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Abstract

Adverse events following the use of medical interventions are a major source of concern

for patients, healthcare professionals and pharmaceutical companies. Therefore, evi-

dence synthesis of potential adverse events are very important in determining whether

an association exists, and the strength of such an association. It is also desirable to be

able to quantitatively balance potential harms against the benefits of the intervention.

However, standard statistical techniques for meta-analysis are often unsuitable when

applied to datasets where the primary intervention is an adverse event.

A review of standard meta-analysis methods, including Bayesian methods, is conducted.

The specific challenges of meta-analysis in relation to adverse events datasets are de-

scribed, with some of the main areas of contention being sparsity of events, subgroup

analysis, class effects with regard to drug interventions, and issues related to time fac-

tors within the individual studies. Methods used in existing meta-analyses where the

primary outcome is an adverse event have also been reviewed; this demonstrates the

methods already used in this field and highlights some of their limitations, and where

the methods could be extended.

In the light of the reviews of methods and previous meta-analyses, four case-studies

are performed. The first uses data from GlaxoSmithKline to investigate a potential re-

lationship between paroxetine and suicidality, using many of the standard methods for

comparison purposes. The second uses individual patient data for a time-to-event anal-

ysis of anti-TNF drugs used for rheumatoid arthritis. This clinical example is extended

by the use of Mixed Treatment Comparisons for within-class comparisons, and to asses

the effect of dose. Finally, a harm–benefits model is used to asses the interplay of

risk of endometrial cancer against breast cancer recurrence for tamoxifen users. These

models present novel ways of analysing adverse events data and demonstrate some of

the difficulties in their use.
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1

Introduction

1.1 Aims and objectives of this thesis

The underlying source of concern of this thesis is as follows:

Drugs and other clinical interventions often have unintended outcomes,

either beneficial or harmful. Increased understanding of such effects

would enable improvements in clinical decision-making, both in general

guidelines and in making decisions regarding individual patients. Diverse

sources of information regarding such unintended outcomes exist, and

it is necessary to synthesise data from all available sources to optimise

the knowledge on which to base decisions. There are, however, many

difficulties in bringing together disparate information types, and these

must be explored and overcome as rigorously as possible to facilitate the

development of the most accurate knowledge base possible.

This hypothesis leads to the following broad aims:

1. to identify specific methodological issues in relation to evidence synthe-

sis and decision-modelling in the field of unintended effects of clinical

therapies;

2. to identify examples of drugs, and other forms of intervention, with po-

tential for adverse effects that can be analysed as case studies;

1
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3. to address the identified issues in a coherent way, using the case studies

as a means of exploring how these issues can be tackled; and

4. to develop methods for evidence synthesis for adverse outcomes and

decision-modelling for use when balancing treatment efficacy against the

potential for harmful effects.

These aims can be further clarified into more specific objectives:

1. to review the literature regarding evidence synthesis and decision-modelling

methods;

2. to identify specific challenges in this area that are directly relevant to

adverse outcomes;

3. to review previous meta-analyses where an adverse event has been the

primary outcome;

4. to develop techniques to address methodological issues identified;

5. to investigate at least three case studies, incorporating the methods and

techniques developed, thus facilitating refinement and improvement in the

methodologies;

6. the development of methods for evidence synthesis that can be adapted

to meet the requirements of each scenario;
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7. to develop methods that will enable the useful incorporation of a broad

array of data from a variety of sources into a decision-modelling and

evidence synthesis model; and

8. further assessment and critique of these methodologies by additional case

studies, ideally including surgical or public health examples as well as

pharmacological examples.

These aims and objectives will be revisited at appropriate intervals during this

project in order to evaluate progress and the extent to which they are being

fulfilled.

1.2 Methodological background

In the field of statistics applied specifically to biomedical outcomes, in many

clinical scenarios it is reasonable to apply pre-existing established methods to

the analysis of data derived from that scenario. Some clinical scenarios may,

however, present a unique set of challenges, some of which may be similar to

those presented by other scenarios and some of which may not. Alternatively,

a particular set of statistical issues may occur in conjunction in relation to a

particular clinical field.

Evidence synthesis for adverse events presents several challenges, many of which

occur in other clinical areas, but nevertheless have a particular association with

data related to adverse events. In this situation it is reasonable to use the

analytical problems to drive the methodological development, but it is also

valuable to consider methods applied to evidence synthesis in other contexts

and then to apply these to adverse events datasets.

The development of evidence synthesis methods with adverse events specifically

in mind has been considered previously (Sutton et al. 2002). This area is an

example of how problems of analysis generated by certain types of clinical data

can create an agenda for development of statistical techniques. These tech-

niques may then be applied to other clinical areas that may have similar issues

in relation to evidence synthesis. This thesis extends and broadens method-

ologies previously used, by applying them to datasets that are centred on an

adverse outcome.
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The Cochrane Collaboration (Loke et al. 2008), in its remit to undertake system-

atic reviews, has considered adverse events as an area worthy of consideration

as a defined clinical area that requires specific methodology, but the emphasis

is on the non-statistical elements, such as choice of outcomes, study types and

search strategies. Evidence synthesis methods with the specific aim of applica-

tion to adverse events have not been brought together previously, and despite

the fact that this area is very wide, it is the intent of this thesis to address this

issue.

1.3 Clinical background

Drug treatments and other interventions that have the ability to provide thera-

peutic benefits also have, in many cases, the power to harm. To quote Paracelsus

(1493–1541):

Alle Ding’ sind Gift und nichts ohn’ Gift; allein die Dosis

macht, dass ein Ding kein Gift ist.

In English, this translates as: all things are poison and nothing is without poison,

only the dose permits something not to be poisonous. However, there is often

wide individual variation in the dose of a substance that will bring about adverse

effects, and these may be related to a variety of individual characteristics. These

may include age, sex, environmental factors or genetic factors. The medications

used clinically with the intention to cure disease, relieve symptoms or both, have

as much potential to cause damage as other substances used purely to cause

harm, with no known therapeutic value.

However, in some cases there may be additional positive benefits associated with

the use of a particular drug that are unforeseen by the prescriber or manufacturer

of the drug. Such benefits may only come to light through anecdotal evidence

or through observational studies. Unintended outcomes of an intervention may

therefore be positive or negative.

Thinking more broadly, other medical interventions, which may include surgical

procedures or public health programmes, may also have unintended outcomes,

either beneficial or harmful.
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In prescribing interventions for a particular patient, the intent of the clinician

is to maximise the positive effects whilst minimising, and preferably eliminating

entirely, any damaging effects. Hence, a thorough understanding of the efficacy

of that intervention is essential, but no less important is an understanding of any

harmful effects. In the same way that individual patients may require different

doses of a drug to achieve a therapeutic effect, there are variations between

individuals in the doses required to cause a deleterious outcome.

With appropriate knowledge, the clinician can, in discussion with the patient

when there are issues of personal preference to be taken into consideration, make

decisions that will promote the intended therapeutic effects whilst reducing the

potential for harm. In effect, each patient must ‘play the odds’ between benefits

and disbenefits, armed with knowledge of the intervention’s potential for both,

and with knowledge of their own characteristics that influence the actions of an

intervention. In many cases this may be a delicate balancing act; in cases where

the potential disbenefits are of a minor or self-limiting nature there is a clear

incentive to use an intervention with a possible beneficial effect, but if there is a

risk, however minimal, of serious or long-term sequelae, then it is less clear-cut

to determine whether an intervention should be used.

Clinical decision-making is facilitated by clear-cut guidelines for each interven-

tion, which make full use of all available data and are applicable to all patients

taking account of his/her relevant characteristics. Such guidelines can of course

be modified to take into account individual patient preferences, for example how

well they tolerate certain symptoms or adverse outcomes from interventions. As

discussed in the next section, the overarching aim of this work is to develop ap-

propriate and sound statistical methodologies for evidence synthesis, in cases

where the primary outcome of interest is an adverse event. Such methodologies

would be of use at various levels of clinical application, for example:

1. detecting ‘signals’ from the data, in terms of any indication of concern

regarding an intervention;

2. investigating further when there are sufficient data to raise concern about

a possible adverse event;

3. combining data from multiple sources to increase power of statistical anal-

yses and promote validity of conclusions; and
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4. methods for quantifying harms against benefits, which could be used to

inform clinical decision-making at the level of general guidelines and indi-

vidual patient management.

1.4 Outline of the thesis

1.4.1 Methodological aspects

As a first step it is possible to identify some specific technical issues that require

addressing, usually as a result of the nature of the data available in this area.

Such issues include:

1. incorporation of sparse data (e.g. from randomised controlled trials (RCTs)

and observational studies);

2. combination of heterogeneous data sources (RCTs, observational studies

(pharmacoepidemiology), anecdotal reporting by the ‘yellow card’ system

(see Section 2.2), and case reports);

3. assessment of harms and benefits by evidence synthesis and decision-

modelling;

4. subgroup analysis (e.g. pharmacogenetics, age, sex);

5. evidence synthesis for a specific intervention with multiple clinical indica-

tions;

6. combining individual patient data with summary statistics;

7. addressing reporting bias (suppression of adverse events or not proactively

looking for adverse events);

8. estimation of dose effects;

9. evidence synthesis across multiple outcomes (i.e. multiple adverse effects);

10. comparison across different drugs from the same class; and

11. consideration of adverse events over different time-periods (time-course

aspects).
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These aspects of evidence synthesis will be addressed in more depth in Chapter 5,

with the aim of conducting case-studies using specific examples of adverse events

datasets to illustrate selected methodological issues.

1.4.2 Potential case studies

From initial scrutiny of recent literature, there are many examples of a ther-

apeutic intervention that has been linked with some unforeseen effect, either

beneficial or harmful. Some of these include:

1. hormone replacement therapy and breast cancer (Million Women Study

Collaborators 2003);

2. statins and cancer (Bonovas et al. 2005; 2008);

3. non-steroidal anti-inflammatory drugs and severe gastro-intestinal bleed-

ing (Hernández-D́ıaz & Garćıa Rodŕıguez 2000);

4. selective serotonin re-uptake inhibitors and suicidality (Gunnell et al. 2005);

5. tamoxifen and endometrial cancer (Braithwaite et al. 2003);

6. warfarin (for atrial fibrillation) and risk of haemorrhage and cerebrovas-

cular accident (Cooper et al. 2006);

7. rheumatoid arthritis drugs (anti-tumour necrosis factor drugs) and cancer

(Bongartz et al. 2006); and

8. antiretroviral drugs and abnormalities of lipid metabolism (Miller et al. 2000).

Selected examples from the above list are chosen to serve as case-studies, il-

lustrating statistical methods that are relevant to each example. The issue of

suicidality and selective serotonin reuptake inhibitors (SSRIs) is discussed in

Chapter 7. Anti-tumour necrosis factor (anti-TNF) drugs used in rheumatoid

arthritis and the associated risk of cancer is addressed in Chapters 8–10. Ta-

moxifen use in breast cancer patients, with the aim of reducing recurrence, and

the associated risk of endometrial cancer is investigated using a harm–benefit

model in Chapter 11.
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1.4.3 Structure of the thesis

A discussion of the clinical problems of adverse events is provided in Chap-

ter 2, in order to demonstrate the nature and extent of the issues involved.

Established meta-analysis methods are considered in Chapter 3, with Bayesian

meta-analysis methods presented in Chapter 4. These three chapters comprise

a framework to bring together the clinical issue of adverse events with meta-

analysis methodology, and the specific challenges that may arise in relation to

synthesis of evidence where the primary outcome is an adverse or unintended

event; this comprises Chapter 5.

A systematic review of previous meta-analyses of datasets where the main out-

come is an adverse or unintended event is presented in Chapter 6. This is

followed by a case-study where multiple methods of meta-analysis are applied

to the same dataset, with the aim of making a comparison across methods

(Chapter 7). The use of individual patient data (IPD) in a time-to-event meta-

analysis is the main focus of Chapter 8, and this approach is contrasted with

meta-analysis methods with a binary outcome (and no time-to-event element).

The clinical issue of interest in Chapter 8 is extended in Chapters 9 and 10

by looking more deeply at the different forms of treatment and how they may

be compared; this closer scrutiny of the clinical issues required a commensurate

extension of statistical methods, to include mixed treatment comparison (MTC)

methods and Bayesian hierarchical models.

Modelling benefits of a clinical intervention in parallel to potential deleterious

effects is the subject of Chapter 11, using a Bayesian net-benefit model. Finally,

Chapter 12 aims to set the developments of this thesis in a wider context, to

discuss how this thesis has developed existing methodology, and to propound

ways in which evidence synthesis methods for adverse events may be extended.

1.5 Summary

Inherent in many clinical interventions is the potential for significant adverse

outcomes (and in some cases unforeseen benefits). Evidence synthesis methods

to provide as much insight as possible into adverse outcomes are essential to

inform clinical practice, at the level of general guidelines, and individual patient
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management. The development of suitable statistical methods for evidence syn-

thesis of adverse outcomes, taking into account the specific difficulties presented

by such data, is the basis for this work, and underpins the more specific aims

and objectives.
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2

Background to adverse events

2.1 Overview of adverse drug reactions

2.1.1 Definitions and classifications

Ideally, a statistical overview of methods appropriate to adverse outcomes would

include a variety of clinical interventions, including pharmacological, surgical and

public health programmes. However, in this work, the main focus is on drug

therapies and their unintended, usually harmful, effects. The concept of an

‘adverse drug reaction’ (ADR) therefore requires some thought and definition.

Firstly, however, it is helpful to define what is meant by a drug. A definition is

cited by a World Health Organisation (WHO) publication of 1969, taken from

the earlier work of Borda et al. (1968). A drug is defined as:

‘any substance or product that is used or intended to be

used to modify or explore physiological systems or pathologi-

cal states for the benefit of the recipient’.

The WHO defines an adverse drug reaction as being (WHO 1969):

‘one which is noxious, unintended, and which occurs at doses

normally used in man for prophylaxis, diagnosis or therapy.’

A similar concept is the adverse event, which has been described by Michel et

al. (2004) as an unintended injury caused by a disease process and which resulted
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in death, life-threatening illness, disability at time of discharge, admission to

hospital or prolongation of hospital stay. This definition appears to have been

derived from consulting earlier work of several authors.

Similar definitions are used by Leape et al. (1998):

[an adverse drug event is] an injury, large or small, caused

by the use (including non-use) of a drug. There are two

types of adverse drug events (ADEs); those caused by errors

and those that occur despite proper usage. If an adverse

drug event is caused by error it is by definition preventable.

Non-preventable adverse drug events (injury but no error) are

called adverse drug reactions (ADRs).

Hence, ADEs encompass both preventable and non-preventable occurrences.

Further terminology has included the possible ADR, which refers to an ADR

that follows a reasonable temporal sequence and for which the ADR is a known

response to the drug, although the response may also be explained by the

patient’s clinical state (Lazarou et al. 1998, citing Karch & Lasagna 1975).

A serious ADR is one that requires hospitalisation, prolongs hospitalisation, is

permanently disabling or results in death (Lazarou et al. 1998). This definition

is similar to that of the adverse event as defined by Michel (2004) but referring

only to ADRs rather than ADEs.

As the aim of this study is to investigate unintended effects of drugs that have

been correctly prescribed and used, the ADEs are not of direct relevance. Hence,

based on the above terminology, this work will include the events denoted as

ADRs, that is, non-preventable events. This definition excludes all errors of

prescribing (such as incorrect dosages or other clinical errors such as inaccurate

diagnosis leading to the wrong drug being prescribed), administration (by health

professionals), compliance (where the medication is being self-administered),

and overdose (intentional or unintentional). Also excluded are cases where a

particular drug is ineffective for a certain patient for any reason.

However, it is possible that some studies reporting on adverse reactions may

include both ADRs and ADEs combined, hence leading to unwanted events

being taken into account and thus to heterogeneity in the data sources.
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Some further subclassifications of ADRs are also useful. A useful classification

system has been set out by Edwards & Aronson (2000). Six classes of adverse

reactions are set out, the first being dose-related effects (predictable from the

pharmacological action of a drug). As known overdoses are not being considered

here, this category would encompass adverse reactions that occur in certain

individuals at doses that are thought to be safe. This may be due to the specific

metabolism of that individual which again could be related to a pharmacogenetic

effect. The second category is non-dose related, which includes uncommon

effects that are not related to the pharmacological action of a drug. Such effects

include immunological actions and idiosyncratic reactions such as malignant

hyperthermia. The third category includes dose- and time-related effects, the

chronic effects that occur after long usage that are related to cumulative dose of

the drug. The fourth category is time-related effects that are usually related to

the dose effect and usually become apparent some time after the drug has been

taken. This includes teratogenesis and carcinogenic effects. The fifth category

is withdrawal effects, usually occurring quite soon after cessation of the drug.

The sixth category includes unexpected failures of therapy.

For the purposes of this study only the first four categories are of relevance as

withdrawal effects and therapeutic failures are not the focus here. Whilst it is

interesting to consider the possible causes of an ADR, the main emphasis of

this study is to analyse existing methods and further develop new methods to

identify possible patterns of ADRs, using all available data. Where feasible, some

consideration will be given to potential mechanisms for a specific drug being

associated with a specific ADR, especially if this mechanism can be plausibly

tied in with the identified patterns of occurrence.

2.1.2 The extent of adverse drug reactions

A review and meta-analysis of studies investigating the incidence of adverse

drug reactions in hospital in-patients was conducted by Lazarou et al. (1998).

This study was restricted to primary data from the USA, and excluded errors of

prescribing and administration/compliance and overdose or drug abuse. Only

serious (requiring hospitalisation or leading to permanent disability) or fatal

reactions were included. The patient base included hospital in-patients who

suffered an adverse reaction whilst in hospital, and those in the community
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who experienced an adverse reaction requiring hospitalisation. (This effectively

excludes those ADRs that occur in the community and result directly in death,

without hospital admission.) Only prospective studies were included, with a

total of 39 primary studies being used. Random effects models were employed

throughout. The authors found an incidence for serious ADRs of 6.7%, with

a 95% confidence interval (CI) of 5.2%; 8.2%, and for fatal ADRs of 0.32%

(95% CI 0.23%; 0.41%). It was also estimated that for the year 1994, there

were 106 000 (95% CI 76 000; 137 000) fatal ADRs, with 1 547 000 (95%

CI 1 033 000; 2 060 000) hospital admissions due to ADRs. Based on these

figures, the authors concluded that ADRs were between the fourth and sixth

commonest cause of death in the USA for that year.

The meta-analysis by Lazarou et al. (1998) has been severely criticised by Kvasz

et al. (2000). This critique discovered many problematic issues in the original

meta-analysis. These problems were related to both the study design and statis-

tical analysis. Among these was the problem of heterogeneity between studies.

There were many sources of heterogeneity including differences in definitions

of adverse reactions, and in preventability of events. There was also hetero-

geneity in the types of patient included (for example, adults or children) and in

the types of hospital or ward involved in the study. There was some variability

between the studies surrounding the question of what actually constituted an

ADR. In some studies, only ‘probable/definite’ ADRs were included, while in

some others, ‘probable’ ADRs were also included.

From a statistical analysis (as opposed to study design) perspective, a major

problem was the derivation of numerators and denominators. Some studies

did not directly report the number of patients with adverse events, and these

were therefore estimated for the purpose of the meta-analysis, and hence may

over- or under-estimate the true numerators, thus adding an extra source of

variability and lack of precision. Also, the denominator used in the meta-analysis

was considered to be questionable. The chosen denominator was the total

number of patients admitted to hospital, whereas a more appropriate choice

would have been the total number of patients receiving prescription drugs. A

major statistical issue, related to the problem of studies where no events occur

(which will be considered further in Chapters 3, 5, 7, 8, 9 and 10) is the fact that

a study of fatal adverse events only will exclude many studies with zero events,

as was the case in the study by Lazarou et al. (1998). In this way, the risk
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of fatal adverse events will be severely overestimated. Several other statistical

areas of contention in the Lazarou et al. (1998) paper are highlighted by Kvasz et

al. (2000). These include ascertainment and publication bias, and extrapolation

with small numbers, leading to errors and invalid confidence intervals.

In the UK, the issue of number of hospital admissions due to ADRs in the UK

was addressed by Pirmohamed et al. (2004). This study was conducted over a

6-month period between 2001 to 2002, in two hospitals in the Merseyside area.

Again, deliberate overdoses and episodes of non-compliance were excluded. Ad-

missions thought to be due to an ADR accounted for 6.5% of admissions (95%

CI 6.2%; 6.9%). It was also found that the median age for admissions due to an

ADR (76 years, interquartile range 65–83) was greater than that for other types

of admission (66 years, interquartile range 46–79). The proportion of women

was also significantly higher in the ADR group (59%) than in the non-ADR

group (52%), p-value < 0.0001. Of all the ADRs, 80% (95% CI 78%; 92%)

were deemed to have been the direct cause of the admission, whereas for the re-

maining 20% (95% CI 18%; 22%) of admissions, the ADR was identified through

screening and although not the direct cause of the admission, may have been

a contributory factor. In total, 2.3% of the ADR-related admissions died as a

direct result of the ADR. The most common cause of death was gastrointestinal

bleeding, due to a variety of drug therapies including aspirin (alone or in com-

bination with other drugs), paroxetine and warfarin. Therefore, ADR-related

deaths represented 0.15% (95% CI 0.1%; 2%) of all patients admitted during

the study period.

In the study discussed above (Pirmohamed et al. 2004), the issue of avoidabil-

ity was also raised, with some very interesting discoveries. It was found that

only 28% (95% CI 25%; 30%) of ADRs resulting in admission were classed

as ‘unavoidable’ using the classification system of Hallas et al. (1990). Of the

ADR admissions, 9% (95% CI 7%; 10%) were classified as ‘definitely avoidable’,

while 63% (95% CI 60%; 66%) were ‘possibly avoidable’. In the classification

of Hallas et al. (1990) an ADR was classed as definitely avoidable if it would

have been prevented by the application of current good medical practice; ‘pos-

sibly avoidable’ indicated that an ADR could have been prevented by efforts

exceeding current good medical practice.

Other studies also highlight the extent of the problem of injury due to ADRs.

Weingart et al. (2000) discuss a benchmark study carried out in the USA by

Fiona Warren PhD Thesis 2010 14



Chapter 2 Background to adverse events

Brennan et al. (1984), who reviewed the medical charts of over 30 000 patients in

New York. They found that adverse events due to medical treatment resulted

in injury that prolonged hospital stay or produced disability at time of death

occurred in 3.7% of admissions.

An Australian study (Wilson et al. 1995) is also reviewed by Weingart et al. (2000),

and is a similar investigation of adverse events in Australia. Investigating the

records of over 14 000 admissions to 28 Australian hospitals in 1995, it was

discovered that an adverse event occurred in 16.6% of admissions, resulting

in disability in 13.7% and death in 4.9%. Of these adverse events, 51% were

thought to have been preventable [it is not stated by what definition].

In a similar study based in London (Vincent et al. 2001), it was found that

110 of 1014 (10.8%) patients experienced an adverse event (this study was not

restricted to only adverse drug reactions), with an overall total of adverse events

at 119 (11.7%). The means of identification of adverse events was the review

of medical records from four different medical specialties.

The studies by Pirmohamed et al. (2004) and Wilson et al. (1995), as reviewed

by Weingart et al. (2000), indicate that a large proportion of ADRs could have

been avoided by increased medical vigilance. This creates an enormous potential

for the prevention of ADRs, by developing and applying improved guidelines for

good medical practice. Such guidelines can only be developed by promoting

statistical focus on issues that directly relate to evidence synthesis of adverse

events data.

2.2 Difficulties of investigating adverse drug reactions

2.2.1 Outline

Due to the nature of the events of interest, there are some inherent problems

to be addressed when studying ADRs. These include:

1. Identification of such potential ADRs;

2. Causality;

3. Reporting of potential adverse events; and
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4. Identification of studies including ADRs.

Each of these issues is discussed in detail below. A consideration of the merits

of different data sources is also included.

2.2.2 Identification, causality and reporting of adverse drug reactions

Identification of ADRs depends on a series of factors.

• The ADR must be detectable to the clinician in terms of clinical signs or

to the patient in terms of symptoms.

• Alternatively, the ADR must be detectable through other means, such as

pathology or imaging tests, and these tests must be actually performed

either routinely or due to clinical suspicions of an ADR.

• There must be a connection, however tentative, made between the po-

tential ADR and the drug. This connection will usually be made on the

basis of knowledge of the drug’s pharmacological effects, previous ADRs,

or the temporal association between administration of the drug and the

onset of the ADR. At this stage, it is the making of the connection be-

tween the clinical event and the drug administration that is the key to the

identification of a possible ADR.

• In the post-marketing phase, potential ADRs may be unrecognised by

clinicians, or unreported by patients. One reason for this non-reporting

may be the difficulty inherent in differentiating an adverse reaction to a

medication from the symptoms of the original clinical condition that was

being treated.

Identification of potential ADRs may therefore be complicated by a variety of

factors. These include the possible ascription of symptoms, signs and results of

pathological tests to the underlying condition rather than the drug therapy, a

lengthy time delay between onset of treatment and onset of the adverse event

(especially when the drug is taken over a long period of time and the adverse

event progresses slowly to a detectable stage, such as some forms of cancer),

or if there is no prior indication or information that a certain drug will result in

a certain adverse reaction in some users.
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With regard to causality, some putative ADRs may in fact be due to the underly-

ing condition that is being treated or due to other causes such as transient viral

infections. Most case reports of ADRs report suspected cases. Various methods

have been put forward for the determination of the likelihood of a causal rela-

tionship between a drug and an adverse reaction. These include criteria based

on the association in time or place between drug administration and the event,

the drug’s pharmacology, medical plausibility based on signs, symptoms and

other tests, and likelihood or exclusion of other causes (the Uppsala Monitoring

Centre 2000).

Further discussion of the definitions, terminology and issues surrounding causal-

ity with regard to adverse drug reactions is provided by Edwards & Aron-

son (2000) and Nebeker et al. (2004).

Reporting of potential ADRs may occur in many settings. In the drug testing

phase, randomised controlled trials (RCTs) may be a source of ADR identifi-

cation, but trials may not be specifically designed to focus on safety as well

as efficacy. Therefore, potential ADRs may be overlooked, due to failure of

the organisers to proactively elicit information from participants or to look for

clinical signs of any ADRs.

Observational studies that look for ADRs following the licensing and marketing

of a drug, whilst it is being used in treatment of patients, have issues regarding

recall (for retrospective studies) and ascertainment of ADRs in cohort studies.

A third way in which ADRs may be reported is through the more informal sys-

tems of reporting when a drug is in general use, which rely on spontaneous

vigilance from drug users and healthcare professionals. These systems include

the ‘yellow card’ reporting system1,run by the Medicines and Healthcare prod-

ucts Regulatory Agency (MHRA) and the Commission on Human Medicines

(CHM). Yellow cards may be submitted by healthcare professionals or by drug

users including patients or their parents or carers.

1Yellow Card Scheme - MHRA (2010). Available at [March 2010]:
http://yellowcard.mhra.gov.uk/
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In the USA, there is also a method for spontaneous reporting of potential ADRs,

implemented by the Food and Drug Administration (FDA)1. The Adverse Event

Reporting System (AERS) database includes over 4 million spontaneous reports

of ADRs compiled from 1969 to 2009.

However, for spontaneous reporting, the potential ADR must first be identified

as such, and then there must be a willingness to report the incident. It may be

the case that incidents causing severe effects are more likely to be reported than

more trivial ADRs, due to the possibility of receiving significant compensation

from the drug manufacturer, which may be necessary to safeguard the future

care of the patient or support of their family in the case of a fatality. There

are also issues surrounding quality of documentation, duplicate reporting and

coding when assessing case reports of potential ADRs (the Uppsala Monitoring

Centre 2000).

A study investigating the identification of ADEs (including adverse events re-

lated to prescribing and dispensing errors) has been carried out by Jha et

al. (1998), based in the USA. This study is interesting as it compares a specially-

designed computer monitoring system for the identification of ADEs with a sim-

ulated voluntary reporting system, and a system of [drug] chart review. The

investigation occurred over 8 months in 1994–1995, in nine hospital units. Out

of 627 identified adverse events, the greatest number (398; 65%) was discov-

ered by review of drugs charts. The computer monitoring system identified 275

(45%), whilst the voluntary reporting system yielded the smallest number of

adverse events, just 23, 4% of the total.

Considering the overlap between the reporting methods, the overlap between

computer monitoring and chart review was 76 adverse events (12%), whereas

the overlap between computer monitor and voluntary report was lower at three

events (1%). This study highlights the difficulties inherent in identifying adverse

events, interestingly demonstrating that different methods of reporting pick

up different events, with relatively little overlap between them. One of the

most pertinent points is that voluntary reporting yielded the smallest number

of adverse events. Therefore, the necessity of proactive detection methods for

1US Food and Drug Administration (2010). Available at [March 2010]:
http://www.fda.gov/default.htm
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adverse events is evident. The chart review system was the most labour inten-

sive detection method in terms of staff hours spent in implementing the scheme.

The chart review required 55 person-hours per week, while the computer mon-

itoring system required 11 person-hours. As the computer monitoring system

identified 69% of the cases identified by chart review, this system may be a

time-economical method of identifying ADEs.

In a similar vein, another study from the USA compared two different methods

for the detection of adverse events, including, but not exclusively, ADRs (O’Neil

et al. 1993). In this investigation, two systems were used to detect adverse

events, one involving retrospective scrutiny of the medical records by trained

medical record analysts. The second method involved physician self-reporting

of adverse events occurring in patients under their management. Using the first

method, there were 85 adverse events related to medical management (from an

initial patient group of 3128 admissions); using the second method there were

124 adverse events. When the physician-reported adverse events were further

investigated, it was found that only 89 patients met the definition of an adverse

event. The overlap between the 81 patients identified by the medical record

scrutiny and the 89 patients identified by the physician self-reporting method

was low, with 41 adverse events being identified using both methods. Of the 48

adverse events reported by the physicians (not identified by the medical record

scrutiny), only 14 fulfilled the criteria of the medical record analysts. This study

illustrates the difficulties in identifying adverse events of all descriptions, and

the potential for errors and discrepancies in the collection of data.

The two studies described above were conducted in a clinical environment where

the drugs were being used in a hospital setting, following licensing and market-

ing. Evidently, a specific drug will not be marketed unless it has passed through

rigorous tests for efficacy and tolerability through the phases of clinical trials.

An investigation into a possible association between source of funding for a

clinical trial and whether the drug being tested is recommended as a treatment

of choice was conducted by Als-Nielsen et al. (2003). The trials funded by

for-profit organisations were more likely to recommend the drug as treatment

of choice compared to non-profit organisations with an odds ratio of 5.3 (95%

CI 2.0; 14.4). This result did not, however, appear to be associated with lack

of detection (or active suppression of reporting) of adverse effects. For-profit

organisations reported significantly higher numbers of adverse events in the
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treatment arm when compared to non-profit organisations. This may be related

to quality of reporting of the studies and the increased emphasis placed by the

drugs companies on Good Clinical Practice guidelines.

2.2.3 Identification of studies involving adverse events

The final difficulty in gathering data on ADRs and other adverse events is that

of correctly identifying both primary studies and secondary reviews regarding

such events.

Golder et al. (2006a) addressed this problem by developing search strategies in

the online databases Medline and Embase, with the aim of identifying items

related to adverse effects. Several different approaches were developed (to be

used in conjunction with the name of the drug in question), including searching

for specific adverse events, using thesaurus subheadings (for example for adverse

events or toxicity), using search terms synonymous with adverse events, and

using search strategies previously published (citing Badgett et al. 1999 and

Loke et al. 2002), which use strategies involving the name of the study design

in question. It was found that highly sensitive search strategies also had the

disadvantage of low precision [therefore requiring significant user time to sort

out the relevant records from the non-relevant records]. When excluding search

terms based on specific adverse events (as these are often not known in advance

of the search), the most sensitive Medline search strategy involved the use of

‘floating’ (not linked to the drug name) subheadings in conjunction with search

terms synonymous with adverse events. In Embase the most sensitive search

strategy involved subheadings linked to the drug name in conjunction with terms

synonyms for adverse events.

Golder et al. (2006b) have also investigated searching methods for two of the

main sources of information in the field of adverse events. These were Database

of Abstracts of Reviews of Effects (DARE), the main focus of which is on med-

ical interventions and their effects, and the Cochrane Database of Systematic

Reviews (CDSR), which promotes systematic reviews of medical treatments with

the aim of contributing to evidence-based medicine. The authors constructed

several different search strategies for both databases and evaluated them by

comparison to the ‘gold standard’ (GS), the relevant records identified in each

database using both electronic searching and hand-searching of records not re-
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trieved using the search strategies. The statistics used for evaluation of the

search strategies were sensitivity (number of GS records retrieved/number of

GS records indexed in database under investigation as a percentage) and pre-

cision (number of GS records retrieved/total number of records retrieved as a

percentage). A low precision was found when searching CDSR (0–3%); when

searching DARE precision was higher (16–71%). However, in both DARE and

CDSR, a lower sensitivity tended to be associated with a higher precision. In

DARE, sensitivity ranged from 4–85%, while in CDSR sensitivity ranged from

0–64%.

Observational studies are also a very useful source of data in identifying ADRs,

but it is also highly likely that the same difficulties in retrieving relevant papers

may be encountered. This is was addressed by Wieland & Dickersin (2005),

who conducted several search strategies on Medline to ascertain the sensitiv-

ity and precision (using the same definitions as used by Golder et al. (2006b)

above). The example used was a systematic review of oral contraceptive use in

relation to breast cancer. There were 58 references in the systematic review. It

was found that it was possible to develop appropriate Medline search strategies

using both keywords (Medline subject heading (MeSH) terms) and text word

searches that would retrieve all 58 papers (100% sensitivity). However, these

strategies had very low precision (0.9 when using keywords and 0.8 when using

text words). This was due to the large total number of references retrieved

(6120 using MeSH terms and 7240 using text words). Such a large number

of retrieved references is clearly inefficient and would require a large amount

of time in manually extracting relevant papers based on titles, abstracts and

full papers. Using MeSH terms, the highest precision was 11%, with a total of

424 references retrieved, of which 48 were included in the meta-analysis. The

authors highlight two major problems in data retrieval. There was a significant

problem with indexing procedures on Medline, with inadequate indexing of in-

terventions used. Another problem was incomplete reporting in the paper of

all data in the study, similar to selection bias in a clinical trial. The authors of

the original meta-analysis had identified relevant studies by contacting principal

investigators and colleagues in their endeavours to identify all relevant studies.

Hence, improvements are required in indexing by Medline and in reporting of

observational studies, so that all interventions and outcomes are included.
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Setting aside the differences and limitations among search strategies, the most

important determining factor in whether or not a relevant reference will be

retrieved is the quality and accuracy of indexing with respect to adverse events.

A study by Derry et al. (2001) investigated the quality of indexing of clinical

trials with regard to adverse events. A sample of 107 papers that were known

to report clinical trial data on adverse events were followed up in Medline and

Embase. Of the 107 papers, 100 were indexed on Medline and 88 on Embase,

with 81 papers being included on both databases. Considering the indexing of

papers (which is used in keyword search strategies), 53 of the 100 papers were

indexed correctly as having adverse event data, with a similar proportion of the

Embase papers (43 out of 88) doing likewise. The inconsistency of indexing

between Medline and Embase was apparent, with only 30 out of the 81 papers

included in both databases being indexed with adverse events keywords in both

databases. In many cases the paper was not correctly indexed in either database

(25 out of 81 papers), while 26 out of 81 papers were indexed in only one of the

two databases. [This finding highlights the desirability of conducting searches in

both databases.] In addition to keyword searching, it is also possible to retrieve

references by searching on text words in title and/or abstract. Only 62 out

of the 107 papers made reference to adverse events in the title or abstract.

Hence, manual searching of titles and abstracts would not have identified 45 of

these references. Using a combined search strategy of keywords and free text

searching of titles and abstracts, 82 of the 107 papers would have been found,

leaving 25 that would not have been retrievable. The authors conclude that

researchers will therefore need to manually check all published references on

clinical trials to ascertain whether there is any data included on adverse events.

This approach would be very time-consuming and hence not cost-effective.

The inability to identify such a large proportion of relevant references using

online databases clearly calls into question the validity of any results drawn from

systematic review and meta-analysis of the papers identified by these methods.

An extension of the Consolidated Standards of Reporting Trials (CONSORT)

statement, to improve the reporting of clinical trials in relation to safety and

harms-related data has been proposed by Ioannidis et al. (2004).
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2.2.4 Different data sources for adverse drug

reactions

Taking a broader view of ADRs in general, when making decisions related to

clinical guidelines, data are available from a variety of different sources. These

include not only clinical trials, but also observational studies and spontaneous

anecdotal reports. Results from observational studies may be quantitatively

combined with data from RCTs, while spontaneous reporting may provide base-

line information that will influence a prior ‘belief’ regarding a meta-analysis of

quantitative studies done in a Bayesian framework. In this way, information

from three sources may be brought together to strengthen the evidence for any

particular conclusion.

An interesting question posed by Loke et al. (2004) is whether those ADRs most

frequently reported in the clinical trials are also those most often reported in

anecdotal sources, choosing journal articles and reports to WHO for investiga-

tion. Whilst it is impossible to calculate rates for ADRs based on spontaneous

reports due to lack of a denominator (no formal data on numbers exposed), it

is possible to rank ADRs by frequency, and compare these frequencies to those

reported in clinical trials.

The drug of interest was amiodarone, which is used to treat cardiac arryth-

mias, and is known to have several adverse reactions. The ADRs of amiodarone

were divided into eight groups, and data on ADRs collected from three sources:

meta-analysis of data from placebo-controlled RCTs, data from the WHO Col-

laborating Centre for International Drug Monitoring in Uppsala, Sweden, and

published case reports in journals. There was a wide discrepancy in the rank

orders of frequency of ADRs between the three sources. The most common type

of ADR in the meta-analysis of ADRs was cardiac problems, whilst in the WHO

monitoring the most frequent ADR was thyroid dysfunction and the journal re-

ports ranked respiratory disorders most highly. The authors put forward several

explanations for these discrepancies including the fact that clinical trials cannot

identify very rare disorders, may be restricted to specific types of patient (such

as middle-aged males), and may only monitor certain types of adverse events

(for example, as all patients receiving amiodarone would have cardiac disease,

it is unsurprising that they would be closely monitored for cardiac dysfunction,
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which is then demonstrated as the most common type of ADR). Hence, RCTs

were unlikely to provide data on rare or previously unrecognised ADRs.

Spontaneous reports however, can provide data on a broader range of patients,

and hence can identify very rare ADRs as well as those that only occur after

taking a drug for a long period of time. However, there is the possibility of

under-reporting based on a clinician’s decision on whether to report an ADR

and whether it will be published in a journal, based on an editorial decision on

the interest of a potential ADR. There is also lack of homogeneity in the WHO

reports from different countries based on different criteria for acceptance of a

report. The authors conclude that both RCT data and spontaneous reporting

are of use in fully understanding a drug’s safety profile. It may be possible to

extend this idea to the quantitative combination of data from different sources,

which can then lead to clinical decision-making guidelines for prescription.

2.2.5 Other interventions and unintended outcomes

Despite focusing on ADRs, it is also interesting to consider unintended effects of

other types of interventions. It is usually quite plausible to consider that drugs,

which have a wide range of potential actions on human physiology, would also

have a propensity to produce unintended outcomes. It is, however, harder to

conceptualise this type of effect in relation to other interventions such as surgical

procedures or public health programmes.

It would therefore be of interest to include a variety of case-studies of different

interventions, to compare the potential requirements for different approaches to

a statistical analysis, depending on the nature of the intervention, and possible

unintended consequences.

2.3 Discussion

This chapter has discussed the difficulties in primary collection of data regarding

adverse events in general, and has also illustrated the magnitude of the problem

of adverse events in clinical practice. These issues demonstrate the need for

focused statistical techniques in the area of adverse events, and highlight the

point that statistical analyses (at the level of primary data) are dependent on
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the quality of the primary data that are incorporated into them. Much of the

discussion in this chapter has related to adverse events in general, rather than

specific adverse events related to a defined intervention, and has considered

observational studies and spontaneous reporting systems. These study types

are of value in evidence synthesis, but the majority of the statistical techniques

to be developed will rely on primary data from formal trials.

At the level of evidence synthesis, it is very important to retrieve as many

primary studies out of the pool of literature as possible. Whilst not directly the

focus of this work, it is useful to highlight the problems that are encountered in

searching for adverse events literature, even by specialist information scientists.

The review of adverse events meta-analyses discussed in Chapter 6 is based on

searches performed by Golder et al. (2006b).

A possible extension to work on adverse drugs reactions would be to include

case studies based on non-pharmacological interventions; this area may present

a different range of statistical challenges that would be of interest to investigate.

2.4 Summary

The concept of an ADR refers to an adverse drug reaction that is not due to

errors of prescribing or administration, or to failure of efficacy or withdrawal

symptoms. The extent of the problem of ADRs in the UK and elsewhere is

discussed, as well as the difficulties in collecting primary data on ADRs. Another

pertinent issue for evidence synthesis for adverse outcomes is the identification

of primary studies, usually using electronic databases, and this issue has also

been addressed. Non-pharmacological interventions that may have unintended

adverse or beneficial effects are also considered.
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3

Overview of meta-analysis

methods

3.1 Introduction

It is important to place the particular difficulties related to meta-analysis and

evidence synthesis regarding adverse events data within the overall framework of

meta-analysis methods. Meta-analysis methods have now been developed to a

high level of complexity and there are many different statistical techniques allow-

ing the combination of data from different sources. Such meta-analysis meth-

ods are discussed in detail by Sutton et al. (2000) and Borenstein et al. (2009).

These techniques vary in their approaches to how to combine data from differ-

ent sources. An outline is presented of these methods, with discussion of how

they differ both statistically and philosophically.

In this chapter, the methods will be described in the context of combining odds

ratios (ORs), although certain methods may be used for the combination of

other outcome metrics such as risk differences (RDs). These methods are used

for the combination of binary data, as this data format is commonly derived from

clinical trials in the context of interest (in terms of whether or not a participant

experiences an adverse event).
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Whilst this is by no means a comprehensive account of meta-analysis methods,

it is aimed to give an overview of the most important methods and how they

relate to each other.

Included are:

1. basic methods for data combination;

2. standard fixed effect models;

3. ‘exact’ stratified methods;

4. standard random effects models;

5. regression models; and

6. maximum likelihood methods.

This chapter includes only frequentist methods for meta-analysis; Bayesian

methods are discussed in Chapter 4. Chapter 5 includes discussion of meta-

analysis areas that may be specifically problematic for adverse events analyses,

and less well-known or well-used models are discussed there. Other atypical or

non-standard methods, such as methods for individual patient data (IPD) meta-

analysis, mixed treatment comparisons (MTCs), and methods for harm–benefit

modelling are discussed in the relevant chapters where these methods are put

into practice in case-studies (Chapters 8, 9 and 11 respectively).

In this chapter, the observed data with regard to the parameter of interest (for

example, an observed OR from an individual study i) is denoted by yi, the true

underlying value of the parameter of interest is denoted by θi and the estimate of

the true underlying parameter of interest is denoted by θ̂i. The true underlying

value of the pooled effect (across all studies) is denoted as µ, with the estimate

for this effect denoted as µ̂. Unless otherwise stated, these notations refer

to an OR. Regarding variance parameters, the standard deviation (or standard

error) for an individual study is denoted as si, with the between-studies standard

deviation denoted as τ . The study-level weighting used in a meta-analysis is

designated as Wi. This notation is tabulated in Table 3.1. The convention for

notation of numbers derived from a 2×2 table for each study, with the numbers

of cases and non-cases for treatment and control groups, is also set out.
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Table 3.1: Notation used in this chapter.
Notation Concept

i Refers to a statistic or parameter at the level of an individual trial
k Total number of primary studies in a meta-analysis
j Number of study groups within an individual study (usually two, treatment and

control)
yi Observed value of parameter of interest (e.g. odds ratio) for study i (study-level

data). Note that this can be on a logarithmic or natural scale
θ True underlying value of parameter (across multiple studies)
θi True underlying value of parameter for study i

θ̂i Estimate for true underlying value of parameter for study i
µ True underlying value of pooled estimate for parameter
µ̂ Estimate for true underlying value of pooled estimate for parameter
si Standard deviation or standard error for parameter at study-level (study i)
τ True underlying between-studies standard deviation
τ̂ Estimate of true underlying between-studies standard deviation
εi Random error factor for each study, assumed to be distributed normally with mean

0 and variance ξ2i
ξ2i Variance associated with random error factor for each study, εi

Wi Study-level weighting for each study within a meta-analysis
ai Number of cases in the treatment group in study i
bi Number of non-cases in the treatment group in study i
ci Number of cases in the control group in study i
di Number of non-cases in the control group in study i
ni Total number of participants in study i
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3.2 Basic methods for data combination

The simplest method for combining data from multiple sources is to amalgamate

the data into one dataset, and ignore the fact that the data are from different

studies. Effectively this method takes the data from several studies, using the

2×2 table from each, and pools them into one such table (a pooled analysis or

an unstratified analysis), thus losing the concept of multiple data sources.

A marginal analysis is straightforward to apply to an outcome of the OR or

relative risk (RR), also known as a risk ratio.

For an OR, the formula for the point estimate is (Borenstein et al. 2009):

OR =
ad

bc
, (3.1)

with a standard error (on the log scale) of:

Standard error (log OR) =

√(
1
a

+
1
b

+
1
c

+
1
d

)
. (3.2)

Using Equations 3.1 and 3.2, it is then possible to create a 95% confidence

interval (CI) for log OR, by using the assumption that the log OR is normally

distributed, and taking the standard normal deviate of the 0.975 point as 1.96.

Hence, the 95% CI is given by:

log OR∓ 1.96(Standard error(log OR)), (3.3)

which can be exponentiated to give a 95% CI on the natural scale.

The RR is calculated as (Borenstein et al. 2009):

RR =
a/(a+ b)
c/(c+ d)

, (3.4)

with a standard error on the log scale of:

Standard error (log RR) =

√(
1
a
− 1
a+ b

+
1
c
− 1
c+ d

)
. (3.5)
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The 95% CI for the log RR can be calculated by using the same method as

for the OR (with the same assumption of normality on the log scale), given in

Equation 3.3.

The RD is discussed at greater length in Section 3.6. Due to the fact that

the RD is not distributed normally, on either the natural or log scale, it is

not straightforward to calculate the CI on this scale, and therefore it is not

considered further.

This method is also known as a marginal analysis due to the fact that only the

overall totals (the marginal results) are used rather than data derived from each

study individually. The resulting analysis produces only one overall estimate of

the effect, rather than producing multiple estimates (one for each study) which

are then combined into one pooled estimate.

A marginal analysis is not usually to be recommended for the reason that in-

formation is being lost due to not accounting for the fact that multiple studies

are being combined. One major danger is that when combining studies of

different cohort sizes where the magnitude and/or direction of the treatment

effect are different, an erroneous result can occur due to the failure to take

into account the individual study results. This is known as Simpson’s Paradox

(Simpson 1951).

In effect, the overall data are treated as if they are derived from one study, rather

than from several different studies. This is in contrast to treating each study

as a separate exercise in producing an estimate of the underlying treatment

effect. These estimates can then be combined using different methods, making

different assumptions about the ways in which the underlying treatment effects

from each study may be related.

Meta-analysis methods were then developed that would allow combination of

data to include and account for the multiple studies, whilst varying the amount

of ‘weight’ given to each study based on characteristics of the study, whilst

retaining the underlying assumption of a common treatment effect.
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3.3 Fixed effect meta-analysis methods

3.3.1 Principles of fixed effect meta-analysis methods

The FE meta-analysis methods have the assumption that all studies are reflect-

ing the same underlying treatment effect. This may be incorrect for a variety

of reasons. There may be differences in the study population, in the treatments

applied (e.g. drug doses and regimes, or surgical techniques). The treatment

effect may ostensibly differ between studies for non-clinical reasons such as the

methods of data collection, for example using different criteria to classify an

‘event’.

In general terms, an FE model can be thought of as a means of producing

an overall estimate of the treatment effect by using a weighted average of the

individual study level estimates to produce an estimated treatment effect for all

studies combined.

A generic FE model for data where the value of ‘no difference’ between the two

treatment groups is 0, and the data are normally distributed, can be described

as:

θ̂i = θ + εi. (3.6)

In Equation 3.6, the term εi is a random error factor, and is distributed normally

with a variance of ξ2
i , such that:

θ̂i ∼ Normal(θ, ξ2
i ), (3.7)

as described by Whitehead (2002).

3.3.2 Inverse variance method

Using the OR as an example, the formula for the study-level OR (yi) is given

by:
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yi =
ad

bc
, (3.8)

with a variance (on the log scale) of:

Variance (log yi) =
(

1
a

+
1
b

+
1
c

+
1
d

)
. (3.9)

The ease of computation of the variance of the OR on the log scale means

that the IV method is best suited to a meta-analysis performed on the log scale

(in effect, combining the study level log ORs, rather than ORs). Furthermore,

transformation to a logarithmic scale improves the assumption that the outcome

metric (log OR) is distributed normally.

Inverse variance computes a weighted average of yi values, using the inverse of

the within-study variance (s2
i ) as the study weight (Borenstein et al. 2009). In

effect,

WiIV =
1
s2
i

, (3.10)

where s2
i is the equivalent of ξ2

i in Equation 3.7.

To derive a pooled estimate, the following formula is used (where k is the

number of studies):

µ̂IV =
∑k

i=1WiIV yi∑k
i=1WiIV

. (3.11)

Thus, the studies with smaller variance (usually those with greater numbers of

participants) are given greater weight by this method. Hence, the variability of

the pooled treatment effect estimate µ̂IV is minimised.

An estimate for the variance of µ̂IV is given by:

Variance(µ̂IV ) =
1∑k

i=1Wi

(3.12)

From this value for the variance, 95% confidence intervals and p-values for the

Fiona Warren PhD Thesis 2010 32



Chapter 3 Overview of meta-analysis methods

hypothesis test that the true underlying value of the pooled estimate µ is 0 can

be calculated.

The inverse variance method can be used in many situations as it can be applied

to any outcome metric with an associated variance. Another strength of this

method is that it can be used for studies where the original 2×2 tables are

not available, but there are stated treatment effects and confidence intervals,

allowing calculation of the variance for each study-level parameter (Egger et al.

eds. 2001).

Using standard meta-analysis software, for the variance of individual study ORs

the Woolf method is used, for individual study RDs the variance is estimated

using the Normal approximation (Bradburn et al. 2007).

3.3.3 Mantel–Haenszel method

The Mantel–Haenszel (M–H) method (Mantel & Haenszel 1959) was originally

developed for use in combining studies where the outcome is reported as an OR,

and is a weighted average of the individual study estimates of the OR.

Denoting the individual study OR as yi the estimate for each study is as above

in Section 3.3.2.

The weighting for each study, WiMH , is calculated as follows:

WiMH =
bici
ni

. (3.13)

Thus, the M–H pooled estimate µ̂MH , is given by (Borenstein et al. 2009):

µ̂MH =
∑k

i=1WiMHyi∑k
i=1WiMH

. (3.14)

The Mantel–Haenszel estimate refers to the OR rather than the log OR (a major

difference between the M–H and IV models) and hence is not symmetrically dis-

tributed, and cannot therefore be assumed to come from a normal distribution.

Calculation of the variance (with the aim of calculating confidence intervals)

for the M–H pooled estimate must be performed on the log scale (as for the

IV model). The formula for the variance is complex, and involves calculating
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multiple values based on the numbers in each individual study, summing these

across all studies and then combining them across all studies. The full formulae

for calculating the variance are set out in Borenstein et al. (2009). A continuity

correction (this term is discussed more fully in Section 5.2.3) to calculate this

variance is required only if there are zero events in the corresponding arm of all

studies in the meta-analysis.

For the M–H method therefore, only studies with zero events in the control

group will have a weighting of 0 (i.e. ci = 0). As these studies will have an

OR which is ‘undefined’, they will effectively be excluded from the meta-analysis

(not contributing to the numerator of the pooled estimate nor to the sum of the

weights). Studies with an OR of 0 (i.e. ai = 0) will contribute to the pooled

estimate, as they will contribute to the sum of the weights. Hence, a continuity

correction for inclusion of individual studies with zero events in one of the two

arms is not required. (However, meta-analytic software often automatically

includes a continuity correction for all studies with only one arm with zero

events.) If all studies in the meta-analysis have zero events in the control arm,

then the sum of the weights will be 0, and hence it is not possible to calculate

a pooled estimate without a continuity correction. Similarly, calculation of the

variance (and hence CI) for the M–H estimate requires a continuity correction

if there are zero events across all studies, or across all corresponding arms for

either the control or treatment groups.

This contrasts with the IV method, whereby a study where either arm has zero

events yields a variance which is undefined, and hence a weighting of 0. This

means that a continuity correction is required for all studies with zero events in

one arm to be included.

The M–H method has since been extended for use in cases where the outcome

is not an odds ratio (Mantel 1963; Egger et al. eds. 2001), for example, a risk

ratio or risk difference.

3.3.4 Derived statistics from fixed effect models

For an FE model a test of the null hypothesis that the treatment difference in

all studies is equal to 0, the U statistic is compared to a chi-squared distribution

with one degree of freedom (Whitehead 2002).
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The U statistic is given by:

U =
(
∑k

i=1 θ̂iWiIV )2∑k
i=1WiIV

. (3.15)

As the weights in this formula are as for the IV model (see Equation 3.10), this

statistic applies to the IV FE model.

In order to test for statistical heterogeneity among the studies, the Q statistic

is used, being compared to a chi-squared distribution with k − 1 degrees of

freedom (Cochran 1954; Whitehead 2002). The Q statistic is given by:

Q =
k∑
i=1

WiIV (θ̂i − µ̂)2. (3.16)

The Q statistic is effectively a weighted sum of squares of the differences between

treatment effects from the individual studies and the overall estimated treatment

effect. If the treatment difference parameters are homogeneous (little or no

heterogeneity), the Q statistic follows a chi-squared distribution with k − 1
degrees of freedom.

Both the U and Q statistic can be used when estimates of summary statistics

are calculated by other methods, such as the Mantel–Haenszel method.

Statistical heterogeneity is discussed more fully in Section 3.9.

3.3.5 Peto method

The Peto meta-analysis method (also referred to as the one-step method) is a

modification of the Mantel–Haenszel method, and is used when the outcome

measure is an OR (Borenstein et al. 2009).

The Peto method for combining ORs is highly relevant to the analysis of trials

for adverse drug reactions (ADRs), as the baseline method for calculating the

ORs can include studies with zero events in one arm of the trial without recourse

to a continuity correction.
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The Peto OR for an individual study is estimated as:

exp(θ̂iPeto) =
Oi − Ei
Ii

, (3.17)

where θ̂iPeto is the log Peto OR, Oi is the observed number of events in the

treatment group, and Ei is the expected number of events in the treatment

group, calculated by:

Ei =
(ai + bi)× (ai + ci)

ni
. (3.18)

The value for Ii in Equation 3.17 is given by:

Ii =
(ai + bi)× (ci + di)× (ai + ci)× (bi + di)

n2
i × (ni − 1)

. (3.19)

The value Ii is also known as the hypergeometric variance of the event count

in the treatment group (Egger et al. eds. 2001).

The variance of the log Peto OR, θiPeto, for an individual study is:

s2
iPeto =

1
Ii
. (3.20)

The weighting for each study for combination of Peto log ORs in a meta-analysis

is:

WiPeto =
1

s2
iPeto

, (3.21)

so that in effect the weighting for each study is simply Ii. If there are no events

at all in the study, then the value of Ii is 0, hence the study receives a weighting

of 0.

Therefore, the combined estimate for a Peto log OR, µ̂Peto, is:

µ̂Peto =
∑k

i=1WiPetoθ̂iPeto∑k
i=1WiPeto

. (3.22)
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This can be expressed alternatively as:

µ̂Peto =
∑k

i=1(Oi − Ei)∑k
i=1 Ii

, (3.23)

The variance of µ̂Peto is given by:

Variance(µ̂Peto) =
1∑k
i=1 Ii

, (3.24)

or alternatively:

Variance(µ̂Peto) =
1∑k

i=1WiPeto

. (3.25)

The heterogeneity statistic, Q, is given by (Egger et al. eds. 2001):

Q =
∑

Ii(θ̂iPeto − µ̂Peto)2. (3.26)

The ability of the Peto method to lend itself to inclusion of studies with zero

events in one treatment arm without recourse to a continuity correction appears

to be an advantage where sparse data is an issue. However, the Peto model can

lead to biased estimates if the study design is unbalanced, with different numbers

of participants in the study groups (Greenland & Salvan 1990; Fleiss 1993). It

has also been recommended to avoid the Peto method for non-experimental

design studies (Greenland & Salvan 1990).

The Peto method can also be used as a means of meta-analysis for time-to-event

(survival) data (Egger et al. eds. 2001). Time-to-event data can be combined

either by calculating the individual hazard ratios (HRs) and combining using the

IV method (Section 3.3.2), or by using the Peto method for ORs to calculate an

estimate for the HR for each study. The overall HR, ˆµHRPeto is then calculated

as a weighted average of the log HR values.

Dividing each of the i studies into j time periods we have as an estimate of the

individual trial HRs (yiHRPeto):
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θ̂iHRPeto = exp

(∑
j Oij −

∑
j Eij∑

j vij

)
, (3.27)

where the vij value for each study is the study variance and each value O, E

and v are summed across all time periods j for all studies i. The variance of

θ̂iHRPeto is (on the log scale):

Variance (log(θ̂iHRPeto)) =
1∑
j vij

, (3.28)

and hence the weighting for each trial, i, is given by:

Wi =
∑

vij . (3.29)

The studies can then be combined as follows:

µ̂HRPeto = exp

(∑
i(Wilog(θ̂iHRPeto)∑

iWi

)
. (3.30)

The weights, Wi, are equal to the sum of the variances from the individual

trials divided into their time periods,
∑

j vij .

This method is based on the fact that the log-rank statistic is calculated by a

similar method to that of the Peto method for calculating an OR. Calculation

of the O, E and v values for each study requires the use of individual patient

data (IPD).

3.4 ‘Exact’ stratified methods

The above methods of combining data and deriving an associated interval are

asymptotic in that it is assumed that either the number of individuals in the

study is large or that the number of strata, or studies, is large (Emerson 1994).

Exact methods for the derivation of a combined odds ratio based on multiple

strata have been developed, based on exact distribution theory (Emerson 1994).

These methods are not dependent on the number of studies or participants.
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Exact methods rely on deriving the true distribution of the test statistic. This

requires permuting the observed data in all possible ways and comparing the

observed data to what might have been observed, to determine an exact p-value.

One example is the method described by Mehta et al. (1985). The OR is esti-

mated by evaluating all possible permutations of a conditional hypergeometric

response and is an extension of Fisher’s exact test which allows for separate

success probabilities in each stratum. The StatXactr software produced by

Cytel has two main procedures for tackling stratified data from multiple 2×2

tables. One procedure is a homogeneity test to determine whether all odds

ratios across all strata are the same (Zelen 1971), the second is to provide an

exact confidence interval for the combined odds ratio and to test whether this

odds ratio is equal to one (Gart 1970).

Exact methods are used in Chapter 7, as one of the multiple methods used

to analyse an adverse events dataset with sparse data (zero events in several

treatment arms and studies).

3.5 Random effects models

3.5.1 DerSimonian & Laird method

Contrasting with an FE model, where the default assumption is that all studies

are estimating the same true underlying treatment effect, a random effects (RE)

model makes the assumption that the studies are not all estimating the same true

underlying treatment effect. Rather, the default assumption is that all studies

are estimating a different true underlying treatment effect, but these underlying

treatment effects are connected in that all come from the same distribution.

Alternatively, the true underlying treatment effects are said to be exchangeable,

in that none of the studies ‘stands out’ prominently from the rest. Differences in

underlying treatment effect may be due to clinical differences between studies,

for example differences in the participant populations, or in the exposures (for

example, different dosage regimes).

For an individual study in an RE meta-analysis:

yi = µ+ ζi + εi, (3.31)
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where µ is the true underlying pooled mean treatment effect across all studies,

ζi is the difference between the true underlying treatment effect for study i,

(θi), and εi is the random (sampling) error within study i, and represents the

difference between yi and θi (Borenstein et al. 2009).

Continuing to the level of the meta-analysis, some estimate of ζi must be made.

It is usually assumed that the ζi values are distributed normally with a mean

of 0, and variance τ2. This parameter, τ2, is known as the between-studies

variance. In effect, τ2 is the variance of the true difference in effect size between

the individual study treatment effect (θi) and the underlying overall treatment

effect (µ), which is ζi. Further, it is assumed that the ζi and εi values are

distributed independently (Whitehead 2002). Alternatively, it can be envisaged

that the θi values are distributed normally with a mean µ and variance τ2.

Hence, for an RE meta-analysis, it is necessary to estimate the within-study

variance (as for an FE meta-analysis) and the between-studies variance τ2. The

most common method used to accomplish this is to use the method described

by DerSimonian & Laird (1986), which is also known as the method of moments

(Borenstein et al. 2009), based on the method used to calculate τ2. The method

of moments is considered the simplest, and other methods are available including

a restricted maximum likelihood (REML) method. Hence, the overall weighting

for each study in an RE meta-analysis requires a combination of both within-

study and between-studies variation.

To estimate the true underlying value of τ2, the following formula is used (Boren-

stein et al. 2009):

τ̂ =
Q− (k − 1)

C
, (3.32)

where

Q =
k∑
i=1

Wiy
2
i −

(∑k
i=1Wiyi

)2

∑k
i=1Wi

(3.33)

and
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C =
k∑
i=1

Wi −
∑k

i=1W
2
i∑k

i=1Wi

. (3.34)

This method is based on the method of moments. The above equations use

the weighting Wi for each study, as calculated using an appropriate FE method,

either the IV or M–H method (Egger et al. eds. 2001).

The next step is to calculate the pooled estimate for the overall parameter

of interest (µ̂DL).To accomplish this goal, each study needs to be weighted

according to both its individual weighting Wi and τ2.

Denoting the weighting by the DerSimonian & Laird method as WiDL, and the

appropriate FE model weighting for each study as WiFE ,

WiDL =
1

WiFE + τ̂2
. (3.35)

The final step in this method is to calculate the overall pooled estimate, µ̂DL:

µ̂DL =

(∑k
i=1WiDLyi

)2

∑k
i=1WiDL

. (3.36)

This pooled estimate µ̂DL has a variance of

Variance(µ̂DL) =
1∑k

i=1WiDL

. (3.37)

A major difference between the fixed effect and random effects models is that the

random effects model may produce a wider confidence interval for the pooled

estimate. This is because the two sources of uncertainty reduce the relative

weightings allocated to the larger and more precise studies, thus evening out

the weightings and allowing the smaller and less precise studies to contribute

more strongly (with relatively greater weights compared to the larger studies)

to the pooled effect. Hence, this model is more conservative in the conclusions

drawn.

When τ2=0, which occurs when the Q statistic is equal to or smaller than its

degrees of freedom (k-1), then the weights are the same as those used in the FE
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methods and hence the results of the meta-analysis will be the same. In meta-

analyses where there is little heterogeneity, the DerSimonian & Laird method

has little to contribute beyond the FE methods.

In meta-analyses where there are few studies, and the effect size varies widely

between studies, then the between-studies variation will be high, thus a ran-

dom effects meta-analysis will be expected to have a wider confidence interval,

and hence lower power, as compared with a fixed effect model (Borenstein et

al. 2009).

Therefore, both clinical (in considering whether there are clinical reasons for

heterogeneity) and statistical issues can be important in determining which

model is preferred, although tests for statistical heterogeneity can help determine

whether there would be any major differences in the conclusions between the

two models.

The use of continuity corrections with the DerSimonian & Laird model follows

the requirements for the IV and M–H models. A continuity correction is required

for all studies with zero events in one arm for the IV model, whilst for the M–H

model, a continuity correction is required only if the dataset has zero events in

all control arms combined.

A further issue is that whilst an FE meta-analysis is making the default assump-

tion that the true underlying treatment effect is the same, the assumption of the

RE method is that there exists an underlying distribution of such treatment ef-

fects. This distribution can be described using a prediction interval (PI), which

provides an interval in which it is expected that the mean treatment effect of a

new study (selected at random within the population of primary studies) will fall

(Borenstein et al. 2009). This PI is calculated in a similar manner to a CI (which

considers the accuracy of the estimated mean treatment effect by relating it to

its own variance). However, the PI includes two sources of variation, whereas

the CI includes only one. The PI takes into account both the variance of the

pooled estimate, but also the between-studies variance τ2 (the actual formula

requiring its estimate τ̂2).

For the prediction interval the formula that can be used is (Higgins et al. 2009):

PI = µ̂± tαdf
√
τ̂2 + Variance(µ̂). (3.38)
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Equation 3.38 allows for the fact that true values of µ and τ are unknown,

and hence are estimated. In Equation 3.38, the t distribution is used rather

than the normal distribution to derive the centile points for the desired interval

based on α. The degrees of freedom (df) is k − 2. This formula takes into

account the variance of the true effects (τ2) and the variance of the mean

effect, Variance(µ̂).

Hence, the PI is usually wider than the associated CI for an RE model (assuming

τ̂2 does not equal 0), and is a measure of the dispersion of the actual true

underlying effect sizes.

3.6 Methods involving risk difference

The RD is a pertinent outcome metric when considering studies that may have

zero event counts in one or both arms. If there are zero events in one arm only

of a study, then no continuity correction is required to calculate either the RD

or the individual study variance (and hence its weighting in a meta-analysis).

The RD is calculated as:

θ̂iRD =
ai

ai + bi
− ci
ci + di

, (3.39)

with an individual study variance s2
iRD estimated as:

ŝ2
iRD =

aibi
(ai + bi)3

+
cidi

(ci + di)3
. (3.40)

It can be seen that the RD is always 0 if there are zero events in one or both

arms. If there are zero events in one arm only, the variance of the RD is still

calculable without a continuity correction, and will be greater than 0. Only if

there are zero events in both arms will the variance equal 0. Hence, if using the

IV method to calculate the study weightings, then the weight for such a study

will be undefined, and will require a continuity correction to be included in the

study. Adding a uniform continuity correction will effectively weight each study

according to the number of participants and the distribution of participants

across the two arms.
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Using the M–H method, each study is weighted according to the following

formula (Egger et al. eds. 2001, citing earlier work):

WiMHRD =
(ai + bi)(ci + di)

ni
. (3.41)

Hence, the weighting of each study is greater than 0, and is based on the size

of the study and the distribution of participants across the two arms. The lack

of requirement for a continuity correction using the M–H method compared to

the IV method may indicate that the M–H method is the preferred FE method

when using RDs in meta-analyses where there are studies with zero events. The

variance of the M–H estimator of the pooled RD (µ̂MHRD) is calculated using a

method that only produces a value of 0 when there are zero events in all studies

(Egger et al. eds. 2001).

The RD is related to the Number Needed to Treat (NNT), in that the NNT is the

reciprocal of the RD (Egger et al. eds. 2001, citing previous authors). This gives

the number of patients required to produce one positive result of the treatment.

Within the context of adverse events, a more appropriate outcome measure is

the Number Needed to Harm, calculated in the same way, but indicating the

number of patients required to produce one adverse event as a result of the

intervention (Egger et al. eds. 2001, citing previous authors). The NNT has

been demonstrated to be unsuitable for meta-analysis calculations, and it is

preferable to use a probability [risk] difference to perform a meta-analysis, and

then to calculate the NNT from the resulting pooled estimate (Whitehead 2002,

citing previous authors).

3.7 Regression and meta-regression methods

Maximum likelihood logistic regression methods are a suitable FE method for

aggregate data, where the 2×2 table is known for each study. Also, explana-

tory covariates can be added to the model if required. These models will give

estimates similar to the M–H and IV models if sample sizes are large (Egger

et al. eds. 2001). IPD could also be used for these models, whereby each pa-

tient effectively supplied the result of a single Bernoulli trial, with study as an
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explanatory covariate in the model. Logistic regression methods are covered in

detail in McCullagh & Nelder (1989).

The concept of partial exchangeability refers to a scenario whereby some of the

heterogeneity between studies is due to random effects, whilst some is explained

by systematic differences between studies (Higgins et al. 2009). Meta-regression

can be used to explain these differences in the form of covariates in a meta-

regression model.

It is more intuitive to use meta-regression in an RE model, but to develop the

concepts, the FE model is dealt with first. Equation 3.6 is further differentiated

as follows:

θ̂i = δ + ηi + εi, (3.42)

where ηi refers to an explanatory variable x and its covariate, β (Whitehead 2002),

where x is a continuous variable. Furthermore, ηi can refer to a binary explana-

tory variable, or could be expanded into multiple variables xi with associated

covariates βi to account for a discrete variable with multiple levels. Also dis-

cussed by Whitehead (2002) are methods for estimation of the βi values. If there

are no explanatory variables in the model then δ is equal to θ in Equation 3.6.

To extend this model to incorporate random effects,

θ̂i = δ + ηi + ζi + εi, (3.43)

where ζi represents the ith trial’s deviation from the mean of all trials with the

same values for the explanatory covariates, as specified within the expression ηi

(Whitehead 2002).

Logistic regression is one of the multiple methods used in Chapter 7, but meta-

regression models are not pursued further.
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3.8 Maximum likelihood methods

Maximum likelihood methods can also be used to combine odds ratios (Emer-

son 1994). For large sample sizes this method is the most efficient (Sutton et

al. 2000).

A description of both unconditional and conditional maximum likelihood esti-

mators is given by Hauck (1984). In this scenario, there are k studies, with

two groups in each study denoted j. There are two possible asymptotic cases,

the ‘fixed-strata’ case, in which the number of studies is fixed but the number

of participants within each study increases in size, and the ‘increasing-strata’

case whereby the numbers in each study are fixed but the number of studies

increases. It is assumed that the number of events in each study group (a and

c in the 2×2 table) are independent binomial variables with parameters Pjk and

Njk, whereby Njk is the number in each study and group, and Pjk is derived

empirically as total number of events for each group divided by the total in the

group, for each study.

The likelihood is given by:

L =
2∏
j=1

k∏
k=1

P
Xjk

jk Q
Njk−Xjk

jk , (3.44)

where Xjk refers to the number of successes in the jth group of the kth study

and Qjk = 1− Pjk.

This formula can then be used to derive the maximum likelihood estimate for

the OR across all studies, θ̂UML.

It has been shown that unconditional maximum likelihood estimation is not

consistent for estimating the OR when the number of studies increases and the

marginal counts remain fixed (Breslow 1981; Hauck 1984).

In this scenario, conditional maximum likelihood can be used, as described by

Hauck (1984). This method provides an estimate of the pooled OR, θ̂CML,

that is consistent and asymptotically normal.
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Maximum likelihood methods are not used further, as they are difficult to apply

computationally, and may have problems when used in conjunction with issues

commonly associated with adverse events meta-analyses, such as sparse data.

3.9 Heterogeneity within meta-analysis

This discussion refers to statistical heterogeneity, defined as variability in ob-

served treatment effects across different primary studies within a meta-analysis

that is greater than would be expected due to random error alone (Deeks et

al. 2008). Other forms of heterogeneity such as clinical heterogeneity (differ-

ences in participants across primary studies) or methodological heterogeneity

(differences in study design in primary studies) are not considered further, other

than that these factors may be considered in the investigation of heterogeneity.

The test for heterogeneity based on the Q statistic has been discussed in Sec-

tion 3.3.4. An alternative statistic relating to heterogeneity has been proposed

(Higgins & Thompson 2002; Higgins et al. 2003). The Q statistic has low power

to detect true heterogeneity, especially when the number of primary studies in

the meta-analysis is low (but may have excessive power when there is a greater

number of larger studies). It is also salient to note that in a meta-analysis, clini-

cal and methodological heterogeneity may often lead to statistical heterogeneity.

In the light of these issues, the authors developed an approach to heterogeneity

that would provide a measure of the degree of inconsistency across the studies’

results. They designated this measure I2, calculated as follows:

I2 = 100%× Q− df
Q

, (3.45)

where Q is the Cochran heterogeneity statistic (as described in Section 3.3.4).

