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Abstract

Investigations into Algebra and Topology over Nominal Sets

Daniela Luana Petrişan

The last decade has seen a surge of interest in nominal sets and their appli-

cations to formal methods for programming languages. This thesis studies two

subjects: algebra and duality in the nominal setting.

In the first part, we study universal algebra over nominal sets. At the heart of

our approach lies the existence of an adjunction of descent type between nomi-

nal sets and a category of many-sorted sets. Hence nominal sets are a full reflec-

tive subcategory of a many-sorted variety. This is presented in Chapter 2.

Chapter 3 introduces functors over many-sorted varieties that can be pre-

sented by operations and equations. These are precisely the functors that pre-

serve sifted colimits.

They play a central role in Chapter 4, which shows how one can systemati-

cally transfer results of universal algebra from a many-sorted variety to nominal

sets. However, the equational logic obtained is more expressive than the nom-

inal equational logic of Clouston and Pitts, respectively, the nominal algebra of



Gabbay and Mathijssen. A uniform fragment of our logic with the same expres-

sivity as nominal algebra is given.

In the second part, we give an account of duality theory in the nominal set-

ting. Chapter 5 shows that Stone’s representation theorem cannot be internal-

ized in nominal sets. This is due to the fact that the adjunction between nom-

inal Boolean algebras and nominal sets is no longer of descent type. We prove

a duality theorem for nominal distributive lattices with a restriction operation

in terms of nominal bitopological spaces. This duality restricts to duality be-

tween nominal Boolean algebras and a category of nominal topological spaces.

Our notion of compactness allows for generalisation of Manes’ theorem to the

nominal setting.
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Chapter 1

Introduction

The deep connection between categorical algebra and formal semantics for pro-

gramming languages was made explicit in the ADJ series of papers—see for ex-

ample [GTWW77]—which coined the term abstract syntax. Simple data types

are given by many-sorted signatures in the sense of universal algebra. The ini-

tial algebra for such a signature is then the abstract syntax. Any other algebra

is a semantic domain and the unique morphism from the initial algebra assigns

meaning to each construct of the language. This model of syntax provides clear

principles of structural induction and recursion. But this approach proves inad-

equate for syntax containing binding constructs. Since binders are ubiquitous,

the last decades have witnessed an intensification of research into formal frame-

works for reasoning about binding.

1
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In particular, 1999 was a good year for abstract syntax with variable bind-

ing, with two papers appearing in the proceedings of LICS: one by Gabbay and

Pitts, the other by Fiore, Plotkin and Turi. Both of them provided solutions that

would allow the initial algebra semantics for abstract syntax with binding. Their

idea was to move away from the category Set and consider abstract syntax as

an initial algebra for functors on different base categories. In [FPT99] presheaf

models were used, namely SetF, where F is the category of finite ordinals and

functions between them. On the other hand, [GP99] and the subsequent jour-

nal version [GP02] proposed Fraenkel-Mostowski sets, or FM-sets. This model

stemmed from the permutation model of set theory with atoms introduced by

Fraenkel starting with [Fra22], and later refined by Mostowski [Mos38]. Permu-

tation models were designed to prove the independence of the Axiom of Choice

from the axioms of ZFA—Zermelo-Fraenkel set theory with atoms.

Later FM-sets have been replaced by nominal sets, which can be defined in

the realm of the classical set theory [Pit03]. The core idea in nominal techniques

is that names play a crucial role. Nominal sets can be thought of as sets with an

additional structure: a group action of a symmetric group on names satisfying

a certain ‘finiteness’ property. Very roughly, we can think of the elements of a

nominal set as having a finite set of ‘free names.’ The action of a permutation on

such an element is then given by renaming the ‘free names’.
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The nominal sets approach became successful, perhaps because it strikes

the right balance between rigorous formalism and informal reasoning. This

is nicely illustrated in [Pit06] where principles of structural recursion and in-

duction are explained in nominal sets. Nominal techniques attracted interest

in many areas of computer science, for example game semantics, [AGM+04,

Tze09], domain theory [Tur09], automata theory [KST11, BKL11], coalge-

bra [Kli07], functional and logic programming languages [SPG03], theorem

provers [Urb08].

For this reason we believe that developing algebra and topology over nom-

inal sets is a meaningful endeavour. Let us recall some of the work that has al-

ready been done in this direction.

Equational logic for nominal sets has been introduced in [CP07] and [GM09]

and an account of Lawvere theories adapted to nominal setting was given

in [Clo11]. Gabbay [Gab08] made the first step towards universal algebra over

nominal sets by proving an HSP(A) theorem. But his proof requires ingenuity

and ad hoc constructions, since it is based on the analogy between nominal sets

and sets and even fundamental notions of universal algebra such as variables

and free algebras have to be revisited.

By contrast, this thesis takes its cue from the idea that the category of nom-

inal sets is closely related to a many-sorted variety. In a first part, our aim is to
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systematically obtain universal algebraic results for algebras over nominal sets.

The second part of this thesis is dedicated to a study of Stone type duali-

ties in nominal setting. Stone type dualities have played an important role in

theoretical computer science, starting with Abramsky’s Domain Theory in Log-

ical Form [Abr91] and continuing with the developments in coalgebraic modal

logic [BK05]. Since coalgebras over nominal sets have already been proposed as

models for name-passing calculi [FS06] and the first step towards nominal do-

main theory has already been taken [TW09] a natural question arises on whether

Stone duality can be generalised to nominal sets.

Overview and origins of the chapters

Chapter 2 brings together different characterisations of nominal sets. The cate-

gory of nominal sets is equivalent to a category of pullback preserving functors

from I to Set, where I is the category whose objects are finite sets of names and

arrows are injective maps between them. Another equivalent category is that of

named sets considered by Montanari and Pistore for applications in the study

of history dependent automata. From a category theoretic perspective, nominal

sets have an extremely rich structure: they form a Grothendieck topos and have

a different symmetric monoidal closed structure which allows a nice interpreta-

tion of abstraction.
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However, the idea that pervades this thesis is that nominal sets are not too

far removed from a presheaf category. It is precisely this connection that will

allow us to systematically transfer universal algebraic results to nominal sets.

Perhaps the most important element introduced is a functor U from nomi-

nal sets to a category of many-sorted sets Set|I|, where |I| is the discrete under-

lying category of I. The idea behind this construction is that the elements of a

nominal set are ‘stratified’ by their support. This functor, although not monadic,

has a left adjoint F : Set|I| → Nom. This adjunction gives rise to a monad T on

Set|I| whose category of Eilenberg-Moore algebras is isomorphic to SetI. The ad-

junction F aU is not monadic, but of descent type. As a result the comparison

functor I : Nom→ SetI is full and faithful. Moreover I has a left adjoint which

preserves finite limits. This adjunction provides the infrastructure for transfer-

ring results from many-sorted universal algebra to nominal sets.

Chapter 3 describes functors on many-sorted varieties having finitary presen-

tations by operations and equations. The notion of finitary presentations for

functors on one-sorted varieties was introduced by [BK06]. It generalises from

the category of sets the fact that any finitary functor L : Set→ Set is a quotient

∐

n∈N
Ln ×X n � LX (1.1)

of a polynomial functor where n is the set {1, . . . , n}, and a pair (σ, f ) is mapped
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to L f (σ) ( f can be thought of as a map from n to X ). This is a quotient because

L, as a filtered colimit preserving functor, is determined by its values on finite

sets. The elements of Ln can be regarded as the n-ary operations presenting L,

satisfying the equations corresponding to the kernel of the above map (for a full

account see Adámek and Trnková [AT90, III.4.9]). To summarise, (1.1) provides

a presentation (ΣL , EL) by operations ΣL and equations EL and, therefore, an

equational logic for L-algebras: the category of L-algebras is isomorphic to the

category of algebras for the signature ΣL and equations EL .

To generalise (1.1) from Set to an arbitrary variety, one can replace finite

sets by finitely generated free algebras. But then L should be determined by its

values on finitely generated free algebras, that is, L should preserve a certain

class of colimits, called sifted colimits [ARV10]. As shown in [KR06], it is indeed

the case that a functor L on a variety A has a presentation by operations and

equations if and only if L preserves sifted colimits.

In this chapter we generalise the results on functors on varieties from the

one-sorted to the many-sorted case. We show that, ifA and L :A →A have

presentation (ΣA , EA ) and (ΣL ,AL), respectively, then the category of L-algebras

has presentation (ΣA +ΣL , EA + EL). Moreover, L has a presentation iff it pre-

serves sifted colimits. This generalisation of results from [BK06, KR06] is not

difficult, but proves relevant for the developments in the next chapters. As an ex-
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ample we give an equational presentation for SetI and a shift functor δ that cor-

responds to the abstraction functor on nominal sets. A second example looks at

Halmos’ polyadic algebras—introduced as an algebraic semantics for first-order

logic. They are characterised as algebras for a functor on the category BAF of

Boolean algebra valued presheaves over the category F of finite ordinals.

This chapter contains results presented in the joint papers with Alexander

Kurz [KP10a] and [KP08].

Chapter 4 generalises the HSP theorem to full reflective subcategories of many-

sorted varieties. We then apply this result to categories of algebras given by func-

tors on nominal sets. The central idea is to use the flexibility of the notion of

functor presented by operations and equations. Given such a functor L on SetI

we can apply the theory developed in Chapter 3 and conclude that the category

of algebrasAlg(L) is monadic overSet|I|. If L̃ is a functor on nominal sets that, in-

tuitively speaking, behaves similarly to L, the adjunction between nominal sets

and SetI can be lifted to an adjunction between the categories of algebras Alg(L̃)

and Alg(L).

However the equational logic obtained in this fashion is more expressive

than what is needed in nominal setting. We therefore introduce a fragment of

our equational logic, called the uniform fragment. We prove an HSPA theorem

in the style of [Gab08]: a class of L̃-algebras is definable by uniform equations if
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and only if it is closed under quotients, subalgebras, products and abstraction.

This shows that the uniform fragment of equational logic has the same expres-

siveness as the nominal algebra of [Gab08].

We also show how to translate theories of nominal algebra [GM09] and nom-

inal equational logic [CP07] into uniform theories and how to translate uni-

form theories into synthetic nominal equational logic [FH08]. We prove that

these translations are semantically invariant and we obtain an HSPA theorem

for nominal equational logic and a new proof of the HSPA theorem of nominal

algebra [Gab08].

Chapter 4 is based on the joint paper with Alexander Kurz [KP10b].

Chapter 5 discusses Stone type dualities in nominal setting. In this chapter, ad-

junctions of descent type again play an important role. We recall the celebrated

adjunction between BAop and Set, given by the dualising object 2. This adjunc-

tion is of descent type. It gives a monad on Set, whose category of Eilenberg-

Moore algebras is isomorphic to the categoryCHausof compact Hausdorff topo-

logical spaces—a result due to Manes. Thus the comparison functor from BAop

to CHaus is full and faithful. Its essential image consists of the zero-dimensional

compact Hausdorff spaces, the so called Stone spaces.

We show that the adjunction between BAop and Set can be internalised in

nominal sets, but is no longer of descent type. This boils down to the fact that
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the ultrafilter theorem does not hold in nominal sets. In fact we construct an ex-

ample of a nominal Boolean algebra and a finitely-supported filter which cannot

be extended to a finitely-supported ultrafilter. This shows that Stone duality fails

in nominal sets.

We conclude that the Boolean algebra structure of the power object of a

nominal set is not enough to generalise Stone duality in nominal sets. Gabbay

pointed out a restriction operation on the power object of a nominal set, simi-

lar in spirit to the Nquantifier. This led us to consider the category of nominal

Boolean algebras with a restriction operation nBA N.

The power object functor P : Nom→ nBA
op
Nhas a right adjoint and, in this

case, the adjunction is of descent type. We can generalise Manes’ theorem, using

the notion of compactness for nominal topological spaces we already identified

in [GLP11]. We prove that the Eilenberg-Moore algebras for the induced monad

onNom are nominal topological spaces that are Hausdorff and n-compact. Thus

the comparison functor from nBA
op
Nto Nom is full and faithful. Its essential im-

age consists of the zero-dimensional n-compact Hausdorff nominal topological

spaces.

Furthermore, we have generalised this result to a duality between nomi-

nal distributive lattices and a category of nominal bitopological spaces, follow-

ing [BBGK10].
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The starting point of this chapter is the duality for nominal Boolean alge-

bra with restriction given in the joint work with Jamie Gabbay and Tadeusz

Litak [GLP11]. The chapter generalises this work, offering a category-theoretic

perspective. We are now able to explain why the notions of n-filters and n-

compactness arise naturally. Furthermore, the example of Section 5.2, the gen-

eralisation of Manes’ theorem and the duality for nominal distributive lattices

with restriction are new.



Chapter 2

Nominal Sets and presheaf

categories

Nominal sets entered the scene of theoretical computer science with the sem-

inal paper [GP02], as a model for abstract syntax with binding that strikes the

right balance between a rigorous formalism and pen-to-paper informal reason-

ing. This chapter takes stock of the rich structure of the category of nominal sets

and presents some new observations relevant for future developments.

In Section 2.1 we recall basic definitions and results scattered across the lit-

erature. In Section 2.2 we discuss categorical constructions for nominal sets and

we recall some equivalent categories. Each one of these alternative descriptions

sheds light on interesting features of nominal sets. Having established that Nom

11
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is a topos, we consider, in Section 2.3 and Section 2.4, geometric morphisms

relating Nom with Set and a presheaf category. The latter connection is of par-

ticular importance in this thesis.

2.1 Nominal sets - basic definitions

We fix an infinite countable set of names A. Elements of A will be denoted by

a ,b . . .. Bijective functions on A are called permutations on A. Examples of per-

mutations include transpositions, that is, functions of the form (a b )which swap

a and b , and fix the other elements of A. The permutations on A form a group,

where multiplication is the usual composition of functions and the neutral ele-

ment is the identity on A. Let S(A) denote the subgroup of permutations on A

generated by transpositions. A permutation π on A can be expressed as a finite

product of transpositions if and only if the set

{a ∈A | π(a ) 6= a } (2.1)

is finite. These permutations are called finitely supported.

Definition 2.1.1. A S(A)-action is a pair (X, ·) consisting of a set X and a map

· : S(A)×X→X such that for all x ∈X and for all π,π′ ∈S(A)

id ·x = x

(π′ ◦π) ·x =π′ · (π ·x )
(2.2)
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Example 2.1.2. The set of names can be equipped with the ‘evaluation’ action

defined by

π ·a =π(a ). (2.3)

(A, ·) is a S(A)-action.

Example 2.1.3. The powerset of A equipped with the pointwise action, defined

by

π ·X = {π(x ) | x ∈X } (2.4)

for all X ⊆A, is a S(A)-action.

Example 2.1.4. (S(A),∗) is a S(A)-action, where ∗ : S(A)×S(A)→S(A) is the

conjugation action defined by

τ ∗π=τπτ−1. (2.5)

Definition 2.1.5. Consider a S(A)-action (X, ·) and an element x ∈ X. We say

that a set of names A ⊆A supports x if for all a , b ∈A \A we have (a b ) ·x = x .

We say that x is finitely supported if there exists finite A ⊆A that supports x .

Remark 2.1.6. Given a set of names A, let fix(A) denote the set of permutations

in S(A) that fix the elements of A. Given an element x of a S(A)-action, the

stabilizer of x , denoted by Stab(x ), is the set {π ∈S(A) | π · x = x }. Both fix(A)

and Stab(x ) are subgroups of S(A). Notice that x is supported by a set A when

∀π. π∈ fix(A) ⇒ π ·x = x (2.6)
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This follows from the fact that a permutation is in fix(A) if and only if it can be

written as a product of transpositions
n
∏

i=1
(a i b i ) such that a i ,b i 6∈ A.

Definition 2.1.7. A nominal set is a S(A)-action (X, ·) such that each element of

X is finitely supported.

Example 2.1.8. (A, ·) as defined in Example 2.1.2 is a nominal set because each

name a is supported by {a }.

Example 2.1.9. The S(A)-action on the powerset of names, described in Exam-

ple 2.1.3, is not a nominal set. A subset of A is finitely supported if and only if it

is finite or cofinite. But the setPfin(A) of finite subsets of A and the setP (A) of

finite and cofinite subsets of A are nominal sets when equipped with the point-

wise action. More on the power object construction in Section 5.3.

Example 2.1.10. (S(A),∗) defined in Example 2.1.4 is a nominal set, as each

permutation π∈S(A) is supported by the finite set {a | π(a ) 6= a }.

Definition 2.1.11. A morphism between two nominal sets f : (X, ·)→ (Y, ·) is a

map f :X→Y that is equivariant, that is,

∀x ∈X. ∀π∈S(A) f (π ·x ) =π · f (x ) (2.7)

Next we recall some fundamental properties of the notion of support.

Proposition 2.1.12. Let X be a nominal set and let x ∈ X. Then the following

hold:
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1. If S,S′ ∈Pfin(A) support x then S ∩S′ supports x .

2. There exists a least finite set supp(x )∈Pfin(A) that supports x .

3. supp(π ·x ) =π · supp(x ) for all π∈S(A).

4. If π,τ∈S(A) satisfy π|supp(x ) =τ|supp(x ) then π ·x =τ ·x .

5. If S supports x and S ⊆S′ then S′ supports x .

6. For all equivariant maps f : (X, ·)→ (Y, ·)we have supp( f (x ))⊆ supp(x ).

Complete proofs can be found in [GP02]. In order to prove 1 assume a 6∈ S

and b 6∈ S′. Consider c 6∈ S ∪S′. Such c exists because both S and S′ are finite.

Observe that (a b ) ·x = (a c )(b c )(a c ) ·x . But (a c ) and (b c ) fix x since a , c 6∈ S,

respectively b , c 6∈S′. Thus (a b ) ·x = x and S ∩S′ supports x .

Point 2 follows immediately from 1. Notice the importance of the word ‘fi-

nite’ in 2. In general, an element of a nominal set does not have a least support-

ing set of elements. For example, the element {a } of Pfin(A) has as least finite

support the set {a }, but it is also supported by A \ {a }.

To prove 3, consider a ,b 6∈ π · supp(x ). Then π−1(a b )π ∈ fix(supp(x )), hence

(a b )π ·x = π ·x . This shows that supp(π ·x )⊆ π · supp(x ). Using this for π−1 ·x ,

we can prove that the reverse inclusion also holds.

Point 4 follows from Remark 2.1.6 applied to πτ−1 while 5 and 6 are imme-

diate consequences of Definition 2.1.5 and Definition 2.1.11.
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Consider an element x of a nominal set. From Remark 2.1.6 it follows that

fix(supp(x )) is a subgroup of Stab(x ). The next lemma shows that fix(supp(x )) is

in fact a normal subgroup of Stab(x ).

Lemma 2.1.13. Let X be a nominal set and let x ∈X. Let S(supp(x )) denote the

group of permutations of supp(x ). Defineφ : Stab(x )→S(supp(x )) by

π 7→π|supp(x ).

Thenφ is a well defined group homomorphism and the kernel ofφ is fix(supp(x )).

Consequently, the quotient group Stab(x )/fix(supp(x )) is isomorphic to a sub-

group of S(supp(x )).

Proof. Givenπ∈ Stab(x )we have that supp(π ·x ) = supp(x ). By point 3 of Propo-

sition 2.1.12 it follows that π · supp(x ) = supp(x ). Therefore φ is well defined. It

is easy to check that φ is a group homomorphism and that the kernel of φ is

fix(supp(x )). Hence fix(supp(x )) is a normal subgroup of Stab(x ). The last part of

the lemma follows from the First Isomorphism Theorem for groups.

For any element x of a nominal set we have an infinite, actually cofinite,

supply of names outside its support, which we can think of as not interfering

with x , or being fresh for x :

Definition 2.1.14. Given a nominal set (X, ·), x ∈ X and a ∈ A, we say that a is

fresh for x and write a #x when a 6∈ supp(x ).
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Freshness is an important concept in nominal techniques. In [GP01] Gab-

bay and Pitts introduced the freshness quantifier, that can express concisely the

ability of finding at least one or, as we will see, cofinitely many fresh names sat-

isfying certain properties:

Definition 2.1.15. Given a higher-order logic formula φ(a ,x1, . . . ,xn ), describ-

ing properties of elements of a nominal set X and of names in A, we say

Na .φ(a ,x1, . . . ,xn )

when {a ∈ A | φ(a ,x1, . . . ,xn )} is cofinite, or, equivalently, when φ(a ,x1, . . . ,xn )

holds for cofinitely many names a .

In nominal proofs it is enough to consider a fresh name and prove that a

certain property holds for this particular choice. The next theorem, that goes

back to [GP01], says that the property will hold automatically for any other fresh

name considered.

Theorem 2.1.16. The following are equivalent:

∃a ∈A.a #x1, . . . ,xn ∧φ(a ,x1, . . . ,xn ).

∀a ∈A.a #x1, . . . ,xn ⇒φ(a ,x1, . . . ,xn ).

Na .φ(a ,x1, . . . ,xn ).
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Remark 2.1.17. The Nquantifier allows for a concise way of expressing fresh-

ness. Given an element x of a nominal set and a ∈A we have

a #x ⇐⇒ Nb.(a b ) ·x = x

Another important concept introduced in [GP01] is that of atom-abstractions.

Given a nominal set X we can define its abstraction [A]X as follows. We define

an equivalence relation (a ,x )∼ (b , y ) on A×X by Nc .(a c ) ·x = (b c ) ·y . It can be

shown that the equivalence class of (a ,x )w.r.t. ∼, denoted by [a ]x , is the set

{(a ,x )}∪ {(b , (a b ) ·x ) |b #x }.

Define [A]X to be the set of equivalence classes of∼with the permutation action

given by π · [a ]x = [π(a )](π ·x ). This is indeed a nominal set, and one can prove

further that

supp([a ]x ) = supp(x ) \ {a }.

2.2 The category of nominal sets

Nominal sets and equivariant maps form a category, denoted by Nom. In this

section we will analyse the rich categorical structure of Nom. We set about de-

scribing finite limits.

Lemma 2.2.1. Nom is a cartesian category.
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Proof. Nom has a terminal object 1, that is, a singleton equipped with the trivial

action. Nom has pullbacks of pairs of morphisms. Given f : X→ Z and g : Y→

Z, the pullback of ( f , g ) is computed as follows. Consider

T= {(x , y )∈X×Y | f (x ) = g (y )} (2.8)

with the S(A)-action defined by π · (x , y ) = (π · x ,π · y ). Each pair (x , y ) is sup-

ported by the finite set supp(x )∪supp(y ), thusT is a nominal set. The projections

pX : T→X and pY : T→Y, given by (x , y ) 7→ x , respectively (x , y ) 7→ y , are equi-

variant and f pX = g pY. Furthermore, for all equivariant maps h : U→ X and

j : U→ Y such that f h = g j there exists a unique equivariant map k : U→ T,

defined by k (u ) = (h(u ), j (u )), such that h = pXk and j = pYk .

Therefore Nom has all finite limits.

We will see that Nom is actually complete. While the product of two nominal

sets (X, ·) and (Y, ·) is the nominal set (X×Y, ·)where π · (x , y ) = (π ·x ,π ·y ), arbi-

trary products are more complicated. Consider a family of nominal sets (Xi )i∈I .

We can equip the set of all tuples {(x i )i∈I | x i ∈ Xi } with the pointwise action

given by

π · (x i )i∈I = (π ·x i )i∈I . (2.9)

This is a S(A)-action, but some tuples may not be finitely supported, as the

following example shows:
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Example 2.2.2. Consider as indexing set I the set of natural numbers N and for

all i ∈N letXi be the nominal set of namesA. Consider an ordering of the names

in A: a 1, a 2, . . . Then the tuple (a 2i )i∈N is not finitely supported.

Lemma 2.2.3. The product of a family of nominal sets (Xi , ·i )i∈I is the nominal

set
∏

i∈I
(Xi , ·i ) of tuples of the form (x i )i∈I that are finitely supported w.r.t. the

action of (2.9).

Proof. By construction
∏

i∈I
(Xi , ·i ) is a nominal set and the projections

p i :
∏

i∈I

(Xi , ·i )→ (Xi , ·i )

mapping a tuple to its i component are equivariant. We need to check that the

usual universal property is satisfied. Assume (T, ·) is a nominal set and f i : T→

Xi are equivariant maps. We define k : T→
∏

i∈I
(Xi , ·i ) by k (t ) = ( f i (t ))i∈I . This

is well defined because, by point 6 of Proposition 2.1.12, each f i (t ) is supported

by supp(t ), hence ( f i (t ))i∈I is supported by supp(t ).

Lemma 2.2.4. Nom is a cartesian closed category.

Proof. We have to show that for all nominal sets (X, ·X) the functor−×X :Nom→

Nom has a right adjoint [X,−] : Nom→Nom. Given a nominal set (Y, ·Y) define

a S(A)-action on the set of all Set-functions from X to Y:

∀x ∈X (π · f )(x ) =π ·Y f (π−1 ·X x ) (2.10)
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Define [X,Y] to be the nominal set of all functions f : X → Y such that f is

finitely supported w.r.t. the S(A)-action in (2.10). It is not difficult to check that

this construction extends to a right adjoint for −×X. Indeed, the evaluation

map ev : [X,Y]×X→Y given by

( f ,x ) 7→ f (x )

is equivariant, natural in Y and universal from−×X to Y. The latter means that

for all equivariant maps h : Z×X→Y there exists a unique map h̄ : Z→ [X,Y]

such that h = ev ◦ (h̄ × idX). For each z ∈Z, h̄(z )∈ [X,Y] is defined by

h̄(z )(x ) = h(z ,x ). (2.11)

It is straightforward to check that h̄(z ) is supported by supp(z ).

Lemma 2.2.5. Nom has a subobject classifier 1→Ω, whereΩ is the two-element

nominal set with trivial action.

From the lemmas above it follows thatNom is a topos. In factNom is equiva-

lent to a Grothendieck topos, the so called Schanuel topos. We give more details

on this equivalence in Section 2.4.

Being a topos, Nom has a very rich structure:

1. Nom is complete and cocomplete.

2. Nom has a epi-mono factorisation system.
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3. As with any topos, we have a power object construction defined byP (X) =

[X,Ω]. Spelling out the definition of the internal hom functor, we obtain a

description of the power object in elementary terms: Y ∈P (X) if and only

if Y ⊆ X is finitely supported w.r.t. the action on the powerset of X given

by

π ·Y = {π · y | y ∈ Y } (2.12)

In Section 5.3 we will have a closer look at the power object construction

in nominal sets. It is worth mentioning Paré’s result, [Par74], that states

that the functor P : Nomop → Nom is monadic. This means that P has

a left adjoint and Nomop is equivalent to the category of Eilenberg-Moore

algebras for the resulting monad. See [MLM94, p. 178] for a definition of

monadic functors and [MLM94, Theorem 1, p.180] for a proof of the fact

thatP op is the left adjoint ofP .

2.3 Functors between nominal sets and sets

In the next chapters we will use the connection between nominal sets and many-

sorted sets to systematically obtain universal algebraic results. One may ask why

we cannot use for this purpose the relation between nominal sets and sets. In

this section we will see that the functors that we may consider from Nom to Set

do not have the satisfactory properties necessary to transfer universal algebraic
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concepts.

The first such functor that comes to mind is probably the forgetful functor

V : Nom → Set that maps a nominal set (X, ·) to its underlying carrier set X.

However a free construction is missing:

Remark 2.3.1. From Example 2.2.2 and Lemma 2.2.3 it follows that V does not

preserve arbitrary limits. Hence V does not have a left adjoint.

But we will see next that V is the inverse image of a geometric morphism

from Set to Nom. Recall that geometric morphisms are maps between toposes,

see [MLM94, Definition 1, p. 348] for a definition. We can construct a right

adjoint for V as follows. For each set X we consider the set
∏

σ∈S(A)
X equipped

with a S(A)-action given by τ ∗ (xσ)σ = (xστ)σ. The finitely supported elements

of
∏

σ∈S(A)
X w.r.t. this action form a nominal set, denoted by RX . Denote by

pσ : RX →X the natural projections. Notice that for all u ∈RX we have

pσ(τ ∗u ) = pστ(u ). (2.13)

Given a function f : X → Y define R f : RX →RY by

R f ((xσ)σ) = ( f (xσ))σ. (2.14)

The next lemma shows that we can extend R to a functor from Set to Nom.

Lemma 2.3.2. V aR : Set→Nom is a geometric morphism.
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Proof. The functor V preserves finite limits, as we can easily see from the proof

of Lemma 2.2.1. It remains to check that we have indeed an adjunction V a R .

For each nominal set X, consider the map ηX :X→RVX defined by

x 7→ (σ ·x )σ (2.15)

We can easily check thatηX is natural inX and that for all x ∈X andτ∈S(A)

we have η(τ ·x ) = τ ∗η(x ) = (στ ·x )σ. Further, ηX is universal from X to R , that

is, for any set Y and any equivariant map h : X→ RY , we can find h̄ : VX→ Y

such that

h =Rh̄ ◦ηX. (2.16)

Indeed, define h̄ by h̄(x ) = p id(h(x )). The commutativity of (2.16) amounts to

the fact that p id(h(σ · x )) = pσ(h(x )). This follows from the equivariance of h

and (2.13).

As a left adjoint, V preserves all colimits. Moreover, V creates colimits, thus:

Corollary 2.3.3. Colimits in Nom are computed as in Set.

Next we will look at another functor from Nom to Set which, although has a

left adjoint, fails to be faithful.

Since Nom is equivalent to a Grothendieck topos, there exists a geometric

morphism from Nom to Set that corresponds to the global sections functor and
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its left adjoint, to the constant sheaf functor. The global sections functor is just

the hom-functor out of the terminal object Nom(1,−) : Nom→ Set. Its left ad-

joint∆ : Set→Nom is given by

∆X = (X , ·) (2.17)

where · is the trivial action on X .

Notice that, given a nominal set (X, ·), we have that Nom(1,X) is isomorphic

to the set of elements of X that are supported by the empty set. We will call such

elements the equivariant elements of X.

As with any cartesian closed category, this functor relates the exponential

and the hom functors. More precisely, we have Nom(1, [X,Y]) =Nom(X,Y).

The functor Nom(1,−) is not faithful as the next example shows.

Example 2.3.4. Consider the power object of the nominal set of names P (A)

and f :P (A)→P (A) that maps proper subsets of A to their complement, but

maps ; to ; and A to A. f is an equivariant map obviously different than idP (A).

However Nom(1, f ) =Nom(1, idP (A)).

