2D, Test2-2D, Test3-2D, Test4-2D, Franke2D

and Sinc2D. Note that the test function Test2-2D is not smooth. In these experiments

SKI has been implemented with a wide range of RBFs. The implementation of the

method in all our experiments, on ALICE as well as on an ordinary computer, has been

done in Matlab and in serial. We use a desktop computer \Core 2 Duo CPU @ 3.16GHz

3.17GHz and 3.24GB of RAM" for d=2, 3. For d=4, we use ALICE to be able to run

many experiments at the same time by accessing as many nodes of ALICE. Each ex-

periment was run in serial on a single node (having a pair of quad-core 2.67GHz Intel

Xeon X5550 CPUs and 12GB of RAM) which is equivalent to a more powerful desktop

computer. Thus all the CPU timing and the problem size shown here relate to compu-

tations that can be run on an ordinary computer mentioned above. Moreover, we are

going to report separately the largest size of the problem that SKI can solve on a single

node of ALICE for d =2, 3, 4 in Sections 4.3.2, 5.4.1.1(a), and in Tables 6.1, 6.2, 6.3.
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(a) Franke2D (b) Test1-2D

(c) Sinc2D (d) Test2-2D

(e) Test3-2D (f) Test4-2D

Figure 4.1: Test functions
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4.3.1 Examples with Gaussian RBF

As discussed in Chapter 3, the sparse grids were originally created based on a hierarchical

basis and sparse tensor product construction of multi-linear basis functions. Among the

RBFs, the Gaussian has tensor product structure as it can be written as

e�c
2kxi�xjk2 = e�c

2jxi
1
�xj

1
j2e�c

2jxi
2
�xj

2
j2 � � � e�c2jxid�xjdj2 ;

where

xi = (xi1; x
i
2; � � � ; xid) 2 Rd:

Motivated by its tensor-product nature, we �rst implement the sparse kernel-based

interpolation with Gaussians.

Examples with safe condition number

Data from some of our experiments with safe condition numbers is given in Tables 4.1,

4.3 for sparse kernel based interpolation and in Tables 4.2, 4.4 for classical full grid

RBF interpolation, while more details are give in the �gures. It is observed that, as

for as the condition number stays safe, the error at the sparse grid nodes is nearly the

machine zero and this is in complete agreement with a similar behaviour observed for

the classical RBFs interpolation. This observation is given as the \Err at nodes" in

Tables 4.1, 4.3, 4.2, 4.4. This con�rms that we are not losing any accuracy and one

should expect reliable computation.

SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 6.2203e-1 1.8260e-1 1.1727e-15 2.6912e+3 9.6437e-4

21 39 3.3070e-1 7.5595e-2 3.3973e-14 2.5325e+4 2.6042e-3

490 109 1.1070e-1 3.8513e-2 4.0863e-13 2.8184e+5 5.1803e-3

113 271 4.0603e-2 1.1233e-2 8.6423e-13 2.6522e+6 9.2529e-3

257 641 1.3883e-2 2.6363e-3 1.4270e-12 2.9516e+7 2.2223e-2

577 1475 8.1981e-3 5.1787e-4 1.0622e-12 1.7591e+8 1.0507e-1

1281 3333 2.9843e-3 1.3879e-4 1.1879e-13 1.0484e+9 5.3998e-1

2817 7431 2.1240e-3 6.6385e-5 4.1966e-14 2.3229e+9 3.5107e+0

6145 16393 5.5459e-4 3.0491e-5 5.1847e-14 5.1468e+9 3.4347e+1

13313 35851 2.5892e-4 7.3961e-6 5.2847e-14 6.5016e+9 3.1038e+2

Table 4.1: SKI results using Gaussian RBF with shape parameter c = 0:45 for each

level, test function Franke2D, on 160� 160 equally spaced evaluation grid.
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The SKI algorithm is faster than direct RBF-method, we observe that the time

taken by SKI is smaller than that taken by standard RBF interpolation for the same

number of nodes used. The run time of SKI remains smaller even if the re-visits of the

algorithm to the same node (DOFs(SG)) are taken in to account. The plots describing

this observation about run time in terms of the number of nodes used is omitted for

brevity. We present error in terms of the number of nodes used as well as in terms of

run time. In Figures 4.2(c), 4.2(d), RMS-error is plotted versus the machine time. We

express the error in terms of the size (N or SGnodes) of the input data in Figures 4.2(a),

4.2(b), In either case performance of the new proposed algorithm is superior than the

direct RBF method.

N L1-Err RMS Err Err at Nodes Cond no Time

9 6.1200e-1 1.7975e-1 4.1257e-16 1.1687e+3 7.5539e-2

25 1.5084e-1 4.7240e-2 6.8737e-14 4.9415e+4 4.2162e-3

81 2.5120e-2 4.7206e-3 4.7240e-14 2.0309e+6 2.0519e-3

289 1.3917e-2 1.0754e-3 1.4433e-15 2.3576e+7 3.3288e-2

1089 1.4517e-2 8.0590e-4 2.4425e-15 6.3673e+7 1.4637e+0

4225 1.4740e-2 5.7989e-4 1.9984e-15 8.4800e+7 1.4658e+2

Table 4.2: RBF interpolation results using Gaussian RBF with shape parameter c =

0:5� 2n, test function Franke2D, on equally spaced 160� 160 evaluation grid.

SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 6.2215e-1 1.8363e-1 1.1727e-15 2.6912e+3 1.0851e-3

21 39 3.3061e-1 7.6066e-2 3.3973e-14 2.5325e+4 2.6534e-3

49 109 1.1072e-1 3.8767e-2 4.0863e-13 2.8184e+5 5.1141e-3

113 271 4.0627e-2 1.1304e-2 8.6423e-13 2.6522e+6 9.6881e-3

257 641 1.3900e-2 2.6530e-3 1.4270e-12 2.9516e+7 2.3347e-2

577 1475 7.6365e-3 5.2642e-4 1.0622e-12 1.7591e+8 1.0289e-1

1281 3333 5.7691e-3 2.2933e-4 1.1879e-13 1.0484e+9 5.2904e-1

2817 7431 4.4410e-3 1.6392e-4 4.1966e-14 2.3229e+9 3.5082e+0

6145 16393 4.3974e-3 1.1790e-4 5.1847e-14 5.1468e+9 3.4310e+1

13313 35851 4.4684e-3 8.5654e-5 5.2847e-14 6.5016e+9 3.0990e+2

Table 4.3: SKI results using Gaussian RBF with shape parameter c = 0:45 for each

level, test function Franke2D, evaluated at 25; 600 Halton points.
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(a) On equally spaced evaluation grid (b) On Halton points evaluation grid

(c) On equally spaced evaluation grid (d) On Halton points evaluation grid

Figure 4.2: RMS-error versus N(for RBFs) and SGnodes (Top row) and RMS-error

versus CPU-Time (Bottom row): Gaussian SKI (Green), RBF interpolation (Red) with

safe condition numbers
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N L1-Err RMS Err Err at Nodes Cond no Time

9 6.1207e-1 1.8077e-1 4.1257e-16 1.1687e+3 6.6746e-2

25 1.5070e-1 4.7532e-2 6.8737e-14 4.9415e+4 4.1533e-3

81 2.5128e-2 4.7504e-3 4.7240e-14 2.0309e+6 2.2908e-3

289 1.4005e-2 1.0796e-3 1.4433e-15 2.3576e+7 3.2607e-2

1089 1.4103e-2 8.1099e-4 2.4425e-15 6.3673e+7 1.4265e+0

4225 1.3740e-2 5.9901e-4 1.9984e-15 8.4800e+7 1.4649e+2

Table 4.4: RBF interpolation results using Gaussian RBF with shape parameter c =

0:5� 2n, test function Franke2D, evaluated at 25; 600 Halton points.

Examples with large condition numbers

We continue our experiments with Gaussian SKI with shape parameters resulting the

interpolation system to be badly conditioned. We observe that the convergence is faster

in both cases and direct RBF shows slightly better convergence than SKI as shown in

Figure 4.3(a). But in this case, error at the nodes in Tables 4.6, 4.5 and Figures 4.3(c),

4.3(d) is not machine procession and it looks we are losing some accuracy, this makes

the experiment with large condition number unreliable. This visible loss of accuracy at

the nodes is observed in the RBF as well as sparse kernel-based interpolation.

N L1-Err RMS Err Err at Nodes Cond no Time

9 2.9730e-2 1.9785e-2 5.6843e-13 3.4263e+4 1.2393e-2
25 3.2376e-3 1.6338e-3 1.7280e-11 8.4607e+8 4.4140e-4
81 1.4367e-4 4.9394e-5 7.8883e-7 9.0547e+17 2.3645e-3
289 2.7305e-6 4.5956e-7 1.0937e-7 8.0684e+20 3.4577e-2
1089 1.0011e-6 8.6589e-8 1.3720e-7 4.3148e+20 1.4688e+0
4225 2.1251e-7 6.3437e-8 2.0267e-7 8.2015e+20 9.0569e+1

Table 4.5: RBF interpolation results using Gaussian RBF with shape parameter c=0:4�
2((5=7)n), test function Test1-2D, evaluated at 25; 600 Halton points.



4.3 Numerical Experiments for d=2 51

(a) RMS-error versus N (for RBFs) and SGn-

odes(for SKI): on Halton points evaluation grid.

(b) RMS-error versus CPU-Time: Halton

points evaluation grid.

(c) On equally spaced evaluation grid (d) On equally spaced evaluation grid

Figure 4.3: Gaussian SKI (Green) RBF interpolation (Red) with large condition num-

bers.
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 2.3577e-2 1.5683e-2 9.0949e-13 9.3266e+4 1.0398e-3

21 39 4.2231e-3 2.2162e-3 3.1264e-12 4.8524e+6 2.5906e-3

49 109 8.1732e-4 3.0411e-4 2.0634e-11 1.0647e+9 5.0333e-3

113 271 2.1732e-4 5.5887e-5 1.9524e-10 4.5852e+11 9.3272e-3

257 641 8.9804e-5 1.5989e-5 5.2691e-9 5.4137e+13 3.1796e-2

577 1475 4.3217e-5 5.4059e-6 7.3453e-8 6.1997e+15 8.2770e-2

1281 3333 2.0993e-5 1.8532e-6 9.4408e-8 1.8098e+17 4.8576e-1

2817 7431 1.0249e-5 6.5180e-7 1.6140e-7 9.3641e+17 3.4876e+0

6145 16393 5.1016e-6 2.2785e-7 1.7983e-7 1.3552e+19 3.1338e+1

13313 35851 2.4993e-6 8.0844e-8 1.9637e-7 1.1346e+20 2.7635e+2

Table 4.6: SKI results using Gaussian RBF with shape parameter c=0:29 for each level,

test function Test1-2D, evaluated at 25; 600 Halton points.

