
DIRECTED SYMBOLIC MODEL CHECKING

OF SECURITY PROTOCOLS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Qurat ul Ain Nizamani

Department of Computer Science

University of Leicester

2011



Declaration

The content of this submission was undertaken in the Department of Computer Sci-
ence, University of Leicester, and supervised by Dr. Emilio Tuosto during the period
of registration. I hereby declare that the materials of this submission have not pre-
viously been published for a degree or diploma at any other university or institute.
All the materials submitted is the result of my own research except as cited in the
references.

Preliminary versions of the results presented in this submission have been pub-
lished in the following papers:

• Qurat ul Ain Nizamani and Hyder A. Nizamani. Analysis of a Federated Identity
Management Protocol in SOC. In Proceedings of the 3rd Young Researchers
Workshop on Service Oriented Computing (YR-SOC), 2008.

• Qurat ul Ain Nizamani and Emilio Tuosto. Heuristic Methods for Security Pro-
tocols. In Proceedings of 7th International Workshop on Security Issues, EPTCS
Volume 7, 2009. pp 61-75

i



Abstract

This thesis promotes the use of directed model checking for security protocol
verification. In particular, we investigated the possibility of designing heuristics
that can reduce the overall size of the state space and can direct the search towards
states containing an attack. More precisely,

• We have designed three property-specific heuristics namely H1, H2, and
H3. The heuristics derive their hints from the security property to be veri-
fied and assign weights to states according to their possibility of leading to
an attack.

• H1 is formally proved correct, i.e., the states pruned by the heuristic H1 do
not contain any attack.

• An existing tool ASPASyA with conventional model checking algorithm
(i.e., depth first search) has been modified so as to integrate our heuristics
into it. The resulting tool H -ASPASyA uses an informed search algo-
rithm that is equipped with our heuristics. The heuristics evaluate the states
which are then explored in decreasing order of their weights.

• The new tool H -ASPASyA is tested against a few protocols to gauge the
performance of our heuristics.

The results demonstrate the efficiency of our approach. It is worth mentioning
that despite being a widely applied verification technique, model checking suffers
from the state space explosion problem. Recently directed model checking has
been used to mitigate the state space explosion problem in general model check-
ing. However, the directed model checking approaches have not been studied
extensively for security protocol verification. This thesis demonstrates the fact
that directed model checking can be adapted for security protocol verification in
order to yield better results.
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Chapter 1

Introduction

1.1 Context

The widespread use of distributed and network applications (such as e-banking, e-

commerce, e-voting, etc.) require secure communications over an insecure network.

Communicating parties therefore need to be assured that certain security properties

are guaranteed during such conversations. For instance, they usually require that mes-

sages exchanged during communication are only accessible to honest participants, i.e.,

secrecy is guaranteed. They also desire to ascertain the identity of the party they are

communicating with, that is authentication must be achieved. They may also expect

certain other behaviours such as non-repudiation, integrity, reliability, etc.

The tools that ensure such guarantees are called security protocols. Such protocols

rely on cryptographic primitives (mainly encryption, decryption, and hash functions)

to achieve such goals. However, designing security protocol, is hard and typically

error prone even in simple cases. A number of protocols that have been considered

secure over a number of years have later proved to be flawed. One of the paramount

examples is the Needham Schroeder public key protocol first proposed in [61] and

discovered to be vulnerable in [55].
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The inherent ambiguity in security protocols propelled the need to test security pro-

tocols extensively before they are put into operation. The formal verification commu-

nity took up this challenge and many researchers have come up with various verifica-

tion frameworks and tools employing model checking [49, 12], strand spaces [69, 68],

path analysis [57, 1, 16, 17], theorem proving [64], to name a few. However, one of the

interesting aspects in the analysis of security protocols is the complexity of verification

algorithm. The security protocol verification problem is undecidable in general [60]

and computationally hard [38, 27, 28, 67] in the rest of the cases.