If I2 is negative it is set to 0%, to give a value between 0% and 100%. An I2

value of 0% indicates no heterogeneity, with high heterogeneity being at above

75%. The I2 value can be interpreted as the percentage of total variation across

the studies due to heterogeneity (rather than random chance), and is therefore a

measure to quantify heterogeneity. It has the advantage that it does not depend

on the number of studies in the meta-analysis, nor on the outcome measure.
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The I2 value can also be used to investigate heterogeneity among subgroups of

studies.

It should be noted that when the Q statistic fails, for example when the variance

of an individual study is incalculable due to zero events in one or both arms,

then the I2 statistic will also be incalculable across the full dataset of studies,

unless a continuity correction is used. It is therefore difficult to assess the value

of the I2 statistic in such circumstances, as the use of a continuity correction

may lead to bias.

Causes of statistical heterogeneity can be investigated using meta-regression,

as discussed in Section 3.7, or by using subgroup analysis (either subgroups of

studies or subgroups of individual patients). Subgroup analysis and individual

patient data analysis are discussed in Sections 5.5 and 5.6.

3.10 Discussion and conclusions

Marginal analyses can give a basic impression of the overall numbers of a par-

ticular outcome and an immediate comparison between treatment and control

groups.

An FE meta-analysis disregards any potential heterogeneity in treatment effect

and estimates one overall study level treatment effect. For this reason it is very

important to investigate any potential heterogeneity, to determine its existence

and magnitude, and to discover why it may be occurring. Subgroup analysis,

sensitivity analysis and meta-regression are all useful ways to approach this.

An RE meta-analysis is an option where there is heterogeneity that cannot be

identified, but this method will result in a more conservative estimate of the

pooled effect, with greater uncertainty. An alternative approach would be to

place a random effects term in a regression model to allow for heterogeneity.

3.11 Summary

This chapter sets out several methods for combination of data, using frequentist

methods. These range from the most basic methods, of simple marginal analy-

sis to more sophisticated weighted averages (or meta-analyses), which take into
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account differences across trials in their weighting systems. The most straight-

forward method is the fixed effect method, of which there are multiple methods

of calculation, and which assumes that the same underlying treatment effect is

being estimated in all studies. Slightly more complex are the random effects

methods, which take into account exchangeability of treatment effect across

studies. Meta-regression methods assist with investigation of heterogeneity be-

tween studies, which can occur when partial exchangeability is assumed across

studies. Maximum likelihood, regression methods and exact methods are also

discussed.
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4

Bayesian meta-analysis

4.1 Introduction

The methods discussed in Chapter 3 have all been frequentist in nature, in that

they regard the underlying ‘true’ value of a treatment effect to be an unknown

but fixed quantity (or coming from a specific distribution with fixed but unknown

parameters in the case of the random effects model).

The traditional frequentist approach to probability is based on the concept of

the probability of an event occurring over a ‘long-run’ of repeated events. With

this paradigm, hypothesis testing is based on the concept of collecting data,

and then using the data to determine the probability of observing such data,

on the assumption that the (unknown) parameter of an assumed distributional

model takes a certain value. The aim of the frequentist analysis is therefore to

determine the degree to which observed data support selected potential values

for the underlying ‘true’ value.

By contrast, the Bayesian approach uses the observed data to make probability

statements regarding the unknown parameters of the model being assumed. The

underlying parameters are themselves regarded as unknown random quantities,

and hence can be modelled distributionally.

This chapter discusses both the algebra underpinning Bayesian principles and

some of the practical difficulties that, until recently, have prevented widespread

use of Bayesian approaches to data analysis. Bayesian techniques are applied
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in Chapters 7, 9, 10 and 11, and the methodologies used are discussed in more

detail in each chapter.

4.2 Bayesian principles

The Bayesian approach to statistical inference is underpinned by Bayes’ Theo-

rem:

p(b|a) =
p(a|b)
p(a)

× p(b), (4.1)

where a and b are two events (that may or may not be independent) and a|b
refers to the probability of event a occurring conditional on the occurrence of

event b (Spiegelhalter et al. 2004). In Equation 4.1, p(b) is the prior probability

for event b.

Whilst Bayes’ Theorem may appear straightforward in concept, in actuality

Bayesian methods are difficult to apply. In order to model the distribution

of interest, that of the parameter of interest given the observed data, it is

necessary to make distributional assumptions regarding the parameter of interest

(known as the prior distribution). Once an algebraic model has been developed,

making any necessary assumptions regarding unknown parameters, the prior

distributions can be combined (according to Equation 4.1) with the observed

data to create a posterior distribution for all the unknown parameters.

In a more complex scenario, there may be multiple parameters within a model,

which are not of direct interest; these are known as nuisance parameters. These

parameters must be accounted for in some way, in order to derive the marginal

distribution for the parameter of interest, θ, in the light of the data y, or p(θ|y).

The likelihood distribution is the probability of producing the observed data

conditional on certain values of the unknown modelling parameters, or p(y|θ, ψ)
where θ is the true underlying value of the parameter of interest, ψ is a set of

nuisance parameters, and y is the observed data). The true posterior distribu-

tion for θ is proportional to the likelihood distribution multiplied by the prior

distributions on the unknown parameters; the prior distributions are known as

they are selected by the user. Alternatively (Spiegelhalter et al. 2004),
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p(θ, ψ|y) ∝ p(y|θ, ψ)p(θ, ψ). (4.2)

This can also be expressed as:

p(θ, ψ|y) =
p(y|θ, ψ)p(θ, ψ)∫

Θ

∫
Ψ p(y|θ, ψ)p(θ, ψ)dθdψ

. (4.3)

The ultimate aim is to derive a marginal distribution for the parameter of inter-

est, θ, in the light of the data y, where all nuisance parameters, ψ, have been

integrated out or averaged over, to produce:

p(θ|y) =
∫

Ψ
p(θ, ψ|y)dψ. (4.4)

Using these methods, the Bayesian analysis is interpreted in terms of the ‘de-

gree of belief’ regarding the true values of the parameters of interest. One

important advantage of Bayesian methods (for all forms of analysis including

meta-analysis) is the ability to incorporate within the model all forms of uncer-

tainty, across all parameters and hyperparameters to which a prior distribution

is applied. One disadvantage of the Bayesian paradigm is its lack of an easily

interpretable test for statistical significance, such as a p-value. This issue is

mentioned with regard to meta-analysis by Sutton & Abrams (2001), although

the concept applies equally to other types of Bayesian analysis. To offset this

drawback in the Bayesian approach, it is possible to make probability statements

regarding the true underlying value of a parameter.

A major difficulty in implementing Bayesian analyses, which has until recently

militated against their common usage, is that complex integrals may be required

to produce the posterior distribution of the variable of interest, conditional on a

continuous distribution of a nuisance variable. Referring back to Equation 4.1,

the prior probability for event a, p(a), is an integrating constant when generating

the posterior distributions. In Equations 4.3 and 4.4, the integrals are more

complex and unlikely to be easily solved algebraically.

To address this problem, computational methods have been recently developed

to allow Bayesian modelling to be performed in a relatively straightforward

manner. These methods are discussed below in Section 4.3.
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One of the most significant differences between frequentist and Bayesian infer-

ence is in the way they conceptualise the unknown parameters of the model

(both parameters of interest and nuisance parameters). In the frequentist ap-

proach, such parameters are considered to have a true underlying value that is

fixed, but unknown. Alternatively, this true underlying value, whilst still tak-

ing a specific value, comes from some unknown distribution. For example, in

a random effects (RE) model, the true underlying treatment effects for mul-

tiple studies investigating ostensibly the same quantity are connected by this

distribution and hence considered to be ‘exchangeable’.

By contrast, for the Bayesian approach, the true underlying treatment effect

has not a specific value, but its own distribution of values, which the model is

aiming to estimate. In order to achieve this, prior distributions must be placed

on the distributions for the parameters of the model. These prior distributions

can be based on external evidence (for example, from previous studies), or on

beliefs, for example derived from ‘expert opinion’. The ability to incorporate

evidence external to the specific dataset being analysed at that time is one of

the integral differences between frequentist and Bayesian methods.

4.3 Practical Bayesian analysis

4.3.1 Markov Chain Monte Carlo methods

Practical Bayesian analysis is usually accomplished by means of multiple sam-

pling methods, based on Markov Chain Monte Carlo (MCMC) methods. Monte

Carlo methods are used to evaluate integrals by means of simulation as opposed

to using algebraic analysis (Spiegelhalter et al. 2004). Hence, these methods

are useful for intractable or complex integrals involving several dimensions.

The concept of a Markov Chain refers to a sequence of random variables, for

which the current value is dependent only on the immediately preceding value

(regardless of all previous values); this property is known as the Markov prop-

erty (Gelman et al. 2004). Markov chain simulation draws repeated values for

a parameter of interest, θ, from approximate distributions, and on repeated

sampling, the approximate distributions more closely approach the target distri-

bution, p(θ|y).
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By Markov Chain theory, following sufficient sampling, the samples will eventu-

ally come from an ‘equilibrium distribution’ which should accurately reflect the

true posterior distribution for θ given the data y; (Spiegelhalter et al. 2004).

The MCMC approach involves sampling from a joint posterior distribution,

p(θ, ψ|y), and with repeated sampling, large numbers of values for θ and ψ

can be derived (Spiegelhalter et al. 2004). If there are t samples taken in total,

these values can be denoted as (θ1, ψ1), (θ2, ψ2), ...., (θt, ψt), where t refers

to the sampling iteration. Inferences about the true underlying value of θ can

be derived from these sampled values, θi, where i refers to ith iteration. For

example, the mean of these sampled values can be used as an estimate of the

posterior mean, E(θ|y). A histogram of the sampled values can be used to

represent the posterior distribution, p(θ|y).

By using this method, the sampled values for θ have been taken across a range

of plausible values for the nuisance parameter, ψ, and hence the effect of this

parameter has been eliminated.

There are various methods to achieve this, including Gibbs sampling (discussed

below in Section 4.3.2), which is the method of choice for WinBUGS, the most

prominent software for Bayesian statistical modelling.

4.3.2 Gibbs Sampling

Gibbs sampling (also known as alternating conditional sampling) is described

in detail by Gelman et al. (2004). Let there be a vector of parameters, θ,

divided into d subvectors, θ = (θ1, θ2, ..., θd). The process of Gibbs Sampling

involves multiple iterations, whereby at each iteration a sample value is derived

for each of the d subvectors (i.e. for each iteration there are d steps). At

each iteration, t, the d subvectors are placed in a specific order. For each of

the individual subvectors, θj , a value for that iteration, θtj is sampled. This

sampling is conditional on the current values (from the current iteration if that

subvector has been updated already, or the previous iteration if not) of all of

the d− 1 vectors of θ, excluding θj , and on the data, y. Alternatively,

p(θj |θt−1
−j , y). (4.5)
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In Equation 4.5, θt−1
−j refers to all the components of θ, except for θj , at their

current values:

θt−1
−j = (θt1, ..., θ

t
j−1, θ

t−1
j+1, ..., θ

t−1
d ). (4.6)

The Gibbs sampling method is the simplest of the Markov chain simulation

algorithms; more complex algorithms are described by Gelman et al. (2004). In

this thesis, Gibbs sampling is the method of choice for all Bayesian analyses,

due to its easy availability within the WinBUGS statistical package.

4.3.3 Other practical issues of Bayesian analysis

Other practicalities of performing Bayesian analysis include the selection of ini-

tial values, from which the sampling algorithm can be commenced. The choice

of initial values may be important in facilitating convergence of the model, de-

fined as the point at which the sampling algorithm has achieved the equilibrium

distribution. Convergence can be verified by examining the history of the sam-

pling algorithm, and if multiple chains are being run simultaneously, these can

be checked for convergence using the methods of Brooks & Gelman (1998).

To avoid incorporating samples from an unconverged posterior distribution, a

certain number of initial samples can be discarded from the final distributions

– this is known as the ‘burn-in’.

Another issue is autocorrelation, whereby the sampling algorithm is not inde-

pendent of previous values (other than the value directly preceding the current

value). Ideally, the Markov chains should be ‘mixing’, or covering the full space

of the joint posterior distribution from which they are sampling. If the chain(s)

are mixing appropriately, then the autocorrelation from successive iterations will

reduce as the ‘lag’ between iterations increases. If this does not occur, then

less information is provided regarding the posterior distribution for each iterate,

and therefore a larger sample is required for adequate coverage of the sample

space (Congdon 2006). An alternative approach to autocorrelation is to thin

the chain(s), by taking every nth sample and discarding the rest; this procedure

is known as thinning the chain (Gelman et al. 2004).

In this thesis, convergence is assessed prior to determining a suitable period

of ‘burn-in’, by means of the history trace, and the methods of Brooks & Gel-
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man (1998), where there is more than one chain being sampled. Autocorrelation

often occurs for some parameters within a model but not for others; to address

this issue, generous sample sizes are used for all models (usually 50 0000 itera-

tions), as discussed in the appropriate chapters (Chapters 7, 9, 10 and 11).

4.3.4 Prior distributions

Due to the potentially strong influence of the prior distribution in determining

the posterior distribution, it is important to select a prior distribution for all pa-

rameters in the model that will accord with the current thinking regarding the

model, the dataset and the research question. In many instances, it is desirable

to make no prejudgement regarding the nature of the posterior distributions,

hence any prior distribution should make as little impact on the posterior distri-

bution as possible. In effect, the posterior distribution should reflect the data

without being influenced by the prior distributions, or alternatively, the data

should ‘overwhelm’ the prior distributions. Such prior distributions are referred

to as ‘vague’, or non-informative.

Common distributions for a vague prior are the normal distribution, with large

variance, or the uniform distribution, with a large range between its parameters.

In situations where only positive values are feasible for a parameter, such as a

standard deviation, a half-normal distribution can be applied. The half-normal

distribution is derived from a normal distribution, centred on 0, with only the

positive half of the distribution used, whilst the negative half is discarded. Al-

ternatively, this model can be thought of as a normal distribution folded around

0 (Spiegelhalter et al. 2004).

Alternatives to a non-informative prior include the ‘sceptical’ prior, which is

based on the concept that the null hypothesis is indeed true (and hence is

‘sceptical’ about the possibility that the true treatment effect demonstrates a

difference in the treatment group compared to the control group). Conversely, a

prior distribution that is based on the alternative hypothesis being correct is an

‘enthusiastic’ prior (in that it predisposes the posterior distribution to represent a

difference between the comparison groups, presumably in the direction favoured

by current thought). Prior distributions are discussed at greater length elsewhere

(Spiegelhalter et al. 2004).
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It is often difficult to specify suitably vague priors for a variance parameter; this

issue has been discussed at length by Lambert et al. (2005). These authors

make a comparison of 13 priors, 12 of which (B1–B12) are set out in full in

Table 7.6 in Section 7.4.5, as they are used in a sensitivity analysis in Chapter 7.

The 13th prior distribution was based on the logistic distribution, and included

the number of studies and the within-study variance for each study; this prior

was based on previous work by DuMouchel & Normand (2000), as cited by

Lambert et al. (2005). These priors were placed on the standard deviation

or a function thereof, such as the variance, log of the variance, or precision

(reciprocal of the variance). This study showed that differences in supposedly

‘vague’ prior distributions could lead to different conclusions. It is pointed

out that as the dataset increases in size, the influence of the prior distribution

is reduced, but, with specific relevance to adverse events data, the problem

becomes more prominent when the between-studies standard deviation is close

to 0. Due to the sparsity of events often found with adverse events, it may be

the case that studies will exhibit little difference in their treatment effects.

In the study by Lambert et al. (2005), there was no specific prior distribution

that performed well; the main finding from this study, in a practical context,

was the importance of sensitivity analysis across multiple priors. Another recom-

mendation from this study is to use previous empirical work to derive the prior

distribution. It is also important to ensure that prior distributions encompass

only realistic values for the standard deviation, and to check for convergence

routinely. It was noted that convergence was a potential difficulty when the es-

timated between-studies standard deviation was close to 0, due to the enforced

sampling [although in such cases a fixed effect model may have been a more

appropriate option].

The prior distributions discussed (with the exception of that based on the logistic

distribution) are evaluated in Chapter 7. The suggestion of using previous

empirical work to inform a prior distribution is also acted upon with regard to

the dataset being analysed; this approach to adverse events data is a novel one,

but could be extended in several ways, for example by using observational data

to inform a prior distribution for analysis of randomised studies. Comparison of

prior distributions also forms part of the Mixed Treatment Comparisons (MTC)

analysis of Chapter 10.
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4.4 Bayesian meta-analysis methods

4.4.1 General meta-analysis models

The flexibility of Bayesian software allows the creation of meta-analysis models

of varying degrees of complexity. The simple fixed effect (FE) model is easily

constructed, as is the standard random effects (RE) model. The major differ-

ence between a frequentist FE model and a Bayesian FE model is that a prior

distribution is placed on the true underlying value of the treatment effect θ.

For the RE model, as well as the prior on θ, the between-studies variance (τ2)

also has a prior placed on its distribution. This is in contrast to the assumption

that this statistic takes a specific value, for which no accounting is made for

potential variation – the usual assumption for a frequentist RE model.

One example of a frequentist approach that does allow for uncertainty between

entities within a model has been proposed by Hardy & Thompson (1996). These

authors put forward a likelihood-based method for calculation of the between-

studies standard deviation that takes into account potential variation, unlike the

method of moments estimator calculated by the more commonly-used DerSi-

monian & Laird method.

Returning to Bayesian methods, the prior distribution on τ2 is a fundamentally

important piece of information for the RE model. Its distribution can be chosen

according to prior beliefs or based on empirical evidence, for example, from other

primary studies. The importance of performing a sensitivity analysis across

different prior distributions, and the inclusion of empirical evidence to form

prior distributions on stochastic parameters, including τ2, is demonstrated in

Chapter 7.

The ability to develop models to a greater degree of complexity is a valuable

asset to a Bayesian analysis. For example, the models can be extended to

develop ‘hierarchies’ that may be based on factors such as treatment regimes

or study types. The prior distributions placed on hyperparameters within the

models can be manipulated to reflect the fact that some studies or treatment

regimes may be more strongly related compared to others within the dataset.

The use of hierarchical models, as discussed by Prevost et al. (2000), is included

within the mixed treatment comparisons (MTC) analysis in Chapter 9.
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Several advantages of Bayesian modelling for meta-analysis are discussed by

Sutton & Abrams (2001). These advantages include the ability to incorporate

all forms of uncertainty in the model for each parameter, and the ability to make

predictive statements, including the degree of uncertainty.

Another advantage is the ability to make comparative statements between two

treatments, for example the probability that one treatment has a better odds of

success than a comparison treatment. With regard to clinical decision-making,

the use of Bayesian modelling allows the incorporation of costs and utilities,

which assist in making healthcare policy decisions. Due to the flexibility to create

complex algebraic models and apply these with Bayesian methods, evidence from

a variety of different sources can be included within the model.

In situations where many models can be produced of varying degrees of com-

plexity, these models can be compared using the deviance information criterion

(DIC) presented by Spiegelhalter et al. (2002), and the pD statistic, which is

calculated as the ‘effective number of parameters’ and is a measure of goodness

of fit that takes into account the number of model parameters, which the DIC

does not. Both of these values are considered to indicate a better fit of model

at lower values.

Also, the residual deviance (and the sum thereof) for a specific model can

be calculated as a function of the model itself. These methods can be used in

combination to select the most suitable model for a particular circumstance, and

are applied in Chapters 9 and 10. The DIC and pD are applicable to Bayesian

modelling in general, and are not exclusive to meta-analysis modelling.

The sum of deviance is of value in assessing the absolute degree of ‘fit’ for

each model, whilst the DIC can be used to evaluate the relative ‘goodness’

of fit across multiple models. These values can be used in conjunction to

determine the statistical value of each model. This evaluation can then be used

alongside clinical considerations to select the most appropriate model for clinical

requirements, with an understanding of its statistical merits.
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4.4.2 Binomial meta-analysis models

As all of the outcomes considered in this thesis are binary, the binomial model

is the model of choice. The basic fixed effect (FE) model is as follows:

ri ∼ Binomial(pi, ni),

logit(pi) = µsi for control trial arms,

logit(pi) = µsi + δi for treatment trial arms. (4.7)

In this model, ri refers to the number of observed events in study arm i, pi

refers to the probability of an event occurring in study arm i, ni is the number

of participants in study arm i, µsi is the log odds of an event occurring in the

control arm i of study s, and δi is the log odds ratio of an event occurring in

the treatment arm in comparison with the control arm for study s to which arm

i belongs.

This model requires a prior distribution for the parameters µj and δi, where j

indexes the study.

It is straightforward to extend this model to include a random effect on the

between-studies variation. A prior distribution is placed on δi, for example,

δi ∼ Normal(d, τ2), (4.8)

where d is the mean true underlying odds ratio, and τ2 is the between-studies

variance. Other distributions are also feasible. A prior distribution is also re-

quired for d, for which the normal distribution may also be used.

This model, or a variation thereof, is used in Chapters 7, 9, 10 and 11.

4.4.3 Meta-analysis in practice

Bayesian meta-analysis as a practical exercise also has several advantages, as

pointed out by Sutton & Abrams (2001). The necessity to elicit prior beliefs

enforces those posing the clinical question to consider the issues carefully, and

determine precisely their true prior beliefs regarding what the ‘answer’ to the

question should be. For example, in a clinical trials setting, the clinician needs
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to determine the magnitude of difference between two treatments that would be

clinically significant. However, it can also be argued that such reliance on prior

belief and ‘expert opinion’ introduces too much subjectivity into any analysis.

This issue can be addressed by use of a sensitivity analysis across a range of

prior distributions. The influence of prior distributions can be especially strong

where the data are sparse (in terms of few studies or few events within the

studies); the use of priors with regard to sparse data is discussed by Lambert et

al. (2005), see Section 4.3.4.

The use of prior distributions is one method, unique to Bayesian analysis, that

can be used to synthesise evidence from randomised studies and observational

studies. Although observational and randomised data can be pooled using fre-

quentist methods, an advantage of using Bayesian methods for this type of

analysis is that the analysis can take into account the different types of data.

For example, the observational evidence can be used to inform the prior for

the analysis of the randomised evidence. Different approaches to this type of

prior distribution construction are presented by Sutton & Abrams (2001). If the

observational evidence is considered to be of high quality it can be used directly

as a prior for the randomised data analysis. This is denoted as a ‘näıve’ prior,

as this evidence is effectively being considered on an equal footing with the

randomised evidence. An ‘equivalent’ prior is centred at the pooled estimate

from the observational data, but has a variance taken from the meta-analysis of

the randomised studies, τ2, the between-studies variance. This method aims at

constraining the influence of the often larger observational studies, which tend

to be larger in numbers compared to randomised studies, and hence may have

greater weighting in the meta-analysis. A ‘sceptical’ prior can downgrade the

influence of the observational studies even further by artificially and arbitrarily

increasing the variance on the prior around the centred estimate. This would be

appropriate if there were concerns regarding serious biases in the observational

studies.

An overall meta-analysis using all the evidence from all study designs anal-

ysed in one model produces similar results to those of a näıve prior (Sutton

& Abrams 2001). One way of addressing the issue of different study designs

is to use a model with different levels of heterogeneity. As well as using a

between-studies heterogeneity parameter for different studies within a particular

study type, an additional level of heterogeneity can be added to denote the
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heterogeneity expected to occur between study types. This type of analysis can

therefore provide an estimate for each study outcome, the overall pooled esti-

mate and the pooled estimate across all studies of the same design (effectively

a hierarchical model on study design). This model can be viewed as a form of

random effects model with an additional level of heterogeneity.

Another advantage is that because of the iterative process of repeated sampling,

the different units of analysis in the dataset (i.e. the individual studies) can

‘borrow strength’ in terms of reflecting the data of other studies in determining

the results of an individual study. This process will tend to draw together the

individual treatment effects, reducing extremity of results, and will also reduce

uncertainty for each individual study’s treatment effect.

This ability to ‘borrow strength’ across studies lends itself to hierarchical mod-

elling (Prevost et al. 2000), in that certain datapoints (with a common factor

such as study type or treatment allocation) can be linked together through an

hierarchical model, and can then ‘borrow strength’ from more closely-related

datapoints than from other datapoints in the overall dataset. Hierarchical mod-

elling is discussed in greater detail in Chapter 10, within the context of an MTC

model, evaluating the influences of class of drug, and drug dosage.

As a practical disadvantage in employing Bayesian methods, computational is-

sues can mean that meta-analyes are potentially more time-consuming to per-

form (Sutton & Abrams 2001).

Other advantages of Bayesian methods include the lack of requirement of a

continuity correction for studies with zero events in one or both arms. This

problem of sparsity of events within a study is very pertinent to adverse events

meta-analysis and is discussed more fully in Section 5.2.4.

A logical extension of the Bayesian model is to include both efficacy and ad-

verse events data within the same model, and potentially cost-effectiveness data

could also be combined to result in a framework of interest both clinically and in

terms of health policy and decision-making. A case-study making use of these

concepts is presented in Chapter 11. A Bayesian approach facilitates this form

of modelling, with data regarding both adverse and positive effects of an inter-

vention being incorporated into a single model, as it allows uncertainty to be

propagated throughout the model, and hence to be expressed in the outcome

metric of interest (Sutton et al. 2005).
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4.5 Summary

Statistical principles of Bayesian inference are discussed, with reference to the

more traditional frequentist models. The application of Bayesian modelling has

many practical difficulties; however, these are now largely dealt with by the

use of modern software. Practical issues include selection of prior distributions,

checking for convergence of the samples to the equilibrium posterior distribution,

and methods to compare the goodness of fit of multiple models of varying

complexity. There are many advantages associated with meta-analysis modelling

using a Bayesian approach, as well as some disadvantages. Some of the major

advantages include the ability to incorporate external evidence into a model, by

use of prior distributions, the fact that all aspects of uncertainty can be included

into the model and that modelling within a Bayesian framework can lend itself

to more complex models, compared to standard techniques.
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5

Meta-analysis challenges with

regard to adverse events data

5.1 Introduction

This chapter discusses issues that produce difficulty in the execution of standard

meta-analysis methods, and that may be likely to arise in meta-analyses of

adverse events data, although they are not exclusive to meta-analyses where

the outcome is an adverse event.

These aspects of evidence synthesis that are relevant when considering adverse

events data were outlined in Chapter 1 and are repeated here briefly, before

being discussed in more detail below.

1. Sparse data (zero events in one or both treatment arms).

2. Heterogeneous data sources (e.g. observational and randomised studies).

3. Multiple outcomes.

4. Combining summary data with individual patient data (IPD).

5. Subgroup analysis.

6. Dose–response data.

7. Class effects.
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8. Time–course effects.

9. Reporting bias.

10. Evidence synthesis of risks and benefits.

Also, the notation conventions set out in Section 3.1 are continued in this

chapter.

Before entering into a discussion about the issues relating specifically to statis-

tical methods, it is helpful to consider the wider context regarding systematic

reviews of adverse and/or unintended events.

Systematic reviews of adverse event data have been the area of interest for sev-

eral authors. For example, McIntosh et al. (2004), discuss their experiences of

conducting systematic reviews of adverse event data, focusing on specific areas,

namely the review question, the issue of differences in study design and difficul-

ties in quality assessment. Although these authors do not specifically address

any statistical issues, their work is relevant, because it should be remembered

that meta-analysis cannot be performed without consideration of the surround-

ing methodologies. The importance of a focused review question, highlighted

as being important for systematic reviews, can become even more essential for

a quantitative evidence synthesis.

Difficulties or ‘challenges’ in systematic reviews of adverse events have been set

out by Chou & Helfand (2005). They discuss three primary areas where the sys-

tematic review of adverse events is less than straightforward. The first of these

is the identification and selection of information about harms. Heterogeneity of

data sources is a fundamental issue. The challenges include excessive reliance

on trials data, the caveat being that although trials are often the ‘gold standard’

for efficacy data, they often address harms outcomes inadequately, either due

to the study design (for example, a small sample size or exclusion of patients

at high risk of harm), or poor reporting of adverse outcomes. Randomised tri-

als are often less suitable for surgical and device interventions as compared to

drug therapies, due to difficulties in blinding, and ethical issues (McLeod 1999).

Observational studies, such as cohort and case-control studies, may be more

susceptible to bias and confounding than experimental studies.

Citing earlier work, Chou & Helfand (2005) point out that well-designed con-

trolled observational studies and randomised trials can produce similar results
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regarding effects; it has not yet been evaluated how observational studies pro-

duce different yet valid conclusions about harms. They discuss a report on

surgical complications, and found that clinical trials reported a higher risk for

adverse events, compared to observational studies, and speculate that this could

be due to poorer assessment of harms in observational studies, or that obser-

vational studies may be less likely to be reported if they include deleterious

results. Large databases such as pharmacoepidemiological databases may be

useful in identifying adverse events (due to higher reporting rates than in other

types of data). Practice-based databases are another source of data that may

be applicable to patients in a community setting. Case reports can be of use

in collecting data on longterm or uncommon adverse events. Pharmacological

data can be used to shed light on the occurrence of adverse events in certain

populations, where subgroup data are unavailable.

The second challenge is the assessment of the quality of reporting of adverse

events. The data type could be randomised trials, observational studies, case

reports or uncontrolled studies of surgical interventions, all of which present

their own problems in quality assessment with regard to harms.

The final challenge is that of synthesising and displaying data from different

types of studies. One of the main areas for concern in combining data from

different study types is that observational studies carry a larger propensity for

confounding and bias to distort the results. It is also important to balance

the need for conciseness with full and transparent reporting. Citing earlier

work, Chou & Helfand (2005) discuss methods of displaying relevant factors

in summary tables conveying information about the studies and results. These

authors also set out various recommendations for improving systematic reviews

that assess harms; at the data analysis level their main recommendations include

the avoidance of inappropriate combination of data and the investigation of any

heterogeneity.

The use of systematic reviews for adverse effects is also discussed by Loke et

al. (2007), who also set out a framework for such reviews. Regarding quan-

titative data combination, their assertion is that the data from heterogeneous

sources cannot be pooled using standard meta-analysis techniques, due to dif-

ferences in study design, study population, or data collection methods. Data

from observational studies are often more prone to bias and often [statistically]

heterogeneous, and should not be combined if this is the case. It may not be pos-
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sible to directly compare harms and benefits. However, more recent techniques

are being developed to address these issues, including the work in Chapter 11

regarding combination of data on harms and benefits.

It can be seen that, even prior to any analysis of quantitative results data, there

are several issues that need to be addressed when synthesising data regarding

harms and unintended effects. While these issues, such as data collection and

quality assessment, are not the main focus of this work, they should be borne in

mind, as they often impact on other aspects of the analysis, and will certainly

influence the final conclusions, generalisability and degree of confidence in the

results.

Chapter 6 presents the results of a systematic review of previous meta-analyses,

where the primary outcome(s) was an adverse or unintended event. All of

the areas of contention, set out above, were included in the review, with the

exception of harm–benefit analyses.

5.2 Sparse data

The term ‘sparse data’ can have different meanings depending on the context,

for example, within a meta-analysis sparse data may refer to primary studies

where there are zero events in one of the study groups (for a comparative

study). Alternatively, it could refer to a scenario where there are few studies of

the appropriate characteristics to be included in a meta-analysis. In this section,

the term ‘sparse data’ is used in the first context, with regard to comparative

(two-arm) studies.

This issue has been considered to some extent in Chapter 3, whilst discussing

different meta-analysis methods and how they perform with zero event counts.

Different outcome metrics also behave differently with zero counts. For example,

a ratio metric will be 0 if there are zero events in the treatment group, and will

be undefined if there are zero events in the control group or in both groups. A

risk difference can be calculated if there are zero events in either or both groups,

but the variance of such a study will be 0 only if there are zero events in total

(Section 3.6).

The different meta-analysis methods, such as inverse variance (IV), Mantel–

Haenszel (M–H), Peto and the random effects DerSimonian & Laird method,
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differ in their ability to cope with primary studies with zero events in one or both

arms, as discussed in Sections 3.3.3, 3.3.5 and 3.5.1. The different models re-

quire the use of continuity corrections (discussed in more detail in Section 5.2.3)

under different circumstances, although it is important to be mindful, when per-

forming a meta-analysis, of the default application of continuity corrections by

the software package being used.

The major issues presented by data with sparse events are:

1. choice of meta-analysis method;

2. choice of outcome metric in the light of meta-analysis method;

3. choice of continuity correction;

4. inclusion or exclusion of studies with zero events in total; and

5. use of prior distributions in Bayesian analyses.

These issues will be discussed in further detail.

5.2.1 Choice of meta-analysis method for sparse data

Choice of meta-analysis method initially requires a decision as to whether fre-

quentist or Bayesian methods are preferable. Bayesian methods have certain

advantages in that they do not require use of continuity corrections to include

studies with zero events in one or both arms. A disadvantage is that choice of

prior distributions on stochastic parameters may be difficult, as vague prior dis-

tributions may in fact influence the analysis (to be discussed in Section 5.2.5).

However, the use of prior distributions can be advantageous in that data from

previous studies (primary studies or meta-analyses, or even clinical opinion) can

be used to frame a prior distribution.

If frequentist methods are used, standard meta-analysis methods may result in

differences in the outcome and conclusions. One major contribution to this issue

is by Bradburn et al. (2007), and it is helpful at this stage to discuss the methods

of these authors, and refer back to their specific findings and conclusions as

appropriate. The premise of the paper was to compare multiple meta-analysis

methods in their performance with regard to datasets where sparsity of events

was an issue. Whilst individual studies may lack adequate power to detect
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rare events, a meta-analysis of several studies may increase power substantially,

but there may be aspects of the results of the meta-analyses that differ across

methods, therefore it is important to assess how the methods perform under

different conditions and by different parameters.

The methods to be evaluated used both odds ratios (ORs) and risk differences

(RDs) as the outcome measures. Seven methods were used for ORs:

1. inverse variance;

2. DerSimonian & Laird;

3. Mantel–Haenszel with continuity correction;

4. Mantel–Haenszel without continuity correction;

5. Peto;

6. exact stratified (by study); and

7. logistic regression maximum likelihood.

Note that the only random effects (RE) model is that of DerSimonian & Laird;

all the others are fixed effects (FE). Another point to note is that the authors

only used a continuity correction (0.5 in all cases) when absolutely necessary

algebraically for calculation of a pooled estimate or variance. This may be at

odds with some standard software packages, which will include a continuity

correction by default for all studies with one count of zero events in either arm.

These authors use the Mantel–Haenszel model with and without a continuity

correction (the M–H model is discussed further with regard to application of

continuity corrections in Section 3.3.3). It is unclear exactly how Bradburn et

al. (2007) addressed the issue of zero events for the uncorrected M–H method.

If there are zero events in the control arm (when using the OR as the outcome

measure) then the individual study weight is 0, so the study will not contribute

to the pooled estimate (which is helpful as the OR would be undefined). A

continuity correction for the variance of the pooled estimate is only required in

cases where there are zero events for the corresponding arms of all studies, so

in such cases a pooled estimate would be produced but no confidence interval

(CI).
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For the RD, the following meta-analysis methods were used:

1. inverse variance;

2. DerSimonian & Laird; and

3. Mantel–Haenszel.

Note that for the M–H method with an RD outcome, a continuity correction is

not required for calculation of the individual study estimate or weight, but the

variance of the pooled estimate will be 0 if there are no events across all studies.

(The use of the RD in meta-analysis is discussed further in Section 3.6.) This

situation did not arise as all studies with zero events in total were excluded from

all analyses.

The Peto method (discussed in Section 3.3.5) has the advantage of not requiring

a continuity correction, and automatically excludes all studies with zero events.

Logistic regression methods do not allow non-integer counts and so do not allow

non-integer continuity corrections. Also, logistic regression excludes trials with

zero events across both arms, but can incorporate those studies with just one

arm with zero events. However, they also encounter difficulties when all studies

have zero events in one of the treatment arms. Exact methods are applicable in

situations where there are zero events in one or both arms of an individual study,

but cannot produce an estimate of the treatment effect when there are zero

events in all corresponding groups of all trials, and cannot estimate statistical

significance and confidence limits when all trials have no events in both groups.

Finally, unstratified methods (see Section 3.2) were used to pool the data across

studies, using marginal totals, for both the OR and RD. This is the only model

that can incorporate individual studies with zero events for the OR metric.

The differences in how meta-analysis methods address problems of zero events

in one or both arms of an individual trial, and similar issues of zero events

in all studies or in the corresponding arms of all studies, are important when

selecting a meta-analysis method. These highlight the importance of scrutinising

the dataset comprised of primary study results, to determine the extent of the

problems of zero events.

These meta-analysis methods were compared using simulated data based on

different scenarios. The scenarios differed according to the number of studies in

each meta-analysis, whether the studies were balanced in terms of the numbers
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in the two comparison groups, the baseline event rate (varying between 0.1%–

10%), and the treatment effect (relative risk varying between 0.2–1 for the

balanced studies, and 0.2–5 for the unbalanced studies).

The different meta-analyses methods were evaluated on four parameters:

1. bias: the difference between underlying treatment effect and mean ob-

served treatment effect (pooled estimate), with bias for OR converted to

an absolute risk scale;

2. coverage: percent of simulations for which the 95% CI of the pooled

estimate included the true value;

3. statistical power: percent of simulations with a statistically significant

result in the direction of the underlying effect; and

4. estimability: the percentage of simulations for which an estimate and

significance test could not be produced or for which zero-cell corrections

were required.

The only RE method used was the DerSimonian & Laird method, which per-

formed poorly in the simulated tests. As the authors point out, the DerSimonian

& Laird method is based on large sample theory, which is not suitable when there

are rare events. Also, the continuity correction of 0.5 may introduce bias into

the results (although this is not specifically mentioned by the authors). The

DerSimonian & Laird method appeared to be biased for both OR and RD out-

come metrics, with an increase in bias for lower baseline event rates, and greater

treatment effects. This effect was seen for the balanced studies with both 19

and 5 primary trials.

Power was also poor at lower event rates and smaller treatment effects. For

these reasons, the authors conclude the DerSimonian & Laird method is not

suitable for sparse data analyses and do not include this method in simulations

of unabalanced study designs. Overall, it was concluded that consideration

of between-study heterogeneity was of little importance when analysing sparse

data, a conclusion that was supported by the work of Sweeting et al. (2004), who

found that in their simulations, despite including between-studies heterogeneity,

it was rarely detected in meta-analyses.

Considering the FE models, the authors dismiss the IV method for similar reasons

as the DerSimonian & Laird method. It is also based on large sample theory,
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and showed bias for both OR and RD outcome metrics. Again, power was low

for lower baseline event rates and less pronounced treatment effects. The IV

method was also discarded for unbalanced study designs.

The Peto method appeared to be less biased at lower event rates, with small

or moderate treatment effects, than other FE models, including the M–H, both

with and without continuity corrections, logistic regression and exact methods.

Regarding the M–H models, the model with the continuity correction appeared

to be more biased than the uncorrected method. Power across the four models

appeared to be comparable for the balanced study designs for the OR metric,

although for the unbalanced studies, the M–H method with the continuity cor-

rection appeared to have greater power for ORs less than 1, and lower power for

ORs greater than 1. The Peto method performed well across most simulations,

apart from scenarios where the study numbers were unbalanced.

This study did not offer any evidence that exact methods were superior to other

methods for sparse events. The Peto method has been shown to be biased in

scenarios where primary studies are unbalanced in the sizes of their comparison

groups (Greenland & Salvan 1990). These authors also argue that even when the

study groups are suitably balanced, the bias introduced by the Peto method can

be significant if the treatment effect is large, which may occur in meta-analyses

of adverse events where the outcome is rare in untreated groups. In fact, the

Peto method was designed with the aim of being suitable for meta-analyses

methods where treatment effects are small.

Overall therefore, the Peto method may be a suitable option if two criteria are

fulfilled; firstly, that all studies are reasonably balanced in the sizes of the groups,

which is likely to be the case when performing meta-analyses with experimental

trials rather than observational studies; and secondly, that the treatment effect is

not excessive. Bradburn et al. (2007) argue that whilst an unstratified analysis

is usually undesirable, in studies where events are rare, there is less likely to

be major differences in proportions of events across trials, and therefore such

methods will be at less risk of confounding by trial due to Simpson’s paradox.

Logistic regression and exact methods may also be worthwhile, whereas the

M–H model may be biased if used in conjunction with a continuity correction.
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5.2.2 Choice of outcome metric

From the work of Bradburn et al. (2007), despite the RD having certain advan-

tages such as the ability to incorporate studies with zero events, all methods

using this outcome metric were found to have low statistical power, and very

conservative coverage (i.e. the CIs were too wide to be of value). These draw-

backs make them unsuitable for studies with sparse events. The simulations

were all performed based on the assumption of fixed effects, and if between-

studies heterogeneity were to be included in the simulation process, then the

RD would perform less well, due to variations in the relative treatment effect

across different studies.

Despite this conclusion, an RD is valuable in assessing the absolute difference

in risk, which may be more useful in clinical terms than a relative measure,

especially if the baseline event rate is variable across studies. The RD is also

helpful in that it can be used to calculate the Number Needed to Treat/Harm

(NNT/NNH; discussed in Section 3.6). A comparison of both OR and RD would

help to present a clearer picture for clinical decision-making.

5.2.3 Choice of continuity correction

Where there are studies in a dataset with a zero count in only one arm, the

standard method for incorporating the data from this trial is to use what is

termed as a ‘continuity correction’, although this phrase may be inaccurately

used in this context. A continuity correction is added to a discrete variable,

when that variable is being analysed by a method designed for the analysis of

a continuous data (Yates 1934). For example, a continuity correction, usually

0.5, is added to a variable generated from a binomial distribution (a discrete

distribution) when an approximation to a normal distribution (a continuous

distribution) is being applied to analyse the data.

The continuity correction in conjunction with 2×2 tables is discussed by Plack-

ett (1964). The use of the continuity correction of 0.5 may also have other

benefits, for example, by lessening the bias in the estimator of the treatment

effect and its variance (Spiegelhalter et al. 2004). The addition of a continuity

correction will have a negligible effect on the treatment effect for large sample

sizes.
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In the context of meta-analyses of adverse events data, the data are usually

in the form of counts and as such are naturally integers, but the methods for

analysis of multiple datasets often cannot produce defined results if there are

zero events in one or both study arms. A similar situation arises where there

are no ‘non-events’ in either arm of the trial, but as this eventuality is unlikely

in the context of adverse events it is not considered further.

Using standard statistical software (such as user-written commands for Stata R©,

e.g. metan), a continuity correction is automatically provided when using many

standard commands to perform a meta-analysis using the IV or M–H method,

or a random effects (RE) DerSimonian & Laird model. (Not all Stata R© com-

mands do in fact use a continuity correction by default; those that do not use

a continuity correction do not appear to have any means of dealing with occur-

rences of zero events.) A continuity correction is provided for all studies with

one arm with zero events. Those studies with zero events in total are excluded

by default when the outcome metric is on a ratio scale.

A continuity correction effectively assists with three different issues; firstly, the

calculation of the individual study estimated metric (to avoid a metric of 0 or

‘undefined’ when on a ratio scale); secondly, the calculation of individual study

weightings (to avoid weightings of 0 or ‘undefined’); and thirdly to calculate the

variance of the overall pooled estimate. The calculation of the overall variance

of the pooled estimate is assisted indirectly by the use of a continuity correction

for the IV method (where the variance is the reciprocal of the sum of the study

weights), and is only required for the M–H model where there are zero events

in all corresponding arms across the primary studies.

The usual continuity correction applied is 0.5, which is added to all four cells

of the 2×2 table, thus adding into the study two ‘false’ participants, and one

‘false’ event. Discussing the work of Agresti (1996), Sweeting et al. (2004),

mention that smaller fixed value alternatives to a continuity correction of 0.5

have been considered; this approach would result in fewer ‘false’ participants

added to each study.

The work of Bradburn et al. (2007) found that the M–H method with a 0.5

continuity correction was more biased than the same without the continuity

correction. The DerSimonian & Laird method and IV method, which both

require a continuity correction, were also associated with bias. Hence, it is
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reasonable to conclude that the use of a continuity correction, especially with

sparse events data, may result in bias.

The use of continuity corrections with the context of adverse events data, where

it is likely that many studies may have zero events in one or both arms, presents

two major challenges. The first is the choice of continuity correction. Although

0.5 is the standard default, any continuity correction would perform the required

tasks. This issue has been investigated further by Sweeting et al. (2004).

These authors evaluated a fixed continuity correction against two alternatives,

one based on the reciprocal of the size of the opposite treatment arm, which

would have the effect of influencing the final pooled estimate of the treatment

effect towards the ‘no effect’ value. The other was based on the concept of

using all studies without zero events to create an overall OR, which would then

be used to derive a continuity correction such that the use of the correction

would influence the final result (based on all trials including those with one

arm with zero events). These methods tended to produce less bias than a

standard continuity correction, varying according to the degree of imbalance in

the treatments and the meta-analysis method.

The second is in the use of continuity corrections. For the IV and DerSimonian &

Laird method a continuity correction is essential for calculation of the study OR

if the number of events in the control group is zero, and for the individual study

weightings, and hence the variance of the pooled estimate of the treatment

effect. For the M–H method, however, the individual study weightings are

calculable if the number of events in the treatment arm is zero (which will also

result in an OR of 0); similarly, if the number of events in the control arm is zero,

the OR is undefined but the study weight is 0, hence a continuity correction

is not needed for these calculations. A continuity correction is only required if

there are zero events in all corresponding arms of all studies.

The default for standard software (Stata R©) appears to be to add a continuity

correction for all IV, M–H and DerSimonian & Laird methods for all studies

with a zero count in one arm. This continuity correction appears to be used for

all subsequent calculations even when not specifically required. For example,

the continuity correction is used for calculation of the OR when the treatment

group has zero events, which without the continuity correction would simply

have an OR of 0. It is interesting to note in the work of Bradburn et al. (2007)
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that the uncorrected M–H method appeared to be associated with less bias,

compared to the use of continuity corrections.

Overall, continuity corrections should be used judiciously, both in selection of

the most appropriate correction, according to the study numbers and meta-

analysis method, and in terms of when the correction is applied. Investigation

of potential differences in results due to adding a continuity correction to all cells

of a study where only one arm has zero events, and then using the corrected

value for all subsequent calculations, could be compared to a scenario where

only those calculations that require a continuity correction to avoid an undefined

value actually use the corrected values. However, the use of different values for

the corresponding cell of the 2×2 table in itself may introduce bias.

5.2.4 Dealing with studies with zero events

It can be argued that studies with zero events in total do not contribute to the

pooled estimate of treatment effect size when using a ratio metric (Sweeting

et al. 2004). Similarly Bradburn et al. (2007) excluded all studies with zero

events in total from their meta-analysis method comparisons of ORs, with the

exception of crude unstratified methods. Contrary to these standpoints is the

intuitive argument that these studies convey some information relative to their

overall size, and that ideally some form of inclusion into a meta-analysis would

be desirable.

The Peto method and logistic regression methods automatically exclude studies

with zero events. Exact methods however, are an option for including studies

with zero events (unless all trials have zero events in one or both groups).

Unstratified methods can also include studies with zero events in both arms,

but will produce an estimate of the OR that is either 0 if all trials have zero

events across the treatment groups or ‘undefined’ if all trials have zero events

across the control group or both groups.

On an RD scale, studies with zero events are included in standard meta-analysis

methods, although continuity corrections must be required for calculation of

individual study weights when using the IV method, and there are zero events

in both study arms. When using the M–H method, the individual study weights

can be calculated if there are zero events across the whole study, but the variance

of the pooled estimate will be zero in cases where there are zero events in both
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arms in all studies in the dataset. Unstratified analyses can include studies with

zero events on an RD scale.

One method to incorporate studies with zero events is to use continuity cor-

rections where required to enforce inclusion of such studies into a standard

meta-analysis model. However, this approach creates ‘false’ participants and

‘false’ events, to an extent determined by the size of the continuity correction.

Considering the arguments both for and against the inclusion of studies with

zero events, a suitable compromise may be to perform multiple meta-analyses

including studies with zero events, and to compare these with meta-analyses

excluding these studies. The exploratory meta-analyses performed in Chapter 7

include this approach.

When dealing specifically with studies related to adverse events, it is likely that

studies with zero events will be a common occurrence. Intuitively, these studies

contribute information to the overall dataset and it would be highly desirable to

incorporate them in some way. An unstratified analysis is superficially the most

straightforward way to accomplish this, but would be associated with concerns

regarding bias.

Another approach to include studies with zero events is to use Bayesian method-

ology. Bayesian methods can include studies with zero events (in one or both

arms) without recourse to a continuity correction, for both FE and RE models.

There may be issues regarding the appropriate use of prior distributions, and

this is discussed further in Section 5.2.5, whilst Bayesian methods in general

are discussed in Chapter 4. The binomial model, which supports this ability to

incorporate studies with zero events is set out in Section 4.4.2. Another ad-

vantage for Bayesian methods when using an RE model is that they can easily

estimate the between-studies variance, by using an RE model, and placing a

prior distribution on τ2.

Bayesian methods are computationally suitable for an OR outcome, due to the

fact that the normal distribution can be used to model the log OR, but there are

issues for the relative risk (RR) and RD outcomes. However, suitable models

can be created for both the RD and RR scales, allowing the actual values for

the RD and RR to be constrained within appropriate values, using suitable prior

distributions. For example, an RD may be constrained between -1 and 1 over a

uniform distribution. For an RR, the range is bounded on the log scale between
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−∞ and the negative of the log of the risk in the control group (which occurs

if the risk in the treatment group is 1, leading to the maximum possible value

for the RR). A distribution can then be placed on the log RR for each study,

derived from a normal distribution. The log RR can be replaced by the negative

of the log of the risk in the control group, should the log RR sampled for a

particular study exceed this maximum allowable value.

With regard to adverse events modelling, it is likely that the OR scale will be

more satisfactory than the RR scale due to its mathematical properties and the

fact that the OR will approximate the RR for the low event rates that are likely

to occur. As pointed out earlier, the RD scale is likely to have lower statistical

power compared to the OR scale, but this is less of a consideration for a Bayesian

analysis, so the RD scale may be of value, if only as a comparison against the

OR scale.

5.2.5 Choice of Bayesian prior distributions

When data are sparse in meta-analysis (both in terms of few primary studies and

few events within those studies) there is a concern that any prior distributions

used in a Bayesian model will overwhelm the available data and have an unac-

ceptable influence on the results. For example, in a study where there are zero

events overall, although the Bayesian model has the advantage of incorporating

such a study without a continuity correction, the prior distributions placed on

the estimates of the outcome metric(s) and variance parameter(s), or functions

thereof, will exert their influence over the contribution of the study to the model

output.

The work of Lambert et al. (2005) has highlighted this issue by comparing

multiple supposedly ‘vague’, or non-informative, prior distributions. These prior

distributions were placed on the scale parameter (variance or a function of the

variance) of simulated RE meta-analyses. Ideally, a vague prior distribution

should allow the data to dominate the posterior distribution across the range of

values of interest, and therefore should treat all possible values of the parameter

as being equally likely. These authors simulated multiple meta-analyses with dif-

ferent numbers of primary studies (five, ten and 30). However, these simulations

did not include sparse events within each trial (each trial had 50% of patients
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in the control group experiencing the event of interest, with an underlying OR

of 1.38).

Hence, these simulations do not consider sparse data at the level of events

per study. Using different prior distributions, there were differences in the 95%

credible intervals (CrIs) for the log OR and the posterior distributions on the

standard deviation. There were also difficulties when the true between-study

standard deviation was close to 0, because the model enforced a positive value

to be sampled at all times. This may imply that an RE model should not be

attempted unless there is good reason to assume that an FE model would be

inappropriate.

The influence of the prior distribution was more pronounced when there were

fewer studies in the meta-analysis. With larger numbers of studies the data

dominated the prior distribution to a greater extent. It may be reasonable to

extrapolate this conclusion to a scenario where the number of studies is greater,

but the events themselves are sparse, with zero events in one or both arms of a

study. These authors concluded that there was no particular prior distribution

that performed well (in terms of not influencing the data) in all scenarios, and

hence that a sensitivity analysis across prior distribution should be performed.

Certain prior distributions appeared to perform poorly with small numbers of

studies, in particular those that were uniform on the variance scale.

Non-informative prior distributions can be valuable if they truly are non-informative,

but may be dangerous should they exert undue influence on the results of an

analysis. This phenomenon becomes more pronounced when using hierarchi-

cal models, in that the variance parameters may exert influence which is then

propagated throughout the model.

Therefore, it could be appropriate to take a contrasting approach, and select a

prior distribution that is expected to influence the results in the light of previous

data on the same or similar areas, or based on clinical experience, pharmacolog-

ical information or some other viable source of evidence. Using an informative

prior distribution in this way would be analagous to the continuity correction

developed by Sweeting et al. (2004), which was based on using data from those

studies that did not require any continuity correction to calculate a continuity

correction to apply to those studies that did require one. This is an area that

would benefit from further investigation.
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5.2.6 Alternative methods to address sparse data

Two novel approaches for dealing with sparsity of data have recently been de-

veloped (Rücker et al. 2009; Tian et al. 2009). The first of these methods

(Rücker et al. 2009) discusses the use of the arcsine transformation, in terms of

its application in meta-analyses where the primary studies include at least one

instance of zero events in total.

The arcsine difference can be defined as:

arcsine

√
ai

ai + bi
− arcsine

√
ci

ci + di
, (5.1)

The arcsine difference takes the value of zero only if the values of both ai and

ci are zero.

The variance estimate for an arcsine difference, for a two-arm trial is given by:

1
4(ai + bi)

+
1

4(ci + di)
. (5.2)

This is not an exact estimate but has the advantage of producing a finite esti-

mate even with zero values. A further method of calculating the variance is also

presented, known as the analytical calculation of the variance, which has the

effect of improving the approximation of the variance when there are few or no

events. Using either of these methods of calculating the variance, the arcsine

differences can be combined using an inverse variance method, to produce a

pooled estimate and confidence interval.

The authors argue that this method compares favourably with the use of other

metrics, such as the RD, RR and OR, and should be considered when performing

a meta-analysis of studies where zero events occur. The arcsine difference avoids

the need for arbitrary continuity corrections, and the bias they may introduce.

Although the arcsine difference is not easy to interpret conceptually, the authors

describe the metric using graphical methods to relate the arcsine difference to

the RD for different baseline risks.

The arcsine difference is straightforward to calculate using standard inverse vari-

ance weightings for the individual studies. However, there is no simple formula
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to convert the pooled estimate of the arcsine difference into an RD or other

metric that is easily interpreted. In the light of this issue, the arcsine difference

is not included in the case-studies in subsequent chapters. Furthermore, as dis-

cussed in Chapter 3, the RD is not usually the outcome metric of choice for

data with sparse events.

Another alternative method for calculating a CI for a difference parameter,

which does not require any continuity corrections, is demonstrated by Tian et

al. (2009). This method derives a one-sided 100(1 − α)% CI (a, ∞) for each

of k studies in a dataset. For any given value of η [presumed to be 1 − α], there

are k one-sided η-level CIs for the parameter of interest (for example, the RD).

The next step is to take all possible values of the parameter (∆) and examine

whether each one is the true value of ∆. If the selected value is the true value

for ∆, then it should belong to η of the k CIs.

These authors provide a method to test the hypothesis that the interval (a, ∞)

should include the selected value for ∆. This is achieved by setting up a variable,

yi, which takes the value 1 if ∆ belongs to the observed (from the data) η

interval from the ith study, and 0 if it does not. The selected value of ∆ is

included in (a, ∞) if:

t(η) =
n∑
i=1

wi(yi − η) ≤ c. (5.3)

In Equation 5.3, the value wi is the study weight (for example, based on the

sample size), and c is selected such that the P(T (η) < c) ≤ α, and

T (η) =
n∑
i=1

wi(Bi − η). (5.4)

The values of Bi where i refers to the ith study, are k independent Bernoulli

random variables with a ‘success’ probability of η. Hence, the studies where ∆
is included in the observed CI contribute positively to T (η) according to their

weight, whilst those where ∆ is not included contribute negatively. This process

is repeated for all possible values for ∆, based on the data. The lowest value of

∆ that is found to be included in the CI becomes the value of a. This process

can be repeated to discover the highest value of ∆ that is found to be included
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in the CI (−∞, b). Taking the CI (a, b), this is the 100(1− 2α)% two-sided CI

for the true value of ∆.

The authors provide a program to perform the calculations using the package

R; this method is trialled in Chapter 7. Despite the concerns regarding the RD

as a suitable parameter for adverse events datasets, there are also advantages

to use of the RD.

5.2.7 Discussion of sparse data issues

The issue of how to include studies with sparse data in a meta-analysis is a

complex one, and the various methods have been discussed above. Overall, it

is reasonable to argue that an initial scrutiny of the dataset to examine the

exact nature of the sparsity of the data is essential before embarking on any

meta-analysis, and that multiple sensitivity analyses to evaluate the robustness

of conclusions will be advisable in all circumstances.

As a final point to bring out of the study by Bradburn et al. (2007), the

lack of power for all methods with low event rates was apparent. Even for

the largest number of trials (19) in the meta-analyses, with balanced numbers

across groups, the power for event rates of 1% was below 24% for an OR of

0.75, and below 78% for an OR of 0.5. At an event rate of 0.5%, the power was

below 47% across all methods for an OR of 0.5. At the lowest event rate, 0.1%,

the power even at an OR of 0.2 was highest at 30.9% (for the Peto method)

and for smaller treatment effects was lower. For the smaller meta-analysis of

only five balanced trials the powers were also very low for event rates of 1% and

below.

This evidence indicates that for low event rates (which is a probable scenario

for adverse events), the purpose of performing a meta-analysis is not so much

to achieve a significant result, but more to provide an unbiased estimate of the

pooled treatment effect, to obtain a CI, and hence to identify any signal from

the data that may provide cause for concern, which can then be investigated

further.

Issues related to sparseness of events data in the review of meta-analyses related

to adverse or unintended events are discussed in Sections 6.3.2, 6.3.7 and 6.4.7.
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5.3 Heterogeneous data sources

Regarding adverse events data, there are four main sources of data:

1. randomised controlled trials (and other forms of trial);

2. observational studies (cohort and case–control);

3. case series and case reports;

4. formal reporting systems for adverse events (e.g. the UK ‘yellow card’

system); and

5. ‘anecdotal’ information.

There are several potential ways to combine these forms of data. Comparative

studies (trials and observational studies with at least two study groups) provide

absolute risk estimates and relative risk estimates. Single-arm observational

studies can also provide absolute risk estimates, while case series and reports

can give an insight into frequencies and probability of event occurrence (if de-

nominators of person numbers at risk are known), as can data from reporting

systems such as the ‘yellow card’ (discussed in Chapter 2). Anecdotal evidence,

such as clinical experience, cannot in itself provide numerical data but can pro-

vide qualitative information that may be used, for example, to form a Bayesian

prior distribution.

The main concerns regarding combination of experimental (trial-based) data

with comparative observational data are:

1. observational studies have more potential for confounding than trials;

2. observational studies may have longer follow-up than trials;

3. observational studies may have larger study populations than trials;

4. observational studies may not be representative of the entire population

who have been exposed to an intervention, and hence not generalisable;

5. observational studies may have less accurate data regarding treatment

regimes;

6. observational studies may be more prone to clinical heterogeneity; and

7. observational studies may be more susceptible to sources of bias in general.
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The increased risks of bias and confounding, plus potential for inaccuracies and

lack of detail regarding treatment regimes, indicate that observational studies

would be less valid as data sources compared to trials. The arguments surround-

ing meta-analyis using randomised controlled trials (RCTs) and observational

studies in combination are put forward by Borenstein et al. (2009), who con-

clude that these different study designs should be analysed separately, but can

be combined in certain circumstances. Concerns regarding increased bias in

observational studies compared to RCTs was the motivating factor in using hi-

erarchical models with constraints to address this issue (Prevost et al. 2000;

discussed further in Section 10.2).

However, the longer follow-up time of an observational study is an advantage

when trying to discern adverse events that take a long time to develop and/or

detect. Also, the larger study populations may result in more precise estimates

and this may add to their weighting in a meta-analysis.

Hence, whilst RCTs are the ‘gold standard’ for effectiveness, observational stud-

ies may be relatively more valuable for adverse events, due to being based more

in the ‘real world’. As mentioned above, whilst an observational study may not

encompass the full range of people exposed to an intervention, they may be

capable of including a broader range of people than clinical trials. Furthermore,

the environmental conditions in which an intervention is used may be more

realistic than the more controlled conditions of a trial.

When combining experimental and observational data there are several options,

including:

1. combine the study types on an equal basis;

2. as above, with sensitivity analyses by study type;

3. weight the studies in some way according to study design or other factors

e.g. date of publication;

4. use Bayesian methods to place differential prior distributions on different

study designs;

5. use Bayesian methods to explicitly model biases, which can then be ad-

justed for, within observational studies;
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6. use Bayesian methods to represent the parameter of interest according to

one study type in terms of a logical function of another study type;

7. use the observational studies as external evidence to provide prior esti-

mates for parameters in a Bayesian model, with the trial studies as the

main dataset for the analysis.

The third option is problematic, as it appears to be on a par with weighting

by study quality; any weighting system may be arbitrary and subject to bias.

However, empirical data could be used to derive the weights for the studies. A

sensitivity analysis by study design would allow any differences in results between

the two study types to be scrutinised, possibly returning to the original studies

to determine potential clinical reasons for any discrepancy.

If different study designs are included, it is important to assess the results of the

meta-analysis for heterogeneity and to fully investigate any heterogeneity found,

for example by subgroup analysis (at the study level) or by meta-regression

using study-level covariates if the required data are available. (Heterogeneity

is discussed further in Section 3.9, meta-regression is considered in Section 3.7

and subgroup analysis is discussed in Section 5.5.)

Comparison between FE and RE methods in this situation would be advisable as

a means of identifying whether any statistical heterogeneity is having an impact

on the results. An RE method would be the preferred choice if this is the case,

as trials and observational studies may be estimating differing underlying effects,

and the RE method would yield more conservative results. However, if data are

sparse, as has been discussed above in Section 5.2, achieving significance, or

even a plausible CI may be a lower priority than producing an unbiased estimate

of the pooled effect, so the choice of meta-analysis method may be driven by this

consideration above statistical power or desire to incorporate between-studies

heterogeneity.

The issue of how to model sources of bias, both internal (with relation to the

study design) and external (with relation to generalisability), has been addressed

by Spiegelhalter & Best (2003) and the work continued by Turner et al. (2009).

The former authors considered how to derive an RE model for a parameter of

interest, whilst taking into account sources of external and internal bias, and by

assessing the degrees of bias, a quantitative evaluation of study quality can be

derived (effectively a quality weight for each study). This quality weight can be
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considered as the proportion of between-studies variability unrelated to internal

bias (within each study).

The work of Spiegelhalter & Best (2003) is extended by Turner et al. (2009).

The most prominent issue developed is the difficulty of disentangling sources of

bias, and the importance of clinical input where necessary. Assessment of study

methodology is the key first step in adjusting for bias using statistical methods.

These authors then put forward ways to adjust for biases, differentiating be-

tween those that are independent of the underlying treatment effect (additive

biases), and those that are proportional to the treatment effect. If all internal

and external biases are adequately accounted for, there would be no remaining

between-studies heterogeneity. Methods are presented to quantify both additive

and proportional biases, to incorporate these into the overall meta-analysis.

Putting this issue into the context of adverse events, sources of internal and

external bias can be adjusted for, allowing all sources of evidence to be incorpo-

rated into the dataset, with a specific system of weighting the studies according

to defined sources of bias. However, the model requires the use of an RE model

to incorporate external validity, which may not be the most appropriate ap-

proach for adverse events. With regard to adverse events it is likely that the

most important source of external bias is in the study population, and it would

be straightforward to exclude all studies that do not match the study group of

interest.

In a meta-analysis where the outcome of interest is an unintended but beneficial

one (Bonovas et al. 2005), the authors performed separate meta-analyses for

observational studies and randomised trials. They then used a test of interaction

(Altman & Bland 2003) between estimate of statin use on risk of prostate cancer

and randomised controlled trials/observational studies to determine if there is

any evidence that the results for the two study designs are different. They also

performed an overall meta-analysis of all studies combined.

If Bayesian methods are preferred, constraints could be used on the prior distri-

butions for different study types, for example to address potential differences in

the degree of bias between the study types, as proposed by Prevost et al. (2000).

This approach is utilised in the context of a hierarchical model in Chapter 10.

Alternatively, different prior distributions could be placed independently on the
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two types of study within the model, for example with the observational studies

providing data to inform the prior distributions for the experimental studies.

Methods to include both comparative and non-comparative studies have been

developed by Begg & Pilote (1991), who used the context of a clinical situation

where comparative studies for two treatments were available, but also uncon-

trolled (single-arm) studies for each of the two treatments. The three study

types were combined in ways that varied the weighting of the uncontrolled

studies according to the between-studies variation. When this value is large,

the uncontrolled studies receive low weighting in the estimate of the pooled

treatment effect. Conversely, when the between-studies variance is 0, then the

uncontrolled studies are weighted on an equal par with the comparative studies.

This approach is developed further by Li & Begg (1994), who point out that

the previous methods required the assumption of a normal distribution for the

baseline random effects and the treatment effects of each study. Also, it is

assumed that the uncontrolled studies are not biased. In the light of these

assumptions, a more general approach is developed, which does not require any

assumptions regarding distributions.

With regard to adverse events meta-analyses, these methods would be of value

when incorporating observational studies that have no control group, as they

provide a quantitative means of incorporating the uncontrolled studies. They

may also be of use for trials with no control group, for example, trials using a

surgical intervention. However, the inclusion of the uncontrolled studies is in

fact a function of the between-studies variance, and the uncontrolled studies are

disregarded when the value of this statistic is 0. Given that for adverse events,

the main aim is to detect any signal from the data and to generate a point

estimate, it is hard to justify exclusion of uncontrolled studies simply due to low

between-studies variance.

The case series, case reports and anecdotal reports (as well as non-comparative

observational studies) can also be used as qualitative data, which is particularly

appropriate when only the relative estimates are to be combined quantitatively.

Such data can be incorporated into a narrative review, but the question of

how to combine qualitative with quantitative data within a quantitative meta-

analysis is more challenging. One way to bring the qualitative data to bear on

the quantitative analysis is to incorporate such data into the prior distributions
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for Bayesian analysis, effectively using such data as an ‘expert opinion’. For

example, the qualitative data (supporting the existence of an adverse event)

could form an ‘enthusiastic’ prior distribution on the point estimate of the pooled

estimate. The interpretation of such data is, however, a clinical issue and

would ideally be performed by a clinical expert in the appropriate area, e.g. a

pharmacologist or geneticist. With this information available, a meta-analysis

can be performed that incorporates both quantitative and qualitative data.

An example of using both qualitative research and the prior beliefs of individual

contributors has been provided by Roberts et al. (2002). However, in this

case, the outcome referred to identifying the factors used by parents as reasons

for their behaviour in relation to immunisation of their children. Therefore,

qualitative research was likely to be of greater importance than for a physical

outcome. Reviewers used both their subjective opinions (before evaluating the

qualitative data), and the results of the literature. These were combined to

yield a prior probability for each factor being of importance, and these prior

probabilities were used in a Bayesian analysis. This approach is likely to be

appropriate only for unintended outcomes that are subjective in nature.

Heterogeneous data sources in the systematic review of adverse and unintended

events meta-analyses are discussed in Sections 6.3.1 and 6.4.1.

5.4 Multiple outcomes

When focusing on unintended and adverse events, it is probable that there will

be several possible events of interest for each trial. Almost all treatments have

the potential to produce multiple unintended outcomes and within a study they

may all be reported. Indeed, failure to report on all unintended outcomes would

constitute reporting bias. Another issue is the fact that some events may have

been unforeseen and then had to be incorporated into the study outcomes,

effectively turning the study into a form of ‘fishing expedition’.

For an individual study there are several methods of adapting the analysis to

account for multiple testing; some of these are outlined by Pocock (1997).

Methods include use of the Bonferroni correction, defining a single primary out-

come, amalgamating all test statistics into a global test statistic, and combining

outcomes. Definition of a single primary outcome may be beneficial when the
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outcomes are infrequent as is often the case for adverse events, but may be

clinically undesirable.

Furthermore, combination of certain outcomes may be appropriate clinically

when the mechanism of action of the drug or intervention is the same or similar,

or for outcomes that are pathologically similar, but inappropriate in other cir-

cumstances. This is another area where clinical input is required prior to any sta-

tistical analysis. This approach is similar in concept to combining evidence from

all outcomes into a single test statistic. It has been argued that this approach

may enhance statistical power, discussing one method based on calculation of

a standardised normal test score for treatment differences, and then combining

these according to a weighting system for each outcome (Pocock 1997).

The problem of limited study size [and hence power], as discussed by Pocock (1997),

is enhanced with the problem of small numbers of events; correction for mul-

tiple testing using a Bonferroni correction will play against the limited power

by raising the threshold for significance, and indeed in many scenarios for ad-

verse events data significance is secondary to receiving a ‘signal’ from the data.

Indeed, Pocock refers to adverse events scenarios as “multiple outcomes gone

crazy”, and requires the lack of prespecified hypotheses which can lead to ‘data

dredging’. However, to contradict Pocock, the ratio of false positive to true

positives is unlikely to be high due to low power for most studies for adverse

events. A predefined primary outcome may not be feasible for clinical reasons,

if an adverse event is not identified until after a study has commenced, and as

mentioned by Pocock, reporting of all adverse events is required by regulations

for clinical trials.

The difficulties presented by multiple outcomes for a single study are complex,

but when placed in the context of multiple outcomes across multiple studies

the problems are increased. For example, using the single global test statistic

approach, the weighting systems within studies may lead to bias if not carefully

considered.

The use of a random effects meta-regression model for the meta-analysis of

multiple outcomes has been suggested (Berkey et al. 1998). The advantage

of this is that multiple endpoints are usually correlated, and this should be

accounted for in the model.
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Despite the importance of this issue for adverse events meta-analysis, where it

is possible that there will be many outcomes for each intervention, there is no

further consideration in the case-studies presented. In Chapter 6, the review

of previous meta-analyses in adverse and unintended events addresses issues of

multiple outcomes in Sections 6.3.2 and 6.4.2.

5.5 Subgroup analysis

Subgroup analysis in this context is intended to refer to subgroups of individual

patients within a single study, for example based on demographic factors such

as age and sex, genetic factors, or on treatment factors such as different drug

regimes. An alternative way to think of subgroup analysis is by subgroups of

studies, for example, based on geographical area, date of study, study design or

source of funding, effectively where all patients in the study have the same value

for the covariate of interest. In some cases these two concepts may coincide, for

example certain studies may have participants of only sex or in one age group.

It is usually easier to address issues based on subgroups at the study level, for

example using methods discussed in Section 5.3 regarding heterogeneous data

sources. It is more difficult to develop methods for use in subgroup analysis

at the level of the individual patient, especially when information regarding the

subgroups of interest is lacking (this topic is discussed more fully in Section 5.6).

This lack of data could be in two parameters, firstly in terms of lack of data

about the defining subgroup factor (for example, lack of data on age or sex

of participants) and in terms of lack of outcome data for those subgroups (for

example, presenting data for the total cohort but not broken down by age and

sex).

Subgroup analysis may become an important part of a meta-analysis of adverse

events data for different reasons. Firstly, if there is statistical heterogeneity

present, then it would be advisable to investigate this further, and along with

meta-regression, subgroup analysis would be an appropriate method. Also, there

may be specific demographic subgroups within primary studies, such as age

groups, that may be at differing risks of an adverse event. There may also

be genetic subgroups at increased risk of an adverse event. Thus, there may

be reasons why a meta-analysis of subgroups is required, which may be known
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prior to commencing an overall meta-analysis, or becoming apparent whilst

performing such a meta-analysis.

Therefore, the issue of subgroups is particularly pertinent to the analysis of

adverse events data. Given that adverse events are often infrequent, this can

mean that a study that is adequately powered for efficacy within subgroups may

be underpowered for adverse events; hence the use of meta-analysis can be very

valuable to bring together multiple studies and increase power. However, bearing

in mind the low power of meta-analyses with low event rates (Section 5.2.7),

such increases in power may not be substantial. Lack of power is one of the key

disadvantages of subgroup analysis.