4.3.2 SKI simulations on ALICE, a computer with more RAM

All these experiments have been performed on an ordinary computer having speci�cation

\Intel Core 2 Duo CPU @ 3.16GHz 3.17GHz and 3.24GB of RAM". It is observed that

the computation is stable for large data on a sparse grid up to level 10. The corresponding

full grid of level 10 has 1,050,625 nodes. We have also performed some of our experiments

on a single computer node ( having a pair of quad-core 2.67GHz Intel Xeon X5550 CPUs

and 12GB of RAM ) of the computer cluster ALICE of the University of Leicester. A

computer node on ALICE is equivalent to a more power full desktop. We �nd that the

method is stable for larger size of the data and computations can be done on a sparse

grid of levels up to 12 having more than 61,000 nodes. The corresponding full grid of

level 12 has 16,785,409 nodes. So this mean that our method can stably approximate

a 2D data of large size such as more than 16.7 million on a full grid. These high level

numerical results are given in Table 4.7. The largest size of direct RBF interpolation

problem that we can solve using the same high performance computing system ALICE

is given in Table 4.8. This size is nearly the same as the SKI can solve on an ordinary

computer. Due to its nearly one-dimensional complexity, SKI can solve even larger

interpolation problems in higher dimensions while the maximum size of classical RBF

methods stays the same independent of the dimension. High dimensional performance

of SKI is demonstrated by examples in Chapter 6.
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 6.2215e-1 1.8363e-1 9.7838e-16 2.6912e+3 1.0561e+0
21 39 3.3061e-1 7.6066e-2 1.6834e-14 2.5325e+4 9.3820e-3
49 109 1.1072e-1 3.8767e-2 3.5380e-13 2.8184e+5 4.2680e-3
113 271 4.0627e-2 1.1304e-2 6.3793e-13 2.6522e+6 7.0460e-3
257 641 1.3900e-2 2.6530e-3 1.5116e-12 2.9516e+7 6.0849e-2
577 1475 7.6365e-3 5.2642e-4 8.4097e-13 1.7591e+8 7.0136e-2
1281 3333 5.7691e-3 2.2933e-4 1.5285e-13 1.0484e+9 4.8372e-1
2817 7431 4.4410e-3 1.6392e-4 4.1855e-14 2.3229e+9 3.3381e+0
6145 16393 4.3974e-3 1.1790e-4 4.1189e-14 5.1468e+9 2.8298e+1
13313 35851 4.4684e-3 8.5654e-5 4.6629e-14 6.5016e+9 2.5568e+2
28673 77837 4.4437e-3 6.0948e-5 4.9405e-14 8.2129e+9 2.1127e+3
61441 167951 4.2062e-3 4.3058e-5 4.8628e-14 8.7056e+9 1.8958e+4

Table 4.7: SKI results from ALICE using Gaussian RBF with shape parameter c=0:45
for each level, test function Franke2D, evaluated at 25; 600 Halton points.

N L1-Err RMS Err Err at Nodes Cond no Time

9 6.1207e-1 1.8077e-1 5.4123e-16 1.1687e+3 1.4851e-1

25 1.5070e-1 4.7532e-2 7.2498e-14 4.9415e+4 4.5210e-3

81 2.5128e-2 4.7504e-3 5.6469e-14 2.0309e+6 9.1590e-3

289 1.4005e-2 1.0796e-3 1.4433e-15 2.3576e+7 2.6139e-2

1089 1.4103e-2 8.1099e-4 1.7764e-15 6.3673e+7 9.4756e-1

4225 1.3740e-2 5.9901e-4 1.9984e-15 8.4800e+7 1.5712e+2

4900 1.3372e-2 5.7855e-4 2.2204e-15 8.5961e+7 2.4911e+2

6400 1.2524e-2 5.4643e-4 2.4425e-15 8.7686e+7 5.8488e+2

8100 1.2414e-2 5.1773e-4 2.6645e-15 8.8882e+7 1.0851e+3

10000 1.2089e-2 4.9288e-4 2.4425e-15 8.9744e+7 1.9047e+3

11025 1.1861e-2 4.8103e-4 2.2204e-15 9.0087e+7 2.5149e+3

12100 1.1596e-2 4.6971e-4 2.4425e-15 9.0385e+7 3.6044e+3

13225 1.1299e-2 4.5915e-4 2.2204e-15 9.0645e+7 4.1111e+3

14884 1.0842e-2 4.4624e-4 2.1094e-15 9.0957e+7 5.6667e+3

Table 4.8: RBF interpolation results from the HPC ALICE using Gaussian RBF with

shape parameter c = 0:5�2n, test function Franke2D, evaluated at 25; 600 Halton points.
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4.3.3 SKI with non Gaussian RBFs

So far we have presented our sparse kernel-based interpolation results with Gaussian

RBF. Gaussians are positive de�nite and of tensor product nature as we can write

e�c
2kxi�xjk2 = e�c

2jxi
1
�xj

1
j2e�c

2jxi
2
�xj

2
j2 � � � e�c2jxid�xjdj2 ;

where xi = (xi1; x
i
2; � � � ; xid) 2 Rd: Hence Gaussians can be still viewed in the classical

sparse grid settings. Sparse grid methods based on one-dimensional tensor product of

standard RBFs (such as, Wendlands, Gaussians, inverse multiquadrics, multiquadrics

and thin plate splines) have been considered in [83], where the error analysis has been

given based on the resulting tensor-product nature of the basis functions. The resulting

methods in [83] were not supported by numerical assessment.

We present our experimental results for positive de�nite (PD) non Gaussians RBFs

and conditionally positive de�nite (CPD) RBFs separately. We adjust the shape pa-

rameter so as to ensure a safe condition numbers together with few values of the shape

parameter producing large condition numbers, in order to study the behaviour of SKI

in the non-Gaussian context.

4.3.3(a) SKI with non Gaussian PD RBFs

In this section, we present the results from the sparse kernel-based interpolation per-

formed with non Gaussian RBFs as basis function, which are positive de�nite having

order m = 0 such as inverse quadric IQ = 1
1+c2r2

, inverse multiquadric IMQ = 1p
1+c2r2

,

generalized inverse multiquadrics GIMQ = 1
(1+c2r2)2

, and Wendland's function, WE32,

'3;2(r) = (1 � cr)6+(35c
2r2 + 18cr + 3). The method with PD-RBFs basis converges

but at a rate slightly slower as compared with that of Gaussian. This is given in Fig-

ures 4.4(a), 4.4(b). This agrees with the superior convergence of Gaussian over these

basis in the context of standard RBF interpolation. We observe that the convergence of

SKI is slower as compared to the standard RBF interpolation when error is compared

as function of the size of the input data, but SKI is superior if error is plotted versus

time. The slower convergence of SKI as compared to na��ve RBF approach indicates the

compromise similar to the one observed for sparse grid methods where accuracy deteri-

orates by a logarithmic factor for the reduction of computational cost. We also give the

error comparison for the basis with large conditions numbers in Figures 4.4(c), 4.4(d),

where we observed the same slower convergence behaviour of sparse grid interpolation

as compared with the classical RBF method.
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 7.0520e-2 4.6335e-2 1.9895e-13 1.3125e+4 5.8174e-1

21 39 2.3644e-2 1.0794e-2 1.3419e-2 9.9156e+4 9.1386e-3

49 109 1.8437e-2 8.5963e-3 1.4801e-2 5.7648e+5 4.6724e-3

113 271 1.0767e-2 4.1806e-3 9.4742e-3 2.4285e+6 8.8500e-3

257 641 5.6691e-3 1.7135e-3 4.9939e-3 8.3427e+6 2.1641e-2

577 1475 2.8008e-3 6.5234e-4 2.4594e-3 1.6121e+7 7.0627e-2

1281 3333 1.1990e-3 2.3879e-4 1.1866e-3 2.9818e+7 4.4303e-1

2817 7431 5.7483e-4 9.2579e-5 5.7126e-4 3.8280e+7 2.5541e+0

6145 16393 2.8581e-4 2.6625e-5 2.7587e-4 4.9297e+7 2.7559e+1

13313 35851 1.5608e-4 9.5637e-6 1.3374e-4 5.4030e+7 2.3579e+2

Table 4.9: SKI, using GIMQ, with c = 0:21 for each level, using test function Test1-2D,

on 160� 160 equally spaced evaluation grid.

4.3.3(b) SKI with CPD RBFs

We perform some experiments with conditionally positive de�nite RBFs of order m > 0.

The most common CPD RBFs are multiquadric MQ =
p
1 + c2r2 with m = 1, thin plate

spline TPS2=r2log(r) with m = 2, TPS3=r4log(r), m = 3, radial powers r, m = 1, r3,

with m = 2 etc. In the case of CPD-RBFs, one need to append a polynomial p(�) 2
�dm�1 to control the growth and guarantee the recovery of a unique interpolant. The

convergence ofMQ is nearly the same as that with the non-gaussian PD-RBFs discussed

above. Apart from MQ, other CPD-RBFs have shown either very slow convergence or

even no convergence at all. The condition number attached with MQ can be adjusted

by varying associated shape parameter, while the condition number associated with

the RBFs such as TPS2=r2log(r), TPS3=r4log(r), r, r3 having no shape parameter is

prohibitively large. The errors with safe condition numbers are given in Figures 4.5(a),

4.5(b), while those with large condition numbers are presented in Figures 4.5(c), 4.5(d).