Further,∆ has a left adjoint Π0 :Nom→ Set defined as follows.

Definition 2.3.5. Given a nominal set (X, ·) and x ∈X, the orbit of x is defined as

Ox = {π ·x | π∈S(A)} (2.18)
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Two elements x , y have the same orbit provided that there exists π ∈ S(A)

such that x = π · y . The functor Π0 maps a nominal set to the set of its orbits.

Given an equivariant map f :X→Y, we putΠ0 f (Ox ) =O f (x ). This is well defined

since Ox =Oy implies that O f (x ) =O f (y ).

Lemma 2.3.6. We have two adjunctions Π0 a∆ aNom(1,−):1

Nom

Nom(1,−)

55

Π0

))
Set∆oo (2.19)

Proof. We will give the unit and counit for both adjunctions.

η1
X :X→∆Π0X is given by

x 7→Ox

while ε1
X :Π0∆X →X is given by

Ox 7→ x .

It is easy to check that η1 and ε1 are well defined and satisfy the usual triangular

identities.

η2
X : X → Nom(1,∆X ) is given by x 7→ x . This is well defined since each x ∈

∆X is equivariant. The counit ε2
X :∆Nom(1,X)→X is given by x 7→ x . It is easy

to check that ε2
X is equivariant and that the usual triangular diagrams commute.

1The existence of the left adjoint for∆ shows that Nom is a locally connected topos.
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Proposition 2.3.7. (X, ·) is a finitely presentable object inNom if and only if (X, ·)

has finitely many orbits.

Proof. Let (X, ·) be a finitely presentable object in Nom, J a filtered category and

F : J → Set a diagram with colimit colimj∈J F (j ). Then we have

Set(Π0X, colimj∈J F (j )) ' Nom(X,∆colimj∈J F (j )) ( by Lemma 2.3.6)

' Nom(X, colimj∈J∆F (j )) (∆ is left adjoint)

' colimj∈JNom(X,∆F (j )) (X is f.p.)

' colimj∈JSet(Π0X, F (j )) ( by Lemma 2.3.6)

This shows that Π0X is finitely presentable in Set, hence X has finitely many

orbits.

Conversely, we first prove that each nominal set X with exactly one orbit is

finitely presentable. Consider a filtered diagram F : J → Nom and let ιj denote

the injections from F (j ) to colimj∈J F (j ). We show that each equivariant f :X→

colimj∈J F (j ) factors through ιk for some k ∈ J .

Using Corollary 2.3.3 we have that colimj∈J F (j ) is computed as a quotient

∐

j∈J

F (j )/∼

where for u 1 ∈ F (j1) and u 2 ∈ F (j2) we have u 1 ∼ u 2 if and only if there exist

morphisms l 1 : j1→ j and l 2 : j2→ j such that F (l 1)(u 1) = F (l 2)(u 2). The equiva-

lence class of u ∈ F (j ) is denoted by bu . The permutation action on colimj∈J F (j )

is given by π · bu =Õπ ·u .
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Consider x ∈X and let f (x ) = bu ∈ colimj∈J F (j ). First we will show that there

exists j ∈ J and v ∈ F (j ) such that v ∼ u and supp(v ) = supp(bu ). Since ιj are

equivariant maps, point 6 of Proposition 2.1.12 implies that for all v with v ∈ bu

we have supp(bu )⊆ supp(v ).

Assume by contradiction that for all v ∈ bu we have that supp(v ) 6= supp(bu )

and consider v ∈ F (j ) for some j such that bv = bu and supp(v ) \ supp(bu ) has the

minimum number of elements. Let a ∈ supp(v ) \ supp(bu ). Then

a #bv ⇐⇒ Nb.(a b ) · bv = bv ( by Remark 2.1.17)

⇐⇒ Nb.(a b ) ·v ∼ v

⇐⇒ ∃b #a , v.∃l ∈ J (j , j ′).F (l )((a b ) ·v ) = F (l )(v ) ( by Thorem 2.1.16)

⇐⇒ ∃l ∈ J (j , j ′). Nb.(a b ) · F (l )(v ) = F (l )(v )

⇐⇒ ∃l ∈ J (j , j ′).a #F (l )(v ) ( by Remark 2.1.17)

Since a ∈ supp(v ) we have that supp(F (l )(v )) ( supp(v ). Since F (l )(v ) ∼ v

and supp(F (l )(v )) \ supp(bu )( supp(v ) \ supp(bu )we obtain a contradiction.

Hence there exists v ∈ F (j ) such that v ∼ u and supp(v ) = supp(bu ).

By Lemma 2.1.13 we have that each π ∈ Stab(x ) can be written as the com-

position of a permutation in fix(supp(x )) and a permutation in a finite group

{σ1, . . . ,σn} of permutations of supp(x ). Since f (x ) = bv , it follows that σi · v ∼ v

for all 1 ≤ i ≤ n . Using the fact that J is a filtered category there exists a mor-
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phism l : j → k in J such that F (l )(v ) = F (l )(σi · v ) for all 1 ≤ i ≤ n . Put

w = F (l )(v ) ∈ F (k ). Then σi ·w = w for all 1 ≤ i ≤ n . Moreover we have that

w ∼ v and supp(w ) = supp(bv )⊆ supp(x ), hence fix(supp(x ))⊆ Stab(w ). Thus

Stab(x )⊆ Stab(w ). (2.20)

We define f̄ : X → F (k ) by f (π · x ) = π ·w . The fact that f̄ is well defined

follows by (2.20). It is easy to check that f̄ is equivariant and that f = ιk ◦ f̄ . This

shows that for a one-orbit nominal set X we have:

Nom(X, colimj∈J F (j ))' colimj∈JNom(X, F (j )).

Next, ifX has finitely many orbits, we haveX'
n
∐

i=1
Xi withXi being nominal sets

with one orbit. The conclusion follows since by [ARV10, Lemma 5.11] finitely

presentable objects are closed under finite colimits.

Orbits also play an important role in understanding the connection between

nominal sets and named sets, [GMM06, FS06]. Named sets were introduced

in [FMP02] and can be regarded as more efficient implementations of nominal

sets, useful for history-dependent automata [MP05]: finitely-presentable nomi-

nal sets correspond to finite named sets.
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2.4 Nominal sets and presheaf categories

In this section we emphasise the connection between nominal sets and a ca-

tegory of presheaves SetI. In a certain sense, SetI is the closest many-sorted

variety to nominal sets. We start by giving a forgetful functor from Nom to a

category of many-sorted sets. Although this functor is not monadic, it is at the

heart of our approach to understanding algebra over nominal sets.

Definition 2.4.1. Let I be the category whose objects are finite subsets of A and

morphisms are injective maps between them.

Let B be the subcategory of I whose objects are finite subsets of A and mor-

phisms are bijective functions.

Let |I| denote the underlying discrete subcategory of I.

The notion of support (Definition 2.1.5) allows us to ‘stratify’ the elements of

a nominal set. We have a forgetful functor U :Nom→ Set|I| defined by

UX(S) = {x ∈X | S supports x } (2.21)

for all S ∈ |I|. Given equivariant f :X→Y define U f : UX→UY by

UX(S)3 x 7→ f (x )∈UY(S) (2.22)

This is well defined by point 6 of Proposition 2.1.12.
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We now show that the functor U has a left adjoint F : Set|I| → Nom. Given

X ∈ Set|I|, the carrier set of F X is

F X =
∐

S,T∈|I|
B(S, T )×X (S).

Forσ ∈B(S, T ) and π∈S(A)we define π •σ : S→ (π ·T ) by

s 7→π(σ(s )).

Above, π ·T is computed in the nominal setPfin(A), as in Example 2.1.9.

We define a S(A)-action on F X by

π · (σ,x ) = (π •σ,x )

for all π ∈ S(A) and (σ,x ) ∈ F X . It is easy to check that this is a well defined

S(A)-action. Moreover, if σ : S→ T is a bijection of finite sets, then the element

(σ,x )∈ F X is supported by T . Hence F X is a nominal set.

For a morphism f : X → Y in Set|I| define F f : F X → F Y by F f (σ,x ) =

(σ, f (x )), which is clearly equivariant. Thus we have a functor F : Set|I|→Nom.

Before showing that F is left adjoint to U , let us observe that the nominal

sets of the form F X are precisely the strong nominal sets in the sense of [Tze09].

Recall from [Tze09, Definition 2.9] that a finite set S is a strong support for an

element x of a nominal set X when fix(S) is exactly the stabilizer subgroup of x

∀π. π∈ fix(S) ⇐⇒ π ·x = x (2.23)
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and X is called a strong nominal set when all its elements have a strong support.

Lemma 2.4.2. A nominal set X is a strong nominal set if and only if it is of the

form F X for some X ∈ Set|I|.

Proof. Consider X ∈ Set|I| and (σ,x ) ∈ F X , with σ ∈B(S, T ) and x ∈ X (S). Recall

that π · (σ,x ) = (π •σ,x ). If π ∈ fix(T ) then π · (σ,x ) = (σ,x ). Conversely, if

π ·(σ,x ) = (σ,x ) then π•σ=σ, or equivalently, π(σ(s )) =σ(s ) for all s ∈S. Since

σ is bijective we have that π∈ fix(T ).

Now let X be a strong nominal set. Using the Axiom of Choice, for each orbit

O ∈Π0X pick xO ∈O and consider the set

X (S) = {xO |O ∈Π0X and S is a strong support for xO}.

We will show that F X and X are isomorphic nominal sets. Defineφ : F X →X by

φ(σ,xO ) =σ ·xO (2.24)

where σ ∈ B(S, T ), xO ∈ X (S) and σ is any permutation in S(A) that is equal

to σ when restricted to S. Clearly such permutations exist and (2.24) does not

depend on the choice we made since xO is supported by S. It is not difficult to

check thatφ is equivariant and bijective.

Lemma 2.4.3. We have an adjunction F aU :Nom→ Set|I|.
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Proof. Define the unit ηX : X →U F X by

X (T )3 x 7→ (idT ,x )∈U F X (T ). (2.25)

This is well defined because (idT ,x ) ∈ F X is supported by T . Define the counit

εX : FUX→X by

(b ,x ) 7→b ·x . (2.26)

Above b : S → T is a bijection, x is an element of X supported by S and b is an

arbitrary permutation such that b |S =b . Such permutations exist and the choice

made is not important since x is supported by S. It can be easily checked that εX

is equivariant.

By a simple verification, the usual triangular diagrams commute:

εF X (FηX (b ,x )) = εF X (b , (idT ,x ))

= b · (idT ,x )

= (b • idT ,x )

= (b ,x )

(2.27)

for all (b ,x )∈ F X with b ∈B(S, T ) and x ∈X (S). Also:

UεX(ηUX(x )) = UεX(idS ,x ))

= idS ·x

= x

(2.28)

for all x ∈UX(S).
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Lemma 2.4.4. The adjunction F aU : Nom→ Set|I| yields a monad (T,η,µ) on

Set|I| given by

TX (T ) =
∐

S∈|I|
I(S, T )×X (S)

with the unit ηX : X →TX defined by

X (S)3 x 7→ (idS ,x )∈TX (S)

and multiplication µX :TTX →TX by

TTX (S)3 ( f , (g ,x )) 7→ ( f ◦ g ,x )∈TX (S).

Proof. Notice that

U F X (T ) = {(b ,x ) |b ∈B(S′,S),x is supported by S′,S ⊆ T }.

Since each injective map f : S → T can be uniquely written as f = ib with i an

inclusion and b a bijection, we conclude that U F X =
∐

S∈|I|
I(S,−)×X (S). The rest

of the proof is an easy verification.

It is well known that the category of Eilenberg-Moore algebras for the monad

(T,η,µ) on Set|I| given in Lemma 2.4.4 is exactly the functor category SetI. This

is a particular instance of [ARV10, Remark 1.20].

Thus, by [ML71, Theorem 1,p. 138], there exists a unique, so-called compar-
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ison functor I :Nom→ SetI:

Nom
I

33

U

��

SetI

U I

||
Set|I|

F I

<<

F

TT

Tcc

(2.29)

We can easily check using (2.21) and (2.26) that the functor I works as fol-

lows:

IX(S) = {x ∈X | S supports x } (2.30)

and for j : S→ T the map IX(j ) : IX(S)→ IX(T ) is given by

IX(j )(x ) = j ·x (2.31)

where j is any finitely supported permutation such that j |S = j . For equivariant

f :X→Y the map I f : IX→ IY is given by

IX(S)3 x 7→ f (x )∈ IY(S) (2.32)

for all objects S in I.

We can easily check that I is full and faithful. Notice that for any nominal set

X the presheaf IX preserves all pullbacks of the form

S1 ∩S2
� � //

� _

��

S1� _

��
S2

� � // T

(2.33)
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This is by point 1 of Proposition 2.1.12. It follows easily that IX preserves all

pullbacks. In fact the essential image of the functor I consists precisely of the

pullback preserving presheaves. To prove this we need the following definition.

Definition 2.4.5. Given a presheaf P ∈ SetI, T ∈ |I| and x ∈ P(T ), we say that

S ⊆ T is a P-support for x when for all i , j : T → T ′ such that i |S = j |S we have

P(i )(x ) = P(j )(x ).

Lemma 2.4.6. Let P ∈ SetI be a pullback preserving functor. Then the following

hold:

1. If x ∈ P(T ) and S is a P-support for x then there exists a unique y ∈ P(S)

such that P(S ,→ T )(y ) = x .

2. For all x ∈ P(T ) there exists a least S ⊆ T that is a P-support for x and there

exists a unique s (x )∈ P(S) such that P(S ,→ T )(s (x )) = x .

Proof. For all S ⊆ T there exist a finite set of names T ′ and i , j : T → T ′ such that

the following square is a pullback:

S
� � //
� _

��

T

i
��

T
j
// T ′

(2.34)

Since P preserves this pullback and x ∈ P(T ) is P-supported by S, the first part of

the lemma follows. The second part follows from the first part and the fact that

P preserves in particular pullbacks of the form (2.33).
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Consider the set X = {s (x ) | T ∈ |I|,x ∈ P(T )}, where s (x ) is as in part 2 of

Lemma 2.4.6. The set X can be equipped with a S(A)-action given by

π · s (x ) = s (P(π)(x ))

where π is any injective map such that π|S = π|S . We can show that this is well

defined and, moreover, if s (x ) ∈ P(S) then s (x ) is supported by S. Thus X is a

nominal set. We can see that IX' P .

It is well-known, see [Joh02, Example A2.1.11(h)], that a functor in SetI pre-

serves pullbacks if and only if it is a sheaf w.r.t. the atomic topology on Iop. These

sheaves form a Grothendieck topos Sh(Iop), called the Schanuel topos.

We have recovered the following well-known fact:

Proposition 2.4.7. The category of nominal sets is equivalent to Sh(Iop).

In Chapter 4 we often make use of the above equivalence. In what follows,

we will denote by I∗ the inclusion functor Sh(Iop) ,→ SetI.

Proposition 2.4.8. The functor I∗ : Sh(Iop) → SetI has a left adjoint I ∗ which

preserves finite limits.

This is a particular instance of [MLM94, Theorem 1, pp.128].

Remark 2.4.9. The functors I and I∗ preserve filtered colimits and coproducts.

This is because colimits are computed pointwise in SetI and both filtered colim-

its and coproducts commute with pullbacks in Set.
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Also I∗ preserves all limits and I ∗ preserves all colimits. This follows from the

fact that I∗ is right adjoint to I ∗.

We proceed to describe the left adjoint I ∗, following the proof of [MLM94,

Theorem 1, Chapter III.5]. We will need some technical details regarding the

characterisation of Sh(Iop) as a Grothendieck topos of sheaves on Iop for the

atomic topology. We refer the reader to [MLM94, Chapter III] for the general

definitions of notions such as Grothendieck topology, sieve, matching family,

amalgamation, sheaf or atomic topology. However we shall make these defini-

tions explicit in the case of Iop. We have to underscore that unlike in [MLM94,

Chapter III] we work here only with covariant functors, so a presheaf on Iop in

the sense of [MLM94, Chapter III] is a Set valued covariant functor on I.

Definition 2.4.10. A sieve S on an object S in I is a family of morphisms in I

with domain S, and such that f ∈S implies g f ∈S whenever the composition

is possible.

Given j ∈ I(S, T ) andS a sieve on S the set

j ∗(S ) = {g | ∃T ′. g ∈ I(T, T ′) and g j ∈S }

is a sieve on T . The atomic topology on Iop is obtained by considering as covers

for an object S all the non-empty sieves on S, see [MLM94, Chapter III].
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Given a nonempty sieve S on S, there exists a least natural number n and

an arrow f : S → T in S with |T | − |S| = n , where |T | denotes the cardinal of

T . Furthermore, we can assume that the sieve S is generated by an inclusion

i : S ,→ T , that is,

S = { f : S→ T ′ | ∃g : T → T ′ such that f = g i }.

Definition 2.4.11. A matching family for a sieve S of elements of P : I→ Set is

a family of elements (x f ) f ∈S indexed by the elements ofS such that

1. If f inS has codomain T then x f ∈ P(T );

2. P(g )(x f ) = x g f for all f : S→ T in S and g arbitrary morphisms in I that

can be composed with f .

Lemma 2.4.12. If the sieve S is generated by i : S ,→ T then matching families

forS of elements of P are in one-to-one correspondence with elements of P(T )

that have S as a P-support.

Proof. Indeed, given a matching family for S we can consider the element x i ∈

P(T ). To see that x i is P-supported by S, consider j , k : T → T ′ that coincide on

S. Then j i = k i : S → T ′ is an element of S . We have that P(j )(x i ) = x j i and

P(k )(x i ) = xk i . Since j i = k i we obtain that P(j )(x i ) = P(k )(x i ). Conversely, let

x ∈ P(T ) be an element P-supported by S. If f : S → T ′ in S is of the form g i
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for some g : T → T ′, put x f = P(g )(x ). This does not depend on the chosen g

because x is P-supported by S. It is easy to check that (x f ) f ∈S is a matching

family.

Definition 2.4.13. An amalgamation for a matching family (x f ) f ∈S for a sieve

S on S of elements of P : I→ Set is an element x ∈ P(S) such that P( f )(x ) = x f

for all f ∈S .

A functor P : I→ Set is separated when each matching family has at most one

amalgamation and is a sheaf when each matching family has a unique amalga-

mation. Thus Lemma 2.4.6 shows that pullback-preserving functors are indeed

sheaves. Given P : I→ Set, we first obtain a separated functor P+. If P is sepa-

rated then P+ is a sheaf. Thus the sheaf I ∗(P) is obtained as (P+)+. We spell out

the (−)+ functor in our case.

Following the proof of [MLM94, Theorem 1, pp.128] we have that P+(S) is

defined as a colimit of matching families taken over covering sieves of S ordered

by reverse inclusion. To get a simpler definition for P+(S)we use the correspon-

dence of Lemma 2.4.12. We define an equivalence relation on the elements of P

that have S as a P-support.

Definition 2.4.14. Consider x ∈ P(T ) and y ∈ P(T ′) having S as a P-support. We

say that x and y are equivalent when there exists i : T → T ′′ and j : T ′→ T ′′ such
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that i |S = j |S and P(i )(x ) = P(j )(y ). Write x for the equivalence class of x .

We then have

Lemma 2.4.15. P+(S) is the set of equivalence classes of elements of P that have

S as a P-support.

Given j ∈ I(S,S′) the arrow P+(j ) : P+(S)→ P+(S′) is defined as follows. Let

x ∈ P(T )have S as P-support. There exists T ′ and j ∈ I(T, T ′) such that the square

commutes:

S
� � //

j
��

T

j
��

S′
� � // T ′

(2.35)

Then P+(j )(x ) = P(j )(x ). This is well defined.

We have an arrow η+P : P→ P+ natural in P , given by

P(S)3 x 7→ x ∈ P+(S).

If P is a sheaf we have that η+P is an isomorphism.

The unit of the adjunction I ∗ a I∗ is then obtained as the composition

P
η+P // P+

η+
P+ // (P+)+ (2.36)

In Chapter 4 we will also use quotients in the Schanuel topos:

Proposition 2.4.16. A morphism between two presheaves is an epimorphism if

and only if it is so pointwise. A sheaf morphism f : A→ B is an epimorphism in
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Sh(Iop) if and only if for all finite sets of names S and all y ∈ B (S) there exists an

inclusion l : S→ T in I and x ∈ A(T ) such that f T (x ) = B (l )(y ).

Proof. This follows from [MLM94, Corollary III.7.5.].

We conclude this section with a very brief account of a different symmet-

ric monoidal closed structure on Nom. On the presheaf category SetI one can

consider Day’s convolution, see [Day70]. This yields a separating tensor on Nom

given by

X⊗Y= {(x , y )∈X×Y | supp(x )∩ supp(y ) = ;} (2.37)

Then (Nom,⊗, 1) is a symmetric monoidal category, which is moreover closed.

Let¨ denote the internal hom w.r.t this structure. It was shown in [Men03] that

A¨X is isomorphic to [A]X. In general, X¨Y was described in [Sch06]. This

monoidal structure plays an important role in [FH07].



Chapter 3

Universal algebraic functors

In this chapter we discuss an important notion in the category theoretic toolkit

needed in the development of this thesis, namely, that of presentations by op-

erations and equations for functors. This concept was pioneered in [BK06] and

further studied in [KR06].

In Section 3.1 we recall briefly the category theoretic account of universal

algebra and we discuss sifted colimits. In Section 3.2 we introduce functors on

many-sorted varieties that can be presented by operations and equations and

we generalise to this setting a characterisation theorem and a compositional-

ity theorem. The former states that, as in the one-sorted case, the functors on

many-sorted varieties that admit presentations by operations and equations are

exactly those preserving sifted colimits. The latter shows that the category of al-

43
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gebras for a sifted colimit preserving functor L on a many sorted varietyA has

a presentation by operations and equations obtained by merging a presentation

of L and a presentation ofA .

Although the move from the one-sorted to the many-sorted case is techni-

cally straightforward, we can now apply these results to an array of examples, as

seen in Sections 3.4 and 3.3. Furthermore, in [KP10a] we give further applica-

tions to compositionality for coalgebraic modal logic.

3.1 Preliminaries

In this section we fix notation and we recall the connection between equational

categories, finitary monads and algebraic theories. A very nice overview of this

deep connection is given in [HP07]. The importance of sifted colimits is empha-

sised in the monograph [ARV10].

3.1.1 Equational categories.

Let S be a set (of sorts). A signature Σ is a set of operation symbols together with

an arity map a :Σ→S∗×S which assigns to each elementσ ∈Σ a pair (s1 . . . sn ; s )

consisting of a finite word in the alphabet S indicating the sort of the arguments

ofσ and an element of S indicating the sort of the result ofσ. To each signature

we can associate an endofunctor on SetS , which will be denoted for simplicity
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with the same symbol Σ:

(ΣX )s = (
∐

k∈S∗
Σk ,s ×X k )s

If k = s1 . . . sn ∈ S∗ then Σk ,s is the set of operations of arity (s1...sn ; s ) and X k

is isomorphic in Set with the finite product Xs1 × · · · × Xsn . If we regard S as

a discrete category, a word k = s1 . . . sn ∈ S∗ corresponds to a finite coprod-

uct
∐n

i=1 S(s i ,−) ∈ SetS , so we can identify X k with SetS(k , X ). Conversely, to

each polynomial endofunctor on SetS given as above corresponds a signature

∐

k∈S∗
Σk ,s . In this chapter we will make no notational difference between the sig-

nature and the corresponding functor, and it will be clear from the context when

we refer to the set of operation symbols or to a SetS endofunctor. The algebras

for a signature Σ are precisely the algebras for the corresponding endofunctor,

and form the category denoted by Alg(Σ). The terms over an S-sorted set of vari-

ables X are defined in the standard manner and form an S-sorted set denoted

by TermΣ(X ), in fact this is the underlying set of the free Σ-algebra generated by

X . An equation

Γ `τ1 =τ2

consists of a context Γ= {x1 : s1, . . . ,xn : sn} of variables x i of sort s i , and a pair of

terms in TermΣ(Γ) of the same sort. A Σ-algebra A satisfies this equation if and

only if, for any interpretation of the variables of Γ, we obtain equality in A. A full
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subcategoryA of Alg(Σ) is called a variety or an equational class if there exists

a set of equations E such that an algebra lies inA if and only if it satisfies all the

equations of E . In this case, the varietyA will be denoted by Alg(Σ, E ).

An important example of a (finitary) variety of algebras is the functor category

SetC for any small category C . The sorts are the objects of C , the operations

symbols are the morphisms ofC (all of them with arity 1), and the equations are

given by the commutative diagrams inC .

Endofunctors may appear via composition of functors between different vari-

eties. Therefore, it is useful to consider a slight generalisation of the notion of

signature. If S1 and S2 are sets of sorts we will consider operations with argu-

ments of sorts in S1 and returning a result of a sort in S2, encompassed in the

signature functor Σ : SetS1 → SetS2

ΣX = (
∐

k∈S∗1

Σk ,s ×X k )s∈S2 (3.1)

3.1.2 The monadic approach to universal algebra.

The forgetful functor

U :Alg(Σ, E )→ SetS

preserves filtered colimits and has a left adjoint F . The variety Alg(Σ, E ) is iso-

morphic to the Eilenberg-Moore category (SetS)T for the finitary monad T =U F
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(see [AR94, Theorem 3.18]).

In fact, the forgetful functor U preserves a wider class of colimits, namely

sifted colimits, see Definition 3.1.1.

Conversely, for each finitary monad onSetS , the category of Eilenberg-Moore

algebras is a variety. However its equational presentation is not unique, and for

practical purposes finding a good presentation is important.

3.1.3 Algebraic theories and sifted colimits.

Lawvere introduced algebraic theories which give a category-theoretic treatment

of the notion of clone from universal algebra. More generally, one can define an

algebraic theory simply to be a small category T with finite products. The ca-

tegory Alg(T ) of algebras for T is defined to be the full subcategory of finite

product preserving functors in SetT .

In Lawvere’s words, (see [ARV10, Foreword]), ‘the bedrock ingredient for all

of general algebra’s aspects is the use of finite cartesian products’. For this rea-

son, the crucial role in understanding algebraic categories is also played by those

colimits that commute in Set with finite products:

Definition 3.1.1. A small category D is called sifted when colimits over D com-

mute with finite products in Set. Sifted colimits are colimits of sifted diagrams.

Then the category of algebras for a theory T is exactly the free completion
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under sifted colimits of T op, see [ARV10, Theorem 4.13]. Sifted colimits play a

similar role for algebraic categories as filtered colimits play for locally finitely

presentable categories. A result similar to Gabriel-Ulmer duality, namely a 2-

categorical duality for the 2-category of algebraic categories, functors preserving

limits and sifted colimits and natural transformations, was given in [ALR03].

The most important examples of sifted colimits are filtered colimits and re-

flexive coequalizers.

An object in a category is called strongly finitely presentable if its hom-functor

preserves sifted colimits. It is shown in [ARV10] that any object in a variety is

a sifted colimit of strongly finitely presentable algebras, which in a variety are

the retracts of finitely generated free algebras. An important observation is that

sifted colimit preserving functors on varieties are determined by their action on

free algebras.

3.2 Presentations for functors

3.2.1 Presenting Algebras and Functors

The notion of a finitary presentation by operations and equations for a functor

was introduced in [BK06]. It generalises the notion of a presentation for an al-

gebra, in the usual sense of universal algebra. An algebra A in a variety A is
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presented by a set of generators G and a set of equations E , if A is isomorphic

to the free algebra on G , quotiented by the equations E . In a similar fashion, an

endofunctor L onA is presented by operations Σ and equations E , if for each

object A ofA , LA is isomorphic to the free algebra over ΣUA quotiented by the

equations E . Below we extend this notion to the case of functors between pos-

sibly different many-sorted varieties.

A presentation for a (many-sorted) algebra in a varietyA can be regarded as a

coequalizer, as in the next definition. This category-theoretical perspective will

allow us to generalise this notion to functors.

Definition 3.2.1. Let A be a many-sorted algebra in a variety A . We say that

(G , E ) is a presentation for A if G is an S-sorted set of generators and E = (Es )s∈S

with Es ⊆ (U FG )s × (U FG )s is an S-sorted set of equations such that qA is the

coequalizer of the following diagram:

F E FG A
π
]
1 //

π
]
2

//
qA // (3.2)

The maps π
]
1,π

]
2 are induced, via the adjunction, by the projections π1,π2 of E

on U FG .

Next we want to define a presentation for a functor L :A1→A2 between many-

sorted varieties. For i ∈ {1, 2}, denote by Si the set of sorts forAi respectively, by
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Ui :Ai → SetSi
the corresponding forgetful functor, and by Fi its left adjoint. We

will do this in the same fashion as in [KR06] and [BK06], keeping in mind that we

need to extend (3.2) uniformly: this means that the generators and equations for

each LA will depend functorially on A. Suppose A is a many-sorted algebra in

A1. The generators ΣU1A for the algebra LA will be given by a signature functor

Σ : SetS1 → SetS2 as in (3.1). The equations that we will consider are of rank 1,

meaning that in the terms involved every variable is under the scope of precisely

one operation symbol in Σ, and are given by an S2-sorted set E . In detail, for

each sort s ∈ S2 and each S1-sorted set of variables V with the property that

⋃

t∈S1

Vt is finite, we consider a set EV,s of equations over the set V , of terms of sort

s , which is defined as a subset of (U2F2ΣU1F1V )2s . Now take EV = (EV,s )s∈S2 and

E =
⋃

EV , where the union is taken over finite many-sorted sets of variables V .

Definition 3.2.2. Let S1,S2 be sets of sorts, A1 be an S1-sorted variety andA2

be an S2-sorted variety. A presentation for a functor L :A1→A2 is a pair (Σ, E )

defined as above. A functor L :A1→A2 is presented by (Σ, E ), if

(i) for every algebra A ∈A1, there exists a morphism qA : F2ΣU1A→ LA that

is the joint coequalizer of the next diagram

F2EV F2ΣU1F1V F2ΣU1A LA
π
]
1 //

π
]
2

//
F2ΣU1v ] // qA // (3.3)

taken over all finite sets of S1-sorted variables V and all valuations v : V →U1A.
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Here v ] denotes the adjoint transpose of a valuation v .

(ii) for all morphisms f : A→ B the diagram commutes:

F2ΣU1A LA

F2ΣU1 B LB

F2ΣU1 f

��

qA //

L f

��qB //

(3.4)

Example 3.2.3. Let C be a small category. We have seen that SetC is a many-

sorted variety over Set|C |, where |C | denotes the discrete subcategory of objects

of C . Let U denote the forgetful functor and F its left adjoint. Then for all

X ∈ Set|C | and C ∈ |C | the set U F XC consists of pairs ( f ,x )with f ∈C (D,C ) and

x ∈XD for some D ∈ |C |.