Another reason for subgroup analysis that is specific to adverse events data is

that an intervention (usually a drug in this context) may be used for different

indications, and it may also be the case that the adverse events profile will

vary according to the indication. This highlights the desirability of combining

primary studies for different indications (i.e. that will have efficacy data on dif-

ferent outcomes) when the same intervention is performed across studies, with

the aim of combining data for common adverse events. Methods to investigate

this phenomenon need not be limited to subgroup analysis, but it is one area

where subgroup analysis may be usefully employed if a single study includes sub-

jects receiving an intervention for different clinical conditions, or where different

studies use the same intervention for different purposes.

Referring to individual studies, Brookes et al. (2004) point out that a separate

analysis by subgroup leads to the risk of multiple testing and finding a positive

result by chance. This approach also reduces power to detect a true treatment

effect by subdividing the whole dataset into subsets. A test for treatment–

subgroup interaction was considered the appropriate way to investigate whether

the intervention differs across subgroups, using linear or logistic regression as

appropriate. At the meta-analysis level, IPD would be required for patient-level

covariates, but regression methods could be used for study-level covariates. As

an alternative to subgroup analysis, a treatment–subgroup interaction could be

used.

As IPD greatly facilitates subgroup analysis, with the ability to incorporate

patient-level covariates, this method would be highly recommended in this area.

However, IPD are often unavailable for all or some of the studies. Another
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problem is that studies that report only aggregate data may not report the

aggregate values for all subgroups of interest. Meta-regression by study-level

demographic characteristics leads to the problem of the use of ecological data,

which may not correspond to the true situation at the individual level.

The aspects of the systematic review of meta-analyses in adverse and unintended

events with regard to subgroup analysis are to be found in Sections 6.3.2, and

6.4.2

5.6 Individual participant data meta-analysis

Individual participant (or patient) data (IPD) meta-analysis is regarded as being

the ‘gold standard’ approach, superior in its resulting estimates to the use of

summary data – some of the reasons for this are discussed below. In the ideal

scenario, where IPD are available for all primary studies, there are two main

approaches to meta-analysis of such data.

The first approach is simply to use the IPD to calculate a summary statistic for

each individual study, which can then be used for a meta-analysis using standard

techniques – hence, this method is known as the ‘two-stage’ method (Simmonds

et al. 2005). This method has the advantage over using aggregate data, where

the summary statistic for each study is presented, but not the 2×2 table, in

that the choice of summary statistic is within the power of the performer of

the meta-analysis. Also, if covariates are provided at the individual participant

level, then the choice of which covariates to adjust for is available.

Another advantage of IPD meta-analysis is that it is more readily applicable to

time-to-event data (survival data). Such datasets do not facilitate the break-

down into simple 2×2 tables, which are the mainstay of standard meta-analysis

methods. The exception to this is an extension of the Peto method, described

in Section 3.3.5.

The second method available for IPD meta-analysis is known as the ‘one-stage’

method, whereby the data from all studies are combined into one dataset (Sim-

monds et al. 2005). This dataset can be analysed as if the data were all from the

same study, or analysed using stratification by study, with the individual study

treated as a covariate within the model . This method avoids the problem of
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Simpson’s Paradox, that besets a marginal analysis (although as has been men-

tioned, this issue may be less important for adverse events meta-analyses than

for other forms of data).

If IPD are available, then covariates at the individual level (e.g. age), rather than

the study level (e.g. mean age), can be included in a meta-analysis, as well as

the study covariate. This allows a wider range of covariates to be included, since

some covariates are relevant at the individual level rather than the study level.

Also, the use of IPD allows ‘borrowing strength’ to occur across studies (Higgins

& Whitehead 1996; Borenstein et al. 2009), whereby assumptions can be made

that certain statistics for each study are the same. An illustrating example from

Borenstein et al. (2009) is that of using age as a patient-level covariate (mean

age across studies will be similar and so cannot be used) in a meta-analysis

where weight loss is the outcome, and is related to age. Information could be

borrowed across studies, increasing the power, for example by assuming that the

standard deviation for weight loss is the same across all studies. Both FE and

RE models can be implemented using IPD, but RE models are more difficult to

apply in practice (Borenstein et al. 2009).

The IPD approach is particularly suitable when aiming to investigate patient-

level characteristics with regard to the outcome of interest (Lambert et al. 2002);

as such, it may be especially relevant to adverse events data. These authors used

a simulation study to demonstrate that in many situations an IPD meta-analysis

has greater power than its aggregate data counterpart, with the aim of detecting

differences in treatment effect between high- and low-risk patients. Only when

the number of subjects in each study was large (1000), with 20 studies in total,

and the treatment effect also large, did the aggregate data analyses approach

the power of the IPD analyses. In the meta-analysis of adverse event data, a

large effect size is usually ruled out (it is to be hoped that drugs with potentially

widespread adverse events would be excluded at an early stage of development).

Hence, aggregate data meta-analysis would lack sufficient power to detect a

treatment effect. For example, even with 20 studies of 1000 subjects each, with

a small effect size, the meta-regression analysis detected a significant difference

between the risk groups in only 15.6% of simulations compared to 90.5% of

simulations for the IPD analysis. This study reinforces the advantages of IPD

for adverse event data; indeed the benefits of IPD would seem to outweigh the

disadvantages of time and cost involved in obtaining the data.
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Chapter 8 discusses a meta-analysis of randomised controlled trials where IPD

were available for all studies, with a time-to-event outcome. However, this sit-

uation is not common in practice, as IPD are not usually presented in published

references. In many cases the data may not be available if the publication is

some years old, or the authors may be unwilling to divulge the data for further

analysis. In this case, if only a subset of studies have IPD, with the rest having

only aggregate data, it is necessary to develop further methods to combine these

forms of data.

Accepting the argument that IPD is superior to aggregate data, it is then nec-

essary to develop ways to combine IPD and aggregate data in such a way that

the additional information of IPD is retained and made best use of, while incor-

porating the aggregate data.

In a review of meta-analyses that combined aggregate data and IPD, Riley et

al. (2007), found four main approaches to this methodology. By far the most

common was the two-stage method, in which the IPD is used to produce a

summary measure that is then combined with the aggregate data from the

other studies. This approach is easy to apply but has the disadvantage of losing

the patient-level data, which is one of the main benefits of IPD. It is therefore

best suited to situations where only study-level covariates are of interest.

Another method involves the partial reconstruction of IPD from aggregate data;

this method applies when the outcome is binary and the data are presented in

a 2×2 table from which a series of individual datapoints categorised as 0 or 1

for the outcome of interest can be derived. This reconstructed data can then

be combined in an overall meta-analysis with the provided IPD. It is, however,

difficult to reconstruct patient-level covariates, therefore this type of analysis

is usually most appropriately applied to situations where study-level covariates

are of interest. There are also various types of bias that may arise when using

reconstructed data as opposed to having available the original study dataset. For

example, some participants may be excluded inappropriately, and importantly

for adverse events, results may be selectively reported in the final publication,

compared to the collected data. Also, it is often difficult to reconstruct patient-

level covariates from aggregate data.

Another option is to use a multi-level modelling approach where the lowest level

is an observation from an individual participant and the highest level is study-
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level aggregate data. By including a dummy variable in the model to distinguish

between aggregate data and IPD, the analysis can include both aggregate data

and IPD for study-level effects, and include only IPD for patient-level covariates.

Finally, a Bayesian hierarchical model, known as Hierarchical Related Regression

(HRR) has been proposed (Riley et al. 2007, citing earlier authors). This method

uses Markov Chain Monte Carlo (MCMC) methods to simultaneously estimate

two related regression models, one for IPD only and one for aggregate data

only. These models have common parameters which are being estimated from

both the IPD and aggregate data. By allowing both types of data to influence

the estimate of the parameter, the problems associated with ecological bias of

aggregate data and low power related to IPD are reduced.

The use of IPD and aggregate data has been extended to account for issues such

as clustering by Sutton et al. (2008). These authors also investigate methods to

use covariates when combining studies with IPD and aggregate data, where the

latter has covariate data in terms of the proportion of patients within a study

who have a certain characteristic. The aggregate data studies can be used in

a meta-regression to estimate the slope of the regression line for the character-

istic of interest. This slope is assumed to be equivalent to the coefficient for

the interaction term between treatment and characteristic in the IPD analysis.

Hence, these two data types can be used to estimate the effect of the covariate

of interest.

An assessment and further development of methods for combining aggregate

data and IPD has been conducted by Riley et al. (2008), using continuous out-

comes. Both one- and two-step methods are considered, including the method

involving the use of a dummy variable as described above, which allows the

aggregate data and IPD to contribute to the overall pooled treatment effect,

while the IPD studies also yield a study-level effect. These methods are used

to investigate patient-level covariates, including within-trial and across-trials

treatment–covariate interactions. Given the importance of identifying at-risk

groups in the analysis of adverse events data, such methods have a strong po-

tential for further development in this area. With regard to adverse events data,

however, the majority of outcomes tend to be binary rather than continuous.

Focusing on time-to-event studies, aggregate data and IPD can be combined

using a hazard ratio (HR) as the outcome measure. IPD analysis is particularly
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appropriate when reporting time-to-event data. For example, time-to-event

data may be reported using different outcome metrics in different publications;

common outcome metrics include the HR, or log HR, results of the log rank

test, and median time-to-event. Use of IPD can help to overcome the problem

of diverse reporting methods across datasets.

Investigation of heterogeneity between studies is facilitated by the use of IPD.

For example, Tudur Smith et al. (2005b) compared IPD and aggregate analysis

of time-to-event data. To investigate heterogeneity they used a Cox proportional

hazards regression model stratified by trial for the IPD, and for the aggregate

data a meta-regression using the log HR as the outcome metric. The authors

discovered that the aggregate data and IPD models differed in their identification

of potentially significant variables and argue that the IPD method is ‘safer’ in its

application. Chapter 8 discusses a time-to-event meta-analysis of IPD in detail.

In the context of adverse events data, the use of IPD can provide much-needed

additional power (e.g. through borrowing strength across studies) to a meta-

analysis and facilitates the inclusion of patient-level covariates for subgroup

analysis. As many of the studies included in a meta-analysis of adverse events

are often clinical trials it is to be hoped that IPD will be increasingly available.

Only two publications including IPD were retrieved for inclusion in the systematic

review of meta-analyses with adverse and unintended outcomes; IPD analysis

within the context of this review is included in Sections 6.3.2, 6.3.5, 6.4.2 and

6.4.5.

5.7 Dose–response data

From a clinical perspective, one of the major areas of interest when considering

adverse events outcomes in relation to drug therapy is the concept of dose–

response. As pointed out by DuMouchel (1995), there are two fundamental

questions, namely, whether a dose–response relationship exists, and if so, what

it is. It would be very interesting to evaluate a particular ‘threshold dose’ below

which a certain adverse event would be very rare, and then to gain an under-

standing of how risk of an adverse event increased along with dose. Associated

with this idea is also the issue of length of exposure (which results in increased

cumulative dose as time progresses) as well as the dosage of the drug as used.
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One of the major areas of difficulty in performing a dose–response meta-analysis

is the fact that data on differing dosages may be derived from multiple studies

(i.e. dose as a study-level covariate), rather than from the same study where the

different dosage regimes are being compared over the same study population

(i.e. dose as an individual-level covariate). For those studies where different

doses are being compared, it would be very valuable to have IPD, especially if

results are not presented for each dose regime separately. In such an instance

the IPD methods discussed in Section 5.6 would be applicable.

Dose may be considered as a continuous covariate or a discrete covariate with

multiple levels such as ‘low’, ‘recommended’ or ‘high’ dose (which occurs in

the case-study explored in Chapters 9 and 10.). Evidently, if exact doses are

provided, these can be categorised into discrete bands, according to clinical

usage.

When considering the possibility of a causative relationship between an inter-

vention and an adverse event, dose–response (or biological gradient) is one

of the criteria for causality set out by Hill (1965), so the establishment of a

dose–response relationship is useful clinically.

This fact is considered in a prominent study in this field, published by Tweedie

& Mengersen in 1995. These authors discuss several meta-analysis methods

that may be appropriate. The establishment of a dose–response relationship is

a strong step in proving a causal association and once established it can be used

to predict the level of risk for individuals at different levels of exposure. If data

from different studies are to be pooled, it is important to first obtain a dose–

response measure from each study (consistent across test statistic and quantity),

and then to pool these dose–response relationships from individual studies using

meta-analysis. Effectively, each study can be thought of as providing its own

estimate of the dose-response curve.

Interestingly, Tweedie & Mengersen (1995) use as their example a dose–response

relationship between lung cancer and environmental tobacco smoke, rather than

a dose–response model for a drug and treatment effect, demonstrating that a

dose–response relationship may occur in a variety of contexts. The use of obser-

vational data further blurs the bounds of a dose–response model. In the context

of adverse drug reactions, epidemiological studies may have the advantage of
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longer follow-up time and possibly a greater range of doses, but may also be

disadvantaged by less detailed information regarding dosages.

Three methods for analysis of a dose–response relationship across different

studies are discussed by Tweedie & Mengersen (1995), the first using a non-

parametric test for equality of response across dosage levels, the second using an

exponential model and the third using a linear model. The latter two then use

a test of significance for the regression parameter. They then put forward three

meta-analysis methods for the combination of the data derived from individual

studies. The first is a non-parametric test for equality of responses based on

combining the non-parametric test statistics derived from the individual studies.

The second is a random effects model allowing for between- and within-study

variation in dose response and the third is a fixed effect model with the as-

sumption that there is no heterogeneity of dose response across studies. It goes

without saying that data of a very high quality are required in this case, such

as data on the exact treatment regimes, and if multiple treatment regimes are

applied within the same study then they must all report outcome parameters in

an appropriate format for meta-analysis at all levels.

The debate surrounding dose–response issues in meta-analysis is continued by

DuMouchel (1995), who considers aspects such as whether a dose of zero should

be included in a dose–response model, and measuring residual error, which

appears to be more problematic when studies have fewer dose groups. Also

discussed are issues regarding the random effects model, which are taken in the

context of either an empirical Bayes or fully Bayesian model. These models

differ in their evaluations if the number of studies is small.

Dose of drug is explored using Bayesian hierarchical models and mixed treat-

ment comparisons (MTCs) in Chapters 9 and 10. In this case-study, IPD were

not available. In situations that have IPD available for all studies, the logical

approach would be to use meta-regression with dose as a continuous or discrete

covariate, with the control being fixed at a dose of 0. This model would allow

the addition of other covariates, such as age, to investigate any interactions.

The methods of Tweedie & Mengersen (1995) are not employed in this thesis,

as the nature of the dose–response data is not well-suited to the regression

methods, as it is not continuous in the examples used in Chapters 9 and 10,

and the non-parametric methods provide only a test for equality of responses

rather than an estimate of treatment effect.

Fiona Warren PhD Thesis 2010 98



Chapter 5 Meta-analysis of adverse events data

Dose–response issues are explored in previous meta-analyses of adverse and

unintended events in Sections 6.3.2 and 6.4.2.

5.8 Class effects

This section is restricted to adverse events that are specific to drug therapy, and

in particular to comparisons within and between specific classes of drug. Drugs

are often classed according to their activity (such as beta-blockers or calcium

channel inhibitors) and in clinical practice it is often the case that a specific

condition is treated with drugs from more than one class.

It is therefore necessary to dissociate effects across drug classes to see if one

class of drug has a different adverse events profile for the same indicating condi-

tion. Also, even within a class there may be some class members with a different

pharmacological activity profile. It may be very important to disentangle differ-

ences in adverse events between drugs within the same class but with slightly

different pharmacological properties, with the aim of selecting the drug with the

best balance between efficacy and adverse events profiles.

These processes are effectively forms of subgroup analysis (discussed in Sec-

tion 5.5) and risk–benefit analysis (to be discussed in Section 5.11 and more

fully in Chapter 11).

A meta-analysis of efficacy of a variety of migraine treatments, some involv-

ing drugs and others involving non-drug therapy, is described by Dominici et

al. (1999). Their approach hinges on the relative ranking of treatments both

within classes and overall. This is achieved by performing indirect comparisons

among treatments if they are not tested against each other in the same trial, and

by fitting an hierarchical Bayesian grouped random-effects model. The authors

used clinical data that suggested that efficacy was more similar within treat-

ment classes than between classes, and used this information to deduce that

when ‘borrowing strength’ within a model it was more important to borrow more

heavily between treatments of the same class (Higgins & Whitehead 1996).

It would be feasible to use similar methods to those of Dominici et al. (1999)

to investigate for adverse events across a range of drug classes, especially if

there were existing clinical or pharmacological data regarding adverse events

that could be used to inform the model.
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The case-study set out in Chapter 9 involves an example whereby multiple

drugs from the same overall class, but with one member that has a different

pharmacological profile, are compared against each other using MTC analysis.

The use of MTCs may be a particularly suitable approach for this problem, as it

allows both direct (within the same study) and indirect (across separate studies)

comparisons.

The systematic review of previous meta-analyses of adverse and unintended

outcomes refers to class effects in Sections 6.3.2 and 6.4.2.

5.9 Time-course effects

Time-course effects in this instance refers to the making of repeated measure-

ments of adverse events data at varying times following the commencement

of treatment. This issue is particularly pertinent in the area of adverse events

because some events may take a long time to develop (due to the pathological

processes involved) and/or to become symptomatic and diagnosable. Also, some

adverse events may require a greater cumulative dose and hence will only occur

after a longer time period. Therefore, this issue may tie in with dose–response

considerations.

This area is an issue for two reasons. Firstly, different studies will have different

lengths of follow-up and/or report outcomes at different times, and therefore

methods are required to account for this feature of the studies. Secondly, within

one study, each individual may have the outcome (assumed to be non-fatal)

reported at different times (depending on the nature of the outcome). As

multiple observations are being made on the same individual at different times,

this leads naturally to an hierarchical model, if IPD are available, or if the same

outcomes were reported at corresponding times for different studies that have

only aggregate data.

If IPD are available for all studies, but without a specific date of event for each

patient, then time-course effects can be modelled within separate time-frames,

where an event is the occurrence of an adverse event within a specific time-

frame. If exact dates of events are known then a more accurate time-to-event

analysis can be performed (this approach is used in the case–study in Chapter 8).
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This approach was taken in the context of time-to-healing in a scenario primarily

focusing on MTCs (Lu et al. 2007). A more detailed discussion of MTCs in

general is included in Chapter 9. This study was complicated by the need to

combine multiple follow-up times with direct and indirect comparisons. The

meta-analysis was required to ‘borrow strength’ for effects across time periods

and also to combine direct and indirect evidence on treatment effects within each

time period. The authors developed a range of models using several Bayesian

hierarchical models. To describe three of the models, these included a model

using log HRs with homogeneous variance; the time aspect was addressed by

allowing the baseline hazard to vary over time with the addition of a fixed term

at each follow-up time. The second model involved a mixed effects baseline with

a fixed effect for trial and time, and a trial-by-time interaction. The third model

is a random walk model, which includes the assumption that for each trial the

baseline effect during a particular time period should be closer for adjacent time

periods than for non-adjacent time periods. The expectation of the log hazard

for each time period is the log hazard at the previous time period. Assuming a

normal distribution, the variance term for the later time period is estimated from

the data, hence there is more variability for the earlier time period compared to

the later one.

If IPD are available for some studies (with exact times known), but for other

studies only IPD with date of events within a specific time-frame, or aggregate

data with events within a specific time-frame, then there would be difficulties

in combining such data. The easiest route would be to use specific time-frames

and not use the time-to-event analysis, by using the IPD with individual times to

separate events into time period of occurrence. Separate analyses could then be

performed for different times (this approach is used in Chapter 8). Alternatively,

duration of study could be used as study-level covariate (this method is used in

the harm–benefit analysis in Chapter 10).

The occurrence of time-course effects in the meta-analyses of adverse and un-

intended outcomes is discussed in Sections 6.3.2 and 6.4.2.

Fiona Warren PhD Thesis 2010 101



Chapter 5 Meta-analysis of adverse events data

5.10 Reporting bias

The wider issue of publication bias, whereby a study is less likely to be published

if it shows a non-significant treatment effect, or alternatively an effect that is

not desired by the study’s organisers, is a large field in its own right. In the

frame of adverse events, very few trials are performed with the aim of looking

for adverse events, hence a study is more likely to be published based on the

significance or otherwise of the treatment effect.

A more pertinent phenomenon for adverse events in a clinical trials context

would be reporting bias, whereby adverse events are selectively not reported

(whether intentionally or simply because it may not be considered of impor-

tance if there is no indication that an adverse event is causally associated with

an intervention). It is, however, very difficult to formally assess or adjust for

reporting bias. Observational studies are more likely to be specifically aimed at

looking for adverse events, and hence fall foul of the risk of publication bias if

no significant effect is found.

For these reasons, the associated issues of reporting and publication bias are

not considered further in this work in order to concentrate on other areas.

Reporting bias is considered further in the systematic review of adverse and

unintended events – see Sections 6.3.2, 6.3.3 and 6.4.3.

5.11 Evidence synthesis of risks and benefits

The analysis of an adverse events profile is clinically most useful when combined

with an assessment of the efficacy of the intervention. Taking the efficacy and

adverse events data as separate entities initially, they can be combined through

a synthesised narrative of efficacy balanced against harms, which can be useful

in developing clinical guidelines.

The next step is to combine quantitatively the risks and benefits in a single

model, preferably one that can combine different study designs and can identify

high-risk subgroups. By such a method it is to be hoped that any subgroups

for whom a risk of an adverse event may be disproportional to the potential
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benefit of the treatment can be identified and possibly counselled against the

treatment where appropriate.

It is evident that there is still much work to be done in this area, which has the

potential to be very informative clinically. The whole of Chapter 11 is devoted

to a harm–benefit analysis, and the methodology is discussed more fully prior

to implementation of the model within the case–study.

5.12 Summary

This chapter has described ten potential areas that may prove challenging should

they occur when performing a meta-analysis where the primary outcome is an

unintended or adverse event. The selected areas of difficulty are by no means

the only challenges that may be encountered in this field and indeed many are

not specific to adverse events data; datasets where sparse events are common

occurrences, for example, may occur in other contexts. Some of these issues

are explored in detail in later chapters, for example, issues of sparse data in

Chapter 7, the use of IPD meta-analysis and time-course issues in Chapter 8,

the use of MTCs and dose–response issues in Chapters 9 and 10, and a harm–

benefit analysis in Chapter 11. It has not been possible to cover all of the areas

discussed in this chapter, but they are included to demonstrate the range of

potential problems and areas where the methodology is undeveloped.
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6

Review of methods previously used in

meta-analyses of adverse events data

6.1 Introduction

6.1.1 Background and aim of study

Having identified certain areas of meta-analysis methodology that may be prob-

lematic when applied to adverse events datasets (as discussed in Chapter 5), it

was then of interest to investigate whether these areas had been addressed in

previous meta-analyses, and in more general terms to discover the approaches

and methods that were used in such meta-analyses.

The aim of this systematic review was to summarise the statistical methods

used by published meta-analyses where the main outcome was an unintended

(usually adverse) event; additionally other, non-statistical, information about

each study, such as the nature of the intervention or source of sponsorship, was

collated.

A review of systematic reviews of adverse drug reactions has been performed

(Cornelius et al. 2009), and it is useful to compare the review by Cornelius et

al. (2009) with the review presented in this chapter. Some of the areas encom-

passed by Cornelius et al. (2009) are included within this current review, but the

scope was narrower, both in terms of the clinical remit (only adverse drug reac-
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tions were included, as opposed to adverse events due to any clinical interven-

tion), and in terms of the temporal range of publication (only reviews published

in 2006 were selected, 43 reviews in total). The review by Cornelius et al. (2009)

also examined statistical methodology used for meta-analyses within the system-

atic reviews being investigated. Aspects included were the model used, whether

fixed or random effects were used, and and whether sparse events (with counts

of zero) were present. Non-statistical elements investigated included the search

strategies employed by the systematic reviews, use of quality assessment and

source of funding. The findings of this review are discussed in greater detail in

Section 6.5.10.

This current review focuses in more detail on the statistical methodologies of

meta-analyses of adverse events, while also recognising that non-statistical issues

are also of interest when describing these studies.

6.2 Methods

6.2.1 Reference retrieval

The dataset of meta-analyses for this survey was identified using a database

of studies collected previously (Golder et al. 2006b). The aim of this previous

study was to develop and evaluate search strategies for the retrieval of systematic

reviews, which may or may not include a meta-analysis, where the primary out-

come was an adverse event resulting from a clinical intervention. The databases

searched in the previous study were the Database of Abstracts of Reviews of

Effects (DARE) and the Cochrane Database of Systematic Reviews (CDSR).

This study highlighted the difficulties of electronic database searching for sys-

tematic reviews of adverse events data. (Specific problems included lack of

standardised terminology, poor indexing and variation in the interfaces of such

databases. Handsearching revealed that systematic reviews had been missed in

the electronic searches in both DARE and CDSR. Details of the search stratagy

have been described.)

These search strategies yielded a total of 257 publications (246 from DARE

plus 11 Cochrane reviews). References were published between 1994 and 2006.
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The initial searches were updated, yielding a further 20 systematic reviews on

adverse events (Golder et al. 2008).

This current review of statistical methods used for meta-analyses of adverse

events data builds on the foundation of work in the information retrieval aspects

of adverse events reviews (Golder et al. 2006b; 2008) by investigating the

statistical methods that have been previously used in meta-analysis of adverse

events data.

For ease of reference, the selected references for the review are referred to by

number (from 1 to 166, prefaced by S) whereas other references are referred

to by authors and year of publication. A full list of references included in the

review is provided in Appendix A. To avoid lengthy lists of references in the

text, where not provided as an adjunct to a specific result, in selected cases, a

list of references supporting that result is provided in Appendix B.

6.2.2 Reference selection

From the references described above, it was necessary to select relevant studies

according to the required criteria for this review of statistical methods. The

criteria included:

1. some form of quantitative synthesis (or test for heterogeneity with inten-

tion to perform a quantitative synthesis if appropriate) must be performed

using more than one observed estimate of effect;

2. the study group of interest must have received some form of clinical in-

tervention with intended or potential therapeutic effect; and

3. the full study report must be available in English.

A quantitative data synthesis may take the form of a pooled estimate, a confi-

dence interval, quoting a p-value only, or performing a meta-regression. Studies

entailing only qualitative evidence synthesis, although having an essential role to

play in the assessment of adverse events, are not included in this review, which is

exclusively aimed at statistical synthesis methods. Meta-analyses of unintended

or adverse reactions to non-interventional activities, for example recreational

drug use, are excluded.
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Table 6.1: Number of studies by year of publication.
Year of
publication

No. studies % studiesa Published in
journal

Cochrane
review

Other
publication
type

1994 4 2.4 4 0 0
1995 8 4.8 8 0 0
1996 9 5.4 9 0 0
1997 15 9.0 15 0 0
1998 16 9.6 16 0 0
1999 20 12.0 19 1 0
2000 11 6.6 11 0 0
2001 22 13.2 22 0 0
2002 21 12.6 17 2 2
2003 22 13.2 20 2 0
2004 13 7.8 10 3 0
2005 4 2.4 0 4 0
2006 2 1.2 0 2 0

aOut of 166 studies.

By the above criteria, studies were excluded due to being published in other

languages than English, having no quantitative analysis of more than one effect

estimate, for example systematic reviews or meta-analyses that present forest

plots of only one study, or not relating to the effects of an intervention for

clinical purposes. In total, 166 studies fulfilled all criteria and were included

in the systematic review. Of these, 14 were Cochrane reviews (S1; S16; S20;

S47; S78; S86; S91; S94; S131; S133; S136; S137; S148; S166), the others

were published in a wide variety of medical journals or were reviews published

by health agencies (S70; S103). Table 6.1 shows a breakdown of number of

studies by publication year and type.

As can be seen, the number of Cochrane reviews appears to be greater in the

more recent years.

6.2.3 Selection of relevant data for extraction

The following facets of each study were selected for further consideration:

1. general information;
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2. statistical methodology aspects;

3. dissemination bias;

4. heterogeneity;

5. individual patient data;

6. quality assessment; and

7. sparse data.

These aspects of the meta-analyses will be discussed in greater detail below.

The information about the primary studies was recorded using a relational

database created in Microsoft Access. The use of a relational database allows

easy cross-referencing between tables of the dataset, which facilitates using the

database to answer specific questions about the methodological aspects of the

included studies. This is especially helpful in a situation where there is much

interconnectedness between the different items of data recorded. Each table of

the database includes a number of fields and by linking each table to a reference

table (including the bibliographic details for each reference), through a unique

key, it is possible to perform queries across the tables, allowing great flexibility

for interrogating the database.

In addition to the fields described that are specific to each table, all tables

included a Notes field for further information, explanation of terms, clarification

of selected values for other fields and so on. Free text searching of this field

would allow the retrieval of references with key terms.

6.3 Discussion of relevant aspects of meta-analyses

6.3.1 General information

General information refers to non-statistical information about the paper, such

as its aim, the type of intervention used, the nature of the outcome and the

source of sponsorship. The full list of items of information in this category is

given below.

1. Primary aim of the study.
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2. Intervention (primary intervention chosen from drug(s), surgery, diet,

anaesthesia, diagnostic, device, immunisation, public health intervention,

multiple or other).

3. Outcome (main outcome(s) of study).

4. Number of meta-analyses performed (the total number of pooled esti-

mates across the reference). The purpose of this field is to give an idea

of the size of the study. The number of meta-analyses are presented in

bands (0, 1, 2–5, 6–10, >10) rather than as the actual number.

5. Number of estimated effect sizes derived from primary studies presented

in bands (2–5, 6–10, 11–20, >20), with maximum and minimum numbers

if more than one meta-analysis and numbers of primary estimated effect

sizes in different bands.

6. Study types (selected from randomised controlled trials (RCTs), ran-

domised trials (RTs), controlled trials (CTs), other trials (OTs), observa-

tional studies and mixed (including trials and observational studies) and

other).

7. Graphs (refers to graphs for main meta-analysis, selected from forest plot,

meta-regression plot, forest plot and meta-regression, other or none).

8. Sponsor (selected from academic, government, commercial or other).

The number of meta-analyses was determined by regarding an individual meta-

analysis as being a unique combination of outcome and the set of primary esti-

mates pooled. Repeated meta-analyses for the same outcome and set of primary

estimates, using different methods, such as fixed and random effect(s) models,

would not count as multiple meta-analyses but only as one. Referring to point 8

above, if more than one funding source was stated, a commercial sponsor would

take precedence over government or academic sponsorship; likewise government

sponsorship would take precedence over academic. This hierarchy was developed

in order to be able to identify those studies with some commercial sponsorship

(even in the presence of non-commercial sponsorship) and those studies with

government sponsorship (including those with some academic sponsorship).
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6.3.2 Statistical methodology aspects

In this section, basic meta-analysis methods are recorded, as well as the presence

or absence of further aspects of the meta-analysis that would not be expected

to occur in all meta-analyses. This could be due to lack of appropriateness, or

possibly lack of thoroughness, or a decision not to extend the potential of the

meta-analysis as far as it could be taken.

Fourteen specific aspects were included, as discussed below. For many of the

areas the responses fell into a recurring pattern of standard responses comprising

‘Yes’ or ‘No’, sometimes with ‘Not applicable’ or ‘Not stated’ as appropriate.

Measure of effect

In total, 12 distinct outcome measures were individually coded, with ‘Other’

and ‘Multiple’ as appropriate. The main outcome measure was chosen for each

reference, with ‘Multiple’ only being selected if there were two or more outcome

measures, but not obviously a principal one.

The options are listed below.

1. Comparative measures (between interventions).

(a) odds ratio (OR);

(b) relative risk (RR);

(c) risk difference (RD);

(d) mean difference;

(e) standardised mean difference (for example when using scoring sys-

tems for clinical conditions such as depression); and

(f) percent difference;

2. Non-comparative measures (not making a comparison between interven-

tions, either making a comparison within an intervention (such as ‘before’

and ‘after’) or non-comparative).

(a) correlation;

(b) percentage/probability;

(c) mean difference; and
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(d) percent difference.

3. Multiple outcomes.

(a) multiple.

4. Other.

(a) other.

In the list above, ‘comparative’ refers to the situation where two distinct in-

terventions (one of which may be a control or no intervention) are directly

compared within a resulting single figure such as a ratio or a difference. In some

cases, a ‘comparative’ outcome metric such as mean difference could be used

not to compare two separate interventions but to compare one intervention at

different time points; this use of such a metric is classed as ‘non-comparative’.

The use of ‘Multiple outcome’ was intended to encompass situations where more

than one outcome measure was used with roughly equal importance. In cases

where there was clearly one outcome measure that was the primary measure

used, this would be selected rather than using ‘Multiple’. The ‘Other’ cate-

gory was intended to cover situations where a non-standard or unique outcome

measure was used.

Meta-analysis method

To allow easier classification, the methods were subdivided into categories, based

on the statistical approaches. These included:

1. standard fixed effects (including inverse variance, Mantel–Haenszel and

Peto methods as well as any other fixed effect model using standard or

referenced methods);

2. other fixed effects (for example, using the author(s)’ own method of

weighting the individual study estimates such as by study size or some

function thereof, using logistic regression methods or using a non-referenced

method);

3. standard random effects (in practice this usually referred to the DerSimo-

nian & Laird method for incorporating a between-studies heterogeneity

value into the model);
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4. marginal analysis (pooling of aggregate results from all studies without

accounting for the fact that they came from different studies);

5. Bayesian methods; and

6. no pooled estimate (heterogeneity tests only).

Meta-analyses that used Bayesian methods may have been random or fixed

effect(s) models but were classified as Bayesian as it was considered important

to identify those studies that used any form of Bayesian methods. Studies

that did not readily fit into one of these categories were classed as ‘Other’,

‘Multiple’ (if no primary meta-analysis method out of several used) or ‘Unclear’

as appropriate.

Fixed effect/Random effects

The aim of recording this information was to identify the use of fixed and random

effect(s) models, leading on to reasons for the choice of model, if stated. The

options for this field included fixed effect, random effects and ‘More than one’ (if

both FE and RE were used). Alternatives were ‘Other’, ‘Unclear’, ‘Not stated’

and ‘Not applicable’. If there was clearly a primary choice of either fixed or

random effect(s), then this was stated, but in the case where both fixed and

random effect(s) models were used with no clear precedence, then the ‘More

than one’ option was brought into use.

Reason for choice of fixed effect/random effects

The reasons why fixed or random effects were used were also of interest, with

several main reasons being repeatedly cited. These included:

1. heterogeneity present;

2. study types;

3. increased conservatism;

4. results similar;

5. larger studies contribute more to estimate;

6. to account for between-studies variation; and

7. no heterogeneity present.

The responses ‘Other’, ‘Not stated’ and ‘Not applicable’ were used as required.
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Heterogeneity

The heterogeneity category referred to whether heterogeneity was considered in

the meta-analysis, whether quantitatively or qualitatively, including the use of

meta-regression or a subgroup analysis to investigate heterogeneity. A positive

or negative response was recorded in each case.

Individual patient data

Use of individual participant (or patient) data (IPD) was a straightforward ques-

tion of whether IPD was used in the analysis. It was always possible to classify

without ambiguity the answer to this question, as those studies that used IPD

always stated that they were doing so.

Sparseness of event data

Sparse data referred to the presence of zeroes in studies where binary outcomes

were used. If this was clearly stated, then a Yes/No response was recorded.

In some cases where sparse data may have occurred, it was not possible to

determine from the reference if there were any instances of studies with zero

events in one or both comparison groups, hence a ‘Not stated’ response was

recorded. In some cases the nature of the outcome variable (i.e. a continuous

variable rather than a binary or count variable) precluded sparse data, in which

case a response of ‘Not applicable’ was recorded.

Multiple outcomes

The issue of multiple outcomes was considered important to investigate due

to the likelihood of multiple adverse events occurring following an intervention.

Also, the presence of multiple outcomes lends itself to the difficulties incurred

in multiple testing. In all meta-analyses it was possible to determine if only one

outcome or multiple outcomes were investigated, hence a ‘Yes’ or ‘No’ response

was recorded for each study.

Subgroups

Subgroup analysis is also important where adverse events are concerned, as it is

possible that certain types of patients may be at greater risk of an adverse event.

In this context, a subgroup is defined as a function of patient characteristics

within each study of the meta-analysis, such as age or sex, rather than as a

function of the intervention, or of study-level characteristics such as year of
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publication, country of study or study design, which may be investigated using

sensitivity analysis. In all cases, it was possible to record positively or negatively

the presence of subgroup analyses.

Dose–response

Applicable to drug interventions only, dose–response referred to whether any

type of dose–response analysis had been considered, in this context referring

to doses of the intervention drug rather than to duration of exposure. For

drug interventions, a response of ‘Yes’ or ‘No’ was recorded, otherwise ‘Not

applicable’ was recorded.

Dissemination Bias

Dissemination bias encompasses issues of publication bias, reporting bias and

citation bias. In this case it referred to whether any attention had been paid to

these issues of bias, at any level (including a proactive search for unpublished

references which indicated that publication bias had been considered, even if

not discussed further). It was always possible to record a positive or negative

response.

Quality

Quality assessment received a positive response if there had been any discussion

of quality issues in the meta-analysis. A ‘Yes’ or ‘No’ response was always

recorded.

Class effects

Class effects referred to the investigation of more than one drug of the same

class, such as non-steroidal anti-inflammatories (NSAIDs) or selective serotonin

reuptake inhibitors (SSRIs). For drug interventions a ‘Yes’ or ‘No’ response was

always recorded, while ‘Not applicable’ was recorded for all other interventions.

Time course effects

In this category the aim was to select meta-analyses that investigated the same

outcome at different times following administration of the intervention to look

for changes in the adverse events profile over time (for example, performing a

meta-analysis at different times postoperatively). A ‘Yes’ or ‘No’ response was

recorded for all interventions.

Fiona Warren PhD Thesis 2010 114



Chapter 6 Review of methods previously used

Some of these topics were selected for more detailed consideration, namely

dissemination bias (Section 6.3.3), heterogeneity (Section 6.3.4), IPD (Sec-

tion 6.3.5), methods for quality assessment of primary studies (Section 6.3.6),

and issues surrounding sparseness of events data (Section 6.3.7).

6.3.3 Dissemination Bias

Dissemination bias encompasses both publication bias, and the slightly more

subtle concept of reporting bias, the deliberate exclusion of outcomes that were

non-significant or showed an undesirable outcome such as a significant increase

in an adverse event due to a certain intervention.

There were nine aspects of data recorded with regard to dissemination bias.

The first recorded whether or not publication bias was mentioned (including

searching for unpublished results, which implied that publication bias had been

considered in the study execution).

It was then recorded whether publication bias had been discussed only, without

any formal graphical assessment or statistical tests, or whether a search for

unpublished references had been made without further discussion of publication

bias. An alternative option was the performance of a sensitivity analysis by

publication status as opposed to statistical tests and graphs. The presence

of a test with a p-value was recorded, as well as the name of the test where

applicable.

The presence of graphs (funnel plot or none) was recorded, as was the adjust-

ment of results for the presence of publication bias. For all studies (irrespective

of whether publication bias was formally mentioned) the study sources were

recorded. This category referred to the source of the actual studies used in the

meta-analysis, so for example, a study that searched for unpublished studies

but did not find any would be classed as published only, as would a study that

intentionally did not search for unpublished studies. The options for data record-

ing were ‘Published only’, ‘Published studies with unpublished data’ (obtained

by contacting the authors), and ‘Mixed’ (published and unpublished studies),

with ‘Unclear’ and ‘Not stated’ as appropriate. Finally, it was recorded whether

reporting bias was mentioned.
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6.3.4 Heterogeneity

The wide diversity of types of heterogeneity makes it impossible to do justice to

this subject in its entirety. This review focuses primarily on statistical hetero-

geneity only (as opposed to clinical or methodological heterogeneity), and how

it is identified and investigated in meta-analyses of adverse events data. Ten

aspects of heterogeneity within meta-analysis are discussed.

The first of these records the type of heterogeneity assessment made for statis-

tical heterogeneity. The options are ‘Quantitative’ (selected if there is any type

of quantitative assessment of heterogeneity), ‘Qualitative’ (if heterogeneity is

discussed in a qualitative manner only), ‘Both’ (for both quantitative and qual-

itative assessment), and options of ‘Unclear’ or ‘No assessment’ as appropriate.

Also recorded was the presence of an estimate for heterogeneity, with options

of ‘Yes’, ‘No’, ‘Unclear’ or ‘Not applicable’. This was followed by recording

whether or not a test for presence of statistical heterogeneity had been per-

formed, with the same response options as for the presence of an estimate. The

names of any estimates or tests were also recorded. Estimates were recorded by

name; however, if no estimate was performed but a test was present just ‘Test’

was recorded (it was decided not to name individually the many tests for het-

erogeneity due to the large number), along with ‘Not stated’, ‘Not applicable’,

‘Other’ and ‘Unclear’ when necessary.

If a test with a significance level was present, this significance level was recorded.

If the significance level was not stated but p-values were given, then this was

recorded. Options included, ‘0.05’, ‘0.1’, ‘0.2’, ‘p-value’, and ‘Not stated’ and

‘Not applicable’.

The presence of heterogeneity as determined by estimates, tests or qualitative

assessment was recorded, as was the presence of subgroup analysis and meta-

regression analysis. The use of subgroup analysis or meta-regression was not

necessarily specifically intended to be for the purpose of investigating hetero-

geneity (if present) but both are recorded at this point for convenience. Finally,

the presence of a qualitative discussion of potential causes of detected hetero-

geneity was recorded.
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6.3.5 Individual participant data

Only three aspects of the use of IPD were included. The number of cohorts

(bearing in mind that an individual primary study may include data from multiple

cohorts of participants) with IPD was reported, along with the total number of

cohorts within the overall meta-analysis. Also, the types of data included in the

meta-analysis were recorded (IPD alone or in combination with summary data).

Finally, the method of incorporation of IPD, which could be a one-stage strat-

ified, one-stage unstratified or two-stage meta-analysis, was recorded. A one-

stage stratified meta-analysis refers to using the IPD as one overall dataset

with stratification by study as a covariate, while a one-stage unstratified meta-

analysis involves using all the IPD as one dataset but without taking into account

the fact that data observations are derived from different studies by including

study as a covariate, either in a fixed or random effect(s) model. A two-stage

meta-analysis by contrast, takes the individual patient data from the original

studies, calculates each study-level estimate, and then combines them using

methods for aggregate-data meta-analysis.

IPD methods are discussed more fully in Section 5.6.

6.3.6 Quality assessment

Seven aspects of quality analysis were decided upon for data extraction. The

number of assessors was recorded (with options of ‘One’, ‘Two’, ‘More than

two’, ‘Not stated’ and ‘Not applicable’). Resolution of disagreement (assuming

two or more assessors) was also recorded, with responses of ‘Agreement measure’

(such as inter-rater agreement measures), ‘Consensus’, ‘Additional assessor’,

‘Other’, ‘Not stated’ and ‘Not applicable’.

The use of a quality tool was recorded, and whether more than one of these

was used, as well as the names of quality tools used. Additional quality aspects

of the meta-analysis were noted, as well as whether the quality information was

used in the meta-analysis, and if so, the means of incorporating it. Options

for this field were ‘Exclusion’ (of poor quality studies), ‘Subgroup’ (dividing

the studies into subgroups and performing analysis on studies by quality level),

‘Other’, ‘Not used’ and ‘Unclear’.
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6.3.7 Sparseness of event data

The presence of double-zero studies (primary studies with no events in both

comparison groups, such as trial arms, exposed/non-exposed groups in a co-

hort study, or case and control groups in a case–control study), as opposed to

single-zero primary studies with zero events in one comparison group only, was

recorded. It was also noted whether such double-zero studies were excluded

from the meta-analysis.

The use of continuity corrections was recorded, with options of ‘Yes’, ‘No’,

‘Unclear’, ‘Assumed’ and ‘Not applicable’. (It was assumed that if double-zero

primary studies were not present then the continuity correction would be applied

to single-zero primary studies.) The primary continuity correction was noted,

with responses of ‘0.5’, ‘0.25’, (these were the only two specified continuity cor-

rections used), ‘Not stated’ and ‘Not applicable’. It was also recorded whether

there was a reason given for the choice of continuity correction; the subsequent

field records the reason (where appropriate) with options of ‘Minimise bias’, ‘Not

stated’ and ‘Not applicable’. If more than one continuity correction was applied,

it was recorded whether the results were sensitive to the choice of continuity

correction.

Finally, any other methods for coping with zero events were recorded with re-

sponses of ‘Peto’ (the Peto method for meta-analysis), ‘Risk difference’ (an

outcome measure which can cope with zero events as it is a difference rather

than a ratio), ‘Marginal analysis’, ‘Bayesian’ (using Bayesian methods that can

allow for zero events), ‘Other’, ‘No’ and ‘Unclear’.

6.4 Results

6.4.1 General information

There was a wide range of types of adverse events investigated in the set of meta-

analyses. To give an idea of the diversity of conditions, they included events

such as mortality, cancer risk, fetal malformations, risk of infection, psychosocial

outcomes, or physiological measurements such as changes in blood pressure,

weight or bone mineral density. The outcomes could also be unexpected or
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unanticipated as an adverse event, for example a reduced ability of screening

tests to provide an accurate result.

The interventions being evaluated for adverse events were similarly diverse; by

far the largest category was drug interventions with 69.9% (116/166). The next

largest category was surgical interventions with 8.4% (14/166) of references.

Anaesthesia interventions accounted for 3.6% (6/166 references); [S25; S100;

S121; S143; S148 S166] while devices were investigated in 3.0% (5/166 refer-

ences); [S32; S74; S75; S127; S164]. Diagnostic procedures were discussed in

two references (1.2% of references); [S1; S17]. Public health interventions were

also discussed in two references (1.2% of references); [S71; S79]. Immunisation

was mentioned in only one reference [S128], or 0.6% of references. Dietary

interventions were also investigated in only one reference (0.6%) [S4]. Multiple

interventions (often multiple therapies for cancer being assessed simultaneously)

were included in 5.4% (9/166) of references [S5; S18; S65; S80; S96; S105;

S106; S109; S122] while other interventions accounted for 6.0% (10/166) of

references [S16; S30; S39; S101; S114; S118; S119; S152; S153; S154]. Other

interventions included blood transfusion, bone marrow transplantation, home

birth, early postnatal discharge and preconception care.

Of the 166 references that were included for data extraction, all except one

included some overall combined estimate. The one reference that did not in-

cluded a meta-regression for dose–response with no overall pooled estimate of

effect size [S95].

The number of meta-analyses performed by each meta-analysis study was also

very variable. It was interesting to note that in many cases a large number of

meta-analyses was performed with 44.6% (74/166) of studies having more than

10 meta-analyses. By comparison, 19.3% (32/166) of studies had 6–10 meta-

analyses, with 28.9% (48/166) having 2–5 meta-analyses, 6.0% (10/166) had

only one meta-analysis while 0.60% (1/166) had none (meta-regression only);

[S95].

The number of cohorts (contributing individual datapoints) is shown in Table

6.2 (individual studies not referenced in Appendix B). This table indicates that

many studies include meta-analyses with larger and smaller numbers of cohorts,

possibly reflecting multiple outcomes or subgroup analyses. The number of

cohorts was not applicable for one study [S95], which included meta-regressions
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Table 6.2: Maximum and minimum numbers of contributing estimates
for meta-analyses in the same references.

Maximum no.
contributing
estimatesa

Minimum no.
contributing
estimates

No. meta-analyses % meta-analysesb

2–5 2–5 17 10.4
6–10 2–5 34 20.7
6–10 6–10 6 3.7
11-20 2–5 50 30.5
11–20 6–10 5 3.0
11–20 11–20 4 2.4
>20 2–5 29 17.7
>20 6–10 12 7.3
>20 11–20 3 1.8
>20 >20 4 2.4

aA single primary study may contribute more than one estimate, hence number of con-
tributing estimates may not be the same as number of primary studies.

bOut of 164 studies.

only, and not stated for one study [S35], hence 164 studies contributed to

Table 6.2.

Table 6.3 shows the primary study types encountered in this review. The most

frequent study type was some form of trial, the sole study type for 46.4%

(77/166) of meta-analyses. The 26 studies (26/166, 15.7%) that included

both trials and observational studies are worth additional scrutiny. It is of

interest to know if these meta-analyses combined results directly from trials

and observational studies or whether the data from the two study designs are

combined separately.

Table 6.3: Study types incorporated within meta-analyses.
Study types No. studies Percent studiesa

Randomised trials 70 42.2
b Other trials 7 4.2

Observational studies 56 33.7
Mixed (trials and observational studies) 26 15.7

Not stated 7 4.3

aOut of 166 studies.
bMay include randomised trials but not specifically stated as such.
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There was a wide variety of approaches taken to this situation, often reflecting

the number of each different type of study. Some meta-analyses made no

attempt to differentiate by study design [S13; S39; S129; S138]. In some cases

there was only one RCT, all other studies were observational, and in one of

these meta-analyses, the RCT was excluded, although its inclusion did not alter

the results [S15]. In another instance with only one RCT, it was excluded from

all meta-analyses, only the observational studies (of different designs) being

included [S37]. In one meta-analysis [S53] the sole RCT was excluded due to

no events being observed in one group of the study; similarly, in another meta-

analysis with only one RCT, this study was excluded due to the small number

of cases [S108].

The most common approach to mixed study types was to perform a sensitivity

analysis by analysing all studies together and then dividing the studies by some

element of study design. For example, one meta-analysis [S87] analysed all

studies together and then case–control studies and cohort studies plus RCTs

were analysed separately. Some variation on this theme was followed by several

other meta-analyses [S25; S63; S98; S101; S103; S107; S121; S130].

Another approach was to avoid combination of estimates across study designs,

by combining results from studies with similar designs. For example, one meta-

analysis [S30] analysed cohort studies separately from RCTs, another [S111]

analysed RCTs, case–control and cohort studies separately and a further meta-

analysis [S156] analysed RCTs and observational studies separately.

Some meta-analyses took a more unique approach. For example, some meta-

analyses combined all study designs for some outcomes or outcome measures,

while for others only a subset of study types was included [S134; S137; S149].

In one case [S32] studies were assessed for quality score based on study design,

and then analyses performed based on quality score, with the result that all

studies were analysed together, with RCTs and higher quality observational

studies being analysed as a separate subset of primary studies.

Another approach seen in only one study [S17] was that the authors developed

their own Bayesian methods to combine cohort (including studies where the

cohorts were randomised to their exposure, i.e. randomised trials) and case–

control data. Their methods involved ways of including cohort studies without

concurrent controls. In one study [S68] it was implied that some studies were
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experimental and others observational, and it was not possible to determine

whether different study designs had been quantitatively combined.

Graphical representations of data were used in the majority of meta-analyses.

Forest plots were the only graph used in 53.0% (88/166) of references, while

meta-regression plots were the only plot in 1.8% (3/166 references [S95; S118;

S162]). Both forest plots and meta-regression plots appeared in 1.8% (3/166)

of references [S64; S67; S142]. Other plots were used in 18.1% (30/166) of

references, usually a plot of the individual studies but lacking a pooled estimate.

Only 25.3% [42/166] of references produced no graphical representations of their

results.

With regard to sponsorship, the largest number of studies were academically

sponsored with 45.8% (76/166) of references. Commercial sponsorship ac-

counted for 16.3% (27/166), while 30.1% (50/166) were sponsored by some

form of government body. Other sponsorship sources provided funding for 7.2%

(12/166) while funding source was not stated for one study [S4].

6.4.2 Statistical methodology aspects

Table 6.4 shows the proportions of studies using different effect measures. This

is important because the choice of outcome measure may in itself influence the

meta-analysis method and results.

In the above table the outcome ‘More than one’ was only selected in the even-

tuality that there was no obvious primary outcome metric, but instead at least

two outcome metrics that appeared to receive largely equal importance in the

meta-analysis. Otherwise, the primary outcome measure was recorded even if

there were other outcome metrics used in secondary analyses such as sensitivity

analyses. The diversity of outcome metrics reflected the nature of the data

being analysed.

Only one meta-analysis had an outcome measure assessed as ‘Other’ [S8]. In

this study the outcome measure was the relative proportion of incorrect screen-

ing diagnoses for breast cancer, comparing women using HRT with those not

using HRT, for both specificity and sensitivity. Hence, this was a compara-

tive outcome. Also, one study [S156] presented a percent change that was

both comparative (percent extra change in outcome between patients receiv-
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Table 6.4: Measure of effect.
Measure of effect No. studies Percent studiesa

Comparative measures (between interventions)

Odds ratio 55 33.1
Relative Risk 51 30.7

Risk difference 8 4.8
Mean difference 6 3.6

Standardised mean difference 7 4.2
Percent difference 2 1.2

Non-comparative measures (not between interventions)

Correlation 2 1.2
Probability (or percent) 13 7.8

Mean difference 2 1.2
Percent difference 3 1.8

Multiple measures

More than one 16 9.6

Other measures
Other 1 0.6

aOut of 166.

ing the intervention and those not) and non-comparative (percent change for

patients receiving the intervention and those not presented separately). This

study was recorded as percent difference in the comparative section rather than

non-comparative, as it was considered that the comparative outcome was of

greater importance.

Many of the outcomes being reported in the primary studies were binary, thus

lending themselves to analysis by odds ratio or relative risk, as seen in Table 6.4.

Interestingly, the difference scale (for example risk difference), as opposed to a

ratio scale, was chosen only infrequently, even when its use would have been an

appropriate alternative option to a ratio scale. Only 9.6% of studies presented

more than one outcome measure with a comparable degree of importance. This

indicated that either more than one outcome measure was being analysed, re-

quiring a different outcome metric, or that the authors had presented analyses

for the same outcome on equal terms for different outcome metrics, possibly as

an intended comparison between the two.
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Table 6.5: Meta-analysis methods.
Meta-analysis method No. studies Percent studiesa

Standard fixed effectb 54 32.5
Other fixed effectb 9 5.4

Standard random effectsb 50 30.1
Marginal analysis 3 1.8
Bayesian methods 6 3.6

Multiple analysis methods 33 19.9
Other 1 0.6

Not stated 5 3.0
Meta-regression only 1 0.6

Heterogeneity test only 1 0.6
Unclear 3 1.8

aOut of 166.
bSee text for definition.

Another major area of interest was the methodology used for the meta-analysis

itself. Table 6.5 sets out the meta-analysis type along with numbers and per-

centages.

As seen from Table 6.5, fixed and random effect(s) models were used with

roughly equal frequency. The term ’standard fixed effect’ was used when the

authors chose an accepted fixed effect model, such as the Mantel–Haenszel

model, the inverse variance model or the Peto model. Also, if the authors used

any referenced fixed effect model this was recorded as ‘standard fixed effect’. In

several cases the authors had used a method of combining data that would be

considered as a ‘fixed effect’ model, but appeared to have either used a mean

or weighted mean, or a logistic regression method, or had devised their own

method for combining data, for example based on sample size of the studies.

Such methods were non-standard and were recorded as ‘other fixed effect’.

Interestingly, all the random effects models were referenced standard models

(referred to as standard random effects in Table 6.5, such as the DerSimonian

& Laird model).

A record of ‘Multiple analysis methods’ was only selected when there was more

than one method used on an equal basis. If there was an obvious primary method

with additional supplementary methods the primary method was chosen.
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The one study referred to as ‘Other’ [S48] used a novel approach developed

by the authors of ‘summary ranking’ involving assigning a score to the rank

order of toxicity in individual studies, and then combining the scores to provide

an overall rank order for toxicity. One study included a meta-regression as

the only quantitative analysis [S95], whilst another study performed a test for

heterogeneity but no additional analyses [S8]. In only three cases was there

insufficient detail regarding the methodology to allow the type of analysis to be

determined [S13; S61; S90]. In five of the reviewed studies the meta-analysis

method was not stated [S38; S45; S46; S128; S139].

A Bayesian approach was used by six meta-analyses, but in some cases the

Bayesian model used in the meta-analysis was not fully described. For example,

one meta-analysis [S89] referred to the use of a Bayesian analytic framework

but did not explain this framework further; however, details of the MCMC

implementation were provided. Both fixed and random effect(s) models were

used initially but did not produce different results, so only the random effects

model was presented. A heterogeneity test indicated non-heterogeneous results,

but it was not stated whether this test was Bayesian or non-Bayesian. Another

study [S103] also used a Bayesian data analysis framework, with both fixed and

random effect(s). Meta-analysis using a random effects model with a Bayesian

data analytic framework was the choice of one meta-analysis [S70]. In some

aspects, this study provided the most detail regarding its Bayesian analysis,

reporting that only non-informative priors were used, adequate convergence

assured and stating the number of chains and simulations, although not in

terms of model description.

A Bayesian hierarchical model using the authors’ own weighting system which

incorporated within-trial and between-trial variability was used in one meta-

analysis [S150], based on the confidence profiling method (Eddy & Hassel-

blad 1990). The same approach was also used in an empirical Bayes method

with a random effects model [S108].

Semi-Bayesian methods, incorporating a Bayesian use of a prior on the rate

of the adverse event alongside standard frequentist methods were also used

[S17]. This meta-analysis also experimented with the use of different prior

distributions for the parameters. However, none of these studies presented

graphical representations of the probability densities for the parameters.
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Not taking into account the specific method of the meta-analysis, 74/166

(44.6%) used a fixed effect model. This included one study which stated a

random effects model was used, but in the absence of heterogeneity the pre-

sented results were fixed effect [S43]. The novel method using rank summaries

was also a fixed effect study [S48]. Two studies where the methodology was

unclear [S13; S61], and one where the methodology was unstated [S45], were,

however, able to be classed as a fixed effect model.

A random effects model was used by 53/166 (31.9%) meta-analyses including

four of the Bayesian meta-analyses [S70; S89; S108; S150]. Hence, it is apparent

that fixed and random effect(s) models were used with roughly equal frequency

in meta-analyses of adverse event outcomes.

Both fixed and random effect(s) models were used in 28/166 (16.9%) studies,

including one Bayesian study [S103]. In the other cases it was not applicable

(5/166; 3.0%); [S8; S95; S118; S144; S145], or not stated (5/166; 3.0%); [S38;

S46; S90; S128; S139].

It was unclear which method was used in one reference only, which stated that

the Mantel–Haenszel method was used, and was then referred to as a random

effects method [S87].

For references where it was clearly stated whether the method was fixed or

random effects, or both, it was interesting to record the reasons why the au-

thors chose that particular approach, and 69/166 (41.6%) studies did provide

some explanation for the model choice. Reasons based upon heterogeneity (or

between-study variation) were the most commonly cited, with 46/69 (62.3%).

Increased conservatism (of a random effects model) was also frequently men-

tioned with 7/69 (10.1%) references alluding to this [S30; S35; S107; S108;

S111; S123; S124].

Other reasons cited in support for a particular meta-analysis method included

differences in primary study types, [S17; S152]; and so that larger studies would

contribute more to the meta-analysis [S77]. Arriving at similar results from both

approaches was also used to justify the chosen approach [S59; S85; S89]. Only

one study offered multiple explanations [S151], while nine studies offered an

explanation not mentioned above [S9; S12; S16; S20; S31; S55; S104; S113;

S146].
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Table 6.6: Statistical methodology aspects.
Category Considered

(no. (%))
Not con-
sidered
(no. (%))

Heterogeneity (assessment, discussion
or meta-regression)

138 (83.1) 28 (16.9)

Individual patient data 2 (1.2) 164 (98.8)
Sparse data 65 (39.2) 101 (60.8)
Multiple outcomes 104 (62.7) 62 (37.3)
Subgroups 33 (19.9) 133 (80.1)
Dissemination bias 89 (53.6) 77 (46.4)
Quality 70 (42.2) 96 (57.8)
Time-course analysis 18 (10.8) 148 (89.2)

Table 6.6 indicates the proportion of references (out of 166) that included a

consideration of the aspect of data analysis mentioned. Note that it does not

provide any information about whether a particular aspect of data analysis, for

example heterogeneity, was in fact present in the analysis, merely that it was

considered in some way.

The meta-analyses that discuss dose–response issues are not included in the

table, due to the fact that only certain interventions lend themselves to a form

of dose–response analysis. Drug interventions and anaesthetics are amenable

to dose–response analysis, but also diets may be applied at different ‘doses’,

and depending on the nature of the intervention, public health programmes

may also be suitable for dose–response analysis. Of the 27 studies included, 26

were of drug interventions, with one public health intervention [S79]. Of all the

studies involving a drug intervention, 26/116 (22.4%) included some form of

dose–response analysis.

Similarly, the meta-analyses that referred to class effects potentially included

studies with drug or anaesthesia interventions. Of the 75 studies that discussed

class effects, all but three had a drug intervention. One study investigated

anaesthetics [S100] while two had multiple interventions [S105; S106]. Of the

116 studies where the intervention was a drug, 72 (62.1%) included some in-

vestigation based on the class of drug.

Exploring any possible changes in the methodological aspects included in meta-

analyses of adverse events data over time, choosing heterogeneity, quality and
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Table 6.7: Percentages of meta-analyses by year including heterogeneity,
quality and dissemination bias.

Year Total no.
studies

Heterogeneity
(no. (%))

Quality (no.
(%))

Dissemination
bias (no. (%))

1994 4 2 (50) 1 (25) 1 (25)

1995 8 7 (88) 1 (13) 4 (50)

1996 9 8 (89) 1 (11) 6 (67)

1997 15 12 (80) 8 (53) 5 (33)

1998 16 14 (88) 3 (19) 10 (63)

1999 20 18 (90) 8 (40) 12 (60)

2000 11 9 (82) 4 (36) 4 (36)

2001 22 19 (86) 8 (36) 15 (68)

2002 21 16 (76) 13 (62) 8 (38)

2003 22 16 (73) 10 (45) 15 (68)

2004 13 11 (85) 7 (54) 5 (38)

2005 4 4 (100) 4 (100) 3 (75)

2006 2 2 (100) 2 (100) 1 (50)

dissemination bias, Table 6.7 sets out the number of studies incorporating each

aspect, published between 1994 and 2006.

Some of the aspects of data analysis mentioned above, including heterogeneity,

publication bias, individual patient data, sparse data and quality are discussed

in greater detail below. Those not discussed further, such as multiple outcomes,

subgroup analysis, class effects, and time course analysis are not disregarded due

to lack of interest, and indeed, some are covered in case studies in later chapters.

However, data extraction for these subjects was often very complex and not

easily reduced to simple categories, hence these aspects were not pursued further

in this essentially quantitative review.

6.4.3 Dissemination Bias

Publication bias was mentioned in 89/166 (53.6%) of references. Such a ‘men-

tion’ may not have been specifically described as a consideration of publication

bias; for example, some studies performed searches for unpublished studies, in-

dicating that publication bias was within the awareness of the authors when

performing a meta-analysis even if it was not taken any further than searching

for such studies. Similarly, many studies restricted their consideration of publi-
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cation bias to a brief mention within the discussion section of the paper, usually

with effect that the authors did not consider publication bias to be a problem in

their study design, often accompanied by some explanation of why this should

be so.

The next stage in recording data about how publication bias was dealt with in

meta-analyses of adverse events was to investigate how many studies performed

some type of quantitative analysis and how many offered a discussion only. The

latter option was preferred by 44/166 (26.5%) studies (44/89; 49.4%). A quan-

titative analysis was performed by 31/166 (18.7%) studies (31/89; 34.8%). A

sensitivity analysis by publication status was the preferred method of investigat-

ing publication bias for one study [S123].

Out of 31 references with some form of quantitative analysis 12 (38.7%) used

a test with a p-value. The other 19/31 (61.3%) used an alternative means not

resulting in a p-value. The most commonly used tests were Egger’s test [S30;

S41; S45; S111; S121; S129] and Begg’s test [S30; S41; S66; S111; S129].

Kendall’s tau test was mentioned by three meta-analyses [S51; S62; S83].

One study investigated any possible association between number of incidences

of the adverse event and the magnitude of association between the adverse event

and the intervention, quoting a p-value for a significant difference between the

two study types, based on number of cases [S22]. Another non-standard test

for publication bias involved investigation of correlation between study size and

RR [S53].

In one case, the Trim and Fill method was used to adjust for publication bias

[S103]. This was the only study that adjusted for publication bias; one study

adjusted for selection (but not publication) bias [S31], whereby outcomes with

significant or desired results are reported while other outcomes are not.

Graphical methods (funnel plots) were used to investigate for publication bias

in 29/166 references (17.5%), or in 28/89 (31.5%) of studies that discussed

dissemination bias (a funnel plot was also used in study S31, which discussed

selection bias).

The vast majority of meta-analyses used only published studies (129/166 or

77.7%). Published studies with unpublished data (obtained through contact

with the authors), were used in 20/166 (12.0%) of meta-analyses. Both pub-
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lished and unpublished studies were used in 14/166 (8.4%). In the other cases

the study source(s) was either unclear or not stated. In six cases where pub-

lished studies only were included, it was made clear that unpublished data had

been sought [S20; S32; S54; S73; S76; S109].

Reporting bias was rarely mentioned with only 3/166 (1.8%) discussing this

issue [S157; S159; S161].

6.4.4 Heterogeneity

Heterogeneity was considered in some manner by 138 of 166 references (83.1%).

A quantitative assessment was performed in 124/166 of these meta-analyses

(74.7%). Qualitative assessment of heterogeneity (for example inspection of

forest plots or noting heterogeneous results) was made in 10/166 (6.0%) or

10/128 (7.8%) references. Six studies included both quantitative and qual-

itative aspects of heterogeneity (6/128; 4.7%); [S14; S19; S44; S45; S86;

S129], while four studies included only qualitative assessment [S72; S74; S110;

S156]. Meta-regression was included in nine studies that had no other assess-

ment of heterogeneity, whilst one study discussed issues regarding combination

of primary studies with different criteria, but did not do a formal qualitative or

quantitative analysis of heterogeneity [S61].

Considering quantitative analysis methods, 121/166 (72.9%) studies included

some form of statistical test for heterogeneity, although with variation in the

chosen critical p-value for significance. The chosen significance value was 0.05

for 28 studies (23.1% of the 121 studies that performed a test), while 23/121

chose a more liberal p-value of 0.1. (19.0%). Only one study [S119] chose 0.2

as the cut-off p-value. In many cases the actual p-value was quoted without

reference to a particular threshold (51/121 studies (42.1%) did this). In the

other cases no p-value or significance level was stated.

An estimate for heterogeneity was performed by 16 studies of the 121 with

a quantitative analysis (13.2%). The most frequently-used estimate measure

was the I2 statistic (Higgins & Thompson 2002; Higgins et al. 2003). This

estimate measure was used in 13 meta-analyses. Alternative estimate mea-

sures included the between-studies variance [S26; S155]. One study [S44] used

another estimate measure, the R(I) statistic (Takkouche et al. 1999). Only
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one meta-analysis used multiple estimate measures [S133]; the estimates used

included I2 and the Q parameter (Berlin et al. 1989).

Heterogeneity was found to be present in 82 of the 128 (64.1%) references that

performed any type of analysis for its presence.

Two ways to investigate the causes of heterogeneity are subgroup analysis and

meta-regression. Subgroup analysis was performed in 27 of the 128 (21.1%) ref-

erences that included an analysis of heterogeneity, and in two references that did

not formally assess heterogeneity [S107; S157]. The actual subgroups used were

a mixture of generic groups that would be applicable in many situations such

as age and sex, and those that were more specific to a particular intervention,

such as a pre-existing comorbidity. None of the reviewed studies investigated

genetic subgroups. In many cases where subgroups were investigated, hetero-

geneity had been found to be present, although it was not always the case that

any subgroup analysis was explicitly to investigate heterogeneity; while in some

cases there was no evident heterogeneity.

Meta-regression was used in 27 studies in total (27/166; 16.3%). In nine of these

studies no formal assessment of heterogeneity had been performed [S2; S18;

S88; S95; S107; S123; S144; S145; S157]. The covariates used in the meta-

regression analyses were often very specific to the nature of the intervention

or outcome being considered. For example, in one study they included type

of anticoagulant, type of prosthetic heart valve and position of valve [S18].

In other cases meta-regressions were used to investigate the influence of more

general demographic characteristics such as age or sex, or study characteristics

such as quality score or year of publication.

A qualitative investigation of sources of heterogeneity was carried out in 17

studies of the 138 that considered heterogeneity in some way (12.3%). This

includes one meta-analysis that discussed potential sources of heterogeneity

without making a formal assessment of its presence in the primary studies [S61].

The authors discussed the appropriateness of pooling studies due to different

entry criteria for the studies, but did not make any assessment of heterogeneity

prior to performing the meta-analysis.
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6.4.5 Individual patient data

Very little use was made of IPD in the reviewed meta-analyses. Only two studies

of the overall total (1.2%) included IPD [S7; S27]. Of these two, all primary

studies included had IPD available (so there was no requirement to combine

IPD and summary data). Both meta-analyses used a one-stage method for the

meta-analysis. In one case the analysis was stratified by trial [S27] and other

factors including centre within study for multicentre studies and age divisions.

In the other case it was not clearly stated whether the analysis was stratified or

not [S7].

6.4.6 Quality assessment

In contrast to IPD analysis, quality assessment of primary papers was frequently

performed by the meta-analysis authors. Considering number of assessors, out

of 70 references mentioning quality, one study (1.4%) had only one assessor

[S114], 37/70 (52.9%) had two assessors, and 6/70 (8.6%) had more than two

[S16; S19; S64; S94; S100; S104]. In the case of the other studies it was either

not stated or not applicable (where a study discussed quality issues but did not

have a formal scoring system).

Where required, resolution of disagreement among assessors was resolved by

consensus in 26/70 cases (37.1%). Recourse to an additional assessor was the

chosen method in 3/70 cases (4.3%); [S24; S115; S131]. An agreement measure

(for inter-rater difference) was used in 4/70 studies (5.7%); [S90; S110; S117;

S135]. One study [S58] resolved disagreement between two initial assessors by

consensus or by recourse to a third author.

A quality tool was used in 56/70 (80.0%) studies. More than one quality tool

was used in only eight studies [S25; S101; S111; S118; S134; S137; S144;

S145]. For trials the most commonly used established quality tools included the

Jadad score (Jadad et al. 1996), among others (Chalmers et al. 1981; Schulz

et al. 1995). Alternative methods were used for observational studies (Stroup

et al. 2000), including the Newcastle-Ottawa Scale.1

1Ottawa Health Research Institute (Undated). The Newcastle-Ottawa Scale (NOS) for
assessing the quality of nonrandomised studies in meta-analyses. Available online [February
2010] at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
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Other methods included those devised by the Cochrane collaboration and the

US Preventive Services Task Force [S103].

Quality scoring systems appear to have been used appropriately. For example, of

18 meta-analyses that used the Jadad score as a quality assessment tool, it was

used in 13 meta-analyses that included only randomised trials [S35; S47; S64;

S100; S104; S112; S123; S124; S135; S144; S145; S146; S159]. The Jadad

score was also used to assess randomised studies in meta-analyses that included

randomised and non-randomised studies, whilst alternative quality scoring sys-

tems were used for the non-randomised studies [S25; S101; S111; S134; S137].

The Newcastle-Ottawa score was only used in one meta-analysis [S67], which

included only observational studies.

There were several methods by which the quality assessment could be used

in the meta-analysis. In 13 cases (13/70; 18.6%) poorer quality studies were

excluded, while in 16 studies (16/70; 22.9%) some form of subgroup analysis

was performed. Some other way of incorporating quality information (such as

investigation for a relationship between quality score and effect size or year of

publication) was found in 12 studies (17.1%), while in 28 (28/70; 40.0%) cases

no further use was made of quality information, and in one case the inclusion

of quality data was unclear [S97].

6.4.7 Sparse data

The issue of sparse data, whereby statistical methods were required to allow

the inclusion of primary studies where the outcome was a count of zero, or

a percent of zero, occurred in 65 of the 166 meta-analyses (39.2%). Such

statistical methods may be required to allow incorporation of such a primary

study into an overall pooled estimate or for calculation of confidence intervals.

It was initially anticipated that this issue would be restricted to two-arm studies

with a relative outcome; however, some meta-analyses with sparse data did

not fall within this category. These are discussed first, followed by the main

discussion of this area as it relates to two-arm studies with relative outcomes.