We observed that using non Gaussian RBFs (whether positive de�nite or condition-

ally positive de�nite), the error at the sparse grid nodes is same as the interpolation error

in the remaining domain even if the condition number is good enough. This was not the

case with Gaussian RBF, where error at the nodes was nearly zero for well-conditioned

problems. The errors at the nodes are given in Tables 4.9, 4.10.
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(a) On equally spaced evaluation grid (b) On uniformly distributed evaluation grid

(c) On equally spaced evaluation grid (d) On uniformly distributed evaluation grid

Figure 4.4: RMS-error versus SGnodes (SKI) and N (RBF): SKI(Green) and RBF-full

grid (Red) with safe condition numbers (Top row) and with large condition numbers

(Bottom row)
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(a) On equally spaced evaluation grid (b) On uniformly distributed evaluation grid

(c) On equally spaced evaluation grid (d) On uniformly distributed evaluation grid

Figure 4.5: RMS-error versus SGnodes (SKI) and N (RBF): SKI(Green) and RBF-full

grid (Red) for PD (Non Gaussian) and CPD RBFs, with safe condition numbers (Top

row) and with large condition numbers (Bottom row)
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 9.8544e-2 6.5283e-2 2.4514e-13 2.2856e+4 6.1154e-1

21 39 4.4592e-2 1.9846e-2 2.6726e-2 1.1871e+5 1.1555e-2

49 109 3.7102e-2 1.8565e-2 3.2903e-2 5.3530e+5 4.9294e-3

113 271 2.5868e-2 1.0442e-2 2.3143e-2 2.0546e+6 9.1565e-3

257 641 1.4892e-2 5.1211e-3 1.3299e-2 7.6895e+6 2.1519e-2

577 1475 7.8016e-3 2.4188e-3 6.9619e-3 2.9498e+7 8.9453e-2

1281 3333 3.7745e-3 1.1514e-3 3.4523e-3 1.1555e+8 4.0766e-1

2817 7431 2.1540e-3 5.6427e-4 1.6739e-3 4.5767e+8 2.4855e+0

6145 16393 1.5137e-3 2.6993e-4 1.1218e-3 1.8223e+9 2.4499e+1

13313 35851 9.8175e-4 1.3131e-4 7.2981e-4 7.2734e+9 2.1747e+2

Table 4.10: SKI using MQ, with c = 0:4 for each level, using test function Test1-2D, on

160� 160 equally spaced evaluation grid.

4.4 SKI on perturbed grids

So far we have discussed the sparse kernel-based interpolation on regular grids. Now

this is the time to discuss the behavior of the method on unstructured sparse grids. It

is worth mentioning here that the sparse grid methods in the context of multi-linear

approximation have been used on regular sparse grids and have been extended to non

smooth solutions by adaptive re�nement [51], [53], [61], but these methods have not been

used on perturbed grids. We perturb the parent uniform full grid by adding random

numbers nearly equal to up to a quarter of the �ll distance, from which we extract

the perturbed sparse grid. The full grid, and the corresponding perturbed full grid, the

sparse grid and the corresponding perturbed sparse grid of level 3 are given in Figure 4.7.

We perform experiments on several perturbed grids, we present only our experiment on

sparse grids perturbed on the same scale as shown in Figure 4.7. As long as we use

the shape parameter which keeps the condition number safe, we get convergence which

is slightly slower than the regular sparse grid. These results are given in Tables 4.11,

4.12. A comparison between the errors for experiments performed on regular sparse

grids and perturbed sparse grids is given in Figures 4.6(a), 4.6(b). On the other hand,

in the experiments with shape parameters resulting in large condition numbers, the

convergence becomes very slow or even oscillates. Based on our experimental results,

we conclude that SKI converges on irregular sparse grids provided a shape parameter

resulting in safe condition number is used.
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(a) On equally spaced evaluation grid (b) On uniformly distributed evaluation grid

Figure 4.6: RMS-error versus SGnodes: Regular sparse grid SKI (Green) and and SKI

on perturbed sparse grid (Red), using Gaussian with c = 0:45 producing safe condition

numbers.

Figure 4.7: Full grid (Black dots), Perturbed full grid (Blue stars) and Perturbed sparse

grid (Red small circles) of level 3.
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SGnode DOFs(SG) L1-Err RMS Err Cond no Time

9 9 6.3057e-1 1.8681e-1 2.6782e+3 3.0339e-1

21 39 3.2149e-1 7.4121e-2 2.5957e+4 2.1477e-2

49 109 1.7311e-1 6.6810e-2 2.1567e+5 6.7651e-3

113 271 7.6386e-2 2.5482e-2 2.2055e+6 1.1495e-2

257 641 7.1874e-2 1.5784e-2 2.1699e+7 2.9160e-2

577 1475 2.0588e-2 4.6391e-3 1.2844e+8 1.1698e-1

1281 3333 4.3316e-3 9.3708e-4 6.7882e+8 6.5614e-1

2817 7431 2.6099e-3 4.9258e-4 1.6539e+9 4.2401e+0

61450 16393 1.2238e-3 1.9542e-4 3.8533e+9 3.8792e+1

13313 35851 4.9777e-4 8.4162e-5 5.4694e+9 3.2909e+2

Table 4.11: SKI results: sparse grid is perturbed by adding random numbers from

(0; 2�level=4), using Gaussian RBF with c = 0:45 for each level, test function Franke2D,

on 160� 160 equally spaced evaluation grid.

SGnode DOFs(SG) L1-Err RMS Err Cond no Time

9 9 6.0269e-1 1.7513e-1 6.1538e+2 1.6220e-3

21 39 2.8433e-1 6.6306e-2 6.5810e+3 3.6460e-3

49 109 1.0168e-1 3.3382e-2 3.7959e+3 6.5749e-3

113 271 7.0602e-2 2.1208e-2 2.8177e+5 1.1905e-2

257 641 3.1135e-2 3.7970e-3 3.4217e+4 2.9880e-2

577 1475 1.2240e-2 1.7385e-3 5.7015e+6 1.3945e-1

1281 3333 1.3272e-2 1.0215e-3 1.1318e+5 7.2855e-1

2817 7431 3.2151e-3 3.4584e-4 3.2640e+7 4.3356e+0

6145 16393 2.9941e-3 2.4442e-4 1.7656e+5 4.1444e+1

13313 35851 6.9303e-4 8.9808e-5 6.7086e+7 3.4659e+2

Table 4.12: SKI results: sparse grid is perturbed by adding random numbers from

(0; 2�level=4), using Gaussian RBF with c = 2hr=3, using test function Franke2D, on

160� 160 equally spaced evaluation grid.

4.5 Discussion

The proposed algorithm, Sparse Kernel-based Interpolation, is not only stable for large

data but also good in e�ciency and thus can addresses the complexity issue. The parallel
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nature of SKI by solving small full grid problems together with the dimensional insensi-

tivity of RBFs makes the two seemingly di�erent approaches attractive for large and/or

high dimensional problems. Since the combination is very suitable to be implemented in

parallel, so that SKI could prove to be more e�ective for high dimensional interpolation

problems, specially when implemented in parallel on high precession modern comput-

ing systems. The method is numerically stable for most RBFs with variable accuracy.

It is also observed that the run time decreases in terms of centers used, and SKI can

solve large interpolation problems with N = 61; 000 sparse grid nodes for d = 2. The

corresponding full grid bi-variate classical RBF interpolation of level 12, would require

more than 16 million degrees of freedom. We observe that the convergence is faster

or the same as the full grid interpolation and it can be easily implemented for larger

data in less time. The size of the largest classical RBF interpolation problem that we

can solve on ALICE is nearly 15; 000 regardless of the dimension, while on the same

computer SKI can solve a problem with N = 61; 000 sparse grid nodes for d=2. Due to

the d-dimensional complexity, the size of the largest na��ve RBF interpolation problem

that can be solved on a given machine stays the same and does not increase with dimen-

sion, while SKI has nearly one-dimensional complexity. Hence the capability of SKI of

addressing the complexity may be more attractive in higher dimensions. We shall look

at the high dimensional implementation of SKI in Chapter 6.

The convergence of SKI has been veri�ed by numerical examples with positive de�nite

RBFs such as Gaussian, GIMQ, IMQ and IQ as basis functions, and among them the

Gaussian shows the best convergence. Among the conditionally positive de�nite RBFs,

SKI with MQ has a convergence nearly same as that with the above mentioned inverse

multiquadrics. While the other CPD RBFs such as TPS2, TPS3 have either very slow

convergence or no convergence at all.

Also, SKI converges at irregular sparse grid but at a somewhat slower rate than that

for the regular sparse grids.

The numerical implementation has been done in Matlab serially. The Sparse Kernel-

based Interpolation has advantages as compared to the direct full grid standard RBF

interpolation. Firstly, obtaining the partial solution ul on the full grids Xl of small resolu-

tion allows the possibility of using the existing codes which makes the sparse kernel-based

interpolation as a straight forward technique for complicated problems and secondly, the

discretisation on the small (full) grids can be done in parallel and this makes the combi-

nation technique perfectly suited for implementation on the modern high performance

computing systems. In SKI, we make use of the combination technique accessing some

nodes several times and is therefore expected to require more storage than the direct

sparse grid methods. However, it is still making use of the same less input information

required by the direct sparse grid algorithms. In any case, compared to the full grids
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SKI requires very small amount of memory storage and is still good for large data and

high dimensions. In addition, due to its parallel nature of solving independent but small

problems, the SKI method can be implemented on modern HPC clusters in parallel

environment. Moreover, even when implemented in series on a ordinary computer, SKI

is faster and can solve larger interpolation problem than the direct interpolation on a

sparse grid. SKI gives better e�ciency in terms of stability, complexity and the run

time and even in convergence over the full grid standard RBF interpolation approaches

in most cases. In some cases this e�ciency might be at the cost of negligible loss of

accuracy.