Undecidability arises as the protocols are assumed to be operating in a network

that is under the control of an intruder. The intruder is usually modelled as a powerful

agent who has many capabilities. Many such intruder models are available, among

which Dolev-Yao [37] is presumably the most powerful. The motivation behind using

such a powerful intruder comes from the fact that a protocol withstanding an attack

by a powerful intruder can resist a weaker intruder in reality. A Dolev-Yao intruder

is capable of intercepting, replaying, inserting, and forging messages by pairing, en-

cryption, and decryption. However, he can not perform cryptanalysis, that is perfect

cryptography is assumed. The perfect encryption hypothesis states that an encrypted

message can only be deciphered using appropriate keys and the only way to generate

a cryptogram such as {m}k is that the intruder knows the key k. Thus verifying a pro-

tocol with any number of sessions that can be interleaved together and in the presence

of a Dolev-Yao intruder is computationally hard.

Among the various verification approaches, model checking (MC) is the widely

used and applied technique. In model checking, a protocol is analysed for all pos-

sible behaviours (under specified conditions), i.e., all states must be enumerated and

checked to find the error states. However, the problem with MC is the exponential

growth of the state space with the increase in number of system components. This is

termed as state space explosion, i.e., system resources are exhausted before the verifi-
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cation algorithm terminates.

Many authors have suggested different techniques to tackle state space explosion;

for instance, symbolic techniques [4, 18, 19, 43], partial order reduction [32, 44],

abstractions [31], symmetries [42, 30], to name a few. Recently, the focus has been on

directed model checking (DMC) [40, 53] which emerges as an amalgam of AI inspired

heuristic search techniques and MC. The main idea is to help searching algorithms find

error states quickly before it runs out of resources. More specifically, the searching

algorithm is equipped with hints along with the description of the problem at hand,

that prioritise states according to their proximity to goal states (e.g., states violating a

correctness properties). However, its important to mention here that such techniques

have not been keenly pursued in security protocol verification. In fact, there is very

little evidence of exploiting heuristic techniques in security protocol analysis.

This thesis promotes the use of directed model checking for security protocol anal-

ysis. More precisely, we have identified three heuristics that can guide the searching

algorithm towards attack states and establish a conclusion after exploring relatively

fewer states. The effectiveness of such approach has been shown by integrating them

into the symbolic model checker ASPASyA [9]. It is worth mentioning that although

the heuristics have been defined in terms of a formal framework [21], they are rather

general and can be adopted by similar verification approaches.

1.2 Research Question

The huge state spaces generated while model checking is a main hindrance in the ver-

ification of large, complex, and realistic protocols. It is therefore important to inves-

tigate methods and techniques through which state space can be efficiently managed

and explored. The following research question has been formulated in this context.

Is it possible to exploit domain knowledge to devise heuristics for model
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checking security protocols that can help the model checking algorithm to

efficiently explore the state space without eliminating any attacks?

DMC can be a promising improvement to conventional model checking and is

characterized by heuristic supported search techniques that explore the states accord-

ing to their proximity to goal states. In terms of security protocols, the goal for search-

ing algorithms is an attack on the protocol. Therefore, we have investigated DMC as

a plausible technique for security protocol verification.

Note that our focus is on the design of heuristics and not on the heuristic search

algorithms to be used in the DMC approach. Mainly, the heuristics used in directed

model checking can contribute to efficiency by the following ways:

1. Reducing the overall size of the state space by discarding those states that can

not lead to an attack. These states are never explored during the state space

construction and this capability of heuristics is referred to as pruning.

2. Driving the search towards promising states and finding a counter example be-

fore the resources exhaust. We will refer this capability of heuristics as re-

ordering.

3. Combining the above two approaches so that pruning and re-ordering both can

contribute to efficiency.

A heuristic exhibiting re-ordering contributes to efficiency when the aim of the model

checking algorithm is to find an attack on the protocol. More precisely, the attack

state is discovered more quickly as the state space is not explored systematically in a

pre-defined order e.g. depth first search (DFS) or breadth first search (BFS); in fact

the order of exploration is determined by the weight of each state generated by the

heuristic function. However, if the goal of model checking is to discover all attacks on

the protocol, re-ordering renders no benefits. More precisely, visiting the state space
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in one order or another does not make any difference when complete state space is

to be explored. Such situations demand heuristics with pruning capabilities as they

reduce the overall size of the state space to be explored and significantly contribute

to efficiency. Usually the aim of DMC is re-ordering [47], however, our focus is on

designing heuristics that can preferably demonstrate both capabilities.