We give a presentation for the functor L : SetC → SetC given by LX = X ×X .

For all C ∈ |C |we consider a binary operation symbol with arity opC : C×C →C .

The corresponding signature functor Σ : Set|C |→ Set|C | is given by

(ΣX )C = {opC }×XC ×XC .

For a finite many-sorted set of equations V and C ∈ |C | the set

EV,C ⊆ (U FΣU F V )C × (U FΣU F V )C

consists of pairs of terms of the form

( f , (opD , ((idD ,x ), (idD , y )))) = (idC , (opC (( f ,x ), ( f , y )))
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with f ∈ C (D,C ) and x , y ∈ VD for some D ∈ |C |. Of course, we prefer to write

such an equation in an abbreviated form

{x : D, y : D} ` f opD (x , y ) = opC ( f x , f y ).

Then (Σ, E ) is a presentation for L. In this case the equations express that the

interpretation of the operations opC is natural in C .

3.2.2 The Equational Logic Induced by a Presentation of L

If A = Alg(ΣA , EA ) is an S-sorted variety and the endofunctor L : A → A

has a finitary presentation (ΣL , EL), we can obtain an equational calculus for

Alg(L), regarding the equations EA and EL as equations containing terms in

TermΣA+ΣL . First remark that formally, for an arbitrary set of variables V , EL,V

is a subset of the S-sorted set (U FΣLU F V )2. But for each set X , U F X is a quo-

tient of TermΣA X modulo the equations. Thus, if we choose a representative

for each equivalence class in U FΣLU F V , we can obtain a set of equations in

TermΣAΣLTermΣA V . We can use the natural map from TermΣAΣLTermΣA V to

TermΣA+ΣL V to obtain a set of equations on terms TermΣA+ΣL V . By abuse of

notation we will denote this set with EL as well.

Theorem 3.2.4. Let A = Alg(ΣA , EA ) be an S-sorted variety and let L : A →

A be a functor presented by operations ΣL and equations EL . Then Alg(L) ∼=

Alg(ΣA +ΣL , EA +EL).



3.2 Presentations for functors 53

Proof. We define a functor H : Alg(L) → Alg(ΣA +ΣL , EA + EL). Suppose α :

LA→ A is an L-algebra. Then the underlying set of HA is defined to be UA. HA

inherits the algebraic structure of A: the interpretation of the operation symbols

of ΣA is the same as in the algebra A and it satisfies the equations EA . As far as

the operation symbols of ΣL are concerned, their interpretation is given by the

composition:

FΣLUA LA A
qA // α // (3.5)

Explicitly, the interpretation of an operation symbol σ of arity (s1 . . . sn ; s ) is the

morphismσA : As1 × · · ·×Asn → As defined by

σA (x1, . . . ,xn ) =α(qA ((σ,x1, . . . ,xn )))

Now it is clear that the equations EL are satisfied in HA, because qA is a coequal-

izer as in (3.3). If f is a morphism of L-algebras, we define H f = f and we only

have to check that f (σ(a 1, . . . , a k )) = σ( f (a 1), . . . , f (a k )) for all σ ∈ ΣL . But this

follows from the definition of the interpretation of the operations, the commu-

tativity of diagram (3.4) and the fact that f is an L-algebra morphism.

Conversely, we define a functor J : Alg(ΣA +ΣL , EA + EL)→Alg(L). Suppose A

is an algebra in Alg(ΣA +ΣL , EA +EL). The map ρA :ΣLUA→UA defined by:
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(σ(s1...sn ;s ),x i 1 , . . . ,x i n ) 7→σ(s1...sn ;s )(x i 1 , . . . ,x i n )

induces a map ρ
]
A : FΣLUA → A. The fact that equations EL are satisfied im-

plies that ρ
]
A ◦ FΣLUv ] ◦π]1 = ρ

]
A ◦ FΣLUv ] ◦π]2 as depicted in (3.6). But qA is

a coequalizer in Alg(ΣA , EA ), therefore there exists a morphism αA : LA → A

such that αA ◦ qA = ρ
]
A . We define J A to be the L-algebra αA . For any mor-

phism f : A → B in Alg(ΣA + ΣL , EA + EL) we define J f = U0 f , where U0 :

Alg(ΣA +ΣL , EA + EL)→ Alg(ΣA , EA ) is the forgetful functor. This is well de-

fined and we can check this easily by proving that the rightmost square of dia-

gram (3.6) is commutative:

F EL FΣLU F V

FΣLUA

FΣLU B

LA

LB

A

B

π
]
1 //

π
]
2

//

ρ
]
A

((

ρ
]
B

66

FΣUv
]
1
55llllllll

FΣUv
]
2

))RRRRRRRR
FΣU f

��

L f

��

f

��

qA //

qB //

αA //_____

αB //____

(3.6)

Now it is straightforward to check that J ◦H and H ◦ J are the identities.

3.2.3 The Characterisation Theorem

The characterisation theorem of endofunctors having finitary presentation was

given in [KR06] for monadic categories over Set and it can be easily extended if
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we replace Set with the presheaf category SetS . The result holds even if we work

with functors between different varieties.

Theorem 3.2.5. Let S1,S2 be sets of sorts, A1 be an S1-sorted variety and A2

be an S2-sorted variety. For a functor L :A1 →A2 the following conditions are

equivalent:

(i) L has a finitary presentation by operations and equations;

(ii) L preserves sifted colimits.

Proof. (i )⇒ (i i ). Assume L has a finitary presentation (Σ, E ). Let D be a sifted

category and a i : A i → A be a sifted colimit inA1. Let d i : LA i → B be an arbi-

trary cocone. As we have seen in the preliminaries, the corresponding forgetful

functors and their left adjoints U1,U2, F1, F2 preserve sifted colimits. Σ shares the

same property because sifted colimits are computed point-wise and commute

with finite products. Therefore we obtain that F2ΣU1a i : F2ΣU1A i → F2ΣU1A is

a colimiting cocone inA2, hence there exists a map d : F2ΣU1A → B such that

d ◦ F2ΣU1a i = d i ◦qA i for all i in D.

Choose an arbitrary S1-sorted set of variables V = (Vs )s∈S1 such that
⋃

s∈S1

Vs is fi-

nite and a morphism v : V → U1A. Since V is strongly finitely presentable in

the category SetS1 , and U1 preserves sifted colimits, we have that SetS1 (V,U1A)

is the sifted colimit of SetS1 (V,U1A i ). In particular there exists an index i and a

morphism vi : V →U1A i such that v =U1a i ◦vi . From the fact that qA i is a joint
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coequalizer, it follows that d makes the bottom line of diagram (3.7) commuta-

tive.

F2EV F2ΣU1F1V F2ΣU1A B

F2ΣU1A i

π
]
1 //

π
]
2

//
F2ΣU1v ] // d //

F2ΣU1v
]
i

::tttttttttttttttt

F2ΣU1a i

��

d i ◦qAi

$$JJJJJJJJJJJJJJJJJ

(3.7)

Using that qA is a joint coequalizer, we obtain b : LA → B such that b ◦qA = d .

Now it is immediate to check that diagram (3.8) is commutative, and this shows

that the cocone La i : LA i → LA is universal.

F2ΣU1A i

F2ΣU1A LA

LA i

B

qAi //

qA //

F2ΣU1a i

��
La i

��

d

**UUUUUUUUUUUUUUUUUUUUUUUU
b

%%LLLLLLLLLLLLL
d i

��:::::::::::::::::::

(3.8)

(i i )⇒ (i ) Being a sifted colimit preserving functor, L is determined by its val-

ues on finitely generated free algebras. Given k a finite many-sorted set in SetS1

and given s ∈ S2 we can view the elements of the set (U2LF1k )s as operations

symbols which take |k t | arguments of sort t for all t ∈ S1 and return a result of

sort s . Explicitly, we consider for all algebras A the map rA given component-

wise by:

∐

k∈S∗
(U2LF1k )s × (U1A)k

rA,s−−−→ (U2LA)s (3.9)
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(σ,x ) 7→ (U2LεA ◦U2LF1x )s (σ)

where εA : F1U1A→ A is the counit of the adjunction. In the definition of the map

rA,s we have interpreted x as a morphism in SetS1 (k ,U1A). Now the operations

that we will consider are encompassed in the functor Σ : SetS1 → SetS2 defined

by

ΣX = (
∐

k∈S∗1

(U2LF1k )s ×X k )s∈S2 (3.10)

Note that r is a natural transformation from ΣU1 to U2L.

For an arbitrary S1-sorted set of variables V , the equations are induced by the

map rF1V : ΣU1F1V →U2LF1V as in (3.9), more precisely EV is defined to be the

kernel pair of the map Ur
]
F1V : U2F2ΣU1F1V →U2LF1V . We will prove that L is

presented by (Σ, E ). For all k ∈ S1
∗ the following diagram is a split coequalizer

because Ek is a kernel pair.

Ek U2F2ΣU1F1k U2LF1k
π1 //
π2

//

t

gg

U2r
]
F1k //

s

kk (3.11)

One can check that it follows that

U2F2Ek U2F2ΣU1F1k U2LF1k
U2π

]
1 //

U2π
]
2

//

U2F2t ◦ ηU2 F2ΣU1 F1k

gg

U2r
]
F1k //

s

kk (3.12)
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is again a split coequalizer. U2 is a monadic functor, hence it creates split co-

equalizers, and we obtain that

F2Ek F2ΣU1F1k LF1k
π
]
1 //

π
]
2

//
r
]
F1k // (3.13)

is a coequalizer. Now it is straightforward to show that

F2EV F2ΣU1F1V F2ΣU1F1k LF1k
π
]
1 //

π
]
2

//
F2ΣU1v ] //

r
]
F1k // (3.14)

is a joint coequalizer. This proves that L coincides on finitely generated algebras

with the functor presented by the finitary presentation (Σ, E ), and therefore it is

presented by (Σ, E ).

3.3 Example: presentations for SetI and δ

We have seen that SetI is given by a finitary monad on Set|I|. A very large presen-

tation for SetI is obtained by taking a unary operation with arity S→S′ for each

injection in I(S,S′). The equations are then commutative diagrams in I. But we

can find a smaller presentation. The operation symbols should correspond to

morphisms that generate all the arrows in I. One would be tempted to use op-

eration symbols of the form (a ,b )S , which correspond to swapping the names

a and b of a set S, and wS,a , which correspond to inclusions of S into S ∪ {a }.
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However swappings and inclusions fail to generate all the bijections in I. For

example, if a 6= b and a ,b 6∈ S, they cannot generate a bijection from S ∪ {a } to

S ∪{b}which maps a to b and acts as identity on the remaining elements of S.

This example suggests the following set ΣI of operation symbols with specified

arity:

(b/a )S : S ∪{a }→S ∪{b} a 6=b , a 6∈S, b 6∈S

wS,a : S→S ∪{a } a 6∈S

(3.15)

We will refer to operation symbols of the form (b/a )S as ‘substitutions’ and to

operations symbols of the form wS,a as ‘inclusions’. When the arity can be in-

ferred from the context, or is irrelevant, we will omit S from the subscript.

We consider the set EI of equations of the form:

x : S ∪{a } ` (a/b )S(b/a )S(x ) = x (E1)

x : S ∪{a , c} ` (b/a )S∪{d }(d /c )S∪{a }(x ) =

(d /c )S∪{b}(b/a )S∪{c}(x ) (E2)

x : S ∪{a } ` (c/b )S(b/a )S(x ) = (c/a )S(x ) (E3)

x : S ∪{a } ` (b/a )S∪{c}wS∪{a },c (x ) =wS∪{b},c (b/a )S(x ) (E4)

x : S ∪{a } ` (b/a )SwS,a (x ) =wS,b (x ) (E5)

x : S ` wS∪{b},a wS,b (x ) =wS∪{a },b wS,a (x ) (E6)

x : S ∪{a } ` wS∪{b},a (b/a )S(x ) =wS∪{a },b (x ) (E7)

(3.16)

Theorem 3.3.1. (ΣI, EI) is a presentation for SetI.
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A proof of this theorem can be found in Section 3.5.

Next we will define a ‘shift’ functor δ on SetI. This functor corresponds to the

abstraction functor on nominal sets and plays an important role in Chapter 4.

Definition 3.3.2. Assume P : I → Set is a presheaf and S ⊆ A is a finite set of

names. We define an equivalence relation ≡ on
∐

a 6∈S
P(S ∪ {a }). If a ,b 6∈ S, x ∈

P(S ∪ {a }) and y ∈ P(S ∪ {b}) we will say that x and y are equivalent if and only

if P((b/a )S)(x ) = y . We define (δP)(S) as the set of equivalence classes of the

elements of
∐

a 6∈S
P(S ∪ {a }). If x ∈ P(S ∪ {a }) the equivalence class of x is denoted

by xS,a .

If f : S → T is a morphism in I and a 6∈ S ∪ T , f + a : S ∪ {a } → T ∪ {a } de-

notes the function which restricted to S is f and which maps a to a . We define

(δA)( f )(xS,a ) = A( f +a )(x )
T,a

for some a 6∈S.

One can easily check that (δA)( f ) is well defined and that δ is a functor.

Next, we give a presentation for δ. For each finite subset of names S ⊆ A and

for each a 6∈ S we consider an operation symbol [a ]S : S ∪ {a } → S, and we will

denote by Σδ the corresponding functor on Set|I|. This is given by

(ΣδX )S =
∐

a 6∈S

{[a ]S}×XS∪{a }.

We denote by U : SetI→ Set|I| the forgetful functor and by F its left adjoint. For

any functor P : I→ Set we can give an interpretation of these operation symbols,
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captured by a natural transformation

ρP :ΣδUP→UδP

defined by:

∀α∈ P(S ∪{a }) ([a ]S ,α) 7→αS,a ∈ (UδP)(S) (3.17)

The equations should correspond to the kernel pair of the adjoint transpose

ρ
]
P : FΣδUP→δP, (3.18)

as in Definition 3.2.2. We will use the fact that for any X = (XS)S∈|I| we have

(F X )S =
∐

T∈|I|
XT ·hom(T,S), where · is the copower. For f : T → S and x ∈ XT we

denote by f x the element of (F X )S which is the copy of f corresponding to x .

The equations Eδ will have the form:

t : S ∪{a ,b} ` (c/b )S[a ]S∪{b}t = [a ]S∪{c}(c/b )S∪{a }t

t : S ∪{a } ` [a ]St = [b ]S(b/a )St

t : S ∪{a } ` wS,b [a ]St = [a ]S∪{b}wS∪{a },b t

(3.19)

Theorem 3.3.3. (Σδ, Eδ) is a presentation for δ.

Proof. First we show that the map ρ
]
P makes the next diagram commutative for

all finite many-sorted sets of variables V and all valuations v : V →UP .

F Eδ,V FΣδU F V FΣδUP δP
π
]
1 //

π
]
2

//
FΣδUv ] //

ρ
]
P // (3.20)
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Given S ∈ |I|, consider an element of F Eδ,V (S) of the form f ([a ]T t , [b ]T (b/a )T t ))

for some f ∈ I(T,S), t ∈V (T ∪{a }) and ([a ]T t , [b ]T (b/a )T t ))∈ Eδ,V (T ). Then

π
]
1( f ([a ]T t , [b ]T (b/a )T t )) = f [a ]T t

π
]
2( f ([a ]T t , [b ]T (b/a )T t )) = f [b ]T (b/a )T t

(3.21)

Assume v (t ) = p ∈ P(T ∪{a }). Then

FΣδU F V ( f ([a ]T t ) = ( f , [a ]T p )

FΣδU F V ( f ([b ]T (b/a )T t ) = ( f , [b ]T P((b/a )T )(p ))

(3.22)

We can check that

ρ
]
P (( f , [a ]T p )) = δP( f )(p T,a )

ρ
]
P (( f , [b ]T P((b/a )T )(p ))) = δP( f )(P((b/a )T (p )

T,b
)

(3.23)

By Definition 3.3.2 we have that p T,a = P((b/a )T (p )
T,b

. Using (3.21), (3.22)

and (3.23) we conclude that diagram (3.20) commutes. The proof of the fact that

the other two types of equations are satisfied is similar and is left to the reader.

Next we show that ρ
]
P is indeed the joint coequalizer of (3.20) taken over

all finite many-sorted sets of variables and all possible valuations. Consider α :

FΣδUP→X a morphism in SetI such that

α ◦ FΣδU F v ] ◦π]1 =α ◦ FΣδU F v ] ◦π]2.

We show that there exists a unique bα : δP → X such that bα ◦ρ]P = α. We define

bαT :δP(T )→X (T ) by

bα(p T,a ) =α(id([a ]T , p )) (3.24)
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The definition of bα does not depend on the representative p ∈ P(T ∪ {a }). This

follows from the fact that α satisfies the second equation in (3.19). The fact that

bα is natural in T follows from the fact thatα satisfies the other two types of equa-

tions in (3.19).

Notation 3.3.4. We will denote the element αS,a ∈ (δP)(S) by {[a ]Sα}δP .

3.4 Example: polyadic algebras as algebras for a functor

The aim of this section is to understand algebraic semantics of first-order logic,

more specifically Halmos’ polyadic algebras in terms of algebras for a sifted col-

imit preserving functor on a variety of nominal substitutions. The nominal sub-

stitutions considered by Staton in [Sta09] for his study of the open bisimulation

of π-calculus correspond to functors in SetF+ where F+ is the category of posi-

tive ordinals and maps between them.

We introduce a category of algebras for a functor on SetF+ , that we call FOL-

algebras (Definition 3.4.3), and we prove that polyadic algebras are precisely

FOL-algebras. First, we need to give a presentation for SetF+ . The set of sorts

are the positive integers. We will consider a signature consisting only of unary

operation symbols, whose arity is specified below:
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σ
(i )
n : n→ n 1≤ i < n n > 1

wn : n→ n +1 n > 0

cn : n +1→ n n > 0

(3.25)

The intended interpretation is the following: σ(i )n corresponds to the transposi-

tionσ(i )n = (i , i +1) of the set n , cn corresponds to the contraction cn : n +1→ n

defined by cn (i ) = i for i ≤ n and cn (n +1) = n , and wn to the inclusion wn of n

into n +1.

In [KP10a] we gave a presentation for SetF, where F is the category of all

finite ordinals. We can obtain a presentation forSetF+ by dropping the sort 0 and

all the operations of arity 0 and all the equations containing such operations. We

obtain that the equations needed to present SetF+ are as follows:

Firstly, we consider the equations coming from the presentation of the symmet-

ric group:

(σ(i )n )2 = idn 1≤ i < n

σ
(i )
n σ

(j )
n =σ

(j )
n σ

(i )
n j 6= i ±1; 1≤ i , j < n (E1)

(σ(i )n σ
(i+1)
n )3 = idn 1≤ i < n −1

Each permutation of the set n can be written as a composition of transpositions

σ
(i )
n and we choose for each permutation such a representation. The permuta-

tions that will appear in equation (E9) below, should be regarded as abbrevia-
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tions of their representation in terms of the correspondingσ(i )n .

Secondly, we use the next set of equations:

cnσ
(n )
n+1 = cn (E2)

cn wn = idn (E3)

σ
(i )
n+1wn =wnσ

(i )
n 1≤ i < n (E4)

σ
(n+1)
n+2 wn+1wn =wn+1wn (E5)

σ
(i )
n cn = cnσ

(i )
n+1 i < n −1 (E6)

cnσ
(n−1)
n+1 σ

(n )
n+1wn =σ

(n−1)
n wn−1cn−1 n ≥ 2 (E7)

cn cn+1σ
(n )
n+2 = cn cn+1 (E8)

((2, n −1)(1, n )wn−1cn−1)2 = (wn−1cn−1(2, n −1)(1, n ))2 n ≥ 4 (E9)

We will consider a category of algebras for a functor on BAF+ , where BA is

the category of Boolean algebras. The basic observation, essentially going back

to Lawvere [Law69], is that presheaves taking values in the category BA

A :F+→BA

where the weakenings wn have left-adjoints ∃n

∃n a ≤b ⇔ a ≤wn b (3.26)

are (algebraic) models of first-order logic (we write wn b for A(wn )(b )).

BAF+ is the subvariety ofSetF+ , obtained by adding for each sort the Boolean

connectives ∨n and ¬n , satisfying the usual axioms for Boolean algebras and
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commuting with the operations from F+, that is, we have wn∨n = ∨n+1wn and

cn∨n+1 = ∨n cn and σ(i )n (x ∨n y ) = σ(i )n x ∨n σ
(i )
n y as well as the analogous equa-

tions for ¬n . We are looking for algebras QB → B where the structure at sort

n , (QB )(n )→ B (n ) interprets the quantifier ∃n binding the new name in n +1.

Thus, the quantifier corresponds to a map B (n +1)→ B (n ) and, being an exis-

tential quantifier, it preserves joins. Since arrows in BA are Boolean homomor-

phisms, we account for this by letting (QB )(n ) be the free BA over the finite-

join-semilattice B (n +1), or, explicitly

Definition 3.4.1. Define Q : BAF+ →BAF+ as the functor mapping B ∈BAF+ to

the presheaf

• generated, at sort n , by ∃n a , a ∈ B (n +1)

• modulo equations specifying that ∃n preserves finite joins, explicitly ∃n (0) =

0 and ∃n (a ∨b ) = ∃n a ∨∃n b .

Remark 3.4.2. Boolean algebra homomorphisms QB (n )→ B (n ) are in bijective

correspondence with finite-join preserving maps B (n +1)→ B (n ).

Furthermore, using the (co)unit of the adjunction, the two implications (3.26)

are easily transformed into equations (recall a ≤b ⇔ a = a ∧b ), leading to

Definition 3.4.3. The category of FOL-algebras is the category of thoseQ-algebras

satisfying the additional equations φ ≤ wn∃nφ and ∃n wnψ ≤ ψ, where φ is a
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variable of sort n +1 andψ is a variable of sort n .

Algebraic semantics of first-order logic was first studied by Tarski and col-

laborators [HMT71] and Halmos [Hal62]. A polyadic algebra [Hal62] on a set of

variables V is a Boolean algebra with some additional structure that captures

quantifiers and an action of the monoid of functions V V , subject to several ax-

ioms.

Definition 3.4.4. Let B be a Boolean algebra, a map ∃ : B→ B is called a quanti-

fier if

∃0= 0

∃p ≥ p for all p ∈ B

∃p ∨∃q = ∃(p ∨q ) for all p ,q ∈ B

∃∃p = ∃p for all p ∈ B

∃¬∃p =¬∃p for all p ∈ B

Definition 3.4.5. A polyadic algebraBover a set of variables V is a tuple (B , V,S ,∃)

such that B is a Boolean algebra,S : V V →EndB and ∃ is a map fromP V to the

set of quantifiers on B , such that

(P1) ∃(;) is the identity map on B .

(P2) ∃(J ∪K ) = ∃(J )∃(K ) for all J , K ⊆V

(P3) S maps the identity on V to the identity on B .
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(P4) S (στ) =S (σ)S (τ) for allσ,τ∈V V

(P5) S (σ)∃(J ) =S (τ)∃(J ), ifσ and τ coincide on V \ J .

(P6) ∃(J )S (τ) = S (τ)∃(τ−1 J ) for all transformations τ which are injec-

tive when restricted to τ−1 J .

Definition 3.4.6. A polyadic algebra B = (B , V,S ,∃) is called locally finite if for

each P ∈ B there exists a finite set W ⊆ V such that ∃(J )P = P for all J ⊆ V such

that J and W are disjoint.

Ouellet [Oue82] reformulated Halmos’ polyadic algebras using Boolean val-

ued presheaves. He characterised the locally finite polyadic algebras on a set of

variables V as Boolean algebra objects in the category of locally finite V -actions

that admit suprema indexed by V . A V -action on a set X is locally finite if each

element x ∈ X has a finite support (or is finitely supported), that is, there exists

a finite subset W of V , such that any function ξ : V → V that acts as the identity

on W has no effect on x , i.e. ξx = x . Note that any locally finite polyadic algebra

is equipped with a V -action given by (P3) and (P4), which is locally finite be-

cause of (P5). The locally finite V -actions are exactly the nominal substitutions

in [Sta09].

Ouellet [Oue82] uses the equivalence [Oue81] between the category of lo-

cally finite V -actions and SetF+ . The proof of the next theorem shows how this

equivalence restricts to an equivalence between FOL-algebras and locally finite
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polyadic algebras.

Theorem 3.4.7. The category of FOL-algebras is equivalent to the category of

locally finite polyadic algebras.

Proof. First we construct a functor from FOL-algebras to locally finite polyadic

algebras. Let α : QB → B be a FOL-algebra. Let us fix an infinite set of variables

V .

We consider the Boolean algebra B [ = Lani B (V ), where Lani B is the left Kan

extension of B along the inclusion i : F+ → Set. Notice that B [ is computed

as a colimit in the comma category (i , V ), more explicitly, it is isomorphic to

lim−→ f :n→V B (n ). So B [ is a quotient of the disjoint union of B (n ) taken over all

n ≥ 1 and all maps f : n → V . Consider an element P in the copy of B (n ) that

corresponds to a function f : n → V mapping i ∈ n to vi ∈ V . We will denote

by [P(v1, . . . , vn )] the equivalence class of P . Two elements of B [, [P(v1, . . . , vn )]

and [Q(w1, . . . , wm )], are equal iff there exist maps l : n → p , k : m → p and

h : p → V such that h(l (i )) = vi for all i ∈ n , h(k (j )) = w i for all j ∈ m and

B (l )(P) = B (k )(Q).

For any map ξ : V → V we define S (ξ) to be the Boolean algebra mor-

phism Lani (B )(ξ). So we have a V -action structure on B [. Moreover B [ is a

locally finite V -action, because each element is finitely supported. Indeed, an

element of B [ of the form [P(v1, . . . , vn )] is supported by the finite set with ele-
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ments v1, . . . , vn . In fact each x ∈ B [ has a minimal support denoted by supp(x ).

Moreover if supp(x ) = {v1, . . . , vn} for some n ≥ 1, then there exists P ∈ B (n ) such

that x = [P(v1, . . . , vn )]. If x has empty support, then for any tuple of variables

(v1, . . . , vn ) there exists P ∈ B (n ) such that x = [P(v1, . . . , vn )].

Next, for each subset W ⊆ V we define an existential quantifier ∃W . First

we do this for singleton sets. Assume v ∈ V , and x ∈ B [. There exists n ≥ 1

and P ∈ B (n +1) such that x = [P(v1, . . . , vn , v )] for some variables v1, . . . , vn , all

different than v . We define ∃v (x ) = [(∃n P)(v1, . . . , vn )]. One can check that this

definition does not depend on the choice of P or of the variables v1, . . . , vn . Note

that ∃n P is just an abbreviation for αn (∃n P).

Remark 3.4.8. We have that supp(∃v (x )) = supp(x ) \ {v }.

We need to show that ∃v is indeed an existential quantifier on B [.

1. ∃v 0= 0 follows from ∃n 0n+1 = 0n .

2. Let us prove that ∃v (x )≥ x . With the notations above we have that

∃v (x ) = [(∃n P)(v1, . . . , vn )]

= [(wn∃n P)(v1, . . . , vn , v )]

≥ [P(v1, . . . , vn , v )]

= x .

(3.27)
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3. The fact that ∃v (x ∨ y ) = ∃v (x ) ∨ ∃v (y ) follows from the corresponding

equation for ∃n .

4. Let us prove that ∃v (∃v (x )) = ∃v (x ). Using Remark 3.4.8 it is enough to

show that ∃v (x ) = x for all x whose support does not contain v . Indeed,

if x is such that v 6∈ supp(x )⊆ {v1, . . . , vn}, then x = [P(v1, . . . , vn )] for some

P ∈ B (n ). Then ∃v (x ) = [(∃n wn P)(v1, . . . , vn )] ≤ [P(v1, . . . , vn )] = x . On the

other hand we know that ∃v (x )≥ x .

5. In order to prove that ∃v (¬∃v (x )) = ¬∃v (x ) we use the same argument as

above, plus the observation that supp(¬x ) = supp(x ) for all x ∈ B [.

Lemma 3.4.9. For u , v ∈V and x ∈ B [ we have ∃v (∃u (x )) = ∃u (∃v (x ))

Proof. There exists P ∈ B (n +2) such that x = [P(v1, . . . , vn , u , v )], for n ≥ 1 and

for variables v1, . . . , vn different form u , v . It remains to show that

∃n∃n+1σ
(n+1)
n+2 (P) = ∃n∃n+1(P). (3.28)

From the equations it follows that

wn+1wn∃n∃n+1(P)≥ P

⇔ σ
(n+1)
n+2 wn+1wn∃n∃n+1(P)≥σ(n+1)

n+2 P

⇔ wn+1wn∃n∃n+1(P)≥σ(n+1)
n+2 P

⇔ ∃n∃n+1(P)≥∃n∃n+1σ
(n+1)
n+2 (P).

(3.29)
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Applying the last inequality toσ(n+1)
n+2 (P) instead of P , we get that ∃n∃n+1(P)≤

∃n∃n+1σ
(n+1)
n+2 (P), so in fact we have equality.

Now we can define the existential quantifier ∃W for an arbitrary subset W ⊆

V . If x ∈ B [ is such that supp(x ) ∩W = {v1, . . . , vn}, then we define ∃W (x ) =

∃v1 . . .∃vn (x ). The above lemma implies that ∃W is well defined.

We have to show that these existential quantifiers satisfy the equations defin-

ing a polyadic algebra. It is straightforward to check (P1)-(P5), so we will only

give the proof for (P6). Assume W ⊆ V and ξ ∈ V V is injective when restricted

to ξ−1(W ). We need to show that ∃W ◦ξ= ξ ◦ ∃ξ−1(W ). This is immediate using

the observation that supp(ξ(x ))⊆ ξ(supp(x )).

The polyadic algebra obtained in this way is locally finite in the sense of

Definition 3.4.6. Indeed, for x ∈ B [ we have ∃(J )x = x for all sets J , such that

J ∩ supp(x ) = ;.