In only one study [S25], the outcome was a percent (not a percent change),

in this case a non-comparative percent referring to risk of an adverse event on

different treatments in single-arm studies. In some cases there was a risk of

zero (with no events in that treatment arm). In this meta-analysis, a specific
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referenced method (described by Ho et al. 2002, as cited in S25) was used to

calculate the upper limit of the 95% CI for such studies. Continuity corrections

were not used to facilitate the calculation of the CIs, which would have been an

alternative approach.

In two studies (both of two-arm trials), [S134, S137], there were no events in

either arm (across all trials) for one type of adverse event where the outcome

would have been incidence rate (thus lending itself to a relative risk or odds ratio

outcome). Hence, a marginal analysis was performed with the use of a Poisson

method to calculate the upper limit of the 95% CIs for the incidence rate. In

these two references an alternative but related outcome method was chosen as

an alternative analysis, with an outcome of comparative (between treatments)

mean difference. This alternative analysis was the predominant analysis for each

study, thus replacing the intended primary analysis due to lack of events.

In the other 62 studies where sparse data was an issue, the outcome measure

was always a comparative measure, such as a relative risk, odds ratio or risk

difference. For the other studies, sparse data issues were not anticipated due

to not having a binary relative outcome or else primary studies with zero events

were either clearly not present in the dataset, or it was unclear whether they

were present or not.

Of the 64 studies that considered the issue of sparse data in two-arm studies, 41

(64.1%) had datasets involving double-zero (zero events in both arms) primary

studies. In the remaining 23 meta-analyses, only single-zero (zero events in only

one arm of a two-arm study) primary studies were present, or it was either unclear

or not directly stated whether any double-zero studies were included within the

dataset. It is helpful to discuss all the meta-analyses with zero events in at least

one arm of one primary study at first, and then focus more clearly on those

studies where there were primary studies with zero events in both arms.

Of these 64 studies, 30 (46.9%) presented their outcome as an odds ratio, 24

(37.5%) as a relative risk, and two as a risk difference [S38; S61]. As mentioned

above, two studies [S134; S137] presented their outcome (where sparse data

were incorporated) as an incidence rate.

In six studies there was more than one outcome with roughly equal importance

in the meta-analyses [S47; S62; S75; S133; S136; S160]. In one meta-analysis

[S62] the outcomes were a relative risk and absolute risk difference; in this case
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it was unclear whether a continuity correction was also applied to the absolute

risk difference as well as the relative risk.

In another meta-analysis [S75] the odds ratio was used for unadjusted analyses,

with the relative risk for adjusted analyses (this outcome appeared to be the

principle outcome within the meta-analytic study). The unadjusted analyses

used the data from the supplied 2×2 tables for each study and individual out-

come. Exact methods and conditional likelihood were used for the unadjusted

methods, which could have included the cohorts with zero events in any cell.

Adjusted studies used the relative risk or odds ratio directly from the primary

study, as well as the standard error reported by the study or derived from the

reported confidence interval. This approach necessitated the use of a method

based on the inverse variance method (see Section 3.3.2) which would have

required a continuity correction if primary cohorts with a single zero, in one or

both arms, were to have been included, although it appears that such cohorts

were not (outcomes that had zero events in one arm did not have a reported

odds ratio or relative risk). A test for homogeneity based on the χ2-test was used

to determine whether the adjusted metrics were estimating the same underlying

association between exposure and outcome. If this criterion was fulfilled, the

pooled estimate was produced. Adjustment was performed for various factors

including age, ethnicity, and several others; adjustment factors varied across

studies.

In one study [S160] both a relative risk and risk difference were used as out-

comes, the relative risk analysis including double-zero studies and the risk dif-

ference analysis including both single- and double-zero studies. The odds ratio

and relative risk were also used in another study [S47]. For the relative risk anal-

yses, only single-zero studies appeared, while for the odds ratio analyses there

were both single- and double-zero studies, although the double-zero studies were

excluded for the meta-analyses.

Finally, for two studies [S133; S136] there were two prominent outcome mea-

sures, although one of these was a continuous measurement, and therefore not

usually susceptible to issues of sparse data. The other outcome measure was a

risk difference, used for data where the outcome was measured as counts.

Continuity corrections were used as a means to address zero counts (in one or

both arms of a study) that resulted in the impossibility of making pooled esti-
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mates for studies where the outcome metric was a ratio. Continuity corrections

are also required to calculate the variance (and hence confidence intervals) for

a risk difference. However, it was very difficult to determine an accurate picture

of how continuity corrections were used.

Some studies clearly stated that continuity corrections had been used (15/64,

23.4%). In 17/64 (26.6%) studies continuity corrections were not used. In 32

cases it was not clearly stated whether continuity corrections had been used or

not, although in some of the cases it would be reasonable to assume that a

continuity correction had been used in the absence of any other obvious means

of incorporating primary studies with zero events in at least one study arm.

The most popular primary continuity correction was 0.5, used in 14 of the 15

references that stated their continuity correction. Only one meta-analysis used

an alternative continuity correction with 0.25 being the chosen value [S59].

Only one study [S106] performed a sensitivity analysis across different continuity

corrections, using 0.5, 0.1 and 0.01, and reporting that the continuity correction

did not alter the results. Only three studies provided a reason for their choice of

continuity correction [S11; S35; S62], and the only reason cited was to minimise

bias.

Of the 15 meta-analyses that stated that a continuity correction was used, the

primary outcome measure was an odds ratio in 10 cases [S11; S15; S35; S39;

S40; S52; S100; S104; S106; S114]. In four cases a relative risk was used as

the primary outcome measure [S30; S59; S74; S112]. Only one study used two

outcome measures with roughly equal prominence [S62]; these outcomes were

an absolute risk difference and relative risk, although it was unclear whether the

continuity correction also applied to the absolute risk difference.

For many of the studies with single- or double-zero studies it was impossible to

accurately determine how they had been incorporated into the meta-analysis, in

terms of whether or not a continuity correction was applied, or if other methods

had been employed.

Considering all the studies with some form of sparse data (including both single-

and double-zero primary studies), a variety of other methods (other than conti-

nuity corrections) were used to analyse sparse data. The most frequently used

was the Peto method, employed by 12 studies. The use of a difference metric

rather than a ratio as the outcome measure was used to circumvent problems
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with zeroes in seven studies [S38; S61; S62; S84; S133; S136; S160], although

calculation of confidence intervals with such methods would be problematic.

Seven studies resorted to the use of marginal analysis [S46; S81; S134; S137;

S144; S145; S160]. Bayesian methods were used to tackle sparsity of events in

only two studies [S17; S103].

Double-zero studies were included in 17 of the 41 meta-analyses where double-

zero primary studies were clearly present within the dataset. In two cases [S40;

S52] they were included in a sensitivity analysis. Double-zero primary studies

were clearly excluded in 18 meta-analyses. Such an exclusion was either a

deliberate decision by the authors, shown by excluding the primary study in

forest plots of the meta-analysis, or was done by default, the primary study

being shown on a forest plot, but being given a weighting of zero. The four

remaining studies [S46; S84; S99; S129] were unclear as to whether or not these

double-zero primary studies were included.

Of the 19 meta-analyses where double-zero primary studies were included in

some way, seven made explicit use of continuity corrections [S11; S40; S52;

S62; S74; S104; S106]. The primary outcome most commonly used in these

meta-analyses was the odds ratio [S11; S40; S52; S104; S106]; alternative

outcome measures included relative risk in two studies [S62; S74], and possibly

the absolute risk difference as well in one meta-analysis [S62].

In some of the other meta-analyses it was not clearly stated whether continuity

corrections had been used. To discuss the various methods used by some of

these meta-analyses, in two cases a risk difference was used for count data

[S133; S136]. A continuity correction was not mentioned, as it would not be

required for the point estimate; however, some form of continuity correction

would have been required for the calculation of the variance and hence the

confidence intervals for those meta-analyses with zero events across all studies,

but such a continuity correction was not discussed . In one meta-analysis, which

used both relative risk and risk difference outcomes, it appeared that a marginal

analysis was used for both outcomes, although this was unclear [S61].

The two studies described above, where there were no events in the entire

dataset, also used a marginal analysis [S134; S137]. For one meta-analysis the

methodology was very poorly described, with double-zero studies apparently

used in meta-analyses where the outcome was a relative risk, but without any
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detail as to how they were incorporated [S160]. A risk difference was also used

for some individual meta-analyses reported by this reference.

In two meta-analyses, the majority of primary studies had zero events. These

were combined using marginal analyses, with an odds ratio outcome, and the

results compared with those of the Peto method, which excluded trials with zero

events [S144; S145].

In other meta-analyses either an odds ratio or relative risk was used as the pri-

mary outcome, but no specific mention of how double-zero studies were included

[S34; S40; S41; S115; S119]. For example, in one of the meta-analyses where

double-zero primary studies were included as part of a sensitivity analysis, the

Peto method of meta-analysis was employed with OR as the primary outcome

measure, implying the necessity of using a continuity correction for the inclusion

of studies with zero events in both arms, but there was no mention of using

continuity corrections in conjunction with the Peto method [S40].

6.5 Discussion and conclusions

6.5.1 General overview

It is gratifying to see that a wide range of clinical interventions have been inves-

tigated using systematic methods and meta-analysis, not just for their efficacy

but also for potential adverse effects and problems they may cause. Indeed, the

many interventions that have been recognised to be potentially harmful, and

thus investigated with deleterious effects in mind, justifies the need for more

attention to be paid to the statistical techniques required to approach such

outcomes.

This study aims to document previous practice and further understanding of

statistical methods used in adverse events meta-analyses, by bringing together,

using a systematic approach, information regarding the nature of the methods

used and about the types of interventions and associated adverse events.

One striking issue that was immediately noticeable on reviewing meta-analyses

of adverse events data was that in many cases, the description of statistical

methods was incomplete or unclear. For example, many studies did not consider

elements important to any meta-analysis such as how to investigate and account
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for heterogeneity or possible publication bias. Methods to consider how to

include studies where events are sparse (with zero events in at least one study

group) also required more consideration in order to make best use of available

data.

The ideal situation would be to achieve an outcome that would be as unbiased as

possible, and with as much precision as possible, whilst not excluding potentially

useful information. Increased detail and clarity in the description of statistical

methods would make it easier to evaluate the conclusions of meta-analyses of

adverse events data.

An increase in the number of meta-analyses using non-trial primary studies

where available would be beneficial, as it would allow a more complete picture

of the situation of an intervention with regard to adverse events to be devel-

oped. For example, many RCTs have a limited length of follow-up, and this

prevents the collection of data on long-term adverse events, such as certain

types of malignancy. Indeed, such adverse events may not be associated with

the intervention at the beginning of the RCT. This would also be an area for

research into the most appropriate methods for combining different types of

data, with a particular emphasis on minimising bias in such analyses.

6.5.2 Meta-analysis method with no direct comparison group

In this review, only one meta-analysis [S17] developed methods for addressing

primary studies with no direct comparison group, which is also an area for further

consideration.

6.5.3 Graphical methods

Graphical methods for data representation were also not used as frequently as

they might be, or in the most appropriate manner. Forest plots for all major

analyses would be extremely helpful, as would tabulation of all major results,

making clear the number of primary studies, their number of participants, out-

comes and results of any heterogeneity investigations. Such transparency of

reporting would allow reproducibility of results, and facilitate updating of meta-

analyses.
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6.5.4 General meta-analysis methods and heterogeneity

As expected, a large proportion of studies made use of standard meta-analysis

methods, both fixed and random effects. In many cases however, there was

no clear reasoning, whether statistical or clinical, behind the choice of meta-

analysis method and whether to use random or fixed effects. Heterogeneity was

usually assessed quantitatively when it was considered, most commonly with a

test for heterogeneity. However, the thresholds of significance for such p-values

for such tests were often inappropriately low, possibly resulting in the erroneous

conclusion that heterogeneity was not present.

The use of an estimate for heterogeneity, such as the I2 statistic, occurred in

a few studies, notably Cochrane reviews, and the use of estimates rather than

a test with an arbitrary cut-off point and low power may be a valuable method

that will be used more in future work. It is also important to uncover the causes

of heterogeneity, and in many cases there was room for additional investigations,

such as subgroup analysis, meta-regression or sensitivity analysis.

6.5.5 Bayesian meta-analysis

Bayesian methods were used in a surprisingly small number of meta-analyses,

when considering the fact that Bayesian methods are now easily implemented.

This is clearly an area where further research would be both timely and beneficial,

especially in the light of many of the difficulties surrounding meta-analysis of

adverse events data, which Bayesian methods may be able to address, such as

inclusion of primary studies with sparse events (Carlin 1992; Ashby et al. 1993;

Ashby & Hutton 1996; Sutton & Abrams 2001).

6.5.6 Publication bias

The way that many studies approached the issue of publication bias often left

much to be desired; for example, many did not perform any quantitative analysis

for the existence of publication bias, or attempt to adjust for it as a form of

sensitivity analysis. It was also disappointing that so few studies considered the

issue of reporting bias. Search strategies that also looked for ‘grey literature’
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and unpublished studies would also help to address the problem of publication

bias.

6.5.7 Subgroup analysis and meta-regression

It was interesting to note that when subgroup analysis and meta-regression were

employed, the nature of the subgroup or the covariate for the meta-regression

was often highly specific to the nature of the intervention. This indicates that

in order to produce a clear picture of the adverse events profile, it is highly

important to consider specific factors that may influence adverse events. A

straightforward aggregation of all data may be inadequate to determine addi-

tional risk factors or certain vulnerable groups. Unfortunately, one of the major

limitations of meta-analysis of aggregate data is the lack of adequate data for

subgroup analysis and meta-regression. It is to be hoped that in future there will

be more IPD available to facilitate investigation of the causes of heterogeneity.

The use of IPD also militates against the danger of ecological bias that can

occur when using aggregate data.

A recent review (Koopman et al. 2007), including 171 IPD meta-analyses and

102 meta-analyses using aggregate data that addressed similar research ques-

tions, found that subgroup analyses were performed in 80% of IPD meta-

analyses compared with 45% of aggregate data meta-analyses, correlating with

a risk difference of 34% (95% CI 23%, 46%). Interaction tests were also seen

more frequently in the IPD meta-analyses compared with aggregate data meta-

analyses. However, even the IPD meta-analyses used interaction tests in only

28% of studies.

Possibly reflecting the fact that many meta-analyses are based on primary studies

that were performed several years earlier, and would therefore not have included

genetic data, there was no meta-analysis found that included genetic subgroup

analysis. As the sphere of pharmacogenetics develops, such data may become

more readily available, hence allowing possible correlation of adverse events with

specific genetic factors.
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6.5.8 Quality of primary studies

Although there appears to be a widespread understanding that the quality of

primary studies is a major issue when conducting a meta-analysis, with adverse

events data no less than with any other type of outcome, there appeared to be a

limited understanding of how data on quality can be incorporated quantitatively

within a meta-analysis and indeed whether such use is appropriate. The correct

use of scoring systems was often not followed up by any inclusion in the meta-

analysis, with the quality issue being considered in a narrative way by discussing

the overall quality of the dataset.

There is evidence to indicate that quality data should not be included quanti-

tatively in a meta-analysis. For example, a study of Cochrane meta-analyses

compared the results of meta-analyses where the studies were divided by means

of a quality score into ‘high’ and ‘low’ quality (Herbison et al. 2006). None of

the 45 quality scoring systems succeeded in selecting high quality trials in such

a way that a meta-analysis of smaller studies agreed with the results of a large

trial about 70% of the time. The outcomes had to be binary, and the majority

of meta-analyses included in the review were largely concerned with efficacy,

although some meta-analyses did include adverse events within a range of out-

comes. The authors concluded that quality scores do not provide a useful means

of introducing quality of primary study into a meta-analysis, and that other

quantitative methods are now required. Such methods for studies of adverse

events outcomes would also be very useful when conducting meta-analyses.

It is another area for further research to investigate how quality data may be

used, beyond a straightforward sensitivity analysis, whereby poorer quality stud-

ies are excluded. Also, quality assessment scores specifically for use with primary

studies (both trials and observational) for adverse events data would be very

beneficial.

With regard to quality scoring for adverse events studies, it would be important

to assess issues such as:

1. whether the adverse events to be recorded were determined a priori ;

2. whether there was a protocol for including any adverse events that arose

unexpectedly;
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3. whether participants who were lost to follow-up due to adverse events

were recorded as such;

4. whether adverse events were reported for specific subgroups, e.g. by age

or sex; and

5. method of case definition for adverse events.

These aspects of a primary study could be used in conjunction with other quality

issues to form a scoring system or facilitate qualitative judgement.

6.5.9 Dealing with sparse data

Possibly the most disappointing aspect of the review was that methods for deal-

ing with studies with sparse events were often poorly described. Many studies

with double-zero cohorts were excluded from the meta-analysis, which is an

appropriate statistical approach when using a ratio outcome measure. In other

cases, studies with zero events in total were apparently ‘forced’ into the analysis

by the use of continuity corrections. This inappropriate use of continuity cor-

rections calls into question the validity of results, especially where the outcome

variable occurs infrequently. From a statistical perspective, creating spurious

events where none previously existed, is a dubious practice when performed in

studies where zero events occurred, and from a clinical perspective, if an adverse

event is extremely rare in a control arm, the use of continuity corrections for a

control arm with zero events then becomes problematic.

Continuity corrections are intended to be appropriately used in situations where

there is one arm of a study with zero events, compared to the other arm with one

or more events. Although a continuity correction can be applied to both arms

of a study where there are zero events in both arms, to enforce the generation

of an outcome estimate (such as an odds ratio) and the associated confidence

interval, there are philosophical reasons why this use of continuity corrections

is inappropriate.

In the adverse events meta-analyses being reviewed here, it appeared that some

primary studies with double-zero events had been inappropriately included by

means of continuity corrections. Some meta-analyses had apparently (either

stating that this method was used, or leaving it as an assumed method in the

absence of any other obvious way of including double-zero primary studies)
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used a continuity correction on cells of the 2×2 table to enforce the inclusion

into the meta-analysis of one or more double-zero studies. However, in many

meta-analyses reviewed, the exact methods used to address the issues of sparse

data were very difficult to decipher from the methods described and it is clearly

invalid to make assumptions regarding the statistical methods that may have

been used.

Further developments in how to incorporate data from trials with zero events

across the whole study would be highly desirable in the field of adverse events,

where many outcomes are inevitably uncommon but can have serious clinical

consequences when they do occur. Such methods would enable all information

regarding a rare adverse event to be used, without the exclusion of studies with

zero events, which may provide additional valuable information regarding the

overall picture of adverse events in a particular clinical situation.

In several meta-analyses, the description of the statistical methods made it

difficult to determine whether continuity corrections had been used, or whether

alternative methods that could allow an analysis of studies with zero events in

only one arm, without a continuity correction, such as the Peto method, had

been used. If, however, a random effects model was used, it would be reasonable

to assume that a continuity correction must have been employed as there are

no random effects models that can cope with single-zero studies without the

use of a continuity correction.

Development of methods for the accurate inclusion of data from studies where

no events occur is a priority area for meta-analysis of adverse events data,

where sparsity of events is a commonplace occurrence. These methods could

involve continuity corrections, use of outcome metrics that are not ratio mea-

sures (and can therefore provide estimates of outcomes when there are zero

events without recourse to adding continuity corrections, although such meth-

ods may be required to calculate standard errors and confidence intervals), or

Bayesian methods.

An evaluation of statistical methods for meta-analysis of rare events found

propensities for bias with some of the more standard methods, such as the

inverse variance and DerSimonian & Laird methods (Bradburn et al. 2007).

The Peto method was the least biased at the lower event rates that would

be anticipated for adverse events. However, when considering trials with un-
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balanced treatment arms, other methods such as logistic regression, Mantel–

Haenszel without correction for cells with zero events, and exact methods, in

fact performed better than the Peto method for lower event rates, indicating the

necessity of considering the trial numbers when selecting an analysis method.

These results are discussed further in Chapter 5.

The use of different forms of continuity correction for studies with one arm hav-

ing zero events has also been investigated (Sweeting et al. 2004), concluding

that studies with zero events in total should be excluded from analyses as they

do not add any information to an analysis with a ratio outcome. The use of

Bayesian methods would also be valuable for use with this sort of data (Spiegel-

halter et al. 2004). Although Bayesian methods have been used in some studies,

there is wide scope to extend Bayesian methods where appropriate, for example

by using differing prior distributions for the parameters of interest.

6.5.10 Other reviews of previous meta-analyses

A systematic review of reviews and meta-analyses of primary studies of ad-

verse effects of a drug intervention has been conducted elsewhere (Cornelius et

al. 2009, introduced in Section 6.1.1). A total of 43 reviews, published in 2006,

were retrieved. Of these, 15% assessed quality of primary studies, compared

to 42.2% of meta-analyses in this review. Of the 43 reviews included, only 24

performed a meta-analysis. As seen in this review, there was some poor report-

ing of the methods used for pooling data, but 83% did report the method used

for pooling data and exploring heterogeneity. With regard to funding source,

23% (of the 43 revews) had pharmaceutical funding, compared to 16.3% of

meta-analyses in the current review that had commercial funding.

Of 22 meta-analyses reviewed by Cornelius et al. (those with case–control

studies were excluded), 11 (50%) included studies with zero events in one study

arm. Of these 11 meta-analyses, seven did not report what continuity correction

was used [it is unclear if Cornelius et al. assumed that a continuity correction was

in fact being used, as other methods could be used in such a circumstance, such

as the Peto method, as discussed in Section 3.3.5 and Section 5.2.1, or if it was

stated in the review that a continuity correction was used, but the precise value

was not provided.]. Two studies used a continuity correction of 0.5, and a further

one used a continuity correction of 0.25. One meta-analysis used a continuity
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correction proportional to the inverse of the size of the opposite study [arm]; it

is assumed that this refers to the continuity correction developed by Sweeting

et al. (2004). Of eight meta-analyses including primary studies with zero events

across both arms, five were excluded from the analysis, one was included with

a continuity correction of 0.25 assumed, and for two meta-analyses it was not

reported whether the studies with zero events were included. By comparison,

sparse data was considered by 39.2% of all studies in the current review (sparse

data issues are discussed further in Sections 6.4.7 and 6.5.9). A graphic means

of representing the results was used by 75% of the meta-analyses, similar to the

proportion of meta-analyses that used some form of graphical representation in

the current review. The review by Cornelius et al. (2009) is of interest as it

highlights the importance of improved reporting in all aspects of meta-analyses

regarding adverse events data.

A recent systematic review of systematic reviews and meta-analyses of data

derived from animal experiments found that simple quantitative methods of

data combination were being used, such as an unweighted mean or median seen

in 12 out of 46 meta-analyses (Peters et al. 2006). By contrast, in this review

of 166 meta-analyses only one study used a simple unweighted mean [S2]. Both

this review and the review of meta-analyses of animal data found that many

studies took a casual attitude to publication bias, often failing to investigate

this issue thoroughly. In both reviews of meta-analyses, the identification and

investigation of heterogeneity was not well addressed in many of the meta-

analyses being scrutinised, possibly indicating that this is a methodological area

often not well understood by many researchers, or else the importance of making

an analysis of heterogeneity may not be sufficiently appreciated.

A review of meta-analysis methodologies found that the quality of meta-analysis

conduct had improved during the period of the review, from 1993 to 2002

(Gerber et al. 2007). There is no specific mention of the type of outcome

required, but as it was a criteria that at least five controlled trials should be

included, it seems probable that the outcomes were primarily if not exclusively

based on efficacy. By studying a total of 272 meta-analyses, largely in general

medicine but including some journals from medical specialties, the authors found

improvements in search strategies, for example increased numbers of databases

being searched, more studies using hand-searching methods, and more studies

making an effort to look for grey literature.
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Also increasing over time were the use of quality assessment, in particular con-

cealment of allocation, and the inclusion of a test for heterogeneity. The inclu-

sion of IPD did not however, appear to increase over time, nor did the use of

sensitivity analyses or data extraction by more than one reviewer. The use of

fixed and random effects appeared to fluctuate over time with no clear pattern

in their usage. The authors also found that the quality of meta-analyses was

higher in general medical journals rather than the specialist journals.

Another review also supports the argument that the quality of meta-analyses

is improving over time (Wen et al. 2008). Including a random sample of 161

systematic reviews and meta-analyses to be found on Medline and published

between 2000 to 2005, it was found that the mean QUOROM (Quality of Re-

porting of Meta-analyses; Moher et al. 1999) score increased over time from a

mean of 10.5 (95% CI 8.8; 12.1) in 2000, to 13.0 (95% CI 12.2; 13.8) in 2005.

Specifically regarding quantitative synthesis it is reassuring that in this sample

of studies, the proportion that fulfilled the QUOROM criteria either completely

or partially increased over time. The authors also noted that Cochrane reviews

appeared to have higher QUOROM scores than journal articles, with a mean

of 14.2% (95% CI 13.9; 14.5) compared to 11.7% (95% CI 11.3; 12.1). The

above review included only meta-analyses of RCTs, so it is likely that the ma-

jority of outcomes were efficacy-related. Indeed, the majority of their studies

were regarding treatment, prognosis or prevention, with only 5.6% of outcomes

categorised as ‘Other’, which may include adverse events.

Although this present review has not scored the studies using a system based

on or similar to the QUOROM system, it is useful to refer back to Table 6.7,

to see if there are any noticeable changes over the time of the review in the

proportion of meta-analyses considering specific facets of methodology. Overall,

heterogeneity appears to have been considered in a high proportion of meta-

analyses with no obvious increase across the time of this review, whereas there

does appear to have been some increase in the proportion of meta-analyses that

performed some type of quality assessment in later publications.

As regards dissemination bias, there is little evidence of an increase in con-

sideration over time, although it should be borne in mind that the number of

meta-analyses performed in each year is relatively small and that in later years

many of the studies were Cochrane reviews which are usually performed to a

high standard.
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Overall, the field of meta-analysis methods for adverse events data has many

aspects of intrinsic statistical interest, and can be developed with the aim of

promoting better use of available data to support clinical practice. It is possibly

in the most fundamental areas of meta-analysis such as the choice of meta-

analysis model and the examination of heterogeneity and publication bias that

improvements in methodology may lead to increased validity of results.

Besides the areas concentrated on in this review, there are of course many other

areas where further research and improvements to existing methods would be

valuable. For example, class effects would be one area where Bayesian methods

would be particularly useful in allowing borrowing of strength across drugs from

the same class. Other areas that would be strong candidates for further inves-

tigation include dose–response analysis, how to cope with multiple outcomes,

and time course effects when appropriate, as these issues appear frequently and

also have a high relevance to clinical practice and decision-making.

6.6 Summary

This chapter reviews 166 meta-analysis studies where the primary outcome is an

adverse event resulting from some form of clinical intervention. Many aspects of

these studies are recorded and assimilated, for example, information about the

types of intervention and adverse events, also statistical information regarding

meta-analysis methods, use of graphs, handling of issues such as publication

bias, heterogeneity, sparse data, IPD and quality assessment.

This review has highlighted areas where there is room for further development of

meta-analysis methods for adverse events data, especially selection of outcome

metric, selection of methods and model, sparse data issues, use of IPD, quality

assessment, issues surrounding retrieval and selection of primary references, and

aspects of dissemination bias.
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7

Comparison of multiple meta-analysis

methods using a dataset with sparse

events

7.1 Introduction

To investigate the influence of meta-analysis methods on the results obtained,

multiple analyses of the same dataset can be performed to contrast the results

from different methods. The following aspects of meta-analysis are of interest

in this chapter:

1. comparison between different outcome metrics;

2. comparison between fixed effect and random effects models;

3. comparison between different fixed effect models;

4. comparison of models including studies with zero events in total against

those excluding them;

5. comparison of different continuity corrections to allow inclusion of sparse

events, within and between meta-analysis models;

6. comparison between standard meta-analysis methods and generalised

linear methods;
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7. comparison between Bayesian and frequentist approaches; and

8. evaluation of different elements of a Bayesian model, such as use of dif-

ferent prior distributions.

These analyses can be used to compare the results of different analysis methods.

Whilst it is difficult to determine which models and methods may be most

suitable under different circumstances, due to the lack of a ‘gold standard’

against which to evaluate the different methods, such an approach provides

insight into the range of potential results, and any specific patterns regarding

method and outcome.

7.2 Clinical example

Many of the issues surrounding adverse events meta-analysis can be illustrated

by the use of a dataset from GlaxoSmithKline (GSK). This dataset comprises

data from 19 trials of the antidepressant paroxetine, one of the selective sero-

tonin reuptake inhibitors (SSRIs).

Concerns regarding the safety of SSRIs in several areas have been raised since

the early 1990s, in particular regarding suicidal ideation and behaviour (Teicher

et al. 1990). In particular, the potential association between SSRIs and suicidal

behaviours in children and adolescents was of particular cause for alarm (Gunnell

et al. 2005; Gibbons et al. 2006; Hammad et al. 2006). In response to these

concerns, the manufacturers of paroxetine (marketed as Seroxat R© in the UK

and Paxil R© in the USA) were encouraged to publish the results of multiple trials

involving paroxetine. These results are available on the GSK website1.

The concern regarding paroxetine and the possibility that information was not

being made available from clinical trials led to a Panorama investigation by the

BBC, first broadcast on 29 January 20072.

This clinical example is appropriate as there are multiple trials with zero events,

hence it is very important to analyse the data using methods to ensure that as

much information as possible is included in the model. Should information be

1GSK (2006). Available [January 2010] at: http://www.gsk.com/media/par_current_

analysis.htm
2BBC: (2007). Available [January 2010] at: http://news.bbc.co.uk/1/hi/programmes/

panorama/6291773.stm
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lost, or included inappropriately, then incorrect conclusions could be drawn from

the model, with deleterious consequences, such as the risk of suicidal ideation

or behaviour in patients, or alternatively, the risk that a potentially beneficial

treatment may be denied patients unnecessarily.

7.3 Methods

7.3.1 Data extraction

Each of the 19 trials is described in the GSK report on their website (Footnote

1, page 150), with relevant information set out for each trial set. The dataset

used in these analyses is based on the data for patients diagnosed with Major

Depressive Disorder (MDD), with outcomes of Definitive Suicidal Behaviour and

Ideation. The data are displayed in Table 7.1, for a total of 19 trials. These

trials include adults only; however, the youngest age range for many of the

trials is 18–24, indicating that the results for this age group may be relevant to

adolescents if not pre-adolescent children.

7.3.2 Statistical methods

Standard meta-analysis methods were the first line of approach to this dataset.

A marginal analysis (Section 3.2), using the relative risk (RR) and odds ratio

(OR), to act as a benchmark comparator for the results of the other meta-

analysis methods.

Comparisons were made using a variety of outcome measures, the RR, OR and

risk difference (RD), and using different fixed effect (FE) methods, including

inverse variance (IV), Mantel–Haenszel (M–H) and Peto (all of these outcome

metrics and methods are described in Chapter 3). To contrast with the FE

models, random effects (RE) models were also used with the RR, OR and

RD. The standard continuity correction (where required) was 0.5; when added

to all four cells of the 2×2 table this can be considered as adding two extra

participants, who are effectively ‘false’ participants.

For comparison across different continuity corrections, a smaller value of 0.05

was used, and a continuity correction based on that described by Sweeting et
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Table 7.1: Dataset of GSK trials for adult suicidality analysis. Outcomes:
Definitive Suicidal Behaviour and Ideation. Indication: Major Depressive
Disorder.

Trial no. Paroxetine Placebo
No. in
arm

No. with
event

No. with-
out event

No. in
arm

No. with
event

No. with-
out event

279 21 2 19 10 1 9
2 170 1 169 171 2 169
9 421 5 416 53 0 53
3 241 0 241 244 2 242

115 283 5 278 117 3 114
128 357 8 349 140 2 138
251 125 2 123 129 0 129
448 212 3 209 103 0 103
449 223 1 222 110 0 110
487 214 2 212 109 0 109
625 112 1 111 117 0 117
785 197 1 196 105 0 105
810 306 0 306 148 1 147
276 20 0 20 21 0 21
274 22 0 22 23 0 23

1 25 0 25 25 0 25
442 41 0 41 48 0 48

NKD20006 124 0 124 125 0 125
874 341 0 341 180 0 180

Fiona Warren PhD Thesis 2010 152



Chapter 7 Comparison of multiple meta-analysis methods

al. (2004), discussed further in Section 5.2.3, in this example with the overall

number of ‘false’ participants across both trial arms summing to two. The con-

tinuity corrections were used in their appropriate context, to allow the inclusion

of studies with zero events in one arm, and also used inappropriately, to enforce

inclusion of studies with zero events in total into the meta-analysis. Only the

0.5 continuity correction was used in this way, and for OR outcomes only.

Generalised linear models (GLMs) were also used, with unconditional likelihood

and a logit link (as the outcome was binary). GLMs were intended as a com-

parator to standard meta-analysis methods as they allow the inclusion of studies

with zero events without manipulation of the data, and also allow an estimate

of treatment effect without weighting of the studies, which may be illuminating

in itself.

The novel ‘exact’ method developed by Tian et al. (2009), described in Sec-

tion 5.2.6, is also included for comparison purposes against standard methods.

Finally, Bayesian methods (as discussed in Chapter 4) were used to perform a

meta-analysis, again, with the advantage of being able to incorporate primary

trials with zero events without recourse to continuity corrections or other arti-

ficial manipulation. All Bayesian analyses were conducted using WinBUGS 1.4.

One chain was used, with an initial ‘burn-in’ period of 10 000 iterations, fol-

lowed by a sample size of 50 000 iterations. The history plot was checked for

convergence prior to discarding the initial 10 000 iterations, as well as checks

for autocorrelation.

A standard Bayesian meta-analysis of the 19 studies was performed, with the

intention of using non-informative prior distributions. In the light of concerns

regarding the ability of the prior distribution to unduly influence the posterior

distribution in cases where events are sparse (Lambert et al. 2005, discussed

further in Section 4.3.4), multiple prior distributions were placed on the between-

studies variance (or a function thereof), with 12 of these being derived from the

same reference (Lambert et al. 2005). (These 12 prior distributions are set out

in Table 7.6 in Section 7.4.5).

Finally, prior distributions were derived from previous studies using paroxetine

that were conducted in children, with an indication of major depressive disorder.

These studies were used in a meta-analysis by Kaizar et al. (2006) regarding sui-

cidality (suicidal behaviour and ideation) and anti-depressants in children, also
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Table 7.2: Dataset of trials using paroxetine in children with major
depressive disorder, extracted from Kaizar et al. (2006)* Figure 2.

Trial no. Paroxetine Placebo
No. in
arm

No. with
event

No. with-
out event

No. in
arm

No. with
event

No. with-
out event

329 97 4 93 89 1 88
701 106 2 104 103 1 102
377 186 6 180 97 2 95

*Kaizar et al. (2006). Do antidepressants cause suicidality in children? A Bayesian meta-

analysis. Clinical trials 3(2), 73–98.

Table 7.3: Results derived from dataset of trials using paroxetine in
children with major depressive disorder, extracted from Kaizar et
al. (2006)* Figure 2.

Outcome Mean Standard deviation Median (95% CI)
Log OR (µ) 0.9169 0.8171 0.8933 (-0.3928; 2.393)
Standard deviation 0.3936 0.8356 0.1811 (0.0286; 1.991)

OR: odds ratio; *Kaizar et al. (2006). Do antidepressants cause suicidality in children? A

Bayesian meta-analysis. Clinical trials 3(2), 73–98.

using Bayesian methods. These studies were selected out of the many primary

studies used by Kaizar et al. (2006), as they used paroxetine in participants

with pre-existing depression. The primary studies themselves are referenced by

Kaizar et al. (2006); the dataset, comprising just three studies, is set out below

in Table 7.2.

Using these three studies, values could be derived using a Bayesian meta-analysis

(with non-informative priors, using a burn-in of 10 000 iterations and a sample

of 50 000 iterations) for the underlying value for the mean log OR (µ) in the

treatment arms compared to the controls, and the between-studies standard

deviation (for the underlying mean log OR). The relevant results are given in

Table 7.3.

These results can be used to inform a set of priors on both µ and on the between-

studies standard deviation. These can be used together or with standard non-

informative prior distributions on the parameter not being derived from the

dataset.
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The prior distribution on µ is based on a normal distribution with a mean of µ as

derived from the dataset in Table 7.3, which is 0.9169. The standard deviation

of µ is 0.8171, so the variance is 0.81712.

Hence, we have

µ ∼ Normal(0.9169, 0.81712). (7.1)

For the prior distribution on the between-studies standard deviation (τ), a half-

normal distribution was selected, centred on 0. From the analysis of the studies

in children, the median of the standard deviation was 0.1811. For a random

pair of ORs selected from a distribution, the median ratio of the maximum

to minimum OR is exp(1.09τ). Accordingly, the difference between two log

ORs randomly selected will be 1.09τ (Spiegelhater et al. 2004). Therefore,

the median of τ will be 1.09c, where c is the standard deviation of τ . Hence,

c=0.1811/1.09=0.17, using the result from Table 7.3. The variance of τ is

equivalent to c2.

This gives a distribution on τ as follows:

τ ∼ Half-normal(0, (0.1811/1.09)2). (7.2)

This method of calculating the standard deviation of τ is intended to produce a

half-normal distribution which has the same median value as derived from the

previous meta-analysis by Kaizar et al. (2006).

These prior distributions can be used together or with alternative, non-informative,

priors on the other parameter, for example, on µ we have

µ ∼ Normal(0, 10 000), (7.3)

and on τ

τ ∼ Half-normal(0, 1). (7.4)
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7.4 Results

7.4.1 Initial data inspection

There are 19 trials, the smallest of which has 31 participants, and the largest

521 participants. Across all trials, there were 3455 participants who received

paroxetine and 1978 participants who received a placebo (with 5433 participants

in total). In the paroxetine arms there were 31 events (corresponding to 0.90%),

and the placebo arms only 11 (0.56%). It is immediately evident that suicidality

events were rare in both groups, but in terms of raw percentages, and without

taking into account the different trials, these events are almost twice as frequent

in the participants receiving paroxetine. However, with such small numbers, the

play of random chance militates against the discovery of a strong association

between paroxetine and suicidality.

Using a marginal analysis, the RR for the paroxetine group compared to the

placebo group was 1.613 (95% CI 0.813; 3.203). For the OR, the equivalent

result was 1.619 (95% CI 0.812; 3.228). In this example, the OR and RR are

similar, due to the small number of events.

As can be seen from Table 7.1, there are six studies with no events across the

two arms, while nine studies have zero events in one arm. Only four studies

have at least one event in both arms. This situation immediately requires some

thought prior to analysis. If all studies with no events are excluded, then this

effectively excludes data from 995 subjects out of a total of 5433, which is

18.3% of the data. Such an exclusion could produce highly misleading results;

however, inaccurate or invalid measures taken to address this situation could

lead to equally false results. Similarly, if all studies with at least one treatment

arm with zero effects are excluded, then data from 4164 subjects will be lost,

which is 76.6% of the data. The loss of such a large proportion of the data

would clearly be deleterious.

A method or methods are required for incorporating the data from trials where

one or both arms have zero events, and that can produce valid conclusions from

the analysis. This produces an immediate question: how can the concept of

validity be determined in this context? Given that different analysis methods

will produce different results, how is it possible to evaluate which method is
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producing results that are the most ‘valid’ in terms of most closely approximating

an ‘underlying’ reality?

Unfortunately, there is no obvious ‘gold standard’ for methodology regarding

datasets with sparse events. A simulation study (similar to that of Bradburn et

al. (2007), discussed in Section 5.2.1) based on this dataset may be the most

appropriate means of addressing this question.

7.4.2 Standard meta-analysis results

Table 7.4 shows the results of all standard frequentist meta-analyses, with a

variety of outcome metrics, meta-analysis methods and continuity corrections.

The forest plots associated with selected models are shown in Section 7.7.1.

7.4.3 Regression results

The results of the two regression models performed are shown in Table 7.5. The

first method is unstratified, in that the individual trial is not taken into account

in the model. The second method includes trial within the model, and so allows

for the influence of trial on the outcome.

For visual comparison purposes, the results of the standard meta-analyses as set

out in Table 7.4 and the regression models set out in Table 7.5 are set out in

forest plots (note that the pooled estimates and individual ‘study’ (in this case

pooled analyses) estimates are not of interest); see Figures 7.10–7.12, for the

OR, RR and RD results respectively. For the OR and RR outcomes, the results

of the marginal analyses are included.

7.4.4 ‘Exact’ results

The method of Tian et al. (2009), described in Section5.2.6, yielded a 95%

CI of -0.0072; 0.0082 for the RD, with an associated p-value of 0.827, using

inverse variance weightings for the individual studies.

Using StatXact R©, the exact test for homogeneity of ORs (Zelen’s test; Sec-

tion 3.4) yielded a p-value of 0.5658, which effectively indicates no evidence
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Table 7.4: Results for frequentist analyses of GSK trials for adult
suicidality analysis. Outcomes: Definitive Suicidal Behaviour and
Ideation. Indication: Major Depressive Disorder.

Analysis
ID

MA
method

Outcome
metric

Continuity
correc-
tion

0-events
studies
excluded

Estimate 95% CI

A IV RR 0.5 Yes 1.085 0.557; 2.116
B M–H RR 0.5 Yes 1.124 0.609; 2.072
C IV OR 0.5 Yes 1.090 0.552; 2.152
D M–H OR 0.5 Yes 1.126 0.605; 2.094
E Peto OR No Yes 1.324 0.676; 2.596
F IV RD No No 0.001 -0.003; 0.006
G M–H RD No No 0.002 -0.004; 0.008
H D&L(IV) RR 0.5 Yes 1.085 0.557; 2.116
J D&L(IV) OR 0.5 Yes 1.090 0.552; 2.152
K D&L(IV) RD No No 0.001 -0.003; 0.006
L D&L (M–H) RR 0.5 Yes 1.085 0.557; 2.116
M D&L (M–H) OR 0.5 Yes 1.090 0.552; 2.152
N D&L (M–H) RD No No 0.001 -0.003; 0.006
O IV OR 0.05 Yes 1.034 0.435; 2.463
P M–H OR 0.05 Yes 1.321 0.652; 2.676
Q D&L(IV) OR 0.05 Yes 1.034 0.435; 2.463
R D&L (M–H) OR 0.05 Yes 1.034 0.435; 2.463
S IV OR SS Yes 1.142 0.561; 2.326
T M–H OR SS Yes 1.274 0.673; 2.411
U D&L(IV) OR SS Yes 1.142 0.561; 2.326
V D&L (M–H) OR SS Yes 1.142 0.561; 2.326
W IV OR 0.5 No 1.065 0.569; 1.994
X M–H OR 0.5 No 1.100 0.617; 1.962
Y D&L(IV) OR 0.5 No 1.065 0.569; 1.994
Z D&L (M–H) OR 0.5 No 1.065 0.569; 1.994

CI: confidence interval; D&L: DerSimonian & Laird; IV: inverse variance MA method; M–H:
Mantel–Haenszel MA method; MA: meta-analysis; Peto: Peto MA Method; OR: odds ratio;
RD: risk difference; RR: relative risk; SS: Sweeting et al. (2004) continuity correction.

Table 7.5: Results for regression analyses of GSK trials for adult
suicidality analysis. Outcomes: Definitive Suicidal Behaviour and
Ideation. Indication: Major Depressive Disorder.

Regression
Model

GLM
type

Link ML type Group
factors

Outcome
metric

Estimate 95% CI

1 Binomial Logit Unconditional Treatment OR
(treatment)

1.619 0.812–3.228

2 Binomial Logit Unconditional Treatment,
trial

OR
(treatment)

1.345 0.660–2.741

CI: confidence interval; OR: odds ratio.
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for a difference in odds of suicidality between control and paroxetine treatment

groups.

The exact inference of the common (pooled) OR was 0.7443, with a 95% CI of

0.3296; 1.565. Again, there is no evidence to support any difference in risk of

suicidality across the two treatment groups.

7.4.5 Bayesian results

The results of the Bayesian analyses (B.1–B.15) are set out in Table 7.6. For

all analyses, the prior distribution on the underlying log OR (µ) was:

µ ∼ Normal(0, 109), (7.5)

apart from analyses B.13 (as above with variance set at 104) and B.14 and B.15

where the prior on µ was

µ ∼ Normal(0.9169, 0.81712). (7.6)

For all analyses, the posterior densities on the between-studies standard de-

viation are shown in Figures 7.13 and 7.14. The posterior densities on the

values of µ on selected analyses are shown in Figure 7.15. These figures are

in Section 7.7.3 below. Some evidence of autocorrelation was seen for certain

parameters; however, the large sample size would help to reduce the effects of

autocorrelation on the sample statistics.

7.5 Discussion

7.5.1 Comparison of different outcome metrics

Three different outcome metrics were considered in the standard meta-analyses:

the RR, OR and RD. It was expected that the RR and OR would be very similar,

given the small number of events in all studies. This result was borne out

in practice; for example, for Analysis A, the RR was 1.085, compared to the
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Table 7.6: Results for Bayesian analyses of GSK trials for adult
suicidality analysis. Outcomes: Definitive Suicidal Behaviour and
Ideation. Indication: Major Depressive Disorder. Prior on mean
underlying log odds ratio µ is µ ∼ Normal(0, 109) unless otherwise
indicated.

Analysis Prior
distribution
scale

Prior
distribution

Median
OR (95% CrI)

P(OR>1) Median
standard
deviation
(95% CrI)

B.1 Precision ∼ Γ
(0.2, 0.2)

1.591
(0.595; 8.120)

0.831 0.816
(0.288; 3.676)

B2 Precision ∼ Γ
(0.1, 0.1)

1.562
(0.612; 6.511)

0.826 0.726
(0.221; 3.121)

B.3 Log variance ∼ Uniform
(-10, 10)

1.412
(0.687; 3.525)

0.829 0.087
(0.008; 1.688)

B.4 Log variance ∼ Uniform
(-10, 1.386)

1.347
(0.649; 3.146)

0.797 0.105
(0.008; 1.535)

B.5 Variance ∼ Uniform
(0.001, 1000)

2.326
(0.333; 131.9)

0.839 2.479
(0.428; 10.43)

B.6 Variance ∼ Uniform
(0.001, 4)

1.668
(0.591; 6.143)

0.836 1.182
(0.220; 1.953)

B.7 Precision ∼ Pareto
(1, 0.001)

2.314
(0.341; 100.1)

0.841 2.482
(0.412; 9.631)

B.8 Precision ∼ Pareto
(1, 0.25)

1.667
(0.578; 6.075)

0.829 1.197
(0.214; 1.954)

B.9 Standard
deviation

∼ Uniform
(0, 100)

1.702
(0.547; 35.24)

0.836 1.061
(0.066; 8.272)

B.10 Standard
deviation

∼ Uniform
(0, 2)

1.577
(0.612; 5.205)

0.822 0.761
(0.042; 1.904)

B.11 Standard
deviation

∼ Half-normal
(0, 100)

1.315
(0.693; 2.819)

0.797 0.071
(0.004; 0.224)

B.12 Standard
deviation

∼ Half-normal
(0, 1)

1.480
(0.609; 4.354)

0.829 0.536
(0.022; 1.871)

B.13* Standard
deviation

∼ Half-normal
(0,
1/(0.1811/1.09)2)

1.340
(0.646; 2.976)

0.782 0.106
(0.005; 0.371)

B.14** Standard
deviation

∼ Half-normal
(0, 1)

1.634
(0.788; 3.979)

0.901 0.526
(0.034; 1.812)

B.15** Standard
deviation

∼ Half-normal
(0,
1/(0.1811/1.09)2)

1.504
(0.801; 2.930)

0.888 0.121
(0.006; 0.370)

*prior on µ is µ ∼ Normal(0, 104); **prior on µ is µ ∼ Normal(0.9169, 0.81712); CrI: credible
interval; OR: odds ratio.
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equivalent analysis using the OR (Analysis C), which was 1.090. The meta-

analysis method for both of these was the inverse variance (IV) method. A

similar scenario was found when the Mantel–Haenszel (M–H) method was used.

Analysis B, using the RR, yielded a result of 1.124, compared to an OR from

Analysis D of 1.126. It is notable that for both the IV and M–H methods, the RR

yielded a lower value (closer to 1) compared to the OR. It would be interesting

to investigate whether this finding represents a tendency for the RR to be lower

(regardless of whether greater or less than 1) or whether the tendency is for the

RR to be closer to 1 (so that the RR would be greater than the OR if both were

less than 0).

The RD has a much narrower range of values, for given dataset and meta-

analysis methods, compared to the relative outcome metrics. The lack of

requirement for a continuity correction to calculate the outcome metric is a

benefit, as it allows the inclusion of studies with zero events. Depending on

the method used, a continuity correction may be required for studies with zero

events in total, or if there are zero events in the overall dataset. Also, the RD

is not dependent on baseline risk for its interpretation. This gives the RD some

important advantages over the outcome metrics on a relative scale.

The method of Tian et al. (2009) yielded similar results for the RD compared

with the IV, M–H and DerSimonian & Laird methods, and has the advantage of

not requiring a continuity correction to calculate the study variances. However,

as discussed in Chapter 5, the RD has some distinct disadvantages when used

with sparse data.

7.5.2 Comparison of different fixed effect models

It is notable that the meta-analysis method appears to have a stronger influence

on the outcome metric than the choice of metric across different methods. For

example, for the RR calculated by the IV method (1.085) is closer to the OR

calculated by the same method (1.090) than it is to the RR calculated by the

M–H method (1.124) and this occurrence is seen also for the OR. For theoretical

reasons the IV method is considered less suitable for sparse events data (Higgins

et al. eds. 2008) due to its incorporation of the variance into the study weighting,

but where events are rare, this method is less appropriate due to high variances

associated with fewer events.

Fiona Warren PhD Thesis 2010 161



Chapter 7 Comparison of multiple meta-analysis methods

The OR calculated by the Peto method (which does not require a continuity

correction) is higher than either the IV or M–H methods which do require a

continuity correction, although the associated 95% CI is still wide. Bearing in

mind that the Peto method has been found to be less biased than other methods

(Chapter 5.2.1) it is interesting that it yields the highest OR than any of the

other standard meta-analysis methods. The Peto OR is also similar to that

produced in Regression Model 2, shown in Table 7.5.

It is notable that the IV method, which is less suitable for sparse events, yielded

outcome metrics closer to 1 than the other FE models. It would be interesting

to investigate whether the same phenomenon would be seen if the data were

reversed to yield outcome metrics that were less than 1 rather than greater than

1.

One relevant point to note is that for all FE models, whether using the Peto

method without a continuity correction, or using one of the other methods with a

continuity correction, is that the pooled OR (or RR) is consistently greater than

1. This applies also to the analyses that include the studies with zero events,

when enforced into the analysis by means of a continuity correction. However,

the exact pooled OR was 0.7443, which is clearly less than 1. Despite the

fact that the 95% CIs are wide for all methods, the fact that the exact method,

which includes all studies with no continuity correction, yields a pooled estimate

of less than 1, is significant.

7.5.3 Comparison of fixed effect and random effects models

The results of the DerSimonian & Laird RE models coincide with the results

of the IV (FE) model, regardless of the method used to calculate the between-

studies variance (IV or M–H). In effect, the weightings are not changed by the

use of fixed or random effect(s). This possibly relates to the fact that there

are not extreme differences in the sizes of the studies (although the change in

order of magnitude between the smallest and largest is approximately 17), and

the degree of variability between them.

This example therefore is not a particularly useful one to highlight possible

differences in fixed and random effect(s). A dataset with greater variation in

the number of participants across studies, and the treatment effects between
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studies, would provide a more useful example. Alternatively, simulation studies

may also be of benefit.

7.5.4 Comparison of continuity corrections

Three different continuity corrections were considered, using the OR as outcome

metric across the IV, M–H and RE models. These continuity corrections were

0.5 added to all cells for a study with zero events in one arm (resulting in

two ‘false’ participants per study), 0.05 added to all cells for a study with

zero events in one arm (resulting in 0.2 ‘false’ participants per study), and

the Sweeting et al. (2004) continuity correction, whereby an arbitrary number

of ‘false’ participants per treatment arm is divided between the ‘events’ and

‘non-events’ within each arm. In this example, two ‘false’ participants per trial

was used, analagous with a continuity correction of 0.5 per cell, but dividing

the ‘false’ participants unequally between all four cells of the 2×2 table, but

proportionately to the percentage of participants in each arm of the trial, such

that the arm with the greater proportion of participants receives the higher

number of false participants (see Section 5.2.3).

The 0.05 continuity correction produced a reduced OR for the IV method and

all RE models, compared to 0.5 in the same models (1.034 compared to 1.090).

However, this result was not repeated for the models using the M–H model,

which produced an OR of 1.321 with a continuity correction of 0.05 compared

to 1.126 using 0.5. This result appears to be anomalous, and cannot be easily

explained.

When using the continuity correction proposed by Sweeting et al. (2004), the

OR was higher for the IV method and all RE models compared to a continuity

correction of 0.5 (1.142 compared to 1.090). This result appears to be consistent

with what would be expected, in that fewer ‘false’ participants are added to the

control arm, and more specifically to their number of cases, thus increasing the

OR. For the M–H method also, this effect was seen, with an OR of 1.274 using

the Sweeting et al. (2004) method and an OR of 1.126 with the 0.5 continuity

correction. Thus, the Sweeting et al. (2004) continuity correction appears to

be more consistent in its results, possibly, as argued by its proponents, reducing

the bias inherent in using a continuity correction.
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7.5.5 Inclusion and exclusion of studies with zero events

The inclusion of studies with zero events is highly debatable for relative out-

come metrics. One argument states that studies with zero events do not have

their own estimate of the outcome measure and hence contribute nothing to a

pooled estimate, and should be excluded (Whitehead & Whitehead 1991). This

argument is supported by Sweeting et al. (2004), who back up this position by

the use of a simulation study using Bayesian methods, which concluded that

studies with zero events in total contribute nothing to an FE meta-analysis.

The intuitive counter-argument to this is that these studies contain relevant in-

formation and add to the number of participants whose data can be combined,

and therefore should not be excluded; to do so would be to discard potentially

relevant information in a way that could lead to false conclusions and be detri-

mental to patients. This argument has been discussed by Sweeting et al. (2004),

referring to previous studies (Cook et al. 1991 and Sankey et al. 1996).

In these analyses, the studies with zero events are forced into the analysis by

adding 0.5 to all four cells of the 2×2 table. This is commensurate with adding

a continuity correction of 0.5 to all cells when one arm has zero events. In

this way, a further six studies including 995 participants can be included in the

meta-analysis.

Using the IV method, and all RE models, the OR was 1.065, compared with

an OR of 1.090 when these studies are not included (but using a continuity

correction of 0.5 on studies with zero events in one arm). In this example,

the OR is reduced towards 1, which is as expected, since the number of ‘false’

participants added to the events in the control arms is proportionately higher

than those added to the events in the treatment arms. For the M–H model, the

OR was 1.100 compared to 1.126 when studies with zero events are excluded.

In this example, the differences are not great, but it is feasible that in some

cases the exclusion of studies with zero events could make a stronger difference

when using relative metrics.

Using the RD, regardless of model, the studies with zero events are included

without use of a continuity correction, and the RD values are similar across

all models. Interpreting the relative scale and difference scale outcomes in
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combination may be the most useful approach to the inclusion and exclusion of

studies with zero events.

7.5.6 Standard meta-analysis models compared with generalised linear

models

Using logistic regression, all studies can be incorporated in the model, including

those with zero events. Another advantage is that the model can include study-

level covariates, if such data are available. It is interesting to note that when the

trial effect is ignored and only treatment is included in the model (not advisable

due to loss of randomisation effects and lack of weighting of trials), that the

OR is higher than when the trial is included (1.619 compared to 1.345, 95% CIs

as shown in Table 7.5). This is probably due to the smaller trials with higher

ORs being ‘weighted’ equally with larger trials with smaller ORs. The logistic

regression model with no trial stratification corresponds to a marginal analysis

(yielding identical results).

Comparing these results with those of the standard meta-analyses, the GLMs

appear to produce generally higher ORs. However, the OR derived from the

model using both trial and treatment closely approximates the results from the

Peto model (Analysis E in Table 7.4) and the M–H model using a continuity

correction of 0.05 (Analysis P). The 95% CIs are within similar parameters.

However, the major difference between the GLM analysis and Analyses E and P

is that studies with zero events are included within the GLM, so this may imply

that the Peto method and M–H method with a continuity correction of 0.05 are

(at least with this particular dataset) producing results that are closer to those

using all studies.

7.5.7 Differences between Bayesian models

The results of the Bayesian analyses are displayed in Table 7.6. Of the 15

Bayesian analyses, the median ORs ranged from 1.315 (Analysis B.11) to 2.326

(Analysis B.5). In all cases the 95% credible intervals (CrIs) were wide, with the

highest median ORs being associated with the widest CrIs (due to the extremity

of the upper bound); these are seen in Analyses B.5 and B.7.
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All models have a high probability that the true underlying OR for suicidality

in the treatment arms compared to the control arms is greater than 1. The

lowest probability was 0.782 (Analysis B.13), with the highest probability being

associated with Analysis B.14 at 0.901. It is interesting to note that the two

highest probabilities (0.901 and 0.888) were associated with Analyses B.14 and

B.15 respectively; these analyses were performed using the prior distribution

on the underlying mean log OR (µ) derived from the results of the studies in

children, extracted from Kaizar et al. (2006). However, inspection of posterior

densities of µ (selected densities are shown in Figure 7.15) does not provide any

indication of why this might be. Also, these analyses were not associated with

the highest median ORs.

The highest OR, seen in Analysis B.7, was associated with a probability that the

true underlying OR is greater than 1 of 0.839, which was the highest probability

of those distributions not using the data derived from Kaizar et al. (2006).

Similarly, the three analyses with a median OR of less than 1.4 (Analyses B.4,

B.11 and B.13) were associated with the three lowest probabilities that the true

underlying OR was greater than 1, all less than 0.8.

It is difficult to discern any specific pattern between the posterior densities of

the standard deviations (shown in Figures 7.13 and 7.14) and the results of the

ORs. Analyses B.5 and B.7 have similar densities, and also similar ORs, as do

Analyses B.6 and B.8. However, the two lowest ORs, produced by Analyses B.3

and B.11, have very different densities, that of B.3 being very narrow and B.11

being much wider. Analysis B.11 is seen to have the wider 95% CrI of the two,

which is difficult to explain.

7.5.8 Bayesian models compared with frequentist models

All the Bayesian models fitted are RE, and incorporate all studies including those

with zero events. The logical frequentist model against which to compare the

Bayesian models is Analysis Y (Analysis Z produced identical results). This

model yielded a median OR of 1.065 (95% CrI 0.569–1.994). However, this

model utilised a continuity correction of 0.5 across all studies with at least

one arm with zero events, which is not required by the Bayesian models. This

addition of ‘false’ participants (and ‘false’ events) would introduce bias to the
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model. This may be the reason why all 15 Bayesian models produced a higher

OR than this value (the lowest OR being 1.315 from Model B.11).

In fact, the FE Peto model (Analysis E), which does not use a continuity cor-

rection, and Analyses P and T (which use the 0.05 continuity correction and

the Sweeting et al. (2004) continuity correction respectively), produce the high-

est ORs of the frequentist model and therefore most closely approximate the

Bayesian results. This may be due to reduced bias across these models due

to lack of introduction of ‘false’ participants, or to reducing their numbers, or

to ensuring that they are divided in a less biased manner across the treatment

arms.

7.6 Conclusions

The over-arching clinical conclusion of all the analyses performed is that parox-

etine is associated with increased suicidality; however, the evidence from the

frequentist analyses cannot reach statistical significance regardless of the type

of analysis, or use of continuity corrections. The relative metrics (OR and RR)

always exceed 1, and the RD is always positive. However, wide confidence

intervals prevent the derivation of any firm conclusions about risk of suicidality.

The studies with zero events should intuitively be included within any analyses,

due to the significant number of studies that fall into these categories. However,

the frequentist analyses do not lend themselves to inclusion of such studies, as

the use of continuity corrections biases the results. The choice of continuity

correction also influences the results; in making a decision regarding which

continuity correction to use, the concept of proportionately dividing up the

‘false’ participants between the treatment arms, as discussed by Sweeting et

al. (2004) should be considered, as should the scale of the continuity correction

itself. As the Peto method can be used for studies with zero events in one arm

only, without use of a continuity correction, this method is well-placed to be

used as a comparison for the methods that do require a continuity correction.

In the frequentist analyses there was little difference found between fixed effect

and random effects. However, it has been suggested that for sparse events data

in general, the most important element of an analysis is to receive any signal

from the analysis, which outweighs the importance of considering between-
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studies heterogeneity (Higgins et al. eds. 2008). Hence, an FE model can

be considered the most acceptable option. From a clinical point also, the

adverse/unintended events can be reasonably thought to be invariant across

studies (assuming sufficient homogeneity of patients across studies), so an FE

approach is justified.

The Bayesian paradigm offers some immediate advantages compared to the

frequentist approach, primarily in the ability to incorporate studies with zero

events in one or both arms without the use of a continuity correction. Another

advantage is the ability to calculate a probability that an outcome metric lies

within a certain range (for example, greater than 1).

One disadvantage is in the appropriate choice of prior distributions. Non-

informative priors may unduly exert influence over the data where events are

sparse. A range of prior distributions allows comparison across different distri-

butions; there may, however, be some difficulty in relating the influence of the

prior distribution to the outcome. This choice of prior distribution can also be

turned to an advantage in that it allows the incorporation of data from other

studies, usually sufficiently similar to be of relevance to the current analysis, but

not sufficiently homogeneous to be included within the analysis itself. Examples

of such scenarios could include the same drug being used in a different patient

group or for a different indication.

The Bayesian analyses, despite having a wide range of outcome metrics, and

wide CrIs, all pointed to a high probability of an OR in excess of 1 for the

association between paroxetine and suicidality. This evidence was the strongest

signal from the dataset that there is genuine cause to believe that paroxetine

does indeed increase risk of suicidality, despite the fact that the increase may

not be excessive on a relative scale and bearing in mind the low baseline risk,

and low values for the RD derived from the frequentist analyses.

Across all analyses, despite the lack of clear evidence to indicate a strongly

increased risk of suicidality due to paroxetine use, the overall signal is that

there is some increased risk, which is difficult to quantify due to the sparsity

of data in many studies and the overall low level of underlying risk. The need

for multiple analyses is highlighted, in particular the usefulness of comparison

across a difference and relative scale, and the benefit of simple data scrutiny to

yield awareness of the baseline risk and absolute numbers involved.
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Given the low power associated with both primary studies and meta-analyses of

adverse events data, it may be appropriate to adopt a lower level of statistical

significance for these outcomes, for example using the 10% level rather than the

usual 5% level. For more severe adverse outcomes, such as risk of suicidality, this

approach may be acceptable. For less serious outcomes, such an approach may

not be justifiable clinically. In this scenario, there is a balance to be achieved

between avoiding adverse events, and yet not wanting to deprive patients of the

potential benefits of an intervention due to excessive concern regarding adverse

outcomes. The issue is effectively one of decision-making and the balance of

harms and benefits – this area is discussed in more depth in Chapter 11.

In the light of these analyses, it is reasonable to be concerned regarding the

potential effects on suicidality of paroxetine. Although there is no conclusive

evidence, it would be worthwhile to highlight concerns to prescribing clinicians

so that they can be aware of possible risks and take this into consideration

when prescribing. Even if the decision is made to prescribe the drug due to its

potential benefits, prior warning regarding suicidality would be helpful to both

patients and caregivers, so that they can be aware that any inclinations towards

suicidality may be due to the medication and be vigilant for such an effect.

7.7 Selected graphical results

7.7.1 Forest plots from selected meta-analyses

Forest plots associated with selected non-Bayesian meta-analyses, described in

Table 7.4 are shown in Figures 7.1–7.9.

7.7.2 Forest plots of pooled analysis results

Forest plots of the results of selected pooled analyses set out in Section 7.4 are

included for the OR, RR and RD metrics.
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Figure 7.1: Analysis B, Mantel–Haenszel model with relative risk, con-
tinuity correction 0.5.
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Figure 7.2: Analysis C, inverse variance model with odds ratio, continuity
correction 0.5.
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Figure 7.3: Analysis D, Mantel–Haenszel model with odds ratio, conti-
nuity correction 0.5.
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Figure 7.4: Analysis E, Peto model with odds ratio, no continuity cor-
rection.
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Figure 7.5: Analysis G, Mantel–Haenszel model with risk difference, no
continuity correction.
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Figure 7.6: Analysis M, DerSimonian & Laird model (Mantel–Haenszel
method for calculation of variance) with odds ratio, continuity correction
0.5.
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Figure 7.7: Analysis P, Mantel–Haenszel model with odds ratio, conti-
nuity correction 0.05.
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Figure 7.8: Analysis T, Mantel–Haenszel model with odds ratio, conti-
nuity correction as described by Sweeting et al. (2004).

Fiona Warren PhD Thesis 2010 177



Chapter 7 Comparison of multiple meta-analysis methods

Overall  (I−squared = 0.0%, p = 0.995)

NKD20006

274

449

448

442

251

276

ID

785

810

625

115

128

3

2

1

487

279

9

874

Study

1.10 (0.62, 1.96)

1.01 (0.02, 51.20)

1.04 (0.02, 54.92)

1.49 (0.06, 36.87)

3.46 (0.18, 67.58)

1.17 (0.02, 60.20)

5.24 (0.25, 110.30)

1.05 (0.02, 55.37)

OR (95% CI)

1.61 (0.07, 39.88)

0.16 (0.01, 3.96)

3.16 (0.13, 78.42)

0.68 (0.16, 2.91)

1.58 (0.33, 7.54)

0.20 (0.01, 4.21)

0.50 (0.04, 5.57)

1.00 (0.02, 52.36)

2.58 (0.12, 54.14)

0.95 (0.08, 11.87)

1.41 (0.08, 25.91)

0.53 (0.01, 26.75)

100.00

2.23

2.16

2.99

2.98

2.05

2.17

2.15

Weight

2.91

9.08

2.17

18.78

12.65

11.17

8.93

2.21

2.95

5.52

3.94

2.94

%

1.10 (0.62, 1.96)

1.01 (0.02, 51.20)

1.04 (0.02, 54.92)

1.49 (0.06, 36.87)

3.46 (0.18, 67.58)

1.17 (0.02, 60.20)

5.24 (0.25, 110.30)

1.05 (0.02, 55.37)

OR (95% CI)

1.61 (0.07, 39.88)

0.16 (0.01, 3.96)

3.16 (0.13, 78.42)

0.68 (0.16, 2.91)

1.58 (0.33, 7.54)

0.20 (0.01, 4.21)

0.50 (0.04, 5.57)

1.00 (0.02, 52.36)

2.58 (0.12, 54.14)

0.95 (0.08, 11.87)

1.41 (0.08, 25.91)

0.53 (0.01, 26.75)

100.00

2.23

2.16

2.99

2.98

2.05

2.17

2.15

Weight

2.91

9.08

2.17

18.78

12.65

11.17

8.93

2.21

2.95

5.52

3.94

2.94

%

  
1.0065 1 154

Figure 7.9: Analysis X, Mantel–Haenszel model with odds ratio, conti-
nuity correction 0.05 applied to all studies with at least one arm with
zero events.
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Figure 7.10: Forest plot of odds ratio values for pooled analyses. Study
ID refers to marginal analysis, Analysis ID from Table 7.4 (Study ID
C–Z) and Regression Models 1 and 2 from Table 7.5.
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Figure 7.11: Forest plot of relative risk values for pooled analyses. Study
ID refers to marginal analysis and Analysis ID from Table 7.4 (Study ID
A–L).
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Figure 7.12: Forest plot of risk difference values for pooled analyses.
Study ID refers to Analysis ID from Table 7.4 (Study ID F–N).
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7.7.3 Densities for selected posterior distributions in Bayesian models

Figures 7.13 and 7.14 show posterior densities for between-studies standard

deviation for Bayesian analyses B.1–B.15 as set out in Table 7.6; Figure 7.15

shows posterior densities for µ, the underlying mean log OR for suicidality in

paroxetine users compared to controls, in selected Bayesian analyses (B.11 and

B.13–B.15).
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Figure 7.13: Posterior densities on standard deviations for Bayesian anal-
yses B.1–B.8.
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Figure 7.14: Posterior densities on standard deviations for Bayesian anal-
yses B.9–B.15.
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Figure 7.15: Posterior densities on the mean underlying log OR µ for
selected Bayesian analyses B.11; B.13–B.15.
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7.8 Summary

Multiple analyses were performed on the same dataset, which included data

from 19 trials comparing the anti-depressant paroxetine against a placebo. The

outcome of these trials was the occurrence of suicidal behaviour and ideation.

Frequentist analyses compared both relative and difference scale outcome met-

rics, and the use of different continuity corrections where required. Also, the

inclusion of studies with zero events was considered. Logistic regression methods

were also evaluated.

Bayesian analyses focused on the use of different priors, as the inclusion of

studies with zero events in one or more studies was not at issue. A range of

priors intended to be non-informative was compared, and the derivation of priors

using data from studies related but not sufficiently similar to be included in the

current analysis was also investigated.

Whilst these analyses did not produce any firm conclusions regarding association

of suicidality with paroxetine, the signal from the data, across all analyses,

was strong enough to merit concern. The variation of outcomes according to

the analysis used highlighted the benefits of multiple analyses for comparison

purposes.
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8

An individual patient data meta-analysis

of randomised controlled trials

8.1 Introduction

The work presented in this chapter was conducted in collaboration with col-

leagues based at Wyeth Research, USA, and the Mayo Clinic College of Medicine,

USA; these colleagues provided the dataset based on original clinical trials in-

volving etanercept. The work was based on a prior protocol, and additional

information regarding the background and methodology of the project, as well

as the pertinent results, has been published elsewhere (Bongartz et al. 2009).

The full publication is set out in Appendix D. The contribution to the pub-

lication from this thesis was to scrutinise the initial dataset for anomalies in

data entry, and when the dataset had been finalised, to perform all statistical

analyses and create a technical report providing details of the methodology and

results.

Rheumatoid arthritis (RA) is a chronic and disabling condition that has been

treated with several different types of drugs, with different mechanisms of action.

Some drugs are aimed at simply controlling the symptoms of RA, whilst others

aim to influence the progression of the disease itself. Such drugs are known as

disease-modifying anti-rheumatic drugs (DMARDS). In this category, there are

drugs that interfere with the fundamental inflammatory process that is mediated
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by tumour necrosis factor (TNF). These drugs are known as anti-TNF drugs,

which include infliximab, adalimumab and etanercept.

Although the positive benefits of anti-TNF drugs have been demonstrated, there

are reasons to be concerned regarding possible adverse effects of anti-TNF drugs.

There is evidence to indicate that TNF combats infection and has a role in

promoting the destruction of tumour cells. TNF may also be involved in tumour

promotion, so the issue of whether TNF blockers would also have a beneficial

or damaging effect on tumour development is unclear at present.

As well as the concerns from a mechanistic viewpoint, several studies have

demonstrated an increased incidence of lymphoma among people with RA (Wolfe

& Michaud 2004, citing earlier work). A prospective cohort study of 18 572 par-

ticipants (Wolfe & Michaud 2004) also found an increased risk of lymphoma

among RA patients. When comparing standardized incidence ratios (SIRs) be-

tween different treatment groups, the patients using anti-TNF drugs appeared

to have a higher incidence of cancer than those patients not using anti-TNF

drugs.

Within an RCT, there will be only a few incidences of newly-diagnosed cancers

due to the low overall incidence of cancer. Hence, it is very difficult to glean

any meaningful information regarding the influence of anti-TNF drugs on cancer

promotion from a single trial. A means of addressing this issue is to combine

the results of several trials using meta-analysis. A meta-analysis of summary

data from trials using infliximab and adalimumab has been conducted by Bon-

gartz et al. (2006), investigating the influence of these drugs on infection and

malignancy. Both of these outcomes appeared to have a significantly increased

risk with use of anti-TNF drugs compared to placebo. For malignancies, the

odds ratio (OR) for malignancy was 3.3, with a 95% confidence interval (CI)

1.2; 9.1; for serious infection the OR was 2.0 (95% CI 1.3; 3.1).