Chapter 5

Multilevel Sparse Kernel-Based

Interpolation

Multilevel approximation methods are concerned with the construction of a hierarchical

representation of a model data, that stems from an unknown function, at several di�erent

resolutions. In practice a data set could be very large and its density in the set of data

sites is subject to strong variations. Due to their heterogenous nature, such data sets

naturally incorporate multiple resolutions. Hence, multilevel scattered interpolation

methods turns out to be the appropriate tools for an e�cient an e�ective recovery of

such data sets [35], [93] [76], [30], [63], [77]. In the mid 90's, Floater and Iske presented

a multilevel interpolation algorithm [35], which is the �rst idea on combining a thinning

algorithm and compactly supported RBF interpolation. The multilevel interpolation

combines the advantages of stationary and non stationary classical RBF interpolation,

thereby accelerating the convergence. The method is based on a decomposition of the

centers into a nested sequence of subsets of centres. These subsets are designed so that

they have a uniform density and the density increases smoothly from lower to higher

level. Density of a set X � 
 of centres can me measured by its �ll distance hX;
 and by

its separation distance qX . This scheme has been further improved by using scattered

data �ltering instead of non-adaptive decomposition [63] and, more recently, developed

further by combining the adaptive domain decomposition with stable local polyharmonic

spline interpolations [65]. The convergence analysis of the method can be found in [55],

[33], while application of these ideas in interpolation and in the solution of PDEs can

be found in [76], [77] and [30], [93], respectively.

In this chapter, we review briey the multilevel RBF interpolation and, subsequently,

we present a multilevel version of the SKI algorithm.

63
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5.1 Multilevel classical RBF interpolation

Given data (xi; yi); where yi = f(xi) for i = 1; : : : ; N , are the values of an unknown

function f : Rd ! R at pairwise distinct data sites X=fx1; : : : ;xNg � R
d, yi 2 R,

we want to �nd a continuous unknown function s : Rd ! R such that s(xi) = yi,

i = 1; : : : ; N , where N is large enough.

To recover the unknown function s, we decompose the point set X into the following

nested sequence of subsets

X1 � : : : � XK = X: (5.1)

Let sk denote the multilevel interpolant to the given data set at the k-th level, and let

Pkfk�1 denote the interpolant to the residual f � sk�1 at Xk. Set so � 0 and let sk =

sk�1+Pkfk�1. Then skjXk
=f jXk

[35], [65].

In numerical linear algebra a similar process is known as iterative re�nement. The

basic idea of the algorithm is to scale the support of the basis proportional to the �ll

distance at each level, interpolate the data at the coarsest level, and after the �rst level

interpolate to residuals on progressively �ner sets. In other words, it starts with smoothly

varying basis functions on a very thin data set to recover the global behaviour of the

unknown data function, followed by the use of increasingly oscillating basis functions on

�ner levels to recover the local behaviour of the data.

The coarsest level interpolant of the scheme is of crucial importance, as this where

the global behaviour of the data is recovered. In other words, the convergence of the

scheme is closely dependent on the approximation strength of the initial interpolant

[64]. In order to achieve better approximation, the use of polyharmonic splines have

been recommended [65], [64] as the basis for the coarsest level interpolant followed by

the use of a suitable basis function of local support. In addition to better global recovery,

the use of a CPD polyharmonic spline of order m guarantees the reproduction of any

d-variate polynomial from the space �dm�1 [64].

At the levels after the �rst, it is the support radius (in case of CSRBFs) or the scaling

(in the case of GSRBFs) of the basis function used in the multilevel scheme that can

be used to improve the approximation of the residual interpolants used for the updates.

If the support radius/scaling of the basis function at the i-th step is kept proportional

to the density of Xi, then the number of the data centers lying in the the region of

inuence of the basis function is bounded by a constant being independent of the level

i. This results in the condition numbers of the interpolation matrix to be uniformly

bounded and independent of the level i. This means a constant number of iterations

will be required if an iterative linear solver is used. On the other hand in the context of

compactly supported RBF, the bandwidth of the corresponding sparse system remains

constant, and hence matrix-vector multiplication in the scheme will need linear time. In
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[35], the support radius at each step is taken to be nearly equal to 5� hXi;
 in a model

problem. In [63], the author remarks that the performance of the multilevel interpolation

closely depend on the hierarchy (5.1) of the given data, and thereby suggests algorithms

for construction of suitable data hierarchies. A multilevel approximation scheme based

on adaptively constructed hierarchies is given in [65].

5.2 Multilevel sparse kernel-based interpolation

We apply the idea of the multilevel interpolation [35], [65] discussed above, to the sparse

kernel-based interpolation presented in Chapter 4.

The main motivation for using multilevel decomposition in the sparse kernel-based

interpolation comes from two facts:

� Each sparse grid interpolant Sc
n is a linear combination of partial interpolants SAl

,

where SAl
uses basis function 'Al

, (where 'Al
(�) = '(Al�) and '(�) is an RBF,)

with their support kept proportional to density of the corresponding constituent

grid Xl by a suitably chosen scaling matrix Al.

� The sparse grids from lower to higher level are nested, so that the sparse grid from

level one to the current level provides us with a hierarchical decomposition of the

sparse grid data. This nested-ness of the sparse grids can be seen in Figure 5.1,

where Ys
1;d � Ys

2;d : : : � Ys
6;d:

Let 
 be an open set in Rd; let X be the data sites in 
; and let f jX be the given

data. We extract the sparse grid data on Ys
n;d from the the given full grid data on X.

Then decompose the sparse grid data into a hierarchy,

Ys
1;d � Ys

2;d : : : � Ys
n;d;

of nested sparse grids. This is simply the sequence of sparse grids from level 1 to n,

whose density increases (the �ll distance and separation distance decreases) from lower

to higher levels.

The next step is to evaluate the sparse grid interpolant Sc
1 to the data on the coarsest

sparse grid 
s
1, and set 4Sc

1 = Sc
1. In the followings steps, we continue by computing

4Sc
k the interpolant to the residual (f � Sc

k�1)jYs
k;d

from the previous interpolant on

the current sparse grid, for 2 � k � n. The current interpolant is then de�ned as

Sc
k = Sc

k�1+4Sc
1, where S

c
0 = 0.
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Figure 5.1: First six sparse grids in 2D

Algorithm 5.1 (Multilevel sparse kernel-based interpolation (MLSKI))

Input: Sparse grid data decomposition, Ys
1;d � Ys

2;d : : : � Ys
n;d; and data f jYs

n;d

1: Initialize the SKI interpolant, Sc
0(�) � 0;

2: For, k = 1; : : : ; n, do

2a: Evaluate the SKI residual approximant 4Sc
k(�) = f(�)�Sc

k�1(�) on Ys
k;d

2b: Update Sc
k(�) Sc

k�1(�) +4Sc
k(�).

Output: Sequence of progressive approximations, Sc
1; S

c
2; � � � ; Sc

n; to f .
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This algorithm is motivated by the the same idea of the classical multilevel inter-

polation. The method captures the global behaviour of the data by �nding its sparse

kernel-based interpolant to the data at the coarsest sparse grid. At the subsequent lev-

els, more details are recovered by adding the SKI interpolant to the �ner details left

over from the previous interpolant. Finally, we get a sequence of n approximations to

the given data at n sparse grids Ys
1;d; : : : ;Y

s
n;d. Due to the global recovery of the data

at the initial level, the speed of convergence of MLSKI depends on the interpolation

properties of the coarser level interpolant. Due to the application of SKI algorithm at

each step, MLSKI scheme has the linear complexity and run time. In addition, MLSKI

is capable of capitalising on the parallel nature of SKI and, therefore, could prove to be

more e�ective in high dimensions specially if implemented in parallel on modern high

computing systems.

5.3 Stability of MLSKI

The SKI algorithm naturally incorporates all the features required for the application of

its multilevel version MLSKI. Moreover, the stability of MLSKI method directly depends

on the stability of SKI. The scaling of the basis function and choosing its shape parameter

has been discussed in Section 4.2. In applications, we follow the same procedure by

adjusting the support radius of the basis functions in MLSKI, to keep the condition

numbers uniformly bounded. To this end, we choose the scaling matrix Al = diag(2l)

and the shape parameter as given in Section 4.2. The main scaling is done by Al and

then using the strategy given in Section 4.2, we choose suitable shape parameter. In

our experience the constant Kd = 1 gives nearly gives ideal conditioning of the small

problem at the cost of very slow convergence. The choiceKd = 3, produces safe condition

numbers together with faster convergence. Even if we choose Al = diag(2l); and, use

suitable constant shape parameter for all the levels, the algorithm can be stable. For

example, c = 0:45 for Gaussian, c = 0:4 for MQ, c = 0:21 for GIMQ, c = 0:25 for IMQ

and c = 0:25 for IQ results in stable computations with safe condition numbers.

5.4 Numerical Experiments

We perform numerical experiments by interpolating data with a wide range of RBFs such

as Gaussians, multiquadrics, inverse multiquadrics, polyharmoinc splines. We present

numerical results for the interpolation of the data generated from test functions, Test1-

2D, Test2-2D, Test3-2D, Test4-2D, Franke2D and Sinc2D listed in Chapter 4. In our

numerical experiments from now on , \RBF" denotes classical radial basis interpolation,

\MLRBF" denotes the classical multilevel interpolation of Floater and Iske [35], \SKI"
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denotes our sparse kernel-based interpolation and \MLSKI" the multilevel sparse kernel-

based interpolation described in Section 5.2. Also, \N" denotes the number of full

grid centres for the the classical and multilevel RBF interpolations, \SGnodes" denotes

the are sparse grid nodes of the current level, while \DOFs(SG)" denotes the total

number of times SGnodes are visited during the combination technique. We evaluate

the errors at equally spaced 160� 160 points and also at 25,600 Halton points in [0; 1]2.

In all the experiments, on ALICE as well as on an ordinary computer, the methods are

implemented in Matlab serially.

5.4.1 Examples with Gaussian RBF

We implement MLSKI with the anisotropic Gaussian, 'Al
(�) = exp(�c2kAl � k2) as basis

function. As expected, the multilevel sparse kernel-based interpolation algorithm is

taking longer time than the direct sparse kernel-based interpolation but being linear is

still a�ordable. The root mean squared error of the interpolants obtained with SKI,

MLSKI, RBF and MLRBF are given in Figures 5.2, 5.3.

The multilevel sparse kernel-based algorithm is prominently cheaper than the mul-

tilevel RBF interpolation. In particular, these savings become more visible when size of

the problem is large. When the time taken by MLSKI is measured in terms of problem

size, MLSKI is superior to MLRBF.