Conversely, given a locally finite polyadic algebra (B, V,S ,∃), let us construct

a FOL-algebra B]. The map S : V V → End(B) determines a V -action structure

on B such that each element is finitely supported. For each n > 0 define B](n )

to be the set of V -action morphisms from V n to B, where V n is endowed with

the component-wise evaluation action. If f : n → m is a morphism in F, and

P : V n →B is an element of B](n ) then

B]( f )(P)(v1, . . . , vm ) = P(v f (1), . . . , v f (n ))
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We have to construct an algebra α : QB] → B]. This will be determined by

the maps ∃n : B](n +1) → B](n ) defined as follows: For P ∈ B](n +1) define

(∃n P)(v1, . . . , vn ) = ∃v (P(v1, . . . , vn , v )) for some v distinct from all the vi -s. From

(P6) it follows that this is well-defined. It is trivial to check that ∃n preserves

joins.

We can check that for all P ∈B](n )we have that ∃n wn P = P . Indeed

∃n wn P(v1, . . . , vn ) = (∃v )((wn P)(v1, . . . , vn , v )) (3.30)

for some v different than v1, . . . , vn . Therefore

∃n wn P(v1, . . . , vn ) = (∃v )(P(v1, . . . , vn )) = P(v1, . . . , vn ).

The last equality holds because supp(P(v1, . . . , vn )) ⊆ {v1, . . . , vn} does not con-

tain v .

For P ∈ B](n +1) we have that (wn∃n P)(v1, . . . , vn , vn+1) = (∃n P)(v1, . . . , vn ) =

(∃v )(P(v1, . . . , vn , v ) ≥ P(v1, . . . , vn , vn+1) for some v 6∈ {v1, . . . , vn}. The last in-

equality follows from (P5) and the fact that (∃v )(P(v1, . . . , vn , v ))≥ P(v1, . . . , vn , v ).

One can check that the functors [ and ] give an equivalence of categories.
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3.5 Appendix: Proof of theorem 3.3.1

Proof. (a) First we show that SetI is a category of (ΣI, EI)-algebras. The intended

interpretation of the operation symbols above is the following: If a ,b 6∈ S then

(b/a )S corresponds to the bijective map from S∪{a } to S∪{b}which substitutes

b for a . The symbol wS,a corresponds to the inclusion of S into S∪{a }. It easy to

check that these morphisms satisfy the equations listed above. We have to check

that each morphism in I can be written as a composition of such inclusions and

substitutions. First notice that the swapping of elements a ,b of a set S ∪ {a ,b},

is obtained as the composition

σa ,b = (b/c )S∪{a }(a/b )S∪{c}(c/a )S∪{b} (3.31)

where c 6∈ S ∪ {a ,b}. Therefore all bijections are generated by substitutions. If

the cardinality of a subset S of A is less or equal than the cardinality of a finite

subset T of A, then one can construct an injective map i : S→ T , by enlarging S

with elements of T \S (using the inclusions) until it reaches the cardinality of T ,

and then by substituting the remaining elements of T \S for those of S \T . Now

any other map j : S→ T is obtained by composing i with a bijection on T .

(b) Conversely, it is enough to check that different representations of an injective

map ι : S→ T in I as composition of inclusions and substitutions are equivalent

via the equations EI. Using (E4) and (E7) one can prove that each representation
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of ι can be reduced to one of the form s1 . . . sk wa 1 . . . wa l where the s i -s stand

for substitutions. Using (E1) one can reduce the problem to showing that if the

equality s1 . . . sk wa 1 . . . wa l = wb1 . . . wbh holds in I then it can be derived from

EI. For cardinality reasons we must have l = h. Notice that using (E5) and (E6)

we can reduce this to the simpler problem in which {a 1, . . . , a l }= {b1, . . . ,b l }. As-

sume that wa l has arity S→S∪{a l }. The arities for the rest of the w ’s can be now

deduced. Because the equality holds in I we have that s1 . . . sk is a permutation

on S ∪{a 1, . . . , a l }which is the identity when restricted to S.

We finalize the proof using the well known presentation of the symmetric groups.

Firstly, Lemma 3.5.2 asserts that the equations which are enough to give a pre-

sentation for the symmetric group are satisfied by σa ,b -s, where σa ,b is the ab-

breviation introduced in (3.31). Secondly, Lemma 3.5.1 asserts that a sequence

of substitutions whose interpretation is a permutation, can be reduced to a se-

quence of σa ,b -s. Then the sequence s1 . . . sk can be rewritten as a sequence of

σa ,b -s with the a and b only from the set {a 1, . . . , a l }. To finish, notice that it is

straightforward to derive from EI thatσa i ,a l wa i wa l =wa i wa l .

Lemma 3.5.1. Let s1, ..., sk be a sequence of substitutions, such that the compo-

sition s1 . . . sk of their interpretation in I is possible and moreover it is a permu-

tation. Then we can reduce s1 . . . sk to a sequence ofσa i ,b i ’s, where eachσa i ,b i is

a sequence of 3 substitutions as defined in (3.31).
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Proof. The proof is by induction on k . If k = 0 we have nothing to prove. As-

sume the statement of the lemma has been proved for k −1, let us prove it for k .

Assume sk = (c/a ). This means that s1 . . . sk is a permutation on a set which con-

tains a . In particular a is in the image of s1 . . . sk . Therefore there exists i such

that 1≤ i < k and s i is of the form (a/y )T for some atom y and some set T . Con-

sider the i maximal with this property. The idea is to rewrite the sequence using

the equations such that the rightmost substitution of the form (a/y )T can be

moved to position k −1. If i < k −1 we know that the substitutions s i+1, . . . , sk−1

do not involve a . We have two cases:

1. y does not appear in the substitutions s i+1, . . . , sk−1 . We can use (E2) to

prove that the sequence s1 . . . sk can be rewritten to a sequence s ′1 . . . s ′k−1sk

such that s ′k−1 = (a/y ). If y = c we can reduce the sequence to a shorter

one, via (E1) and apply the induction hypothesis. If y 6= c , then, by (E1), we

know that s ′1 . . . s ′k−1sk = s ′1 . . . s ′k−2(c/y )(y /c )(a/y )(c/a ). But this is equal

to s ′1 . . . s ′k−2(c/y )σa ,y . By the induction hypothesis s ′1 . . . s ′k−2(c/y ), which

is of length k −1 can be reduced to a sequence of transpositions.

2. y does appear in the substitutions s i+1, . . . , sk−1. Because of (E2), we may

assume without loss of generality that s i+1 = (y /w ). But now we can use

(E3) to reduce the sequence s i s i+1 to (a/w ). The resulting sequence is

shorter and the conclusion follows by the induction hypothesis.
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Lemma 3.5.2. The following can be derived from the equations EI:

1. For all pairwise distinct names a ,b ,x , y 6∈S we have that

(b/x )S∪{a }(a/b )S∪{x }(x/a )S∪{b} = (b/y )S∪{a }(a/b )S∪{y }(y /a )S∪{b}.

In what follows we will abbreviate (b/x )S∪{a }(a/b )S∪{x }(x/a )S∪{b} byσa ,b .

2. If a 6=b thenσ2
a ,b = id

3. If a ,b , c , d are pairwise distinct names thenσa ,bσc ,d =σc ,dσa ,b .

4. If a ,b , c are pairwise distinct names then (σa ,bσb ,c )3 = id.

Proof. 1. From the equations we can derive:

(b/x )S∪{a }(a/b )S∪{x }(x/a )S∪{b}

=(E1) (b/x )S∪{a }(x/y )S∪{a }(y /x )S∪{a }(a/b )S∪{x }(x/a )S∪{b}

=(E3) (b/y )S∪{a }(y /x )S∪{a }(a/b )S∪{x }(x/a )S∪{b}

=(E2) (b/y )S∪{a }(a/b )S∪{y }(y /x )S∪{b}(x/a )S∪{b}

=(E3) (b/y )S∪{a }(a/b )S∪{y }(y /a )S∪{b}.

(3.32)
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2. Choose x , y distinct from a ,b . Then

σ2
a ,b

= (b/x )S∪{a }(a/b )S∪{x }(x/a )S∪{b}(b/y )S∪{a }(a/b )S∪{y }(y /a )S∪{b}

=(E2) (b/x )S∪{a }(a/b )S∪{x }(b/y )S∪{x }(x/a )S∪{y }(a/b )S∪{y }(y /a )S∪{b}

=(E3) (b/x )S∪{a }(a/y )S∪{x }(x/b )S∪{y }(y /a )S∪{b}

=(E2) (b/x )S∪{a }(x/b )S∪{a }(a/y )S∪{b}(y /a )S∪{b}

=(E1) idS∪{a ,b}.

(3.33)

3. This follows easily from point 1. above and (E2).

4. This can be proved in the same spirit as point 2. above. The key is to show

thatσa ,bσb ,c = (c/y )(a/c )(b/a )(y /b ) for some y 6∈ {a ,b , c}.



Chapter 4

HSP like theorems in nominal

sets

In this chapter we will prove an HSP-theorem for algebras over the topos Sh(Iop)

in a systematic way.

In the first section we prove general results using categorical techniques. To

set the scene we outline a categorical proof of Birkhoff’s HSP theorem. Then,

in Theorem 4.1.5, we show how to obtain an HSP-theorem for a full reflective

subcategory A of a category of algebras C , if some additional conditions are

met. Recall thatA is a reflective subcategory of C when the inclusion functor

has a left adjoint, see [ARV10]. Essentially, this is achieved by ‘pushing’ the proof

of the general HSP-theorem through the adjunction

79



80

A 44⊥ Ctt
.

This result is interesting becauseA might not be a variety. We also prove a gen-

eral result, Proposition 4.1.6, concerning a lifting property of an adjunction to

categories of algebras for certain functors.

Secondly, in Section 4.2, we apply these results to the nominal setting. Con-

sider the following diagram

Alg(L̃)
I∗

33

Ũ

��

⊥ Alg(L)
I ∗

ss

U

��
Sh(Iop)

I∗

33L̃ :: ⊥ SetI
I ∗

rr
Lbb

(4.1)

where L is an endofunctor on SetI that preserves sifted colimits, and L̃ is an end-

ofunctor on Sh(Iop), such that L̃I ∗ ' I ∗L. Using Proposition 4.1.6 we prove that

the adjunction between Sh(Iop) and SetI can be lifted to an adjunction between

Alg(L̃) and Alg(L). On the right hand side of this diagram we have categories

monadic over Set|I|, for which the classical HSP-theorem holds. We derive an

HSP theorem for Alg(L̃), by applying Theorem 4.1.5.
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4.1 HSP theorems for full reflective subcategories

Birkhoff’s HSP Theorem. Given a category of algebras C , a full subcategory

B ⊆C is closed under quotients (H for homomorphic images), subalgebras (S),

and products (P) iffB is definable by equations.

This theorem can be proved at different levels of generality. We assume here

that C is monadic over Setκ, for some cardinal κ. We denote by U : C → Setκ

the forgetful functor and by F its left adjoint. Then we can identify a class of

equations Φ in variables X with quotients F X → Q . Indeed, given Φ we let Q

be the quotient F X/Φ and, conversely, given F X →Q we let Φ be the kernel of

F X →Q . Further, an algebra A ∈ C satisfies the equations iff all F X → A factor

through F X →Q as in the diagram

A |=Φ ⇔ F X //

∀   AAAAAAAA F X/Φ

∃||
A

(4.2)

Proof of ‘if’. We want to show that a subcategoryB defined by equations

Φ is closed under HSP. Closure under subobjects A ′→ A follows since quotients

and subobjects form a factorisation system (see e.g. [AHS90, 14.1]). Indeed,

according to (4.2), to show A |=Φ⇒ A ′ |=Φ one has to find the dotted arrow in

F X //

��

F X/Φ

{{ ��
A ′ // A
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which exists because of the diagonal fill-in property of factorisation systems. A

similar argument works for products (because of their universal property) and

for quotients (using that free algebras are projective [AHS90, 9.27]).

Proof of ‘only if’. GivenB ⊆ C , we first need to find the equations. Since

B is closed under SP, B is a full reflective subcategory, that is, the inclusion

B →C has a left-adjoint H and, moreover, the unit A →HA is a quotient.1 We

take as equations all F X → H F X . That all A ∈ B satisfy these equations, again

using (4.2), follows immediately from the universal property of the left-adjoint

H . Conversely, suppose that A satisfies all equations. Consider the equations

q : FUA → H FUA. Because of (4.2), the counit e : FUA → A must factor as

e = f ◦q . Since e and q are quotients, so is f . Hence A is a quotient of H FUA,

which is inB .

Remark 4.1.1. Notice that in the proof above we allow quotients F X →H F X for

arbitrary κ-sorted sets X . If the set X is infinite, we allow equations involving

infinitely many variables. Therefore we no longer reason within finitary logic. If

we impose that the equations involve only finitely many variables, then the HSP

theorem is not true for arbitrary many-sorted varieties. Indeed, in the many-

1To construct HA given A, consider all arrows f : A→ B f with codomain inB ; factor f = A
q f
→

B̄ f

i f
→ B ; up to isomorphism, there is a only a proper set of different q f ; now factor A

〈q f 〉
−→
∏

f B̄ f as

A→HA→
∏

f B̄ f to obtain the unit A→HA.
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sorted case, closure under homomorphic images, sub-algebras and products

is no longer enough to deduce equational definability (see [ARV10, Example

10.14.2]). One needs an additional constraint, namely closure under directed

unions, [ARV10, Theorem 10.12]. But in the motivating example of SetI, we will

prove that closure under HSP implies closure under directed unions.

In the following, we show that it is possible to obtain an HSP theorem for

certain subcategories of varieties, by pushing the argument above through an

adjunction. But first let us say what we mean in this context by equationally

definable and closed under HSP.

We will work in the following setting. LetC be a category monadic over Setκ

for some cardinal κ, let U :C → Setκ denote the forgetful functor and let F be its

left adjoint. ConsiderA a full reflective subcategory ofC . Let I :A →C denote

the inclusion functor and let R :C →A denote its left adjoint. Assume thatA

has a factorization system (E , M ), such that for all regular epimorphisms e inC

we have Re ∈ E and for all monomorphisms m inC we have that Rm ∈M .

Definition 4.1.2. We say thatB ,→A is equationally definable if there exists a

set of equations Φ inC , such that an object A ofA lies inB iff I A |=Φ (where Φ

and |= are as in (4.2)). We say thatB is closed under HSP if and only if

1. For all morphisms e : B→ B ′ such that e ∈ E and I e is a quotient, we have

that B ∈B implies B ′ ∈B .
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2. For all morphisms m : B → B ′ such that m ∈M we have B ′ ∈ B implies

B ∈B .

3. If Bi are inB then their product inA is an object ofB .

Remark 4.1.3. In general, the inclusion functor I does not preserve epimor-

phisms. We will assume that the arrows in M are monomorphisms. Being a

right adjoint, I preserves products and monomorphisms, but we cannot infer

from B ′→ I B being a monomorphism inC that B ′ is (isomorphic to an object)

inA .

Remark 4.1.4. The third item of Definition 4.1.2 makes sense only if A has

products. ButA is complete, sinceA is a full reflective category of a complete

category, see [Bor94, Proposition 3.5.3].

If C is a category monadic over Setκ for some cardinal κ and A is a full

reflective subcategory ofC , thenA is complete and is well-powered becauseC

is. Hence we can equipA with a strong-epi/mono factorisation system [Bor94,

4.4.3]. We can prove:

Theorem 4.1.5. LetC be a category monadic over Setκ for some cardinal κ and

A a full reflective subcategory of C , such that the left adjoint of the inclusion

functor preserves monomorphisms. Then B ⊆ A is closed under HSP in the

sense of Definition 4.1.2 if and only ifB is equationally definable.
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Proof. We will use U to denote the forgetful functor C → Setκ and F to denote

its left adjoint. I denotes the full and faithful functorA →C and R denotes its

left adjoint.

Note that in A (as in C ) strong epis coincide with extremal epis [Bor94,

4.3.7] and with regular epis [AHS90, 14.14, 14.22]. The proof of the theorem relies

on the following two properties

e regular epi inC ⇒ Re regular epi inA (4.3)

m mono inA ⇒ I m mono inC (4.4)

(4.3) holds because R is a left-adjoint and (4.4) because I is a right adjoint. Also

note that we have the converse of (4.4), since I is full and faithful.

Let us prove that equational definability implies closure under HSP. Let B

be an equationally definable subcategory of A . That means that there exists

an equationally definable subcategoryB ′ ofC such that B is an object ofB iff

I B is an object ofB ′. The proof of the fact thatB is closed under HSP in the

sense of Definition 4.1.2, follows from the HSP theorem applied forB ′ and the

following observations:

1. The quotients e ∈ E considered in Definition 4.1.2 are exactly those for

which I e is a regular epimorphism inC .

2. I preserves monomorphisms.
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3. I preserves products.

Conversely, letB be a subcategory ofA , closed under HSP, as in the previous

definition. We will prove thatB is equationally definable. We proceed in three

steps:

Step 1 (construction of the equations that define B): Let C be an arbitrary

object ofC . We will consider all morphisms f i : RC → Bi inA such that Bi is in

B . For each i , the corresponding morphism inC , f
]
i : C → I Bi factors inC :

C

Bi

I Bi

e i

��????

m i������
f
]
i

��

We will denote by η and ε the unit, respectively co-unit, of the adjunction

R a I . One can easily show that the following diagram commutes:

RC

R Bi

Bi

Re i

��????

εBi ◦Rm i������
f i

��

(4.5)

Since R preserves regular epis and monos, and εBi is an isomorphism (I is full

and faithful), we have that (4.5) is a factorisation of f i in A . But B is closed

under subobjects, hence R Bi is actually an object of B . Since C is co-well-

powered, there is only a proper set of different e i up to isomorphism, so we can

take the product P of the objects of the form R Bi , obtained as above. P is again
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an object ofB , and we have a morphism α : RC → P , uniquely determined by

the Re i . We consider a factorisation inC of the adjoint map α] : C → I P :

C

QC

I P

e
��?????

m�������
α]

��

(4.6)

Using a similar argument to the above we deduce that RQC is an object ofB and

the following diagram commutes:

RC RQC

R BiBi P.

Re //

f i

��

εP◦Rm

��
πi

oo
εB ◦Rm i

oo

(4.7)

We consider the class of equations E of the form F X →QF X for all sets X , and

denote byB ′ the subcategory ofC defined by these equations.

Step 2 (B is contained in the class defined by the equations E ): We show that

if an object B ofA lies inB , then I B satisfies the equations in E . Let B be an

object ofB , and let u : F X → I B be an arbitrary morphism. For the adjoint mor-

phism u ] : RF X → B , one can construct a morphism g : RQF X → B , obtained as

in diagram (4.7), such that g ◦Re = u ].

It is easy to see that g ] : QF X → I B makes the following diagram commutative.

This shows that I B satisfies the equation e : F X →QF X :
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F X QF X

I B

e //

g ]

���������������

u

��

(4.8)

Step 3 (The subcategory defined by the equations E is contained in B): Let

B be an object inA such that I B satisfies the equations in E . In particular I B

satisfies FU I B →QFU I B , so there exists v : QFU I B → I B such that v ◦ e = ε′I B ,

where ε′ is the counit of the adjunction F a U . Since ε′ is a regular epi, then

v is also a regular epi. We have that the composition εB ◦Rv : RQFU I B → B is

a regular epi inA . Since the codomain of v is in the image of I , I Rv is also a

regular epi, therefore so is I (εB ◦Rv ). Using the fact thatB is closed under H,

and that RQFU I B is already inB , we can conclude that B ∈B .

The next proposition allows us to lift an adjunction between two categories to

an adjunction between categories of algebras for functors satisfying some addi-

tional conditions.

Proposition 4.1.6. Let 〈R , I ,η,ε〉 : A * B be an adjunction. Let K and L be

endofunctors onA andB , respectively. Suppose there exist natural transfor-

mations: κ : K R → RL and λ : LI → I K making the following diagrams com-
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mute:

LI R I RL

L

I K R
λR // Iκ //

Lη

__?????????????
ηL

??�������������

K RI RI K

K

RLI
κI // Rλ //

εK

���������������

K ε

��?????????????

(C1) (C2)

(4.9)

Then there exists an adjunction 〈R , I ,η,ε〉 : Alg(K )* Alg(L), such that UAR =

RUB and IUA =UB I , where UA and UB denote the forgetful functors as in the

next diagram:

Alg(K )
I

33

UA

��

⊥ Alg(L)
R

rr

UB

��
A

I

44K << ⊥ B
R

ss
Laa

(4.10)

Proof. First let us define the functor I . Let f : K A→ A be a K -algebra. We define

I (A, f ) := (I A, I f ◦ λA ). For an arbitrary morphism of K -algebras u : (A, f ) →

(A ′, f ′), we define I (u ) = I u . The fact that I u is a morphism of L-algebras follows

from the commutativity of the outer square of the next diagram:

LI A
λA //

LI u
��

I K A
I f //

I K u
��

I A

I u
��

LI A ′
λ′A // I K A ′

I f ′ // I A ′

(4.11)

But the small squares commute, the former because λ is a natural transforma-

tion, and the latter because u is a K -algebra morphism. It is obvious that I is a
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functor and that IUA =UB I . The functor R is defined similarly: if g : LB → B

is a L-algebra, we define R(B , g ) = (R B , R g ◦ κB ). If v : (B , g )→ (B ′, g ′) is a L-

algebra morphism, we define R(v ) = Rv . The fact that Rv is indeed a K -algebra

morphism is verified easily, using the naturality of κ and the fact that v is a L-

algebra morphism.

In order to prove that R is left adjoint to I , we will show that the unit η and

the counit ε of the adjunction R a I are L-algebra and K -algebra morphisms

respectively. This follows from the hypothesis (4.9) and the naturality of η and ε

respectively.

Once this is achieved,η can be lifted to a natural transformationsη : id→ I R ,

and similarly ε can be lifted to a natural transformation ε : RI → id. But η and

ε are the unit and the counit of the adjunction R a I , therefore they satisfy the

usual triangular equalities. Therefore, η and ε satisfy the triangular equalities

for R and I .

Remark 4.1.7. The proposition has some useful special cases, under the addi-

tional assumption that I is full and faithful. For each of them, the commutativity

of the diagrams (4.9) is straightforward to verify, using that the counit ε is iso.

1. Suppose L is given and we want to find an appropriate K . Then it follows

from the theorem that we can do this, provided there is a natural transfor-
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mation α : LI R→ I RL such that the diagram below commutes:

LI R I RL

L

α //

Lη

__?????????????
ηL

??�������������

(4.12)

If this is the case, one defines K = RLI , κ : K R = RLI R → RL as the com-

position εRL ◦Rα and λ : LI → I RLI = I K as ηLI . Moreover, when α is an

isomorphism, we have that Rα and hence K R→RL are isomorphisms.

2. More generally, suppose we have given an isomorphism κ : K R → RL.

Then we define λ= I K ε ◦ Iκ−1I ◦ηLI . (Given K we can always find such

a κ: Let L = I K R and κ= (εK R)−1 : K R ∼=RI K R .)

Let Σ be a polynomial functor ΣX =
∐

i∈J X n i . IfA andB have (co)products,

then Σ is defined on both categories, so it makes sense to write RΣ ∼= ΣR . The

following corollary says that for polynomial functors Σ the adjunction always

lifts from the base categories to the categories of Σ-algebras.

Corollary 4.1.8. Let 〈R , I ,η,ε〉 : A * B be an adjunction such that I is full

and faithful. Further assume that both categories have coproducts and finite

products and that R preserves finite products. Consider an endofunctor ΣX =

∐

i∈J X n i onA and onB . Then the adjunction lifts to an adjunction 〈R̄ , Ī ,η,ε〉 :

Alg(Σ)*Alg(Σ).
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Proof. We use item 2 of the remark above and calculate RΣA = R(
∐

i∈J An i ) ∼=

∐

i∈J (RA)n i =ΣRA.

Remark 4.1.9. R preserves finite limits whenever R does.

Proof. Assume (B , g ) = lim←−(Bi , g i ) is a finite limit in Alg(L). Since UB preserves

all limits by [ARV10, Remark 12.17], we have that B = lim←−(Bi ) inB , and therefore

R B = lim←−(R Bi ). Denote R(Bi , g i ) by (R Bi , f i ) and by πi : R B → R Bi the mor-

phisms of the limiting cone. For each index i we have a map p i : K R B → R Bi

obtained as the composition f i ◦Kπi . From the universal property, we obtain a

map f : K R B → R B , such that each πi is a K -algebra morphism from (R B , f ) to

(R Bi , f i ). We prove next that (R B , f ) = lim←−(R Bi , f i ) in Alg(K ). Assume that we

have a cone qi : (C , h)→ (R Bi , g i ). Since R B is a limit inA we get a unique map

k : C → R B , such that πi ◦ k = qi . We need to show that k is a K -algebra mor-

phism. To this end we will use the uniqueness of a morphism from K C → R B

that makes the relevant diagrams commutative.

4.2 HSP theorem for nominal sets and sheaf algebras

In this section we will prove an HSP theorem for algebras over Sh(Iop). We will

call these algebras ‘sheaf algebras’. Some of them, given by particular signatures,

correspond, in a sense that will be made precise in Section 4.5.1, to nominal al-



4.2 HSP theorem for nominal sets and sheaf algebras 93

gebras, [GM09]. The signature will be given by a functor L on SetI that has a

finitary presentation. On Sh(Iop)we can define the functor L̃ as I ∗LI∗. Through-

out this section we will use the notations from Diagram (4.1). The goal of this

section is to derive an HSP theorem for Alg(L̃) from Theorem 4.1.5. To this end

we will need to impose some reasonable conditions on the functor L.

Theorem 4.2.1. HSP theorem for ‘sheaf algebras’. In the situation of Dia-

gram (4.1), let L be an endofunctor with a finitary presentation on SetI and as-

sume there exists a natural transformation α : LI∗I ∗→ I∗I ∗L such that α ◦ Lη =

ηL. Let L̃ be the endofunctor on Sh(Iop) defined as I ∗LI∗. Then a full subcate-

gory of Alg(L̃) is closed under HSP if and only if it is equationally definable.

Proof. By Theorem 3.2.4, we have that Alg(L) is monadic over Set|I|, so it has a

regular factorisation system. By point 1 of Remark 4.1.7 and Proposition 4.1.6,

we can lift the adjunction I ∗ a I∗ of Proposition 2.4.8 to an adjunction I ∗ a I∗

between the categories of L̃-algebras and L-algebras. Since I ∗ preserves finite

limits, it preserves monomorphisms, so we can apply Theorem 4.1.5.

Remark 4.2.2. In the case of algebras over SetI, we can assume that the equa-

tions defining a subcategory closed under HSP involve only finitely many vari-

ables. It is enough to prove that if A ⊆ Alg(L) is closed under HSP then A is

also closed under directed unions, see also Remark 4.1.1. The idea of the proof
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is to construct the directed union of a directed family (X i )i∈J of algebras inA ,

as a homomorphic image of a subalgebra of a product of algebras X i , as in the

proof of [AR94, Theorem 3.9]. The subtlety here is that the product considered

there may be empty in the general many-sorted case, even if some of the X i are

not. However, in the case of algebras over SetI we can see that if one algebra

X i 0 has the underlying presheaf non-empty, say, for example X i 0 (S) 6= ;, then for

all j ≥ i 0 and for all sets T of cardinality larger than that of S we also have that

X j (T ) is non-empty. We can consider the product of the X j for j ≥ i 0, and this is

non-empty.

4.3 Concrete syntax

This section illustrates the concrete syntax obtained from the abstract category-

theoretic treatment of Section 4.2.

Specifying additional operations by a functor has the advantage that the initial

algebra of terms comes equipped with an inductive principle. For an example

see how λ-terms form the initial algebra for a functor in [FPT99, GP99, Hof99].

Recall from Section 3.3 the presentation for the category SetI given in The-

orem 3.3.1 and the ‘shift’ functor δ on SetI from Definition 3.3.2, which corre-

sponds to the abstraction operator of [GP99] and to the ‘shift’ functor on SetF

from [FPT99]. Theorem 3.3.3 gives a presentation of δ by operations and equa-
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tions.

Using these results, we illustrate the concrete syntax obtained in our setting,

by giving a theory for the λ-calculus. We consider an endofunctor L on SetI

given by

LX =N +δX +X ×X (4.13)

where N denotes the inclusion functor N : I→ Set. In order to show that the

HSP theorem holds for L̃-algebras, we need to prove that L satisfies the condi-

tions in Theorem 4.2.1. This is actually a particular case of Proposition 4.4.14

that will be proved in the next section. In Section 4.3.1 we prove that the sheaf

ofλ-terms up toα-equivalence is the initial algebra for L̃ = I ∗LI∗ and we give the

equations that characterise the subalgebra ofλ-terms moduloαβη-equivalence.

4.3.1 Axioms for the λ-calculus

The α-equivalence classes of λ-terms over A form a sheaf Λα in Sh(Iop). Indeed,

we can define Λα(S) as the set of α-equivalence classes of λ-terms with free vari-

ables in S. On functions Λα acts by renaming the free variables.

We consider the endofunctor L on SetI, defined by (4.13) and the endofunc-

tor L̃ on Sh(Iop) defined as I ∗LI∗. In a similar fashion as in [FPT99], we will show

that Λα is isomorphic to the initial algebra IL̃ for L̃.

First let us notice that the underlying presheaf of IL̃ is the initial algebra IL
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for L. Indeed, one can prove

Lemma 4.3.1. We have I∗IL̃ =IL .

Proof. We can check that L̃ preservesω-chains, so the initial algebra IL̃ is com-

puted as the colimit of the sequence

0̃→ L̃0̃→ L̃20̃→ ·· ·→IL̃ (4.14)

where 0̃ is just the empty sheaf. Let us denote by 0 the empty presheaf. Similarly

IL is the colimit of the initial sequence for L:

0→ L0→ L20→ ·· ·→IL . (4.15)

Using the observation that L preserves sheaves and the fact that I∗0̃= 0 we can

easily verify that I∗L̃n 0̃' Ln 0 for all natural numbers n . But I∗ preserves filtered

colimits, so we have that I∗IL̃ 'IL .

We consider a functor Σ : SetI→ SetI, defined by

ΣX =N +N ×X +X ×X . (4.16)

Notice that Σ preserves sheaves and that the initial algebra for Σ, let us denote

it by IΣ, is just the presheaf of all λ-terms. Using a similar argument as above

we can see that I∗IΣ̃ = IΣ. IΣ̃ is the sheaf of all λ-terms. We will prove the

isomorphism between Λα and IL̃ by constructing an epimorphism IΣ̃→IL̃ in

Sh(Iop) that identifies exactly α-equivalent terms.
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First let us prove the next lemma:

Lemma 4.3.2. There exists a natural transformation θ :N ×−→δ such that for

any presheaf X ∈ SetI and any finite set of names S ⊆ A we have that θ (a ,x ) =

θ (b , y ) for some a ,b ∈S and x , y ∈X (S) if and only if for all c 6∈S we have

X (wS\{a }∪{c},a (c/a )S\{a })(x ) =X (wS\{b}∪{c},b (c/b )S\{b})(x ). (4.17)

Moreover if X is a sheaf, then θX :N ×X →δX is a sheaf epimorphism.