Etanercept was deliberately excluded from this earlier meta-analysis due to dif-

ferences in its molecular structure and mechanism of action within the anti-TNF

class. Therefore, a meta-analysis of etanercept trials would be highly desirable

to elicit any information regarding its potential influence on malignancy.

The aim of this research was to analyse data from randomised controlled trials

(RCTs) that have used etanercept, either alone with another anti-RA drug such

as methotrexate, with regard to incidence of cancer.
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Data were available from nine separate trials, four sponsored by Wyeth and five

from Amgen. For all trials, individual participant (or patient) data (IPD) were

provided, allowing for IPD meta-analysis. Data are presented in survival format

(time-to-event), allowing for both an IPD survival analysis and traditional meta-

analysis of summary results to be performed.

8.2 Methods

8.2.1 Study protocols

Details of the search strategies, trial selection, study quality assessment and

data extraction are described in Bongartz et al. (2009). This meta-analysis

has followed as far as feasible the study protocols as developed by the project

collaborators.

8.2.2 Statistical methods

The analysis presented is not a formal intention to treat (ITT) analysis. For

an efficacy study, an ITT analysis is regarded as the ’gold standard’ procedure.

For a study focusing on adverse events however, there is an argument that only

those patients who received at least one dose of the drug should be included,

to avoid the inclusion of events in patients who may have been randomised to a

particular treatment but have not actually been treated due to early withdrawal.

As discussed by Higgins et al. eds. (2008), some people argue that it would be

wrong to attribute an adverse event to a treatment that was not received by

the patient.

The risk window has been defined as the date of first dose to the date of final

follow-up (as opposed to the date of last dose) or date of first incident cancer,

whichever occurs first. For many participants the date of last dose is the same

as the date of last follow-up. Rollover into an open-label study has not been

considered at this point.

IPD meta-analyses of the survival data using both a fixed effect (Cox’s Propor-

tional Hazards model) and random effects, based on a Poisson generalized linear

model (GLM) were performed. Such a model is the equivalent of a piecewise
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exponential model (Friedman 1982). The data were stratified by trial in order

to maintain randomisation and explore any potential heterogeneity in the trial

populations.

The fixed effect model allows for an unconstrained baseline (different baseline

cancer survival rates between different trials) whilst assuming the same treat-

ment effect among all trials (Tudur Smith 2005a). Whilst this assumption is

questionable on philosophical grounds, due to variations in demographic char-

acteristics between participants in different trials, in this case there are also

differences between the trials in the treatments given.

Some trials include etanercept alone whilst others include etanercept with an-

other RA drug. There may be some association between cancer and the other

drugs in the trial that are included with etanercept. Hence, a random effects

model (which allows for the possibility of different treatment effects between the

trials) has also been used in the analysis; this approach will allow the detection

(by comparison with the fixed effect model) and incorporation of any statistical

heterogeneity between the trials (Tudur Smith 2005a).

All analyses compare participants receiving etanercept (alone or in combination)

against a comparator, which may be a placebo or a combination of one or more

drugs not including etanercept (with the exception of a sensitivity analysis as

described in Section 8.6.2).

All variations on the basic model (etanercept against no etanercept) have been

performed using the Cox’s Proportional Hazards model. Exposure duration has

been included in the model by adding a time-dependent covariate for treatment

into the model.

The random effects model was conducted using a Poisson GLM, which involved

dividing the risk window into time sections to allow for Poisson modelling of the

number of events in each time period as a Poisson process (Whitehead 1980;

Lindsey 1995; Ma 2003). Ideally, the dataset would be divided into as many time

sections as there are events, in order to maximise the accuracy of the Poisson

regression model and approximate a Cox model. However, due to computational

limitations, this approach was not feasible, and it was decided to divide the risk

window into six periods, ensuring that at least one individual in each of the

nine trials contributed some person-days to the dataset for each period. This

approach enabled the random effects model to be performed.
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The basic model was extended in the analyses by including age and gender into

the model, separately, together, and with an interaction term. Other factors

such as use of concomitant DMARDs, duration of RA and dose of etanercept

have not yet been considered, but may be investigated at a later date.

The major outcome is all-cause malignancy. Although it was intended in the

original protocol to consider lymphoproliferative disorders separately, the sparsity

of incident cancers in this category prevented this (only one case of Hodgkin’s

lymphoma, and one case of large granular lymphocytic (LGL) leukemia were

found). However, a sensitivity analysis excluding basal cell carcinomas (any

site) was performed. Additional sensitivity analyses included exclusion of cancers

diagnosed within 6 weeks (42 days) of receiving the first dose, and cutting off

the trial follow-up at specific time points including 6 months, 1 year, and 2 years.

In addition to the survival analyses, meta-analyses of summary data were per-

formed using the number of events in each trial, regardless of time of occurrence.

This approach necessarily loses the time-to-event element of the survival anal-

ysis, and therefore cannot reflect issues such as the difference in trial duration,

or differences in time to onset of cancer that may be of relevance in addition to

overall event frequency between different treatment arms.

Meta-analyses of the odds ratios (ORs) between treatment arms for the different

trials were pooled using both fixed and random effect(s) models. The Mantel-

Haenszel method was used for the fixed effect model, and the DerSimonian &

Laird method for the random effects model (discussed in Sections 3.3.3 and

3.5.1). Heterogeneity is investigated by use of the chi-squared test based on the

Q statistic of the appropriate model, as well as estimates using the tau-squared

and I-squared statistics (Sections 3.5.1 and 3.9).

With sparsity of data, there are difficulties when using both of these methods as

they are unable to compute pooled ORs when there is a zero value in one or both

treatment arms. Hence, for studies with one zero value for a treatment arm, a

continuity correction has been applied to allow these studies to be included. The

traditional continuity correction of 0.5 to all cells of the relevant study has been

used, but due to concerns in a sparse dataset of effectively adding an extra case

for each study requiring a continuity correction, a smaller continuity correction

of 0.05 has also been used. The continuity correction for sparse data devised

by Sweeting et al. (2004) has also been used (Section 5.2.3). This is based
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on dividing the overall continuity correction (for example, 1, in the case where

both arms receive 0.5) in proportion to the number of participants in each arm.

The studies that did not yield any events are excluded from the meta-analysis.

As well as the OR, the hazard ratio (HR) has been used as a summary statistic

for meta-analysis, again using a continuity correction of 0.5 to allow for the

inclusion of studies with zero events in one arm and excluding trials with no

events.

All analyses were performed using Stata R© version 9.2, with the exception of

the random effects survival model, which was performed using R version 2.5.0.

8.2.3 Fixed effect and random effects models for hazard ratios

Model 1: Fixed treatment effect with no stratification by trial

λ(t) = λ0(t)eβXi (8.1)

where λ is the hazard function, λ0 is the baseline hazard function across all

individuals, t is time and β is the log hazard ratio for the level of covariate X

(in this example treatment) for the ith individual.

Model 2: Fixed treatment effect with stratification by trial (i.e. each

trial has a different baseline hazard function derived from a common

distribution)

λ(t) = λ0j(t)eβXi (8.2)

where λ is the hazard function, λ0j is the baseline hazard function for the jth

trial, t is time and β is the log hazard ratio for the level of covariate X for the

ith individual.
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Model 3: Random treatment effect with stratification by trial (i.e. the

treatment effect varies between trials, derived from a common distri-

bution, in addition to the variation of baseline hazard function between

trials)

λ(t) = λ0j(t)eβjXi (8.3)

where λ is the hazard function λ0j is the baseline hazard function for the jth

trial, t is time, βj is the log hazard ratio for the level of covariate X for the ith

individual in the jth trial and βj ∼ N(β, τ2), where τ2 is the between-study

heterogeneity for the treatment effect.

8.3 Initial data exploration

An ‘event’ in this analysis is defined as a first cancer that is incident during the

study; a recurrence of a previously diagnosed cancer is not included as an event.

Time-to-event is therefore time to first incident cancer; any second incident

cancers are disregarded as it is only time to first incident cancer that is being

considered.

The initial dataset included data from nine trials, with a combined total of 3318

individuals. However, two participants were immediately excluded, one of whom

had never received the allocated treatment and one who was not followed up

after the first dose. Hence, there were 3316 participants contributing person-

days to the dataset. Also, one participant was incorrectly recorded as having

cancer (as a result of having abnormal cervical cytology); this reduced the

number of recorded cancers to 33 from 34.

There were some other anomalies noted in the dataset that did not impact on

the analysis. For example, there were some discrepancies in the Trial Nos. and

Universal Patient ID Nos. that indicated that some patients had been involved

in more than one trial. Two patients receiving placebo were identified in one

trial who had also been allocated to placebo in a previous study also included in

the current meta-analysis. There were also six patients who had been allocated

to placebo in the earlier trial and then went on to be allocated to etanercept

in the subsequent trial. None of these eight patients had an event. Hence, all
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of these patients were included as members of both of these trials. Also, there

were six participants who had been involved in an earlier trial, not included in

the current dataset, four of whom received etanercept in both trials, and two

who received etanercept in the first trial and placebo in the second. Again,

none of these patients had an incident cancer [whilst in the second trial that is

included in the current dataset].

This knowledge of trial transfers provides reassurance that there is no case of

any cancer being counted twice within the dataset, or having been caused by

a treatment given within an earlier trial. However, this duplication of partic-

ipants between trials does call into question independence between trials and

means that the 3316 observations are not generated by 3316 separate individ-

uals. In actuality, the total dataset comprised 3308 individuals, eight of whom

had records from two trials. Due to the small number of transfers between

trials however, all participant records have been included in the analysis as if

they were from different individuals. Nor has etanercept treatment in a study

not being analysed within the current dataset been taken into account.

Table 8.1 shows the distribution of participants across the nine trials, with a

breakdown of treatment arms and number of events in each arm. Note that

for the analyses, the arms were amalgamated into etanercept (alone or in com-

bination with other drugs) as the treatment group and non-etanercept as the

comparator group (this distribution of participants and events is shown in Ta-

ble 8.2). Of the 33 events, only seven (21.2%) occurred in the non-etanercept

comparator groups, while 26 (78.8%) were found in the participants who had

received etanercept. The gender breakdown was 2555 (77.1%) females and 761

(22.9%) males. Mean age across the full dataset was 53 years.

When investigating a survival dataset with so few events, graphical methods of

displaying the dataset (such as Kaplan-Meier plots, or log-log plots) add little

to understanding (so not included).
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Table 8.2: Breakdown of trials by etanercept and comparator (non-
etanercept) arms (% are of total cancers).

Comparator (non-etanercept) Etanercept
Cancer Status Non-cancer Cancer Non-Cancer Cancer

Trial No.
TNR-00102 50 0(0%) 103 0(0%)

0881300 105 0 (0%) 451 2 (6.1%)
0881308 227 1 (3.0%) 444 10(30.3%)
0881309 50 0(0%) 203 1 (3.0%)
160004 44 0(0%) 136 0(0%)
160009 80 0(0%) 153 1(3.0%)
160012 213 4 (12.1%) 405 10 (30.3%)
160014 30 0 (0%) 59 0 (0%)
160029 266 2(6.1%) 264 2(6.1%)

8.4 Primary meta-analyses

8.4.1 Survival models using individual patient data

Table 8.3 shows the results of the survival models applied to this dataset. All

analyses are using a fixed effect model unless stated otherwise. The three

primary models of this analysis are set out in Section 8.2.3.

In an initial model (Model 1, Section 8.2.3), ignoring the effect of the individual

trial (not an appropriate method for a multi-trial analysis but undertaken for

comparison), the pooled HR was 1.56 (95% CI 0.68; 3.59). When including

the effect of the different trials within the model (Model 2, Section 8.2.3), the

pooled HR increased slightly to 1.84 (95% CI 0.79; 4.28). Although the HR is

raised in the etanercept recipients compared to the non-etanercept groups, the

wide CI suggests that this result may be simply due to chance.

Using the random effects model as described above (also set out as Model 3,

Section 8.2.3), the results were very similar, with an HR of 1.81 (95% CI

0.78; 4.22). Using this model, the estimate of between-studies heterogene-

ity was 1.20. Hence, due to the similarity of results between the fixed and

random effect(s) models, as a function of lack of heterogeneity, no additional

random effects models, (or models including treatment by covariate interactions

attempting to explain heterogeneity in treatment effects) were considered.
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In order to determine if etanercept treatment increased risk of cancer as time

progressed, treatment was added into the model as a time-varying covariate,

varying by log(time). The treatment effect did not appear to vary with log(time),

with an HR of 0.97 (95% CI 0.47; 2.01).

8.5 Meta-analyses of summary data

Meta-analyses of summary data cannot encompass the ‘time-to-event’ element

of the IPD analyses, but do provide a useful alternative approach against which

to compare the survival analyses. If the issue of importance is simply the oc-

currence or non-occurrence of an event, and the timing of the event is not

considered of importance, then use of summary data is appropriate.

Using summary data in the form of ORs between the etanercept and comparator

groups, meta-analyses were performed, allowing for the inclusion of single-zero

trials by means of continuity corrections. This approach immediately excluded

the three double-zero studies (studies with no total events). (It has been demon-

strated by Sweeting et al. (2004) that such studies do not add to the overall

analysis.) These were studies TNR-00102, 160004 and 160014. The continu-

ity corrections were applied to studies where there was only one arm with zero

events: studies 0881300, 0881309 and 160009.

Using a continuity correction of 0.5, the OR using a Mantel-Haenszel fixed

effect model was 1.68 (95% CI 0.77; 3.69). When using a smaller magnitude

continuity correction (0.005), the OR increased to 2.04 (95% CI 0.87; 4.83).

This second result may be arguably the more valid as fewer ‘false’ participants

are added with the smaller continuity correction (0.02 per study rather than one

per study). Interestingly, the continuity correction of Sweeting et al. (2004)

produced a greater OR than the 0.5 continuity correction (but less than that

of the 0.005 continuity correction), despite adding the same number of ‘false’

participants to the dataset, due to the overall continuity correction per study

summing to 2 (OR 1.93, 95% CI 0.85; 4.38). The full results of the OR meta-

analyses are set out in Table 8.4. Figure 8.1 shows the forest plot for the

Mantel-Haenszel meta-analysis with a continuity correction of 0.5.

Fiona Warren PhD Thesis 2010 198



T
a

b
le

8
.4

:
R

es
u

lt
s

o
f

m
et

a
-a

n
a

ly
se

s
u

si
n

g
o

d
d

s
ra

ti
o

s
a

s
su

m
m

ar
y

m
ea

su
re

.
M

et
a

-a
n

a
ly

si
s

m
et

h
o

d
E

xc
lu

si
o

n
s

C
o

n
ti

n
u

it
y

co
rr

ec
ti

o
n

C
o

n
ti

n
u

it
y

co
rr

ec
ti

o
n

a
p

p
lie

d
to

O
R

L
C

I
U

C
I

I-
sq

u
ar

ed
%

M
–H

D
ou

b
le

-z
er

o
st

u
d

ie
s

0.
5

S
in

gl
e-

ze
ro

st
u

d
ie

s
1.

68
0.

77
3.

69
0.

0

M
–H

D
ou

b
le

-z
er

o
st

u
d

ie
s

0.
00

5
S

in
gl

e-
ze

ro
st

u
d

ie
s

2.
04

0.
87

4.
83

0.
0

D
&

L
D

ou
b

le
-z

er
o

st
u

d
ie

s
0.

5
S

in
gl

e-
ze

ro
st

u
d

ie
s

1.
50

0.
67

3.
37

0.
0

D
&

L
D

ou
b

le
-z

er
o

st
u

d
ie

s
0.

00
5

S
in

gl
e-

ze
ro

st
u

d
ie

s
1.

63
0.

66
4.

03
0.

0

M
–H

D
ou

b
le

-z
er

o
st

u
d

ie
s

S
S

su
m

to
1

S
in

gl
e-

ze
ro

st
u

d
ie

s
1.

93
0.

85
4.

38
0.

0

D
&

L
D

ou
b

le
-z

er
o

st
u

d
ie

s
S

S
su

m
to

1
S

in
gl

e-
ze

ro
st

u
d

ie
s

1.
71

0.
73

4.
01

0.
0

D
&

L
:

D
er

S
im

on
ia

n
&

L
ai

rd
;

L
C

I:
lo

w
er

co
n

fi
d

en
ce

in
te

rv
al

b
ou

n
d

;
M

–H
:

M
an

te
l–

H
ae

n
sz

el
;

O
R

:
o

d
d

s
ra

ti
o;

S
S

:
S

w
ee

ti
n

g
&

S
u

tt
on

co
n

ti
n

u
it

y
co

rr
ec

ti
on

;
U

C
I:

u
p

p
er

co
n

fi
d

en
ce

in
te

rv
al

b
ou

n
d

.

Fiona Warren PhD Thesis 2010 199



Chapter 8 IPD meta-analysis

Overall  (I−squared = 0.0%, p = 0.869)

160014

160009

0881300

Study ID

0881309

160004

160029

TNR−00102

160012

0881308

1.68 (0.77, 3.69)

. (., .)

1.57 (0.06, 39.06)

1.17 (0.06, 24.52)

OR (95% CI)

0.74 (0.03, 18.55)

. (., .)

1.01 (0.14, 7.21)

. (., .)

1.31 (0.41, 4.24)

5.11 (0.65, 40.19)

100.00

0.00

6.10

7.56

Weight

7.46

0.00

18.55

%

0.00

48.10

12.22

1.68 (0.77, 3.69)

. (., .)

1.57 (0.06, 39.06)

1.17 (0.06, 24.52)

OR (95% CI)

0.74 (0.03, 18.55)

. (., .)

1.01 (0.14, 7.21)

. (., .)

1.31 (0.41, 4.24)

5.11 (0.65, 40.19)

100.00

0.00

6.10

7.56

Weight

7.46

0.00

18.55

%

0.00

48.10

12.22

  
1.0249 1 40.2

Figure 8.1: Forest plot for Mantel–Haenszel meta-analysis of summary
odds ratios using a continuity correction of 0.5 where appropriate.

The results using a random effects DerSimonian & Laird model were very similar

to those of the Mantel–Haenszel model, reflecting the fact that estimates of het-

erogeneity using I-squared were all very small (0.0% in all cases). Furthermore,

the p-values for the chi-squared tests of heterogeneity were all non-significant

(taking 0.1 as the significance level). When using the random effects model, the

tau-squared estimates were also 0.0, indicating no heterogeneity between stud-

ies. However, a different pattern was seen regarding the use of the continuity

corrections with the 0.5 continuity correction yielding the lowest OR and that of

Sweeting et al. (2004) the highest OR. Regardless of the continuity correction

applied, heterogeneity was still not an issue.

A second method for a two-stage IPD analysis was to use the summary HRs

from each study. As it is impossible to calculate a meaningful HR if there is

an arm with zero events, a continuity correction of 0.5 was again applied to

studies with no events in one arm only, whilst studies with no events overall
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were excluded. This approach resulted in an HR of 1.34 (95% CI 0.60; 2.99).

See Figure 8.2 for the associated forest plot.

Overall  (I−squared = 0.0%, p = 0.866)
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Figure 8.2: Forest plot for meta-analysis of summary hazard ratios using
a continuity correction of 0.5 where appropriate.

8.6 Additional analyses

8.6.1 Subgroups

When analysing males and females separately in the dataset, the HR for males

was 2.12 (95% CI 0.46; 9.83), while for females the HR was 1.67 (95% CI

0.60; 4.64).
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8.6.2 Sensitivity analyses

Exclusion of basal cell carcinomas

It was decided to exclude basal cell carcinomas (BCCs) of all sites as part of a

sensitivity analysis. There were nine BCCs in total, seven skin, one lip and one

nose. Of these, three had a second cancer, two of which were also BCCs, with

one skin cancer of unknown cell type. These second cancers were not included

as events, therefore survival time for these individuals was re-calculated as time

to last follow-up. With this revised dataset with only 24 events, the HR in a

model with treatment as the only covariate was now 1.37 (95% CI 0.54; 3.51).

Again, this does not indicate any statistically significant increased risk of cancer

with etanercept treatment.

Exclusion of cancers diagnosed within 6 weeks of first dose

For this analysis, all participants with a first incident cancer diagnosed at less

than 42 days from the first treatment dose were excluded from the dataset,

reducing the number of individual records to 3312. There were only four such

events in total, thus leaving 29 events in the dataset. It was decided to ex-

clude these participants because it was almost certain that their malignancy

was already in development when commencing the trial, also their follow-up

after diagnosis may be curtailed due to their illness; hence, they may be funda-

mentally different from the other participants. With these exclusions, the HR

for cancer incidence in the etanercept group compared to the non-etanercept

group was 1.87 (95% CI 0.75; 4.62).

Censoring follow-up at specific times

In order to avoid the lengthy follow-up times for certain individuals adding undue

weight to the dataset and to investigate whether there are any particular time

periods where etanercept treatment is associated with increased incidence in

cancer, the dataset was censored at three different time points: 6 months, 1

year and 2 years. With a follow-up period of only 6 months, there were only 11

events. The HR for the etanercept group was 1.50 (95% CI 0.38; 5.90). When

censoring the dataset at 1 year, there were 24 events in the dataset. At this

cut-off point the HR for the etanercept group was 2.59 (95% CI 0.87; 7.70),

with a p-value of 0.086. Only one incident cancer occurred after 2 years, hence

cutting off the follow-up at 2 years added little to the analysis.
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Restricting the analysis to etanercept alone compared to placebo

An analysis was performed with the exclusion of participants who had received

etanercept in combination with other drugs, and comparator group participants

who had received drugs other than etanercept (which may also have the poten-

tial to influence cancer incidence). This analysis included data from only five

trials, all of which had two arms, one of etanercept alone and the other with

placebo. There were only seven incident cancers, hence analysis is limited. The

HR of etanercept only compared to placebo was 1.45 (95% CI 0.26; 8.17).

8.7 Discussion

In view of the sparse number of events in this dataset, the analyses have limited

power and any results should be regarded with caution. The main feature of

interest in this dataset is that the risk of cancer is always higher for the treat-

ment group than the comparator group, regardless of the method of analysis.

Whilst the 95% CIs always include 1, this outcome is sufficient to cause concern

regarding the use of etanercept. Only one result came close to being statistically

significant at the 5% level; this was the HR for the IPD meta-analysis of cancers

censored at 1 year, which was 2.59 (95% CI 0.87; 7.70). There are, however,

many caveats against taking this result at face value. It must always be remem-

bered that the participants in this study (in both etanercept and control arms)

are at a higher risk of developing malignancy than the general population, and

that some of the participants in the etanercept arms were receiving other drugs,

while those in the comparator group may have been receiving other drugs or

a placebo. Such discrepancies in treatment may have influenced the results.

However, the comparison of etanercept alone compared to placebo alone was

also non-significant.

There are also many other factors in the dataset that may have confounded

the results. No account was taken of duration of RA, or of concomitant (or

even previous) DMARD therapy. As many cancers have a very long latency

period of development prior to detection through symptoms or screening, it is

possible that many of the cancers in this dataset had been initiated well before

trial commencement. Due to lack of heterogeneity within the dataset, also the

overall sparsity of events, investigation of demographic characteristics such as
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age, ethnic group and smoking status was not considered worthwhile. From

a methodological perspective, one feature of interest was the different pattern

in the ORs when the different continuity corrections were applied to both fixed

effect and random effects model. With the fixed effect model the 0.005 continu-

ity correction produced the highest HR, whilst in the random effects model the

continuity correction of Sweeting et al. (2004) resulted in the highest HR. This

indicates that when using a random effects model the Sweeting et al. (2004)

continuity correction may yield the highest HR. When looking for adverse events,

in the interests of caution, an HR which may be spuriously inflated is preferable

to one that is artificially low. Hence, the continuity correction of Sweeting et

al. (2004) may be the most appropriate.

8.8 Conclusions and potential for further analysis

Whilst no results of statistical significance have been found, there are signals

from the dataset that leave cause for concern regarding the association between

etanercept and cancer incidence. As an outcome, cancer incidence has a long

lead-in time (it can be in existence for a long period of time prior to detection),

is often difficult to detect and diagnose, and has many different factors including

genetic and environmental that influence its occurrence. When using RCTs that

are relatively short in duration as the data source, it is very difficult to generate

adequate data of high quality to investigate this question.

There are many ways in which the investigation of this issue could be extended,

for example:

1. inclusion of data from trials looking at other anti-TNF drugs;

2. inclusion of data from observational studies of anti-TNF drugs and cancer

incidence, if available;

3. analysis of the current dataset using Bayesian methods to incorporate

external data in the form of a prior distribution; or by modelling it ex-

plicitly within an hierarchical model, possibly allowing for potential biases

(Spiegelhalter & Best 2003);

4. incorporation of data regarding anti-TNFs used for other indications;
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5. inclusion of other aspects of the dataset as covariates, such as concomitant

DMARD therapy or duration of RA;

6. analysis of different drug combinations within the treatment and com-

parator groups; and

7. comparison of results with those of summary data meta-analyses using

data extracted from published literature.

Data on this subject are difficult to obtain, therefore it is very important to use

data from all available sources so that any signal from the data can be magnified.

When data are sparse, it is difficult to reach statistical significance, but this does

not indicate that there is nothing of clinical concern in the dataset. Additional

data and analysis could go some way to strengthening evidence, either for or

against an association between cancer incidence and etanercept (or anti-TNF

drugs as a class), which could then impact on clinical decision-making.

The association between anti-TNFs as a therapy for RA and the risk of ma-

lignancy is discussed further in Chapters 9 and 10, using the summary data as

published in Bongartz et al. (2009), and additional summary data from trials

of adalimumab and infliximab. Given the multiple issues of different individual

anti-TNFs within the class of drug, dose effects, and use of additional anti-

rheumatic drugs, a mixed treatment comparison (MTC) approach was used to

investigate these elements of therapy within the framework of RA and anti-TNF

treatment. This allows more detailed investigation of the clinical aspects of the

problem, as well as extending the statistical methodology within the broader

context of adverse events.

8.9 Summary

Meta-analysis methods have been applied to a dataset of 3316 participant

records in nine RCTs of etanercept in people with rheumatoid arthritis. The

outcome of interest was a first incident cancer during the follow-up period of

the trial following the first treatment dose. The main comparison was between

participants who received etanercept, alone or in combination with any other

RA drugs, against those who did not receive etanercept. This comparator group

may have received a placebo or one or more RA drugs not including etanercept

(or any other anti-TNF drug).
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A variety of meta-analysis methods have been applied to this dataset. IPD were

available for all trials, presented as survival (time-to-event) data. Therefore,

it was possible to analyse the data using survival methods whilst taking into

account the fact that the data were from different trials (stratifying the data

by trial). A fixed effect model using Cox’s Proportional Hazards modelling was

used, and additionally a random effects model based on a Poisson generalized

linear model.

Separate analyses for male and female participants were performed, as were

sensitivity analyses excluding basal cell carcinomas, excluding participants with

cancer diagnosed at less than 6 weeks following first treatment, and by censoring

follow-up at specific times.

Also, in addition to this IPD meta-analysis, for comparison purposes, 2-stage

IPD meta-analyses have been performed, using both the odds ratio (OR) and

hazard ratio (HR) as summary measures for each trial. A disadvantage of such

measures is that studies with no events are excluded. A range of continuity

corrections was applied to the OR summary data to enable inclusion of stud-

ies where there were no events in one of the treatment arms, and to assess

robustness of results to the inclusion of such factors.
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9

Use of mixed treatment

comparisons in the context of adverse

events data

9.1 Introduction

Traditional meta-analysis methods (as described in Chapter 3) are useful in sce-

narios where there were only two treatments that required comparison. When

the situation arises where multiple treatments for a specific condition are being

tested, against inactive or standard treatments, such that a network of com-

parisons is created, traditional meta-analysis methods are not adequate for this

situation. Systematic pairwise comparisons for each pair of treatments lack va-

lidity, as the fact that different treatments are compared against each other in

different trials is not accounted for in pairwise meta-analysis. Furthermore, only

direct comparisons are possible using pairwise meta-analysis, with the result that

if two treatments are not used in the same trial their relative treatment effects

cannot be directly compared.

The concept of mixed treatment comparisons (MTCs) was developed to address

such situations. Such MTC methods have been used effectively to investigate

efficacy of multiple treatments for a specific condition and to evaluate different

treatments that are not directly compared within a single trial. An example of
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this is the MTC performed by Cooper et al. (2006), which evaluated nine anti-

thrombotic treatments (eight active treatments plus placebo/no treatment) in

an MTC for efficacy in prevention of strokes in patients with atrial fibrillation.

This MTC analysis also considered adverse events, by investigating the incidence

rate for fatal or major bleeding episodes associated with the different treatments.

This study highlighted the use of MTC analysis where many treatments are not

directly compared against each other; in this example two of the treatments

were compared directly against only one other treatment, while the maximum

number of treatments any individual treatment was compared against was five.

Bearing in mind this precedent for using MTCs with adverse events data, there

is potential to extend the methods further in this area, which is the aim of this

chapter. The individual patient data (IPD) meta-analysis using etanercept as a

therapy for rheumatoid arthritis (RA), with malignancy as the outcome (Chap-

ter 8), is extended in this chapter, by using an MTC analysis to incorporate data

on other anti-TNFs, and to include data regarding other aspects of treatment.

Due to the length of this chapter, an overview is provided here. Section 9.2

sets out the background to MTC methodology, whilst Section 9.3 discusses the

potential for use of MTC methodology in the context of the scenario discussed

in Chapter 8, that of anti-TNF drugs being used in rheumatoid arthritis, with

arising concerns regarding increased risk of malignancy. This is followed by a

specific description of the use of MTC models in this chapter, in Sections 9.4 and

9.5. The methods used to derive the dataset used for the analyses are described

in Section 9.6. Finally, the results are set out and discussed in Sections 9.7 and

9.8. There is a summary of the chapter in Section 9.10. Network diagrams for

all the MTC models used are included at the end of the chapter. The MTC

methodology employed by this chapter is extended in ways that are novel to

adverse events meta-analysis in Chapter 10.

9.2 Mixed treatment comparisons methodology

9.2.1 Baseline methods for mixed treatment comparisons

A detailed description of the use of MTCs has been provided by Lu & Ades

(2004). These authors point out three situations that often create an MTC
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scenario. The first of these is when there is no direct evidence relating an in-

tervention to an outcome (for example, when an intervention is associated with

an outcome in a chain of events, but not with subsequent outcomes in the

chain). The second is when there are direct comparisons for a particular treat-

ment comparison and a specific outcome, but this evidence is not substantial

enough to provide a robust statistical analysis. In this situation, it is desirable

to ‘borrow strength’ from indirect comparisons relating the two treatments, as

described by Higgins & Whitehead (1996). The third situation occurs when

there are multiple treatments and all need to be simultaneously compared or

ranked against each other.

Similarly to direct meta-analyses, an MTC can assume either that all trials have

the same underlying treatment effect (fixed effect (FE) meta-analysis) or that

the true underlying treatment effects for all studies are derived from a common

distribution (random effects (RE)). An alternative way to describe an RE analysis

would be to argue that the underlying treatment effects for all primary studies

are exchangeable, in that none of the primary studies ‘stands out’ from the rest

in any way (discussed further in Section 3.5.1).

Furthermore, an MTC makes the assumption that indirect comparisons of treat-

ments are the same, or from the same distribution, as direct comparisons of the

same treatments. This assumption holds even where no direct head-to-head

comparisons have been conducted between two treatments. This requirement is

in practice difficult to validate. Another assumption relating to the MTC models

is that the heterogeneity parameter for all relative treatment effects is the same,

but this assumption may not be valid if there are certain treatments with more

variability between studies. However, the assumption can be relaxed, if there

are clinical reasons for doing so (e.g. a specific treatment may be more variable

in its effects across different populations). It would be possible to investigate

this assumption for each dataset, but Higgins & Whitehead (1996) have stated

that they believe it unlikely that investigation would yield sufficient evidence to

reject this assumption.

The basic premise of an MTC is as follows (Lu & Ades 2004): suppose there

are three treatments, A, B and C, and θAB is the true underlying treatment

effect such as a log odds ratio (OR) between two treatments, A relative to B,

and θ̂AB is the estimated log OR for Treatment A compared to Treatment B.

This treatment effect θ̂AB is directly estimated from the trials that include both
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Treatment A and Treatment B. However, if there are also in existence trials

that compare A against C, and B against C, the value of θ̂AB can be indirectly

estimated (denoted as θ̃AB) by using the result:

θ̃AB = θ̂AC − θ̂BC . (9.1)

However, the indirect estimate of Treatment A against treatment B results

in higher degree of uncertainty about the estimated parameter compared to a

direct estimate. We have (subject to certain caveats such as lack of correlation

between trial groups and the estimates of treatment effect having the same

precision):

Var(θ̃AB) = Var(θ̂AC) + Var(θ̂BC) > Var(θ̂AB). (9.2)

This implies that if there is positive correlation between the direct estimates of

treatment effect, for example between θ̂AC and θ̂BC in Equation 9.2, this can

be used in an MTC model to reduce the uncertainty in the indirect estimate,

θ̃AB.

If there are two treatments to be compared, a full Bayesian two-level hierarchical

model can be written, where the estimated parameter is on the log OR scale

(Lu & Ades 2004, citing Smith et al. 1995). We have:

rTi ∼ Bin(pTi , n
T
i ), (9.3)

and

rCi ∼ Bin(pCi , n
C
i ), (9.4)

where rTi is the number of events in the treatment group, rCi is the number of

events in the control group, nTi is the number of participants in the treatment

group, nCi is the number of participants in the control group and i indexes the

trials. Then:

logit(pTi ) = µi + δi/2, (9.5)
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logit(pCi ) = µi − δi/2, (9.6)

and

θi ≡ δi ∼ Normal(d, τ2), (9.7)

where µi is the average log odds (on the logit scale) for an event in trial i, δi is

the estimated log OR for the treatment group relative to the control group for

study i (and is equivalent to θ̂ in Equations 9.1–9.2) and d is the pooled mean

treatment effect for treatment relative to control, pooled across all studies, and

τ2 refers to the between-studies variance for log OR. All that is now required

to apply this model in Bayesian software such as WinBUGS is the setting of a

prior distribution for the stochastic parameters µi, d and τ2.

9.2.2 Extension of mixed treatment comparison model

This model can be extended to cases where there are K treatments. If Treat-

ment 1 is used as the baseline, then:

rik ∼ Bin(pik, nik), (9.8)

and:

logit(pi1) = µi − δi2/K − δi3/K − ...− δiK/K, (9.9)

and:

logit(pi2) = µi + (K − 1)δi2/K − δi3/K − ...− δiK/K, (9.10)

and so forth until:

logit(piK) = µi − δi2/K − δi3/K − ...+ (K − 1)δiK/K. (9.11)

The values for the δiK values for each treatment i2 to iK are all distributed
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normally, with a generic mean value for δK , dk, d1 = 0 and a variance Σ:

(δi2, ..., δiK)T ∼ Normal(d,Σ). (9.12)

In this case, the values of d2–dK are the population mean treatment effects

relative to the baseline and Σ is the (K − 1) × (K − 1) variance–covariance

matrix.

An additional advantage when using an RE model is that the correlation between

trial arms in trials with three or more arms, and hence three or more distinct

treatments, can be accounted for (Higgins & Whitehead 1996). In such a trial,

the estimates involving common arms will not be independent. If it is assumed

that heterogeneity parameters for each relative treatment effect are equal, then

due to the non-independence of trial arms, the marginal treatment effects will

be represented by a bivariate normal distribution. Using an example where

there are three treatments, A, B and C, the relative treatment effects can be

designated θAB, θAC and θBC . For each study, each relative treatment effect

is distributed normally with a mean value specific to that treatment and with a

common heterogeneity parameter, τ2. For example, for treatment θBC ,

θBCi ∼ Normal(µBC , τ2), (9.13)

where i indexes an individual study.

To connect Equation 9.13 with Equations 9.9–9.11:

θBCi ≡ δi2 − δi3, (9.14)

where Treatment B is equivalent to Treatment 2 and Treatment C is equivalent

to Treatment 3.

Also

µBC = µAB − µAC , (9.15)

hence the covariance between any two θi values will be τ2/2, by using a standard

result for covariance. The resulting bivariate normal distribution for two of the

three relative treatments, θAB and θAC is:
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(
θABi

θACi

)
∼ N

((
µAB

µAC

)
,

(
τ2 τ2/2
τ2/2 τ2

))
. (9.16)

With this result, the remaining distribution of treatment θBC is defined. These

results can then be used to account for correlation between arms in the same

trial. The methodology of MTCs is extended further in Section 9.4, where the

specific methods used within the analyses conducted within this chapter are

discussed.

It is important to note that studies with only one treatment group should be

excluded from an MTC (Lu & Ades 2004). As in the case of a meta-analysis

comparing only two treatment arms, such studies do not include within them-

selves an estimate of comparison between groups and cannot fulfil the criteria

required for fixed or random effect(s) among studies with more than one group.

9.2.3 Discussion of graphical networks for mixed treatment comparison

analyses

The graphical networks that are formed for the purpose of MTC analysis have

been discussed in detail by Salanti et al. (2008). These networks facilitate the

use of an MTC meta-analysis. They are constructed by creating a graph, with

each treatment forming a node of the graph. Treatments are connected when

there is a primary study directly comparing the two treatments. If there are any

treatments not directly compared with any other treatment within the network,

then this treatment is not connected to the rest of the network and cannot

be included in an MTC. A connected MTC network diagram ensures that the

randomisation within the primary studies is maintained, whilst allowing inclusion

of all available comparisons between treatments (Cooper et al. 2006).

The number of primary studies directly comparing any two treatments can also

be noted in the network (Salanti et al. 2008). Treatments may also be combined

to ‘collapse’ the number of nodes, where this is clinically reasonable, for example

by combining drugs of the same pharmacological class.

These authors point out two extreme styles of network layout, one where all

treatments are compared against a common comparator, but not against each

other, resulting in a star pattern. At the other extreme the graph is fully
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connected, with all treatments compared against all others. Networks may be

very complex, usually based on the number of treatments. There may also be

asymmetries in the network, due to the fact that different treatments may be

more heavily represented than others, and certain comparisons may occur more

frequently within trials than others.

Of interest in the field of both efficacy and adverse events, direct comparisons

between active treatments may be avoided, as pharmaceutical companies may

have concerns regarding direct comparisons with a competitor treatment. Lack

of direct comparisons results in increased difficulty in determining which treat-

ment is preferable. The authors conclude that awareness of the geometry of

a treatment network can inform on whether the correct data are available for

decision-making in each situation, and it is particularly important to be aware

when there is no direct evidence for clinically important comparisons.

The MTC networks used in this chapter are set out in Section 9.11.

9.2.4 Further discussion of mixed treatment comparison analyses

Additional discussion of MTC analyses in the context of making evidence-based

decisions has been provided by Caldwell et al. (2005). These authors point

out that a situation may arise where direct evidence is inconclusive but indirect

evidence is not [resulting in a situation where it is unclear whether to base a

decision on the direct or indirect evidence]. Also, the numbers of direct and

indirect comparisons increases as the number of individual treatments rises. In

the light of these situations, it is sensible to combine both direct and indirect

comparisons in one model.

A potential way of conceptualising the assumptions of an MTC is to view all

trials as having included all treatments, but for each trial the majority of treat-

ments were lost at random (Caldwell et al. 2005). For a fixed effect model it can

then be assumed that for all treatment effects comparing one trial to another,

the effect is the same for all studies. The analogous assumption for a random

effects model is that each relative treatment effect is derived from a common

distribution for all trials. These assumptions are similar to those for a standard

pairwise meta-analysis, with the subtle distinction that the assumption is con-

sidered to hold for all trials and all treatments, regardless of which treatments

that trial actually did include.
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In a decision-making context, it would be helpful to consider whether all trials

should be used, for example if a decision is to be applied across a wide range

of patient groups, or if a subgroup of trials, related to a specific patient group,

should be included in an MTC. When judging which trials are to be included

in an MTC, it is unlikely that assumptions relating to an MTC could be as-

sessed statistically, hence clinical judgement may be required when deciding

which studies to combine. If studies are included inappropriately, this may add

heterogeneity to the MTC. It is also assumed for an MTC that the outcome

measures are on an additive scale such as log OR or risk difference.

This section has provided an overview of MTC models. Each model used in the

example discussed below is set out in detail in Section 9.5.

9.3 Mixed treatment comparisons used to investigate anti-

TNF treatments in rheumatoid arthritis and their

association with malignancy

The IPD analysis of patients with RA patients using etanercept (see Chapter 8)

generated further questions about how the use of anti-TNFs may impact on risk

of malignancy in users with RA. Interest centres on the potential effect of each

individual drug, and on the possible effects of anti-TNFs in general.

Besides etanercept, the two main anti-TNFs used in RA are adalimumab and

infliximab. Although trials have been performed using both of these drugs, the

data are not available on an individual patient basis, with details of time to

malignancy for each patient. Rather, the data are only available in aggregate

form, with numbers of malignancies for each arm of a trial. Furthermore, the

anti-TNFs are trialled against only placebo or active disease modifying anti-

rheumatic drugs (DMARDs) as a comparison group; there are no trials that

directly compare two or more different anti-TNFs.

There are several areas of interest in investigating the potential association of

anti-TNFs with the adverse event of malignancy, listed below.

1. Does use of anti-TNF drugs as a class by RA patients have an association

with malignancy?
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2. Of the three anti-TNFs under consideration, etanercept, adalimumab and

infliximab, are there any with a lower or higher risk than the others?

3. Does the use of anti-TNFs in conjunction with DMARDs influence ma-

lignancy risk?

4. Is there any relationship between dose of anti-TNF and risk of malignancy?

These queries require the data to be analysed in several ways to elicit the max-

imum information from the dataset. One method by which these questions can

be addressed is through the use of MTCs, described above. The use of MTCs

is particularly appropriate in this situation as we wish to make comparisons

between different anti-TNFs that are not compared directly within a trial. How-

ever, there are certain methodological issues, relevant to this dataset, that can

also be investigated by means of this example. These issues, set out below, are

particularly pertinent to adverse events, but could be applied to any situation

with sparse events.

1. Do MTC analyses with fewer treatment nodes (i.e. the same data but

with treatments combined into fewer nodes) result in narrower confidence

intervals?

2. Is there a level of separation of treatments at which the confidence inter-

vals become excessively wide, indicating a very high degree of uncertainty?

3. What degree of treatment combination facilitates the ‘best’ use of data,

in terms of deriving clinically useful outcomes counterbalanced against

statistical uncertainty?

4. Is there a level of treatment separation (creating a model with increasingly

narrow definitions of treatments, and hence increasing numbers of nodes,

as opposed to combining treatments into fewer nodes) at which the MTC

becomes impossible to fit?

These issues are addressed with regard to the motivating example of anti-TNF

drugs and malignancy in Sections 9.7 and 9.8. The use of hierarchical modelling,

for example with reference to issues regarding dose, is included in Chapter 10.
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9.4 Statistical methods 1: meta-analysis models including

mixed treatment comparisons

9.4.1 Outline of models

Given that there are several aspects of data analysis, as set out in Section 9.3,

requiring both direct (for example within one study with different dose regimes

for the same anti-TNF) and indirect (for example between studies using different

anti-TNFs) comparisons, it was decided to use MTC methods, as described in

Section 9.2.

The models used in this study are described by Ades et al. (2007)1, and include:

1. A. Fixed effect model;

2. B. Random effects model; and

3. C. Random effects model with correlation for arms within same trial.

These models are discussed below. Extensions to these models are the subject

of Chapter 10.

9.4.2 A. Fixed effect model

In this model, no account is taken for correlation between multiple arms in the

same trial, i.e. all trial arms are considered independent.

The basic FE model is as follows:

ri ∼ Binomial(pi, ni), (9.17)

where ri refers to the number of events for each trial arm (i) denoting the

datapoint, in this case based on a trial arm, pi is the probability of a malignancy

in the ith trial arm, and ni is the number of participants in the ith trial arm.

1Ades et al. (2007). Introduction to mixed treatment comparisons. Available online
[February 2010] at: https://www.bris.ac.uk/cobm/research/mpes/mtc.html
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The logit of pi is given by:

logit(pi) = µs,i + dt − db, (9.18)

where µs,i refers to the study level log odds of an event, for the study s to which

arm i belongs, while dt is the treatment effect (log OR) for the treatment t, and

db is the treatment effect for the baseline treatment (e.g. a placebo or standard

treatment) in that study (both compared to the baseline treatment). When

considering the study arms receiving the baseline treatment for a particular

study, µs,i is the log odds of an event for the baseline group.

The next stage of the analysis is to calculate the log ORs for each two-treatment

comparison, and then to determine the probability for each treatment of being

the ‘best’ or ‘worst’. Note that where the outcome of interest is an adverse

event, the ‘best’ treatment has the smallest treatment effect, and the ‘worst’

treatment has the largest treatment effect.

This is achieved by first determining the absolute log odds of malignancy for the

baseline treatment, taking the mean value for µ1, the log odds of an event for

the baseline treatment, denoted Treatment 1. This can then be averaged across

the total number of studies where Treatment 1 is used. For each treatment of

interest (non-baseline treatment), the logit of the treatment effect Tk is given

by:

logit(Tk) = average treatment effect for baseline treatment + dk, (9.19)

where the treatments are indexed by k.

Having determined the absolute treatment effects for each treatment, these

can be ranked according to magnitude, and the probabilities of being ‘best’ or

‘worst’ calculated across all iterations of the WinBUGS model.

Using the values for the log ORs (dk) for each treatment k compared to the

baseline treatment, it is then possible to calculate the log ORs for each pairwise

combination of treatments, simply by subtracting the relevant log ORs for each

treatment compared to the baseline.

To implement this model in WinBUGS, a prior distribution is required for the µj

parameters, which refers to the study-level effect (odds of an event in the base-

Fiona Warren PhD Thesis 2010 218



Chapter 9 MTC for adverse events data

line arm), where the study is indexed by j; a vague distribution is appropriate,

for example:

µj ∼ Normal(0, 10 000). (9.20)

A prior distribution is also needed for the log ORs for each treatment effect,

dk; for d1, the treatment effect for the baseline treatment, the log OR is set to

0, as this is the reference treatment by which all the others are evaluated. For

example:

dk ∼ Normal(0, 1000), (9.21)

where k indexes the treatments.

Another feature of this model is the ability to calculate the deviance for each

datapoint, which can then be summed and compared to the total number of

datapoints to provide an evaluation of the goodness of fit of the model. The

sum of the deviance complements the deviance information criterion (DIC) when

assessing model fit, the DIC being useful in model comparison, whilst the sum

of the deviance can point to an absolute goodness of fit. (The DIC is discussed

further in Section 4.4.1.)

In this case, the deviance residuals for each datapoint i are given by:

r̂i = p̂i × ni. (9.22)

These can then be used to calculate the deviance for each datapoint, on the

binomial distribution (based on McCullagh & Nelder (1989):

deviancei = 2×(ri×(log(ri)− log(r̂i))+(ni−ri)×(log(ni−ri)− log(ni− r̂i))).
(9.23)

These deviances can then be summed to give the overall sum of deviance.

9.4.3 B. Random effects model

The FE model makes the assumption that the underlying treatment effect for

each individual treatment remains the same across all studies. Where this as-

sumption is not considered appropriate, a random effects model is often used
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instead. The assumption for an RE model is that all the treatment effects are

derived from a common distribution and hence are not automatically the same.

The RE model can be derived very easily from the FE model.

As before, the number of events ri are distributed binomially for each datapoint,

i:

ri ∼ Binomial(pi, ni). (9.24)

The logit of pi is as follows for the baseline treatment:

logit(pi) = µs,i, (9.25)

and for the non-baseline treatments:

logit(pi) = µs,i + δi. (9.26)

Hence, as for the FE model, µs,i refers to the study level log odds of malignancy

for the baseline group. For the non-baseline treatment, a random quantity, δi

is added to µs,i. This quantity δi is distributed as follows:

δi ∼ Normal(mdi, τ2), (9.27)

and:

mdi = dt,i − db,i, (9.28)

where dt,i refers to the log odds of an event in the treatment arm for study i,

and db,i refers to the log odds of an event in the baseline arm for study i.

Prior distributions are required for the µj parameters, where j indexes the study.

As previously a vague prior is appropriate:

µj ∼ Normal(0, 10 000). (9.29)

A prior distribution is also required for the value of τ pertaining to the normal

distribution for δi:

τ ∼ Uniform(0, 2). (9.30)
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Prior distributions on the pooled (across treatments) log ORs (dk values) are as

for the FE Model described above. The other elements of the RE model reflect

the FE model, including the calculation of absolute treatment effects, rankings

and deviance calculations.

9.4.4 C. Random effects model with correlation for arms within same trial

The RE model described above does not make any provision for the fact that in

trials with three or more arms, the arms themselves will not be independent from

one another. Therefore, this non-independence should be accounted for within

the MTC model. This method is described by Ades et al. (2007); (Footnote 1,

page 217).

The following method was used to adjust for non-independence in multi-arm

trials. The binomial likelihood is described as follows, for each study and trial

arm:

ri,k ∼ Binomial(pi,ti,k , ni,k), (9.31)

where number of events r is indexed by study i and study arm k, probability of

an event p is indexed by study and treatment t corresponding to trial i arm k,

and number of participants is indexed by study i and study arm k.

For all trials, the adjustment for the baseline treatment arm with itself wi,1, was

set to equal 0. The log OR for the baseline treatment (arm 1) in all trials was

also set to equal 0.

δi,ti,1 = 0. (9.32)

The values of the log ORs for each trial can then be set for the non-baseline

trial arms across all studies as follows:

δi,ti,k ∼ Normal(mdi,ti,k , τ
2
i,ti,k

), (9.33)

mdi,ti,k = dti,k − dti,1 + swi,k, (9.34)
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τ2
i,ti,k

= τ2 × 2× (K − 1)/K. (9.35)

In the above equations, K is the total number of arms, d is the mean underlying

log OR for each treatment dt (indexed by study i and arm k), where d0 = 0, and

md is the mean underlying log OR for each study i, and the specific treatment

arm ti,k within that study. In a similar vein, τ2
i,ti,k

refers to the variance for each

study-level underlying log OR (md).

For each non-baseline treatment arm, the adjustment w is calculated as follows:

wi,k = (δi,ti,k − dti,k + dti,1), (9.36)

with w1,1 = 0, and then the cumulative adjustment sw across trial arms within

a trial is calculated as follows:

swi,k =

k∑
k=1

wi

(K − 1)
. (9.37)

Priors are now required for the distributions of baseline parameters, again, vague

distributions are appropriate, for example:

µi ∼ Normal(0, 10 000), (9.38)

d1 = 0, (9.39)

dk ∼ Normal(0, 10 000), (9.40)

τ ∼ Uniform(0, 2), (9.41)

where dk is the treatment log OR compared to the baseline treatment d1.

As in the previous models, deviance residuals can be calculated across all data-

points, but in this model the deviances need to be summed across the individual

trial arms, then summed across trials, to provide the final overall sum of de-

viances.

Once the model is completed, the log ORs for each pairwise comparison of

treatments and the ‘best’ and ‘worst’ rankings can be carried out as in the

previous models.
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9.4.5 Summary of mixed treatment comparison models

The MTC models described above are summarised below.

1. Fixed effect model: all treatment effects for individual treatments across

studies are the same; no account of correlation between multiple arms in

the same trial is made.

2. Random effects model: all treatment effects for individual treatments

across studies are derived from the same underlying distribution, hence

any observed differences are due to random error.

3. Random effects model with correlation across multiple treatment arms:

all treatment effects for individual treatments across studies are derived

from the same underlying distribution, hence any observed differences are

due to random error; correlation between multiple arms is accounted for.

In the list above, a ‘treatment’ is considered to be a specific combination of

variables that create an overall treatment regime, but the included variables may

change across MTC models. For example, in Models 2a and 2b below (Sec-

tion 9.5.1, Table 9.1) a ‘treatment’ refers to the specific anti-TNF received.

In Models 5a and 5b, the ‘treatment’ refers to the specific anti-TNF, whether

or not there is concomitant disease-modifying anti-rheumatic drug (DMARD)

therapy, and the dose of the specific anti-TNF (at three levels). Hence, the defi-

nition of a ‘treatment’ changes across models and is more detailed in Models 5a

and 5b compared to Models 2a and 2b.

Extended models including hierarchical modelling, with and without constraints,

are considered in Chapter 10.

9.4.6 Implementation using WinBUGS

All models were implemented using WinBUGS 1.4. Three chains with different

initial values were used for each model (unless otherwise stated), with assess-

ment for convergence using the Brooks-Gelman-Rubin method (Brooks & Gel-

man 1998), as well as visual inspection of the trace. Convergence was confirmed

prior to the selection of an adequate burn-in period which was always at least

10 000 iterations. Following burn-in at least 50 000 iterations were performed

to provide the results for each model.
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Prior distributions are as described in Sections 9.4.2–9.4.4. For the prior distri-

bution on the dk parameter, a normal distribution centred on 0, with a variance

of 1000 was used for the models with no correlation by arm, or correlation across

two arms only, whilst the variance was 10 000 for models with correlation across

three or more arms.

9.5 Statistical methods 2: construction of mixed treatment

comparison networks

9.5.1 Initial definition of required networks

Multiple MTC meta-analyses would be required due to the nature of the ques-

tions being asked; different methods of combining data within trials would cre-

ate different treatment nodes in an MTC network and hence allow different

treatments to be compared. Table 9.1 sets out the different MTC models, in-

cluding information on whether the anti-TNFs would be considered individually

or combined, whether the presence of an additional DMARD was included in

the model, whether dose level was considered and whether the control group

(non-anti-TNF group) was taken as placebo only with placebo plus additional

DMARD as a separate treatment in the MTC (resulting in two non-anti-TNF

treatment nodes), or placebo with or without DMARD was considered as one

treatment in the MTC.

Dose level was recorded according to the classification set out by Leombruno et

al. (2008). Dosage regimes varied between studies, and it was decided to classify

dose according to total weekly dose. For example, adalimumab administered at

40mg once weekly would be considered as recommended dose, as would 20mg

administered twice weekly. This approach was used to avoid ‘overstretching’

already ‘thin’ data into a larger number of treatment nodes in the MTC model.

To further clarify the terminology used in Table 9.1, in the column headed ‘Anti-

TNFs’ for Model 1a/b only, the anti-TNFs are combined across the studies to

give a basic meta-analysis of anti-TNF against non-anti-TNF controls. In all

other models, the three anti-TNFs are treated as separate nodes across the

MTC.
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Table 9.1: Mixed treatment comparison models (for 13 studies with a
total of 44 treatment arms when uncombined).

MTC
model
number

Anti-
TNFs

Other
DMARD

Dose Control No.
arms

No. treat-
ment
nodes

Potential
no. treat-
ment
nodes

1a Comb No No Comb 26 2 2

1b Comb No No P/D 26 3 3

2a Indiv No No Comb 26 4 4

2b Indiv No No P/D 26 4 5

3b Indiv P/D No P/D 29 7 8

4a Indiv No Yes Comb 35 8 10

4b Indiv No Yes P/D 35 9 11

5a Indiv P/D Yes Comb 38 12 19

5b Indiv P/D Yes P/D 38 13 20
Comb: combined; Indiv: individual; P/D: Placebo/DMARD.

For the column headed ‘Other DMARD’, a ‘No’ in this column indicates that it

is not considered within the MTC nodes whether an anti-TNF is administered

with or without concomitant DMARD therapy. For example, adalimumab alone

would be combined with adalimumab plus methotrexate within the same node.

Alternatively P/D indicates that an anti-TNF administered with placebo (or

no other active treatment) would be considered as a different treatment node

compared to an anti-TNF administered with a DMARD.

The Dose column indicates whether dose is included when determining the MTC

nodes; a Yes indicates that nodes are defined by dose as well as drug(s). The

Control column indicates whether the non-anti-TNF treatments are combined

across studies into one node, regardless of whether the non-anti-TNF group

includes a DMARD or is placebo only (note that for all studies there is only one

non-anti-TNF node). A ‘Combined’ entry in this column indicates that DMARD

and non-active controls are combined into one, while a ‘P/D’ entry indicates

that placebo and DMARD are separate nodes.

The number of arms is the total number of treatment arms (and hence dat-

apoints) across the entire dataset of 13 trials, while the number of treatment

nodes refers to the number of nodes within each MTC model; clearly this quan-

tity increases as the complexity of the MTC increases. The potential number

of treatment nodes refers to the maximum number of nodes that would exist

if each potential treatment node was in existence. The maximum number of

treatment nodes possible would only occur if each anti-TNF was present with
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and without concomitant DMARD therapy, and present at all three dose levels

for both of these treatment types. In practice however, the maximum number of

treatment nodes are not present when DMARD therapy and/or dose are taken

into account in the MTC.

All of the models set out in Table 9.1 can be analysed using the FE and RE

models discussed above. The hierarchical models used in these analyses (see

Chapter 10) also use the baseline Models 1a–5b as described in Table 9.1.

The ‘goodness of fit’ of these models is assesed by using the sum of resid-

ual deviance (Section 9.4.2), as well as the DIC and pD values, discussed in

Section 4.4.1.

9.5.2 Detailed model descriptions

From Table 9.1, it is evident that the extracted data can be analysed at several

levels of combination of the data across studies. Increasingly complex models

allow the investigation of increasingly specific treatments and the comparisons

between them. However, with sparse data such as in this case, creating a

complex model with increasingly specific treatments means that the sparse data

are spread more ‘thinly’ across the treatment nodes, with associated reduced

power, increased uncertainty in point estimates, and possibility of the model

failing to fit. The separate models are discussed below.

Model 1a: All anti-TNFs combined against all non-anti-TNF controls

By combining all three anti-TNFs, regardless of dose or any additional DMARD

and comparing this treatment arm against any non-anti-TNF arm (either a

placebo or DMARD control), each trial is reduced to two arms, resulting in 26

arms in total. (All MTC diagrams for all models presented in this chapter are

shown in Figures 9.2 to 9.9, presented at the end of the chapter. See Figure 9.2

for Models 1a and 1b.)

There are potentially two treatment nodes, which is the minimum number of

treatments required for an MTC in order to provide at least one treatment

comparison. In this MTC, all studies have at least one anti-TNF arm and at

least one non-anti-TNF arm, therefore all studies can theoretically be included

within all MTC networks.
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Studies with zero events have been excluded from the MTC, as these are thought

not to contribute to the overall estimates, considering the work of Sweeting et

al. (2004), discussed in Section 5.2.4. There were six studies with zero events

in one of the two arms; interestingly, the arm with zero events was the control

arm across all six studies.

Model 1b: All anti-TNFs combined against placebo only or DMARD

controls

As for Level 1a, there were in this case 26 arms, potentially with three treatment

nodes and in actuality there were three treatment nodes.

Model 2a: All individual anti-TNFs against all non-anti-TNF controls

At this level there were potentially four treatment arms, and inevitably four

treatment arms existed as there were three anti-TNFs and each was compared

against non-anti-TNF controls (Figure 9.3). As none of the studies included

more than one anti-TNF it was impossible to have ’cycles’ within the MTC

network (or alternatively to have more than two arms per trial). Hence, the

MTC network resembles a ‘star’ in the classification developed by Salanti et

al. (2008).

Model 2b: All individual anti-TNFs against all placebo only or DMARD

controls

In this model (Figure 9.4) there were potentially five arms and in total five

arms. In this case, the network was more widely spread and less connected,

as the infliximab trials were connected only to DMARD controls and not to

placebo-only controls.

Model 3b: All individual anti-TNFs with or without additional DMARD

against placebo only or DMARD controls

At this level the models become potentially more complex (Figure 9.5). For

the first time there are several studies with potentially three study arms. This

would include a control arm, a treatment arm without additional DMARD and

a treatment arm with additional DMARD. There were no studies that had more

than one non-anti-TNF arm, and, as the anti-TNF arms were being considered

alone or with an additional DMARD, it was considered appropriate to separate

the placebo controls from the DMARD controls for this model (hence there is

no Model 3a). The MTC network now becomes more complex with two cycles
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of three treatment nodes that are all interconnected. Due to the fact that there

are three study arms for two trials in this model, for the first time there is the

potential for a comparison with 0 events but this does not happen. There is,

however, one comparison deriving data from two trials where one trial has zero

events within this comparison. The potential number of treatment nodes is not

achieved due to the fact that one anti-TNF (infliximab) is only administered in

the presence of another DMARD (methotrexate in both cases).

For all models where there are three or more treatment arms within the same

study, the correlation between multiple arms in the same trial is included in the

model.

Model 4a: All individual anti-TNFs divided by dose level against all

controls

Each anti-TNF is potentially divided into three dose levels, recommended, low

and high (Figure 9.6). In fact, only adalimumab was present at all three doses,

with etanercept present at recommended and low doses, and infliximab present

at recommended and high doses. Hence, there were in actuality eight treatment

nodes, with a potential for ten. Despite there being three trials with three arms,

there were no comparisons with zero events for this model, although there were

six distinct comparisons where one of the trials with data for this comparison

included zero events.

Model 4b: All individual anti-TNFs divided by dose level against placebo

only or DMARD controls

For this model there is an additional treatment node compared to Model 4a.

This has the effect of making the network more complex (Figure 9.7), and for

the first time the model breaks the studies down into a sufficiently dispersed

format to allow the presence of a comparison with only one study and zero

events within that comparison. This comparison is adalimumab at low dose

against DMARD. There are also five other comparisons where one trial has zero

events within that comparison. It is at this level, where dose is included within

the dataset and the controls are separated into active and inactive that the

sparsity of the events becomes a point of concern in the analysis.
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Model 5a: All individual anti-TNFs with or without individual DMARD

and divided by dose level against all controls

At this level, the treatment nodes are specified by both dose and additional

DMARD, resulting in a model with the highest degree of complexity, the greatest

number of treatment nodes and potentially the greatest sparsity of data as the

available events are divided between a larger number of treatment nodes (Figure

9.8). In this model there are 12 treatments with a potential of 19 treatments.

Despite the control in this model being either placebo only or DMARD only,

there are two treatment comparisons with zero events, where data are available

from one trial only. Also, in five additional comparisons, there is one study with

zero events.

Model 5b: All individual anti-TNFs with or without individual DMARD

divided by dose level against placebo only or DMARD controls

For this model (Figure 9.9) the control groups are divided into placebo only

and DMARD only. This division results in 13 actual treatments with a total of

20 potential treatments. The number of comparisons with zero events is two,

as for Model 5a. There are again five comparisons where one trial of the total

number has zero events.

9.6 Dataset creation

9.6.1 Data sources

The aggregate data from anti-TNF trials with malignancy information were

gathered from earlier reviews.

The study by Bongartz et al. (2009) provided data from nine etanercept trials,

eight of which were published (either as a journal paper or an abstract) and one

of which was unpublished. This publication is the subject of the IPD analysis

discussed in Chapter 8.

The more recent meta-analysis on anti-TNFs by Leombruno et al. (2008) also

provided data on seven studies on etanercept, all except one (Keystone et

al. 2004a) of which is included in Bongartz et al. (2009). Hence, there were

potentially ten primary trials regarding etanercept identified.
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The other meta-analysis by Bongartz et al. (2006) included data on five pub-

lished studies on adalimumab and four on infliximab. The meta-analysis by

Leombruno et al. (2008) also provided data on six adalimumab studies, one of

which (Breedveld et al. 2006) was not included in the previous meta-analysis

by Bongartz et al. (2006). Also in Leombruno et al. (2008) were data from five

studies using infliximab, only one of which (Abe et al. 2006; cited by Leom-

bruno et al. 2008) was not included by Bongartz et al. (2006), either as a cited

reference or as a later publication.

Hence, in total there were potentially six studies with data on adalimumab, and

five for infliximab.

9.6.2 Data selection

Two studies included a design where participants’ treatment was allowed to be

altered at a certain point in the trial. These studies were Keystone et al. (2004a)

which concerned etanercept and Westhovens et al. (2006) which concerned

infliximab. From the available data (derived from the original reference), it

was not always possible to determine at which point during the trial or what

treatment a participant was receiving when a malignancy occurred, making it

impossible to assign a treatment to the event. It was therefore decided to

exclude these studies to avoid incorrect classification of malignancies.

It was also decided to exclude from the meta-analyses all studies that did not

include a single malignancy case across all treatment arms. These studies would

not contribute meaningful information to the analysis, (due to lack of a point

estimate for the study, as the analyses were being conducted on the OR scale)

and their exclusion avoided difficulties in calculating confidence intervals for

these studies. These studies with zero overall events were, for etanercept, study

TNR 00102 (unpublished; cited in Bongartz et al. 2009), Moreland et al. (1997)

and Weinblatt et al. (1999); for adalimumab, Van de Putte et al. (2003); and

for infliximab, Maini et al. (1998) and Abe et al. (2006). (The data regarding

the lack of events was derived from the reviews, Bongartz et al. 2006; 2009;

and Leombruno et al. 2008). All other studies included at least one event in at

least one arm.

A risk difference scale would allow the calculation of a point estimate for studies

with zero events, but due to low baseline risk, a relative scale would be better
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placed to demonstrate any potential signal from the data. Hence, it was decided

to use the OR scale, with exclusion of studies with zero events. This is in

accordance with the work of Sweeting et al. (2004) which indicated that studies

with zero events do not contribute to the overall dataset for a meta-analysis

(discussed in Section 5.2.4).

This resulted in an overall set of primary studies that included data from six

studies involving etanercept, five involving adalimumab and two involving inflix-

imab. All studies were conducted using a placebo or a DMARD that was not

an anti-TNF for the comparison group. Some studies also used different doses

of anti-TNFs, and this aspect of treatment was included in some of the MTC

models.

9.6.3 Data extraction

Throughout the data extraction process, to promote simplicity and ease of data

extraction and to reduce the number of sources used, data were extracted from

a review, with a more detailed examination of cases where there were discrep-

ancies. If there were insufficient data in any review to allow accurate extraction

for a specific primary study, it was then necessary to derive the data from the

original paper.

Regarding the etanercept studies, all data were extracted from the meta-analysis

by Bongartz et al. (2009), because in this study the authors had used IPD and

had followed up individual cases of malignancy in order to verify each event. An

exception to this was the reference by van der Heijde et al. (2006), for which nei-

ther the Bongartz et al. (2009) review nor the Leombruno et al. (2008). review

reported the malignancy outcome by trial arm in sufficient detail; fortunately,

for this primary study, the number of malignancies reported in the primary ref-

erence coincided with the total reported in the two reviews. Another exception

was the reference by Combe et al. (2006), for which the Bongartz et al. (2009)

review reported only one malignancy but did not report whether it was in the

etanercept only or etanercept plus DMARD arm; this issue had to be resolved

by referring to the original paper.

Data on adalimumab studies were extracted from the review by Bongartz et

al. (2006). This was because in some cases the authors had discovered additional

cases of malignancy not reported in the original publications and hence not
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Table 9.2: Sources of data for analysis of anti-TNF use in rheumatoid
arthritis and malignancy.

Original reference Data source
Etanercept

Ericson et al. 1999 Bongartz et al. 2009
Moreland et al. 1999 Bongartz et al. 2009
Genovese et al. 2002 Bongartz et al. 2009
Combe et al. 2006 Primary study & Bongartz et al. 2009

van der Heijde et al 2006. Primary study & Bongartz et al. 2009
Weisman et al. 2007 Bongartz et al. 2009

Adalimumab
Furst et al. 2003 Bongartz et al. 2006

Weinblatt et al. 2003 Bongartz et al. 2006
Keystone et al. 2004b Bongartz et al. 2006

Van de Putte et al. 2004 Bongartz et al. 2006
Breedveld et al. 2006 Primary study

Infliximab
Maini et al. 2004 Primary study

St Clair et al. 2004 Bongartz et al. 2006

included by Leombruno et al. (2008). In other cases, there were discrepancies in

reporting of primary studies between the two reviews. Regarding the references

by Furst et al. (2003) and Keystone et al. (2004b), only the malignancies

included by Bongartz et al. (2006) were included for this meta-analysis, for the

same reasons as cited by Bongartz et al. (2006). The data from the study by

Breedveld et al. (2006) had to be extracted from the original reference due to

insufficient detail in reporting by Leombruno et al. (2008) for the purposes of

this meta-analysis.

The infliximab data were extracted directly from the reference for the original

study by Maini et al. (2004); this was because the study had been reported

previously (Lipsky et al. 2000; cited by Bongartz et al. 2006) and therefore

the more recent publication was preferred. Insufficient details were available

in Leombruno et al. (2008), plus there were some inconsistencies in reporting

compared to the original reference. Data from St Clair et al. (2004) were

extracted from Bongartz et al. (2006).

Table 9.2 sets out the sources of data, by primary reference, the source of data

used, and anti-TNF. (Note that studies not directly used to extract data are

not included in the bibliography.)

Although all studies used a non-anti-TNF control, this control was in some

studies placebo alone (no active treatment) and in other cases involved active

Fiona Warren PhD Thesis 2010 232



Chapter 9 MTC for adverse events data

treatment with a DMARD, usually stated to be methotrexate or sulfasalazine,

but in one study (Furst et al. 2003; cited by Bongartz et al. 2006) was simply

referred to as DMARD, implying that the DMARD drug could vary between

participants. Furthermore, there were studies that provided a direct comparison

between two or more anti-TNFs.

The final dataset used in the following meta-analyses is set out below in Ta-

ble 9.3. This dataset represents the dataset used in the most ‘deconstructed’

models, Models 5a and 5b. In these models, treatments including anti-TNFs

were also defined by dose and whether an additional DMARD was being used.

Some studies had multiple different regimes that would be classified as the same

dose according to the scheme used in these meta-analyses. As the highest reso-

lution in the models was by dose and not regime, the figures in Table 9.3 relate

to dose, although regimes have been described for interest, but without the

numbers of patients allocated to each regime.

The difficulties of deriving a dataset with coherency when there are multiple

reviews (sometimes with access to different source data compared to primary

references), as well as the original references, are highlighted by this example of

deriving a dataset for malignancies occurring in conjunction with anti-TNF use

in RA patients. In this case also, there were often multiple primary references

related to a single clinical trial, further complicating the situation.

9.7 Results and initial discussion

9.7.1 Initial inspection of data

The full dataset for all 13 studies included in the analyses for this chapter is set

out in Table 9.2.

The results for each model are presented individually, followed by a general

discussion relating the results of all models. An initial analysis of the data shows

that over 13 studies there were 76 malignancy events, with 7233 participants.

This breaks down to 14 in the control treatments out of 2275 participants

(0.006%), and 62 in the anti-TNF treatments out of 4958 participants (0.013%).
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Table 9.3: Primary data used in mixed treatment comparison meta-
analyses.

First author (Year) Control (no anti-TNF) DMARD anti-
TNF
dose

anti-TNF regime(s) Number Cases

Etanercept
Ericson (1999) Y N NA NA 105 0

” N N Rec 25mg biw 111 0
” N N Low 10mg qw or 25mg

qw or 10mg biw
343 2

Moreland (1999) Y N NA NA 80 0
” N N Rec 25mg biw 78 1
” N N Low 10mg biw 76 0

Genovese (2002) Y Y NA NA 217 4
” N N Rec 25mg biw 207 5
” N N Low 10mg biw 208 5

Combe (2006) Y Y NA NA 50 0
” N N Rec 25mg biw 103 1
” N Y Rec 25mg biw 101 1

Van der Heijde (2006) Y Y NA NA 228 1
” N N Rec 25mg biw 223 5
” N Y Rec 25mg biw 231 5

Weisman (2007) Y N NA NA 269 2
” N N Rec 25mg biw 266 2

Adalimumab
Furst (2003) Y Y NA NA 318 0

” N Y Rec 40mg eow 318 4
Weinblatt (2003) Y Y NA NA 62 0

” N Y Rec 40mg eow 67 0
” N Y Low 20mg eow 69 0
” N Y High 80mg eow 73 1

Keystone (2004b) Y Y NA NA 200 1
” N Y Rec 20mg qw or 40mg

eow
419 8

Van de Putte (2004) Y N NA NA 110 1
” N N Rec 20mg qw or 40mg

eow
225 2

” N N Low 20mg eow 106 1
” N N High 40mg qw 103 1

Breedveld (2006) Y Y NA NA 257 4
” N N Rec 40mg eow 274 2
” N Y Rec 40mg eow 268 2

Infliximab
Maini (2004) Y Y NA NA 88 1

” N Y Rec 3mg/kg q8w 86 1
” N Y High 3mg/kg q4w or

10mg/kg q8w or
10mg/kg q4w

254 8

St Clair (2004) Y Y NA NA 291 0
” N Y Rec 3mg/kg q8w 372 0
” N Y High 6mg/q8w 377 4

biw: twice weekly; eow: every other week; NA: not applicable; Rec: recommended; q4w: 4-weekly; q8w: 8-weekly; qw: weekly.
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9.7.2 Model 1a

This is the simplest model with only two treatment arms. Using the fixed

effect (FE) model the mean (of the posterior distribution) probability that the

control was the ‘best’, producing the lowest risk of malignancy, was 0.997, while

probability of being ‘worst’, with the greatest risk of malignancy, was 0.003. The

‘best’ and ‘worst’ probabilities were reversed for the anti-TNF group. Hence,

the anti-TNF group appeared to be emphatically the treatment with the highest

malignancy risk. The median (of the posterior distribution of the mean) log OR

(LOR) for malignancy in the anti-TNF group compared to controls was 0.759,

with a 95% credible interval (CrI) of 0.198 to 1.392. The mean (of the posterior

distribution) sum of the deviance was 25.88, indicating that the model was a

good fit (close to the number of datapoints, 26).