The method is not only faster when considering the time as a function of the problem

size, but it also wins by a margin when the convergence is studied as a function of the

machine time. This can be seen in Figure 5.2, where the condition number stays safe

and a fast convergence is observed. Also, for the non smooth function Test2-2D the

performance of MLSKI is good.

In Figure 5.3, we give the RMS-error versus N (RBF and MLRBF) and SGnodes

(for SKI and MLSKI). The stable computations given in Figure 5.3, show that multilevel

sparse kernel-based interpolation is superior when compared with the direct SKI results.

Apart from this, superior performance of MLSKI over the multilevel standard RBF

interpolation has also been observed.

Moreover, experiments where large condition numbers are observed, the results su�er

from instabilities. The corresponding numerical results are omitted. MLSKI gives better

performance even in some of these unstable computations. We recall that this loss of

accuracy in the unstable computations, has also been observed for direct SKI in Chapter

4. This can be seen in terms of the L1-error at the nodes in Table 5.1, where the L1-

error at the nodes is nearly the machine precession. On the other hand, we observe

that this error at nodes is evaluated to be nearly equal to the general error when the

condition is large.
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Figure 5.2: RMS error versus elapsed time using Gaussian RBF: SKI (Green), RBF

(Red), MLSKI (Black) and multilevel RBF (Cyan), with safe condition numbers, eval-

uated at 25; 600 Halton points.
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Figure 5.3: RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF: SKI

(Green), RBF (Red), MLSKI (Black) and multilevel RBF (Cyan), with safe condition

numbers , evaluated at 25; 600 Halton points.
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5.4.1(a) MLSKI simulations on ALICE

The experiments presented above have been performed on an ordinary computer. We

extend our numerical simulations of MLSKI to larger sparse grids in R2, on ALICE.

We can implement the scheme on sparse grid of level 12, where the number of nodes

is 61; 441 while this number is more than 16 million for the corresponding full grid.

The numerical results for multilevel sparse interpolation obtained on ALICE are given

in Table 5.1, where the superior fast convergence of MLSKI is given in terms of its

errors can be seen. Hence the suggested multilevel sparse kernel-based interpolation

accelerates the convergence of SKI and has the linear complexity of SKI. In addition,

MLSKI produces a superior performance in terms of complexity and convergence over

the classical multilevel RBF schemes. Hence SKI has itself superior complexity and

MLSKI has the potential to accelerate its convergence.

SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

9 9 6.2215e-1 1.8363e-1 9.7838e-16 2.6912e+3 2.9129e-1

21 39 3.3237e-1 7.6547e-2 3.1142e-14 2.5325e+4 3.3962e-1

49 109 1.1130e-1 3.8660e-2 4.9336e-13 2.8184e+5 3.9263e-1

113 271 4.0379e-2 1.0835e-2 7.8865e-13 2.6522e+6 4.5205e-1

257 641 1.2649e-2 2.5117e-3 7.6195e-13 2.9516e+7 5.2501e-1

577 1475 2.4678e-3 4.0273e-4 2.3428e-13 1.7591e+8 6.6061e-1

1281 3333 2.2043e-4 2.1030e-5 1.2689e-14 1.0484e+9 1.2329e+0

2817 7431 3.5287e-5 2.5391e-6 2.4980e-15 2.3229e+9 4.7431e+0

6145 16393 6.2139e-6 3.2696e-7 3.9552e-16 5.1468e+9 3.3353e+1

13313 35851 1.1784e-6 4.2920e-8 8.3267e-17 6.5016e+9 2.8112e+2

28673 77837 2.1204e-7 5.6557e-9 1.3878e-17 8.2129e+9 2.3971e+3

61441 167951 4.1321e-8 7.6854e-10 3.4694e-18 8.7056e+9 2.1586e+4

Table 5.1: Multilevel SKI results from ALICE, using Gaussian RBF with c = 0:45 for

each level, test function Franke2D, evaluated at 25; 600 Halton points.

5.4.2 Examples with non Gaussian positive de�nite RBFs

After the encouraging performance of SKI and the high order convergence of MLSKI

with Gaussian in the experiments of this chapter, we turn to the non Gaussian basis.

Among the non Gaussian RBF, the inverse multiquadrics are positive de�nite. The most

common in practice among this family of RBFs, are inverse quadric IQ = 1
1+c2r2

, inverse

multiquadric IMQ = 1p
1+c2r2

, and generalized inverse multiquadrics GIMQ = 1
(1+c2r2)2

.
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We present our results with safe condition numbers, and those with large condition

numbers are omitted. Results obtained by implementing SKI, MLSKI, RBF, MLRBF

with GIMQ are given in Figure 5.4. For IMQ these numerics are given in Figure 5.5.

While the corresponding results for IQ are given in Figure 5.6. We have also used

WE32, '3;2(r) = (1� cr)6+(35c2r2+18cr+3) as basis function and the results obtained

are presented in Figures 5.7, where the parameter c used is small thus making WE32

nearly globally supported. By using IQ, IMQ and GIMQ as basis functions, we observe

the same good performance of MLSKI over MLRBF as has been observed with Gaussian.

The convergence is slower than that obtained with Gaussian and agrees with a similar

performance of these basis in the context of classical RBF interpolation. This superior

behaviour of MLSKI is lost if the condition number of the resulting systems are large.

These results are similar to those previously observed in the examples of this kind in

Section 5.4.1, therefore, we omit these results for brevity here.

5.4.3 Examples with conditionally positive de�nite RBFs

The conditionally positive de�nite RBFs such multiquadric MQ =
p
1 + c2r2 , polyhar-

monic splines such as TPS2=r2log(r), TPS3=r4log(r), TPS4=r6log(r), TPS5=r8log(r),

and radial powers, for example, r3 are used as basis function in SKI and MLSKI exper-

iments in this section. We present the results obtained with MQ in Figure 5.8. Error

comparison for r3 is given in Figures 5.9, while the corresponding results for TPS2 are

given in Figures 5.10 and those for TPS3 can be seen in Figures 5.11.

In the stable regime of condition number, MLSKI with MQ, produces results (see

Figure 5.8) which are more or less similar to those obtained for IQ, IMQ and GIMQ. On

the other hand, MLSKI with splines such as TPS2, TPS3 and r3 become nearly unstable

and very slow convergence rates are observed. It is not clear why is this the case and

further research is needed in this direction.



5.4 Numerical Experiments 73

Figure 5.4: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), MLSKI (Black)

and multilevel RBF (Cyan), with safe condition numbers, evaluated at 25; 600 Halton

points.
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Figure 5.5: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 25; 600 Halton points.
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Figure 5.6: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 25; 600 Halton points.
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Figure 5.7: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 25; 600 Halton points.
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Figure 5.8: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 25; 600 Halton points.
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Figure 5.9: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \r3" as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), evaluated at 25; 600 Halton points.
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Figure 5.10: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 25; 600 Halton points.
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Figure 5.11: Left: RMS-error versus N (RBF) and SGnodes (SKI), Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 25; 600 Halton points.
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5.5 Discussion

In this chapeter, the multilevel sparse kernel-based interpolation method has been pre-

sented. Numerical results of the MLSKI implementation, with wide a range of RBFs

as basis, have been presented. As far as the condition numbers remain safe, MLSKI is

capable of accelerating convergence of SKI by several orders with the same complexity

and linear time of SKI. Moreover in experiments with nearly same condition numbers,

MLSKI outperforms the standard multilevel RBF interpolation in terms of convergence

and run time by a notable margin. We observe good convergence performance with

positive de�nite RBFs such as Gaussian, IMQ, GIMQ and IQ. In the examples with

conditionally positive de�nite, MQ has a convergence nearly equal to that of the inverse

multiquadrics. In experiments with TPS2, TPS3, r3, MLSKI becomes nearly unstable

and the convergence is either very slow or even no convergence at all. We are not sure

about the possible explanation of this behaviour and further investigations are required

in this direction.

Due to the application of SKI algorithm at each step, MLSKI scheme has the linear

complexity and run time. In addition, MLSKI is capable of capitalizing on the paral-

lel nature of SKI and, therefore, could prove to be more e�ective in high dimensions

specially if implemented in parallel on modern high computing systems. All the results

presented have been obtained through a serial implementation of the algorithm. Due to

its parallel nature, the generally superior performance of MLSKI in terms of run time

and complexity could be even more prominent if implemented in a parallel environment.

The fast convergence obtained with basis functions such as Gaussian, MQ, GIMQ,

IMQ, IQ, the capability to solve large 2-dimensional interpolations problems, the po-

tential e�ectiveness and simple implementation in high dimensions are good features of

MLSKI algorithm. MLSKI could be an alternative method for large interpolation prob-

lems, in particular when high order convergence is a requirement. These observations

are good enough to motivate the application of MLSKI to d-variate interpolation, for

d = 2. Higher dimensional experiments are presented in Chapter 6.



Chapter 6

High dimensional sparse

kernel-based interpolation

The easy implementation and insensitivity of the RBFs to the dimension parameter d

makes them potentially attractive for high dimensional problems. The only di�erence in

di�erent dimensions is calculating the radial distance r. In practice, the classical RBF

interpolation is very expensive for large problems and is limited to only a modest size

and low dimension of the interpolation problem. For example, an equally spaced full

grid of level 6 in [a; b]3 has size (26+1)3 = 2,74,625 and in [a; b]4 it becomes (26+1)4 =

17,850,625.

In all our experiments so far, we have discussed the sparse kernel based interpolation

of a bivariate function. That is, given the data f(xi1; xi2; yi); for i = 1; � � � ; Ng � R
3,

we had to �nd a function F(x1; x2), such that fyi = F(xi1; xi2); for i = 1; � � � ; Ng.
This interpolation is usually referred to as 3D interpolation [37]. After achieving the

encouraging results for d = 2, we perform sparse kernel based interpolation and its

multilevel approach in higher dimensions, i.e., given the data f(xi1; � � � ; xid; yi); for i =
1; � � � ; Ng � R

d+1, we are going to �nd a d-variate function G(x1; � � � ; xd) such that

fyi = G(xi1; � � � ; xid); for i = 1; � � � ; Ng for d = 3, i.e., we shall be interpolating 4D

and 5D data. We use a desktop computer \Core 2 Duo CPU @ 3.16GHz 3.17GHz and

3.24GB of RAM" for d= 3. For d=4, we use ALICE to be able to run many experiments

at the same time by accessing as many nodes of ALICE. Each experiment was run in

serial on a single node (having a pair of quad-core 2.67GHz Intel Xeon X5550 CPUs and

12GB of RAM) which is equivalent to a more powerful desktop computer. Thus all the

CPU timing and problem size shown here relate to computations that can be run on the

ordinary (less powerful) computer mentioned above. However, it is worth mentioning

that the largest size of the problem in each of these computation has been kept the same

for which all these schemes can be implemented on the smaller computer of 3GM RAM

mentioned above. Moreover, we are going to report separately the largest size of the

82
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problem that SKI can solve on a single node of ALICE for d =3, 4 in Tables 6.1, 6.2,

6.3.