Proof. We define θX (S) :N (S)×X (S)→ (δX )(S) by

(a ,x ) 7→ (δX )(wS\{a },a )({[a ]S\{a }x }δX ) (4.18)

where wS\{a },a is the inclusion of S \{a } into S. It is not difficult to check that this

is indeed a natural transformation. Assume now that (a ,x ), (b , y ) ∈N (S)×X (S)

and c ∈A \S. We have that θ (a ,x ) = θ (b ,x ) is equivalent to

(δX )(wS\{a },a )({[a ]S\{a }x }δX ) = (δX )(wS\{b},b )({[b ]S\{b}y }δX ) (4.19)

But

(δX )(wS\{a },a )({[a ]S\{a }x }δX ) = (δX )(wS\{a },a )({[c ]S\{a }(c/a )S\{a }x }δX )

= {[c ]SX (wS\{a },a + c )((c/a )S\{a }(x ))}δX

= {[c ]SX (wS\{a }∪{c},a )((c/a )S\{a }(x ))}δX

(4.20)

Similarly, (δX )(wS\{b},b )({[b ]S\{b}y }δX ) = {[c ]SX (wS\{b}∪{c},b )((c/b )S\{b}(y ))}δX .
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Since c 6∈S we have an isomorphismδX (S)'X (S∪{c}). Therefore (4.19) is equiv-

alent to (4.17).

In order to prove the last statement of the lemma, we use the characterisation

of sheaf epimorphisms given in Proposition 2.4.16. Let {[c ]Sy }δX be an arbitrary

element of (δX )(S). We have that c 6∈S and y ∈X (S∪{c}). The conclusion follows

from the fact that θX (S ∪{c})(c , y ) = (δX )(wS,c )({[c ]Sy }δX ).

Proposition 4.3.3. The sheaf of α-equivalence classes of λ-terms is isomorphic

to the initial L̃-algebra IL̃ .

Proof. This can be obtained by an inductive argument on the structure of the

λ-terms. Using the natural transformation θ defined above we can construct a

natural transformation ϑ :Σ→ L defined as ϑX = idA+θ +idX×idX . Now we can

define inductively a natural transformation ζ(n ) : Σn → Ln . Explicitly, ζ(0) = id0

and ζ(n+1)
X = Ln (ϑX )ζ

(n )
ΣX . We have the following commutative diagram

0 //

ζ(0)

��

Σ0 //

ζ(1)

��

Σ20 //

ζ(2)

��

. . . // IΣ
ζ

��
0 // L0 // L20 // . . . // IL

(4.21)

where ζ is obtained by taking the colimit. As seen above, IL and IΣ are the

underlying presheaves for the sheaves IL̃ and IΣ̃, respectively.

Using Lemma 4.3.2, we can argue inductively that ζ(n )X is a sheaf epimor-

phism for all n and for all sheaves X . One can verify that this implies that ζ is
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a sheaf epimorphism. If two terms in IΣ are identified by ζ, then they must

be identified at some stage n by ζ(n ). Using Lemma 4.3.2 again, we can show

by induction that two terms are in the kernel of ζ(n ) if and only if they are α-

equivalent.

To illustrate the concrete syntax appearing in our setting, we give a presen-

tation for the functor L and a theory over the signature given by L for αβη-

equivalence of λ-terms.

Proposition 4.3.4. The endofunctor L is presented by a set of operation symbols

aS : S ∪{a }

appS : S×S→S

[a ]S : S ∪{a }→S

where S is a finite set of names and a 6∈S, and the following set of equations:

` (b/a )SaS =bS (E0)

` wS∪{a },b aS = aS∪{b} (E1)

t : S ∪{a ,b} ` (c/b )S([a ]S∪{b}t ) = idS∪{c}([a ]S∪{c}(c/b )S∪{a }t ) (E2)

t : S ∪{a } ` [a ]St = [b ]S(b/a )St (E3)

t : S ∪{a } ` wS,b [a ]St = [a ]S∪{b}wS∪{a },b t (E4)

t1, t2 : S ` wS,aappS(t1, t2) = appS∪{a }(wS,a t1, wS,a t2) (E5)

t1, t2 : S ∪{a } ` (b/a )SappS∪{a }(t1, t2) = appS∪{b}((b/a )St1, (b/a )St2) (E6)
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Proof. The operation symbols aS and the equations (E0) and (E1) present the

constant functor N . The operation symbols [a ]S and the equations (E2), (E3)

and (E4) give a presentation of δ, recall Theorem 3.3.3. Finally, the operations of

the form appS and equations (E5) and (E6) form a presentation for X ×X , just as

in Example 3.2.3.

Example 4.3.5. The subalgebra of Alg(L̃) of λ-terms modulo αβη-equivalence

is definable by the following equations, similar to [CP07, Fig. 4].

X : S ∪{a }; Y : S ` appS∪{a }(wa [a ]S(wa Y ), X ) =wa Y : S ∪{a } (β-1)

X : S ` appS([a ]S(aS), X ) =X : S (β-2)

X : S ∪{a ,b}; Y : S ` appS([a ]S([b ]S∪{a }(X )), Y ) =

[b ]S(appS∪{b}([a ]S∪{b}(X ), wa Y )) : S (β-3)

X , Y : S ∪{a }; Z : S ` appS([a ]S(appS∪{a }(X , Y )),Z ) =

appS(appS([a ]S(X ),Z ),appS([a ]S(Y ),Z )) : S (β-4)

X : S ∪{a } ` appS∪{b}(wb [a ]S(X ),bS) = (b/a )X : S ∪{b} (β-5)

X : S ` [a ]S(appS∪{a }(wa X , aS)) =X : S (η)

The theory above is obtained by adapting the nominal equational theory

of [CP07, Fig. 4]. In Section 4.5.2 we make this precise, by giving an algorithm

for translating arbitrary theories of the nominal equational logic of [CP07] into

many-sorted theories having the same models. Hence the fact that the above
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equations define λ-terms modulo αβη-equivalence follows from [CP07, Exam-

ple 9.5] and Theorem 4.5.10.

4.4 Uniform Theories

Gabbay [Gab08]proves an HSP theorem for nominal algebras, or rather an HSPA-

theorem: A class of nominal algebras is definable by a theory of nominal algebra

iff it is closed under HSP and under abstraction.

Our equational logic is more expressive than Gabbay’s in the sense that more

classes are equationally definable, namely all those closed under HSP where H

refers not to closure under all quotients as in [Gab08], but to the weaker property

of closure under support-preserving quotients (i.e. quotients in the presheaf ca-

tegory). Of course, it is a question whether this additional expressivity is wanted.

We therefore isolate a fragment of standard equational logic, which we call the

uniform fragment, and define notions of uniform signature, uniform terms and

uniform equations. The main idea is that a uniform equation Γ ` t = u : T ,

where Γ= {X1 : T1, . . . , Xn : Tn} is a context of variables and T a finite subset of A,

has an interpretation uniform in all sorts S containing T .

For this uniform fragment we are able to extend Theorem 3.11 to an HSPA

theorem in the style of [Gab08]: classes of sheaf algebras are definable by uni-

form equations if and only if they are closed under quotients, subalgebras, prod-
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ucts and under abstraction.

Let us give an intuitive motivation for the notions introduced in this section.

Assume we want to investigate algebraic theories over nominal sets by studying

their transport to [I,Set]. Suppose we have some notion of signature and equa-

tions over nominal sets, such as the nominal equational logics of [GM09, CP07].

A nominal set X satisfies an equation, if for any instantiation of the variables,

possibly respecting some freshness constraints, we get equality in X . Notice that

the support of the elements of X used to instantiate the variables can be arbitrar-

ily large. Let us think what this means in terms of the corresponding presheaf

I X . For a finite set of names S, I X (S) is the set of elements of X supported by

S. So I X should satisfy not one, but a set of ‘uniform’ equations. This means

that we should be able to extend in a ‘uniform’ way the operation symbols to-

gether with their arities, the sort of the equations and the sort of the variables.

We formalize this below, following the same lines as in [KP10b].

We start with the observation that the theory of the λ-calculus up to αβη-

equivalence (Example 4.3.5) uses only particular operations: names (atoms in

[Gab08]), abstraction, and operations fS : An (S)→ A(S) that are ‘uniform’ in S.

This motivates us to consider sheaf algebras for signatures given by a particular

class of functors, and specified by ‘uniform’ equations.

Definition 4.4.1. A uniform signature is an |I|-sorted signature such that the
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operation symbols form a sheaf in SetI, say O , and such that all the operation

symbols f ∈O (T ) have arity of the form

T × · · ·×T → T0,

where T0 ⊆ T . We will use the notation

bind( f ) = T \T0 (4.22)

Additionally, we assume that if an operation symbol f ∈ O (T ) has arity T × · · · ×

T → T0 and j : T →S is an injective map, then O (j )( f ) has arity

S× · · ·×S→S \ j [bind( f )],

where j [bind( f )] denotes the direct image of bind( f ) under j . For an injective

map j : T →S we write j · f for O (j )( f ).

Looking at the theory of the λ-calculus in Example 4.3.5, we find that all op-

erations are equivariant and that the equations are ‘uniform’ in S. To formalise

the uniformity of an equational specification we first describe uniform terms,

given by the set of rules in Figure 4.1.

In Figure 4.1, there are four schemas of rules: one for each operation f :

T ×· · ·×T → T0, two for the operations in I (weakenings, substitutions), and one

for variables. Each rule can be instantiated in an infinite number of ways: T

ranges over finite sets of names and a ,b over names. Γ and Γi denote finite sets
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Γ1 ` t1 : T, . . . , Γn ` tn : T

Γ1 ∪ . . .∪Γn ` f (t1, . . . tn ) : T0
( f : T × · · ·×T → T0 ∈O (T ))

Γ ` t : T

Γ `wa t : T ]{a }
Γ ` t : T ]{a }

Γ ` (b/a )t : T ]{b} Γ `X : T
(X : T ∈ Γ)

Figure 4.1: Uniform terms

of sorted variables. Additionally, in the first rule we assume that if X : Ti ∈ Γi and

X : Tj ∈ Γj then Ti = Tj , that is, a variable has the same sort in all the contexts

Γi . The notation T ] {a } indicates that an instantiation of the schema is only

allowed for those sets T and those atoms a where a 6∈ T .

Definition 4.4.2. A uniform term Γ ` t : T for a uniform signature is a term

t of type T using variables from the context Γ formed according to the rules

in Figure 4.1. A uniform equation is a pair of uniform terms of the same sort

Γ ` u = v : T . A uniform theory consists of a set of uniform equations.

Example 4.4.3. A uniform theory for λ-calculus consists of the following uni-
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form equations in the uniform signature given by the functor δ+N ×−+−×−:

X : ;, Y : ; ` app([a ](wa Y ), X ) = Y : ; (β-1)

X : ; ` app([a ]a , X ) = X : ; (β-2)

X : {a ,b}, Y : ; ` app([a ]([b ]{a }(X )), Y ) =

[b ](app{b}([a ]{b}(X ), wa Y )) : ; (β-3)

X : {a }, Y : {a },Z : ; ` app([a ](app{a }(X , Y )),Z ) =

app(app([a ](X ),Z ),app([a ](Y ),Z )) : ; (β-4)

X : {a } ` app{b}(wb [a ](X ),b ) = (b/a )X : {b} (β-5)

X : ; ` [a ](app{a }(wa X , a )) = X : ; (η)

where app, [a ] and a stand for app;, [a ]; and a ;, respectively.

The idea is that a uniform equation Γ ` u = v : T translates to a set of equa-

tions in the sense of standard many-sorted universal algebra: ΓS ` uS = vS : T ∪S

where S ranges over the finite subsets ofN with S ∩T = ;. If we want to extend

the sort of the equation, we might also have to change the sort of the variables.

There is a subtlety here: do we raise the type of the variables or do we add weak-

enings? We prefer the former if, for example, we want to raise the type of the

equation X : ;, Y : ; `X = Y : ; by a set S. This becomes X : S, Y : S `X = Y : S.

Similarly, if we want to translate the equation

X : ; ` [a ]wa X =X : ; (4.23)



4.4 Uniform Theories 106

by a set {b}, where b is a different name than a , we should get

X : {b} ` [a ]wa X =X : {b}.

However, we should be able to translate (4.23) to a standard equation of sort

{a }. We expect all the appearances of X within the translated equation to have

the same sort. If, as above, we change the sort of X from ; to {a }, then on the

left hand side we would get [a ]wa X , and this is not a well-formed term. In this

example, the left hand side of the equation has an implicit freshness constraint

on the variable X . Because of the weakening wa appearing in front of X , we will

not be able to instantiate X with elements whose sorts contain a . So a is ‘fresh’

for X . The solution is to define the translation of this equation as

X : ; `wa [a ]wa X =wa X : {a }

So we have to distinguish between the cases when we simply need to add some

weakenings and the cases when we have to extend the sort of the variable. We

formalise these observations in the next definitions.

Definition 4.4.4. Consider a uniform equation E

Γ ` u = v : T.

The freshness set of a variable X : TX ∈ Γwith respect to E is the set

FrE (X ) =
⋃

t :T

(T \TX )
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where the union is taken over all sub-terms t of either u or v that contain the

variable X .

Example 4.4.5. In the uniform equation for the uniform signature given by the

functor defined in (4.13)

X : ; ` [a ];app{a }(wa X , a ;) =X : ; (4.24)

X has sort ; and FrE (X ) = {a }.

Definition 4.4.6. The translation of an equation E of the form

Γ ` u = v : TE

by a 6∈ TE , is

tra (Γ) : tra (u ) = tra (v ) : TE ∪{a },

where tra (Γ), tra (u ), tra (v ) are defined as follows. The translation of the context

Γ by a is

tra (Γ) = {X : T ∪ ({a } \FrE (X )) | X : T ∈ Γ}. (4.25)

The translation trS (t : T ) of a sub-term t of either u or v is defined by
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tra ( f (t1, . . . , tn ) : T0) = (wa · f )(tra (t1), . . . , tra (tn )) if a 6∈ T

tra ( f (t1, . . . , tn ) : T0) = wa f (t1, . . . , tn ) if a ∈ T

tra (wb t : T ]{b}) = wS∪{a },b tra (t : T )

tra ((b/c )t : T ]{b}) = (b/c )T∪{a } tra (t : T ]{c}) if c 6= a

tra ((b/a )t : T ]{b}) = wa (b/a )T t

tra (X : T ) = wa X if a ∈FrE (X )

tra (X : T ) = X if a 6∈FrE (X )

(4.26)

where in the first two conditions f ∈O (T ) has arity T × · · ·×T → T0.

For a finite set S = {a 1, . . . , a k }disjoint from TE we define trS (E ) as tra 1 . . . tra k (E ).

Remark 4.4.7. In the definition of trS (E ) the order of the elements is not impor-

tant, since we can prove that tra trb (E ) = trb tra (E ). We only define trS (t : T ) for

finite sets S such that S ∩T = ;.

The definition of tra (E ) is sound, because initially we chose a set a 6∈ TE , and

then we can prove inductively that whenever we compute tra (t : T ′) for some

subterm t : T ′ of either u or v we have a 6∈ T ′.

A more subtle point is that the variable X in the translated equation always

has the sort specified in tra (Γ), namely T ∪ ({a } \FrE (X )). We will prove this in

Lemma 4.4.10.

Notice that the translation trS (t ) depends on the equation for which t is a
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sub-term, and if t has sort T then the sort of trS (t ) is S ∪T .

In the first condition of (4.26), we have that a 6∈ T0, but a is one of the ele-

ments fresh for the output of f , that is, a ∈ bind( f ).

Example 4.4.8. For b 6= a , the translation by a set {b} of the uniform equa-

tion (4.24) is

X : {b} ` [a ];app{a }(wa X , a ;) =X : {b}.

But the translation of the same equation by {a ,b} is

X : {b} `wa [a ];app{a ,b}(wa X , a {b}) =wa X : {a ,b}.

We can do this translation, because the set {a ,b} is disjoint from the type of

the uniform equation, which is the empty set. On the left hand side we use the

weakening wa because {a ,b} ∩ bind([a ];) = {a }. On the right hand side we use

the weakening wa because FrE (X )∩{a ,b}= {a }.

Example 4.4.9. Translating the uniform theory given in Example 4.4.3, we get a

standard many-sorted theory equivalent to that given in Example 4.3.5.

The above definition of trS (X : TX ) is also justified by the next property that

one expects for the set of standard equations obtained from a uniform equation.

Lemma 4.4.10. Let E be a uniform equationΓ ` u = v : T and let a 6∈ T . Consider

a variable X of sort TX in Γ, that is, X : TX ∈ Γ. All the occurrences of X in the
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standard equation tra (Γ) ` tra (u ) = tra (v ) : TE ∪ {a } have the same sort TX ∪

({a } \FrE (X )).

Proof. Note that, while applying the algorithm described in Definition 4.4.6, as

we traverse the syntax tree of the term, some subterms may not be translated by

a . Explicitly, we stop when we reach a term f (t1, . . . , tn )with a ∈ bind( f ) or if we

reach (b/a )t . If the variable X appears in such a term then those instances of

X will have sort TX in the translated equation. Any other instance of X has the

sort TX ∪ ({a }\FrE (X )). So, we have to show that TX = TX ∪ ({a }\FrE (X )). Since X

appears in a term of the form f (t1, . . . , tn )with a ∈ bind( f ) or (b/a )t , we can use

Definition 4.4.4 to prove that a ∈FrE (X )∪TX .

Definition 4.4.11. We will say that a functor L : SetI → SetI has a uniform pre-

sentation if L is presented in the sense of Definition 3.2.2 by a uniform signature

and a set of equations of rank one generated by a set of uniform equations and

containing the following:

wa f (x1, . . . ,xn ) = (wa · f )(wa x1, . . . , wa xn )

f (x1, . . . ,xn ) = ((b/a )T \{a } · f )((b/a )T \{a }x1, . . . , (b/a )T \{a }xn )

(b/a )T0\{a } f (x1, . . . ,xn ) = ((b/a )T \{a } · f T )((b/a )T \{a }x1, . . . , (b/a )T \{a }xn )

(4.27)
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where f ∈ O (T ) has arity f : T × . . .× T → T0, and in the second equation a ∈

bind( f ) and b 6∈ T , while in the third a ∈ T0 and b 6∈ T .

Recall that an equation is of rank one when each variable is under the scope

of exactly one operation symbol.

Intuitively, the equations (4.27) state that the operations are ‘equivariant’. If

X is a presheaf, elements of LX (T0)will be denoted by

{ f (x1, . . . ,xn )}X ,

where f ∈O (T ) has arity f : T × . . .×T → T0 and x i ∈X (T ) for 1≤ i ≤ n .

Remark 4.4.12. Using the equations of Definition 4.4.11 we can deduce that

L(i )({ f (x1, . . . ,xn )}X ) = {((i + id) · f )(L(i + id)(x1), . . . , L(i + id)(xn )}X

provided that f : T×. . .×T → T0 and i : T0→U is an injective map, U∩bind( f ) = ;

and id is the identity map on bind( f ).

Example 4.4.13. 1. The functor δ has a uniform presentation, with the op-

eration symbols given in Section 3.3 structured as a presheaf as follows:

[a ]S ∈O (S ∪{a })

O (wb )([a ]S) = [a ]S∪{b}

O ((b/a )S)([a ]S) = [b ]S

We have that bind([a ]S) = {a }, so the equations (3.19) are of the form (4.27).
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2. The presentation of the functor used for the axiomatisation of λ-calculus,

defined in (4.13), is also uniform. Indeed, the equations appearing in

Proposition 4.3.4 are of the form (4.27), because bind(aS) = bind(appS) = ;.

3. More generally, functors constructed from N , +, × and δ have uniform

presentations.

Proposition 4.4.14. If L : SetI→ SetI has a uniform presentation, then:

1. there exists a natural transformation α : LI∗I ∗ → I∗I ∗L such that the dia-

gram below commutes:

LI∗I ∗ I∗I ∗L

L

α //

Lη

__?????????????
ηL

??�������������

(4.28)

2. L̃ = I ∗LI∗ preserves sheaf epimorphisms.

Proof. Recall the discussion on how to compute the sheafification of a presheaf

from Section 2.4 by twice applying the (−)+ functor. It is enough to prove that

we can find a natural transformation α such that the diagram below commutes:

L(−)+ (−)+L

L

α //

Lη+

__?????????????
η+L

??�������������

(4.29)

For then, the next diagram commutes:
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L(P+)+ = // L(P+)+
αP+ // (LP+)+

(αP )+ // (LP+)+

(3) (2)

LP+

Lη+
P+

\\88888888888888888
αP //

L(η+P )
+

OO

(LP)+

(Lη+P )
+

OO

(η+LP )
+

AA�����������������

(1)

LP

Lη+P

ZZ5555555555555555

η+LP

CC����������������

(4.30)

The upper-right square (3) commutes by naturality ofα and the smaller triangles

(1) and (2) by (4.29). Finally Lη+P+ and L(η+P )
+ equalise Lη+P by naturality of η+.

Thus the outer triangle commutes. But this is exactly diagram (4.28).

We need to define a natural transformation α making diagram (4.29) com-

mutative. Let X be a presheaf. Elements of LX+(T ′)will be of the form

{ f (x1, . . . ,xn )}X+ ,

where f ∈ O (T ) has arity f : T × . . .×T → T ′ and we can assume without loss of

generality that x i are elements supported by T of the set X (S), for some T ⊆S.

We put αT ′ ({ f T (x1, . . . ,xn )}X+ ) = { fS(x1, . . . ,xn )}X . In order to show that this

is well-defined, we have to prove that { fS(x1, . . . ,xn )}L is supported by T ′. Let

i , j : S \ bind( f )→U be two injective maps that agree on T ′. We have to show
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that

L(i )({ fS(x1, . . . ,xn )}X ) = L(j )({ fS(x1, . . . ,xn )}X )

If U ∩bind( f ) = ; this follows easily from Remark 4.4.12 and the fact that the xk

are supported by T . If this is not the case, say for example, if U ∩bind( f ) = {a },

then we can apply the second equation of Definition 4.4.11 for some name b 6∈

S ∪U :

{ fS(x1, . . . ,xn )}X = {O ((b/a )S\{a })( fS)((b/a )S\{a }x1, . . . , (b/a )S\{a }xn )}X

and we can use again Remark 4.4.12, plus the fact that (b/a )S\{a }xk is supported

by T \ {a }∪ {b}.

It is now easy to see that αmakes diagram (4.12) commutative. It remains to

check that L̃ preserves sheaf epimorphisms. It is enough to prove that whenever

e : X → Y is a sheaf epimorphism, LI∗e : LI∗X → LI∗Y has the property stated

in Proposition 2.4.16. Let y = { fS(y1, . . . , yn )}L be an element in (LI∗Y )(S′), for

some operation symbol fS : S × · · · ×S → S′ and y1, . . . , yn ∈ Y (S). We prove that

there exists an inclusion w ′ : S′ → T ′ and x ∈ LI∗X (T ′) such that LI∗Y (w ′)(y ) =

(LI∗e )T ′ (x ). Because e : X → Y is a sheaf epimorphism, there exists an inclusion

w : S → T and xk ∈ X (T ) for all 1 ≤ k ≤ n such that Y (w )(yk ) = eT (xk ) for all

k . Let w ′ denote the inclusion of S′ into T ′ = T \ (S \S′) and let x ∈ LI∗X (T ′)

be { f T (x1, . . . ,xn )}LX . Using the first equation of Definition 4.4.11 we can derive

LI∗Y (w ′)(y ) = (LI∗e )T ′ (x ).
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Corollary 4.4.15. If L : SetI → SetI has a uniform presentation, then the HSP

theorem 4.2.1 holds for L̃-algebras.

Notice that an L̃-algebra L̃A→ A corresponds via the adjunction I ∗ a I∗ to

an L-algebra LI∗A→ I∗A.

Notation 4.4.16. A sheaf algebraA for a uniform signature given by a functor L is

an L-algebra α : LA→ A. In subsequent proofs and calculations, we will use the

following notation: for f T ∈ Σ having arity T × · · · ×T → T ′, αmaps (x1, . . .xn ) ∈

An (T ) to f A
T (x1, . . .xn ) ∈ A(T ′). For each algebra A and each valuation v sending

variables X : TX to elements of A(TX ), a term t : T of type T evaluates to an

element [[t ]]A,v,T in A(T ).

Definition 4.4.17. An algebra A satisfies the uniform equation t = u : T iff for

all S ∩T = ; and all valuations v of variables, we have that A, v |= tS = uS , that is,

[[t ]]A,v,S∪T and [[u ]]A,v,S∪T denote the same element of A(S ∪T ).

In the remainder of the section, we are going to show that classes of sheaf alge-

bras defined by uniform equations are precisely those closed under sheaf quo-

tients, sub-algebras, products and abstraction. In our setting, abstraction (which

corresponds to atoms-abstraction [Gab08]) maps an algebra with carrier A to an

algebra with carrier δA. To describe this notion, we need to recall the definition
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of δ from Section 3.3. For c /∈S, there is an isomorphism

A(S ∪{c}) → δA(S)

x 7→ {[c ]Sx }δA

(4.31)

Definition 4.4.18. Given a sheaf algebraA for a uniform signature with structure

LA→ A its abstraction δA with structure L(δA)→δA is given by

f δAT ({[c ]x1}δA, . . .{[c ]xn}δA) = {[c ] f T∪{c}A(x1, . . .xn )}δA

where c /∈ T .

The next lemmas establish a connection between the evaluation of a uniform

term t : T in δA and the evaluation of t{a } : T ∪{a } in A, for a /∈ T . Note that this

is possible for uniform terms, but not for terms. Recall from Definition 4.4.2 that

a uniform term is not a term (in the sense of set-based universal algebra) but a

family of terms.

Lemma 4.4.19. Consider a uniform subterm t : T within an equation E . For all

atoms a /∈ T and for all valuations vA in A of the variables in t{a } = tr{a } (t ), there

exists a valuation vδA in δA of the variables in t such that

[[t ]]δA,vδA,T = {[a ]T [[t{a }]]A,vA,T∪{a }}δA (4.32)

Proof. Note that a variable X : TX in t will have sort TX ∪ {a } \FrE (X ) in t{a }. We



4.4 Uniform Theories 117

know that vA(X )∈ A(TX ∪{a } \FrE (X )). We define vδA(X )∈δA(TX ) by

vδA(X ) =











{[a ]T vA(X )}δA if a /∈ TX ∪FrE (X )

{[b ]A(wb )vA(X )}δA if a ∈ TX ∪FrE (X )

We can prove that if a belongs to the sort U of a subterm u : U of t , then

[[u ]]δA,vδA,U = {[b ]U wb [[u ]]A,vA,U }δA (4.33)

Now we can prove (4.32) by induction on the structure of terms. For example, let

f T : T × · · · ×T → T ′ be an operation symbol such that a /∈ T ′. If a 6∈ T then the

proof follows by induction. But, if a ∈ T \T ′, then we have

[[ f T (t1, . . . , tn )]]δA,vδA,T ′ = f δAT ([[t1]]δA,vδA,T , . . . , [[tn ]]δA,vδA,T )

= f δAT ({[b ]wb [[t1]]A,vA,T }δA , . . . ,{[b ]wb [[tn ]]A,vA,T }δA )

= {[b ]wb f A
T ([[t1]]A,vA,T , . . . , [[tn ]]A,vA,T )}δA

= {[a ]wa f A
T ([[t1]]A,vA,T , . . . , [[tn ]]A,vA,T )}δA

= {[a ] f A
T∪{a }([[t1]]A,vA,T , . . . , [[tn ]]A,vA,T )}δA

= {[a ][[t{a }]]A,vA,T∪{a }}δA

For illustration, consider the uniform term t = app;(X , Y ) within an equa-

tion E , such that X , Y are variables of sort ;, with FrE (X ) = {a } and FrE (Y ) =

;. We have that t{a } = app{a }(wa X , Y{a }). Then vδA(X ) ∈ δA(;) is defined as

vδA(X ) = {[b ]A(wb )vA(X )}δA , for some fresh b , whilst vδA(Y ) ∈ δA(;) is defined

as vδA(Y ) = {[a ]vA(Y{a })}δA .
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Lemma 4.4.20. Consider a uniform term t : T within an equation E and let a

be a name such that a /∈ TX ∪ FrE (X ) for all variables X occurring in E . For all

valuations vδA in δA of the variables in t there exists a valuation in A of the

variables in tr{a } (t ), such that (4.32) holds.

Proof. Note that if X has type TX in t , it has type TX ∪ {a } \FrE (X ) = TX ∪ {a } in

tr{a } (t ). We define vA(X ) as the unique element of A(TX ∪{a }) such that vδA(X ) =

{[a ]TX vA(X )}δA . The proof is by induction on the structure of terms.

Proposition 4.4.21. If a classB of sheaf algebras is defined by a uniform set of

equations, thenB is closed under abstraction.

Proof. Assume that the sheaf algebra A satisfies a uniform equation t = u : T .

Consider a valuation v of the variables of tS , uS in the algebra δA. We need to

show δA, v |= tS = uS for all finite sets of names S, disjoint from T . Choose a

name a such that a /∈S ∪T and a /∈ TX ∪FrE (X ) for all variables X . Consider the

valuation vA as in Lemma 4.4.20. Since A satisfies tS∪{a } = uS∪{a } : T ∪S∪{a }, we

have [[tS∪{a }]]A,vA,S∪T∪{a } = [[uS∪{a }]]A,vA,S∪T∪{a }. Then [[tS]]δA,v,S∪T = [[uS]]δA,v,S∪T

follows from Lemma 4.4.20 applied for tS and uS .