Using a random effects (RE) model the results were similar, though slightly less

extreme. For the anti-TNF group the probability of being ‘best’ was 0.008,

with a probability of being ‘worst’ of 0.992. Hence, the RE model tended to

‘even out’ the probabilities and provide less extreme results. The median LOR

for malignancy for anti-TNFs compared to controls was 0.908 (95% CrI 0.176;

1.995), higher than in the FE model.

The mean standard deviation was 0.662, suggesting that the range of ORs

would lie between 10.51 (corresponding to a standard deviation of 0.6) and

15.55 (corresponding to a standard deviation of 0.7). These ranges are derived

from Spiegelhalter et al. (2004), and correspond to the ratio of the 97.5% point

to the 2.5% point of the distribution of the OR. The sum of the deviance was

24.14, indicating a better-fitting model compared to the equivalent FE model.

9.7.3 Model 1b

This model is interesting as it allows a possible differentiation in cancer malig-

nancy between placebo controls and those receiving an active DMARD. Using

an FE model, the probability that the placebo group was the ‘best’ was 0.295,

with a probability of being ‘worst’ of 0.279. The active DMARD group had a

probability of being ‘best’ of 0.704 and a probability of being ‘worst’ of 0.003.

This gives the impression that an active DMARD has some protective influence

in reducing the risk of malignancy in RA sufferers, compared to those receiving
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no active treatment. The probability of being ‘best’ for the anti-TNF group

was 0.0007, with a probability of being ‘worst’ of 0.718. Hence, the ordering

of the treatments by probability for the ‘best’ treatments was in reverse order

compared to the ‘worst’ categories. For the ‘best’ category, from highest to

lowest, the treatments were DMARD, placebo and finally anti-TNF. Comparing

the anti-TNF group to the DMARD group, the median LOR was 0.847, (95%

CrI 0.224; 1.562). The sum of the deviance was 26.55, indicating a slightly

poorer fit compared to the model where the control group was combined to

include both placebo only and DMARD groups.

The RE model produced similar probabilities. The ‘best’ and ‘worst’ probabilities

for the placebo group were 0.312 and 0.250, for the DMARD group 0.686

and 0.007, and for the anti-TNF group 0.002 and 0.743. The median LOR

for the anti-TNF group compared to the DMARD group was 1.046 (95% CrI

0.182; 2.381). The sum of deviance was 24.58, indicating that the RE model

is again a better fit than the (equivalent) FE. The mean standard deviation

was 0.739, indicating higher between-studies variability when a distinction was

made between placebo and DMARD controls. This is an interesting point, as

intuitively separating the two different types of non-anti-TNF control should

account for some of the between-study variability, rather than increase it.

9.7.4 Model 2a

At this level, the main focus of interest is to determine which one of three anti-

TNFs appears to be ‘safest’ with regard to malignancy, by comparison to any

non-anti-TNF control.

The results for the FE and RE models are shown in Table 9.4.

For the FE model the sum of the deviance was 27.6. For the RE model the sum

of the deviance was 25.06, again indicating that the RE model is a better fit

across the 26 datapoints. The mean standard deviation for the RE model was

0.851. The most interesting aspect of these results is that the three anti-TNFs

all have roughly equivalent probabilities of being ‘best’, but the probabilities for

the ‘worst’ anti-TNF were more varied, with infliximab being clearly the ‘worst’

with a probability of 0.742 (FE) and 0.679 (RE), whereas the probabilities for

adalimumab and etanercept were much lower. This high probability of being

worst is reflected in the high median OR for infliximab.
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Table 9.4: Model 2a: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95 % CrI

Control 0.866 0.810 0.000 0.000 NA NA NA NA

Etanercept 0.036 0.063 0.136 0.161 0.728 -0.075;
1.664

0.910 -0.314;
2.598

Adalimumab 0.066 0.076 0.121 0.160 0.668 -0.195;
1.685

0.875 -0.378;
2.599

Infliximab 0.033 0.052 0.742 0.679 1.707 -0.113;
5.063

1.928 -0.410;
5.655

†Median of posterior mean distribution; *baseline for LOR is Control; CrI: credible interval; LOR: log
odds ratio; FE: fixed effect; RE; random effects.

Table 9.5: Model 2b: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95% CrI

Placebo 0.310 0.322 0.065 0.064 NA NA NA NA

DMARD 0.621 0.572 0.000 0.000 -0.3863 -1.926;
1.338

-0.449 -1.184;
1.987

Etanercept 0.012 0.023 0.138 0.179 0.843 -0.052;
8.246

1.109 0.603;
3.137

Adalimumab 0.031 0.039 0.107 0.142 0.739 -0.164;
1.785

0.984 0.509;
2.906

Infliximab 0.026 0.043 0.690 0.614 1.718 -0.108;
5.033

1.957 1.046;
6.016

†Median of posterior mean distribution; *baseline for LOR is DMARD for anti-TNFs and placebo for
DMARD; CrI: credible interval; LOR: log odds ratio; FE: fixed effect; RE; random effects.

9.7.5 Model 2b

From Model 2a, it appears that infliximab is the anti-TNF associated with

highest risk of malignancy. By dividing the controls into placebo only and

DMARD, this may influence the results. The results for Model 2b are shown in

Table 9.5.

Additionally, using etanercept as the baseline and the RE model, the median

LOR for adalimumab was -0.123 (95% CrI -0.778; 2.047), with the median OR

for infliximab being 0.843 (95% CrI -0.199; 5.016). This further supports the

argument that etanercept and adalimumab are similar in their malignancy risk,
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Table 9.6: Model 3b: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95% CrI

Placebo 0.276 0.300 0.043 0.037 NA NA NA NA

DMARD 0.488 0.374 0.000 0.000 -0.375 -1.945;
1.458

-0.291 -2.775;
2.366

Etanercept 0.010 0.012 0.069 0.104 0.476 -0.935;
2.18

0.839 -1.160;
3.409

Etanercept +
DMARD

0.076 0.122 0.121 0.125 0.827 -0.585;
2.242

0.917 -1.565;
3.460

Adalimumab 0.095 0.120 0.078 0.081 0.283 -1.314;
2.277

0.424 -2.009;
3.287

Adalimumab
+ DMARD

0.031 0.037 0.074 0.114 0.761 -0.206;
1.885

1.036 -0.523;
3.099

Infliximab +
DMARD

0.023 0.035 0.615 0.540 1.711 -0.117;
5.172

2.025 -0.513;
5.848

†Median of posterior mean distribution; *baseline for LOR is placebo for DMARD and anti-TNFs
only, DMARD for anti-TNFs plus DMARD; CrI: credible interval; LOR: log odds ratio; FE: fixed
effect; RE; random effects.

while infliximab has a higher risk (although not significantly greater than that

for etanercept).

For the FE model the mean sum of deviance was 28.38, and for the RE model

25.49. The mean standard deviation for the RE model was 0.934.

9.7.6 Model 3b

At this level, the aim of the MTC models is to discern if there is any difference

in malignancy risk between the anti-TNFs with and without additional DMARD

treatment.

The results for this MTC model are set out in Table 9.6

For the FE model the sum of the deviance was 32.47, while for the RE model

the sum of the deviance was 28.74, indicating that the RE model is a better fit,

with a sum of deviance closer to the number of datapoints (29). The standard

deviation for the RE model was 1.003.

Using the RE model, it is useful to compare the anti-TNF treatments against

each other. Taking etanercept alone as the baseline, the LOR for adalimumab

was -0.386 (95% CrI -3.140; 2.079). Taking etanercept plus DMARD as the
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Table 9.7: Model 4a: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95% CrI

Control 0.193 0.182 0.000 0.000 NA NA NA NA

Etanercept
(Rec)

0.009 0.022 0.034 0.044 0.7538 -0.102;
1.727

0.885 -0.467;
2.536

Etanercept
(Low)

0.042 0.060 0.042 0.065 0.668 -0.514;
1.879

0.824 -0.972;
2.966

Adalimumab
(Rec)

0.013 0.022 0.020 0.029 0.652 -0.229;
1.689

0.812 -0.519;
2.561

Adalimumab
(Low)

0.289 0.270 0.054 0.055 0.203 -3.248;
2.594

0.290 -3.366;
3.431

Adalimumab
(High)

0.054 0.047 0.194 0.223 1.103 -1.161;
3.169

1.413 -1.292;
4.452

Infliximab
(Rec)

0.401 0.395 0.005 0.011 -0.092 -3.748;
3.687

-0.127 -4.121;
3.865

Infliximab
(High)

0.000 0.002 0.652 0.572 2.057 0.229;
5.488

2.303 -0.053;
5.974

†Median of posterior mean distribution; *baseline for LOR is Control; CrI: credible interval; LOR: log
odds ratio; FE: fixed effect; RE: random effects; Rec: recommended.

baseline, the LOR for adalimumab plus DMARD was 0.132 (95% CrI -2.700;

3.372), and for infliximab plus DMARD was 1.140 (95% CrI -2.443; 5.722).

Another interesting comparison is to compare etanercept and adalimumab alone

against the same anti-TNF plus DMARD. Such a comparison is not possible

for infliximab due to the lack of data for infliximab alone. Taking etanercept

alone as the baseline, the LOR for etanercept plus DMARD was -0.185 (95%

CrI -2.767; 1.886). Taking adalimumab alone as the baseline, the LOR for adal-

imumab plus DMARD was 0.317 (95% CrI -1.959; 2.922). From the caterpillar

plot of LORs (Figure 9.1) there were no treatments for which the 95% CrI of

the LOR did not include 0, or the overall mean log OR.

9.7.7 Model 4a

The results for Model 4a are set out in Table 9.7. One of the most important

things to focus on in this MTC model is the comparison between doses of the

same anti-TNF. The sum of deviance for the FE model was 38.14. For the

RE model the total sum of the sum of deviances across individual studies was

34.28, indicating a better fit for the RE model. The standard deviation for the

RE model was 0.8998.
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Figure 9.1: Caterpillar plot of log odds ratios for Model 3b, random
effects. (Numbers in square brackets refer to treatments.)
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LOR; log odds ratio; Treatment 1: placebo; Treatment 2: Disease-modifying antirheumatic

drug (DMARD); Treatment 3: etanercept; Treatment 4: etanercept + DMARD; Treatment 5:

adalimumab; Treatment 6: adalimumab + DMARD; Treatment 7: infliximab.
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Table 9.8: Model 4b: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95% CrI

Placebo 0.109 0.130 0.019 0.018 NA NA NA NA

DMARD 0.177 0.171 0.000 0.000 -0.464 -2.024;
1.317

-0.516 -2.914;
1.951

Etanercept
(Rec)

0.004 0.012 0.036 0.046 0.879 -0.076;
1.978

1.064 -0.511;
3.080

Etanercept
(Low)

0.025 0.039 0.043 0.068 0.789 -0.458;
2.092

1.009 -0.975;
3.489

Adalimumab
(Rec)

0.009 0.014 0.016 0.025 0.714 -0.194;
1.779

0.951 -0.482;
2.849

Adalimumab
(Low)

0.239 0.209 0.061 0.069 0.385 -3.118;
2.833

0.587 -3.435;
4.010

Adalimumab
(High)

0.040 0.030 0.220 0.258 1.296 -1.037;
3.418

1.696 -1.163;
5.080

Infliximab
(Rec)

0.398 0.392 0.004 0.011 -0.101 -3.744;
3.714

-0.128 -4.196;
3.955

Infliximab
(High)

0.000 0.002 0.602 0.505 2.048 0.235;
5.601

2.320 -0.127;
6.095

†Median of posterior mean distribution; *baseline for LOR is placebo for DMARD, DMARD for
anti-TNFs; CrI: credible interval; LOR: log odds ratio; FE: fixed effect; RE: random effects; Rec:
recommended.

Using the RE model, comparing the low dose of etanercept with the recom-

mended dose, the LOR was -0.059 (95% CrI -1.922; 1.829). Using the rec-

ommended dose of adalimumab as the baseline, the LOR for the low dose was

-0.559 (95% CrI -4.232; 2.32), whilst for the high dose the LOR was 0.572 (95%

CrI -2.059; 3.287). Finally, for infliximab, the LOR for the high dose compared

to the recommended dose was 2.416 (95% CrI 0.034; 6.152).

9.7.8 Model 4b

The results for Model 4b are shown in Table 9.8. The sum of the deviance

for FE model was 38.83 (with 35 datapoints), while the total sum of the sum

of deviances for the RE model was 34.56. Again the RE model was superior

in fit. The standard deviation for the RE model was 0.964. Choosing the RE

model, the LOR for etanercept at low dose compared to recommended dose was

-0.051 (95% CrI -1.975; 1.953). For adalimumab, the LOR for low compared

to recommended dose was -0.377 (95% CrI -4.339; 2.622); for high compared

to recommended dose the LOR was 0.726 (95% CrI -1.984; 3.656). The LOR

for high dose infliximab compared to recommended dose was 2.443 (95% CrI
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-0.025; 6.193). For all etanercept and adalimumab the median LOR for the

low dose was less than 0, and for adalimumab and infliximab the LOR was

greater than 0 for the high dose compared to recommended, thus indicating the

possibility of a dose–response relationship.

9.7.9 Model 5a

For this model, it was impossible to derive results for ORs on the natural scale,

possibly due to the extreme values generated by this model (hence all models

have been reported in terms of LORs for consistency). The results are set out

in Table 9.9.

The FE model using a control group amalgamated from placebo and DMARD

treatment converged after a burn-in period of 10 000 iterations, and the standard

50 000 iterations was used to generate the posterior densities. There were also

some concerns regarding convergence of the model, even after a longer burn-

in period than previously used. For the RE model, convergence was achieved

after 100 000 iterations, and again 50 000 iterations were used to generate the

posterior densities.

The sum of deviance for the FE model was 40.29, compared to total sum of sum

of deviances for the RE model of 35.96. With 38 datapoints in the dataset this

implies the RE model is again the better fit. The RE model also had a mean

standard deviation of 0.931. Choosing the RE model for additional reporting of

results, comparing etanercept at recommended dose with additional DMARD to

that without additional DMARD, the LOR was -0.114 (95% CrI -2.51; 1.863).

Comparing etanercept at low dose to that at recommended dose, the LOR was

-0.072 (95% CrI -1.969; 1.870).

Considering the adalimumab treatments, using the adalimumab recommended

dose without additional DMARD as the baseline, the LORs are set out in Table

9.10.

Finally, for infliximab, this anti-TNF is only tested in conjunction with DMARD

therapy, but taking the recommended dose as the baseline, the LOR for high

dose was 2.426 with a 95% CrI of -0.007: 6.156.
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Table 9.9: Model 5a: Results for fixed and random effect(s) models.
P(best) P(worst) FE RE

Treatment FE RE FE RE Median†

LOR*
95% CrI Median

LOR
95% CrI

Control 0.034 0.021 0.000 0.000 NA NA NA NA

Etanercept
(Rec)

0.002 0.002 0.001 0.001 0.737 -0.162;
1.725

0.894 -0.449;
2.670

Etanercept
(Low)

0.009 0.008 0.001 0.002 0.652 -0.535;
1.87

0.812 -0.990;
3.115

Etanercept
(Rec) + D

0.010 0.015 0.001 0.002 0.756 -0.618;
2.131

0.774 -1.562;
3.152

Adalimumab
(Rec)

0.010 0.010 0.000 0.000 0.524 -0.799;
1.881

0.569 -1.415;
2.671

Adalimumab
(Low)

0.081 0.052 0.002 0.002 0.202 -3.310;
2.730

0.219 -3.804;
3.575

Adalimumab
(High)

0.079 0.047 0.002 0.002 0.228 -3.283;
2.744

0.268 -3.835;
3.587

Adalimumab
(Rec) + D

0.004 0.003 0.000 0.001 0.681 -0.282;
1.767

0.893 -0.659;
2.885

Adalimumab
(Low) + D

0.649 0.770 0.012 0.028 -10.45 -65.56;
32.83

-42.08 -166.5;
51.43

Adalimumab
(High) + D

0.000 0.000 0.957 0.976 24.20 1.942;
70.09

51.58 3.274;
193.6

Infliximab
(Rec) + D

0.122 0.071 0.000 0.000 -0.093 -3.789;
3.558

-0.097 -4.092;
3.904

Infliximab
(High) + D

0.000 0.000 0.026 0.013 2.056 0.239;
5.383

2.299 -0.1059;
6.062

†Median of posterior mean distribution; *baseline for LOR is Control; CrI: credible interval; D: DMARD;
FE: fixed effect; LOR: log odds ratio; RE: random effects; Rec: recommended.

Table 9.10: Model 5a: Results for adalimumab using recommended dose
without DMARD as baseline, RE model.

Treatment Median† LOR 95% CrI

Adalimumab (Low) -0.336 -4.248; 2.775

Adalimumab (High) -0.296 -4.345; 2.775

Adalimumab (Rec) +
DMARD

0.325 -1.806; 2.757

Adalimumab (Low) +
DMARD

-42.6 -167.1; 51.02

Adalimumab (High) +
DMARD

51.03 2.612; 193.3

†Median of posterior mean distribution; CrI: credible interval; LOR: log odds ratio; Rec: recommended.
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Table 9.11: Model 5b: Results for fixed and random effect(s) models for
probabilities of being ‘best’ and ‘worst’.

P(best) P(worst)
Treatment FE RE FE RE

Placebo 0.029 0.025 0.000 0.000

DMARD 0.041 0.018 0.000 0.000

Etanercept (Rec) 0.001 0.001 0.000 0.000

Etanercept (Low) 0.007 0.007 0.001 0.001

Etanercept (Rec) + D 0.008 0.011 0.002 0.001

Adalimumab (Rec) 0.007 0.007 0.000 0.000

Adalimumab (Low) 0.068 0.041 0.003 0.002

Adalimumab (High) 0.068 0.040 0.003 0.001

Adalimumab (Rec) + D 0.003 0.003 0.000 0.000

Adalimumab (Low) + D 0.641 0.418 0.023 0.028

Adalimumab (High) + D 0.000 0.000 0.957 0.986

Infliximab (Rec) + D 0.127 0.071 0.000 0.000

Infliximab (High) + D 0.000 0.000 0.026 0.005
CrI: credible interval; D: DMARD; FE: fixed effect; RE: random effects; Rec: recommended.

Table 9.12: Model 5b: Results for fixed and random effect(s) models for
log odds ratios for anti-TNFs only compared to placebo.

FE RE

Treatment Median† LOR 95% CrI Median LOR 95% CrI

Etanercept (Rec) 0.477 -1.011; 2.241 0.761 -1.276; 3.456

Etanercept (Low) 0.385 -1.305; 2.315 0.709 -1.734; 3.861

Adalimumab (Rec) 0.235 -1.522; 2.240 0.355 -2.241; 3.325

Adalimumab (Low) 0.031 -3.509; 2.792 0.071 -4.018; 3.832

Adalimumab (High) 0.056 -3.501; 2.801 0.141 -3.952; 3.884
†Median of posterior mean distribution; CrI: credible interval; D: DMARD; FE: fixed effect; LOR: log
odds ratio; RE: random effects; Rec: recommended.

9.7.10 Model 5b

The FE model for this network converged in 10 000 iterations and a sample of

50 000 iterations was used to generate the posterior densities. For the RE model,

50 000 iterations were required prior to convergence, followed by a sample of

50 000 iterations to acquire the posterior densities.

Table 9.11 shows the values for the probabilities of being ‘best’ and ‘worst’ for

all 13 treatments included in this MTC network.

Considering the LORs, it is useful to present these with the anti-TNFs alone

being compared against placebo only, and the anti-TNFs used in conjunction

with DMARDs being presented against DMARD therapy. Results are presented

in Tables 9.12 and 9.13.
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Table 9.13: Model 5b: Results for fixed and random effect(s) models for
log odds ratios for anti-TNF plus DMARD compared to DMARD only.

FE RE

Treatment Median† LOR 95% CrI Median LOR 95% CrI

Etanercept (Rec) + D 0.851 -0.579; 2.302 0.845 -1.708; 3.470

Adalimumab (Rec) + D 0.720 -0.270; 1.82 0.924 -0.715; 3.086

Adalimumab (Low) + D -9.836 -65.40; 35.04 -20.46 -262.0; 89.66

Adalimumab (High) + D 24.74 1.992; 75.33 67.08 5.898; 208.1

Infliximab (Rec) + D -0.100 -3.753; 3.618 -0.101 -4.275; 3.912

Infliximab (High) + D 2.046 0.227; 5.449 2.348 -0.168; 6.179
†Median of posterior mean distribution; CrI: credible interval; D: DMARD; FE: fixed effect; LOR: log
odds ratio; RE: random effects; Rec: recommended.

The standard deviation for the RE model was 1.041, whilst the sum of deviance

was 36.16 with 38 datapoints for the FE model; the same value also occurred

for the RE model.

9.7.11 Model comparison using DIC and sum of deviance

Table 9.14 sets out the deviance information criterion (DIC) and pD value

(the effective number of parameters in the model), as well as the total sum

of deviance for each model and total number of datapoints in the model, for

comparison.

9.7.12 Additional analyses

It may be possible that a signal regarding the influence of dose on malignancy

would be more easily discernible with all three anti-TNFs combined at each of

the three dose levels, low, recommended and high. This model was used, with

correlation for multi-arm trials and vague priors as previously, with a random

effects model. The results are shown in Table 9.15.

The standard deviation for this model was 0.622, with a total sum of deviances

of 32.44 with 35 datapoints.

As it had been noted that there were issues with convergence regarding the

most deconstructed model, without any combination of treatments, it was de-

termined that this model was worthy of further investigation. One particular

trial (Weinblatt et al. 2003; cited by Bongartz et al. 2006) had only one event
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Table 9.14: DIC and sum of deviance results for all standard models.
Model FE/RE Total DIC pD Sum of

deviance
No. data-
points

1a FE 97.151 13.371 25.88 26

1a RE 98.135 16.093 24.14 26

1b FE 98.671 14.218 26.55 26

1b RE 99.508 17.027 24.58 26

2a FE 100.643 15.138 27.6 26

2a RE 100.712 17.748 25.06 26

2b FE 102.270 15.985 28.38 26

2b RE 101.910 18.518 25.49 26

3b FE 113.245 17.889 32.47 29

3b RE 112.275 20.643 28.74 29

4a FE 122.575 18.580 38.14 35

4a RE 121.974 21.837 34.28 35

4b FE 124.080 19.389 38.83 35

4b RE 122.973 22.559 34.56 35

5a FE 131.707 20.576 40.29 38

5a RE 130.716 23.907 35.96 38

5b FE 133.470 21.462 36.16 38

5b RE 131.754 24.752 36.16 38
DIC: deviance information criterion; FE: fixed effect; pD: effective number of parameters in model;
RE: random effects.

Table 9.15: Dose only. Results for random effects models for log odds
ratios for dose levels of all anti-TNFs combined, compared to non-anti-
TNF controls.

Treatment P(best) P(worst) Median† LOR 95% CrI

Control 0.837 0.000 NA NA

Recommended 0.022 0.018 0.732 -0.045; 1.684

Low 0.140 0.053 0.710 -0.637; 2.138

High 0.001 0.929 1.973 0.684; 3.705
†Median of posterior mean distribution; CrI: credible interval; OR: odds ratio; RE: random effects.
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Table 9.16: Weinblatt (2003) removed from dataset. Results for Model
5b using random effects.

Treatment P(best) P(worst) Median† LOR* 95% CrI

Placebo 0.102 0.015 NA NA

DMARD 0.091 0.000 -0.303 -2.767; 2.471

Etanercept (Rec) 0.005 0.039 0.771 -1.294; 3.446

Etanercept (Low) 0.026 0.072 0.706 -1.800; 3.891

Etanercept (Rec) + D 0.052 0.073 0.842 -1.678; 3.440

Adalimumab (Rec) 0.032 0.032 0.387 -2.202; 3.361

Adalimumab (Low) 0.177 0.088 0.117 -4.027; 3.833

Adalimumab (High) 0.182 0.096 0.147 -3.933; 3.900

Adalimumab (Rec) +
D

0.017 0.053 0.931 -0.729; 3.065

Infliximab (Rec) + D 0.315 0.011 -0.117 -4.258; 4.022

Infliximab (High) + D 0.001 0.520 2.335 -0.212; 6.335
†Median of posterior mean distribution; *baseline for LOR is placebo for DMARD and anti-TNF only,
DMARD for anti-TNF plus DMARD; CrI: credible interval; D: DMARD; LOR: log odds ratio.

across four arms at this level of deconstruction of the treatment arms. It was

decided to remove this one trial, with the result that two treatments (low dose

adalimumab plus DMARD and high dose adalimumab plus DMARD) were re-

moved from the treatment network as they did not appear in any other trial.

This also eliminated two direct comparisons between two treatments that had

zero events across the comparison. On fitting this model using random effects

with a reduced dataset, convergence occurred after 10 000 iterations, which was

a shorter burn-in period than that used for the same model but with all studies,

where issues with convergence necessitated a burn-in of 50 000 iterations. The

results are set out in Table 9.16.

This model had a standard deviation of 1.025 (compared to 1.041 for the equiv-

alent model including all studies) and a total sum of deviances of 35.25 (with

34 datapoints) compared to 36.16 with 38 datapoints when all studies were

included in Model 5b.

9.8 Further discussion

9.8.1 Initial inspection of dataset

On first appearances, the data support the conclusion that malignancies occur

more commonly in the anti-TNF patients compared to non-anti-TNF controls
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(based on data in Section 9.6.3). However, the possibility of differential follow-

up, with anti-TNF groups receiving longer follow-up than control groups, may

be distorting these results, with the anti-TNF groups having more opportunity to

develop a malignancy over the longer time period. This problem highlights the

need for individual patient data (IPD) for outcomes that are very associated with

long time periods for development. The following MTC analyses do not address

this problem, but nevertheless may identify broad areas of concern warranting

further analysis.

9.8.2 Baseline mixed treatment comparison models

Selected additional results are introduced in this section, for the purpose of

comparison with results set out in Section 9.7.

Nine MTC network models have been fitted to investigate the issue surrounding

malignancy and anti-TNF treatment for RA. Considering the most basic model,

with all anti-TNFs and all non-anti-TNFs considered together, (Models 1a and

1b; see Sections 9.7.2 & 9.7.3), it was evident that the highest risk of malignancy

occurred in the anti-TNF group, with a probability of being the ‘worst’ treatment

of 0.992 (RE Model 1a). The OR for malignancy of 2.480 (based on the median

LOR of 0.908) for anti-TNFs compared to controls supports this conclusion. In

Model 1b, the control arms were divided into two treatments, placebo only and

DMARDs. The purpose of this model is to shed light on whether a DMARD

may be capable of offering protection against malignancy in those with RA,

bearing in mind that RA is associated with a higher level of malignancy. In

the RE version of this model, the placebo had a probability of being ‘worst’ of

0.250, while the active DMARD group had a probability of 0.007.

For the probability of being ‘best’, the values were 0.686 for the DMARD group

and 0.312 for the placebo group. This indicates that the DMARD group was

at lower risk of malignancy and hence indicates that this should be taken into

account in the interpretation of more complex models. The anti-TNF group had

both the lowest probability of being ‘best’ and the highest probability of being

‘worst’ (0.002 and 0.743 respectively). Also, the median OR for the anti-TNF

group compared to the DMARD group was significantly higher. Hence, even in

this relatively simple model, it appears that those on anti-TNF treatments are

at higher risk of malignancy than those not. However, at this stage there is no
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possibility of discerning whether any particular anti-TNF has a higher or lower

risk than any others, or if the risk is roughly equal across all three anti-TNFs.

One point of interest worth mentioning here is that for the sum of deviance

(and total sum of deviances for multi-arm models), the FE model consistently

produces a higher value compared to the RE model, indicating that the RE

model is a better fit. The (total) sum of deviance(s) is close to the total

number of datapoints for all models, indicating a reasonably good fit for all

models considered. The sum of deviance can influence model selection, in that

it provides an indication of how well the model fits the available data (discussed

further below).

The DIC (Table 9.14) also provides a means to compare models without indi-

cating absolute goodness-of-fit. For the most basic Models, 1a and 1b, the FE

model appears to be the better fit. For Models 2a and 2b, there is little to

choose between the FE and RE models for Model 2a, but it appears that for

Model 2b, the RE model is an improved fit. For Models 3b, 4a, 4b, 5a and 5b,

this pattern, with the RE model being the better fit is perpetuated.

In contrast to the DIC, however, the pD values appear to consistently favour

the FE models, by comparison to their RE counterparts. Overall then, based on

the three methods of model assessment, there is no clear evidence to strongly

support either an FE or an RE model in these analyses.

From a clinical perspective, all studies are in similar patients (all USA-based)

but there are differences among them, for example, different treatment regimes,

and possibly varying severities of rheumatoid arthritis. Therefore, for the sake

of conservativeness and to avoid over-generalising between studies, especially

in view of the sparsity of events data, the RE model may be preferable, on the

basis of the DIC.

This contrasts with the work of Sweeting et al. (2004) and Bradburn et al. (2007).

These authors, using traditional frequentist methods, found that the RE meth-

ods were not of value for analyses with low baseline rates, in terms of producing

low estimates for heterogeneity, which therefore impacts on the results of the

RE model, yielding results similar to an FE model. Similar results were found

in the multiple analyses of the GSK dataset in Chapter 7, inasmuch as the use

of an FE model and an RE model often yielded effectively identical results.

Fiona Warren PhD Thesis 2010 249



Chapter 9 MTC for adverse events data

It is interesting to contrast how Bayesian and frequentist models approach

between-studies heterogeneity, and it is perfectly reasonable that the frequen-

tist approach favours FE methods for sparse data, possibly because at low event

rates, heterogeneity on an absolute scale is low, even if significant on a relative

scale, and is less easy to detect using an RE model. With the Bayesian mod-

els however, the goodness-of-fit often appears to improve using the RE models

(even if the results produced by the two methods are not greatly different).

It is also relevant to note that the DIC increases in value for each increasingly

complex network, although pD also increases. This implies that the more com-

plex models are a poorer fit relative to the simpler models with fewer treatments.

Such a phenomenon could be due to sparsity of both trials and events. Per-

formance of a similar MTC, using a larger number of trials and events, would

be able to determine whether or not sparsity of data is a major factor in the

relative goodness of fit of the different models.

Model 1b promotes the conclusion that the DMARD controls have a lower risk

of malignancy compared to placebo controls. There is a clinically plausible

explanation for this, in that patients with RA are at greater risk of malignancy,

due to the inflammation resulting from their condition, and using a DMARD

helps to reduce the inflammation, and hence the risk of malignancy.

Moving on to the network with the next level of complexity, Models 2a and 2b,

there is now the possibility of discovering whether any of the anti-TNFs has a

higher or lower risk of malignancy compared to the others (Tables 9.4 & 9.5).

In Model 2a, the control arm is both placebo and DMARD combined. The

control arm is clearly the safest with regard to malignancy, having the lowest

probability of being ‘worst’ and the highest probability of being ‘best’. At this

point there is a divergence in the evidence between the concepts of ‘best’ and

‘worst’ with regard to malignancy risk. The probability of being ‘best’ for each

of the three anti-TNFs is roughly the same for all three anti-TNFs (0.063 for

etanercept, 0.076 for adalimumab and 0.052 for infliximab in the RE model).

Based on these data alone, there is little evidence to prefer one anti-TNF over

another for malignancy safety reasons. For the probability of being ‘worst’ how-

ever, there is more variation between the three drugs. The probability of ‘worst’

for infliximab is 0.679 (in the RE model), much higher than etanercept and

adalimumab. It is also worth noting that infliximab in all trials is administered
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along with a DMARD (methotrexate) which may be exerting a protective ef-

fect, while the other two drugs are administered sometimes with a DMARD

and sometimes alone. The median LOR for malignancy in infliximab compared

to the control arms is 1.928, but with a very wide CrI, so it is impossible to

conclude that there is any significant increased risk of malignancy.

Moving on to Model 2b, where the control arms are divided into DMARD and

placebo, the results are very similar, with the three anti-TNFs showing very little

difference in the probability of being ‘best’ but again infliximab is the anti-TNF

with the highest probability of being ‘worst’.

So at this stage, there is reasonable evidence to indicate that the anti-TNFs

increase risk of malignancy compared to placebo or DMARD only, but it may

be the case that the majority of this increased risk is due to infliximab, whereas

there may be less increased risk with etanercept and adalimumab.

Model 3b (see Table 9.6) takes into account whether the anti-TNF is admin-

istered alone or with a DMARD. Again, the DMARD alone appears to be as-

sociated with a lower risk of malignancy than the placebo alone. One point of

interest is to determine whether there is a clear pattern in malignancy risk for

the anti-TNFs administered both alone and with an anti-TNF. For etanercept,

the picture is not clear-cut. For both FE and RE models the probability of being

‘best’ is greater for the arm with DMARD than for etanercept alone. However,

in contradiction to this result, etanercept plus DMARD also has a higher prob-

ability of being ‘worst’. Considering the LORs, etanercept plus DMARD has a

lower median LOR for malignancy using placebo as the baseline compared to

etanercept only (0.633 compared to 0.839 in the RE model).

For adalimumab, the situation is different. Adalimumab alone has a higher

probability of being ‘best’ compared to adalimumab plus DMARD, in both FE

and RE models. For the probability of being ‘worst’ there is little to choose

between the two treatments for the FE model, whereas the RE model shows that

adalimumab plus DMARD has a slightly higher probability than adalimumab

alone. When considering the LORs, adalimumab plus DMARD has a higher

LOR compared to placebo than adalimumab alone (0.767 compared to 0.424).

Hence, there is a conflict of results when trying to determine any difference in

malignancy between anti-TNF alone and with DMARD.
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Infliximab is administered only in the presence of DMARD in these trials, and it

is immediately striking that infliximab plus DMARD has the highest probability

of being ‘worst’, at 0.540 for the RE model. Also, the LOR for malignancy

(compared to placebo) is 1.794, by far the highest LOR of any of the anti-TNF

treatment options. It appears that this more detailed model is still supporting

the view that infliximab is the anti-TNF with the highest risk of malignancy

whereas there is no clear evidence to indicate that the presence of a DMARD

with the anti-TNF either reduces or increases any increased risk with an anti-

TNF.

At this point it is useful to consider one of the additional models, which inves-

tigated a possible dose–response relationship across all three anti-TNFs com-

bined. The RE model applied to dose alone showed that the high dose was

associated with the highest probability of being ‘worst’ and lowest probability

of being ‘best’. These results also showed little substantive difference between

the low and recommended doses, with them both having similar probabilities of

being the ‘worst’ anti-TNF, while the low dose had the highest probability of

being ‘best’ out of the three anti-TNFs. Consistently with the other models, the

non-anti-TNF control was associated with the highest probability of being the

‘best’ treatment. These results were borne out by the LORs, with the high dose

anti-TNF having the highest LOR and a 95% CrI with a lower bound greater

than 0. Amalgamating the three anti-TNFs by dose has supported the argument

that dose is the defining factor in relating anti-TNF use to malignancy, rather

than the specific anti-TNF.

The next models (Models 4a and 4b, FE and RE models, with results shown

in Tables 9.7 & 9.8) to be considered included dose level for each anti-TNF

individually, but did not take into account the presence of additional DMARDs.

These models are useful in determining whether a dose–response relationship

alluded to by the dose-only model would be seen in any of the individual anti-

TNFs, and if so, which. Model 4a (using placebo/DMARD as control, RE

model) shows that etanercept has similar median LORs for both recommended

(0.885) and low (0.824) doses. Adalimumab however, does indicate a dose–

response relationship from low to recommended and then to high dose, with

median LORs being 0.290, 0.812 and 1.413 respectively. Infliximab shows the

strongest element of dose–response, with median LOR for the recommended

dose being -0.127, and for the high dose 2.303, this result almost reaching
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statistical significance with a lower bound for the 95% CrI of -0.053. Whilst in

all cases the 95% CrIs are very wide and overlap one another, the dose trend

seems clear with both adalimumab and infliximab.

The most complex models (Models 5a and 5b, FE and RE models) are also

the most difficult to interpret in a useful way, because once both additional

DMARD and dose are included, these two dimensions of treatment are difficult

to disentangle, and complexity of the model is inextricably linked with increasing

sparsity of data, the events available being spread over the largest possible

number of treatments.

Using Model 5a (with placebo/DMARD as control, RE model), a comparison

can be made of DMARD status across different dose levels for individual anti-

TNFs, as well as different dose levels for each anti-TNF combined with DMARD

status. Considering first etanercept at recommended dose, the median LOR for

etancercept alone was 0.894 (95% CrI -0.449; 2.670), whilst for etanercept plus

DMARD, the median LOR was 0.774 (95% CrI -1.562; 3.152). Results for

Model 5a are shown in Table 9.9.

For adalimumab at recommended dose, the median LOR was 0.569 (95% CrI

-1.415; 2.671), while for adalimumab at the same dose plus DMARD, the equiv-

alent value was 0.893 (95% CrI -0.659; 2.885). For adalimumab alone at low

dose the median LOR was 0.219 (95% CrI -3.804; 3.575), whilst with DMARD

the median LOR was -42.08 (95% CrI -166.5; 51.43). At high dose adalimumab,

the median LOR was 0.268 (95% CrI -3.835; 3.587), whilst for high dose with

DMARD the median LOR was 51.58 (3.274; 193.6).

The extreme values for the adalimumab at high and low doses plus DMARD,

as well as very wide CrIs, make interpretation difficult and reduce any validity

of conclusions. The median LOR values could be lacking in validity as a point

estimate for the treatment effect, due to the sparsity of data to support inves-

tigation of these treatments. Only one event occurred in the treatment group

receiving adalimumab at high dose in conjunction with DMARD, whilst there

were no events at all in the treatment group receiving low dose adalimumab plus

DMARD; furthermore, both of these treatments occurred in only one primary

study. However, the width of the CrIs indicates the lack of certainty around

the estimated LOR, and therefore reduces any confidence placed in the point

estimate.
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Technically, this may be due to the fact that the Gibbs sampler, although con-

vergence has occurred, cannot narrow down the area of the profile very precisely

due to the lack of data, hence the risk of an extreme point estimate and wide

CrI. This highlights the issue that sparse data may produce artefactual results,

even if those results appear plausible. A comparison of the results is made in

Section 9.8.4, comparing results of analyses including all studies and the results

from equivalent models excluding the only study that investigated adalimumab

at high and low dose with DMARD (Weinblatt et al. 2003, as cited by Bongartz

et al. 2006).

Returning to the clinical aspect of the influence of DMARD at different anti-TNF

doses, there is no clear picture across etanercept and adalimumab that additional

DMARD increases or reduces risk of malignancy, even at recommended dose

levels where the amount of data is greatest.

When making a distinction between treatment groups receiving DMARD and

those not, the dose–response relationship among etanercept patients becomes

less clear, as the median LOR for etanercept patients on low dose (without

DMARD) is less than those on recommended dose without DMARD, but greater

than those on recommended dose with DMARD.

For adalimumab patients without DMARD, the results are again anomalous with

regard to a dose–response relationship, with the recommended dose having the

highest risk of malignancy. When adalimumab with DMARD is considered, there

is a dose–response relationship with increased risk of malignancy at increasing

doses of adalimumab, although the caveats regarding sparsity of data (both

studies and events) mentioned above apply in this case.

Infliximab was only used in these studies in conjunction with DMARD, but in this

model also, the dose–response relationship is clearly seen based on the median

LORs for recommended and high doses. Unfortunately, there is no low dose for

infliximab that may help to confirm or refute a dose–response relationship.

The results and potential conclusions derived from different MTC models with

varying ways of defining treatments can be very different; this indicates the

importance of using multiple models and making a consideration of the evidence

from all models before arriving at any clinical conclusions.
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9.8.3 Discrepancies between probabilities for ‘best’ and ‘worst’

There were often discrepancies in the results for a particular model, whereby

the treatment with the highest probability of being the ‘best’ treatment, with

regard to having the lowest risk of malignancy, is not always the treatment with

the lowest probability of being the ‘worst’ treatment, in terms of having the

highest risk of malignancy.

These probabilities were based on the rankings of the treatments relative to

the baseline at each iteration. According to the relative densities of the mean

treatment effects, the treatment with the greatest probability of being ‘best’

may not also be the treatment with the greatest probability of being ‘worst’

where there are multiple treatments. Only the ‘best’ and ‘worst’ treatment in

the rankings are being considered (and not the ranking positions that lie between

best and worst).

9.8.4 Sensitivity analysis: removal of the primary study by Weinblatt et

al. 2003

The sparsity of events in some of the treatments defined in the most complex

model described above was a cause for concern. It was decided to perform

a sensitivity analysis to determine any potential influence of the inclusion of

one primary study that introduced treatments with zero events into the MTC

network. This primary study was Weinblatt et al. (2003), cited by Bongartz et

al. (2006). As shown in Table 9.3, this study contributed only one event, but

could be broken down into four separate treatments when including dose and

additional DMARD as part of the treatment designation. (All results comparing

the inclusion and exclusion of Weinblatt et al. (2003) are based on the RE model

for Model 5b.)

On removing this study, two treatments were excluded completely; adalimumab

at low and high doses plus DMARD, which appeared exclusively in this study.

This reduced the number of treatments in the MTC model from 13 to 11 with

the loss of just one event. As these treatments were associated with extreme

values for the LORs (median values of -42.08 and 51.58 respectively in Model 5a,

Table 9.9, and -20.46 and 67.08 respectively in Model 5b, Table 9.13, where the
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comparator is DMARD only), their exclusion does not result in any significant

loss of information, as these values are very difficult to interpret.

The removal of the Weinblatt et al. (2003) study did have consequential effects

on the probabilities of individual treatments being the ‘best’ and ‘worst’ (shown

in Table 9.16). As an example, in the original Model 5b with all 13 studies

included, the treatment with the highest probability of being ‘worst’ was adal-

imumab at high dose plus DMARD, with a probability of 0.986 (Table 9.11).

Compared to this treatment all the probabilities of being ‘worst’ for other treat-

ments were (inevitably) far lower. It is to be noted however, that this treatment

occurred only in the Weinblatt et al. (2003) study, and had only one event in

this treatment group.

This extreme sparsity of data therefore heavily influenced the probabilities used

as a means of directly comparing risk of malignancy across multiple treatments.

A similar situation occurred with adalimumab at low dose plus DMARD which

was associated with a probability of being ‘best’ of 0.418 in the model including

all studies, despite having appeared in only one primary study, and having zero

events in this study. In the absence of the Weinblatt et al. (2003) study the

treatment with the highest probability of being ‘best’ transferred to infliximab

at recommended dose plus DMARD (results for Model 5b using RE, with the

exclusion of Weinblatt et al. (2003) are shown in Table 9.16). This example

illustrates the sensitivity of the probability of ‘best’ and ‘worst’ treatment to

sparsity of both primary studies and events within treatment arms.

When comparing the median LORs between the models including and excluding

Weinblatt et al. (2003), there were slight differences in the median LOR values.

In five cases the median LOR for an individual treatment (including an anti-

TNF) in the model excluding Weinblatt et al. (2003) was greater than in the

model including this study. Despite wide CrIs in all cases, changes in LORs and

ORs would give different impressions of malignancy risk for different treatments,

highlighting the potential for changes in results when including or excluding any

particular study, especially where events are sparse in that study.

It is also relevant to note that changes in probability for ‘best’ or ‘worst ’

status may change dramatically, despite the overall LOR not changing greatly,

on exclusion of one primary study. For example, on exclusion of Weinblatt

et al. (2003), the treatment with the highest probability of being ‘best’ was
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infliximab at recommended dose plus DMARD (with a probability of 0.315),

associated with a median LOR of -0.117. When all studies are included, the

probability of this treatment being best falls dramatically to 0.071, whereas

the median LOR of malignancy becomes only slightly less negative (-0.106).

Another example of this phenomenon is illustrated by infliximab at high does

plus DMARD, which has a probability of being ‘worst’ of 0.005 when all studies

are included, which jumps to 0.520 when Weinblatt et al. (2003) is excluded.

This corresponds with a change in median LOR of malignancy of 2.348 with all

studies included, to 2.335 when Weinblatt et al. (2003) is excluded. Effectively,

a lower probability of being ‘worst’ is associated with a greater median LOR for

malignancy risk, which appears to be a contradictory result.

This re-analysis of the dataset to exclude one study shows that the probabilities

of being the ‘best’ and/or ‘worst’ treatment are more susceptible to being altered

than the LORs, possibly indicating that the LORs should be given greater weight

when determining which treatment is safer (or more effective depending on the

context).

When the data are very sparse (in terms of both events and studies) at certain

nodes across the MTC network, the results become very sensitive to the included

data, especially where the exclusion of one study can change the network, by

removing one or more nodes. Hence, if the specific MTC network is of interest

(in this case, including both dose and additional DMARD within the model), it

is advisable to perform sensitivity analyses to ensure that any conclusions are

robust to which particular studies are included. If conclusions are not robust,

then caveats regarding the strength of conclusions can be considered.

9.8.5 Alternative parameterisations

Noting that the WinBUGS code being used for the models in these analyses

differed in structure from the algebraic models in the original papers setting

out the MTC models, it was decided to reparameterise the model for certain

model examples, such that the WinBUGS code reflected the original algebra.

In theory, the two models would produce the same results being algebraically

identical. To illustrate, the original papers set out their models as:

logit (pTi ) = µi + δi/2,
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logit (pCi ) = µi − δi/2,

whilst the WinBUGS code expresses the model slightly differently:

logit (pTi ) = µi + δi,

logit (pCi ) = µi.

Although it is evident that the difference between the control and treatment

groups for each study is δi in both models (where δi represents the log OR

for the treatment group compared to the control group), and therefore should

be estimated by the same posterior densities in both models, in practice this

was not the case. There were in fact some discrepancies between the two

parameterisations, which were thought to be resulting from correlation between

the values of µ and δ in each study, hence altering the value of δ as µ is

referring to different ‘nuisance’ parameters in each model. In the light of the

sparse data, this was thought to yield differences in the value of δ, but this

avenue of thought was not pursued further, due to acceptance of the WinBUGS

code as an accurate representation of the desired model.

9.8.6 Discussion of previous research

Considering previous work, the study by Bongartz et al. (2006) compared all

anti-TNFs against ‘placebo’ (in fact all non-anti-TNF arms including those with

active DMARDs). These authors used a Mantel–Haenszel method with and

without a continuity correction, as well as Bayesian models with fixed and ran-

dom effect(s) and with inclusion and exclusion of studies of trials with zero

events in total, as well as a conditional maximum likelihood model. In all of

their models, there was a significant increase in risk of malignancy in those

receiving the anti-TNF. Further analyses comparing low-dose against high-dose

anti-TNFs demonstrated a higher risk of malignancy with the higher doses.

Indeed, low-dose therapy did not appear to be significantly associated with in-

creased risk of malignancy. The authors duly point out that the sparsity of

events may influence the results, with low precision and wide confidence inter-

vals. The issue of unequal follow-up times across studies was also not addressed.

However, this study, although including etanercept, adalimumab and infliximab

studies was unable to make any distinction between anti-TNFs.

The study by Bongartz et al. (2006) also included serious infections as well

as malignancy. Picking up on the problems of underpowered trials, another
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group of authors (Leombruno et al. 2008) attempted to further investigate the

relationship between anti-TNFs and malignancy as well as other adverse events.

These authors attempted to address the problem of unequal follow-up times by

using two outcome metrics, firstly an OR, and secondly a rate ratio adjusted for

follow-up time. They also restricted the analysis to fixed effect models only, as

they argued that this method often produced narrower CIs with sparse data. The

authors state that they used this approach to maximise the chances of finding

a significantly increased risk of adverse events. However, the justification of

using fixed or random effect(s) models should be based on the nature of the

studies themselves (regarding between-studies heterogeneity) and whether the

fixed effect model can be justified, and if not, then a random effects model can

be used for conservativeness.

Although it is clearly highly desirable to detect a risk of adverse events where

such a risk exists, it is equally undesirable to promote concerns about a spurious

risk for adverse events, which may result in patients not receiving a potentially

beneficial treatment. The authors did, however, test for heterogeneity using the

Q statistic and the I2 statistic, and used a random effects model if heterogeneity

was present.

The chosen meta-analysis method was the Mantel–Haenszel, due to imbalanced

group sizes (where the Peto method is not recommended) and because other

methods, such as inverse variance, are not recommended for rare event data.

The preferred continuity correction was that of Sweeting et al. (2004), based

on using the reciprocal of the opposite treatment arm size. Sensitivity analyses

for both continuity correction and meta-analysis method were also performed.

A broader range of outcomes was also investigated, including death, serious

adverse events, and cancer broken down according to type.

All comparisons were made against ‘placebo’ which appears to comprise all

non-anti-TNF arms, including those with DMARD treatment. At recommended

dose levels, the OR for non-cutaneous cancers and melanomas was 1.31 (95%

CI 0.69; 2.48). For each individual anti-TNF the OR was greater than 1, with

infliximab having a higher OR than either etanercept or adalimumab individually,

although none were statistically significant. Considering the exposure-adjusted

meta-analysis, the risk ratios for all three anti-TNFs individually and for all anti-

TNFs combined were lower than the corresponding OR, with the risk ratio for

all anti-TNFs being 1.21 (95% CrI 0.63; 2.32).
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At higher doses, the OR for non-cutaneous cancers and melanomas was 2.91

for all anti-TNFs combined; the corresponding risk ratio was 3.04 (0.95; 9.68).

Some results were contradictory; for example, for lymphomas only the higher

dose ORs and risk ratios appeared to be lower than for the recommended dose,

while for non-cutaneous cancers and melanomas, the ORs and risk ratios were

consistently higher at higher doses, leading to difficulty in determining the pres-

ence of a dose–response relationship.

Overall, no statistically significant relationships were found between anti-TNF

use and any form of malignancy (including the primary analyses and various

sensitivity analyses). The authors point out the drawbacks of indirect compar-

isons and the lack of validity when compared to randomised controlled trials,

and the fact that the overall sample was underpowered to detect any increase

in such rare events.

It should also be pointed out that this model used no Bayesian analyses. Studies

with zero events in total appear to have been included in the primary analyses

(presumably by inappropriate use of continuity corrections) and excluded as part

of the sensitivity analyses (with no alteration of results).

Considering the recent work by Bongartz et al. (2009), which is based on the

analyses detailed in the previous chapter, it is now possible to compare the

MTC models to the non-MTC meta-analyses previously performed. The major

difference between this publication and the earlier work by Bongartz et al. (2006)

and Leombruno et al. (2008) is that this study investigated only etanercept, as

there are pharmacological differences between etanercept and the other anti-

TNFs.

In the published reference, the primary method of analysis was a survival method

based on the Cox Proportional Hazards model, using IPD for each trial. Hence,

this study had an advantage over the previous meta-analysis in terms of having

IPD and being able to use survival methods. Time-to-event methods enable the

issue of unequal follow-up times to be appropriately addressed. Fixed and ran-

dom effect(s) methods were also used, along with a sensitivity analysis using the

Mantel–Haenszel model with the continuity correction developed by Sweeting

et al. (2004).

Another advantage of this study was the fact that the authors had direct access

to trial data, allowing the verification of all cases of malignancy. Using the
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hazard ratio (HR), the fixed and random effect(s) models yielded similar non-

significant results (an HR of 1.82, 95% CrI 0.78, 4.22 for the random effects

model). The OR sensitivity analyses also yielded non-significant results but

with an increased risk for malignancy in those using etanercept compared to

non-anti-TNF groups.

9.9 Conclusions

Ultimately, the overall conclusion of the MTC is that the signal from the data

indicates that there is a higher risk of malignancy in those using anti-TNFs

compared to those who are not, whether they are receiving no medication for

RA or whether they are receiving other DMARDs. A clear pattern has emerged

from all studies in this field (Section 9.8.6).

However, CrIs are tending to be wide, largely due to the small number of events,

hence it is very difficult to draw any firm statistical conclusions from these data.

In all models where the anti-TNFs are separated out individually (Models 2a and

2b), there is a clear indication that infliximab is associated with a higher risk

of malignancy compared to the other two anti-TNFs. In Model 3b, infliximab

with DMARD again appears to be the anti-TNF with the highest risk of malig-

nancy. There is some contradiction in whether an additional DMARD reduces

or increases the risk of malignancy when administered with an anti-TNF. In all

models however, the use of a DMARD is associated with lower risk of malig-

nancy when used without anti-TNFs, compared to placebo alone.

From a methodological point of view, this MTC has illustrated the importance

of using a variety of models with different levels of combination of treatment

arms. Different forms of combination can lead to results with different implica-

tions for clinical practice. Possibly the most important aspect is to incorporate

clinical insight into which combinations are the most valid clinically (in terms

of pharmacological action, clinical effects and so forth). These combinations

of treatment arms can then be evaluated in the light of the appropriateness of

the model, in terms of the number of treatment arms and the distribution of

potentially sparse events across these treatment arms.

Heterogeneity is a topic not extensively dealt with in this example. Clinical

heterogeneity is not a prime issue, largely due to the similarity of the studies,
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all conducted in the USA, and on comparable patients, with a randomised con-

trolled trial design. Statistical heterogeneity is intrinsically bound with the issue

of sparse data, and the difficulty of achieving sufficient power to detect under-

lying differences with few events. Although this issue has not been specifically

addressed, it is worthy of further consideration.

For many clinical purposes, the MTC with the lowest degree of combination

may be the most useful, as the largest number of different treatments can be

compared against each other, thus clarifying where any significant (statistically

or clinically) results are to be found. However, a desire to maximise the number

of treatments may lead to models with too few events to allow the model to

be fitted, and to provide CrIs that are very wide and preclude making any

firm inferences from such results. The interplay between number of treatments

and number of events in a model, and how to most appropriately analyse the

available data is an area that can be developed further.

The underlying assumptions regarding an MTC, as referred to in Section 9.2.4,

are difficult to assess statistically, and in the specific case of adverse events,

may be difficult to assess non-statistically, in terms of the plausibility of all

studies coming from the same underlying distribution. If data are sparse, widely

varying treatment effects may be seen across the different studies, but this

would not preclude a common underlying distribution; but heterogeneity would

require addressing. However, the lack of such a distribution, which would render

meta-analysis inadvisable, could not be ruled out. The differences in results on

excluding the study by Weinblatt et al. (2003, as cited by Bongartz et al.

2006) may point to a failure of the dataset to fulfil the underlying assumptions

required for MTC meta-analysis. However, where data are sparse, the overriding

consideration may be to gain a signal from the dataset, giving lower priority to

the technical assumptions of the analysis.

Across the four studies (Bongartz et al. (2006), Leombruno et al. (2008), Bon-

gartz et al. (2009) and the MTC analysis described above), the issue of malig-

nancy in association with anti-TNFs has been approached in a variety of ways,

including Bayesian and non-Bayesian meta-analysis methods, IPD and aggre-

gate data, and MTC analysis. There are obvious advantages for some analyses,

for example, the IPD analysis allows follow-up time to be accounted for, while

the MTC analysis allows different treatments to be analysed separately, but

compared directly and indirectly.
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All the analyses have sent a signal that there is a non-significant increased risk of

malignancy with anti-TNFs, which the MTC analysis has tried to analyse further

by investigating individual anti-TNFs, but all analyses have the drawback of rare

events, with the associated wide confidence/credible intervals and difficulties in

interpreting the results.

Although there may be clinical issues regarding whether a single higher dose

of anti-TNF is the same in terms of malignancy risk as two smaller doses,

the dataset does not lend itself to such specific analyses and it was thought

more important to concentrate on the more fundamental queries as described

in Section 9.3.

One of the most difficult questions to address is that of which MTC model is the

most appropriate; the answer is of course dependent on the clinical situation.

If querying whether an anti-TNF in general is associated with increased risk of

malignancy, this question would be best suited by either Models 1a and 1b. If

the question relates to which anti-TNF may be associated with the highest risk,

Models 2a/2b, 3a/3b and 4a/4b would be the most valuable. It is impossible

to prescribe an anti-TNF without specifying the dose, hence Models 4a/4b can

be argued to be the most useful in terms of clinical decision-making. The

complexity of Models 5a/5b, compounded by practical difficulties of model-

fitting, makes the interpretation of the results of these models difficult. The

model including dose only (Section 9.7.12) is also beneficial in considering the

influence of dose.

Further analysis of this dataset is performed in Chapter 10, which includes

hierarchical models within the MTC modelling framework, the application of

constraints to such models, and a sensitivity analysis across multiple prior dis-

tributions. These models extend the analyses of this chapter, clinically by as-

sisting in answering some of the queries regarding choice of anti-TNF and dose,

and statistically, by adding complexity to the models, but in response to clinical

requirements.

As an extension to this work, a harm–benefit analysis on anti-TNF therapy,

evaluating the risk of malignancy against the improvement in quality of life

(QoL) as a result of the beneficial effect on rheumatoid arthritis, would be of

interest. A particular benefit of this approach would be the ability to quantify

the net benefit or reduction in QoL due to anti-TNF therapy. This would
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render issues regarding statistical significance less important, which, due to

the inevitable low power, is of little practical assistance in decision-making in

this context. A harm–benefit analysis (although in a different clinical field) is

presented in Chapter 11. The use of an MTC meta-analysis of an adverse event

could then be fed into a harm–benefit model, to provide a result in terms of net

QoL, as evaluated against the benefits of the intervention.

9.10 Summary

This chapter extends the investigations into the relationship between anti-TNFs

and risk of malignancy in patients with rheumatoid arthritis that was commenced

in Chapter 8. Using the dataset of 13 studies, including data on three anti-

TNFs (etanercept, adalimumab and infliximab), analyses were conducted using

MTC methods and extensions thereof, using Bayesian modelling methods in

WinBUGS software.

The initial analyses were conducted using MTC models increasing in complexity

from a basic meta-analysis comparing anti-TNFs against non-anti-TNF controls,

by incorporating individual anti-TNF drugs, additional DMARDs and dose of

anti-TNF into the treatment definitions used in the MTC. At each increasing

level of complexity the results were re-assessed for their implications into clinical

treatment.

Sparsity of events across the dataset was a consideration throughout, and sen-

sitivity analyses excluding a primary study that contributed to sparsity concerns

were performed. Further extensions to the initial MTC models are considered in

Chapter 10, including a sensitivity analysis across prior distributions used in the

models, hierarchical modelling, and addition of constraints into the hierarchical

models.

9.11 Mixed treatment comparison model diagrams

The following diagrams set out the MTC networks for the baseline models used

in this chapter, as described in Section 9.5.
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Figure 9.2: Network diagrams for Models 1a and 1b (described in Sec-

tion 9.5.1).
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Figure 9.3: Network diagrams for Model 2a (described in Section 9.5.1).
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Figure 9.4: Network diagrams for Model 2b (described in Section 9.5.1).
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Figure 9.5: Network diagrams for Model 3b (described in Section 9.5.1).
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Figure 9.6: Network diagrams for Model 4a (described in Section 9.5.1).
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Figure 9.7: Network diagrams for Model 4b (described in Section 9.5.1).
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Figure 9.8: Network diagrams for Model 5a (described in Section 9.5.1).
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Figure 9.9: Network diagrams for Model 5b (described in Section 9.5.1).
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10

Extensions to mixed treatment

comparison models

10.1 Introduction

This chapter extends the mixed treatment comparison (MTC) analyses of Chap-

ter 9, and uses the same clinical example, of anti-TNF therapy and the risk of

malignancy in rheumatoid arthritis (RA). Although the analyses presented in

Chapter 9 made some progress in interpreting the relationship between anti-TNF

therapy and malignancy, the results did not demonstrate sufficient information

regarding certain aspects of anti-TNF therapy, for example, the influence of

individual anti-TNF and dose, to be valuable in clinical decision-making. The

main aim of this chapter is to further refine and develop the MTC methods to

attempt to shed further light on these two factors of anti-TNF therapy.

By developing methods specifically tailored to this clinical example, it may be

feasible to apply such methods to other clinical examples, where certain aspects

of a therapy require investigation. For example, interactions between different

drugs may be an area where MTC analysis with hierarchical modelling could be

of value, or MTC methods could be applied to demographic factors, such as sex,

where the demographic factor could be viewed as an element of ‘treatment’.

This chapter extends the work of Chapter 9 in three main ways:

1. use of hierarchical modelling to ‘borrow strength’ across studies with com-
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mon elements of the treatment regime, e.g. using the same anti-TNF

drug, or the same dose level across different anti-TNFs;

2. placing constraints on parameters within a hierarchical model to reflect

prior beliefs regarding the relationship between aspects of the treatment

regime (e.g. dose) and treatment effect; and

3. performing a sensitivity analysis across multiple prior distributions for cer-

tain parameters within the model.

These methods are discussed in more detail in Sections 10.2, 10.3.2, 10.3.3, for

the hierarchical modelling methods, and Section 10.3.6 for the sensitivity analy-

sis across prior distributions. This chapter is a direct continuation of Chapter 9,

in that the same dataset (see Section 9.6) is used throughout.

10.2 Background of hierarchical models and constraints

A further extension of meta-analysis methods that may be applied to MTC

models comes in the form of using hierarchical models, as discussed by Prevost et

al. (2000). When using a random effects (RE) model, it may not be reasonable

to assume that all studies are deriving their true underlying treatment effect

from a common distribution. For example, there may be fundamental differences

between studies that would suggest that this is not the case.

An example of data from different study types, such as trials and observational

studies, is used by Prevost et al. (2000), but different treatments or study

populations may have similar effects. One potential approach would be to use

separate meta-analyses for the different study types, but this method would

prevent exchange of information or ‘borrowing strength’ across the study types.

An alternative approach would be to insert an additional layer of information

into the meta-analysis model, allowing studies to be indexed by study type.

In this way, the different study types are enabled to be derived from different

distributions with different central locations. An additional level of heterogeneity

is introduced to the model, that between studies of a certain type, in addition to

the between-studies heterogeneity that existed in the original basic RE model.

An alternative approach would be to assume partial exchangeability across

the studies, with some of the variability being modelled by covariates, and
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some modelled using an RE model. This approach is discussed by Higgins et

al. (2009).

The hierarchical model proposed by Prevost et al. (2000) has certain extensions

that are potentially of interest to MTC models. The first of these relates to using

different prior beliefs to inform the models. For example, using the anti-TNF

and RA example, there may be a prior clinical belief that the specific anti-

TNF drug is more highly associated with malignancy risk than dose, or that

there is a dose–response relationship, such that the higher doses of all anti-

TNFs are associated with higher risk of malignancy. To reflect these scenarios,

a hierarchical model could be used to ensure that ‘borrowing strength’ across

datapoints occurs more strongly between individual drugs, or between doses, as

appropriate.

In the example used by Prevost et al. (2000), different priors can be applied to

the heterogeneity that exists between studies of different design. Each overall

relative treatment effect for each study type can be modelled as coming from a

population with equal means, but the variances differ. Those study types with

higher variance will in effect downgrade the weight of evidence provided by that

study type and will move the overall (across all study types) relative treatment

effect closer to those of other study types with smaller variances. A further

extension to hierarchical models is the use of study-level covariates, such as

age, to explain difference in relative treatment effects between age groups.

Sensitivity to prior distributions may also be an issue worthy of investigation

in some models. The reason put forward by Prevost et al. (2000) is that prior

distributions are often selected on a subjective or ad hoc basis, so therefore it is

important to investigate the degree of influence the prior distribution may have

on the results. Also, a sensitivity analysis is desirable due to the additional levels

within the hierarchical model, with the added variance components. Any influ-

ence of the prior distribution on the outcome would be propagated throughout

the model.

Another aspect of hierarchical modelling that may be of use in MTC modelling

is the addition of a constraint to the priors on any stochastic nodes in the

model (Prevost et al. 2000). Such constraints would need to be specific to

the dataset being analysed to ensure they were appropriately applied to the

model. The example put forth by Prevost et al. (2000) relates to a situation
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where observational studies are less biased than trials, and hence the error

terms for the trials are constrained to be smaller in magnitude than those for

the observational studies (although the bias could occur in either direction of

the outcome, it will be smaller in the trials compared to observational studies).

The use of constraints within a hierarchical model has been previously discussed

by Prevost et al. (2000), using an example derived from breast cancer screening.

In this model, a prior belief was that studies with randomisation were less biased

than those that were non-randomised. This assumption was modelled by en-

forcing the error for randomised studies to be derived from a normal distribution

centred on zero, with a mean of 1, truncated by the positive and negative mag-

nitude of the error for non-randomised studies. The error for non-randomised

studies was then constrained to fall within the tails of this distribution.

Alternatively, letting µ be the estimated mean of the population of study effects

(for all study types), and letting θi be the mean estimated value for each study

type i, where Study Type 1 is randomised studies, and Study Type 2 is non-

randomised studies, then

|µ− θ1| < |µ− θ2| (10.1)

or

|ε1| < |ε2|, (10.2)

where εi refers to the error for each study type.

In effect, the bias for randomised studies is lower than that for non-randomised

studies, although there is no way to ascertain a prior belief regarding the direc-

tion of the bias, just that the magnitude is greater for non-randomised compared

to randomised studies.
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10.3 Methods

10.3.1 Baseline methods and dataset creation

In this chapter, the same MTC networks (shown diagrammatically in Sec-

tion 9.11) are used. The models in this chapter are developed from extension

of those described in Section 9.5.2, by application of more complex statistical

analyses. The modelling was implemented in WinBUGS 1.4, as discussed in

Section 9.4.6. The dataset used is the same as that of Chapter 9, described in

Section 9.6.

10.3.2 D. Random effects model with hierarchy on treatment effects

This model, and Model E (described in Section 10.3.3), are continuations of

Models A–C, described in Section 9.4.

In this and subsequent models, the adjustment described in Section 9.4.4 for

non-independent arms in multi-arm trials is employed when appropriate.

The most basic level of hierarchical model was employed in conjunction with

Model 2a, described in Section 9.5.2. In this model, the three individual anti-

TNFs were considered separately, compared against all non-anti-TNF arms. In

the initial random effects (RE) model, the treatment effects dk, for each non-

baseline treatment k, were considered to come from a vague normal distribution,

centred on zero. In the hierarchical model, the non-baseline dk values also come

from a normal distribution, but for each dk, the distribution is centred on a

different value, denoted µd, as follows:

dk ∼ Normal(µd, τ2
d ), (10.3)

µd ∼ Normal(0, 1000), (10.4)

τd ∼ Uniform(0, 2). (10.5)
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This hierarchy allows for greater variation in the values of the treatment effects,

whilst still retaining a distributional connection.

A further hierarchical model was used to investigate the situation when an

hierarchy of effects is placed on the model where both anti-TNF and dose are

considered. This hierarchy can be envisaged with dose varying within drug, or

with drug varying within dose. For the former model, each drug is modelled as

coming from a different normal distribution, which is vague in all cases, but with

a different mean in each case; drug is ‘above’ dose in the hierarchy. Each drug–

dose combination is modelled as coming from a distribution determined by the

drug. When the hierarchy has dose ‘above’ drug, each dose–drug combination

is modelled as coming from a different vague normal distribution, determined by

the dose. In other respects, the models remain as for the standard RE model.

For example, consider a hierarchy with dose j above individual drug k, and

individual study i at the lowest level. At the bottom level of the hierarchy, the

model is:

ndi,j,k ∼ Normal(dj,k, τ2
i,j,k), (10.6)

where the study-level log odds ratio (OR), by comparison to a baseline treat-

ment, for a specific dose–drug combination for study i, denoted above by ndi,j,k,

is distributed normally with a mean of dj,k, variance, τ2
i,j,k.

At the superseding level the model is:

dj,k ∼ Normal(µj , τ2), (10.7)

where µj refers to the mean log OR for each individual dose j, in this case

recommended, low or high, dj,k refers to the log OR for the specific dose–drug

combination, and is distributed normally, with a mean of µj and variance τ2.

Finally, at the highest level in the hierarchy, we have the distribution of µj , which

requires a prior distribution. Again, vague prior distributions can be placed on

the hyperparameters of µj , as in Equations 10.4–10.5.
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10.3.3 E. Random effects model with hierarchy on treatment effects and

constraints

The final variation on the MTC model comes with adding a constraint to the

model parameters. In the example used here, there is a clinical argument that

higher doses of anti-TNF are more likely to be associated with higher rates of

malignancy than lower doses. This equates to a very strong prior belief, and

this can be translated into the MTC model by means of adding constraints onto

prior beliefs regarding the odds of malignancy at each dose level.

The example set out in the MTC is not directly comparable with the example

used by Prevost et al. (2000), and hence a new approach to incorporating

constraints within the model has been developed. In the MTC there are three

dose levels, and the magnitude of effect on malignancy risk is believed to be such

that the low dose has the lowest risk, the recommended dose has a risk greater

than that of the lowest dose, but lower than that of the highest dose, which has

the highest risk. This scenario differs from that of Prevost et al. (2000) in two

ways. Firstly, there is a prior belief regarding the direction of the effect across

the three doses, and secondly, there are three dose levels (as opposed to two

study types) that must be correctly arranged in order of prior belief regarding

magnitude of effect size.

To address this issue, the prior distributions placed on each dose level require

truncation to ensure that the mean value of the prior distribution for odds of

malignancy for the recommended dose is greater than that for the low dose,

and lower than that for the high dose. Using a model with eight treatments,

including a non-anti-TNF control, the odds of malignancy for low, recommended

and high dose were placed in a hierarchy with individual anti-TNF below them

in the hierarchy. Using recommended dose as the baseline, as this dose was

present across all three anti-TNFs, the odds for malignancy in the low and high

doses were set to be related to the odds for the recommended dose, by addition

of a difference factor for each dose. The difference factor for the low dose was

then set to be negative, based on a half-normal distribution truncated to be

below zero, and similarly the difference factor for the high dose was set to be

positive.

As a continuation of the model without constraints set out in Equations 10.6

and 10.7, the constraints can be added as follows:
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µ2 = µ1 + η1, (10.8)

µ3 = µ1 + η2, (10.9)

η1 ∼ Normal(0, 10 000)I(, 0), (10.10)

η2 ∼ Normal(0, 10 000)I(0, ), (10.11)

where µj refers to log OR of malignancy in the three dose groups (recommended

= 1, low = 2 and high = 3), η1 and η2 are the differences in odds between

the recommended dose and the low and high groups respectively, I(,0) indicates

that the normal distribution is truncated above zero (can take only negative

values), and I(0,) indicates that the normal distribution is truncated below zero

(can take only positive values).

It is important to note that the parameters for normal distributions placed

on the η1 and η2 stochastic nodes are themselves defined as numbers and not

hyperparameters with distributions placed on them. This is a crucial distinction,

as the values for the hyperparameters would then be influenced by the truncation

placed on η1 and η2, which may constrict them to artificial values and invalidate

the model.