1.3 Methodology and Main Contributions

We address the research question stated in § 1.2 by dividing the task in three steps:

• developing the heuristics and formal proofs of their properties;

• integrating the heuristics into a MC algorithm; and

• testing the efficiency of the new algorithm.

In order to design the heuristics we use a framework [43], which represents the be-

haviour of a security protocol through Cryptographic Interaction Pattern calculus

(cIP) and protocol Logic (P L), respectively a cryptographic process calculus and a

logic for specifying security properties. Note that heuristics are defined for the frame-

work [43] but they can be easily adopted by other security protocol verification frame-

works (see § 1.4.2). The heuristics are then implemented by integrating them into the

symbolic model checker ASPASyA [9, 43]. In particular, we adopted a hybrid model

checking approach that combines directed and conventional MC. More precisely, the

state space is initially explored by means of an informed search algorithm followed

by a conventional DFS algorithm. Finally, the new algorithm called H -ASPASyA is

tested with a few protocols to observe the behaviour and respective efficiency of each

heuristic.

The main contributions of this research are enumerated in the following para-

graphs.
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Heuristic Function H1 The heuristic H1 exploits P L formulae formalising the se-

curity properties of interest. Such heuristic may drive the search of an attack path and

has the following capabilities:

• The heuristic ranks the nodes and the edges of the state space by inspecting (the

syntactical structure of the) formula expressing the security property of interest.

More precisely, the state space consists of the transition system representing the

possible runs of a protocol; the heuristic weighs states and transitions consider-

ing the instances of principals that joined the context and how they are quantified

in the security formula. Weights are designed so that most promising paths are

tried before other less promising directions.

• The heuristic can rule out portions of the state space that does not contain at-

tacks. As mentioned in § 1.2, such capability is beneficial when there is no at-

tack on the protocol or when the verifier is interested in finding all attacks on the

protocol. In both cases the searching algorithm needs to explore the complete

state space in order to establish the correctness of the protocol under specified

assumptions.

Heuristic Function H2 Another property dependent heuristic (H2) is defined. It

exploits the atomic formulae and logical connectives in P L formulae to assign weights

to states. Intuitively, H2 looks at the assignment of open variables in a security formula

and checks the mappings in a state to mark the state as a promising or pruned one.

Heuristic Function H3 Heuristic function H3 has been designed to evaluate the

combined effect of H1 and H2. The heuristic H3 is therefore a composite heuristic

as it ranks states with the help of two different heuristic functions i.e., H1 and H2

whichever is applicable to the state.
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Properties of the Heuristics An estimation based heuristic (see § 2.5.2.1) ranks

nodes according to their cost of reaching the goal node. For such heuristics, it is typi-

cally required that admissibility and consistency or monotonicity [54] of the heuristics

are also proved. Admissibility requires that heuristic estimates should never exceed

the actual cost of reaching the goal node. Consistency demands that for a node n and

its successor n′ , the heuristic estimate for n to reach the goal node will be no more

then the step cost of reaching the n′ plus the heuristic estimate for n′ to reach the goal

node. However, both consistency and admissibility can not be applied on evaluation-

based heuristics. Mainly due to the reason that an evaluation function ranks the nodes

according to how promising is the state in terms of leading to a goal state. Since our

heuristic function is an evaluation-based function, admissibility and consistency are

not proved as it could make no sense. We discuss this issue in detail in § 3.5. For

heuristic H1, the correctness of the heuristic, namely that no attacks can be found in

the portion of the state space cut by our heuristic, is given in § 3.2.1.

Implementation and Results All three heuristics have been implemented by inte-

grating them into an existing symbolic model checker for security protocols. More

precisely, we modified the symbolic model checker ASPASyA [10, 43] so that the

state space is cut and searched according to the heuristics. The resulting tool namely

H -ASPASyA was tested for various protocols to analyse the gains achieved. The

results show that heuristics provide a significant reduction in the size of the state

space. Further the heuristics also help the searching algorithm to discover attacks

rather quickly. Results also demonstrate that apart from few exceptions generally

heuristic H3 has an edge over heuristic H1 and H2. The efficiency achieved in best

cases is up till three orders of magnitude with respect to ASPASyA.
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1.4 Related Work

The heuristic search algorithms have been broadly applied in different domains in-

cluding MC. Interestingly, DMC has not been the focus of the researchers working on

security protocol verification. In fact, to the best of our knowledge, the only work that

uses any heuristic techniques to efficiently explore the state space for security protocol

verification is [46, 11]. In this section we overview some prominent DMC approaches

not necessarily confined to security protocols. We also take into account any promis-

ing security protocol verification approaches that has given rise to efficient state space

exploration tools.