6.1 MLSKI with Gaussians

6.1.1 3-variate interpolation

We present some numerical experiments by implementing the SKI scheme (4.1) and its

multilevel version described in Chapter 5 to approximate a 3-variate data.

We use the following 3-variate test functions to generate the data in our experiments.

Franke3D:

F1(x1; x2; x3) =
3

4
e(�(9x1�2)

2�(9x2�2)2�(9x3�2)2)=4

+
3

4
e�((9x1+1)

2)=49�((9x2+1)2)=10�((9x3+1)2)=29

+
1

2
e�((9x1�7)

2)=4�(9x2�3)2�((9x3�5)2)=2

�1
5
e�((9x1�4)

2)=4�(9x2�7)2�((9x3�5)2)

Test1-3D:

G(x1; x2; x3) = 43x1(1� x1)x2(1� x2)x3(1� x3):

Test2-3D:

G1(x1; x2; x3) = (r2 + r4) log(r); where; r =
q
x21 + x22 + x23:

Test3-3D:

G2(x1; x2; x3) =
1

2
x2cos

4(x21 + x2 + x3 � 1):

Test4-3D:

G3(x1; x2; x3) =

r
18

�
e(�x

2
1
�81x2

2
�x2

3
):

Sinc3D:

H(x1; x2; x3) =
3Y

i=1

sin(�xi)

�xi
:

The combination formula of Algorithm (4.1) for d=3 is:

Sc
n =

X
jlj1=n+2

SAl
� 2

X
jlj1=n+1

SAl
+
X
jlj1=n

SAl
;

and Ys
5;3 is shown in Figure 6.1. We present our numerics from SKI, MLSKI, RBF
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and MLRBF algorithms used to interpolate the data generated from the above test

functions. In the numerical experiments, we observe that the run time of SKI is less

than the time spent by the direct RBF interpolation in particular when the problem is

large. A similar relation between time and the problem size has been observed for MLSKI

and MLRBF interpolation. Hence, SKI and MLSKI have superiority in terms of run

time over RBF and MLRBF respectively. The comparison from the stable experiments

are given in Figures 6.2, 6.3, while we omit the results with larger condition numbers. In

Figures 6.2, 6.3, the superior performance of MLSKI over MLRBF is clearly observed.

We obtain smaller error in smaller time for SKI and MLSKI as compared to RBF and

MLRBF approaches, respectively. In fact MLSKI out performs MLRBF by big margin

in both the cases irrespective of the fact that the error is considered as a function of

the elapsed Figure 6.2, or the size of the input data Figure 6.3. The numerical results

for large condition number show that convergence could be faster in some cases. But

generally the superiority decreases and the error at the sparse grid nodes approaches

the general error instead of zero when the condition is large, the results corresponding

to larger condition numbers are omitted for brevity. Most of the results of this section

recon�rms the general superiority of SKI and MLSKI already observed in R2 and extends

this to its success for interpolation d-variate function for d = 3. We observe that this

performance could be worse in some cases, for example, in the numerical examples where

data comes from function Test3-3D.

We have performed the experiments presented in Figures 6.2, 6.3, on an ordinary

computer of 3GB RAM. The SKI and MLSKI algorithms, can be implemented up to

a sparse grid of level 8, having 21,249 nodes to approximate a 3-variate function. The

corresponding full grid of this level would have 16,974,593 nodes, while the maximum

number of nodes for the RBF and MLRBF interpolation on the same computer is nearly

5,000.

We continue with our 3D experiments on ALICE. SKI and MLSKI implementation

on ALICE can stably compute on a sparse grid Ys
10;3 containing 114,689 data sites.

These results are given in Tables 6.1, 6.2. A full grid of level ten, in [a; b]3 2 R3, would

be as large as 109. Moreover, in our 3-variate experiments the maximum size of the

RBF and MLRBF interpolation problem on ALICE is only 15,000. Hence the power of

SKI and MLSKI of addressing the complexity is becoming clearer as compared to that

previously observed in the lower dimension.
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Figure 6.1: Sparse grid Ys
5;3of level 5 in [0 1]3.

SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

27 27 6.8808e-1 1.0179e-1 1.0546e-15 1.4863e+4 4.1636e-1

81 162 5.5583e-1 7.6769e-2 2.3190e-13 2.5376e+5 4.2074e-2

225 630 2.4538e-1 3.8721e-2 4.2744e-14 6.2956e+4 1.2179e-1

593 1997 1.5956e-1 2.1968e-2 2.2597e-12 1.0617e+7 1.2703e-1

1505 5687 6.4305e-2 7.1189e-3 1.3312e-13 6.9125e+5 4.3387e-1

3713 15188 1.4063e-2 1.8689e-3 9.8557e-12 4.2986e+8 2.7177e+0

8961 38868 2.4668e-2 5.8622e-4 8.5910e-14 6.2618e+6 2.4513e+1

21249 96471 6.6167e-3 1.7822e-4 1.8969e-12 9.2544e+9 2.3052e+2

49665 233949 1.4608e-2 2.9099e-4 5.0737e-14 2.1038e+7 2.0410e+3

114689 557030 6.0204e-3 8.9496e-5 9.4498e-13 1.0594e+11 1.6639e+4

Table 6.1: SKI results from ALICE c = 2hr

3
, using test function Franke3D, evaluated on

125,000 Halton points.
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Figure 6.2: RMS-error versus CPU-time using Gaussian RBF: SKI (Green), RBF (Red),

MLSKI (Black), MLRBF (Cyan), with safe condition numbers. Error evaluated at

125,000 Halton points.
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Figure 6.3: RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF: SKI

(Green), RBF (Red), MLSKI (Black), MLRBF (Cyan), with safe condition numbers.

Error evaluated at 125,000 Halton points.
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

27 27 6.8808e-1 1.0179e-1 1.0546e-15 1.4863e+4 7.1541e+0

81 162 5.5853e-1 7.7339e-2 2.0734e-13 2.5376e+5 7.3306e+0

225 630 2.4324e-1 3.8389e-2 3.4241e-14 6.2956e+4 7.5388e+0

593 1997 1.5884e-1 2.1676e-2 2.2856e-12 1.0617e+7 7.8438e+0

1505 5687 6.2918e-2 6.7591e-3 4.2147e-14 6.9125e+5 8.5777e+0

3713 15188 1.3403e-2 1.7755e-3 2.4004e-12 4.2986e+8 1.2183e+1

8961 38868 2.2041e-3 2.2448e-4 3.2266e-15 6.2618e+6 4.2074e+1

21249 96471 3.3081e-4 2.9755e-5 9.8095e-14 9.2544e+9 3.2839e+2

49665 233949 8.9456e-5 4.5151e-6 5.9550e-17 2.1038e+7 2.9008e+3

114689 557030 1.5829e-5 5.7471e-7 3.6464e-15 1.0594e+11 2.5160e+4

Table 6.2: MLSKI results from ALICE , using Gaussian RBF with c = 2hr

3
, test function

Franke3D, evaluated at 125,000 Halton points.

6.1.2 4-variate interpolation

Approximating an unknown data that stems from a function of 4 or more independent

variables has always been a challenge in practice. For instance, RBF interpolation of a

full-grided data is limited to nearly 10 points in each co-ordinate direction for d=4. This

may not be enough to get a desired accuracy. We perform the following experiments by

implementing SKI and its multilevel counterpart to approximate a 4-variate function.

The combination formula of SKI algorithm for 4-variate interpolation becomes:

Sc
n =

X
jlj1=n+3

SAl
� 3

X
jlj1=n+2

SAl
+ 3

X
jlj1=n+1

SAl
�
X
jlj1=n

SAl

We extend the test functions from the lower dimensional examples to get the following

4-variate functions.

Franke4D:

F1(x1; x2; x3; x4) =
3

4
e(�(9x1�2)

2�(9x2�2)2�(9x3�2)2)=4�(9x4�2)2)=8

+
3

4
e�((9x1+1)

2)=49�((9x2+1)2)=10�((9x3+1)2)=29�((9x4+1)2)=39

+
1

2
e�((9x1�7)

2)=4�(9x2�3)2�((9x3�5)2)=2�((9x4�5)2)=4

�1
5
e�((9x1�4)

2)=4�(9x2�7)2�((9x3�5)2)�((9x4�5)2)
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Test1-4D:

G(x1; x2; x3; x4) = 44x1(1� x1)x2(1� x2)x3(1� x3)x4(1� x4):

Test2-4D:

G1(x1; x2; x3; x4) = (r2 + r4) log(r); where; r =
q
x21 + x22 + x23 + x24:

Test3-4D:

G2(x1; x2; x3; x4) =
1

2
x2cos

4(x21 + x2 + x3 + x24 � 1):

Test4-4D:

G3(x1; x2; x3; x4) =

r
18

�
e(�x

2
1
�81(x2

2
+x2

4
)�x2

3
):

Sinc4D:

H(x1; x2; x3; x4) =
4Y

i=1

sin(�xi)

�xi
:

The data to be interpolated in each example to follow has been generated from one of

the above test functions. The numerical results obtained are plotted in Figures 6.4, 6.5.