10.3.4 Application of hierarchical mixed treatment comparison models

The basic hierarchical models (Model D; Section 10.3.2) are applied in two

scenarios, firstly for the scenario outlined in Model 2a (Section 9.5.2), in which

individual nodes in the MTC network are defined by anti-TNF only, and secondly

for the scenario outlined in Model 4a (Section 9.5.2) in which individual nodes

are defined by the combination of individual anti-TNF and dose. Hence, the

modelling scenario of Model 4a, whereby two parameters are used to define a

treatment, allows the addition of an extra level within the hierarchy. Model 5a,

in which treatment nodes are defined on three parameters, individual anti-TNF,

dose and additional disease-modifying anti-rheumatic (DMARD), would allow

the inclusion of another level within the hierarchical model, but due to potential
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difficulties, both with fitting the model, and interpretation of results, this added

level within the hierarchy was not attempted.

The hierarchical model with constraints (Model E; Section 10.3.3) is used with

regard to Model 4a only, as the aim was to evoke a situation whereby both drug

and dose had an influence on malignancy, but with dose as the more prominent

factor, and an obvious ‘ascending order’ from low to high in terms of malignancy

risk.

10.3.5 Summary of hierarchical mixed treatment comparison models

The MTC models described above are summarised below.

1. Random effects model with hierarchy on treatment effects: random effects

model where treatments are defined according to different parameters e.g.

by anti-TNF and dose, with modelling of treatment effects according to

the defined hierarchy.

2. Random effects model with hierarchy on treatment effects, with con-

straints: random effects model where treatments are defined according

to different parameters e.g. by anti-TNF and dose, with modelling of

treatment effects according to the defined hierarchy, using prior beliefs to

impose constraints on the distribution of different treatment effects at the

same level of the hierarchy.

These methods extend those set out in Section 9.4.5, where the definitions

of a ‘treatment’ and ‘dose’ are provided. The basic MTC models from which

these models were developed are described in Section 9.4.1, with the MTC

networks set out in Sections 9.5.1 and 9.5.2. The constraints mentioned above

are discussed in more detail in Section 10.3.3.

10.3.6 Alternative prior distributions

Being mindful of the sparsity of the dataset, with the associated risk of any

supposedly ‘vague’ or ‘non-informative’ priors in actuality exerting influence

over the dataset, it was decided to perform a sensitivity analysis by including

a range of alternative priors on two separate MTC models, both using random

effects.
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The Prior Sets are described below. The prior distributions across models are

discussed further in Section 9.4.6.

A. µ: normal distribution, mean 0, precision 0.0001; d: normal distribution,

mean 0, precision 0.001 or 0.0001 depending on model; standard deviation:

uniform distribution, parameters 0,2; (standard priors).

B. µ: normal distribution, mean 0, precision 0.000001; d: normal distribu-

tion, mean 0, precision 0.000001; standard deviation: uniform distribution,

parameters 0,2.

C. µ: normal distribution, mean 0, precision 0.0001; d: normal distribution,

mean 0, precision 0.001 or 0.0001 depending on model; standard deviation:

uniform distribution, parameters 0,5.

D. µ: normal distribution, mean 0, precision 0.000001; d: normal distribu-

tion, mean 0, precision 0.000001; standard deviation: uniform distribution,

parameters 0,5.

E. µ: normal distribution, mean 0, precision 0.0001; d: normal distribution,

mean 0, precision 0.001 or 0.0001 depending on model; standard deviation:

half-normal distribution, mean 0, precision 0.001.

F. µ: normal distribution, mean 0, precision 0.000001; d: normal distribution,

mean 0, precision 0.000001; standard deviation: half-normal distribution,

mean 0, precision 0.001.

G. µ: normal distribution, mean 0, precision 0.0001; d: normal distribution,

mean 0, precision 0.001 or 0.0001 depending on model; standard deviation

set to equal 1/
√
τ , τ has gamma distribution with parameters 0.001, 0.001.

H. µ: normal distribution, mean 0, precision 0.000001; d: normal distribution,

mean 0, precision 0.000001; standard deviation set to equal 1/
√
τ , τ has

gamma distribution with parameters 0.001, 0.001.

The models selected for sensitivity analysis across priors were Models 2b and

4b. These models were chosen for comparison purposes. Model 2b was a sim-

pler model with fewer treatments, did not require adjustment across multi-arm

trials, and had less data sparsity than Model 4b, which had a larger number of

treatments in a more complex model, increased sparsity of data and correlation

for multi-arm trials. Model 5b was considered as a potential model for sensitiv-
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Table 10.1: Median log odds ratios for hierarchical model based on Model
2a with log odds ratio for each anti-TNF assumed to come from same
distribution.

Treatment Median†

LOR*
95% CrI

Etanercept 0.947 -0.013; 2.239

Adalimumab 0.939 -0.042; 2.249

Infliximab 1.139 -0.094; 3.113
† median of posterior mean distribution; * baseline for LOR is Control; CrI: credible interval; LOR: log
odds ratio.

ity to priors but due to concerns regarding possible convergence issues was not

selected.

For all sets of priors the burn-in was 10 000 iterations, convergence having

been attained at this point, followed by a sample of 50 000 iterations. The

exceptions to this rule were Prior Set E, for which convergence was poor at

10 000 iterations, therefore a burn-in of 20 000 iterations was preferred, and

Prior Set F which required a burn-in of 50 000 iterations.

10.4 Results and initial discussion

10.4.1 Use of hierarchical models

In order to investigate any possible differences in outcome by ‘borrowing strength’

across different treatment categories that are in some way similar, such as con-

taining the same drug or dose, several hierarchical models have been used. In

all examples with hierarchical models, RE models (which are by definition hier-

archical) are used.

The simplest of these involved a model where the treatment effects for three

drugs were assumed to come from some overall distribution for anti-TNFs in

general. The results of this model are set out in Table 10.1 for comparison to

the non-hierarchical model.

These results can be compared with those set out in Table 9.4, for Model 2a.

The results are as would be expected, in that the hierarchical model brings

together the posterior distributions for the log ORs. For example, from Model 2a

(non-hierarchical), the smallest median log OR (using the RE model) is 0.875,
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Table 10.2: Median log odds ratios for hierarchical model based on Model
4a with log odds ratio for each anti-TNF assumed to come from same
distribution.

Treatment Median† LOR* 95% CrI CrI width

Etanercept (Rec) 0.862 -0.048; 1.981 2.029

Etanercept (Low) 0.843 -0.230; 2.104 2.334

Adalimumab (Rec) 0.833 -0.090; 1.99 2.080

Adalimumab (Low) 0.824 -0.691; 2.218 2.909

Adalimumab (High) 0.931 -0.254; 2.501 2.755

Infliximab (Rec) 0.746 -0.922; 2.231 3.153

Infliximab (High) 1.153 0.059; 3.139 3.198
† median of posterior mean distribution; * baseline is Control; CrI: credible interval; LOR: odds ratio;
Rec: recommended.

for adalimumab, while the highest median log OR was 1.928 for infliximab. The

range of median log ORs is clearly narrower using the hierarchical model.

Having established that the hierarchical models work as would be expected,

the next step was to use these models in two separate hierarchies, one with

drug at the upper level, with dose categories below drug in the hierarchy, the

second with dose at the upper level, with drug below dose. In the first model,

the different treatments including the same drug are assumed to come from an

overarching distribution (doses within drug are exchangeable), in the second,

the different treatments including the same drug are assumed to come from an

overarching distribution (drugs within dose are exchangeable).

Looking first at the model where all treatments using the same drug are consid-

ered to be derived from the same distribution, and with non-anti-TNF controls,

the median log ORs are set out in Table 10.2.

Comparing these results with those set out in Model 4a, Table 9.7, for the RE

version of Model 4a, looking at adalimumab, the median log OR for the low

dose was 0.290, with the median log OR for the high dose at 1.413 (the corre-

sponding value for the recommended dose lying between these two extremes).

It is therefore evident that applying the hierarchy on drug brings the results for

the three different dose levels for adalimumab closer together. Similarly, for in-

fliximab the median log ORs for the non-hierarchical model at the recommended

dose was -0.127 compared to 0.746 in the model above, effectively going from

an estimated lower incidence of malignancy to higher incidence of malignancy.

The sum of summed deviances for this model was 33.61, compared to 34.28 for

the equivalent non-hierarchical RE model.
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Table 10.3: Median log odds ratios for hierarchical model based on Model
4a with log odds ratio for each dose level assumed to come from same
distribution.

Treatment Median† LOR* 95% CrI CrI width

Etanercept (Rec) 0.828 -0.066; 1.890 1.956

Etanercept (Low) 0.838 -0.273; 2.097 2.370

Adalimumab (Rec) 0.813 -0.064; 1.897 1.961

Adalimumab (Low) 0.829 -0.725; 2.240 2.965

Adalimumab (High) 1.154 -0.076; 2.806 2.882

Infliximab (Rec) 0.675 -0.792; 1.942 2.734

Infliximab (High) 1.322 0.226; 3.137 3.363
† median of posterior mean distribution; * baseline is Control; CrI: credible interval; LOR: odds ratio;
Rec: recommended.

An alternative hierarchical model enforces the same dose level across different

anti-TNFs to be derived from the same distribution for log OR (drugs within

dose are exchangeable). The results are shown in Table 10.3.

The total sum of deviances for this model was 33.13, compared to 34.28 for the

non-hierarchical model, and 33.61 for the model with dose exchangeable within

drug in the hierarchy.

10.4.2 Use of models with constraints on prior distributions

The model using constraints on the LOR between different doses of anti-TNF

presented some difficulties in execution, namely that the use of multiple chains

with different initial values did not appear to be viable. However, on using one

chain, convergence was achieved by 10 000 iterations, and a sample size of a

further 50 000 iterations was derived. The results are shown in Table 10.4.

It is useful to compare the results from the model with constraints to those

derived from the equivalent non-constrained model, a hierarchical model with

drugs exchangeable within dose, without constraints, which are set out in Ta-

ble 9.7.

The total sum of deviances for the non-constraint model was 33.13, compared

to 32.75 for the model with constraints (for 35 datapoints). It is also useful to

compare the underlying log ORs for the three dose levels across the two models,

as set out in Table 10.5.
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Table 10.4: Median log odds ratios for hierarchical model based on Model
4a with log odds ratio for each dose level assumed to come from same
distribution, plus comparison of prior distributions with and without con-
straints.

No constraints Constraints

Treatment Median† LOR* 95% CrI Median† LOR* 95% CrI

Etanercept
(Rec)

0.828 -0.066; 1.890 0.721 -0.161; 1.861

Etanercept
(Low)

0.838 -0.273; 2.097 0.346 -1.032; 1.653

Adalimumab
(Rec)

0.813 -0.064; 1.897 0.761 -0.153; 1.953

Adalimumab
(Low)

0.829 -0.725; 2.240 0.254 -1.555; 1.724

Adalimumab
(High)

1.154 -0.076; 2.806 1.930 0.327; 3.774

Infliximab
(Rec)

0.675 -0.792; 1.942 0.666 -0.891; 2.094

Infliximab
(High)

1.322 0.226; 3.137 2.153 0.745; 4.065

† median of posterior mean distribution; * baseline is Control; CrI: credible interval; LOR: odds ratio;
Rec: recommended.

Table 10.5: Underlying LORs for each dose level, comparing models with
and without constraints.

Dose Constraints Median† LOR* 95% CrI

Rec No 0.815 0.207; 1.936

Rec Yes 0.764 -0.238; 2.026

Low No 0.871 -0.370; 2.192

Low Yes 0.184 -0.519; 1.347

High No 1.143 -0.044; 2.724

High Yes 2.079 0.684; 4.057
† median of posterior mean distribution; * baseline is Control; CrI: credible interval; LOR: odds ratio;
Rec: recommended.
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As there was not a strong clinical indication a priori that any of the anti-TNFs

presented a higher risk of malignancy than any others, there was no reason to

perform a constraints model based on anti-TNF.

10.4.3 Comparisons across models

The models described above display a wide variety of levels of complexity, and

additional modelling features. To assist in comparing these models, results

from multiple treatments are set out in Tables 10.6–10.8, each table including

results relating to treatments including one of the three anti-TNFs. These cross-

model comparisons would be useful in comparing treatments within and between

anti-TNFs, and could be used in conjunction with clinical background knowl-

edge. Both adalimumab and infliximab have results that are significant statis-

tically, and potentially clinically, which vary according to the model selected;

this phenomenon is perhaps most dramatically demonstrated for infliximab, in

Table 10.8. High-dose infliximab has significant results for both hierarchical

models, and for the model with constraints, but when using the straightforward

model using dose (Model 4a), the results are not significant. Hence, a care-

ful consideration of whether hierarchical models and the use of constraints are

appropriate, both clinically and statistically, is required.
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10.4.4 Alternative prior distributions

The results for the sensitivity analysis across prior distributions set out in Sec-

tion 10.3.6 are presented in this section.

The results for Model 2b are set out in Table 10.9. Selected results for specified

treatments are also presented for Model 4b, with the same set of priors as above.

In this model, the three adalimumab dose levels were selected as treatments for

comparison of priors. This was due to the existence of some sparsity of data

across the three doses, and therefore these treatments may be sensitive to the

selected prior. The results for these models are set out in Table 10.10.

The priors impact primarily on the posterior distribution for the standard devi-

ation in each model, and through the standard deviation exert an influence on

the OR and log OR. Therefore, to understand the influence of any prior on the

results, it is helpful to consider the values of the standard deviation for each set

of priors, and in particular the shape of the posterior density. Table 10.11 sets

out the relevant values for the standard deviation. Densities for the standard

deviation for Model 2b with the various priors are set out in Figure 10.1, and

for the Model 4b the densities are set out in Figure 10.2 (see Section 10.7).
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Table 10.11: Median standard deviations for Models 2b and 4b with

Prior Sets A–H.
Model 2b

Prior set Median sd 95% CrI

A 0.906 0.064; 1.914

B 0.910 0.063; 1.913

C 1.109 0.077; 3.972

D 1.159 0.073; 4.137

E 1.176 0.054; 5.640

F 1.246 0.065; 6.925

G 0.385 0.033; 2.729

H 0.385 0.033; 2.659

Model 4b

A 0.956 0.044; 1.927

B 0.995 0.072; 1.934

C 1.297 0.095; 4.269

D 1.326 0.100; 4.296

E 1.383 0.108; 6.409

F 1.469 0.107; 7.473

G 0.438 0.33; 3.016

H 0.412 0.031; 3.139
CrI: credible interval; sd: standard deviation.

10.5 Further discussion and conclusions

10.5.1 Alternative prior distributions

The results for alternative Prior Sets are set out in Tables 10.9–10.10. The

associated densities for the standard deviation are set out in Figures 10.1 and

10.2.

Use of different priors did have some influence over the central estimates and

associated CrIs. For example, Model 2b, comparing etanercept with placebo,

Prior Set A resulted in the narrowest CrI (Table 10.9), and yielded a significant

result, whereas all other Prior Sets produced non-significant results. A simi-

lar effect of priors was seen when comparing infliximab with placebo, also in

Model 2b (Table 10.9).
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There was also a consistent tendency for priors that used a gamma distribution

(Prior Sets G and H) on the precision to result in lower central estimates for the

LOR values, due to the increased right skewness that this distribution enforces

on the standard deviation density. When the dataset includes few events, it

may be more vulnerable to the influences of the prior, hence choice of prior is

very important in these cases, and a sensitivity analysis to assess the effects of

multiple priors is very important.

10.5.2 Hierarchical models and constraints

The hierarchical models indicated that the effects of ‘borrowed strength’ across

different treatments within a sub-category, such as drugs within dose or vice

versa, can also bring results that differ statistically and may also lead to differ-

ences in clinical conclusions.

The phrase ‘borrowing strength’ implies that it is in some way a positive thing

for different but related subgroups to be analysed in such a way that they may

influence each other, and reduce the width of associated plausible intervals. In

a scenario where sparsity of data is not an issue this may be the case, but when

there are few events across a dataset, it may be possible that ‘strength’ is not so

much ‘borrowed’ from one subgroup to the next, but that ‘strength’ is inflicted

between subgroups in a way that may not always be conducive to valid results.

For example, in the MTC performed above, when an hierarchy with dose as-

sumed interchangeable within individual anti-TNF, ‘strength’ was inflicted on

the recommended dose of infliximab from the high dose, producing a consider-

able difference in median LOR (-0.127 in the non-hierarchical model to 0.746

in the hierarchical model). Whilst CrIs were wide in both cases, the use of

the hierarchical model narrowed the CrI somewhat. If however, the order of

the hierarchy was flawed, in that dose is in fact the most important factor in

malignancy risk (whereas this model places individual anti-TNF as the most

important factor, above dose in the hierarchy), this hierarchical model may in

fact be misrepresenting the recommended dose of infliximab as having a greater

association with malignancy than is actually the case.

The ordering of hierarchical models is therefore of great importance and may be

more influential when there are few events and/or few studies in the dataset, re-
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sulting in wide intervals and central estimates that may be more easily influenced

by borrowed strength across subgroups.

The work of Walsh & Mengersen (2007) suggests that the hierarchy should

be determined empirically using a rule that the highest level of the hierarchy

should be that with the greatest degree of variability between its groups, and

then with degree of variability within each group becoming successively smaller

as the levels of the hierarchy descend. In practice, this should result in narrower

confidence or credible intervals for each measurement, if the hierarchy follows

this rule.

In a simulation example used by Walsh & Mengersen (2007) the mean value

for each observation was centred in the same place for either of two hierarchi-

cal models, whereas the width of the confidence interval (CI) was consistently

narrower for one of the two models (using a quarter of the CI to be analagous

to the standard error of the mean). Using a clinical example, one hierarchical

model provided a narrower CI for the overall mean estimate of the parameter of

interest, although CIs for each measurement were not greatly different between

the two hierarchies.

Based on the work of Walsh & Mengersen (2007), there was no clearly preferable

hierarchical model in terms of whether dose or drug should be the higher of

the two levels. Considering the width of the CrIs as set out in Tables 10.2

and 10.3, there was no strong pattern regarding CrI width between the two

models. However, the overall sparsity of events across the 13 studies may have

precluded the emergence of a clear hierarchical structure due to dilution of

the data. Therefore, based on these results it is difficult to determine which

hierarchical model may yield the more valid results, or indeed if a hierarchical

structure is in any way preferable to a non-hierarchical model including dose

and drug in a non-connected way. The benefit of narrower CrIs may be offset

by the disadvantages of model uncertainty.

Other aspects that may influence the hierarchy of a model are theoretical issues,

considerations of study design, and physical arguments (Walsh & Mengersen,

2007). These areas are not pursued further by these authors, but it is assumed

that theoretical issues relate to prior knowledge regarding the way the different

levels of the hierarchy inter-relate, design considerations refer to constructing

the modelling hierarchy in accordance with the way a study has been designed,
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and physical arguments may indicate that there are definite physical restrictions

that impose themselves on the way in which a hierarchy can be constructed.

With regard to adverse events, hierarchical models have the potential to play

a very important role. For example, there may be hierarchies related to treat-

ment, such as drug, dose and duration of treatment. Other hierarchies may

relate to indication for treatment, or demographic factors such as age and sex.

Considering ways to construct such hierarchies to make most valid use of the

available data could be a very valuable area for future study within the field of

adverse events, and indeed meta-analyses of other types of primary data.

One way in which an hierarchical model may be developed further, by using prior

clinical beliefs regarding the nature of the hierarchy between drug and dose, is

to add in constraints to the model. This method worked well with this example,

as the three dosage levels lent themselves to an evident clinical assumption,

namely that higher doses, of all three anti-TNFs, would result in increased risk

of malignancy. This is a very strong prior belief to place on a model parameter,

but it can be justified as reasonable in this instance.

The results were considerably different from those of the comparable model

without the constraint. Not only were the ‘best’ and ‘worst’ values constricted

to be in the expected order of size for each drug, but the log ORs were also

very different, and gave more clear-cut results. For example, in the constraints

model the log OR for the highest dose of adalimumab was 1.930 (95% CrI

0.327; 3.774), compared to 1.154 (95% CrI -0.076; 2.806). Hence, the result

has become ‘significant’ with the use of the constraints model. As can be seen

in Table 10.5, the model without constraints indicated a higher median LOR

for malignancy in the low dose than the recommended dose. The constraints

model however, enforced the expected ordering of LOR increasing accordingly

with anti-TNF dose. The constraints model also enforced the expected hierarchy

of results onto the probabilities for ‘best’ and ‘worst’, an effect that was not

seen consistently in the hierarchical non-constrained model.

This result adds support to the argument that the high dose drugs are associated

with the highest risk of malignancy, whereas there is no strong evidence to

support increased risk for low or recommended doses. One caveat however, is

that the sparsity of events across the dataset may indicate that the data in this

example are more easily overwhelmed by the prior than would be the case in
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a dataset with a larger number of events and hence a stronger input into the

posterior model. With a dominant prior, there may be a risk of imposing a

particular result that the data do not in fact support.

10.5.3 Final conclusions

The use of hierarchical models is arguably an appropriate one in the circum-

stances of this clinical situation, in terms of allowing ‘borrowing strength’ across

treatments with equivalent parameters. The estimates of treatment effect from

these models may be considered preferable to those from the non-hierarchical

models.

It is, however, in the use of constraints, that such models appear to make the

greatest contribution to the analysis. By allowing a strong prior viewpoint to be

an influential aspect of the model, in that the low doses (across all anti-TNFs)

have a weaker influence on malignancy risk than high doses, and high doses have

a stronger influence, the results are more emphatic, and provide a clear response

to the question (Table 10.5). With the sparsity of events across this dataset,

the option of adding constraints to the model is appropriate, both statistically

and clinically. It is statistically appropriate in terms of making best use of the

data, by applying not only ‘borrowing strength’ within the dataset, but also

placing what is effectively a prior distribution on parameters within the model,

to ensure their relative magnitude. From a clinical perspective, it is reasonable

to assume a dose–response effect, based on previous analyses (Bongartz et al.

2006 and Leombruno et al. 2008, see Section 9.8.6).

The only caveat of using hierarchical models with constraints is that the con-

straint may dominate the data, especially where events or primary studies are

scarce. However appropriate the constraint may seem, there is concern that its

effect will exert undue influence on the results. It is clear from Table 10.5 that

the use of constraints has significantly altered the results, in terms of both the

point estimates and uncertainty estimates.

Further investigation into the use of constraints within a hierarchical model, with

the aim of discovering how strongly they can influence the outcome of a model,

with varying amounts of data, differences in construction of MTC network,

and strength of treatment effect, would be an interesting field of endeavour.
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Simulation studies to incorporate these factors would be an appropriate way to

evaluate the use of constraints within a hierarchical model framework.

As can be seen in Section 10.4.4, the choice of prior distribution, even when

supposedly ‘vague’, can be influential in the model. In these analyses, the

sensitivity analysis across prior distributions was applied only to selected non-

hierarchical MTC models. It would be interesting to extend this work by a

sensitivity analysis across the hierarchical models; as a function of these models,

uncertainty parameters can be propagated through the model (Section 10.2),

thus a prior distribution may have increased influence.

Within the context of a harm–benefit model, as described in the next chapter,

an MTC model with a hierarchical structure (with or without constraints) could

be used to inform the model, for the adverse events, and if appropriate for

beneficial effects also.

10.6 Summary

This chapter extends the MTC models of Chapter 9 by applying a hierarchical

modelling structure on certain models, and then by applying constraints to

selected hierarchical models, whilst using the same dataset. These methods are

novel approaches to adverse events data, and are particularly appropriate to the

clinical questions posed by this dataset. These models support the best use of

a dataset with sparse events, where it is difficult to derive a clear signal, due to

lack of power. In this context, estimates of treatment effects, and ranking of

treatments, become more important in understanding the clinical picture.

A sensitivity analysis of prior distributions is also performed, using standard

MTC models as described in Chapter 9.

Potential ways to extend this model would include simulation modelling to eval-

uate the effects of placing a constraint on a hierarchical model, and including a

range of prior distributions in the hierarchical model for a sensitivity analysis.
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10.7 Densities for standard deviation of alternative priors

The posterior densities on standard deviation for Models 2b and 4b, across Prior

Sets A–G are shown below in Figures 10.1 and 10.2.
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Model 2b, Prior Set A: density for standard deviation.  Model 2b, Prior Set B: density for standard deviation.     
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Figure 10.1: Densities for standard deviation of alternative priors for

Model 2b.
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Model 4b, Prior Set A: density for standard deviation.  Model 4b, Prior Set B: density for standard deviation.      
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Model 4b, Prior Set C: density for standard deviation.  Model 4b, Prior Set D: density for standard deviation.   

sd chains 1:3 sample: 150003

   -2.0     0.0     2.0     4.0

    0.0

    0.2

    0.4

    0.6

   

sd chains 1:3 sample: 150003

   -2.0     0.0     2.0     4.0

    0.0

    0.2

    0.4

    0.6

 

Model 4b, Prior Set E: density for standard deviation.  Model 4b, Prior Set F: density for standard deviation.   

sd chains 1:3 sample: 150003

    0.0    10.0    20.0

    0.0

    0.2

    0.4

    0.6

 

sd chains 1:3 sample: 150003

    0.0    10.0    20.0

    0.0

    0.2

    0.4
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Figure 10.2: Densities for standard deviation of alternative priors for

Model 4b.
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11

Net clinical benefit models: case-study

using tamoxifen for prevention of breast

cancer recurrence

11.1 Introduction

There are instances where a drug (or other intervention) may be deemed so

harmful to any individual who may use it that it is justified to prohibit its use

altogether, regardless of any possible beneficial effects it may have for some pa-

tients. For example, ximelagatran, a thrombin inhibitor with efficacy in stroke

prevention, was withdrawn due to hepatotoxicity (Agnelli et al. 2009). In many

cases, however, a blanket ban on a drug is not warranted, because any poten-

tial adverse events are not sufficiently common or severe to justify the loss of

beneficial effects.

In less extreme cases it may be possible to exclude a certain drug from general

use due to the availability of other drugs with similar efficacy but a superior

safety profile.

It is in such situations that it is important to quantify potential benefits and

harms, possibly varying across different patient characteristics, to allow clinical

decision-making at an individual level. Furthermore, it is rarely valuable to

consider only adverse events associated with any particular intervention, as the
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aim of the intervention is to create a positive outcome, and only once this

is established can potential adverse effects be considered that may offset this

outcome.

In this section, the example of tamoxifen has been used, as it has been an estab-

lished treatment to prevent recurrence of breast cancer, but is also associated

with endometrial cancer and other possible harms. Net-benefit models were

developed that bring together a variety of evidence on the effects of tamoxifen,

translated into the ‘common currency’ of quality of life (QoL), thus converting

into one metric the analyses of benefits and harms.

11.2 Overview of net-benefit models and quality of life

measurement

11.2.1 Net-benefit models for medical decision-making

An early approach to net benefit modelling was provided by Glasziou & Ir-

wig (1995). These authors were interested in the question of applying treat-

ments to particular patient subgroups. They rejected the method of considering

the entry criteria for the initial clinical trials, and then determining whether an

individual patient would be sufficiently similar to these criteria. They put for-

ward the idea of assessing, for an individual patient, the potential benefits and

harms of a treatment. Their argument was that for most patients, potential

harms will be fixed (although this may not be the case for every treatment),

whereas patients will vary widely in their potential for deriving a positive benefit

(people with the greatest risk or greatest severity of disease would stand to gain

most benefit).

Net benefit would be assessed by a meta-analysis of randomised trials, as argued

by Glasziou & Irwig (1995), whereas risk to individual patients would be derived

from multivariate analyses of cohort study data. However, the major assump-

tions of fixed adverse events and constant reduction in relative risk (beneficial

effect of the treatment across all patients) would need verification. Citing ear-

lier work by Lubsen & Tijssen (1989), Glasziou & Irwig (1995) reported that

benefits and harms can be analysed separately, with the underlying assumption

that at some point, for the patients with the least to gain from treatment, the
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potential for harm will balance the potential for benefit. The mainstay of the

model is to convert relative benefits into absolute benefits, which are likely to

vary according to the initial level of patient risk. By incorporating a fixed harm,

a net-benefit equation is derived:

Net benefit = (risk× reduction in relative risk)− harm. (11.1)

A four-stage model is then discussed by Glasziou & Irwig (1995). Stage 1

involves estimation of benefits and harms, preferably by use of a randomised

trial or meta-analysis of such trials. Stage 2 involves checking assumptions

of relative benefit and absolute harm. Relative risk reduction may vary with

underlying risk (possibly for many clinical reasons), also absolute harm may be

dependent on risk. Investigation into these assumptions may be performed by

plotting risk reductions (or increases, as appropriate) against underlying risk [of

disease being treated], for both harms and benefits. If an intervention has both

positive and negative effects on the same outcome, then both of these influences

would need to be modelled simultaneously.

Stage 3 in this model is to balance out the benefits and harms. In their model,

Glasziou & Irwig (1995) consider quality of life (QoL) issues to develop an

equivalence between deaths caused by intracranial haemorrhages and throm-

boembolic strokes prevented. Whilst their models used average values for QoL,

the authors make the valid point that different individuals will place varying val-

ues on QoL following different medical events and conditions. The final stage

(Stage 4) in their model returns to the concept of predicting risk at the level

of the individual patient, by identifying specific risk factors, and using these to

estimate risk across all risk factors. The authors suggest that population-based

cohorts may be preferable to trials in eliciting information regarding risk factors,

due to the processes of a trial in determining eligibility and obtaining consent,

which may have an influence on risk factors for adverse events.

The model used by Glasziou & Irwig (1995) was a quantitative model to evaluate

clinical benefit, but did not include Bayesian methods. A re-evaluation of the

examples used by Glasziou & Irwig (1995) was performed by Sutton et al. (2005),

using Bayesian methods, the primary benefit of which is that they can add in

uncertainty around individual parameters in the model. To illustrate where

uncertainty can be brought into the model, Glasziou & Irwig (1995) admit that,
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when using QoL values, individual patients will vary in the QoL ratings for

certain conditions, but such variations are not incorporated into the model.

By placing uncertainty around average estimates, the uncertainty can be incor-

porated into the overall model, producing a result that can be applied over all

patients receiving a treatment. Whilst it would be ideal to perform an individ-

ual analysis for each patient, incorporating that patient’s specific values for QoL

and individual risk factors, this is not always feasible, and a model incorporating

uncertainty is preferable to one that uses fixed values that will not be applicable

to all patients.

Using the terminology of net clinical benefit (NCB) as the evaluation of balance

of risks, Sutton et al. (2005) put forward a simple equation to calculate this

metric:

Expected NCB = Expected benefit from treatment

−Expected harm from treatment. (11.2)

When there are multiple benefits and/or harms, these can be added together

across the relevant clinical outcomes, as in Equation 11.3.

Expected NCB = Σ(Expected benefits from treatment)

−Σ(Expected harms from treatment). (11.3)

A further issue is that risk of harms and potential for benefit may not be constant

across all patients but may vary according to patient characteristics, for example,

patients with the greatest propensity for disease may stand to gain the most

benefit from treatment. In many meta-analyses, the outcome metric is on a

ratio scale, such as an odds ratio (OR) or relative risk (RR). These relative

outcome metrics are often considered constant across varying levels of patient

risk. Hence, to evaluate a net clinical benefit for a patient at a given level of

risk, it is necessary to convert the RR (for benefit) onto an absolute scale, such

a reduction in relative risk (RRR, which is equal to 1 – RR). (It is assumed

that the RR will be less than 1 for a beneficial treatment. Relative risk increase

(RRI), equal to RR – 1, would be used in cases where the RR was greater than

1.) The RRR can then be multiplied against the patient’s risk (of the disease

that is being treated) for each individual patient.
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This then gives the following formula for NCB:

Expected NCB = (Patient risk× RRR)− Expected harm from treatment.

(11.4)

If benefit equals harms then NCB is equal to zero; if benefit exceeds harms

then NCB is positive and if harms exceed benefit then NCB is negative and the

treatment would be regarded as inadvisable for a patient with the level of risk

modelled in the formula. Assuming relative risk remains constant across all pa-

tient factors, then patient risk has a linear relationship with absolute benefit, and

assuming expected harms from treatment also remain constant for all patients,

then patient risk also has a linear relationship with NCB. If the assumption of

constant RR for benefit is invalid, then the linear relationship between NCB

and patient risk would not occur. RCT data and meta-analyses of such data

can be used to establish the relative risk for benefits, and can also be used to

identify any patient characteristics influencing RR by use of subgroup analysis

and meta-regression. Once risk factors have been identified, the ways in which

these risk factors may influence relative risk for individual patients can be used

in modelling NCB.

Re-analysing the data used by Glasziou & Irwig (1995), Sutton et al. (2005)

used Bayesian methodology, which allows each parameter in the model to be

represented by a probability distribution with its own degree of uncertainty. This

allows more flexibility in applying the results, which are expressed as credible

intervals (CrIs).

The authors set out to evaluate the quantity they refer to as ‘net clinical bene-

fit’, describing the difference between expected treatment benefit and expected

treatment harm. In their example of evaluating the benefit of stroke preven-

tion with warfarin therapy against the risk of fatal intracranial hemorrhage,

the authors stress the importance of putting both benefits and harms on the

same scale. Bayesian methods were used to combine the preventative effects

of warfarin on stroke, hemorrhage, a quality of life outcome and risk of stroke

in different subgroups in a multiparameter evidence synthesis model. The net

clinical benefit can then be synthesised as a posterior distribution having incor-

porated data on risks and benefits, for different subgroups, based on level of

risk.
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As both of the main outcomes of this model involve a risk of death, it is straight-

forward to see how the risks and benefits can be ‘traded off’ against each other.

In a scenario where the risks and benefits are not so diametrically opposed,

some framework in terms of quality of life for risks and benefits would need to

be developed for each intervention. There may be several adverse events for

each intervention (and possibly more than one treatment effect although this is

likely to be a less commonplace situation), which should be especially borne in

mind.

The necessary data to inform the model can either be derived from single studies

or from multiple studies using meta-analysis methods within the NCB model,

another benefit of using a Bayesian approach. A QoL model can then be used

to evaluate harms and benefits on the same scale, ensuring that patients who

die (and hence have a QoL of zero following death) are included in the QoL

calculations. The importance of sensitivity analyses to assess the effect of the

multiple assumptions that are of necessity included in such a complex model

was also highlighted.

A similar model balancing harms and benefits of hormone replacement therapy

(HRT), which has multiple potential benefits and harms, was carried out by

Minelli et al. (2004). Using quality-adjusted life-years (QALYs) to translate

benefits and harms onto a common scale, these authors developed a decision

model based on that of Glasziou & Irwig (1995), with the aim of identifying

a level of baseline risk of breast cancer (the most significant potential harm)

in women using HRT. Above this level of baseline risk of breast cancer, the

potential benefits of HRT would be outweighed by risk of breast cancer (and

other harms including coronary heart disease, pulmonary embolism and stroke).

Hence, the same model was evaluated using multiple baseline risks. Again, this

model relied heavily on the validity of multiple assumptions across the different

aspects of the model. The first assumption was that the QoL values for risks

and benefits were indeed interchangeable and could be added and subtracted

for the various harms and benefits. (This assumption highlights the subjective

nature of QoL as a tool for decision modelling, which will be discussed further

in Section 11.2.2).
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11.2.2 Use of quality of life in medical evaluations

The conversion of health benefits conferred by medical interventions into eco-

nomic evaluations allows these interventions to be evaluated for cost-benefits,

to determine whether an intervention can be administered cost-effectively to

a population or to compare different interventions for the same condition in

terms of cost-effectiveness. A cost–utility analysis places the unit of measure-

ment of benefit (or, indeed, disbenefit) to the individual patient in terms of

QALYs. As discussed by Torrance (1986), the QALY is useful when there are

multiple outcomes, outcomes that include both morbidity and mortality, and

when a treatment is to be compared to other treatments that have already

been assessed using QALYs.

There are several ways that quality of life can be assessed quantitatively, as

described by Torrance (1986). The simplest involves a rating scale, whereby

the individual allocates a rating to each health state, for example between 0

(least preferred health state, for example death) and 1 (most strongly preferred

health state, or perfect health). The value derived is effectively a weighting

for the quality of health in a certain state, also known as a utility. A visual

analogue scale may be used, which was the preferred method for the EuroQoL,

whereby participants rated health states on a scale of 0 to 100 (The EuroQoL

Group 1990).

A slightly more complex method is the standard gamble, in which patients are

offered a choice of outcomes following a certain treatment, with associated

probabilities for each outcome, for example, being healthy (with probability p)

or death (with probability p-1). These probabilities are compared to a different

alternative (for example, no treatment) which has a certain outcome, for ex-

ample a chronic state of poor health. The probabilities following the treatment

can be varied until there is no preference for either alternative treatment, at

which point the preference (utility) for the chronic health state compared to

being healthy is taken as p.

A third method is that of the time trade-off, whereby the respondant is asked

to determine how much time in a chronic health state would be the equivalent

to a lesser time in full health, from which a utility can be derived. Other

methods exist, for example, equivalence techniques and ratio scaling (discussed
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by Torrance (1986), citing previous authors) but the three methods described

above are among the most prominent.

In evaluating the validity of methods of health state evaluation, Torrance (1986)

argues that these methods are valid, as long as the participants are appropri-

ate, the health state descriptions are adequate, the questions are framed in

a balanced way, and that the measurement techniques are valid and reliable.

The participants may be selected in a variety of ways, for example, members of

the public, patients with specific health conditions, or healthcare professionals.

Hence, when using utilities for different conditions, it should be borne in mind

that there may have been differences in the populations used to determine the

utility values, and that it may not be valid to directly compare utilities across

multiple conditions.

11.3 Clinical context: tamoxifen for recurrence of breast

cancer

Tamoxifen has both anti-estrogenic and estrogenic effects, and it is the anti-

estrogen effects that make it useful in breast cancer sufferers, with the aim of

reducing recurrence of the disease. However, there are many adverse events

associated with tamoxifen, some of which are themselves life-threatening, for

example, increased risk of endometrial cancer, pulmonary embolism and cere-

brovascular accident.

In the light of concerns regarding the adverse effects of tamoxifen, Braithwaite

et al. (2003) performed a meta-analysis of vascular and neoplastic outcomes

using randomised controlled trials where tamoxifen was compared to a non-

tamoxifen control group. In the majority of their primary studies, the indication

for taking tamoxifen was the prevention of recurrence of breast cancer in patients

who already had the disease, but there were some primary studies where the

indication for use of tamoxifen was prevention of breast cancer in women in

high risk groups, as well as some trials that were unrelated to breast cancer.

Based on their results, tamoxifen was associated with a statistically significant

increase in risk of stroke, deep vein thrombosis, gastrointestinal cancers, and

endometrial cancers. However, there was a significant reduction in deaths due

to myocardial infarction.

Fiona Warren PhD Thesis 2010 310



Chapter 11 Net clinical benefit models

For a clinician or patient with breast cancer attempting to determine whether

tamoxifen treatment would be beneficial, this meta-analysis addresses only one

side of the issue – that surrounding adverse events, without attempting to

quantify them against the beneficial effects of tamoxifen in reducing breast

cancer recurrence. The modelling outlined in this chapter aims to combine

the data regarding tamoxifen as a beneficial agent of reducing breast cancer

recurrence, against one of the adverse events most strongly associated with

tamoxifen use: endometrial cancer. In this way, a quantitative analysis can be

made of whether tamoxifen is advisable for women with breast cancer recurrence,

with regard to the risk of endometrial cancer.

11.4 Methods 1: Dataset creation

11.4.1 Required data

This example involves an assessment of the increased QoL for the reduced

recurrence of breast cancer, which is balanced against the loss of QoL due to

increased risk of endometrial cancer. Hence, two sets of data are required, one

for each section of the model.

The items of data required for the recurrence of breast cancer aspect are set

out below.

1. Relative risk (RR) of breast cancer recurrence for tamoxifen users

compared to non-tamoxifen users.

2. Average risk of breast cancer recurrence.

3. Average risk of death after breast cancer recurrence.

4. QoL during breast cancer recurrence.

The items of data required for the risk of endometrial cancer are shown below.

1. Relative risk of endometrial cancer for tamoxifen users compared to non-

tamoxifen users.

2. Average relative risk of endometrial cancer in general population and

associated precision.
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3. Average risk of death due to endometrial cancer.

4. QoL during endometrial cancer.

With the elements of data above, it is possible to develop a model to evaluate the

changes in QoL due to risk of breast cancer recurrence and endometrial cancer,

for tamoxifen users compared to non-tamoxifen users, as well as modelling the

associated uncertainty around the different values as they inform the model.

11.4.2 Data sources and extraction

Breast cancer recurrence

The relative risk of breast cancer recurrence for tamoxifen users compared to

non-tamoxifen users was derived from a study by the Early Breast Cancer Trial-

ists’ Collaborative Group (EBCTCG) from 1998; the data selected for use related

to patients who had used tamoxifen for an average of 3 years or more, with a

median of 5 years. Nine trials were available, with data regarding numbers of

patients and events for tamoxifen and non-tamoxifen arms.

The underlying average risk of breast cancer recurrence (for non-tamoxifen pa-

tients) was also determined within the model, by use of the EBCTCG (1998)

data. Using the model, the RR for breast cancer was determined, as well as the

RRR.

Death due to breast cancer recurrence

The next stage in the model was to include the risk of death due to breast

cancer recurrence in those patients who did experience a recurrence of disease.

Data regarding risk of deaths due to breast cancer were derived from Schairer et

al. (2004); these authors provide data regarding cause of death in patients with

different stages of disease, and subdivided by ethnic group and age group. Data

in this example were selected for localised disease and combined data for both

white and black patients. In the primary model, the age range 50–55 was the

target age, which was most closely approximated by the 50–59 year age group

in Schairer et al. (2004). For an older age range, data for the ‘70 years and

older’ age range was used, again combining ethnic groups who were diagnosed

with localised disease.
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The numbers of deaths due to breast cancer were then modelled using a binomial

distribution, which then allowed a beta prior distribution (with values restricted

between 0 and 1) to be placed on the probability of the binomial distribution.

r.br ∼ Binomial(p.br, n.br), (11.5)

and

p.br ∼ β(1, 1), (11.6)

where p.br is the probability of dying from breast cancer recurrence (and is equal

to the value of specific.deaths.br), r.br is the actual number of deaths due to

breast cancer recurrence as derived from the appropriate data, and n.br is the

actual number of participants in each arm of the trial from which the data were

derived.

With the data described above, it was then possible to model the number of

deaths prevented by tamoxifen, by multiplying the RRR for breast cancer for

tamoxifen users compared to non-tamoxifen by the average risk of breast cancer

and the probability of death due to breast cancer recurrence. Alternatively:

dead.br = RRR.br× ave.risk.br× specific.deaths.br, (11.7)

where dead.br is the number of deaths prevented by use of tamoxifen, RRR.br is

the relative risk reduction of breast cancer recurrence for tamoxifen users com-

pared to non-tamoxifen controls, and specific.deaths.br refers to the probability

of dying of breast cancer recurrence should this occur.

Quality of life due to breast cancer recurrence

Quality of life during breast cancer recurrence was provided by Tengs & Wal-

lace (2000), using the QoL weighting for breast cancer after surgery, after first

recurrence (stated as 0.85) with a standard deviation as quoted for a different

but similar condition, breast cancer with breast-conserving therapy, disease-free

1 year later, duration of remaining life (stated as 0.115). From these values,

using the ‘method of moments’ it is possible to calculate the parameters for a

beta distribution to be applied to QoL.
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Using the method of moments, we have

α = mean× (((mean× (1 - mean)) / variance)- 1), (11.8)

and

β = 1 - mean× (((mean× (1 - mean)) / variance)- 1). (11.9)

Risk of endometrial cancer using tamoxifen

Several sources of data were also required to estimate the risk of endometrial

cancer with associated risk of death and reduction in quality of life. The earlier

meta-analysis by Braithwaite et al. (2003) supplied data on risk of endometrial

cancer in tamoxifen users with breast cancer, as opposed to non-tamoxifen-users.

The meta-analysis by Braithwaite et al. (2003) included trials of tamoxifen for

two separate indications; treatment of breast cancer in those already having the

condition, and breast cancer risk reduction. Data on 23 trials were presented for

risk of endometrial cancer, one of which was a breast cancer risk reduction trial

and so was excluded (IBIS-1 trial 2002, as mentioned in Figure 4, Braithwaite

et al. (2003)).

As the meta-analysis by Braithwaite et al. (2003) did not include data on the

number of cases of endometrial cancer, these data were elicited directly from

the authors. For two of the studies there was a discrepancy between the total

number of participants as stated in the Braithwaite et al. (2003) reference, and

the numbers provided by the authors. One of these studies was the South-

Swedish Trial, reported by Rutqvist et al. (1995). This reference also reported

data from the Stockholm Trial and Danish Breast Cancer Group Trial. The

correct numbers for each study arm were derived from Rutqvist et al. (1995)

with regard to the South-Swedish Trial. It was also noted that the numbers

for the individual trial arms for the Danish Breast Cancer Group Trial differed

between those provided and those stated by Rutqvist et al. (1995), and it was

decided to use those reported in the primary study.

The other study where there appeared to be contradictory data between the

published reference and the data supplied by Braithwaite et al. was the Scottish

Trial of Adjuvant Tamoxifen, necessitating data to be derived directly from the
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primary study (Stewart 1992). A later publication based on the same trial

(Scottish Trial of Adjuvant Tamoxifen) was unusable for the purpose of a meta-

analysis on endometrial cancer, as the data were presented in such a way as to

make it impossible to discern whether cases of endometrial cancer occurred in

patients using tamoxifen (Stewart et al. 2001).

For another four studies listed in the Braithwaite et al. (2003) reference, no

data were supplied by the authors, so the primary references were required to

provide data. These studies included Klijn et al. (2000), reporting on a study

for the European Organization for Research and Treatment of Cancer – Breast

Cancer Cooperative Group (designated EORTC.b by Braithwaite et al.); the

report on the Danish Breast Cancer Co-operative Group study known as DBCG

82B, reported by Andersson et al. (1999); a report by Fisher et al. (2001)

on the National Surgical Adjuvant Breast and Bowel Project B-23; and the

report by The Arimidex, Tamoxifen Alone or in Combination (ATAC) Trialists’

Group (2002).

For most of the trials, there were no data regarding women who had previously

undergone a hysterectomy, with the exception of the ATAC Trialists’ Group

study of 2002, which provided data of women who had not previously had

a hysterectomy – these data were used as they provide a more appropriate

denominator, although it is recognised that this may be inconsistent with other

primary data.

Overall, 22 primary studies were included in the current meta-analysis of en-

dometrial cancer in tamoxifen and non-tamoxifen groups. The data for eight

of these were derived directly from the primary studies, or primary studies were

used to confirm data provided by Braithwaite et al., whilst the remaining 14

were provided exclusively by the authors of the earlier meta-analysis. It should

be mentioned that the control groups varied in their treatments across differ-

ent primary studies. For some studies, data on the duration of tamoxifen and

follow-up time were also available.
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Underlying risk of endometrial cancer

There is evidently an underlying risk of developing endometrial cancer in the

general population (those who do not have breast cancer) and this needs to

be accounted for in the risk–benefit model. Data from Cancer Research UK1

indicated an incidence rate for women aged 50–54 years of 29.8/100 000, derived

from an actual number of cases of 552 in 2005. For women in the age range

of 70–74 years and above, the equivalent figures were an incidence rate of

76.5/100 000, based on 965 cases.

Risk of death following endometrial cancer

The negative impact due to endometrial cancer is evaluated in terms of quality

of life and risk of death. The latter issue is discussed by Bergman et al. (2000),

and data can be extracted from this primary case–control study, combining data

for tamoxifen users and non-users, informing a binomial distribution and beta

distribution for probability of death due to endometrial cancer. These data are

not categorised by age.

Quality of life with endometrial cancer

A recent Health Technology Assessment (HTA) report (Hind et al. 2007) pro-

vided QoL values for a base case [for the HTA report this referred to a scenario

where it was assumed that the benefits of tamoxifen subsided over a 5-year

period beyond the therapy duration] as well as parameters on a beta distribu-

tion for QoL following endometrial cancer, completing all the required data for

harms due to this condition.

Data for extensions to the model

Extensions to this model are also discussed below. These extensions focus

on concerns regarding the duration of tamoxifen treatment, and the duration

of follow-up for participants in the primary studies. Duration of tamoxifen

treatment was available for 19 primary studies, 14 of which had the necessary

data within the spreadsheet provided by Braithwaite et al. (2003). The data

1Cancer Research UK (2009). Available at [November 2009]:
http://www.cancerresearchuk.org/
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for four of these studies was derived directly from the original references, while

in the case of one study a discrepancy was noted in the duration of tamoxifen

treatment between the provided spreadsheet and the primary study. This dis-

crepancy was noted whilst verifying data on cases and numbers of participants

for three studies reported by one reference, where discrepancies had been noted

between the figures in the spreadsheet and those reported in the meta-analysis

by Braithwaite et al. (2003).

Duration of follow-up was available for 20 of the primary studies, with data

being derived from the spreadsheet of Braithwaite et al. (2003) for 15 of these.

For the remaining five studies, the necessary data were derived from a primary

reference related to the study. For the majority of studies, the duration of

follow-up was expressed as a median, in four cases as a mean, and once as

a uniform duration. (No attempt has been made to treat these three metrics

differently in the analysis.)

Dataset for endometrial cancer occurrence

The full dataset for endometrial cancer occurrence used in this harms and ben-

efits model is set out below in Table 11.1.

A meta-analysis was performed using this dataset, with a Mantel–Haenszel (M–

H) model, using the relative risk outcome metric, with a standard 0.05 continuity

correction (See Chapters 3 and 5 for further details of these aspects of meta-

analysis). This meta-analysis yielded a pooled OR of 3.04 (95% 2.13; 4.34);

the associated forest plot is shown in Figure 11.1.

11.5 Methods 2: Modelling methods for net-benefit model

11.5.1 Modelling benefits with regard to breast cancer recurrence

The model used allowed for benefits and harms to be amalgamated in terms

of QoL, and then the difference between the two to be determined. The

EBCTCG (1998) study provided information on the RR of breast cancer re-

currence between tamoxifen and non-tamoxifen users, as well as the innate risk

for non-tamoxifen users, leading to an evaluation of the number of cases that

would be prevented by use of tamoxifen. Non-informative priors are placed on

the underlying log RR of breast cancer recurrence in tamoxifen users compared
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to non-users and on the mean logit for recurrence in the non-tamoxifen patients,

as well as on associated standard deviations.

A proportion of the cases of recurrence would then lead to death, which is

incorporated into the model by the use of the data from Schairer et al. (2004),

informing a binomial distribution for deaths relating to breast cancer recurrence.

In this model, the potential benefits from tamoxifen occur in relation to two

types of patients. Firstly, there are those who would have had recurrence of

their breast cancer, but not died (within a 5-year period) as a result of the

recurrence, and secondly, there are those who would have had a recurrence and

would have died within 5 years in consequence.

The increases in QoL (compared to those patients who do have a recurrence of

breast cancer) for these two patient types can be summed to produce an overall

benefit for tamoxifen with regard to reduction in breast cancer recurrence. For

this model, the benefits and harms are evaluated over a 5-year period. An

assumption is made at this point that patients who would have died due to

their recurrence had a mean lifespan of 2.5 years, out of the total five-year

period of interest.

For the patients who would have had a recurrence and died within 5 years,

they receive the 2.5 years additional life at reduced QoL (5-2.5 years), plus the

additional life they would have received after the 5-year period, during which

time a default assumption is made that the QoL reverts to 1. This aspect of the

model is accounted for when considering the total deaths prevented. Similarly,

those patients who would have had a recurrence but not died within the 5-year

period receive their 5 years of reduced QoL, plus the rest of life with a QoL

equal to 1.

Uncertainty around quality of life for those patients who would benefit from

tamoxifen was modelled using a beta distribution with parameters derived from

Tengs & Wallace (2000); (Section 11.4.2).

11.5.2 Modelling harms with regard to endometrial cancer

Turning attention to the harms due to increased risk of endometrial cancer, the

meta-analysis by Braithwaite et al. (2003) informs the logit of the probability of

endometrial cancer in tamoxifen users compared to non-tamoxifen users, at the
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individual study level. From this point, the relative risk of endometrial cancer

in tamoxifen users compared to non-tamoxifen users, at the individual study

level, can be estimated. The underlying mean relative risk is then estimated,

using non-informative priors for the study-level risk of endometrial cancer in the

baseline group, the underlying mean relative risk and the standard deviation for

the study-level relative risk of endometrial cancer.

This allows the calculation of the relative risk increase of endometrial cancer for

breast cancer patients using tamoxifen, compared to those who do not use ta-

moxifen. The next stage is to infer the underlying risk of developing endometrial

cancer in the general population, over a 5-year period; this is done using the

data provided by Cancer Research UK. The actual number of cases derived was

552, from which value the precision of the underlying incidence of endometrial

cancer can be derived (where standard error of an incidence is the reciprocal of

the square root of the number of cases; Clayton & Hills 1993). Using this data,

the underlying risk level of endometrial cancer over 5 years can be estimated.

The number of additional cases of endometrial cancer occurring in the popula-

tion using tamoxifen can then be estimated, leading to the QoL assessments for

patients who die within the 5-year period and those who survive the 5 years with

endometrial cancer. In this phase of the model, QoL data from Hind (2007) are

used, as well as data on risk of death due to endometrial cancer, derived from

Bergman et al. (2000).

At this stage of the model, the total harm due to risk of endometrial cancer can

be estimated based on the number of deaths that result due to tamoxifen use,

and the reduced QoL of those patients who develop endometrial cancer, but do

not die within a 5-year period. Thus, quantitative evaluations of both harm and

benefit relating to QoL over a 5-year period, have been estimated.
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In order to more fully account for the effect of tamoxifen treatment on deaths,

the influence of this treatment on death in the longer term can be evaluated.

Given that most patients will be in the age range of 40 and upwards, the majority

will die within a period of 50 years. Assuming that QoL will be reduced by

approximately 3% per year, deaths that are prevented by tamoxifen will accrue

QoL, but the amount of QoL will reduce on a year-by-year basis. This total

additional QoL (assuming that tamoxifen has a positive effect on death, by

preventing more deaths due to breast cancer recurrence than are caused due to

endometrial cancer) accrued can then be added into the overall model.

11.5.3 Modelling net benefit

Finally, the net benefit due to tamoxifen, based on the harms due to endome-

trial cancer being subtracted from the overall benefit due to reduced breast

cancer recurrence, and adding in the QoL accrued due to deaths prevented by

tamoxifen, can be evaluated.

The harm and benefit estimates in the model are calculated using the number

of cases of disease (breast cancer recurrence or endometrial cancer) prevented

or caused by tamoxifen, based on the RRR or RRI, and the average population

risk. The model considers whether those cases would or would not have resulted

in death within five years. The QoL gained or lost associated with each con-

dition is aggregated over the total cases for each disease condition. For those

patients whose death is prevented by tamoxifen (within the 5-year period under

evaluation) their QoL for the next 50 years of life is added to the model, with

the QoL being discounted for increasing loss of QoL due to age as well as the

reduced value of QoL experienced in the future compared to QoL in the present.

Hence, the net benefit is a numerical concept relating QoL (gain or loss), du-

ration of QoL and the number of individuals experiencing the changes in QoL

for each treatment group. The net benefit is therefore the aggregated differ-

ence in QoL comparing the tamoxifen and non-tamoxifen groups on a difference

scale. A positive net benefit indicates that there is an overall gain in QoL for

the tamoxifen group compared to the non-tamoxifen group. To conceptualise

this clinically, at the level of the individual, if the overall net benefit is 0.7, an

‘average’ woman in this population would gain one additional year of life with

a QoL of 0.7 (or the equivalent), when using tamoxifen, compared to not using
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Figure 11.1: Forest plot of a meta-analysis using the dataset described in
Table 11.1, using a Mantel–Haenszel model, 0.05 continuity correction
(studies with zero events in one arm only).
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See Section 11.4.2, Table 11.1 and Braithwaite et al. 2003 for further details
of the primary studies.

Fiona Warren PhD Thesis 2010 322



Chapter 11 Net clinical benefit models

tamoxifen. A negative net benefit would indicate that there is a loss in QoL

over time for the patients using tamoxifen.

In all models, non-informative priors were used where required on all stochastic

nodes.

The separate benefits and harms of the model are set out in Table 11.2. The

benefits and harms can then be aggregated and the difference between them

evaluated, to determine whether there is an overall harm or benefit due to

tamoxifen, in terms of QoL.

11.5.4 Extensions to the model

This model can be extended by bringing in duration of tamoxifen treatment, and

duration of follow-up, which were available for the meta-analysis of tamoxifen

and occurrence of endometrial cancer by Braithwaite et al. (2003). Inclusion of

these variables allows the investigation of whether or not they have any bear-

ing on tamoxifen safety with regard to endometrial cancer. For those studies

where duration of tamoxifen treatment or duration of follow-up is not available,

a normal distribution can be placed on the relevant variable, with a vague distri-

bution on its mean, and a uniform distribution on its standard deviation, based

on the standard deviations of those studies where the appropriate observation

is available.

11.5.5 Sensitivity analyses

The various risk factors impacting on breast cancer recurrence were studied

by Brewster et al. (2008), in a large study of women who were followed up

after primary breast cancer at 5 and 10 years. In their sample of 2838 women,

the median age was 50 years, among women ranging from 21 to 87 years.

Considering women in three age bands, 35 years or younger, 36 to 59 years

and 60 years and older, age alone (in a univariate analysis) had no association

with risk of breast cancer recurrence. Given that breast cancer tends to be less

aggressive in older patients, it is likely that those in older age brackets, such as

70 years and older, are at less risk of recurrence than younger patients. Hence,

different recurrence risks for different age brackets have not been used in this

model as a sensitivity analysis.
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In the same study (Brewster et al. 2008), the pathological factors most strongly

associated with increased risk of recurrence were hormone receptor status being

negative, and higher grade or more advanced stage of tumour, (as well as receipt

of endocrine therapy). Any sensitivity analyses based on these pathological

factors would be more advantageous in a clinical model than use of age.

Risk of death due to breast cancer, following recurrence, may vary with different

age groups, and in this study, two different age groups were contrasted using

data from Schairer et al. (2004). The age groups cited in the study reported

by these authors were 50–59, which was used to approximate the range 50–54

years, and 70 years or older, which was used for the age range 70–74 years.

For endometrial cancer, there is a major increase in risk with increasing age,

following the menopause. Other risk factors relate to nulliparity or low parity,

having diabetes or having a high body mass index. Further details regarding risk

factors for endometrial cancer are available from Cancer Research UK (Footnote

1, page 316). There is also evidence for genetic risk factors, as endometrial

cancer can run in families, for example, the condition hereditary nonpolyposis

colon cancer (HNPCC); (Dunlop et al. 1997). Any of these risk factors would

be of use in a clinical model. However, in this example, sensitivity analyses have

been restricted to different age ranges, using the data on endometrial cancer

risk provided by Cancer Research UK. The data from Cancer Research UK was

presented in 5-year age bands, with the age bands of 50–54, and 70–74, being

used.
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11.5.6 Summary of net benefit models

A summary of the specific net benefit models analysed is given below.

1. Model A. No covariates included. Age group for risk of death following

breast cancer recurrence data and risk of endometrial cancer occurrence:

50–54.

2. Model B. No covariates included. Age group for risk of death following

breast cancer recurrence data and risk of endometrial cancer occurrence:

70–74.

3. Model C. Duration of tamoxifen with regard to endometrial cancer

included as covariate. Age group for risk of death following breast cancer

recurrence data and risk of endometrial cancer occurrence: 50–54.

4. Model D. Duration of follow-up with regard to endometrial cancer included

as covariate. Age group for risk of death following breast cancer recurrence

data and risk of endometrial cancer occurrence: 50–54.

5. Model E. Duration of tamoxifen and duration of follow-up, both with

regard to endometrial cancer, included as covariates. Age group for risk

of death following breast cancer recurrence data and risk of endometrial

cancer occurrence: 50–54.

These results of these five models are displayed in Table 11.3.

11.5.7 Implementation using WinBUGS

All models were fitted using WinBUGS 1.4, with a burn-in period of 10 000

iterations followed by a further 50 000 iterations. Only one chain was used for

each model, with convergence being checked by history trace.

11.6 Results

Results are presented in Table 11.3, where all models are described according

to the age range for age-specific data, and any additional covariates (in relation

to endometrial cancer) included in the model, as described in Section 11.5.6.
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11.7 Discussion

11.7.1 Discussion of results

With the basic model, (Model A), the median net benefit was 0.615 on the QoL

scale, and from the 95% CrI (0.359; 1.011), it is very unlikely that tamoxifen in

this age category confers any harmful effect, when considering the interaction

between benefits due to reduced breast cancer recurrence and harms due to en-

dometrial cancer. The probability of harm, at 0.0005, is also very low, implying

that very few women would be unfortunate enough to be disbenefited by use of

tamoxifen.

When including the individual covariates of duration of tamoxifen and duration

of follow-up in the same age bracket, (Models C and D), it appears very unlikely

that either of these factors has any significant interplay with the model, as the

coefficients for both have wide CrIs that include 0.

However, of the two covariates, there is evidence to indicate that duration of

follow-up may exert the stronger influence, as the lower bound of the 95% CrI

more closely approaches 0 (95% CrI -0.009; 0.030). This is possibly because

a longer follow-up period allows longer time for any endometrial cancers to

develop and be detected. Longer follow-up for trials involving women using

tamoxifen may therefore be advisable to improve the possibility of detecting

potential cases of endometrial carcinoma. However, when both duration of

tamoxifen and length of follow-up are included in the model (Model E), there is

no clear evidence that either exerts a stronger influence than the other or indeed

that either of these variables plays a significant role in modifying the influence

of endometrial carcinoma within the model.

For women in older age ranges (Model B) where some of the data relate to

women aged 70 and over, the net benefit is reduced, to a median value of 0.504

on the QoL scale (95% CrI 0.283; 0.879). The total deaths prevented appears

to be reduced for the older age bracket (median 0.395, 95% CrI 0.240; 0.0.556,

compared with 0.500, 95% CrI 0.307; 0.700), thus lowering the net benefit.

Even in this age group however, the benefits of tamoxifen clearly outweigh the

possible risk of harm due to endometrial cancer.
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11.7.2 Discussion of methodological issues

There are several concerns regarding the development of this model and data

sources used to inform it.

The construction of an overall harms and benefits model such as in this example

necessitates the use of primary data from several disparate sources, that were

never intended to be brought together to inform one model. Therefore, an

obvious concern is that data that may have differing levels of validity are being

treated as equally valid in this model (although this is an important issue with

any modelling exercise).

One area in which the model is slightly unrepresentative is in the way that the

two types of patients who are prevented from having a recurrence of breast

cancer are treated by the model. Patients who would have had a recurrence of

breast cancer and died within 5 years (of commencement of tamoxifen) have the

same amount of additional life with a QoL of 1, which is the same as the people

who would have had a recurrence but not died within 5 years. In actuality, the

patients who would have died within 5 years should receive a longer period of

life with a QoL of 1, but this difference is not incorporated into the model.

It is also the case that different types of data may refer to different patient

groups. For example, no attempt has been made in this study to differenti-

ate between pre- and post-menopausal patients, although in some instances,

relevant information was available, for example, regarding some of the primary

studies used by Braithwaite et al. (2003). Information regarding menopausal

status may not be available for all types of primary data, bringing up the ques-

tion of whether it should be used when available. In this model, there may be

wide discrepancies in the types of patients involved in the primary data sources,

hence creating concern regarding the validity of combining different data into

a single model. However, this concern may be outweighed by the benefits of

creating a quantitative harm–benefit model.

Another issue to point out is that women who have previously undergone a

hysterectomy have no risk of developing endometrial cancer. Therefore, the

model would be better informed by data regarding risk of endometrial cancer

which excludes such women from the denominators, to avoid artificially reducing

risk of endometrial cancer in women who do have an intact uterus. Also, the
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control arms across different studies within the meta-analysis by Braithwaite et

al. (2003) consisted of several different treatments across the primary studies,

and an assumption has been made that these adjuvant treatments have no

influence on endometrial cancer risk.

The use of QoL data is another source of uncertainty. In this model, QoL

is evaluated for a 5-year period in terms of events (breast cancer recurrences

and cases of endometrial cancer) prevented, which may or may not have led to

deaths, and the added QoL incurred.

Such data can only be subjective, even if based on QoL data aggregated across

many different patients. By using QoL as a ‘common currency’ in a model

intended to inform clinical decision-making for individual patients, there is a risk

of including subjectivity that may not be appropriate for an individual patient.

In the light of this, a model that does not include QoL but considers only risk

of death for both breast cancer recurrence and endometrial cancer, with life

expectancy for patients who do eventually die, may be more helpful.

This aspect of the model is covered by the total deaths prevented, which start

from the commencement of tamoxifen therapy and are continued for a 50-year

period. The total deaths prevented is in effect the number of prevented deaths

and associated QoL at a fixed value of 1, which is then discounted over the

50-year period to account for deaths during this time and associated reduction

in QoL due to ageing. It is also possible that this aspect of the model is over-

generous in its allocation of QoL and attrition rate of participants due to death.

As a final step, inclusion of other harms and possibly other potential benefits due

to use of tamoxifen in patients with breast cancer would be a useful extension to

this model. Amongst the additional potential harms associated with tamoxifen

discussed by Braithwaite et al. (2003) are cerebrovascular accidents, pulmonary

emboli, and gastrointestinal cancers. In these cases, the increased risk of harm

appeared to be less than for endometrial cancer, but their inclusion into a

harm–benefit model would serve to reduce the net benefit due to tamoxifen.

Conversely, there was evidence from the study by Braithwaite et al. (2003) that

there were other, unintended, benefits due to tamoxifen, such as reduced risk

of myocardial infarction (MI), and these could also be included as potential

benefits, despite the fact that the tamoxifen was not being taken with the aim

of reducing MI risk.
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Another area for exploration would be the harms and benefits of tamoxifen when

used for other indications, for example, prevention of primary breast cancer for

women in high-risk categories.

11.7.3 Final considerations

This case study extends the work of previous chapters, both in terms of method-

ology and conceptual issues. For example, the work of Chapter 7 largely related

to issues of sparsity of events, and the difficulty of receiving a clear signal from

the dataset in such circumstances. The analyses were unable to confirm or allay

concerns regarding an increased risk of suicidality for users of paroxetine. An

extension of these methods into a harm–benefit model, taking into account the

benefits to QoL in terms of relief from symptoms, set against loss of QoL due

to suicide, would facilitate decision-making, especially if such analyses were per-

formed across a range of anti-depressant drugs, and including covariates such

as age where possible.

The IPD models of Chapter 8 would be especially appropriate with time-to-event

outcomes, which could be converted to a QoL scale, whilst the mixed treatment

comparison (MTC) models (Chapters 9 and 10) would facilitate comparison

across multiple treatments, for both benefits and harms. These models, and

in particular hierarchical models (Chapter 10) would enable the best use to be

made of a diverse dataset, within each outcome and for each treatment, prior

to combining the results of these models into a net–benefit model.

Despite the limitations of this case-study, it nevertheless serves as an example

of how an evidence synthesis of adverse events data (using methods discussed

in this thesis) can be combined with information on potential benefits in a

more meaningful way. This approach to decision-modelling brings together risk

of adverse events and potential for positive therapeutic effect, quantifies them

both by means of QoL scales, and produces an overall result, with uncertainty

sources incorporated throughout.

A wider variety of approaches to meta-analysis methods for the adverse events

data can facilitate such harm–benefit modelling by providing appropriate sta-

tistical methodologies for the dataset available, which could be evaluated by

simulation studies. Input from a clinical perspective could also be incorporated

to assist in appropriate modelling.
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11.8 Summary

A harm–benefit model for tamoxifen use when indicated for prevention of breast

cancer recurrence was developed. Data from multiple disparate sources informed

different elements of the model, including relative risk of breast cancer recur-

rence (for tamoxifen users compared to non-users), underlying risk for breast

cancer recurrence, risk of death following breast cancer recurrence, QoL follow-

ing breast cancer recurrence, relative risk of endometrial cancer (for tamoxifen

users compared to non-users), underlying risk of endometrial cancer (in the gen-

eral population), risk of death following endometrial cancer, and QoL following

endometrial cancer.

Models were also fitted using data relevant to different age brackets for compar-

ison, and using additional covariates in relation to risk of endometrial cancer,

for example, duration of tamoxifen use and duration of follow-up.

Results indicated that the net benefit from using tamoxifen appeared to be

positive regarding the interplay between prevention of breast cancer recurrence

and endometrial cancer, with a commensurately low probability of harm. This

benefit related to tamoxifen was seen in age ranges 50–59 and 70 years upwards,

although it was somewhat reduced in the older age bracket. There was no

strong evidence to indicate that duration of follow-up or duration of tamoxifen

treatment was a significant factor in the model. Although duration of follow-up

did appear to have some influence, the evidence was not conclusive

Further extensions to the model could include incorporation of additional harms

and benefits within the model, and consideration of different model formats.
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12

Discussion and development

12.1 Overview

From a clinical perspective, the potential risks of deleterious effects of medical

interventions that are intended to be beneficial are a serious cause for concern.

The use of evidence synthesis methods to make maximum use of all available

data concerning adverse events would be desirable, and the need for evidence

synthesis focusing on this area has been highlighted elsewhere (Loke et al. 2008).

The work of Loke et al. (2008) is primarily directed towards the non-statistical

aspects of evidence synthesis such as search strategies (also considered by Golder

et al. 2006a; 2006b; 2006c; 2008). Hence, there was a requirement for further

research into the statistical methods that may be appropriate for adverse events

meta-analyses. This area has been considered previously (Sutton et al. 2002)

and there is scope to extend this research.

The four main aims set out in Section 1.1 have been fulfilled in the following

ways. Methodological issues related to evidence synthesis and meta-analysis

have been described in Chapter 3, and, from a Bayesian perspective, in Chap-

ter 4. This background in pre-existing methods was then used as the foundation

for a discussion of the specific features of adverse events datasets that could

prove challenging when attempting evidence synthesis, in the context of a spe-

cific clinical question (Chapter 5).
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This review of statistical methodology was supported by a systematic literature

review of 166 published meta-analyses in which the primary outcome was an

adverse (or unintended) event (Chapter 6). The motivation behind this review

was to discover the statistical methods already employed in meta-analyses of

adverse events data, and to establish the ways in which the methodological

challenges discussed in Chapter 5 had been identified and approached. These

chapters also encompass the first three of the narrower objectives outlined in

Section 1.1.

Some specific clinical issues that were potential case-studies were set out in

Section 1.4.2. The second chapter of this thesis has the function of investigating

in more detail the nature and extent of the clinical problem of adverse events.

Chapters 7–10 use case-studies to address different areas of statistical method-

ology in relation to adverse events. The main area of investigation in Chapter 7

is that of a dataset with sparse events, and this problematic issue is tackled by

multiple meta-analyses using different methodologies.

Chapters 8–10 are linked by the use of a common clinical case-study: the po-

tential increased risk of malignancy due to use of anti-tumour necrosis factor

(anti-TNF) drugs in rheumatoid arthritis. Chapter 8 concentrates on one spe-

cific drug in this class, etanercept, and uses a dataset of individual patient data

(IPD) from multiple clinical trials. Again, sparsity of events is a major issue,

as well as use of IPD with time-to-event data for all participants. This clinical

theme is expanded in Chapter 9, by the inclusion of two further anti-TNF drugs,

plus additional aspects of therapy such as concomitant use of different drugs

used in RA therapy, and the dose of the specific anti-TNF, which is an essential

element of prescribing. As IPD were not available for this dataset, aggregate

data were used throughout. From a statistical perspective, the methodology

was extended by the use of mixed treatment comparison (MTC) methods.

The final chapter in this clinical area was Chapter 10, which incorporated further

complexity into the MTC models, and conducted a sensitivity analysis across

prior distributions for selected MTC models developed in Chapter 9.

The final aim proposed in Section 1.1 was to combine both adverse events data

and data related to positive treatment outcomes in one overarching model. This

model would use a quantitative assessment of the influence on quality of life

(QoL), as a result of the intervention, with regard to the increased QoL due
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to the therapeutic effect and the reduced QoL due to the adverse effects. The

results of such a harm–benefit analysis would be of value in clinical decision-

modelling. This aim is the subject of Chapter 11, the final case-study, which

presents a harm–benefit model based on the effects of tamoxifen therapy in

patients with breast cancer, with regard to the increased risk of endometrial

cancer, offset against a reduced risk in recurrence of the original breast cancer.