Proposition 4.4.22. If a classB of sheaf algebras is defined by a uniform set of

equations, thenB is closed under quotients.
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Proof. Consider a quotient of sheaves f : A→ B, such that A satisfies the uni-

form equations. Consider the uniform equation t = u : T and choose S disjoint

from T and a valuation v in B of the variables in tS and uS . We have to show

[[tS]]B,v,S∪T = [[uS]]B,v,S∪T . If a variable X has sort TX in the uniform equation, its

translation has sort TX ∪S \FrE (X ) in tS = uS , so v (X ) ∈B(TX ∪S \FrE (X )). Using

Proposition 2.4.16, we can find a finite set of names S′, such that S ⊆ S′ and for

all variables X appearing in the equation there exists vA(X ) ∈ A(TX ∪S′ \FrE (X ))

such that f TX∪S′\FrE (X )(vA(X )) = B(wX )(v (X )), where wX denotes the inclusion

wX : TX ∪S\FrE (X )→ TX ∪S′\FrE (X ). vA is a valuation of the variables in tS′ = uS′ .

From this, we prove by induction on the structure of t that fS′∪T ([[tS′ ]]A,vA,S′∪T ) =

B (w )([[tS]]B,v,S∪T ). Since B (w ) is injective, this concludes the proof.

Theorem 4.4.23. A class B of sheaf algebras for a uniform signature is defin-

able by uniform equations if and only if it is closed under sheaf quotients, sub-

algebras, products and abstraction.

Proof. Assume that a class of sheaf algebras for a uniform signature is defined by

uniform equations. Using Corollary 4.4.15, we can derive closure under subalge-

bras and products. Closure under abstraction and sheaf quotients follows from

Propositions 4.4.21 and 4.4.22, respectively. Conversely, from closure under

HSPA we derive closure under presheaf epimorphisms, subalgebras and prod-

ucts, hence the class of sheaf-algebras is definable by a set of equations E in the
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sense of standard many-sorted universal algebra. We have to show that these

equations come from a uniform theory. It is enough to show that whenever t =

u : T is in E , then for all a /∈ T and B ∈B we have that B |= t{a } = u {a } : T ∪ {a }.

This follows from closure under abstraction and Lemma 4.4.19.

4.5 Comparison with other nominal logics

We now show that uniform theories have the same expressive power as nom-

inal algebra [GM09], nominal equational logic [CP07] and synthetic nominal

equational logic [FH08]. Explicitly, we show how to translate theories of nom-

inal algebra and nominal equational logic into uniform theories (Section 4.5.1,

respectively Section 4.5.2) and how to translate uniform theories into synthetic

nominal theories (Section 4.5.3). In each case, we prove that the translations are

semantically invariant.

4.5.1 Comparison with nominal algebra

In this subsection we show how to translate the syntax and theories of the nom-

inal algebra [GM09] to uniform signatures and uniform theories. Then we prove

semantic invariance, that is, there is a correspondence between models for a

nominal algebra theory and models for the uniform theory obtained via this

translation.
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Translation of syntax. We refer the reader to [GM09] for the syntax and se-

mantics of nominal algebra. To each nominal algebra signature there corre-

sponds a uniform signature given by the functor N + δ +Σ, where δ is as in

Section 4.3 and Σ is a polynomial functor on SetI, given by

ΣA =
∐

{ f n i }×An i

where the coproduct is taken after all the operation symbols f n i with arity n i in

the nominal algebra signature.

Translations of equational judgements. Assume ∆ ` t = u is an equality

judgement in the sense of [GM09]. It is reasonable to ask that the uniform equa-

tion obtained by translating such an equality judgement has to satisfy the fol-

lowing:

1. All occurrences of X in the uniform equation have the same sort.

2. If a #X is in∆, then in the uniform equation we can only instantiate X with

elements whose support does not contain a .

3. We can prove semantic invariance of this translation, that is, a nominal set

satisfies an equational judgement iff the corresponding sheaf satisfies the

translated uniform equation.

In order to address 1. and 2. above, for each unknown X appearing in this judge-

ment, we have to consider the following sets: anc(X ) defined as the set of names
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a for which there is an occurrence of πX , for some permutation π, such that [a ]

is an ancestor of πX in the syntax tree of the equation,2 and

fresh(X ) = {a ∈N | a #X ∈∆}.

Before giving the actual translation, we will first find the type TE of the uni-

form equation E , obtained by translating∆ ` t = u . This is done recursively:

type(t = u ) = type(t )∪ type(u )

type( f (t1, . . . , tn )) = ∪type(t i )

type([a ]t ) = type(t ) \ {a }

type(a ) = {a }

type(πX ) = (anc(X ) \ fresh(X ))∪ supp(π)

(4.34)

We define

TE = type(t = u )∪ (
⋃

X∈E

(fresh(X ) \anc(X )).

The reason for adding
⋃

X∈E
(fresh(X ) \ anc(X ), is that we want to be able to

retrieve the names in fresh(X ) from the uniform equation obtained, even if they

do not appear in any subterms. For example, the type of the translation of b #X `

X = Y should be {b}, and not the empty set.

The actual translation is the uniform equation TTE (t ) = TTE (u ) : TE , where

2We say that [a ] ia an ancestor of πX rather than of X , because, in the definition of nominal

terms, X is not a nominal subterm of the moderated unknown πX .
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TT (t ) : T is a uniform term of type T , defined recursively by:

TT ( f (t1, . . . , tn )) = f (TT (t1), . . . ,TT (tn )) : T

TT (a ) = a T : T

TT ([a ]t ) = [a ]TTT∪{a }(t ) : T if a 6∈ T

TT ([a ]t ) = wa [a ]TTT (t ) : T if a ∈ T

TT (πX ) = πT wa 1 . . . wa k XT \fresh(X ) : T,

(4.35)

where in the last condition {a 1, . . . , a k } = T ∩ fresh(X ) and πT : T → T is the

restriction ofπ to T . This restriction makes sense because by (4.34) we have that

supp(π) ⊆ T . On the right hand side of the above equations, we have nominal

terms for the uniform signature given byN +δ+Σ, obtained according to the

rules in Figure 4.1. Recall from Proposition 4.3.4 that N is presented by the

operation symbols a T , while δ is presented by the operation symbols [a ]T .

Example 4.5.1. Consider the following judgement in nominal algebra:

a #X ` [a ]app(X , a ) =X

We have that fresh(X ) = {a }, anc(X ) = {a } and that the type of the translated

uniform equation is ;. The translation is the uniform equation

[a ];app{a }(wa X , a ;) =X

and this corresponds to the set of equations (η) of Example 4.3.5, that is indexed

by all finite sets S that do not contain a .
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Lemma 4.5.2. If X is an unknown appearing in the equality judgement E , then

all the instances of the variable X have the same sort (TE ∪ anc(X )) \ fresh(X ) in

the translated uniform equation.

Proof. X may appear more than once in the equality judgement. When travers-

ing the syntax tree, the subscript of T may change, so we have to prove that

whenever we have to translate TT (πX ), the set T has the property that

T \ fresh(X ) = (TE ∪anc(X )) \ fresh(X ).

Note that first we apply the translation with index TE , and as we traverse the tree,

this sort will only increase by a name a when we reach a subterm of the form

[a ]t . If we eventually reach a leaf containing the unknown X , such an a must be

in the set anc(X ). Therefore T ⊆ TE ∪anc(X ), so we know that T \ fresh(X )⊆ (TE ∪

anc(X )) \ fresh(X ). Conversely, let a ∈ (TE ∪anc(X )) \ fresh(X ). If a ∈ TE \ fresh(X ),

then a ∈ T \ fresh(X ) because TE ⊆ T . It remains to consider the case when a ∈

anc(X )\fresh(X ). We distinguish two cases, depending on whether this particular

instance of X has [a ] as an ancestor. If this is the case, the set T must contain

the name a . If this is not the case, then we have that a ∈ type(t = u )⊆ TE , hence

a ∈ T .

Lemma 4.5.3. FrE (X ) = fresh(X ).
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Proof. Consider a ∈ fresh(X ). Let us denote by TX the sort of the variable X in

T (E ). We know that TX = (TE ∪anc(X )) \ fresh(X ), so a 6∈ TX . We have two cases:

1. If a ∈ anc(X ), then there exists a subterm [a ]v , such that X occurs in v .

The sort of T (v )must contain the name a , so a ∈FrE (X ).

2. If a ∈ fresh(X ) \anc(X ), then a ∈ TE , so again we obtain that a ∈FrE (X ).

Conversely, if a ∈ FrE (X ) there exists a subterm v in E containing πX , for

some permutation π, such that the variable X : TX occurs in TT (v ) : T and a ∈

T \TX . If the sort of T (πX ) is S, we have that T ⊆S, hence we get that a ∈S \TX =

S ∩ fresh(X ), so a ∈ fresh(X ).

Translation of semantics. Let X = (|X|, ·,Xatm,Xabs,{X f | f ∈ S}) be a nomi-

nal algebra for a nominal signature S. LetN +δ+Σ be the functor correspond-

ing to this signature. We consider the sheaf X corresponding to the nominal set

(|X|, ·). The translation of X is the sheaf algebraN +δX+ΣX→X given by

aS 7→ Xatm(a )

{[a ]Sx }δX 7→ Xabs(Xatm(a ),x )

( f ,x1, . . . ,xn ) 7→ X f (x1, . . . ,xn )

That this is well defined follows from the equivariance of Xatm,Xabs,X f .

Theorem 4.5.4. [semantic invariance] Let X be a nominal algebra for a nominal

signature. Let E be the uniform equation of type TE , obtained by translating
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an equality judgement ∆ ` u = v . Then X satisfies ∆ ` u = v if and only if X

satisfies the uniform equation E .

Proof. First assume that [[∆ ` u = v ]]X holds. We need to prove that X |= trS E for

all finite sets S that are disjoint from TE . Consider a valuation ς of the variables

appearing in trS (E ) in X. If X is a variable of sort TX in E , then X has sort S \

FrE (X )∪TX in trS (E ). So ς(X )∈X(S\FrE (X )∪TX ) is an element of the nominal set

X supported by S \FrE (X )∪TX . Using Lemma 4.5.2 and Lemma 4.5.3, we know

that S \FrE (X )∪TX is disjoint from fresh(X ), so whenever the freshness primitive

a #X is in∆, a #ς(X ). Let ς′ be a valuation in X of the unknowns in∆ ` u = v that

maps X to ς(X ). We have to prove that [[trS (T u )]]Xς = [[trS (T v )]]Xς . This follows

from the claim below, which can be proved by induction on the structure of the

terms.

Claim 4.5.5. For all subterms t of either u or v , we have [[t ]]Xς′ = [[T t ]]Xς .

Conversely, assume that X satisfies the uniform equation E . Consider a valua-

tion ς′ in X of the unknowns of∆ ` u = v , such that a #ς′(X )whenever a #X ∈∆.

We consider the finite set of atoms S :=
⋃

X supp(ς
′(X )) \TE . We can define a val-

uation ς of the variables occurring in trS (E ) in X, simply by taking ς(X ) = ς′(X ).

In order to prove that this is well defined we can check that ς′(X ) is supported

by S \FrE (X )∪TX . Since ς′ can be obtained from ς as before, we can finalize the
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proof by applying again the Claim 4.5.5.

Corollary 4.5.6. Theorem 4.5.4 and Theorem 4.4.23 give a new proof for Gab-

bay’s HSPA theorem, [Gab08, Theorem 9.3].

4.5.2 Comparison with NEL

This section compares uniform theories to the nominal equational logic of [CP07].

For simplicity we only consider the one-sorted version of NEL,3 although ex-

tending our work to many-sortedness over sheaves is not difficult. We only con-

sider theories for which the axioms are of the form

∆ ` ā //≈ t

∆ ` t ≈ t ′.

(4.36)

This fragment has the same expressive power as the entire NEL.

Translation of syntax. Recall that a signature for NEL is given by a nominal

set Op= (|Op|, ·) of operation symbols. Consider a theory for this signature, con-

sisting of axioms as in (4.36). We will construct a presheaf of operations O as

in Definition 4.4.11, which is almost the sheaf corresponding to Op via the iso-

morphism between nominal sets and Sh(Iop): for all finite sets of names S, O (S)

contains the operation symbols whose support is contained in S. But we also

add more information about the arity of these operation symbols.

3Note that we will not need the sorting environments of [CP07] in this case.
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Definition 4.5.7. Consider a NEL theory for a signature that contains an opera-

tion symbol f . The set bind( f ) is defined as the set of names a such that there is

an axiom in the theory of the form {X1, . . . , Xn} ` b̄ //≈ (π · f )(X1, . . . , Xn ) for a finite

set of names b̄ and a permutation π, such that π(b ) = a for some b ∈ b̄ .

If f ∈ Op is an n-ary operation symbol, such that supp( f ) = T and T ⊆ S, we

consider an operation symbol in fS ∈O (S), with arity fS : S×· · ·×S→S \bind( f ).

The definition above implies that bind(π · f ) = π[bind( f )]. We also obtain that

bind( f )⊆ supp( f ). So we can derive that, for any injective map j : S→S′,O (j )( fS)

has the arity S′×· · ·×S′→S′\ j [bind( f )]. SoO is a presheaf as in Definition 4.4.11.

Note that the arity of an operation symbol inO depends not only on the nominal

signature, but also on the theory, because of the way freshness constraints are

expressed in NEL, see (4.36). The translation of a NEL signature is the uniform

signature given by the functor L with a uniform presentation given by O : see

Definition 4.4.11.

Example 4.5.8. If L a is an operation symbol as in the NEL signature for λ-

calculus of [CP07, Example 3.1] then bind(L a ) = {a }. The translation of this NEL

signature is the uniform signature given by the functor defined in (4.13).

Translation of a theory. From each axiom in a theory in the sense of [CP07],

having the form

∆ ` t ≈ t ′
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we will obtain a uniform equation E of sort TE . As in the previous section we first

describe a way of finding the sort TE . Again, all occurrences of a variable X are

expected to have the same sort in the translation, so we need to pay attention to

the bound names of the terms that contain X and to the names that should be

fresh for X . To this end we define the set anc(X ) by

anc(X ) =
⋃

bind( f )

taken over all operations f such that X appears in a subterm of either t or t ′ of

the form f (t1, . . . , tn ). Similarly we define

fresh(X ) = ā iff ā //≈X ∈∆

The fact that a //≈ X is in the freshness environment will be expressed in the

uniform equation by adding a weakening wa in front of X .

In order to find TE we define a function type recursively:

type(t = u ) = type(t )∪ type(u )

type( f (t1, . . . , tn )) = (∪type(t i )∪ supp( f )) \bind( f )

type(πX ) = (anc(X ) \ fresh(X ))∪ supp(π)

(4.37)

We define TE = type(t = u )∪ (
⋃

X∈E
(fresh(X ) \anc(X ))

The translation of the axiom ∆ ` t ≈ t ′ is the uniform equation TTE (t ) =

TTE (u ) : TE , where TT (t ) is a term of sort T , defined recursively by
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TT ( f (t1, . . . , tn )) = wT∩bind f f T∪bind( f )(TT∪bind( f )(t1), . . . ,TT∪bind( f )(tn ))

TT (πX ) = πT wT∩fresh(X )XT \fresh(X )

(4.38)

The permutation π has its support included in T and πT is the restriction of

π to T . As in the previous section we can prove that all instances of a variable

X have the same sort in the uniform equation, namely (TE ∪ anc(X )) \ fresh(X ).

The proof of this is analogous to that of Lemma 4.5.2. The only difference is that

now instead of reasoning only about abstractions [a ], we allow more general

operation symbols. Similarly to Lemma 4.5.3, we get that FrT (E )(X ) = fresh(X ).

Similarly, from each axiom in a theory in the sense of [CP07], having the form

∆ ` ā //≈ t ,

we obtain a uniform equation of the form

ΓE `wb̄TTE∪ā (t ) =w ā (b̄/ā )TTE∪ā (t ) : TE ∪ ā ∪ b̄ , (4.39)

where b̄ is a set of fresh variables having the same cardinality as ā and (b̄/ā ) de-

notes the composition (b1/a 1) . . . (bn/a n )when ā = {a 1, . . . , a n} and b̄ = {b1, . . . ,bn}.

For each variable X appearing in t we define anc(X ) and fresh(X ) as above.

Then, we put

ΓE = {X : (TE ∪anc(X )) \ fresh(X ) | X ∈ t }.
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We define type(t ) recursively as in (4.37) and we put TE = type(t ). Then TTE∪ā (t )

is defined recursively as in (4.38).

Example 4.5.9. The η rule of the NEL theory for αβη-equivalence of untyped

λ-terms [CP07, Example 6.2]

a //≈ x ` L a (A x Va )≈ x

translates to

[a ](app(wa X , a )) =X : ;

Translation of semantics. Consider a NEL theory as in (4.36) for a signature

Op. Let X be an algebra for this theory, that is, a nominal set |X|, equipped with

equivariant functions Opn ×|X|n → |X|, for all arities n . (Opn is the set of opera-

tion symbols of arity n , and is a nominal subset of Op.) We consider the sheaf X

corresponding to |X|. The sheaf algebra corresponding to X is an algebra for the

functor L with a uniform presentation obtained from Op, see the translation of

syntax above. This sheaf algebra LX→X maps

{ f T (x1, . . . ,xn )}X 7→X[[ f ]](x1, . . . ,xn )

where X[[ f ]] is as in [CP07]. This map is well-defined because of the equivari-

ance of the functions Opn × |X|n → |X|.
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Theorem 4.5.10. [semantic invariance] A structure X for a NEL signature is a

structure for a NEL theory as in (4.36) if and only if the sheaf algebra X obtained

as above is an algebra for the translated uniform theory.

Proof. First we can check that a structure X for a nominal signature satisfies a

judgement ∆ ` t ≈ t ′ iff the sheaf algebra X, constructed as above, satisfies the

uniform equation E : TE obtained as the translation of ∆ ` t ≈ t ′. The proof for

this follows the same lines as the proof for Theorem 4.5.4. From a valuation ς′

in X of the variables in the freshness environment∆we get a valuation ς in X of

the variables in some trS (E ), for S ∩TE = ; , and vice-versa. It remains to check

that we have [[t ]]Xς′ = [[T t ]]Xς , and this goes by induction on the structure of the

terms. The next equalities hold in the underlying nominal set of X.

[[TT ( f (t1, . . . , tn ))]]Xς = [[wT∩bind f f T∪bind( f )(TT∪bind( f )(t1), . . . ,TT∪bind( f )(tn ))]]Xς

= X(wT∩bind f )([[ f T∪bind( f )(TT∪bind( f )(t1), . . . ,TT∪bind( f )(tn ))]]Xς )

= [[ f T∪bind( f )(TT∪bind( f )(t1), . . . ,TT∪bind( f )(tn ))]]Xς

= { f T∪bind( f )([[t1]]Xς , . . . , [[tn ]]Xς )}X

= { f T∪bind( f )([[t1]]Xς′ , . . . , [[tn ]]Xς′ )}X

= X[[ f ]]([[t1]]Xς′ , . . . , [[tn ]]Xς′ )

= [[ f (t1, . . . , tn )]]Xς′

For axioms of the form X1, . . . , Xn ` a //≈ f (X1, . . . , Xn ), semantical invariance

follows since the operation symbol f corresponds on the side of uniform sig-
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natures to operation symbols whose arities have the property that a does not

belong to the result. So, for any valuation of the variables X i in X, a translation

of f (X1, . . . , Xn ) is evaluated to an element y of X(S) for a finite set S, with a /∈ S.

This means that, if X comes from a nominal set |X|, we have that a is fresh for y

in |X|.

More generally, we can check that a structure X for a nominal signature sat-

isfies a judgement∆ ` ā //≈ t if and only if the sheaf algebra X, satisfies the trans-

lation E : TE obtained in (4.39). From a valuation ς′ in X of the variables in

the freshness environment ∆ we get a valuation ς in X of the variables in some

trS (E ), for S ∩TE = ; , and vice-versa. As above we have that [[t ]]Xς′ = [[T t ]]Xς . It

remains to check that ā #[[t ]]Xς′ if and only if X(wb̄ )[[T t ]]Xς =X(w ā )X(b̄/ā )[[T t ]]Xς

for some set b̄ of fresh variables. The latter is equivalent to

[[T t ]]Xς = (ā b̄ ) · [[T t ]]Xς (4.40)

for some fresh b̄ , where (ā b̄ ) denotes the product of transposition (a i b i ) for

ā = {a 1, . . . , a n} and b̄ = {b1, . . . ,bn}. Using Remark 2.1.17 and Theorem 2.1.16

this is equivalent to ā #[[T t ]]Xς .

Corollary 4.5.11. Theorem 4.4.23 and Theorem 4.5.10 give an HSPA theorem for

models of NEL.
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4.5.3 Comparison with SNEL

Fiore and Hur [FH08] introduced an abstract notion of systems of equations be-

tween terms in the setting of enriched category and showed how sound and

complete equational logics can be obtained in this abstract setting. Their case

study consists in developing a nominal equational logic which is logically equiv-

alent to those introduced by Gabbay and Mathijssen, respectively Clouston and

Pitts.

Hur [Hur10, Section 8.2.6] translated the nominal syntax of [FH08] into NEL

syntax and stated that this translation is semantically invariant. Thus, using the

results from the previous section, we conclude that the SNEL can be translated

into uniform theories. To close the circle, we show in this section that uniform

theories give rise to nominal theories in the sense of [FH08] having the same

models.

Central to the approach of Fiore and Hur is the fact that (Nom, 1,⊗) is a sym-

metric monoidal category, where ⊗ is the separating tensor described in (2.37).

Their nominal equational reasoning applies to signatures given byNom-enriched

functors (and the free monads which they generate). A functor F : Nom→Nom

is Nom-enriched when there exists a natural transformation, called strength

τX,Y : FX⊗Y→ F (X⊗Y).
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Abstract terms in the setting of [FH08] are morphisms of the form

t :A⊗n → F (
l
∐

i=1

A⊗n i ) (4.41)

where A⊗k denotes A⊗ . . .⊗A (k -times). We refer the reader to [FH08, Sec-

tion 5, pp. 15-16] for the definitions of the nominal syntax, nominal theories

and the corresponding models. Terms in this syntax are built using the rules

[a ]V `X (b )
(X (b )∈
∐

X∈|V |A⊗V (X ))

[a ]V ` t i (1≤ i ≤ k )

[a ]V ` f (t1 . . . tk )

where

1. |V | is a finite set of variables and V is a function which associates a natural

number to each variable in |V |;

2. a ∈A⊗n for some n ;

3. b ∈A⊗V (X ) and X (b ) is just a notation for the injection of the tuple of dis-

tinct names b in the X -component of the coproduct
∐

X∈|V |A⊗V (X ).

Each term in the above syntax corresponds to an abstract term in the sense

of (4.41). Consider a uniform theory for a uniform signature given by a sheaf

of operation symbols O . Consider the nominal set O corresponding to O . If



4.5 Comparison with other nominal logics 136

f ∈O (T ) has arity f : T × . . .×T
︸ ︷︷ ︸

n

→ T ′ we assign arity n to the element f ∈O that

corresponds to f . Then the functor F :Nom→Nom given by

FX=
∐

n

On ×Xn (4.42)

is Nom-enriched, where On is the subset of operation symbols of O of arity n .

Notice that, by considering only the functor F we have lost some information,

namely the set of names that each operation symbols f binds. However, we

can show that sheaf algebras for the uniform signature O correspond to those

F -algebras that additionally satisfy the following SNEL equations. For each f ∈

O (T ) and a ∈ bind( f )we consider the abstract equation

[c , a ,b ]{X1 : l , . . . , Xn : l } ` f (X1(c , a ), . . . , Xn (c , a )) = ((a b )· f )(X1(c ,b ), . . . , Xn (c ,b )),

(4.43)

where {c}= T \ {a }, b 6∈ T and l is the cardinal of T plus one.

Example 4.5.12. Recall the uniform signature for the λ-calculus described in

Example 4.4.3. This corresponds to the nominal signature of [FH08, Example 5.1].

We have appS = A, [a ]S = L a and aS = Va . The fact bind([a ]S) = {a } is expressed

in SNEL by the abstract equation

[a ,b ]{X : 1} ` L a X (a ) = Lb X (b ).

Next we show how to translate uniform equations in the uniform signature
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given by O into abstract equations for the functor F described in (4.42). Con-

sider a uniform equation E of the form

Γ ` t = t ′ : TE .

1. Let a denote a tuple of all the distinct names that appear in the equation E

in an arbitrary order. That is, the names in a are obtained by considering

the union of all the finite sets T such that there exists X : T in Γ or there

exists a subterm u : T of either t or t ′.

2. Let |V | be the finite set of variables from the context Γ.

3. For each X : T ∈ Γ consider the set FrE (X ), see Definition 4.4.4. Let V (X )

be the cardinality of the set {a } \FrE (X ), where {a } denotes the set of the

names appearing in the tuple a .

4. We inductively define TE (u ) for uniform subterms u of either t or t ′ by

TE ( f (u 1, . . . , u n )) = f (TE (u 1), . . . ,TE (u n ))

TE (wa u ) = TE (u )

TE (σ f (u 1, . . . , u n )) = TE ((σ · f )(σu 1, . . . ,σu n ))

TE (σX ) = X (〈σ〉(a \FrE (X )))

where σ stands for a composition of the form (b1/a 1) . . . (bn/a n ) and a \

FrE (X ) stands for the tuple obtained from a by deleting the names from
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FrE (X ). Given a tuple of distinct names c and σ = (b1/a 1) . . . (bn/a n ) the

tuple 〈σ〉c is obtained from c by successively replacing a i by b i .

5. The translation T (E ) is defined as

[a ]V `TE (t ) =TE (t ′).

Example 4.5.13. Consider the uniform equation

X : {a } ` app{b}(wb [a ](X ),b ) = (b/a )X : {b} (4.44)

from Example 4.3.5. We have that a = (a ,b ) and FrE (X ) = {b}. So |V |= {X } and

V (X ) = 1. We compute the term on the right hand side of the translated equation

by

TE ((b/a )X ) = X (〈(b/a )〉{a })

= X (b ).

Similarly, on the left hand side we get

TE (app{b}(wb [a ](X ),b )) = app(TE (wb [a ](X )), Vb )

= app(TE ([a ](X )), Vb )

= app([a ]TE (X ), Vb )

= app([a ]X (a ), Vb ).

Hence the corresponding equation in SNEL is

[a ,b ]{X : 1} ` app([a ]X (a ), Vb ) =X (b ).

This is precisely the equation (βε) of [FH08, Example 5.1].
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Using the model theory of synthetic nominal equational logic, one can prove

that a sheaf algebra satisfies a uniform equation if and only if the corresponding

F -algebra satisfies the abstract equation obtained using the above algorithm.

Let (X,ξ) be an F -algebra satisfying the additional equations (4.43). Then

the sheafX corresponding to the nominal setX can be equipped with an algebra

structure for the uniform signature given by O . Let E be a uniform equation of

the form

Γ ` t = t ′ : T.

Theorem 4.5.14 (semantic invariance). (X,ξ)�TE (E ) if and only if X� E .

Proof. Recall the model theory and the notations for SNEL from [FH08]. We

have that (X,ξ)�TE (E )when

[[[a ]V `TE (t )]](X,ξ)(b , (〈c Y 〉sy )y∈|V |) = [[[a ]V `TE (t ′)]](X,ξ)(b , (〈c Y 〉sy )y∈|V |)

for all (b , (〈c Y 〉sy )y∈|V | ∈A#|a |#
∏

Y∈|V |[A#V (Y ),X].

For the left-to-right direction consider a valuation v of the variables in Γ and

consider the abstract equation obtained from E

[a ]V `T (t ) =T (t ′).

For each variable Y in |V | let b Y denote the tuple a \ FrE (Y ). Since all the ele-

ments of FrE (Y ) are fresh for v (Y )we have a #〈b Y 〉v (Y ).
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We show that for all uniform subterms u of t or t ′ we have that

[[[a ]V `TE (u )]]X,ξ(a , (〈b Y 〉v (Y ))Y∈|V |) = [[u ]]X,v (4.45)

The proof is by induction on the structure of u . For example, when u = (c/d )X

we can prove that

[[[a ]V `X (〈(c/d )〉b X )]]X,ξ(a , (〈b Y 〉v (Y ))Y∈|V |) = (〈(c/d )〉b X b X ) ·v (X )

= (c d ) ·v (X )

= X(c/d )(v (X ))

= [[(c/d )X ]]X,v

We used that X(S) = {x ∈ X | supp(x ) ⊆ S} and that X((c/d )S)(x ) = (c d ) · x , re-

call (2.31) for details. The other cases use X(wa )(x ) = x and the inductive defini-

tions of the semantics of the abstract terms. It follows that [[t ]]X,v = [[t ′]]X,v . We

can show similarly that S satisfies all the equations trS (E ) for S ∩T = ;.

For the right-to-left implication we have to show that whenever X � E we

have [[[a ]V ` TE (t )]](X,ξ) = [[[a ]V ` TE (t ′)]](X,ξ). It is enough to prove that their

evaluation at (a , (〈c Y 〉sy )y∈|V |) coincides for all (〈c Y 〉sy )y∈|V | with the support dis-

joint from {a }. Given such (〈c Y 〉sy )y∈|V |, for each Y ∈ |V | we have b Y #sY , hence

we can find u Y ∈ X such that 〈c Y 〉sy = 〈b Y 〉u y . Moreover FrE (X )#u Y . Hence

we can consider a valuation v in X of all the variables in an extension trS (Γ). To

finalize the proof, we use that X� trS (E ) and (4.45).
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4.6 Conclusions and further work

In this chapter we have studied a way of transferring universal algebra from SetI

to Sh(Iop). We focused on algebras on nominal sets for functors L̃ : Sh(Iop) →

Sh(Iop) that correspond to sifted colimit preserving functors on SetI. We have

seen that under some mild assumptions on L : SetI→ SetI we can obtain an ap-

propriate L̃ as I ∗LI∗. Some questions were left open though, for example what

are the properties of the functors L̃ obtained in this fashion? Or what are the

requirements on a functor L̃ on sheaves so that we obtain an appropriate L on

SetI? Another task is to characterise the uniform theories from a categorical

perspective. We believe we can provide answers to some of these questions and

characterise the functors on nominal sets obtained by transferring sifted colimit

preserving functors across the adjunction between Nom and SetI as exactly the

functors that are determined by their action on the strong nominal sets. Central

to this development is the fact that the adjunction between Nom and Set|I| is

of descent type. The main category theoretic tool used is the notion of finitely-

based functors, developed in [VK11], as a generalisation of functors presented

by operations and equations in the more general setting of locally finitely pre-

sentable categories.

More results from universal algebra can be transferred to nominal setting.

For example we can obtain a quasi-variety theorem, applying the methodology
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described in this chapter.

Another motivation for this study is to give a foundation for the work on

logics for nominal calculi in the style of [BK07]. For example, the models for the

π-calculus of [Sta08] should fit in the realm of universal algebra over nominal

sets.