We observe the same superiority of SKI and MLSKI algorithms over the direct RBF and

MLRBF interpolation in terms of convergence, complexity and run time as already been

observed in the case of lower dimensions. MLSKI accelerates the convergence of SKI. We

also perform experiments resulting in larger condition numbers, and a loss of accuracy

similar to the corresponding lower dimensional examples is observed. For brevity, results

corresponding to large condition numbers are omitted. Using an ordinary computer,

SKI and MLSKI produces stable computations on a sparse grid of level seven, which has

52,993 nodes, while the corresponding problems size for RBF and MLRBF that can be

solved on the same machine is nearly 5,000. Moreover, on the corresponding full grid of

level 7, we would have to deal with 276,922,881 nodes. The implementation of SKI and

MLSKI has been successful for data on sparse grid of level nine , which contains 331,780

nodes, when the bigger computer ALICE is used. Note that a full grid of this level is

as large as 1011. Moreover, maximum size of RBF and MLRBF interpolation problem

in our experience on ALICE is limited to only 15,000 data sites. The numerical results

up to level nine are presented in Table 6.3. Thus proposed SKI and MLSKI algorithms

have been successfully applied to the interpolation problems in R4 with encouraging

performance in particular in terms of complexity. The numerical investigations of this

section suggest that SKI and MLSKI can be successfully implemented in Rd for d � 2

and con�rms its superior performance over the direct and multilevel RBF approaches.
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Figure 6.4: RMS-error versus CPU-time using Gaussian RBF: SKI (Green), RBF (Red),

MLSKI (Black), MLRBF (Cyan), with safe condition numbers. Error evaluated at

194,481 uniformly distributed points.
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Figure 6.5: RMS-error versus N (RBF) and SGnodes (SKI) using Gaussian RBF: SKI

(Green), RBF (Red), MLSKI (Black), MLRBF (Cyan), with safe condition numbers.

Error evaluated at 194,481 Halton points..
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6.2 Numerical examples with non Gaussian positive

de�nite RBFs

All the numerics presented so far in this chapter are obtained with Gaussian basis func-

tion. Examples with inverse multiquadrics GIMQ, IMQ and IQ as basis are presented

now.

6.2.1 3-variate interpolation

We are using test functions of Section 6.1.1 to generate data. Numerical results of

RBF, MLRBF, SKI and MLSKI obtained with GIMQ as basis function are combined in

Figure 6.6. For IMQ, these results are presented in Figure 6.7. While examples with IQ

can be seen in Figure 6.8. These results recon�rms the nice features of SKI and MLSKI

observed in the 2-dimensional experiments with PD non Gaussian RBFs discussed in

Chapter 4, 5. We have only presented results from stable experiments and the results

corresponding to larger condition numbers are omitted.

6.2.2 4-variate interpolation

We present our compare the interpolation errors of RBF, MLRBF, SKI and MLSKI

implemented with GIMQ in Figure 6.10. Such results for IMQ in Figure 6.11, and those

for IQ are given in Figure 6.12. The results presented correspond to the experiments with

safe condition numbers. For brevity, we omit the results for larger condition number.

The results show the encouraging performance of the proposed algorithms with these

positive de�nite RBFs. Our observations made in this section are analogous to those

observed for the algorithm with the same RBFs in the lower dimensional experiments

presented in this chapter and in Chapters 4, 5.
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Figure 6.6: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), MLSKI (Black)

and multilevel RBF (Cyan), with safe condition numbers, evaluated at 125,000 Halton

points.
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Figure 6.7: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 125,000 Halton points.
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Figure 6.8: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers , evaluated at 125,000 Halton

points.
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Figure 6.9: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), MLSKI (Black)

and multilevel RBF (Cyan), with safe condition numbers, evaluated at 125,000 Halton

points.
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Figure 6.10: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using GIMQ as basis: SKI (Green), RBF (Red), MLSKI (Black)

and multilevel RBF (Cyan), with safe condition numbers, evaluated at 194,481 Halton

points.
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Figure 6.11: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IMQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 194,481 Halton points.
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Figure 6.12: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using IQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 194,481 Halton points.
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Figure 6.13: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using WE32 as basis: SKI (Green), RBF (Red), MLSKI (Black)

and multilevel RBF (Cyan), with safe condition numbers, evaluated at 194,481 Halton

points.
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6.3 Examples with conditionally positive de�nite RBFs

We repeat some of our numerical experiments SKI and MLSKI implementation in 3-

dimensions with some of the CPD RBFs such as MQ, r3, TPS2=r2 log r, TPS3=r4 log r,

and TPS4=r6 log r .

6.3.1 3-variate interpolation

Using MQ as basis, the error comparison is given in Figures 6.14. These error for r3 are

compared in Figure 6.15, for TPS2 in Figure 6.16 and for TPS3 in Figure 6.17. The

performance of the algorithm with MQ is nearly same that has been observed with the

inverse multiquadrics in the previous section. The experiments with r3, TPS2, TPS3

produce a comparatively slower convergence. This is because, these examples are nearly

unstable. These experimental results are in agreement with the corresponding examples

in 2-dimensions presented in Chapter 4 and Chapter 5.

6.3.2 4-variate interpolation

In this section we compare the 4-variate interpolants obtained by applying RBF and SKI

along with their multilevel version by using CPD RBFs as basis function. The errors

comparison for MQ is given in Figures 6.18, , for TPS2 in Figures 6.19 and for TPS3 in

Figures 6.20. In these examples except the slow convergence for Sinc4D, MQ produce

the same convergence observed in the lower dimensions. While larger condition numbers

together with slower convergence for TPS2 and TPS3 are our observations in this section.

Generally this performance of MLSKI with conditionally positive de�nite RBFs is a

con�rmation of the numerical results observed in the corresponding experiments of 3-

variate interpolation of this chapter and bi-variate interpolation discussed in Chapter 4

and Chapter 5.



6.3 Examples with conditionally positive definite RBFs 102

Figure 6.14: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 125,000 Halton points.
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Figure 6.15: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \r3" as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), evaluated at 125,000 Halton points.
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Figure 6.16: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 125,000 Halton points.
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Figure 6.17: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 125,000 Halton points.
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Figure 6.18: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using MQ as basis: SKI (Green), RBF (Red), MLSKI (Black) and

multilevel RBF (Cyan), with safe condition numbers, evaluated at 194,481 Halton points.
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Figure 6.19: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS2 = r2 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 194,481 Halton points.
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Figure 6.20: Left: RMS-error versus N (RBF) and SGnodes (SKI). Right: RMS-error

versus CPU time. Using \TPS3 = r4 log r" as basis: SKI (Green), RBF (Red), MLSKI

(Black) and multilevel RBF (Cyan), evaluated at 194,481 Halton points.
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SGnode DOFs(SG) L1-Err RMS Err Err at Nodes Cond no Time

81 81 7.9105e-2 4.4589e-2 2.4940e-12 3.6544e+5 4.2305e-1

297 621 2.4067e-2 1.0677e-2 1.2195e-11 8.6224e+6 4.2266e-2

945 2943 1.9844e-2 6.3598e-3 1.8718e-12 1.0568e+6 2.4616e-1

2769 11139 5.6653e-3 1.2672e-3 5.2150e-11 3.6076e+8 1.6921e+0

7681 36901 4.7096e-3 8.2613e-4 1.5854e-12 1.4065e+7 1.4203e+1

20481 11211 1.3155e-3 1.5425e-4 4.0899e-11 1.4848e+10 1.6426e+2

52993 320675 1.1548e-3 1.0690e-4 9.0949e-13 1.2741e+8 1.7663e+3

133889 877655 3.2099e-4 1.9243e-5 1.9412e-11 6.0115e+11 1.6442e+4

331777 2322185 2.8385e-4 1.3934e-5 1.3358e-12 1.1542e+9 1.6964e+5

Table 6.3: SKI interpolation results from HPC ALICE, using Gaussian RBF with c =
2hr

3
, using test function Test1-4D, evaluated at 194,481 Halton points.

6.4 Discussion

The results presented in this chapter, show that SKI and MLSKI can be easily and

successfully applied to interpolating a d-variate function for d=3, 4 with a wide range of

RBFs as basis function. SKI and MLSKI with positive de�nite RBFs such as Gaussian,

GIMQ, IMQ and IQ produce good convergence, whereby Gaussian has the best conver-

gence among them. Among the CPD RBFs, the performance of MQ matches with the

above mentioned inverse multiquadrics. While TPS2, TPS3 and r3 have very low con-

vergence as the algorithms with these RBFs become nearly unstable. Due to the growth

of the problem size with dimensions, direct implementation of standard full grid RBF

interpolation is limited e.g., to nearly 10 points in each dimension for d = 4. But in prac-

tice much more points may be required in each co-ordinate direction to achieve a desired

accuracy. This makes it a di�cult task to solve and/or achieve better convergence in

high dimensions. The proposed SKI and MLSKI have nearly one-dimensional complex-

ity and have the potential to solve large and high dimensional problems. SKI is superior

in run time and complexity to the direct RBF interpolation. Hence, the algorithm can

solve a d-variate interpolation problem on sparse grid containing 114,690 for d = 3 and

331,780 for d = 4, respectively. While this number in our classical RBF interpolation

on the same machine is only nearly 15,000 regardless d. Though, this superiority may

be at the cost of losing some accuracy in some particular cases, but in most of our sta-

ble experiments better convergence has been observed. In general, SKI achieves better

convergence in less time as compared to the classical RBF approach. An accelerated

convergence may be a requirement of the given problem, we have shown that MLSKI
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is capable of providing a faster convergence. MLSKI has shown a faster convergence

than the multilevel RBF interpolation. We observe that both SKI and MLSKI generally

outperforms their direct interpolation counterparts in terms of complexity, run time and

convergence by an encouraging margin in particular when it comes to high dimensions.



Chapter 7

Conclusions and future work

7.1 Conclusions

We have presented an algorithm for interpolation on structured or mildly unstructured

data sets in Rd; for d � 2. Implementation of radial basis functions is insensitive to the

dimension parameter d and sparse grid methods address the complexity issue in high

dimensions. The sparse kernel-based interpolation algorithm presented in Chapter 4,

couples the power of radial basis function and the complexity of sparse grid methods.

SKI is inspired by the combination technique of sparse grid/hyperbolic cross methods.

In this scheme, the sparse grid is represented as the union of full and anisotropic grids.