Referring back to the specific objectives for this thesis, in Section 1.1, the fourth,

fifth and sixth objectives are included within Chapters 7–11. The seventh objec-

tive is addressed to some extent within Chapter 11, but could be investigated

more thoroughly. Areas for further extension to the work of this thesis are

discussed in Section 12.4.

The aspects of this thesis that are novel, or extend previous work, are set out

below:

1. the review of evidence synthesis methods previously employed in the con-

text of adverse events data (Chapter 6);

2. the comprehensive comparison of meta-analysis methods applied to the

same dataset, for which sparsity of events is an issue (Chapter 7);

3. fitting a random effects meta-analysis model to individual patient data

with a time-to-event outcome, using a Poisson formulation (Chapter 8);

4. application of mixed treatment comparison techniques to adverse outcome

data with sparsity of events (Chapter 9);

5. using hierarchical modelling in conjunction with mixed treatment com-

parisons, to enable ‘borrowing strength’ across datapoints, and compar-

ing treatment-based differences in hierarchical structure within an MTC

network (Chapter 10);

6. application of constraints on prior distributions to hierarchical models, as

a means of incorporating prior beliefs into the model (Chapter 10); and

7. the use of net-benefit modelling, by integrating meta-analyses of adverse

events data within a harm–benefit model for clinical decision-making.

These elements are discussed in more detail in Sections 12.2–12.3.
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12.2 Review of meta-analysis methods and meta-analyses

previously performed on adverse events data

An initial review of meta-analysis methods (Chapters 3 and 4) was followed by

a discussion of the specific ways that meta-analysis methods may be difficult

to implement with regard to adverse events data (Chapter 5). Such a review

immediately provided a wealth of issues for meta-analysis challenges, and ideas

for development of methods that would be highly pertinent to adverse events

data. It also became apparent that the field of adverse events is in itself very

diverse in clinical terms, and that more specific characterisation of the clinical

issues would be necessary. Statistical aspects of adverse events data that would

apply in certain clinical instances would not be relevant for other circumstances.

In some cases, an issue highly applicable to adverse events would also be appli-

cable in other areas, such as clinical efficacy. An example would be that of class

effects (of a class of drug), which could be applied in terms of adverse events or

positive events; other examples would be dose–response effects or effects over

periods of time.

From a review of previous meta-analysis studies regarding adverse events (Chap-

ter 6), the most outstanding issue was that in the majority of cases, no special

consideration had been given by the authors to the fact that the outcome was

one of adverse events.

This calls into question the usefulness of bringing together data from disparate

clinical issues, with the only common theme being that of adverse events, when

this common factor was not specifically acknowledged by the original authors

of these papers. Although it is possible to develop a composite picture of what

has been done in previous studies, it is difficult to perceive this composite as an

overview of adverse events meta-analyses when there was little conception of

performing an adverse events meta-analysis in the minds of the original authors.

Rather, it represents a disparate grouping of studies with little in common, in

terms of meta-analysis methods, and only a tenuous clinical connection.

Above all, such a review indicates that a greater understanding of meta-analysis

issues in general, and in application to specific clinical areas, is required.

As a methodological issue, when considering areas for research within the frame-

work of meta-analysis and evidence synthesis, both the clinical area and potential
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statistical challenges should be considered in conjunction. This would ensure

that the statistical issues can be considered on an equal par with the clinical

aspects, and avoid clinical areas that are too disparate in terms of their statis-

tical requirements for evidence synthesis to be considered in general terms of

‘adverse events’.

12.3 Case-studies using adverse events data

Four separate case-studies of adverse events meta-analysis have been performed:

1. selective serotonin re-uptake inhibitors and suicide risk;

2. etanercept and malignancy risk in rheumatoid arthritis sufferers using in-

dividual patient data;

3. anti-TNFs and malignancy risk in rheumatoid arthritis sufferers using

mixed-treatment comparisons; and

4. tamoxifen and risk of endometrial cancer in breast cancer sufferers.

These case-studies are discussed below, with regard to the methodological issues

highlighted by each one, with commentary on the important issues raised by each

model and the ways in which they may be used and developed for adverse events

evidence synthesis.

12.3.1 Selective serotonin re-uptake inhibitors and suicide risk

The aim of this initial case-study (presented in Chapter 7) was to re-evaluate

data concerning the use of selective serotonin re-uptake inhibitors and any as-

sociation with suicidal ideation, deliberate self-harm and completed suicides,

especially in children and adolescents (Gunnell et al. 2005; Gibbons et al. 2006;

Hammad et al. 2006). Using data from Glaxo-Smith-Kline (the manufacturers

of paroxetine), a series of meta-analyses using several outcome metrics and dif-

ferent continuity corrections were performed. Bayesian methods were also used

to contrast with traditional statistical methods.

This case-study set out the importance of multiple analyses to compare dif-

ferent outcome metrics, and use of continuity corrections, also the importance

of comparing traditional with Bayesian statistics. Ideally, statistical background
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knowledge, initial scrutiny of the dataset and understanding of the clinical issues

involved should inform a priori the statistical methods. For example, knowledge

of the baseline risk could inform whether the outcome metric would be best

described on a difference or relative scale, or knowledge of imbalanced treat-

ment arms could determine what type of continuity correction may be most

suitable. Previous knowledge from other studies in a similar area could inform

prior distributions for a Bayesian analysis.

In reality however, an iterative process of multiple analyses would help to provide

a more complete picture, and with hindsight could help to identify the statistical

methods most suited to a clinical problem.

12.3.2 Etanercept and malignancy risk in rheumatoid arthritis sufferers

Etanercept is an anti-TNF drug commonly used as a long-term treatment for

patients with rheumatoid arthritis (RA); however, there were concerns regard-

ing its safety for malignancy. To investigate this issue, individual patient data

(IPD) were obtained from the relevant pharmaceutical companies (Amgen and

Wyeth). Using this IPD, multiple models including both fixed effect (FE) and

random effects (RE) were used to contrast results, also considering issues such

as excluding certain types of cancer and different durations of follow-up (see

Chapter 8). The results of this study have been published elsewhere (Bongartz

et al. 2009). From a statistical perspective, the novel aspect of these analyses

was the RE model fitted using a Poisson generalised linear model, as described

in Section 8.2.3.

This case-study highlighted the value of using IPD for adverse events, especially

in the light of sparse events in clinical trials. The use of IPD comes into its own

when knowledge of individual cases is of importance, for example, considering

patient-specific factors for each case, that would be lost when using aggregate

data. In this example, evidence synthesis may be best presented as a hybrid

between statistical methods and clinical narrative of individual cases, which can

add depth to the analysis, and highlight certain types of patient, or certain types

of adverse event that would merit further investigation.
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12.3.3 Anti-TNFs and malignancy risk in rheumatoid arthritis sufferers

using mixed treatment comparisons

The work on etanercept as a potential risk for malignancy in rheumatoid arthritis

sufferers was extended by adding data for two other anti-TNFs, adalimumab and

infliximab. Notably, these were of a different pharmacological class of anti-TNF.

Previous research had associated these drugs with malignancy and infections

(Bongartz et al. 2006; Leombruno et al. 2008).

The three drugs involved were further complicated by use of dose and additional

anti-rheumatic drugs, combining to produce treatments that at their highest

level of complexity were determined by anti-TNF, dose and presence of addi-

tional anti-rheumatoid drugs. This case-study is discussed in Chapters 9 and

10.

The clinical issues presented by this problem, effectively a comparison of drugs

within a class, but with issues relating to dose and use of concurrent medication

(using drugs of other classes), were in themselves an opportunity to use mixed-

treatment comparison (MTC) models, which have been described by Lu &

Ades (2004) and Caldwell et al. (2005), and are discussed in Sections 9.2 and

9.4.

The characterisation of different treatments by varying combinations of factors

naturally lent itself to the use of mixed-treatment comparison (MTC) models,

which, when combined with additional problems of sparsity of events, and in

some cases sparsity of trials, resulted in difficulties of analysis. The impor-

tance of the individual MTC network in influencing the statistical results was

demonstrated, as variable results were arrived at depending on the network

used. However, the great advantage of using these MTC modelling, fitted us-

ing Bayesian methods, is the ability to include studies with sparse events. The

initial MTC networks and models are discussed in Chapter 9.

The MTC modelling is extended in Chapter 10, with the use of hierarchical

models and constraints (Prevost et al. 2000) to allow the ‘borrowing of strength’

(Higgins & Whitehead 1996) across treatments that are in some way connected

(for example by dose of anti-TNF, which connects different members of the

anti-TNF group). The use of hierarchical modelling with regard to an MTC, in
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association with the clinical dimension of adverse events, sparsity of data and

trials, is the novel aspect of this chapter.

12.3.4 Tamoxifen and risk of endometrial cancer in breast cancer sufferers

In the final case-study, a harms and benefits model was developed (Chapter 11),

using tamoxifen, which reduces risk of recurrence of breast cancer in patients

already suffering from this disease, counterbalanced against risk of endometrial

cancer. The concept and methods of net-benefit modelling are put forward by

Glasziou & Irwig (1995) and extended into Bayesian methodology by Sutton et

al. (2005), as discussed in Section 11.2.1. The complexity of modelling harms

and benefits leads to the question of how accurate can such a model be, with

the aim of applying the model to clinical decision-making at the level of the

individual patient.

There are many levels of uncertainty in such a model, with a major issue of

the validity of bringing together data from disparate sources, that were never

intended to be used in conjunction to inform statistical modelling or clinical

decision-making. Certain aspects of the data are inherently subjective, such as

quality of life (QoL) data. A further issue is that of temporality: how far into

the future (following the treatment period) can such a model be extended with

any degree of validity?

Modelling of harms against concomitant benefits is perhaps the most clinically

useful of all the methodology presented in this work, in view of the fact that

efficacy of an intervention has already been demonstrated. The harms resulting

from an intervention can only be interpreted clinically in the light of the benefits

that a patient would be eligible to gain from the treatment, and if quantita-

tively expressed, can be conceptualised as a ‘negative benefit’ to set against the

positive benefit.

However, in some instances it is more highly relevant to prove that a clinically

significant risk of adverse outcomes does in fact exist at all, prior to attempting

to quantify such a risk against the potential benefits.
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12.4 Potential extensions of the current work

Based on the initial areas identified in Chapter 5 as being methodological areas

of special relevance to evidence synthesis for adverse events, only some of these

have been addressed. The previous case-studies have covered aspects of IPD,

sparse data, subgroup analysis, influence of timing of analysis and duration of

treatment, issues regarding dosage, class effects in comparison to individual

drug effects, and harm–benefit analysis. There is much scope to extend many

of these case-studies to further investigate these areas, and to include additional

case-studies to explore other ways in which these issues could be considered and

dealt with.

The use of IPD with adverse events data has much potential for future develop-

ment. The case-study of Chapter 8, which uses IPD, is the only one that does

not incorporate Bayesian methods in any way, and Bayesian approaches to use

of IPD would be an area of interest to explore.

It would have been particularly useful to incorporate IPD in conjunction with

the MTC modelling and hierarchical modelling used in conjunction with the

MTC analyses. A harm–benefit analysis would also be facilitated by use of IPD,

and, ideally, the studies would provide IPD for each patient for both therapeutic

effects and adverse events. This form of data would be of the best quality for

a harm–benefit analysis. With information available for benefits and harms for

each patient, it would be possible to derive QoL data from each patient directly,

and to investigate patient-level covariates that are associated with both harms

and benefits.

The MTC modelling has raised particular issues regarding the definition of treat-

ments according to different parameters, and the difficulties of choosing the

most appropriate model, especially where sparsity of events becomes an issue

for the models of highest complexity. Hierarchical Bayesian methodology is an-

other area of particular interest that lends itself to adverse events modelling,

promoting the integration of available data in ways that can militate against

the effects of data sparsity.

One area of particular relevance that has not been considered within this the-

sis is that of combining data from randomised and non-randomised (observa-

tional) studies. The example of hierarchical modelling described by Prevost et
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al. (2000) addresses the issue of differential degrees in bias between the two

study types, and this approach could be applied to adverse events analyses. An

MTC model could also be created if there were multiple treatment types, with

a hierarchical model placed on study type and treatment type.

Another way of assimilating information from observational studies would be

to use data from such studies to inform prior distributions for Bayesian meta-

analyses of randomised trials, in the way that data from the meta-analysis by

Kaizar et al. (2006) were used to form a prior distribution (see Section 7.3.1).

One of the most fundamental ways to use external data in a meta-analysis is

that of narrative review, which can then be transformed into a prior distribution

with the aid of clinical expertise. Although the focus of this thesis has been

on quantitative methods, it should be remembered that evidence synthesis can

benefit from non-quantitative methods to provide depth of understanding to a

clinical problem and assist in formulating an answer.

The scenario of adverse events data being available for the same drug used in

the treatment of different medical conditions has not been addressed in this

thesis, and is an area worthy of consideration. The use of MTC modelling could

again form part of the solution, as the disease/treatment combination could be

considered as a ‘node’ within the MTC network. This approach would facilitate

understanding of the different profiles of potential harm across different diseases,

whilst allowing ‘borrowing of strength’ across the dataset.

There are also many potential ways to extend the harm–benefit modelling,

for example by including multiple harms and benefits in the model, and ex-

ploring ways to ‘individualise’ the model for patient-specific decision-modelling;

as medicine becomes more oriented toward personalising treatments, patient-

specific modelling has the potential to become increasingly important.

A harm–benefit model can be adapted to different subgroups of patients (for ex-

ample, different age ranges) by substituting appropriate data values, but perhaps

the most relevant use of such a model would be in individual decision-making,

whereby a patient would be able to input her or his own values for the subjec-

tive QoL elements, thus reducing the uncertainty of this element of the model.

In areas where the generic data provide clear-cut conclusions of unacceptable

risk for certain patient groups, this type of modelling could also be of use, but
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the risk of adverse events against potential benefit would need to be high to

counterbalance against the modelling uncertainty.

Within a harm–benefit model there is wide scope for different meta-analysis

methods for incorporating data, for example the MTC modelling, with use of

hierarchies and constraints, or using external data to formulate a prior distribu-

tion. As discussed above, IPD would also be of benefit, especially if data exist

on harms and benefits for individual patients.

All of the case-studies in this work are based on drug interventions, in part be-

cause data regarding adverse events of such interventions are relatively easy to

obtain. The eighth objective set out in Section 1.1 was to apply the methods

used in this thesis to non-pharmaceutical interventions, such as surgical proce-

dures or medical devices. A particularly important area to investigate for adverse

events would be public health interventions, for example, fluoridation of water

supplies, vaccinations (a topical example being those for ‘swine flu’ (influenza

virus H1N1)), or public ‘education’ programmes. As large numbers of people

are exposed to these interventions, it is important to thoroughly investigate any

potential adverse effects that may be caused.

Cost issues are of particular importance to adverse events analyses, in two main

ways. Firstly, there are issues of cost-effectiveness, whereby the financial costs

of adverse events can be incorporated into a cost-effectiveness model based on

a benefit–harm approach. Secondly, there are potential costs to pharmaceutical

companies and healthcare providers regarding litigation by patients who have

suffered harm due to an intervention. Costs in these cases are comprised of

compensation paid to the patient (or the patient’s family) and costs of legal

proceedings. In the case of state-funded healthcare, such as the National Health

Service, these costs will ultimately be met by the taxpayer. As well as financial

costs, organisations are also concerned about damage done to the reputation of

the organisation in areas where patient safety is concerned. Effective ways to

investigate the potential risk of interventions are therefore beneficial to patients,

to the pharmaceutical company and to healthcare providers.

The harm–benefit model described in Chapter 10 could be extended to incor-

porate the dimension of cost. By definition however, in a state-funded health

system, or in a system of private health provision, costs are met not by the

individual patient but by an aggregation of tax-payers or insurance holders.

Fiona Warren PhD Thesis 2010 343



Chapter 12 Discussion and development

Hence, modelling at the level of cost-effectiveness must be done by definition

at the level of the population. This introduces a risk that individual patients

may be denied a treatment that would be effective (and indeed maybe even

cost-effective) for that individual. Use of individualised harm–benefit modelling

would help to avoid such occurrences.

When evaluating different statistical methods, simulation studies can be em-

ployed, whereby different methods are applied to a common dataset, which

has been simulated according to certain, known, specifications; for example,

event rates and treatment effects. For the purposes of evidence synthesis, a

dataset could be simulated comprising IPD from multiple studies, or by simu-

lating the aggregate data for each study. In this situation, the methodologies

can be compared against each other, in terms of their ability to accurately anal-

yse the dataset. For example, the multiple meta-analysis methods compared in

Chapter 7 could be evaluated using simulation methods. This would allow the

methods to be evaluated using parameters such as bias, coverage and statistical

power, as described by Bradburn et al. (2007) in Section 5.2.1.

12.5 Conclusions

From a clinical standpoint, an analysis of adverse events can impact on the

following decisions (using a pharmaceutical intervention as an example):

1. whether or not to use a drug at all (i.e. to ban the drug on safety grounds

and/or cost-effectiveness grounds);

2. to recommend the drug for use in certain subgroups or to avoid in certain

subgroups;

3. select drugs for specific monitoring or further research where there are

safety concerns;

4. to make a decision at the level of the individual patient whether the

potential for benefit outweighs the risk of harm;

5. to select the drug with the most positive benefit–harm balance within a

particular class or for a particular indication; and
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6. to determine that if a drug is to be used, then actions should be taken

to prevent adverse effects or alleviate their influence, or at the very least

warn patients of the possibility of adverse events.

For the first and third items in this list, choice of metric is highly important,

as well as combining data from all available sources and considering tempo-

ral effects on the outcome. For the second item, subgroup analysis is clearly

important, as well as concerns regarding indication for an intervention.

For the fourth, fifth and sixth items, the modelling issues become more complex,

with harm–benefit models being essential, and with the inclusion of MTC anal-

ysis for selection among a class of drugs. Knowledge of risk of adverse events

can then be used to inform clinical decision-making at the level of whether or

not to use a particular drug, and whether to take any further action to alleviate

potential harms.

To paraphrase a traditional adage, it is not what you look for, it is the way you

look for it that counts. The evidence synthesis of adverse events data provides

a strong example of this. The methods used can be highly complex and can

have a strong influence on the results of any evidence synthesis performed. In

view of this, it is very important to be explicit about which methods are being

used and why they were chosen. Models should be carefully evaluated, not only

for the algebraic functionality, but for any assumptions being made, sources of

uncertainty, the choice of outcome metric and the choice of prior distributions

in a Bayesian model.

Ideally, evidence synthesis methods for adverse events data will continue to be

developed, with this specific clinical aspect in mind. The development of statis-

tical methods closely aligned with a clinical framework would be highly beneficial

for individual patient care, promotion of public health, and cost-effectiveness.
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Appendix B

Appendix B: References associated with specific features in

adverse events meta-analyses reviewed in Chapter 6

Meta-analysis

feature

References (numbers refer to references in Appendix A)

Drug

intervention(s)

S2; S3; S6; S7; S8; S9; S11; S12; S19; S20; S21; S22; S23; S26; S27; S28; S29;

S31; S34; S35; S36; S37; S38; S40; S41; S42; S43; S44; S45; S46; S47; S48; S49;

S50; S51; S52; S53; S54; S55; S56; S57; S59; S60; S61; S62; S63; S64; S66; S67;

S68; S69; S70; S72; S73; S76; S77; S81; S82; S83; S84; S85; S86; S87; S88; S89;

S91; S92; S93; S94; S95; S97; S98; S99; S102; S103; S104; S108; S110; S111;

S112; S113; S115; S116; S117; S123; S124; S129; S130; S131; S132; S133; S134;

S135; S136; S137; S139; S140; S141; S142; S144; S145; S146; S147; S149; S150;

S151; S155; S156; S157; S158; S159; S160; S161; S162; S163; S165

Surgical

intervention(s)

S10; S13; S14; S15; S24; S33; S58; S78; S90; S107; S120; S125; S126; S138

More than 10

meta-analyses

S1; S3; S5; S12; S13; S18; S22; S23; S24; S25; S27; S30; S33; S37; S38; S41;

S45; S47; S49; S50; S51; S53; S55; S57; S62; S63; S64; S67; S70; S75; S76;

S77; S79; S80; S81; S82; S83; S84; S85; S86; S87; S90; S91; S92; S93; S94;

S96; S101; S104; S107; S110; S124; S125; S129; S131; S132; S133; S134; S135;

S140; S143; S144; S145; S146; S148; S149; S150; S151; S152; S154; S157; S161;

S162; S163

2–5

meta-analyses

S2; S4; S6; S8; S10; S14; S16; S19; S26; S28; S31; S32; S34; S35; S36; S42;

S46; S48; S52; S54; S59; S60; S65; S72; S73; S78; S89; S97; S98; S103; S106;

S109; S111; S113; S114; S115; S120; S121; S122; S128; S138; S139; S147; S155;

S159; S160; S164; S166

One meta-analysis S9; S11; S17; S21; S39; S58; S74; S116; S130; S141

Study type:

trials only

S1; S4; S6; S7; S9; S10; S12; S16; S20; S23; S24; S28; S31; S35; S36; S38; S40;

S41; S42; S43; S46; S47; S52; S55; S57; S59; S60; S61; S62; S64; S65; S69; S74;

S76; S78; S81; S84; S85; S86; S91; S94; S96; S99; S10; S10; S104; S106; S110;

S112; S123; S124; S127; S128; S131; S132; S133; S135; S136; S139; S140; S143;

S144; S145; S146; S147; S148; S150; S153; S154; S155; S157; S158; S159; S160;

S161; S163; S166

Study type:

observational

S8; S11; S14; S19; S21; S22; S26; S27; S29; S33; S34; S44; S45; S48; S49; S50;

S51; S54; S56; S58; S66; S67; S70; S71; S72; S73; S75; S77; S79; S80; S82; S83;

S88; S89; S90; S92; S93; S97; S105; S109; S113; S114; S115; S116; S117; S118;

S119; S120; S125; S126; S142; S151; S152; S162; S164; S165

Study type:

mixed trials and

observational studies

S13; S15; S17; S25; S30; S32; S37; S39; S53; S63; S87; S95; S98; S101; S103;

S107; S108; S111; S121; S129; S130; S134; S137; S138; S149; S156
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Forest plots S1; S6; S10; S14; S16; S18; S19; S20; S23; S24; S25; S26; S27; S29; S30; S31;

S32; S34; S39; S41; S42; S44; S45; S47; S49; S51; S54; S59; S61; S62; S63; S66;

S70; S71; S74; S78; S79; S82; S83; S86; S87; S89; S91; S92; S93; S94; S96; S97;

S98; S100; S101; S102; S103; S104; S105; S110; S114; S115; S116; S119; S120;

S121; S125; S126; S127; S128; S129; S130; S131; S132; S133; S134; S135; S136;

S137; S139; S143; S146; S147; S148; S151; S153; S154; S155; S158; S159; S163;

S166

Other plots S2; S3; S4; S5; S8; S11; S12; S17; S28; S35; S40; S46; S48; S57; S68; S69; S75;

S76; S80; S106; S113; S117; S123; S124; S138; S140; S144; S145; S149; S165

No graphical results S7; S9; S13; S15; S21; S22; S33; S36; S37; S38; S43; S50; S52; S53; S55; S56;

S58; S60; S65; S72; S73; S77; S81; S84; S85; S88; S90; S99; S107; S108; S109;

S111; S112; S122; S141; S150; S152; S156; S157; S160; S161; S164

Academic sponsorship S1; S5; S6; S10; S13; S16; S18; S20; S21; S22; S23; S30; S31; S32; S34; S36;

S38; S39; S42; S46; S48; S50; S52; S57; S59; S65; S69; S71; S73; S74; S77; S78;

S79; S82; S83; S84; S85; S90; S91; S92; S93; S95; S96; S97; S104; S108; S109;

S113; S115; S118; S119; S120; S121; S122; S128; S130; S131; S132; S133; S134;

S135; S137; S140; S141; S145; S146; S152; S153; S154; S155; S157; S158; S159;

S163; S165; S166

Commercial

sponsorship

S2; S3; S7; S11; S26; S35; S49; S53; S55; S60; S64; S66; S67; S72; S81; S87;

S99; S107; S111; S112; S123; S124; S139; S143; S144; S147; S161

Government

sponsorship

S8; S9; S14; S15; S17; S19; S28; S29; S33; S37; S40; S41; S43; S44; S47; S51;

S54; S56; S58; S61; S62; S63; S70; S75; S76; S88; S89; S94; S100; S101; S102;

S103; S105; S106; S110; S114; S116; S117; S125; S126; S127; S129; S138; S148;

S149; S150; S151; S156; S160; S164

Other funding

sources

S12; S24; S25; S27; S45; S68; S80; S86; S98; S136; S142; S162

Outcome metric:

odds ratio

S7; S10; S11; S15; S20; S21; S22; S31; S32; S34; S35; S39; S40; S41; S52; S64;

S65; S67; S71; S81; S82; S83; S87; S92; S93; S94; S96; S99; S100; S159; S102;

S104; S105; S106; S109; S114; S115; S116; S120; S123; S125; S129; S130; S135;

S139; S141; S143; S144; S145; S153; S154; S157; S158; S164; S165

Outcome metric:

relative risk

S1; S6; S14; S16; S17; S24; S26; S27; S29; S30; S37; S42; S43; S44; S45; S46;

S49; S50; S51; S53; S55; S56; S59; S60; S63; S66; S70; S74; S77; S78; S79; S84;

S85; S89; S97; S98; S101; S103; S108; S112; S113; S117; S119; S127; S142;

S146; S147; S148; S152; S163; S166

Outcome metric: risk

difference

S23; S38; S61; S124; S128; S132; S150; S155

Outcome metric:

mean difference

(comparative)

S76; S86; S91; S121; S134; S137
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Outcome metric:

standardised mean

difference

S5; S9; S12; S19; S90; S110; S151

Outcome metric:

percent difference

(comparative)

S36; S156

Outcome metric:

correlation

S2; S33

Outcome metric:

probability or percent

S25; S28; S54; S58; S72; S80; S88; S118; S122; S126; S138; S140; S162

Outcome metric:

mean difference

(non-comparative)

S3; S68

Outcome metric:

percent difference

(non-comparative)

S4; S57; S95

Outcome metric:

multiple

S13; S18; S47; S48; S62; S69; S73; S75; S107; S111; S131; S133; S136; S149;

S160; S161

Meta-analysis

method: Standard

fixed effect

S5; S7; S10; S11; S21; S27; S28; S31; S39; S41; S47; S50; S52; S53; S56; S57;

S60; S65; S67; S76; S78; S80; S81; S86; S87; S92; S93; S94; S97; S99; S102;

S104; S105; S106; S113; S114; S115; S125; S126; S129; S130; S131; S133; S134;

S136; S137; S141; S142; S143; S148; S151; S157; S159; S164

Meta-analysis

method: other

fixed effect

S2; S9; S18; S40; S54; S68; S122; S140; S162

Meta-analysis

method: standard

random effect

S3; S4; S12; S15; S16; S19; S23; S25; S26; S29; S30; S32; S33; S34; S35; S36;

S43; S44; S51; S58; S59; S64; S72; S74; S77; S83; S84; S85; S88; S91; S96;

S98; S107; S110; S112; S119; S121; S123; S124; S132; S135; S138; S146; S147;

S152; S153; S154; S155; S163; S165

Meta-analysis

method: marginal

analysis

S118; S144; S145

Meta-analysis

method: Bayesian

methods

S17; S70; S89; S103; S108; S150

Meta-analysis

method: multiple

S1; S6; S14; S20; S22; S24; S37; S42; S49; S55; S62; S63; S66; S69; S71; S73;

S75; S79; S82; S100; S101; S109; S111; S116; S117; S120; S127; S149; S156;

S158; S160; S161; S166
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Fixed effect model S2; S5; S7; S9; S10; S11; S13; S17; S18; S21; S27; S28; S31; S37; S39; S40; S41;

S43; S45; S47; S48; S50; S52; S53; S54; S56; S57; S60; S61; S62; S65; S67; S68;

S69; S75; S76; S78; S80; S81; S86; S92; S93; S94; S97; S99; S102; S104; S105;

S106; S113; S114; S115; S120; S122; S125; S126; S129; S130; S131; S133; S134;

S136; S137; S140; S141; S142; S143; S148; S151; S157; S158; S159; S162; S164

Random effects model S3; S4; S12; S14; S15; S16; S19; S23; S25; S26; S30; S32; S33; S34; S35; S36;

S44; S51; S58; S59; S64; S70; S72; S74; S77; S83; S84; S85; S88; S89; S91; S96;

S98; S107; S108; S110; S112; S119; S121; S123; S124; S132; S135; S138; S146;

S147; S150; S152; S153; S154; S155; S163; S165

Both fixed and

random effect(s)

S1; S6; S20; S22; S24; S29; S42; S49; S55; S63; S66; S71; S73; S79; S82; S100;

S101; S103; S109; S111; S116; S117; S127; S149; S156; S160; S161; S166

Reason for chosen

model: related to

heterogeneity

S1; S3; S4; S6; S10; S14; S15; S19; S21; S22; S24; S25; S26; S29; S32; S33;

S42; S43; S44; S45; S47; S49; S62; S63; S72; S73; S74; S78; S79; S83; S84; S87;

S88; S91; S100; S112; S117; S127; S133; S135; S143; S148; S152; S155; S158;

S166

Studies investigating

dose–response

S2; S6; S9; S22; S23; S29; S31; S38; S44; S45; S46; S48; S49; S51; S53; S55;

S56; S62; S67; S68; S79; S86; S94; S95; S110; S112; S123

Heterogeneity

considered

S1; S2; S3; S4; S6; S8; S10; S14; S15; S16; S18; S19; S20; S21; S22; S23; S24;

S26; S27; S29; S30; S31; S32; S33; S34; S35; S37; S39; S40; S41; S42; S43; S44;

S45; S46; S47; S49; S50; S51; S52; S53; S55; S56; S58; S59; S60; S61; S62; S63;

S64; S65; S66; S67; S69; S71; S72; S73; S74; S75; S77; S78; S79; S81; S82;

S83; S84; S85; S86; S87; S88; S89; S91; S92; S93; S94; S95; S96; S97; S98;

S99; S100; S101; S102; S103; S105; S106; S107; S108; S110; S111; S112; S113;

S114; S115; S116; S117; S119; S120; S121; S123; S124; S125; S126; S127; S128;

S129; S130; S131; S132; S133; S134; S135; S136; S137; S138; S139; S141; S142;

S143; S144; S145; S146; S147; S148; S151; S152; S153; S154; S155; S156; S157;

S158; S159; S160; S163; S164; S165; S166

Individual patient data

included

S7; S27

Sparse data

considered

S1; S11; S15; S16; S17; S20; S24; S25; S26; S30; S31; S32; S34; S35; S38; S39;

S40; S41; S42; S46; S47; S52; S56; S59; S60; S61; S62; S64; S65; S74; S75; S78;

S81; S84; S87; S94; S96; S97; S99; S100; S101; S103; S104; S106; S112; S114;

S115; S119; S120; S125; S129; S133; S134; S135; S136; S137; S144; S145; S146;

S147; S148; S159; S160; S163; S166
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Multiple outcomes

considered

S1; S4; S5; S7; S8; S10; S12; S13; S16; S18; S20; S24; S25; S30; S32; S33; S34;

S35; S38; S40; S41; S43; S45; S47; S50; S52; S53; S54; S55; S56; S57; S59; S61;

S62; S63; S64; S65; S69; S70; S71; S75; S76; S78; S79; S80; S81; S84; S85; S86;

S87; S88; S90; S91; S94; S95; S96; S97; S99; S100; S101; S102; S104; S107;

S108; S109; S110; S114; S115; S119; S120; S121; S123; S125; S126; S127; S128;

S129; S131; S132; S133; S134; S135; S136; S137; S139; S140; S143; S144; S145;

S146; S148; S149; S150; S151; S152; S154; S156; S157; S158; S159; S160; S161;

S163; S165

Subgroups included S15; S22; S27; S28; S38; S47; S49; S51; S62; S64; S76; S79; S82; S83; S92; S93;

S99; S107; S120; S125; S133; S135; S136; S142; S143; S146; S147; S151; S153;

S154; S156; S157; S162

Dissemination bias

considered

S3; S5; S6; S14; S17; S20; S21; S22; S26; S27; S28; S30; S32; S34; S35; S36;

S40; S41; S43; S44; S45; S49; S51; S52; S53; S54; S55; S56; S59; S62; S63; S66;

S67; S71; S72; S73; S75; S76; S79; S82; S83; S86; S87; S88; S92; S93; S94; S98;

S99; S101; S102; S103; S108; S109; S111; S112; S114; S117; S119; S120; S121;

S123; S124; S125; S126; S129; S130; S131; S132; S133; S134; S135; S136; S137;

S139; S143; S146; S147; S150; S151; S152; S154; S155; S157; S159; S161; S163;

S164; S166

Primary study

quality considered

S1; S10; S14; S16; S19; S20; S23; S24; S25; S32; S35; S37; S38; S40; S41; S47;

S48; S49; S58; S59; S64; S67; S70; S74; S76; S78; S79; S86; S89; S90; S91; S92;

S93; S94; S97; S100; S101; S103; S104; S108; S109; S110; S111; S112; S113;

S114; S115; S117; S118; S123; S124; S128; S129; S131; S133; S134; S135; S136;

S137; S144; S145; S146; S147; S148; S156; S157; S159; S163; S164; S166

Time-course

aspects considered

S4; S23; S33; S35; S57; S64; S66; S89; S91; S94; S103; S104; S107; S114; S128;

S131; S138; S154

Dose–response

considered

S2; S6; S9; S22; S23; S29; S31; S38; S44; S45; S46; S48; S49; S51; S53; S55;

S56; S62; S67; S68; S79; S86; S94; S95; S110; S112; S123

Class effects

considered

S2; S12; S20; S28; S34; S36; S37; S38; S41; S42; S43; S44; S45; S47; S50; S51;

S53; S56; S57; S63; S66; S67; S68; S70; S76; S77; S82; S83; S84; S85; S86; S89;

S91; S92; S93; S94; S95; S97; S98; S100; S102; S103; S104; S105; S106; S108;

S110; S111; S112; S113; S115; S116; S117; S124; S129; S130; S131; S132; S133;

S135; S136; S139; S140; S141; S142; S146; S147; S149; S150; S151; S156; S159;

S160; S163; S165

Publication bias:

discussion only

S3; S5; S17; S26; S27; S28; S35; S36; S40; S43; S52; S55; S56; S59; S63; S71;

S72; S82; S87; S88; S92; S93; S98; S99; S101; S108; S114; S119; S120; S124;

S125; S126; S131; S132; S136; S139; S143; S147; S152; S154; S155; S157; S159;

S161

Publication bias:

quantitative analysis

S14; S22; S30; S34; S41; S44; S45; S49; S51; S53; S62; S66; S75; S79; S83;

S103; S111; S117; S121; S129; S130; S133; S134; S135; S137; S146; S150; S151;

S163; S164; S166
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Publication bias:

test with p-value

S22; S30; S41; S45; S51; S53; S62; S66; S83; S111; S121; S129

Publication bias:

funnel plot

S14; S22; S30; S31; S34; S41; S44; S45; S49; S51; S62; S75; S79; S83; S111;

S117; S121; S129; S130; S133; S134; S135; S137; S146; S150; S151; S163; S164;

S166

Published studies only

included

S2; S4; S5; S8; S9; S10; S11; S12; S13; S14; S15; S16; S17; S18; S19; S20; S22;

S23; S24; S25; S26; S29; S30; S31; S32; S33; S36; S37; S38; S39; S41; S42; S43;

S44; S45; S46; S47; S48; S49; S51; S53; S54; S56; S57; S58; S59; S60; S62;

S63; S64; S65; S66; S68; S69; S70; S71; S72; S73; S74; S75; S76; S77; S78;

S79; S80; S81; S82; S83; S85; S87; S88; S89; S90; S91; S92; S93; S95; S97;

S98; S101; S103; S104; S105; S107; S109; S113; S114; S115; S116; S117; S118;

S119; S120; S122; S124; S125; S126; S127; S128; S129; S130; S131; S132; S133;

S135; S136; S138; S139; S140; S141; S142; S143; S144; S145; S147; S148; S149;

S150; S152; S153; S154; S156; S158; S160; S161; S162; S163; S164; S165

Published studies with

unpublished data

S35; S40; S50; S61; S84; S86; S94; S96; S99; S100; S102; S106; S108; S110;

S121; S151; S155; S157; S159; S166

Published and

unpublished studies

S1; S6; S21; S27; S28; S34; S52; S55; S111; S112; S123; S134; S137; S146

Heterogeneity:

quantitative

assessment only

S1; S3; S4; S6; S8; S10; S15; S16; S20; S21; S22; S23; S24; S26; S27; S29; S30;

S31; S32; S33; S34; S35; S37; S39; S40; S41; S42; S43; S46; S47; S49; S50; S51;

S52; S53; S55; S56; S58; S59; S60; S62; S63; S64; S65; S66; S67; S69; S71; S73;

S75; S77; S78; S79; S81; S82; S83; S84; S85; S87; S89; S91; S92; S93; S94; S96;

S97; S98; S99; S100; S101; S102; S103; S105; S106; S108; S111; S112; S113;

S114; S115; S116; S117; S119; S120; S121; S124; S125; S126; S127; S128; S130;

S131; S132; S133; S134; S135; S136; S137; S138; S139; S141; S142; S143; S146;

S147; S148; S151; S152; S153; S154; S155; S158; S159; S160; S163; S164; S165;

S166

Heterogeneity:

statistical test

S1; S3; S4; S6; S8; S10; S14; S15; S16; S19; S20; S21; S22; S23; S24; S26; S27;

S29; S30; S32; S33; S34; S35; S37; S39; S40; S41; S42; S43; S44; S45; S46; S47;

S49; S50; S51; S52; S53; S55; S56; S58; S59; S60; S62; S63; S64; S65; S66; S67;

S69; S71; S73; S75; S77; S78; S79; S81; S82; S83; S84; S85; S86; S87; S89;

S91; S92; S94; S97; S98; S99; S100; S101; S102; S103; S105; S106; S108; S111;

S112; S113; S114; S115; S116; S117; S119; S120; S121; S124; S125; S126; S127;

S128; S129; S130; S131; S132; S133; S134; S135; S136; S137; S138; S139; S141;

S142; S143; S146; S147; S148; S151; S152; S153; S154; S155; S158; S159; S160;

S163; S164; S165; S166

Heterogeneity test:

p-value cut-off 0.05

S1; S6; S10; S24; S30; S33; S43; S45; S53; S55; S60; S71; S98; S105; S106;

S108; S111; S112; S115; S120; S139; S143; S151; S152; S153; S158; S159; S164

Heterogeneity test:

p-value cut-off 0.10

S15; S29; S40; S47; S50; S51; S63; S75; S77; S81; S82; S89; S91; S100; S101;

S103; S117; S127; S137; S154; S160; S165; S166

Continued on next page
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Meta-analysis

feature

References (numbers refer to references in Appendix A)

Heterogeneity test:

p-value stated

S3; S8; S14; S16; S19; S20; S21; S22; S23; S27; S32; S44; S49; S56; S59; S62;

S64; S65; S66; S67; S69; S73; S78; S79; S83; S86; S87; S92; S94; S97; S116;

S121; S125; S126; S128; S129; S130; S131; S132; S133; S134; S135; S136; S138;

S141; S142; S146; S147; S148; S155; S163

Heterogeneity

estimate

S1; S16; S20; S26; S44; S47; S78; S91; S94; S131; S133; S136; S137; S148;

S155; S166

Heterogeneity present S1; S3; S4; S8; S14; S15; S16; S19; S20; S22; S23; S27; S29; S30; S32; S33;

S34; S37; S40; S41; S42; S44; S45; S49; S50; S51; S53; S55; S56; S63; S65; S66;

S67; S71; S72; S73; S74; S75; S77; S79; S81; S83; S84; S85; S87; S91; S92; S94;

S96; S97; S98; S101; S105; S108; S111; S112; S114; S117; S120; S121; S126;

S127; S129; S130; S131; S133; S134; S137; S138; S141; S142; S143; S151; S152;

S153; S154; S155; S156; S158; S164; S165; S166

Subgroup analysis S15; S22; S27; S47; S49; S51; S62; S64; S79; S82; S83; S92; S93; S99; S107;

S120; S125; S133; S135; S136; S142; S143; S146; s147; S151; S153; S154; S156;

S157

Meta-regression S2; S3; S18; S30; S31; S40; S46; S51; S62; S72; S74; S79; S88; S95; S106; S107;

S112; S117; S123; S124; S126; S132; S135; S138; S144; S145; S157

Qualitative

investigation

of heterogeneity

S8; S14; S15; S16; S19; S33; S58; S61; S65; S66; S71; S72; S92; S101; S110;

S143; S156

Quality: two assessors S14; S20; S24; S25; S37; S38; S58; S67; S74; S76; S78; S79; S89; S90; S92;

S93; S103; S110; S111; S112; S113; S115; S117; S123; S124; S131; S133; S134;

S135; S137; S144; S145; S146; S148; S159; S163; S166

Quality: assessment

disagreements

resolved by consensus

S14; S16; S19; S20; S37; S64; S78; S79; S89; S97; S101; S103; S104; S111;

S112; S113; S123; S124; S133; S134; S137; S144; S145; S146; S159; S163

Quality tool used S1; S10; S14; S16; S20; S23; S24; S25; S31; S35; S37; S40; S41; S47; S58;

S59; S64; S67; S70; S74; S76; S78; S79; S89; S90; S91; S100; S101; S103; S104;

S108; S109; S110; S111; S112; S113; S114; S115; S117; S118; S123; S124; S128;

S131; S133; S134; S135; S137; S144; S145; S146; S148; S159; S163; S164; S166

Poorer quality studies

excluded

S31; S48; S49; S58; S70; S89; S90; S108; S114; S118; S133; S159; S166

Subgroup analysis by

study quality

S14; S24; S37; S40; S41; S67; S86; S91; S92; S93; S94; S101; S113; S135; S156;

S163

Quality information

used by other method

S19; S79; S110; S112; S115; S117; S123; S124; S144; S145; S157; S164

No use of quality

information

S1; S10; S16; S20; S23; S25; S35; S38; S47; S59; S64; S74; S76; S78; S100;

S103; S104; S109; S111; S128; S129; S131; S134; S136; S137; S146; S147; S148

Continued on next page
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References (numbers refer to references in Appendix A)

Two-arm studies with

zero events

S1; S11; S16; S20; S24; S31; S32; S34; S40; S41; S46; S47; S52; S61; S62; S64;

S74; S78; S81; S84; S94; S97; S99; S100; S104; S106; S115; S119; S125; S129;

S133; S134; S135; S136; S137; S144; S145; S148; S159; S160; S166

Sparse data studies

with odds ratio

outcome

S11; S15; S20; S31; S32; S34; S35; S39; S40; S41; S52; S64; S65; S81; S87; S94;

S96; S99; S100; S104; S106; S114; S115; S120; S125; S129; S135; S144; S145;

S159

Sparse data studies

with relative risk

outcome

S1; S16; S17; S24; S26; S30; S42; S46; S56; S59; S60; S74; S78; S84; S97; S101;

S103; S112; S119; S146; S147; S148; S163; S166

Continuity correction

used

S11; S15; S30; S35; S39; S40; S52; S59; S62; S74; S100; S104; S106; S112; S114

Continuity correction

not used (in

conjunction with

studies with sparse

data)

S17; S20; S24; S31; S38; S60; S65; S81; S103; S120; S125; S133; S134; S136;

S137; S144; S145;

Primary continuity

correction: 0.5

S11; S15; S30; S35; S39; S40; S52; S62; S74; S100; S104; S106; S112; S114

Peto method in

conjunction with

sparse data

S20; S24; S31; S40; S41; S60; S94; S100; S104; S106; S120; S129

Studies with zero

events in total

included

S11; S34; S41; S61; S62; S74; S104; S106; S115; S119; S133; S134; S136; S137;

S144; S145; S160

Studies with zero

events in total

excluded

S1; S16; S20; S24; S31; S32; S47; S64; S78; S81; S94; S97; S100; S125; S135;

S148; S159; S166
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Peer-reviewed journal articles

Warren FC, Abrams KR, Sutton AJ & Bongartz T (In preparation). Network

meta-analysis for adverse event data with applications to anti-TNF interventions

in rheumatoid arthritis.

Warren FC, Abrams KR, Sutton AJ & Golder S (In preparation). A systematic

review of meta-analyses where the primary outcome is an adverse or unintended

event.

Bongartz T, Warren FC, Mines D, Matteson EL, Abrams KR & Sutton AJ

(2009). Etanercept therapy in rheumatoid arthritis and the risk of malignancies:

a systematic review and individual patient data meta-analysis of randomised

controlled trials. Annals of the Rheumatic Diseases, 68(7), 1177-1183.

Poster presentations

Warren FC, Abrams, KR, Sutton AJ, Bongartz T & Matteson EL (2008). Devel-

opment of evidence synthesis methods using hierarchical models to investigate

influence of class effects and doseresponse: application to anti-TNF drugs for

rheumatoid arthritis. Presented at RSS Conference, Nottingham, UK.

Warren FC, Abrams KR, Sutton AJ, Golder S & Ashby D (2007). Review of

statistical methods used in the meta-analysis of adverse drugs reactions data.

Presented at RSS Conference, York, UK.

Fiona Warren PhD Thesis 2010 367



Appendix D

Appendix D: Bongartz et al. 2009: publication in Annals of
the Rheumatic Diseases based on Chapter 8

The publication cited below is set out in full in this Appendix, with permission
from BMJ Publishing Group Ltd.

Bongartz T, Warren, FC, Mines D, Matteson EL, Abrams KR & Sutton AJ
(2009). Etanercept therapy in rheumatoid arthritis and the risk of malignancies.
A systematic review and individual patient data meta-analysis of Randomized
Controlled Trials. Annals of the Rheumatic Diseases, 68(7): 1177–1183.

The website of the journal, Annals of the Rheumatic Diseases, is:
http://ard.bmj.com/.
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ABSTRACT
Purpose: Tumour necrosis factor (TNF) plays an
important role in inflammation and may affect tumour
growth control. To assess the risk of malignancy with
etanercept, a fusion protein that inhibits TNF action, a
meta-analysis was performed using individual patient data
from randomised controlled trials (RCT) in patients with
rheumatoid arthritis (RA).
Methods: A search was conducted of bibliographic
databases, abstracts from annual meetings and any
unpublished studies on file with manufacturers of
etanercept to December 2006. Only RCT of etanercept
used for 12 weeks or more in patients with RA were
included. Nine trials met the inclusion criteria. To
adjudicate endpoints, the case narratives of potential
cases were reviewed. Patient-level data were extracted
from the clinical trials databases.
Results: The nine trials included 3316 patients, 2244
who received etanercept (contributing 2484 person-years
of follow-up) and 1072 who received control therapy
(1051 person-years). Malignancies were diagnosed in 26
patients in the etanercept group (incidence rate (IR)
10.47/1000 person-years) and seven patients in the
control group (IR 6.66/1000 person-years). A Cox’s
proportional hazards, fixed-effect model stratified by trial
yielded a hazard ratio of 1.84 (95% CI 0.79 to 4.28) for the
etanercept group compared with the control group.
Conclusions: In this analysis, the point estimate of
malignancy risk was higher in etanercept-treated patients,
although the results were not statistically significant. The
approach of obtaining individual patient data of RCT in
cooperation with trial sponsors allowed important insights
into the methodological advantages and challenges of
sparse adverse event data meta-analysis.

The question of whether the inhibition of tumour
necrosis factor (TNF) alpha may increase the risk
of malignant disease is still a matter of contro-
versy.1 Our previous aggregate data meta-analysis
of randomised controlled trials (RCT) using anti-
TNF antibodies for the treatment of patients with
rheumatoid arthritis (RA) showed a significantly
increased risk of malignancy in anti-TNF antibody-
treated patients compared with control patients.2 3

Etanercept, a fusion protein that is able to bind
TNF and is also used in the treatment of RA, was
deliberately excluded from this analysis due to
differences in its molecular structure and mechan-
ism of action within the anti-TNF class.4

Etanercept is an anti-TNF receptor fusion protein
with unique properties that distinguish it from the

anti-TNF antibodies infliximab and adalimumab. In
contrast to anti-TNF antibodies, etanercept also
neutralises lymphotoxin alpha, which has been
associated with tumour growth control independent
of TNF activity.5 6 The observation that etanercept is
not beneficial in Crohn’s disease7 while anti-TNF
antibodies are,8 9 suggests distinct biological proper-
ties of the two classes of anti-TNF treatment.

The potential for assessing the safety of etanercept
based on single RCT in RA is limited. These trials are
valuable tools to assess a drug’s efficacy but are
limited in their assessment of safety. The sample size
chosen on the basis of expected efficacy is usually
insufficient to detect potential differences in sparse
adverse events between treatment arms. Although
observational studies offer a valuable approach to
assess the risks of approved drugs, widespread use of
a drug after approval for a significant amount of time
is required to generate data that can be used for
analysis. In addition, selection bias may be a
limitation to safety assessments based on observa-
tional data.10 Meta-analyses of RCT, in contrast, may
reveal important safety signals early and mitigate the
effect of selection bias.11 12

We sought to explore further a potential
association between anti-TNF therapy and malig-
nancies by performing a systematic review and
individual patient data (IPD) meta-analysis of RCT
using etanercept in patients with RA.

METHODS
This study was performed according to a protocol
that prespecified study selection, eligibility criteria,
data extraction and statistical analysis. The meth-
odology was developed according to Cochrane
collaboration guidelines (www.cochrane.org) and
the manuscript was prepared in accordance with
the QUOROM13 statement.

Search strategy
Our search strategy was divided into two major
steps: the first step included an electronic database
review performed by a librarian who was blinded
to the study hypothesis. EMBASE, Medline,
Cochrane Library and Web of Science were
searched from inception to December 2006 for
RCT of etanercept in patients with RA, using the
keyword terms: ‘‘arthritis rheumatoid’’; ‘‘etaner-
cept’’; ‘‘Enbrel’’; ‘‘tumour necrosis factor fusion
protein’’; ‘‘randomised controlled trial’’; ‘‘random
allocation’’; ‘‘clinical trials phase II’’; ‘‘clinical trials
phase III’’; ‘‘clinical trials phase IV’’.

Extended report
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The second step encompassed direct communication with the
manufacturers of etanercept, Wyeth and Amgen, in order to
locate unpublished trials and/or published trials that were
missed with the electronic database search.

Trial selection
Trials were included in our analysis if they met the following
criteria: study participants were diagnosed with RA according to
American College of Rheumatology criteria,14 patients were
randomly assigned to etanercept or control treatment and the
study duration was at least 12 weeks. Assessment of eligibility
criteria was performed independently by two investigators.
Abstracts of all citations retrieved through the electronic database
search were reviewed and potential candidates were further
evaluated based on final publications. In addition, sponsors were
contacted to obtain original trial protocols for in-depth review.

Study quality assessment
All included trials were reviewed for methodological features most
relevant to issues of bias. Two independent reviewers assessed
randomisation, random allocation concealment, masking of
allocation, intent-to-treat analysis, completeness of follow-up,
outcome assessment and attrition using original study protocols
provided by sponsors as well as published reports. Disagreements
were resolved by consensus-forming discussions.

Data extraction
The primary outcome of our analysis was (first) incident cancer,
defined as a disease characterised by abnormal cells that divide
without control and have the ability to invade other tissues.
This definition did not include carcinoma in situ. Three
investigators independently adjudicated potential malignancies
based on a review of adverse event case narratives from which
information about treatment assignment had been removed.
Disagreements were resolved by consensus-forming discussions.

After the assessment of case narratives was completed, study
sponsors provided data for every patient who participated in
trials selected for the meta-analysis: demographic information;
treatment assignment; dose of study drug; date of first and last

dose of study drug; time point and reason of premature study
discontinuation; date of last follow-up and concomitant
disease-modifying antirheumatic drug therapy.

Data synthesis
All patients from eligible trials who were randomly assigned and
received at least one dose of the study drug were included in the
analysis (one patient who was lost to follow-up on the day of
the first dose was excluded). The risk window for incident
malignancies began with the date of the first dosing of study
drug to the date of last follow-up in the respective RCT. A
survival analysis of time-to-first-event using a Cox’s propor-
tional hazards model stratified by trial and assuming a fixed
treatment effect was performed. In addition, a meta-analysis of
study-level hazard ratios (HR) based on a random effects model
(an approximation of a Cox’s proportional hazards model using
a Poisson generalised linear model) was conducted.

Sensitivity analyses entailed omitting cancers diagnosed
within 6 weeks of trial entry and omitting all non-melanoma
skin cancers (NMSC) from case definition. To evaluate any
potential duration response, we conducted separate analyses for
three non-overlapping periods of follow-up time (,6 months,
6–12 months, .24 months). As a secondary analysis, we
performed an aggregate data-based meta-analyses using study-
level odds ratios (OR). In contrast to the primary analysis,
which uses a time-to-event approach, this analysis used the
number of randomly assigned patients as the denominator of
the incidence measure. For this secondary data synthesis,
Mantel–Haenszel methods were used with a continuity
correction inversely proportional to the relative size of the
other treatment arm for that study.15

All analyses were performed using Stata version 9.2, with the
exception of the random effects survival model, which was
performed using R version 2.5.0.

Role of the sponsor
This study was sponsored by Wyeth, who together with Amgen
markets etanercept in North America. Wyeth and Amgen
provided data for the analysis, and Wyeth provided payment to

Figure 1 QUOROM-style flow diagram
indicating selection of studies for this
meta-analysis. RA, rheumatoid arthritis.
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support the costs of study preparation, data analysis and
manuscript preparation. The current meta-analysis, designed to
evaluate the risk of malignancy only, arose in the context of a
request to Wyeth from a regulatory agency regarding cancer risk.

It was in this context that DM, a Wyeth employee and one of the
study co-authors, approached TB and ELM in January 2006.

Both companies had the opportunity to comment on the
study design and manuscript. However, all final decisions

Table 1 Characteristics of randomised controlled trials included in the meta-analysis

Trial/reference

Randomly
assigned
patients

Disease
characteristics

Active treatment
groups (n)

Control group
(n)

Duration of
trial

TNR 00102

Unpublished

158 (153)* Active RA with
inadequate response to
MTX

Etanercept 10 mg
biw (52)

Placebo (50) 12 Weeks

Etanercept 25 mg
biw (52)

160004

Moreland et al, 199720

180 (180) * Active RA with
inadequate response to
>1 DMARD

Etanercept 0.25 mg/
m2 biw (46)

Placebo (44) 12 Weeks

Etanercept 2.0 mg/m2

biw (46)

Etanercept 16.0 mg/
m2 biw (44)

160009

Moreland et al, 199921

246 (234) * Active RA with
inadequate response to
>1 DMARD

Etanercept 10 mg
biw (76)

Placebo (80) 26 Weeks

Etanercept 25 mg
biw (78)

With
extension up
to 52 weeks

160012

Bathon et al, 20006

654 (632)* Active early RA
,3 years (no previous
MTX)

Etanercept 10 mg
biw (208)

Placebo + MTX
(217)

104 Weeks

Etanercept 25 mg
biw (207)

Genovese et al, 200218

160014 89 (89)* Active RA with
inadequate response to
MTX

Etanercept 25 mg
biw + MTX (59)

Placebo + MTX
(30)

24 Weeks

Weinblatt et al, 199923

160029 564 (534)* Active RA and at least
one comorbidity that
increases the likelihood
of infection

Etanercept 25 mg
biw (266)

Placebo (269) 16 Weeks

Baumgartner et al, 200424

(abstract)

0881300

Ericson and Wadjula,
199926 (abstract)

559 (558)* Active RA with
inadequate response to
>1 DMARD

Etanercept 10 mg qw
(122)

Placebo (105) 12 Weeks

Etanercept 25 mg qw
(111)

Etanercept 10 mg
biw (110)

Etanercept 25 mg
biw (111)

0881308

Klareskog et al, 200419

686 (682)* Active RA with
inadequate response to
DMARD other than MTX

Etanercept 25 mg
biw (223)

MTX + placebo
(228)

Approx
180 weeks

Etanercept 25 mg
biw + MTX (231)

van der Heijde et al,
200622

van der Heijde et al,
200628 (abstract)

Mola et al, 200627

(abstract)

0881309

Combe et al, 200617

260 (254)* Active RA with
inadequate response to
sulfasalazine

Etanercept 25 mg
biw + sufasalazine
(101)

Sulfasalazine +
placebo (50)

104 Weeks

Etanercept 25 mg
biw + placebo (103)

Combe et al, 200525

(abstract)

*Values in parentheses refer to the number of randomly assigned patients who received at least one allocated treatment dose. biw,
twice weekly; DMARD, disease-modifying antirheumatic drug; MTX, methotrexate; qw, every week; RA, rheumatoid arthritis.
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regarding study design, analysis, and reporting and interpreta-
tion of results rested with the academic investigators.

RESULTS
Trials included
A total of 82 publications was initially considered, from which
69 articles were excluded based on abstracts and content. Of the
remaining 13 citations, eight full-text publications16–23 and five
poster abstracts24–28 reported on eight RCT, which met our

inclusion criteria. Figure 1 summarises the flow of eligible
clinical trials into our analysis.

To ensure complete data acquisition, 30 RCT of etanercept
on file with the manufacturers were assessed for eligibility based
on a review of original study protocols. In addition to the eight
trials already identified through the electronic database search,
one unpublished study (study TNR 00102) that was eligible for
analysis was identified. Therefore, nine RCT were finally
included in our analysis.

Table 2 Summary of malignancies in the randomised controlled trials

Trial reference

Etanercept-treated participants (N = 2244) Control patients (N = 1072)

Patients with >1
malignancy/type of
malignancy

Etanercept
dose

Time point of
diagnosis

Patients with >1
malignancy/type of
malignancy

Time point of
diagnosis

TNR 00102 0 – – 0 –

Unpublished

160004 0 – – 0 –

Moreland et al, 199720

160009 1 Lung adenocarcinoma 25 mg biw Week 40 0

Moreland et al, 199921

160012

Bathon et al, 200016

1 Ductal breast cancer 10 mg biw Week 45 1 Non-melanoma
skin cancer

Week 12

1 Prostate
adenocarcinoma

25 mg biw Week 39 1 Urethral
carcinoma

Week 56

Genovese et al, 200218 1 Basal cell carcinoma 10 mg biw Week 91 1 Colon
adenocarcinoma

Week 40

1 Lobular breast
carcinoma

10 mg biw Week 102 1 Basal cell
carcinoma

Week 86

1 Basal cell carcinoma 25 mg biw Week 47

1 Basal cell carcinoma 25 mg biw Week 44

1 Lung carcinoid 25 mg biw Week 37

1 Basal cell carcinoma 20 mg biw Week 40

1 Lung NSCC 10 mg biw Week 9

1 Hodgkin lymphoma 25 mg biw Week 37

160014 0 – – 0 –

Weinblatt et al, 199923

160029

Baumgartner et al, 200424

(abstract)

1 Squamous cell
carcinoma skin

25 mg biw Week 2 1 Basal cell
carcinoma

Week 3

1 Basal cell carcinoma 25 mg biw Week 9 1 Lung squamous
cell carcinoma

Week 11

0881300 0

Ericson and Wadjula, 199926

(abstract)
1 LGL syndrome
(monoclonal)

10 mg biw Week 1

1 Ductal breast
carcinoma

10 mg qw Week 4

0881308

Klareskog et al, 200419

1 Ductal breast
carcinoma

25 mg biw Week 34 1 Ductal breast
carcinoma

Week 64

1 Adenocarcinoma of
the rectum

25 mg biw Week 24

van der Heijde et al, 200622 1 Oesophageal
adenocarcinoma

25 mg biw Week 58

van der Heijde et al, 200628

(abstract)
1 Basal cell carcinoma 25 mg biw Week 36

1 Colon carcinoma 25 mg biw Week 84

Mola et al, 200627 (abstract) 1 Lung adenocarcinoma 25 mg biw Week 64

1 Malignant melanoma 25 mg biw Week 9

1 Basal cell carcinoma 25 mg biw Week 45

1 Basal cell carcinoma 25 mg biw Week 30

1 Endometrium
carcinoma

25 mg biw Week 106

0881309

Combe et al, 200617

1 Acute myelogenous
leukemia

25 mg biw Week 12 0 –

Combe et al, 200525

(abstract)

biw, twice weekly; LGL, large granular lymphocyte; NSCC, non-small-cell carcinoma; qw, every week.

Extended report

1180 Ann Rheum Dis 2009;68:1177–1183. doi:10.1136/ard.2008.094904

 on 3 August 2009 ard.bmj.comDownloaded from 



Trial characteristics
The characteristics of included trials are displayed in table 1.
Trial duration ranged from 12 to 180 weeks. Four trials
extended beyond the observation period reported in the initial
publication. For three of these trials (studies 0881309, 0881308,
160012), follow-up data were published in subsequent reports
after initial publication. For one trial (study 160009), extension
data were not published but were obtained from the sponsor.

All but one trial excluded patients with a history of cancer
with less than a 5-year disease-free state (except NMSC). Trial
1881300 excluded patients who had a history of cancer at any
time (except NMSC).

Based on the review of original study protocols, all trials were
judged to be of high quality with appropriate randomisation,
random allocation concealment and intent-to-treat analysis.
Completeness of follow-up and attrition were assessed using
IPD: 574 of 2244 (25.6%) in the anti-TNF treatment arms
discontinued study treatment early compared with 455 of 1072
patients (42.4%) in the control arms. Common reasons for early
discontinuation in etanercept-treated patients were adverse
events (31.5%) and lack of efficacy (32.6%). Similarly, common
reasons for early discontinuation in control patients were
adverse events (25.1%) and lack of efficacy (46.6%). For the
majority of patients who discontinued study treatment prema-
turely, follow-up beyond the date of treatment discontinuation
was available: 90.8% in the etanercept arms versus 92.7% in the
control arms.

All trials were sponsored by Wyeth or Amgen.

Patients
A total of 3396 participants was randomly assigned in the nine
trials we assessed. Eighty individuals were excluded from
further analysis, 79 of whom had never received the allocated
treatment and one who was lost to follow-up immediately after
the first dose of study drug. Our data for analysis comprised
2244 participants who received etanercept (contributing 2484
person-years of follow-up) and 1072 participants who received
control therapy (contributing 1051 person-years of follow-up).
Dataset validation revealed eight patients who participated in

two trials. A total of 3308 separate individuals thus generated a
denominator of 3316 participants. None of these patients who
transferred between trials had an incident malignancy.

Malignancies
Twenty-six patients with incident malignancies were identified
in the treatment groups (incidence rate (IR) 10.47/1000 person-
years) and seven patients in the control groups (IR 6.66/1000
person-years). A detailed summary of all incident malignancies
is given in table 2. In three trials (TNR 00102, 160004 and
160014), no incident malignancies were observed.

For one trial (study 160012), three additional incident NMSC
were identified based on individual case narratives when
compared with the original publication, which did not report
on this type of malignancy.

Data synthesis
Combined analysis according to our primary model (IPD
survival analysis) yielded an HR of 1.84 (95% CI 0.79 to 4.28)
for malignancies in patients using etanercept compared with
control treatment. Using a random effects model resulted in a
similar estimate, with an HR of 1.82 (95% CI 0.78 to 4.22).

For methodological comparison, an aggregate data meta-
analysis was performed. When applying Mantel–Haenszel
methods, the OR for malignancies in patients using etanercept
compared with patients receiving control treatment was 1.93
(95% CI 0.85 to 4.38), using a continuity correction according to
Sweeting et al.15 The results of using a random effects
DerSimonian and Laird model were very similar (HR 1.71;
95% CI 0.73 to 4.01), using the same continuity correction,
reflecting the observation that between-trial heterogeneity
using I-squared was 0.0%.

Additional analyses
Four malignancies were diagnosed during the first 6 weeks after
the first treatment dose. As these cancers were likely to be
present yet undetected when patients began the trial, we
excluded these four patients as part of our sensitivity analysis.

Table 3 Effect of etanercept therapy on the occurrence of malignancies in randomised controlled trials

Dataset Model
Events in
etanercept group

Events in
control group HR (95% CI) p Value

Full Fixed effects survival model
stratified by trial

26 7 1.84 (0.79 to 4.28) 0.16

Full Random effects survival model
stratified by trial

26 7 1.82 (0.78 to 4.22) 0.17

NMSC excluded Fixed effects survival model
stratified by trial

17 4 1.86 (0.62 to 5.59) 0.27

Cancers
diagnosed within
first 42 days
excluded

Fixed effects survival model
stratified by trial

23 6 1.87 (0.75 to 4.62) 0.18

,6 Months Fixed effects survival model
stratified by trial

8 3 1.52 (0.35 to 6.55) 0.99

6–12 Months Fixed effects survival model
stratified by trial

12 1 5.81 (0.73 to 46.16) 0.17

.12 Months Fixed effects survival model
stratified by trial

6 3 0.88 (0.21 to 3.66) 0.86

Full Fixed effects survival model,
treatment varying with ln(time)

26 7 0.97 (0.47 to 2.01) 0.93

Aggregate data Fixed effects Mantel–Haenszel
model

26 7 1.93 (0.85 to 4.38) 0.12

Aggregate data Random effects DerSimonian
and Laird model

26 7 1.71 (0.73 to 4.01) 0.21

HR, hazard ratio; NMSC, non-melanoma skin cancer.
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With these exclusions, the HR for malignancies in patients
treated with etanercept compared with the non-etanercept
group was 1.87 (95% CI 0.75 to 4.62).

In the light of recent observational data,29–31 which suggest a
significantly increased risk of NMSC (but not other solid
malignancies in patients treated with anti-TNF therapy), we
decided to exclude as events all NMSC from our analysis. Using
this approach, the results were essentially unchanged (HR 1.86;
95% CI 0.62 to 5.59).

To investigate whether there are any particular time periods
in which etanercept treatment is associated with an increased
incidence of cancer, the dataset was stratified according to three
different time points: 0–6 months; 6–12 months and more than
12 months. This analysis did not reveal a time period in which
the risk of cancer was significantly increased. We also performed
an exploratory analysis (stratified fixed effects model) of the
effect of dose, categorising etanercept dosing regimens into two
groups, less than 50 mg/week and 50 mg/week or greater (or
25 mg twice weekly). The lower dosing range accounted for
only 21.2% of etanercept follow-up time. Compared with the
control arms, the relative risk estimates were similar for each
dosing range (HR for the higher dose group was 1.92; 95% CI
0.80 to 4.62), and for the lower dose group it was 1.59 (95% CI
0.49 to 5.09), both using comparator as reference (table 3).

Statistical power
We used a traditional sample size formula (log rank test,
Freedman method)32 for a single study to obtain a statistical
power approximation (ie, this ignores stratification by study
and differential follow-up times between studies) in this meta-
analysis context. With a probability of seven malignancies per
1072 patients in the control group, it would require at least 9305
participants to detect a HR of 2.0 (statistical significance level of
5% and a power of 80%) in a large RCT, assuming 32% of
patients are allocated to control—reflecting the situation in the
existing studies. The number of individuals in our dataset
(3316) was substantially lower.

Based on the numbers derived from the existing studies, the
probability of detecting a doubling in the risk of malignancy
(HR of 2.0) between the two groups, should such a difference
exist, was 39%.

DISCUSSION
Our analysis found a higher incidence estimate of malignancies
in etanercept as compared with placebo-treated patients,
although the results are statistically not significant. Therefore,
this study does not provide sufficient evidence to establish an
association of malignancies and etanercept treatment. However,
given the wide confidence interval of the effect measure (HR
1.84; 95% CI 0.79 to 4.28), it also cannot exclude a clinically
meaningful association.

This meta-analysis provides important insight into methodo-
logical issues of an IPD meta-analysis of sparse adverse event
data. Publication bias is usually viewed as one of the more
prominent threats to the validity of a systematic review and
meta-analysis. Our approach of obtaining IPD in cooperation
with primary investigators and trial sponsors allowed us to
review the complete collection of manufacturer-sponsored RCT
for etanercept, making publication bias very unlikely. A review
of inclusion and exclusion criteria of candidate studies, based on
original study protocol review, resulted in a more reliable
eligibility assessment. Furthermore, the IPD approach allowed

us to include follow-up data that extended beyond the
published period of follow-up.

Clinical trials of biological use in RA often show imbalances in
the percentage of withdrawals between treatment and control
groups, as a result of a higher rate of treatment failure in placebo-
treated patients. This carries the theoretical risk of false estimates
due to a higher loss to follow-up in the control groups and a longer
exposure to the study treatment in the active treatment arm. A
major benefit of our IPD approach was the ability to perform a
time-to-event analysis. This allowed the censoring of patients
who discontinued treatment early or were lost to follow-up,
thereby removing them from the denominator. Of note, our
aggregate data analysis yielded similar results. This strengthens
the validity of an aggregate data approach of analysing sparse
events in clinical trials of RA. Our analysis was robust to the
application of a wide variety of statistical methods for data
synthesis, reflecting that our results did not depend upon the
assumptions of any one particular method.

The major weakness of our study is the lack of statistical
power. Assessment of statistical power in a meta-analysis has
been suggested but is rarely performed.33–35 Our experience
emphasises the importance of such an analysis to estimate the
likelihood of missing an association given that it was true. The
combination of several underpowered studies can still produce a
meta-analysis that is inadequate to detect a clinically important
effect size. Nonetheless, our meta-analysis does provide a more
precise assessment of cancer risk than those available from the
individual RA trials.

Comparing our results with published clinical data, the
observed excess of malignancies in patients who received the
TNF receptor fusion protein etanercept is not inconsistent with
the results of a meta-analysis of anti-TNF antibody treatment
in RA patients.3 An updated version of this analysis2 including
5788 patients yielded an OR of 2.4 (95% CI 1.2 to 4.8). The risk
of malignancies in this study appeared to be more pronounced
in patients who received higher doses of anti-TNF antibodies
according to a subanalysis that stratified by dose. In the
etanercept meta-analysis we did not observe clear evidence of a
dose response, although the proportion of patients treated at
doses lower than 50 mg per week was small and does not allow
definite conclusions.

Of note, an RCT of etanercept in Wegener’s granulomatosis36

found a significantly increased risk of malignancy in the
etanercept arm.

The results of two large observational studies29 31 that included
a greater number of patients and had longer follow-up did not
replicate the overall increase of malignancies seen with the
synthesis of RCT data. However, they did reveal a significantly
increased risk of NMSC in anti-TNF-treated patients.

Contrasting results of trial data and observational data
provides a valuable stimulus to explore further not only the
central clinical question of a potential association of anti-TNF
therapy and malignancies in particular, but also the methodo-
logical strengths and weaknesses of both methods for drug
safety assessment in general. Even the best-designed observa-
tional studies may produce inaccurate answers, as differences in
patient characteristics across treatment groups can seldom be
perfectly controlled. In contrast, with successful randomisation
in RCT, the baseline risk of a subsequent adverse event should
be similar in all treatment groups, and whereas meta-analysis
combines data across studies, stratification by study preserves
the benefit of randomisation. Given sufficient trial evidence, a
meta-analysis of RCT data may be able to detect potential drug
hazards early, before observational data become available after a
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drug is marketed. However, the ability of meta-analysis to
assess sparse event data in randomised trials is often constrained
by relatively short follow-up periods and finite cumulative trial
enrolment, which translate to limited statistical power to detect
differences between treatment groups for rare events.

Different strategies may be considered to improve statistical
power in this context. Several RCT of anti-TNF treatment for
indications such as ankylosing spondylitis, psoriatic arthritis,
cardiomyopathy, inflammatory bowel disease and a variety of
connective tissue disorders have been performed. Including all
these trials in a comprehensive, IPD meta-analysis will have a
higher chance of approaching an adequate sample size and
delivering more precise estimates. As an additional or alternative
step, different agents with a similar mode of action may be
combined to improve statistical power, yet this gain may come
at the price of validity, if the effects of study drugs are not
homogeneous.

A large, comprehensive meta-analysis utilising these two
steps to improve statistical power by including all three
approved anti-TNF agents over a wide range of different
indications has been requested by the European Medicine
Evaluation Agency and is currently in progress.
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