1.4.1 Directed Model Checking

In this section, we consider some promising DMC approaches and compare the mer-

its/demerits of the heuristics used by those works with our heuristics.

As mentioned in [41], probably the first tool that employed heuristic techniques

is Approver [48]. Instead of using conventional BFS/DFS algorithms, Approver uses

priority queues for searching the state space. Each element of the queue has a priority

field, computed by a priority function, according to which records are ordered.

Yang and Dill, in their seminal work [36] suggested the use of heuristics to in-

crease the bug finding capability of a model checker. Several heuristics were designed

among which target enlargement and tracks were reported by the authors as the most

successful heuristics. Target enlargement uses pre-images to evaluate states, where a

pre-image of a state s is the set of states that can reach s in one transition. By us-

ing pre-images of error states, it is determined which states can reach the error states.

However, target enlargement can only be applied during few cycles as it is memory

intensive operation and it is not always possible to compute pre-images. On the other

hand tracks uses approximate pre-images (based on those state variables that strongly
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control the behaviour of the system) and can be applied to more cycles as compared to

target enlargement. Another heuristic called guided posts requires user defined hints

for directing the search.

In [46], the model checking of concurrent systems modelled as Calculus for Com-

municationg Systems(CCS) [59] processes is coupled with heuristics to increase effi-

ciency. A heuristic function is defined by looking at actions specified in the property

specification formula and the CCS process to assign an estimate to a state which cor-

responds to the cost of reaching the goal state. The heuristic function guides the state

space exploration towards interesting states and the process halts whenever a state

satisfying (or violating) the property is found.

In [40], directed search algorithms are applied to verify a class of safety and live-

ness properties. More specifically, A* and an improved nested DFS algorithm use a

heuristic exploiting the structure of promela never claims. A promela never claim is

used to specify a property that should never be satisfied. It is in the form of Buchi

automata and is executed synchronously with promela model. The global state transi-

tion graph is interpreted as a Kripke structure for which different properties are vali-

dated. Such algorithm finds shorter counter examples and performs less exploration.

In contrast to [46, 40], our heuristic functions are evaluation-based and therefore do

not contribute in finding shorter counter examples. Finally, the heuristics in [40] (and

references therein) allow to cut the state space only in few trivial cases.

UPPAAL/DMC [53] is an extension of UPPAAL with DMC. The heuristics used in

DMC are based on abstraction and are called monotonicity abstraction and automata-

theoretic abstraction. The heuristic values are obtained by first extracting an abstrac-

tion of the system at hand and then calculating the error distance (i.e., the distance from

a state to the error states) in this abstraction. This error distance serves as the heuristic

value for the state in the concrete system. As claimed in [53], the heuristic functions

defined in [53] is although computationally expensive than [46] but produces better
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results.

In [3], the heuristic named ’NEXT’ compresses a sequence of transitions into a

single meta transition. This eliminates transient states and therefore searching algo-

rithms do less work to find the goal states. Our heuristics rely on the security formula

to derive hints as against [53, 3] which rely on abstractions and process definition,

respectively.

1.4.2 Verification Approaches for Security Protocols

Although general purpose tools can be used for verifying security protocols [23, 49] ,

researchers have also focused on designing special purpose model checkers for veri-

fying security protocols [58, 14, 12, 33].

A brief description of some important security protocol verification techniques

and tools will be presented in this section with special emphasis on OFMC [12] and

Scyther [33].

Belief Logics such as BAN logic (after Burrows Abadi Needham logic) [25] is

a verification technique in which an information exchange protocol is analysed by

representing the beliefs of agents as sets of rules. This is followed by simpler and

shorter proofs by exploiting these rules, which actually represent what an agent can

infer from the messages it has received. One of the weaknesses of belief logics is

that it does not consider the presence of compromised agents or intruder on a network

and generates no counterexamples. Following the BAN logic, few other attempts such

as GNY [45] and BGNY [22] have tried to address the limitations imposed by BAN

logic.