We use the spaces of anisotropic radial basis functions 'Al
(�) to solve the constituent full

grid interpolation problems and, correspondingly, the SKI space is equal to the direct

sum of anisotropic RBF spaces f'Al
(�) : jlj1 = n; � � � ; n+ d� 1g. In the multilevel sparse

kernel based interpolation algorithm, we follow the multilevel interpolation scheme of

Floater and Iske [35]. The multilevel sparse kernel based interpolation makes use of the

nested property of the sparse grids from lower to higher level for the decomposition of

the data to apply the Floater and Iske scheme to SKI. MLSKI is using SKI at each step

and has, therefore, linear complexity and run time. The multilevel sparse kernel-based

interpolation accelerates the convergence. It is faster than the RBF interpolation and

the multilevel RBF interpolation and is superior in convergence than the direct SKI,

RBF and multilevel RBF schemes.

The combination technique approach comes at the cost of some overhead, as typically

the component spaces include some redundancy as some of the data sites are visited

several times. However, the parallel nature of solving small but full grid interpolation

problems makes SKI and MLSKI algorithm attractive for high dimensional interpolation

and makes it perfectly �t for parallel computing. Moreover, the parallel nature of solving

small but independent interpolation problem results in the reduction of computation and

storage requirements even when applied on the same computer in serial. This advantage

111
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becomes more prominent as the dimension of the problem increases. In addition, SKI

uses an existing computer code for RBF interpolation to solve the constituent anisotropic

interpolation problems, hence making the coding relatively straight forward.

The bi-variate numerical results presented in Chapters 4, 5 con�rm that MLSKI is

generally superior to the classical RBF interpolation on gridded data. The SKI visits

some nodes more than once, but still faster when machine time is considered as a func-

tion of the sparse grid nodes irrespective of the fact that this redundancy is included

or excluded. SKI mostly outperforms RBF in terms of accuracy as function of machine

time. As far as the computations remain stable, the convergence is also faster if consid-

ered as a function of the input data size. In the unstable regime (i.e., when the maximum

condition number � 1010), we still observe good accuracy of MLSKI, but the error at

the centers is evaluated to be of the order of the interpolation error. This indicates a

possible loss of accuracy due to instabilities, which could potentially make the compu-

tation unreliable. When implemented on an ordinary computer \Core 2 Duo CPU @

3.16GHz 3.17GHz and 3.24GB of RAM", SKI e�ectively and successfully computes on

a sparse grid of level up to 10, having 13,313 nodes. Some simulations of the proposed

scheme have been performed on one of the computer nodes (having a pair of quad-core

2.67GHz Intel Xeon X5550 CPUs and 12GB of RAM ) of the computers cluster called

ALICE of the University of Leicester. There, SKI and MLSKI turns out to be stable for

larger data sizes and computations can be done on sparse grids of levels up to 12, having

more than 60,000 nodes. On the other hand, for classical RBF interpolation ALICE

can deal with nearly 15,000, regardless of the dimension. So the MLSKI algorithm gives

generally better e�ciency in terms of stability, accuracy, complexity and the run time

over the classical RBF method.

Due to its nearly one-dimensional complexity, SKI and hence MLSKI is capable of

solving large interpolation problems in higher dimensions. The algorithm has also been

successfully implemented for interpolation of d-variate function in Rd for d=3, 4. These

high dimensional numerical results recon�rm the superior performance of the scheme,

as was observed in the 2-dimensional experiments. On the ordinary machine mentioned

above, the scheme can solve interpolation problem on sparse grids Ys
8;3 and Y

s
7;4 of size

21,249 and 52,993 in R3 and R4 respectively. On a single node of ALICE these numbers

go up to Ys
10;3 and Ys

9;4, that is size 114,690 and 331,780 nodes in R3 and R4. The

corresponding full grids will have sizes of order 109 in R3 and 1011 in R4. The numerical

results presented in Chapter 4, Chapter 5, and Chapter 6, show that our algorithm is

not only faster but also generally superior in terms of convergence (it might be slower

in some cases if error is considered as a function of the input data size), stability and

complexity than the classical RBF interpolation in Rd for d � 2.

We have used a desktop computer \Core 2 Duo CPU @ 3.16GHz 3.17GHz and 3.24GB
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of RAM" for d=2, 3. For d=4, we use ALICE to be able to run many experiments at

the same time by accessing as many nodes of ALICE. Each experiment was run in serial

on a single node (having a pair of quad-core 2.67GHz Intel Xeon X5550 CPUs and

12GB of RAM) which is equivalent to a more powerful desktop computer. Thus all the

CPU timing and problem size shown here relate to computations that can be run on an

ordinary computer computer mentioned before. However, it is worth mentioning that

the largest size of the problem in each of these computation has been kept the same

for which all these schemes can be implemented on the smaller computer of 3GM RAM

mentioned above. Moreover, we have reported separately the largest size of the problem

that SKI can solve on a single node of ALICE for d =2, 3, 4 in Sections 4.3.2, 5.4.1.1(a),

and in Tables 6.1, 6.2, 6.3.

The MLSKI algorithm was �rst implemented with positive de�nite RBFs such as

Gaussian and inverse multi quadrics. The best convergence is observed for Gaussian.

MLSKI performance with inverse multi quadrics is also good but it is slower than the

convergence with Gaussian. The superior convergence of Gaussians over inverse multi-

quadrics observed in this thesis may be due to the high algebraic/spectral convergence

orders [94] in the context of direct RBF interpolation. The scheme has also been im-

plemented with the conditionally positive de�nite RBFs such as multi-quadrics, poly-

harmonics, radial powers etc. Among the CDP RBFs, MQ produces nearly the same

convergence as the inverse multi-quadrics, while for others the convergence is either very

slow or is not present.

Experimental results show that SKI is not only convergent for regular sparse grids,

but its convergence on irregular sparse grids has also been observed. These numerical

experiments are performed on perturbed sparse grids of level n, where the perturbation

is kept proportional to a quarter of 2�n. The convergence for perturbed sparse grid was

found to be slightly slower than the corresponding convergence on regular sparse grids.

For perturbation greater than 2�n=4, convergence is slower while for a perturbation

smaller than 2�n=4 convergence approaches the one on regular sparse grids.

In our experiments, we have implemented the na��ve RBF approach to solve the par-

tial interpolation problems in the SKI scheme. Thus, it is fair to compare our method

with the na��ve RBF interpolation method, as we shall do through out all the experi-

ments reported in this thesis. We remark that the fast RBF methods mentioned in the

introduction can be applied to accelerate SKI. The implementations of the proposed

methods in all our experiments, on an ordinary computer as well as on ALICE, have

been performed inMatlab and in a non parallel environment. Since the proposed method

is perfect for implementation in parallel fashion on modern high performance computing

(HPC) systems, its generally superior performance in terms of run time and complexity

could become more visible if implemented in parallel.
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7.2 Outlook and future work

The main focus of this thesis has been on the development of SKI method and its

implementation to address the complexity issue faced by interpolation problem in high

dimensions. Its success has been veri�ed through numerical experiments. In addition,

the multilevel version of SKI has been successful in accelerating its convergence.

Our next task in the near future is to look into the theory of the SKI algorithm. As

the approximation space at each level in the SKI scheme is a direct sum of anisotropic

RBF spaces, one possible direction to look into the error analysis could be to combine

idea for the analysis of anisotropic interpolation presented in [6] with the methods of

proofs for the convergence analysis of the sparse grid combination technique given in [12]

and [13].

The error analysis of SKI could be further extended to analyse MLSKI. One possible

way to do this, could be following the method used for the error estimates of classical

multilevel interpolation presented in [55].

Further questions that need to be answered are the following: why the convergence

of SKI performance is the best with Gaussian? SKI still converges with positive de�nite

RBFs (e.g., inverse multiquadrics) but convergence is slightly slower than Gaussians.

When applied with conditionally positive de�nite RBFs of order m > 1, convergence

is either very slow or there is no convergence at all. MLSKI still shows convergence

using conditionally positive de�nite RBFs of order m = 1 (e.g., multiquadric RBF)?

One possible reason that could explain these issues, might be the polynomial part of the

anisotropic RBF interpolant SAl
(�) on the constituent small grids Xl in SKI algorithm

and hence in its MLSKI partner. The tensor product nature of Gaussian could provide

further explanation to its best performance over the non-Gaussian RBFs. Another fact

that explains the slower convergence of inverse multiquadrics is their similar behaviour

in the context of standard RBF interpolation in comparison with Gaussian RBF.

Another question we need to answer is the errors of the schemes at the interpolation

centres. SKI with Gaussian, gives the error at sparse grid nodes nearly equal to the

machine zero as long as the condition number is small. This behaviour of SKI by using

Gaussians, is identical to that of the standard RBF interpolation schemes. On the other

hand, when SKI is implemented with non Gaussians RBF, unlike the standard RBF

methods, this error is not equal to zero and remains nearly the same as its general error

at any point. We expect that most of these question could be answered, if the error

analysis of the scheme is made possible.

SKI is solving O(nd�1) independent problems of one dimensional complexity O(2n)
and we therefore look forward to apply SKI and MLSKI high dimensions say d=10, 20.

We have mentioned that the algorithms work only for structured and mildly unstruc-



7.2 Outlook and future work 115

tured data. We intend to extend the algorithms for their application to a truly scattered

data by using it together with the idea of local interpolation.

Another area of our interest is applying the SKI to RBF methods for the solution

of partial di�erential equations (PDE) such as Kansa's non-symmetric RBF collocation

scheme (also called multiquadric collocation method)or Fasshauer's symmetric colloca-

tion approach, in particular, for high dimensions. We have started the foundation work

to apply it to the collocation methods, but it would be too early at this stage, to say

something about any success or failure in this direction.

As mentioned in the literature overview of this work, sparse grids were introduced to

circumvent the curse of dimensionality in the �nite element methods (FEM) and �nite

di�erence method (FDM) for the solution of PDEs and were based on tensor product

multi-linear approximation spaces. SKI is based on anisotropic RBFs spaces and could

therefore have the potentials to accelerate the convergence of FEM/FDM. So another

area of interest is to applying the SKI methods in the context of Galerkin methods for

the solution of partial di�erential equations.

SKI is solving O(nd�1) independent problems of one dimensional complexity O(2n)
and we therefore look forward to apply it for dimensions say d=10, 20.
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