Chapter 5

Nominal Stone type dualities

In this chapter we present a nominal version of Stone type dualities. In Sec-

tion 5.1 we recall classical Stone dualities for Boolean algebras and distributive

lattices. In Section 5.2 we observe that a simple attempt to internalise Stone du-

ality in nominal sets fails. We also show that the power object of a nominal set

is a nominal-complete atomic Boolean algebra, but has a richer structure: one

can define an operation n that ‘corresponds’ to the Nquantifier and that is a

restriction operation in the sense of [Pit11, Pit10]. In Section 5.4 we introduce

distributive lattices equipped with a restriction operation and in section 5.5 we

prove a duality theorem with certain nominal bitopological spaces. This duality

restricts to the nominal Stone duality we obtained in [GLP11].

143
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5.1 Preliminaries on Stone type dualities

Stone [Sto36] showed that each Boolean algebra is isomorphic to a subalgebra of

the powerset of its ultrafilters. This subalgebra is obtained by considering only

those sets that are both open and closed with respect to a certain topology on the

set of ultrafilters. He then generalised his representation theorem to distributive

lattices [Sto37]. Stone type dualities have numerous applications in theoretical

computer science : Abramsky’s domain theory in logical form [Abr91] takes its

cue from a duality between program logics and denotations. Coalgebraic modal

logic uses Stone duality as the bridge between systems and logics [BK05].

Let us first look at Stone duality from a rather category-theoretical perspec-

tive. We have the functor P : Set→BAop that maps a set to its powerset regarded

as a Boolean algebra and for each function f : X → Y the map P f : PY → PX

is defined as the inverse image and is a Boolean algebra morphism. The func-

tor P has a right adjoint S : BAop → Set where SB is the set of ultrafilters of a

Boolean algebra B and for any h : B → B ′ the map Sh : SB ′ → SB is defined by

Sh(f′) = h−1(f′). Notice that SB can be regarded as the set of Boolean algebra

morphisms from B to 2.

The adjunction P a S yields a monad β on Set. The category of Eilenberg-

Moore algebras for β is isomorphic to the category of compact Hausdorff spaces

CHaus, see [Man69, Joh82]. Moreover the adjunction P aS is of descent type, or
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equivalently, the comparison functor K : BAop → CHaus is full and faithful. Its

essential image is exactly the full subcategory Stone of CHaus consisting of the

spaces that are zero-dimensional, that is, spaces for which the sets that are both

open and closed form a basis for the topology. The compact Hausdorff spaces

that are zero-dimensional are called Stone spaces. Thus we have Stone duality:1

Theorem 5.1.1. The categories BA and Stone are dually equivalent.

Let us note that an important part of the proof of this theorem hinges on the

adjunction P a S being of descent type. This is equivalent to the counit of the

adjunction being a regular epimorphism, or equivalently, the map ε
op
B : B→ PSB

defined by

b 7→ {F ∈SB | b ∈ F } (5.1)

being a regular monomorphism. This in turn is equivalent to the Ultrafilter The-

orem:

Theorem 5.1.2. Any filter of a Boolean algebra can be extended to an ultrafilter.

The ultrafilter theorem and Stone’s representation theorem are equivalent,

see [Jec73]. The proof of the ultrafilter theorem uses the Axiom of Choice. Nev-

ertheless, there are models of ZF set theory for which the Axiom of Choice fails,

but the ultrafilter theorem still holds.
1Recall that two categories are dually equivalent, when one is equivalent to the opposite of the

other, see [ML71].
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There are several duality theorems for distributive lattices. Stone [Sto37] rep-

resented them as spectral spaces, that is, spaces that are compact, T0, coherent

and sober. This representation theorem may seem not as satisfactory as that

for Boolean algebras. One reason is that on the topological side there is a lack

of symmetry. Given a distributive lattice D, we can construct the dual lattice

Dop, with the same carrier set, but with top and bottom, and meets and joins

swapped. One could ask, how can we obtain the spectral space corresponding

to Dop from the dual (X ,τ) of D. The answer may seem a bit complicated: One

has to equip X with the topology generated by the complements of sets that are

both open and compact in τ.

Priestley’s reformulation of Stone duality for distributive lattices [Pri70] re-

stores the symmetry on the topological side. She proved that distributive lattices

are dually equivalent to what we now call Priestley spaces. They are compact

topological spaces with an order that satisfies a separation axiom: if x 6≤ y there

exists a set U that is both open and closed— for short clopen—such that x ∈U

and y 6∈ U , see [Pri70]. If (X ,τ,≤) is the Priestley space dual to a distributive

lattice D, then the dual space of Dop is just (X ,τ,≥). The spectral space cor-

responding to D is (X ,τ+), where τ+ is the topology generated by opens that

are upper sets with respect to ≤. The lack of symmetry in the spectral spaces

approach appears because τ−, the topology generated by lower opens, is not
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taken into account. Thus, distributive lattices can be represented as bitopolog-

ical spaces (X ,τ+,τ−). The bitopological spaces arising in this fashion are de-

scribed in [BBGK10] and are called pairwise Stone spaces. The duals of Boolean

algebras are precisely the pairwise Stone spaces for which the two topologies

coincide, and these are isomorphic to Stone spaces.

5.2 Stone duality fails in nominal sets

In this section we will prove that an internal version of Stone’s representation

theorem fails in nominal sets. Let us see how much of the theory can be replayed

internally in nominal sets.

First, let us consider the category nBA of nominal Boolean algebras. Ob-

jects are Boolean algebra objects in Nom, that is tuples (B, ·,∧,¬)where (B, ·) is a

nominal set, (B,∧,¬) is a Boolean algebra and the operations ∧,¬ are equivari-

ant. Morphisms are equivariant Boolean algebra morphisms.

We have a functor P : Nom→ nBAop. On objects, P X is the power object

of the nominal set X equipped with a Boolean algebra structure, with ∧ inter-

preted as intersection and ¬ as complement. One can easily check that this is

well defined. If f : X→Y is a nominal sets morphism, thenP f (Y ) = f −1(Y ) for

all Y ∈P Y.

We can also consider a functor S : nBAop→Nom defined as follows. Given
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a nominal Boolean algebra B, consider the set S B of finitely-supported ultra-

filters of B. Notice that finitely supported ultrafilters correspond to finitely-

supported Boolean algebra morphisms from B to the nominal Boolean algebra

2. If f⊆B is a finitely-supported ultrafilter, then so is π · f= {π ·b | b ∈ f}. So S B

is a nominal set. For a nominal Boolean algebra morphism h : B→B′ we define

an equivariant functionS (hop) : SB′→SB by S(hop)(f′) = h−1(f′).

Proposition 5.2.1. We have an adjunctionP aS : nBAop→Nom.

Proof. For a nominal set X, the unit ηX :X→S P X is given by

x 7→ {Y ∈P X | x ∈ Y } (5.2)

It is easy to check that for all x ∈X we have that η(x ) is supported by supp(x ) and

is an ultrafilter inP X.

For a nominal Boolean algebra B, the counit εB : P S B → B in nBAop is

given by the nominal Boolean algebra morphism ε
op
B that maps

b 7→ {f∈S B | b ∈ f} (5.3)

It is easy to check that for all b ∈ B we have that εop(b ) is supported by supp(b ).

Moreover, η and ε satisfy the usual triangular identities.

However this adjunction is not of descent type. This boils down to the fact

that the map εop defined in (5.3) is not a monomorphism. We will prove in fact
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that the ultrafilter theorem does not hold in nominal sets. The classical theo-

rem uses the Axiom of Choice. It is known that the Axiom of Choice fails for

nominal sets, but there are models of ZF that satisfy the ultrafilter theorem, but

not the Axiom of Choice, see [Jec73]. The example we provide below is inspired

by [Jec73, Problem 4.6.3, pp 52], stating that the ordering principle fails in the

basic Fraenkel model. And classically the ultrafilter theorem implies the order-

ing principle, [Jec73, Section 2.3.2].

Proposition 5.2.2. There exists a nominal Boolean algebra having a finitely-

supported filter that cannot be extended to a finitely-supported ultrafilter.

Proof. Consider the nominal set Pfin(A) and for each P ∈ Pfin(A) consider the

set M P of total orders on P . Put M=
⋃

P∈Pfin(A)M P and define a S(A)-action on

M given as follows. If ≤P is an order on P define π· ≤P to be an order on π · P

given by

u (π· ≤P ) v ⇐⇒ (π−1 ·u ) ≤P (π−1 ·v ). (5.4)

Then (M, ·) is a nominal set as for all P ∈Pfin(A) each order on P is supported

by P .

We will consider next finitely-supported partial maps from Pfin(A) to M.

Formally these are elements of the nominal set [Pfin(A),M+ 1], where M+ 1

is the coproduct of M and the terminal object 1 of Nom.

Let X be the subset of [Pfin(A),M+1] consisting of those maps x such that
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1. for all P ∈Pfin(A) either x (P) = 1 or x (P)∈M P and

2. for all P,Q ∈ Pfin(A) such that x (P) ∈ M P and x (Q) ∈ MQ the orders x (P)

and x (Q) coincide when restricted to P ∩Q .

It is easy to check that X is a nominal subset of [Pfin(A),M+ 1]. Consider

x ∈ X and recall from (2.10) that (π · x )(P) = π · x (π−1 ·P). If x (π−1 ·P) = 1 then

(π ·x )(P) = 1. Otherwise, if x (π−1 ·P) ∈Mπ−1·P then (π ·x )(P) ∈M P , so condition

1. above is satisfied.

As for condition 2, if (π ·x )(P) and (π ·x )(Q) are orders on P , respectively on

Q , then they agree on P∩Q because x (π−1 ·P) and x (π−1 ·Q) are orders onπ−1 ·P ,

respectively π−1 ·Q , that agree on (π−1 ·P)∩ (π−1 ·Q) =π−1 · (P ∩Q).

Next we consider the nominal Boolean algebra P (X) and we construct a

finitely-supported filter f. For each P ∈Pfin(A) consider the set

XP = {x ∈X | x (P)∈M P} (5.5)

Clearly XP is supported by P , so is in P (X). Moreover, for all natural num-

bers n and P1, . . . , Pn ∈ Pfin(A) we have that XP1 ∩ . . .∩XPn is non-empty. To see

this, consider an order ≤ on P1 ∪ . . .∪ Pn and define x ∈ [Pfin(A),M+ 1] as fol-

lows. Put x (Pi ) to be the restriction of≤ to Pi and x (Q) = 1 for all Q 6∈ {P1, . . . , Pn}.

One can check that x is supported by P1 ∪ . . . ∪ Pn , and that x (Pi ) are pairwise

compatible on intersections. Hence x is in XP1 ∩ . . .∩XPn .
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Put f= {Y ∈P (X) | ∃P1, . . . , Pn ∈Pfin(A). XP1∩. . .∩XPn ⊆ Y }. It is easy to check

that f is a finitely-supported (in fact equivariant) filter ofP (X).

Assume by contradiction that f can be extended to a finitely-supported ul-

trafilter u. For each P ∈Pfin(A) we have that XP ∈ u and XP is equal to a disjoint

union
⋃

≤∈M P

{x ∈ X | x (P) =≤}. It follows that for each P ∈ Pfin(A) there exists a

unique total order ≺P on P such that

YP = {x ∈X | x (P) =≺P} ∈ u.

One can show that whenever π∈ fix(supp(u))we have

π· ≺P=≺π·P . (5.6)

The orders (≺P )P are pairwise compatible, because for all P,Q we have YP ∩

YQ ∈ u. Thus we can define a total order ≺ on A such that the restriction of ≺ to

each finite P is ≺P . Using (5.6) we can show that ≺ is a finitely-supported order

on A. Indeed, for π∈ fix(supp(u))we have

u ≺ v ⇐⇒ u ≺{u ,v } v

⇐⇒ π ·u (π· ≺{u ,v })π ·v using (5.4)

⇐⇒ π ·u ≺π·{u ,v } π ·v using (5.6)

⇐⇒ π ·u ≺π ·v

But the existence of a finitely-supported total order on A leads to a contradic-

tion. Assume a ,b , c 6∈ supp(≺) and a ≺ b . Then (a c ) ·a ≺ (a c ) ·b , so c ≺ b . On
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the other hand (a b )(b c ) · a ≺ (a b )(b c ) ·b , hence b ≺ c , contradiction! Hence

the filter f cannot be extended to a finitely-supported ultrafilter.

5.3 The power object of a nominal set

In this section we explore the structure of the power object of a nominal set.

We have seen that the functor P : Nomop→Nom is monadic and P op is its left

adjoint. The fact that the equivariant elements in the power object of a nominal

setP X form a complete atomic Boolean algebra is a consequence of a theorem

of Barr and Diaconescu for atomic toposes [BD80]. Recall thatNom is equivalent

to the Grothendieck topos for the atomic topology on Iop.

In fact more can be proved: the category of Eilenberg-Moore algebras for

the monad corresponding to this adjunction is the category of complete atomic

nominal Boolean algebras. Here, by ‘complete’ we mean ‘internally complete in

nominal sets.’

Definition 5.3.1. LetB be a nominal Boolean algebra. An element x ∈B is called

an atom if x 6=⊥ and for all y ∈B, y ≤ x implies y =⊥ or y = x .

Let At(B) denote the set of atoms of the nominal Boolean algebra B.

Lemma 5.3.2. At(B) is a nominal subset of B.

Proof. Consider π a finitely-supported permutation and an atom x ∈At(B). We
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can prove that π ·x is also an atom. Consider y ∈B such that y ≤π ·x . Since≤ is

equivariant, we have π−1 ·y ≤ x , hence π−1 ·y =⊥ or π−1 ·y = x . Or equivalently,

y =⊥ or y =π ·x . This shows that At(B) is an equivariant subset of B.

Definition 5.3.3. A nominal Boolean algebra B is called atomic if for all x ∈ B

such that x 6=⊥ there exists an atom y ∈At(B) such that y ≤ x .

Definition 5.3.4. A nominal Boolean algebra is called nominal-complete if each

finitely-supported subset X ⊆B has a supremum
∨

X ∈B.

Definition 5.3.5. A complete atomic nominal Boolean algebra is a nominal

Boolean algebra that is atomic (Definition 5.3.3) and nominal-complete (Def-

inition 5.3.4). A morphism of complete atomic nominal Boolean algebras is

an equivariant Boolean algebra morphism that preserves suprema of finitely-

supported sets.

Let nCABA denote the category of complete atomic nominal Boolean alge-

bras.

Example 5.3.6. If X is a nominal set then P X is a complete atomic nominal

Boolean algebra. Indeed, the atoms of P X are the singletons. Given a finitely-

supported family (Yi )i inP X, we have that
⋃

Yi is also finitely-supported. Below

we will show that any complete atomic nominal Boolean algebra is actually iso-

morphic to the powerset of a nominal set.
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From now on B will denote a complete atomic nominal Boolean algebra.

Lemma 5.3.7. Given x ∈ B, the set {y ∈ At(B) | y ≤ x } is finitely-supported and

its support is included in supp(x ).

Proof. Assume a ,b 6∈ supp(x ) and y is an atom such that y ≤ x . Then (a b ) · y ≤

(a b ) ·x , by equivariance of ≤. But (a b ) ·x = x , so (a b ) · y ≤ x . By Lemma 5.3.2

(a b ) · y is a an atom. This shows that

(a b ) · {y ∈At(B) | y ≤ x }= {y ∈At(B) | y ≤ x }. (5.7)

Hence supp({y ∈At(B) | y ≤ x })⊆ supp(x ).

Lemma 5.3.8. Given x ∈B we have that x =
∨

{y ∈At(B) | y ≤ x }

Proof. By Lemma 5.3.7 the set {y ∈ At(B) | y ≤ x } is finitely-supported, hence

using Definition 5.3.4 it has a supremum x0 ∈ B. Clearly x0 ≤ x . Assume the

converse inequality does not hold. Then ¬x0 ∧ x 6= ⊥. By Definition 5.3.3, there

exits z ∈ At(B) such that z ≤ ¬x0 ∧ x . But z ≤ x implies z ∈ {y ∈ At(B) | y ≤ x },

hence z ≤ x0. Since z ≤ ¬x0 we get z = ⊥, contradiction. So x = x0 and we are

done.

Lemma 5.3.9. The map ϕ :B→P (At(B)) defined by

x 7→ {y ∈At(B) | y ≤ x }.

is a morphism of complete atomic nominal Boolean algebras.
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Proof. By Example 5.3.6 and Lemma 5.3.2 we have that P (At(B)) is a complete

atomic nominal Boolean algebra. By Lemma 5.3.7 ϕ is well defined. The map ϕ

is equivariant. Indeed

(a b ) · {y ∈At(B) | y ≤ x } = {(a b ) · y | y ∈At(B) and y ≤ x }

= {y ∈At(B) | (a b ) · y ≤ x }

= {y ∈At(B) | y ≤ (a b ) ·x }

The proof for the fact thatϕ preserves finitely-supported suprema and nega-

tion is just as in the classical case:

Let x denote an atom of B, and {x i |i ∈ I } a finitely-supported subset of B.

Assume that x ≤
∨

i
x i . We have that x ∧

∨

i
x i =
∨

i
(x ∧x i ). Since for all i we have

x ∧ x i ∈ {⊥,x } it follows that there exists i ∈ I such that x ≤ x i . This proves that

ϕ preserves finitely-supported suprema.

The mapψ :P (At(B))→B defined by

X 7→
∨

X .

is well defined by Definition 5.3.4 and is equivariant. We can now show thatϕ is

an isomorphism andψ is its inverse:

Proposition 5.3.10. B and P (At(B)) are isomorphic complete atomic nominal

Boolean algebras.
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Proof. We haveψ ◦ϕ = idB by Lemma 5.3.8. Let us show that ϕ ◦ψ= idP (At(B)).

Given X ∈P (At(B)), we have to prove that {x ∈At(B) | x ≤
∨

X }= X . The right-

to-left inclusion is clear. Consider an atom x such that x ≤
∨

X . It follows that

there exists y ∈ X such that x ≤ y . Since both x and y are atoms, this implies

x = y , hence x ∈X , so the left-to-right inclusion also holds.

Both maps ϕ and ψ are equivariant, hence the direct image of any finitely-

supported subset of B, respectively P (At(B)), is a finitely-supported subset of

P (At(B)), respectivelyB. Then we can easily prove thatψ also preserves finitely-

supported suprema and negation. Thusψ is an isomorphism inverse to ϕ.

Proposition 5.3.11. The categories Nom and nCABA are dually equivalent.

Proof. We define the contravariant functorP :Nom→ nCABA such thatP X is

the powerset of X, and for equivariant f : X→Y we putP ( f )(B ) = f −1(B ). This

is well defined. By Proposition 5.3.10 we know thatP is surjective on objects.

P is clearly faithful: Assume f , g : X → Y are equivariant maps such that

P f =P g . Then, for all y ∈ Y we have f −1({y }) = g −1({y }), hence for all x ∈ X

we have f (x ) = y iff g (x ) = y , or equivalently, f = g .

P is full: Ifτ :P Y→P X is a morphism in nCABA, then the sets (τ({y }))y∈Y

are pairwise disjoint and, since τ preserves finitely-supported suprema, their

union is τ(Y) = X. So for all x ∈ X there exists a unique yx ∈ Y such that x ∈

τ({yx }). Set f :X→Y given by f (x ) = yx . We have τ=P f .
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In the previous section we have seen that the Boolean algebra structure is

not enough to provide a representation theorem. In the remainder of this sec-

tion we will define a restriction operation on P X. Recall the Nquantifier from

Definiton 2.1.15.

Definition 5.3.12. Define a restriction operation n :A×P X→P X by

na .X = {x ∈X | Nb.(a b ) ·x ∈X } (5.8)

for all a ∈A and X ∈P X.

Using Theorem 2.1.16 we have that

na .X = {x ∈X | ∃b #a ,x , X . (a b ) ·x ∈X }

= {x ∈X | ∀b #a ,x , X . (a b ) ·x ∈X }

It is easy to verify that n : A×P X→P X is equivariant. The operation n can be

regarded as a semantic interpretation of the new quantifier N. We illustrate this

point in the next lemma.

Lemma 5.3.13. Consider a nominal set X and an equivariant relation R ⊆A×X.

Then

{x ∈X | Na .R(a ,x )}= na .{x ∈X | R(a ,x )} (5.9)
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Proof. Given x ∈X we have the equivalences

Na .R(a ,x ) ⇐⇒ Nb.(a b ) ·R(a ,x )

⇐⇒ Nb.R(b , (a b ) ·x )

⇐⇒ Nb.(a b ) ·x ∈ {y ∈X | R(a , y )}

⇐⇒ x ∈ na .{y ∈X | R(a , y )}

(5.10)

Next we summarise some of the properties of n, see [GLP11] for proofs.

Proposition 5.3.14. Let a ∈A and X ∈P X. The restriction operation n has the

following properties:

1. a #na .X .

2. na .nb.X = nb.na .X .

3. If a #X then na .X =X .

4. na .(X ∩Y ) = (na .X )∩ (na .Y ).

5. na .(X \X ) =X \na .X .

6. If a #x then x ∈X if and only if x ∈ na .X .

7. If f :X→Y is an equivariant function then f −1(na .U ) = na . f −1(U ).
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5.4 Nominal distributive lattice with restriction

The category of nominal restriction sets was introduced in Pitts’ ‘Structural Re-

cursion with Locally Scoped Names’, see [Pit11, Definition 2.6].

Definition 5.4.1. A nominal restriction set X is a nominal set equipped with

a name-restriction operation, that is an equivariant map N: A×X → X that

satisfies:

Swap Na . Nb.x = Nb. Na .x

Garbage a #x ⇒ Na .x = x

Alpha b #x ⇒ Na .x = Nb.(b a ) ·x

Morphisms are equivariant maps that preserve N.

Definition 5.4.2. A nominal bounded distributive lattice with restriction is

a bounded distributive lattice object in Res, that is, a nominal restriction set

equipped with equivariant operations ⊥,>,∨,∧ that satisfy the following addi-

tional axioms:

Distrib - ∧ Na .(x ∧ y ) = ( Na .x )∧ ( Na .y )

Distrib - ∨ Na .(x ∨ y ) = ( Na .x )∨ ( Na .y )

Lemma 5.4.3. a # Na .x . As a corollary, Na . Na .x = Na .x .

Proof. We have that

a # Na .x ⇔ Nb. (a b ) · Na .x = Na .x (by Remark 2.1.17)

⇔ Nb. Nb.(a b ) ·x = Na .x ( Nis equivariant)
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The latter is true by Alpha and Theorem 2.1.16. The last part of the lemma fol-

lows using Garbage.

Notation 5.4.4. Given a finite set of names C = {c1, . . . , cn} ⊆ A we denote by

by NC .x the element Nc1 . . . Ncn .x . Notice that the order in which we write the

elements of C is not important by Swap.

Remark 5.4.5. It follows from Lemma 5.4.3 that Na .⊥ = ⊥ and Na .> = >, so we

omitted these from the axioms of Definition 5.4.2.

The morphisms between two nominal distributive lattices with restriction,

are Res-morphisms that preserve the lattice operations. Let nDLn denote the

category of nominal distributive lattices with restriction.

Definition 5.4.6. Let (L, ·,∨,∧,>,⊥, N) be a nominal distributive lattice with re-

striction. An n-filter f of L is a finitely-supported set f∈P (L) such that:

1. >∈ f

2. x ∈ f and y ∈ f if and only if x ∧ y ∈ f

3. Na .∀x .(x ∈ f ⇐⇒ Na .x ∈ f)

Definition 5.4.7. Call an n-filter f proper when ⊥ 6∈ f.

Call an n-filter f prime when f is proper and for all x , y ∈L we have x ∨ y ∈ f

implies x ∈ f or y ∈ f.
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The notions of n-ideal, proper n-ideal and prime n-ideal are defined dually.

Lemma 5.4.8. If f is an n-filter of L and i is an n-ideal of L, such that f∩ i = ;,

then the set

F = {g | g is an n-filter,g∩ i= ;, f⊆ g,supp(g)⊆ supp(i)∪ supp(f)}

has a maximal element with respect to inclusion.

Proof. Given a chain (fi )i inF we have that
⋃

fi ∈F . Indeed,
⋃

fi is supported

by supp(i)∪ supp(f) because each fi is supported by supp(i)∪ supp(f). Moreover

⋃

fi is an n-filter. By Zorn’s lemmaF has a maximal element f.

Theorem 5.4.9. If f is an n-filter of L and i is an n-ideal of L, such that f∩ i = ;,

then there exists a prime n-filter f such that f⊆ f, f∩ i= ; and supp(f)⊆ supp(f)∪

supp(i).

Proof. Consider an n-filter f̄ as obtained in Lemma 5.4.8. We will prove that f̄ is

prime. Assume by contradiction that x ∨ y ∈ f̄, but neither x nor y is in f̄.

We will use the following notation. For u ∈L let Cu denote the set

supp(u ) \ (supp(f)∪ supp(i)).

The first crucial observation is that we can assume without loss of generality

that supp(x )⊆ supp(f)∪supp(i) and supp(y )⊆ supp(f)∪supp(i). This is because we

can replace x by x ′ = NCx .x and similarly, y by y ′ = NCy .y , recall Notation 5.4.4.
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Then supp(x ′),supp(y ′)⊆ supp(f)∪ supp(i). By condition 3 of Definition 5.4.6 we

have that x ′ ∨ y ′ ∈ f̄, but x ′, y ′ 6∈ f̄.

At least one of the sets {z ∧ x | z ∈ f̄} and {z ∧ y | z ∈ f̄} is disjoint from i.

Otherwise there exist z 1, z 2 ∈ f̄ such that z 1 ∧ x ∈ i and z 2 ∧ y ∈ i. But then

(z 1 ∧x )∨ (z 2 ∧ y )∈ i∩ f̄ and this contradicts the fact that i∩ f̄= ;.

Assume that

{z ∧x | z ∈ f̄}∩ i= ;. (5.11)

Consider the set

f′ = {(z ∧x )∨u | z ∈ f̄, u ∈L}.

It is easy to see that f′ has the following properties:

1. >∈ f′, because >= (>∧x )∨>;

2. u ∈ f′ and v ∈ f′ iff u ∧v ∈ f′;

3. If a #f, i then u ∈ f′ implies Na .u ∈ f′;

4. f̄⊆ f′, but x ∈ f′ \ f̄;

5. supp(f′) ⊆ supp(f) ∪ supp(i). This follows because by the Conservation of

support principle we have supp(f′) ⊆ supp(f̄) ∪ supp(x ). But supp(x ) ⊆

supp(f̄) and supp(f̄)⊆ supp(f)∪ supp(i).

6. f⊆ f′ and i∩ f′ = ;, the latter follows from (5.11).
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So f′ is almost an n-filter, but for condition 3 of Definition 5.4.6. We can extend

it to a n-filter by considering

f′′ = {u ∈L | NCu .u ∈ f′}

It is easy to check that f′′ is an n-filter and supp(f′′)⊆ supp(f)∪ supp(i). Using the

fact that f′ satisfies property 3 above, it follows that f′ ⊆ f′′. Hence f̄$ f′′.

Let us show that f′′∩ i= ;. Assume there exists u ∈ f′′∩ i. Since i is an n-ideal,

we have that NCu .u ∈ i and this contradicts that f′ ∩ i= ;.

We have proved that f′′ ∈ F and f̄ $ f′′. This contradicts the fact that f̄ is a

maximal element ofF . Therefore f̄ is a prime n-filter.

We finish this section with a useful result concerning generation of prime

n-filters.

Definition 5.4.10. Let (L, ·,∨,∧,>,⊥, N) be a nominal distributive lattice with re-

striction. A finitely-supported set A ⊆L is called N-stable when

Na .∀x ∈L. x ∈ A⇒ Na .x ∈ A (5.12)

Lemma 5.4.11. Consider a finitely-supported subset A of a nominal distribu-

tive lattice that is N-stable and has the finite intersection property, that is, for all

a 1, . . . , a n ∈ A we have a 1 ∧ . . .∧a n 6=⊥. Then there exists a prime n-filter f such

that A ⊆ f.
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Proof. For all x ∈L let Cx denote the set supp(x ) \ supp(A). Consider the set

p= {x ∈L | ∃a 1, . . . , a n ∈ A. NCx .x ≥ a 1 ∧ . . .∧a n}

Using the axioms for N, we can check that p is a n-filter. For example, to prove

that condition 3 of Definition 5.4.6 is satisfied, notice that for a #A we have that

NCx .x = NC Na .x .( Na .x ).

Since A is N-stable we have that A ⊆ p. Since A has the finite intersection

property, we have that ⊥ 6∈ p. The result follows applying Theorem 5.4.9 for p

and i= {⊥}.

5.5 Stone duality for nominal distributive lattices with re-

striction

5.5.1 From nominal distributive lattices with restriction to nominal

bitopological spaces

Next we will introduce a notion of topological space internal to nominal sets. A

natural requirement is that the carrier of such a space is a nominal set and the

open sets are finitely-supported and form a nominal set. In general topology,

arbitrary unions of open sets are open. This condition needs to be slightly mod-

ified in the nominal setting, because arbitrary unions of finitely-supported sets

might not be finitely-supported. Here is the formal definition:
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Definition 5.5.1. A nominal topological space is a pair (X,τ) consisting of a

nominal sets X and a nominal subset τ ofP (X) satisfying

1. ;, X∈τ;

2. If U ,V ∈X then U ∩V ∈X;

3. IfU is a finitely-supported subset of τ then
⋃

U ∈τ.

Definition 5.5.2. Let (X,τ) be a nominal topological space. A finitely supported

subset U ∈P (X) is called

1. open when U ∈τ;

2. closed when X \U ∈τ;

3. clopen when U is both open and closed.

Lemma 5.5.3. Let (X,τ) be a nominal topological space and consider a ∈A. Re-

call the restriction operation n from Definition 5.3.12. Then the following hold:

1. If U is closed then na .U is closed.

2. If U is open then na .U is open.

3. If U is clopen then na .U is clopen.

Proof. 1. By Definition 5.3.12 we have that na .U =
⋂

b #U ,a
(a b ) ·U . Since for all

b #U , a the set (a b ) ·U is closed, we conclude that na .U is closed.
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2. follows from 1. and the fact that X \na .U = na .(X \U ).

3. is an immediate consequence of 1. and 2.

We will represent nominal distributive lattices with restriction as nominal

bitopological spaces.

Definition 5.5.4. A nominal bitopological space (X,τ1,τ2) is a nominal set X

equipped with two nominal topologiesτ1 andτ2. Morphism of nominal bitopo-

logical spaces are equivariant bicontinuous (that is, continuous in both topolo-

gies) functions. Let nBiTopdenote the category of nominal bitopological spaces.

Next we will define a functor F : nDL
op
N→ nBiTop. Given (L, ·,∨,∧,>,⊥, N) a

nominal bounded distributive lattice with restriction, consider the set pf(L) of

prime n-filters of L. For each x ∈L, put

x+ = {f∈ pf(L) | x ∈ f} (5.13)

and

x− = {f∈ pf(L) | x 6∈ f} (5.14)

Notice that x+ and x− are subsets of pf(L) supported by supp(x ). So we have

two maps (−)+, (−)− : L→P (pf(L)). Before giving the definition for the functor

F we establish some of their properties.
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Lemma 5.5.5. For all x , y ∈L and a ∈A the following equalities hold:

x+ ∩ y + = (x ∧ y )+ x− ∩ y − = (x ∨ y )−

x+ ∪ y + = (x ∨ y )+ x− ∪ y − = (x ∧ y )−

>+ = pf(L) >− = ;

⊥+ = ; ⊥− = pf(L)

na .x+ = ( Na .x )+ na .x− = ( Na .x )−.

(5.15)

Proof. Most of these are easy verifications. We give a proof for na .x+ = ( Na .x )+.

f∈ na .x+ ⇐⇒ Nb.(a b ) · f∈ x+ by Definition 5.8

⇐⇒ Nb.x ∈ (a b ) · f

⇐⇒ Nb.(a b ) ·x ∈ f

⇐⇒ ∃b #a ,x , f. (a b ) ·x ∈ f by Theorem 2.1.16

⇐⇒ ∃b #a ,x , f. Nb.(a b ) ·x ∈ f by Definiton 5.4.6

⇐⇒ Na .x ∈ f

⇐⇒ f∈ ( Na .x )+

(5.16)

Analoguously we can show na .x− = ( Na .x )−.

Lemma 5.5.6. The maps (−)+, (−)− :L→P (pf(L)) are equivariant and injective.

Proof. The first part is easy. To check injectivity of (−)+, (−)− consider x , y ∈ L

that are different. It is enough to prove the existence of a prime n-filter that

contains only one of them.
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We can assume without loss of generality that x � y . For z ∈L′ let Cz denote

the set supp(z ) \ (supp(x )∪ (supp(y )). We consider the sets

f= {z ∈L′ | NCz .z ≥ x }

and

i= {z ∈L′ | NCz .z ≤ y }

We can check that f is a n-filter containing x and i is a n-ideal containing y .

Moreover, we have that f∩ i= ;, otherwise we would contradict the assumption

that x � y . By Theorem 5.4.9, there exists a prime n-filter f′ such that f ⊆ f′ and

f′ ∩ i= ;. So x ∈ f′ and y 6∈ f′.

Consider the nominal topology τ+ generated by {x+ | x ∈ L}. Since this set

is closed under finite intersections by (5.15), τ+ is obtained by taking finitely-

supported unions of x+i .

Similarly, let τ− denote the nominal topology generated by {x− | x ∈L}. That

is, the open sets in τ− are finitely-supported unions of x−i .

We put F (L) = (pf(L),τ+,τ−). Given h : L → L′ a morphism in nDL N, we

define F (hop) : pf(L′)→ pf(L) by F (hop)(f′) = h−1(f′).

Lemma 5.5.7. The functor F : nDL
op
N→ nBiTop is well defined.

Proof. We need to check that for all morphisms h : L → L′ in nDL Nthe map

F (hop) is a morphism of bitopological spaces. It is easy to check that it is equi-
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variant. Notice that F (hop)−1(x+) = h(x )+ and F (hop)−1(x−) = h(x )− for all x ∈L.

It follows that F (hop) is bicontinuous.

Lemma 5.5.8. The functor F is faithful.

Proof. Consider h1, h2 : L → L′ two morphisms in nDL Nsuch that F (hop
1 ) =

F (hop
2 ). Assume to the contrary that there exists x ∈ L such that h1(x ) 6= h2(x ).

By Lemma 5.5.6 there exists a prime n-filter f such that h1(x ) ∈ f and h2(x ) 6∈ f or

h2(x )∈ f and h1(x ) 6∈ f. This contradicts the fact that F (hop
1 )(f) = F (hop

2 )(f). Hence

h1 = h2.

5.5.2 The duality

We prove that the functor F is a full embedding and describe its essential image.

To this end we introduce nominal pairwise Stone bitopological spaces, and we

show that they form a full subcategory of nBiTop dually equivalent to nDL N.

Definition 5.5.9. A nominal bitopological space is called pairwise Hausdorff

when for all distinct x , y ∈ X there exist disjoint U ∈ τ1 and V ∈ τ2 such that

x ∈U and y ∈ V , or there exists disjoint U ∈ τ2 and V ∈ τ1 such that x ∈U and

y ∈V .

Lemma 5.5.10. (pf(L),τ+,τ−) is pairwise Hausdorff.
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Proof. Let f,g be distinct prime n-filters. Then there exists x ∈ f\g or there exists

x ∈ g \ f. The sets U = x+ and V = x− satisfy the required properties.

Definition 5.5.11. Given a nominal topology τ, a finitely-supported subsetU ⊆

τ is called n-stable when

Na .∀U .(U ∈U ⇒ na .U ∈U ).

Remark 5.5.12. 1. Any finite subset U ⊆ τ is n-stable. If U is an equivariant

subset of τ thenU is n-stable iff for all a ∈A we have U ∈U ⇒ na .U ∈U .

2. Notice that ifU is a finitely-supported subset of τ, henceU is a finitely-

supported subset of P X. Then U is n-stable if and only if it is N-stable in the

sense of Definition 5.4.10.

Definition 5.5.13. A nominal bitopological space is called pairwise n-compact

when for all n-stableU1 ∈P (τ1) and n-stableU2 ∈P (τ2) such that
⋃

U1∪
⋃

U2

covers X there exists a finite subset ofU1 ∪U2 that covers X.

Lemma 5.5.14. Given a n-compact nominal topological space (X,τ1,τ2) and

U1,U2 finitely supported n-stable subsets of τ1, respectively τ2 such thatU1 ∪

U2 has the finite intersection property, (that is, any finite subset ofU1 ∪U2 has

non-empty intersection), then
⋂

(U1 ∪U2) 6= ;.

Proof. Assume by the contrary that
⋂

(U1∪U2) 6= ;. Then the finitely supported

sets V1 = {X \U |U ∈U1} and V2 = {X \U |U ∈U2} are n-stable and their union
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cover X. Hence there exists a finite subcover of V1∪V2. This contradicts the fact

thatU1 ∪U2 has the finite intersection property.

Lemma 5.5.15. (pf(L),τ+,τ−) is pairwise n-compact.

Proof. Consider n-stableU1 ∈P (τ+) and n-stableU2 ∈P (τ−) such that
⋃

U1∪

⋃

U2 covers pf(L). Let

A1 = {x ∈L | ∃U ∈U1.x+ ⊆U}

A2 = {x ∈L | ∃U ∈U2.x− ⊆U}

The sets A1 and A2 have the following properties:

1. supp(A i )⊆ supp(Ui )

2. a #Ui and x ∈ A i implies Na .x ∈ A i . Indeed, if x ∈ A1 there exists U ∈ U1

such that x+ ∈ U1. But since a #U1 andU1 is n-stable we have na .(x+) ⊆

na .U ∈U1. By Lemma 5.5.5 na .(x+) = ( Na .x )+, thus Na .x ∈ A1.

The sets

V1 = {x+ | x ∈ A1}

V2 = {x− | x ∈ A2}

have the properties:

1. suppV1 ⊆ suppU1 and suppV2 ⊆ suppU2
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2. V1 and V2 are n-stable.

3. V1 and V2 cover pf(L).

It is enough to show that pf(L) has a finite subcover of V1 ∪V2. For u ∈L let

Cu denote the set supp(u ) \ (supp(U1)∪ supp(U2)).

Consider the sets

i= {u ∈L | ∃m ≥ 1. ∃x1, . . . ,xm ∈ A1. NCu .u ≤ x1 ∨ . . .∨xm }.

f= {u ∈L | ∃m ≥ 1. ∃y1, . . . , ym ∈ A2. NCu .u ≥ y1 ∧ . . .∧ ym }.

Then i is an n-ideal and f is a n-filter. To check condition 3 of Definition 5.4.6

use that whenever x ∈ A i and a #U1 we have Na .x ∈ A i . Moreover A1 ⊆ i and

A2 ⊆ f.

Assume that i∩ f = ;. By Theorem 5.4.9 there exists a prime n-filter f′ such

that f ⊆ f′ and f′ ∩ i = ;. But this implies f′ 6∈ x+ for all x ∈ A1 and f′ 6∈ x− for all

x ∈ A2, contradicting that
⋃

V1 ∪
⋃

V2 covers pf(L).

Hence there exists u ∈ i∩ f. We obtain x1 ∨ . . .∨ xm ≥ y1 ∧ . . .∧ yn for some

x1, . . . ,xm ∈ A1 and y1, . . . , yn ∈ A2. It is easy to check that {x+1 , . . . ,x+m , y −1 , . . . , y −n }

covers pf(L).

Definition 5.5.16. A nominal bitopological space is called pairwise zero dimen-

sional when the sets that are open in τ1 and closed in τ2 form a basis for τ1 and

the sets that are open in τ2 and closed in τ1 form a basis for τ2.
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Lemma 5.5.17. (pf(L),τ+,τ−) is pairwise zero-dimensional.

Proof. We show that every set that U is τ+-open and τ−-closed is of the form x+

for some x ∈L. Since U is τ+-open we have

U =
⋃

{x+ | x+ ⊆U}

Since pf(L) \U is τ−-open we have that

pf(L) \U =
⋃

{x− | x− ⊆ pf(L) \U}

Notice that the sets {x+ | x+ ⊆ U} and {x− | x− ⊆ pf(L) \U} are finitely-

supported and n-stable. Their union is a cover for pf(L) and by Lemma 5.5.15

it has a finite subcover. So there exists x1, . . . ,xn ∈ L such that U = ∪x+i . By

Lemma 5.5.5 we have U = (x1 ∨ . . .∨xn )+.

Similarly, τ−-opens that are τ+-closed are of the form x− for some x ∈ L.

The conclusion follows because {x+ | x ∈L} is a basis for τ+ and {x− | x ∈L} is a

basis for τ−.

Definition 5.5.18. A nominal pairwise Stone space is a nominal bitopologi-

cal space that is pairwise Hausdorff, pairwise n-compact and pairwise zero-

dimensional.

Let nBiSt denote the full subcategory of nominal bitpological spaces with

objects nominal pairwise Stone spaces.
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Lemma 5.5.19. The functor F is full.

Proof. Consider a morphism of nominal bitopological spaces u : (pf(L′),τ′+,τ′−)→

(pf(L),τ+,τ−). We will define a morphism h :L→L′ in nDL Nsuch that F (hop) =

u . For all x ∈ L we have that u−1(x+) is open in τ′+ and closed in τ′−. Using a

similar argument as in Lemma 5.5.17 there exists yx ∈L′ such that u−1(x+) = y +x .

Note that yx is unique, by Lemma 5.5.6. Define h(x ) = yx . The function h is

equivariant, because u and (−)+ are equivariant. From (5.15) it follows that h is

a morphism of distributive lattices. We can easily check that h preserves N:

(h( Na .x ))+ = u−1(( Na .x )+)

= u−1(na .(x+)) by Lemma 5.5.5

= na .u−1(x+)

= na .(h(x ))+

= ( Na .h(x ))+

(5.17)

By Lemma 5.5.6 (−)+ is injective, hence h( Na .x ) = Na .h(x ). So h is a morphism

in nDL N.

Finally we can check that F (hop)(f′) = u (f′). Indeed x ∈ h−1(f′) if and only if

f′ ∈ (h(x ))+, or equivalently x ∈ u (f′).

Theorem 5.5.20. The categories nDL Nand nBiSt are dually equivalent.

Proof. By Lemmas 5.5.8 and 5.5.19 the functor F : nDL
op
N→ nBiTop is a full em-

bedding. We have seen that for each nominal distributive lattice with restric-
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tion F (L) is a nominal pairwise Stone space. It suffices to show that for each

(X,τ1,τ2) in nBiSt there exists G (X) in nDL Nsuch that F (G (X)) is isomorphic to

(X,τ1,τ2). Let G (X) be the nominal set of sets that are open in τ1 and closed in

τ2. By Lemma 5.5.3 and Proposition 5.3.14 we have that (G (X),∩,∪,;,X,n) is a

nominal distributive lattice with restriction. We defineφ :X→ F (G (X)) by

φ(x ) = {U ∈G (X) | x ∈U}.

It is easy to check that φ(x ) is a prime n-filter in G (X). Condition 3 in Defi-

nition 5.4.6 is satisfied because for all a ∈A such that a #x we have by point 6 of

Proposition 5.3.14 that U ∈ φ(x ) if and only if na .U ∈ φ(x ). We can prove that

φ is equivariant. Since X is pairwise Hausdorff it follows that φ is injective. To

prove that it is onto, consider f a prime n-filter of G (X). Put g= {V ∈ τ2 |X \V ∈

τ1\f}. We can prove that f∪g has the finite intersection property and is n-stable.

Hence, by Lemma 5.5.14, there exists x ∈X such that x ∈
⋂

(f∪g). It follows that

φ(x ) = f. Letψ denote the inverse ofφ.

It remains to prove that φ andψ are bicontinuous. Observe that for all U ∈

G (X) we have φ−1(U+) = U ∈ τ1 and φ−1(U−) = X \U ∈ τ2. Since {U+ | U ∈

G (X)} is a basis for τ+ and {U− |U ∈G (X)} is a basis for τ−, it follows that φ is

bicontinuous. Also for all U ∈G (X) we haveψ−1(U ) =U+ andψ−1(X \U ) =U−.

Since X is pairwise zero-dimensional, it follows thatψ is bicontinuous.
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5.6 Stone duality for nominal Boolean algebras with re-

striction

In this section we will show that the duality between nominal distributive lat-

tices with restriction and nominal pairwise Stone spaces restricts to a duality

between nominal Boolean algebras with restriction and nominal Stone spaces.

This is exactly the duality we have obtained in [GLP11].

Definition 5.6.1. A nominal Boolean algebra with restriction (B, ·,∧,¬, N) is a

nominal Boolean algebra equipped with a name-restriction operation N: A×

B→B satisfying

Distrib - ∧ Na .(x ∧ y ) = ( Na .x )∧ ( Na .y )

Distrib - ¬ Na .(¬x ) = ¬( Na .x )

A morphism of nominal Boolean algebras with restriction is a nominal Boolean

algebra mophisms that preserves N. Let nBA Ndenote the category of nominal

Boolean algebras with restriction.

Nominal Boolean algebras with restriction are in particular nominal dis-

tributive lattices with restriction. We will see next the effect that the presence

of negation has on the topological side. First let us see a generalisation of a clas-

sical result for Boolean algebras to nominal setting:
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Lemma 5.6.2. GivenB a nominal Boolean algebra with restriction and f a finitely-

supported subset of B, the following are equivalent:

1. f is a prime n-filter.

2. For all x ∈B either x ∈ f or ¬x ∈ f.

3. f is a maximal proper n-filter.

Proof. 1 ⇒ 2. This is similar to the classical case, using that for all x we have

>= x ∨¬x ∈ f.

2 ⇒ 3. Assume there exists a proper n-filter p such that f $ p. There exists

x ∈ p \ f. Then ¬x ∈ f, hence ¬x ∈ p. It follows ⊥= x ∧¬x ∈ p and this contradicts

the fact that p is proper.

3⇒ 1. Assume x ∨ y ∈ f, but x , y 6∈ f. Then f′ = {z ∈ B | z ∨ x ∈ f} is a n-filter

such that f$ f′. Condition 3 of Definition 5.4.6 is satisfied because for a #f,x we

have

z ∈ f′ ⇐⇒ z ∨x ∈ f

⇐⇒ Na .(z ∨x )∈ f

⇐⇒ ( Na .z )∨x ∈ f

⇐⇒ Na .z ∈ f′

(5.18)

This contradicts the maximality of f.
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Given a nominal Boolean algebra with restriction, we will call its prime n-

filters n-ultrafilters. We can show

Theorem 5.6.3. In a nominal Boolean algebra with restriction, every n-filter f

can be extended to n-ultrafilter f̄ such that supp(f̄)⊆ supp(f).

Proof. Given a prime n-filter f, apply Theorem 5.4.9 for f and i= {⊥}.

Another consequence of Lemma 5.6.2 is:

Corollary 5.6.4. Given B a nominal Boolean algebra with restriction and x ∈ B

we have x+ = (¬x )− and x− = (¬x )+.

Proposition 5.6.5. The duality between nDL Nand nBiSt restricts to a duality

between nBA Nand the full subcategory of nBiSt of spaces for which the two

topologies coincide.

Proof. Given B a nominal Boolean algebra with restriction, the corresponding

nominal pairwise Stone space has the property that the two topologies coincide.

This is because, by Corollary 5.6.4, the two basis {x+ | x ∈ B} and {x− | x ∈ B}

coincide.

Conversely, if (X,τ,τ) is a nominal pairwise Stone space then the nominal

distributive lattice G (X) constructed in the proof of Theorem 5.5.20 is in fact a

nominal Boolean algebra with restriction. The negation of U ∈ G (X) is X \U .
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This is well defined because the carrier set consists of clopens of τ (see Defini-

tion 5.5.2) and if U ⊆X is a clopen so is X \U .

The nominal pairwise Stone spaces for which the two topologies coincide

are simply nominal topological spaces (X,τ) that have the following properties:

1. are n-compact, that is, every n-stable finitely supportedU ⊆τ that covers

X has a finite subcover.

2. are Hausdorff, that is for all distinct x ,y ∈ X there exist disjoint U , V ∈ τ

such that x ∈U and y ∈V .

3. are zero-dimensional, that is, the clopens in τ form a basis for τ.

Definition 5.6.6. We call the nominal topological spaces satisfying the above

three properties nominal Stone spaces.

Let nSt denote the category of nominal Stone spaces and continuous equi-

variant maps. Using Proposition 5.6.5 we have obtained the duality theorem

from [GLP11]:

Theorem 5.6.7. The categories nBA Nand nSt are dually equivalent.

The notions of n-compactness and pairwise n-compactness may seem rather

ad-hoc, but, as we will see next, they arise naturally from the proofs. To close the



5.6 Stone duality for nominal Boolean algebras with restriction 180

circle, we prove that the duality in Theorem 5.6.7 is obtained using the same ca-

tegory theoretical machinery described in Section 5.1. We have an adjunction of

descent typeP aS : nBA
op
N→Nom. This yields a monad (β ,µ,η) on Nom, and

Theorem 5.6.13 below shows that the Eilenberg-Moore algebras for this monad

are precisely the n-compact Hausdorff topological spaces. Theorem 5.6.7 actu-

ally says that the essential image of the comparison functor K is the category of

nominal Stone spaces.

nBA
op
N

K

22

S

��

Nomβ

Uβ

{{
Nom

Fβ

;;

P

VV

βcc

(5.19)

By Proposition 5.3.14 we have thatP X has a nominal Boolean algebra with

restriction structure. Moreover if f : X → Y is an equivariant function, P f :

P Y →P X is a morphism in nBA N. Hence we have a functorP :Nom→ nBA
op
N.

Proposition 5.6.8. The functorP :Nom→ nBA
op
Nhas a right adjointS : nBA

op
N→

Nom.

Proof. On objects, S (B) is the nominal set of maximal n-filters of B. Given h :

B→B′ a morphism in nBA N,S h :S B ′→S B is defined byS h(f′) = h−1(f′).
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For a nominal set X, the unit ηX :X→S P X is given by

x 7→ {Y ∈P X | x ∈ Y } (5.20)

It is easy to check that η(x ) is an n-ultrafilter inP X.

For a nominal Boolean algebra B, the counit εB : P S B → B in nBA
op
N is

given by the nominal Boolean algebra morphism εop that maps

b 7→ {f∈S B | b ∈ f} (5.21)

It is easy to check that for all b ∈ B we have that εop(b ) is supported by supp(b )

and is a morphism in nBA Nby Lemma 5.5.5. Moreover, η and ε satisfy the usual

triangular identities.

The adjunctionP aS of Proposition 5.6.8 yields a monad (β ,µ,η) on Nom

where

1. βX is nominal set of n-ultrafilters inP X.

2. For f :X→Y equivariant β f :βX→βY is defined by

β f (f) = {U ∈P Y | f −1(U )∈ f}. (5.22)

3. The unit ηX :X→S P X is given by

x 7→ {Y ∈P X | x ∈ Y }. (5.23)
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4. The multiplication µX :ββX→βX, computed asS εP X, is given by

Φ 7→ {Y ∈P Y | {U ∈S P X | Y ∈U } ∈Φ}. (5.24)

Next we will generalise Manes’ theorem to the nominal setting. In the clas-

sical case it is well known that a topological space (X ,τ) is compact if and only if

every filter on X has at least one limit. We say that a filter F has x ∈ X as a limit

when the filter N (x ) of neighbourhoods of x is included in F . A similar result

can be proved for n-compact nominal topological spaces.

Let (X,τ) be a nominal topological space. First notice that for all x ∈ X we

have that the neighbourhoods of x

N (x ) = {U ∈P X | ∃O ∈τ.x ∈O,O ⊆U}

form a n-filter. Condition 3 of Definition 5.4.6 is satisfied using point 6 of Propo-

sition 5.3.14.

Definition 5.6.9. Let (X,τ) be a nominal topological space. A maximal n-filter f

inP X converges to x ∈X, or has x as a limit, whenN (x )⊆ f.

Lemma 5.6.10. A nominal topological space (X,τ) is n-compact if and only if

every maximal n-filter f inP X has at least one limit.

Proof. Assume (X,τ) and f is a maximal n-filter. The set {V | V ∈ f,X \V ∈ τ} is

n-stable (because f is an n-filter and by Lemma 5.5.3) and has the finite intersec-
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tion property, thus has a non-empty intersection. Let

x ∈
⋂

{V | V ∈ f,X \V ∈τ}.

If U is open such that x ∈U then U ∈ f. HenceN (x )⊆ f.

Conversely, if every n-ultrafilter has a limit, let (Ui )i∈I be an n-stable finitely-

supported cover of X with no finite subcover. Then the set {X \Ui | i ∈ I } is n-

stable and has the finite intersection property. By Lemma 5.4.11 it is included in

a maximal n-filter f. Let x be a limit of f. It follows that for all i we have x 6∈
⋂

Ui

because X \Ui ∈ f. But this contradicts the fact that (Ui )i∈I covers X.

Lemma 5.6.11. A nominal topological space is Hausdorff if and only if every

maximal n-filter inP X has at most a limit in X.

Proof. Assume (X,τ) is Hausdorff and f is a maximal n-filter in P X such that

N (x )⊆ f andN (y )⊆ f. If x and y were distinct we would find U , V ∈τ such that

U ∩V = ; and x ∈U , y ∈ V . But then ; ∈ f, contradiction. Conversely, consider

x , y ∈ X such that x 6= y . Assume by contradiction that for all U ∈ τ with x ∈U

and for all V ∈τwith y ∈V we have U ∩V 6= ;. Then the finitely-supported set

{U ∩V |U ∈N (x ), V ∈N (y )}

has the finite intersection property and is n-stable, thus, by Lemma 5.4.11, it is

contained in a maximal n-filter f. Notice that N (x ) ⊆ f and N (y ) ⊆ f, contra-
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dicting the fact that f has at most one limit. Hence x and y can be separated by

disjoint opens, so (X,τ) is Hausdorff.

Let nCHaus denote the category of n-compact nominal topological spaces

and continuous equivariant maps. We define a functor G : nCHaus → Nomβ .

Consider a nominal topological space (X,τ) that is n-compact and Hausdorff.

By Lemma 5.6.11 and Lemma 5.6.10 each maximal n-filter f has a unique limit

lim(f). From the proof of Lemma 5.6.10 we obtain that

{ lim(f) }=
⋂

{V | V ∈ f,X \V ∈τ}. (5.25)

This shows that lim :βX→X is equivariant.

We prove next that lim :βX→X is an Eilenberg-Moore algebra forβ . By (5.25)

it follows easily that for all x ∈ X we have lim(η(x )) = x . To check that the dia-

gram

ββX µX //

β lim
��

βX

lim

��
βX lim // X

(5.26)

commutes, consider Φ ∈ββX. Using (5.22) and (5.24) It is enough to check that

the n-filters

µX(Φ) = {U ∈P X | {U ∈βX |U ∈U } ∈Φ}

and

β lim(Φ) = {U ∈P X | lim−1(U )∈Φ}
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converge to the same limit. If x is the limit ofβ lim(Φ), then for all open V ∈N (x )

we have lim−1(V ) ∈ Φ. But lim−1(V ) ⊆ {U ∈ βX | V ∈ U }, hence V ∈ µX(Φ). It

follows that x is also a limit of µX(Φ).

We put G (X,τ) = lim : βX → X. Let (X1,τ1) and (X2,τ2) be two nominal

n-compact Hausdorff topological spaces. Given f : X1 → X2 a continuous map

between n-compact Hausdorff spaces, we have to check that f ◦lim1 = lim2 ◦β f .

This is exactly as the proof in the classical case, see [Joh82, Lemma 2.3].

Lemma 5.6.12. The functor G : nCHaus→Nomβ defined above is full.

Proof. Let (X1,τ1) and (X2,τ2) be two nominal n-compact Hausdorff topolog-

ical spaces and (X1, lim1), (X2, lim2) the corresponding Eilenberg-Moore alger-

bras. If f : (X1, lim1)→ (X2, lim2) is a morphism in Nomβ , we show that f : X1→

X2 is continuous. Let V be an open inX2 and assume to the contrary that f −1(V )

is not equal to the finitely-supported union

int( f −1(V )) =
⋃

{U ∈τ1 |U ⊆ f −1(V )}.

Let x ∈ f −1(V )\ int( f −1(V )). Then the set {U \ f −1(V ) |U ∈N (x )} is n-stable and

has the finite intersection property, thus, by Lemma 5.4.11, it is contained in a

n-ultrafilter f ∈ βX1. It follows that f converges to x . Since f ◦ lim1 = lim2 ◦β f ,

we have that β f (f) converges to f (x ). This leads to a contradiction, because

V ∈N ( f (x )) but V 6∈β f (f).
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Theorem 5.6.13. The category of Eilenberg-Moore algebras for the monad β is

isomorphic to the category nCHaus of n-compact Hausdorff nominal topologi-

cal spaces.

Proof. We have seen that the functor G is well-defined, faithful and full. It re-

mains to show that each Eilenberg-Moore algebra is of the form G (X,τ) for a

unique n-compact Hausdorff space (X,τ). Givenψ :βX→X in Nomβ we define

a map cl onP X by

U 7→ {ψ(f) |U ∈ f}.

The map cl : P X → P X is equivariant and moreover satisfies the next prop-

erties; the first two can be proved exactly as in the classical case, see [Joh82,

Theorem 2.4]:

1. U ⊆ cl(U ), since for all x ∈U we haveψ(η(x )) = x and U ∈η(x ).

2. cl(U ∪V ) = cl(U )∪ cl(V ), since U ∪V ∈ f iff U ∈ f or V ∈ f.

3. cl(cl(U )) = cl(U ) follows using the following claim:

Claim 5.6.14. If f is a n-ultrafilter and cl(U ) ∈ f there exists a n-ultrafilter g with

U ∈ g andψ(f) =ψ(g).

For V ∈ f the set ψ−1(V ) ∩ {U ∈ βX |U ∈ U } is non-empty because V ∩ cl(U )

is non-empty. Then the set {ψ−1(V ) ∩ {U ∈ βX |U ∈ U } | V ∈ f} is finitely-

supported subset of P βX, n-stable and has the finite intersection property.
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Thus, by Lemma 5.4.11, it can be extended to a maximal n-filter Φ ∈ ββX. Put

g=µX(Φ). Since βψ(Φ) = f we have thatψ(f) =ψ(g).

We consider a nominal topology on X given by

τ= {U ∈P X |X \U = cl(X \U )}.

It is easy to check that τ is a nominal subset of P X and is indeed a nominal

topology. Next we show that

f converges to x ⇐⇒ ψ(f) = x . (5.27)

Suppose lim f = x . Then for every V ∈ f, we have x ∈ cl(V ). By Claim 5.6.14

there exists an ultrafilter gV that converges to x and contains V . Henceψ−1(x )∩

{U ∈ βX |V ∈ U } 6= ;. Then the set {ψ−1(x ) ∩ {U ∈ βX |V ∈ U } | V ∈ f} is

finitely-supported subset ofP βX, n-stable and has the finite intersection prop-

erty. Hence it is contained in a maximal n-filter in Ψ∈ββX.

For the right-to-left implication, notice that for all V ∈ f we have x ∈ cl(V ).

Using the argument in Lemma 5.6.10 it follows that x = lim f.

On one hand, (5.27) implies that each n-ultrafilter has a unique limit in X,

hence by Lemmas 5.6.10 and 5.6.11 it follows that (X,τ) is n-compact and Haus-

dorff. On the other hand, using (5.27) we immediately get that G (X,τ) = (X,ψ).
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5.7 Conclusions and further work

In this chapter we proved that the ultrafilter theorem cannot be internalised in

nominal sets. We can still obtain Stone type dualities in nominal setting by ex-

ploiting the rich structure of the power object of a nominal set. In particular, the

power object functorP can be restricted to a functor from Nom to the opposite

category of nominal Boolean algebras with a name restriction operation.

Then, all the apparent ad-hoc constructions from [GLP11] can be easily ex-

plained. The n-ultrafilters of a such a nominal Boolean algebra with restriction

are needed to find the right adjoint forP . The key for proving the duality lies in

the fact that this adjunction is of descent type. The notion of n-compactness can

be explained by understanding the Eilenberg-Moore algebras for the induced

monad on Nom.

We have to mention a different approach to the dualities presented in this

chapter. Staton observed that the category of nominal restriction sets is equiv-

alent to SetpI, where pI is the category of finite sets and partial injective maps.

Since pI is self dual, an equivalent description of our nominal Stone spaces is

StonepI. However, notice that in our setting the topological spaces are internal

in nominal sets, rather than in nominal restriction sets.

Future work includes restricting the dualities for nominal distributive lat-

tices with restriction to categories that might be of interest for domain theory.
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Another potential application would be a duality-based approach to developing

coalgebraic logic with names.
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