Theorem proving is an inductive approach for verification that establishes the cor-

rectness of formulae by applying logical rules and inferences. When applying to secu-

rity protocol verification, the required protocol is modelled as a mathematical problem
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with simplifications and assumptions such as perfect cryptography. The protocol is

modelled as set of formulae in a logic such as modal, temporal, etc., and the prop-

erty to be proved is also expressed in the same logic. The correctness of the protocol

is established by proving that the property is a logical consequence of the modelled

protocols. Theorem proving benefits from completion and is capable of analysing in-

finite state models. However, the approach requires ample amount of time to establish

the correctness of the protocols. The automation of theorem proving has resulted into

tools such as Isabelle [63], ETPS [6], TPS [5] and PVS [62].

Catherine Meadows presented NRL [58] as a special purpose model checker for

security protocol analysis. The tool is developed in Prolog and uses a term-rewriting

model of Dolev-Yao. They use a backward search strategy and the tool is mainly used

for protocol verification.

Hermes [20] is a verification tool that can verify security protocols without restrict-

ing the size of messages or number of sessions. However, such verification requires

the concrete model to be reduced to an abstract model with only one honest principal

and one intruder. The abstraction may result in an inconclusive protocol which means

that an attack can be found in the abstract model that is actually not present in the

concrete model.

Proverif [14] is a protocol verifier based on Horn clauses. The protocol and the ca-

pabilities of the intruder are modelled in Prolog. The verifier can perform verification

without constraining the number of runs of the protocol verification by introducing two

approximations. Although approximations provide security guarantees they can report

false attacks when there are actually no attacks. H -ASPASyA differs from Proverif

and Hermes in the verification approach; it performs bounded verification but guaran-

tees security under a fixed scenario for a particular property. Further H -ASPASyA

can test the protocols for a variety of security properties, where as Proverif and Her-

mes are limited to secrecy; recently an extension in Proverif deals with authentication
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and correspondence also.

The AVISPA toolkit is a set of verification tools for security protocols with a

common front-end. The verification process starts by first encoding the protocol in

a language called High Level Protocol Specification Language (HLPSL). The HLPSL

specification is then converted in to an Intermediate Format (IF) that can be handed

over to each of the four back-ends provided by AVISPA. The first back-end, On-the-

Fly Model Checker (OFMC) [12], employs different symbolic and constraint differ-

entiation techniques. The result is an efficient model checker capable of performing

protocol falsification as well as bounded session verification. CL-Atse [71] is another

back end of AVISPA that performs both protocol falsification and verification. Fur-

thermore, it is capable of exploiting algebraic properties of protocols. SATMC [8] first

generates a propositional formula for the security problem at hand and then passes it

over to a SAT-solver. Any models found are translated back as an attack. The only tool

in AVISPA capable of performing unbounded verification is TA4Sp. It uses automata

to represent the network and term rewriting to represent protocol and intruder knowl-

edge. Moreover, it uses over approximation over intruder knowledge that preserves

protocol correctness.

David Basin in his work presented in [11], introduced the idea of applying lazy

data types to formalise protocols and the intruder. More precisely, he used a tree

data structure for this purpose and used heuristics to prune and re-order the nodes.

Although the idea of lazy data types is promising, the heuristics mainly are elementary.

More precisely, pruning is applied to the traces with events not belonging to protocol

description and re-ordering prioritises certain events in comparison to others, such as

events involving the intruder are rated higher.

OFMC borrows the notion of lazy infinite state spaces from Basin’s work [11] and

extends it by incorporating different techniques. Mainly, the undecidability arising

due to Dolev-Yao nature of the intruder is dealt with symbolic technique, and is termed
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as lazy intruder. The idea of lazy intruder is similar to symbolic techniques used in

ASPASyA. However, both tools differ in session generation mechanism; OFMC gen-

erates sessions symbolically, where as ASPASyA generates initial contexts explicitly

with open variables 1 in each context instantiated symbolically. Although the versions

of OFMC given in [12] does not use any heuristics, the authors foresee a role of heuris-

tics to improve the performance of OFMC. In our opinion our heuristics (mainly H1)

can be successfully transported to OFMC and we conjecture that such experiments

may produce better results.

Scyther [33] is a state-of-the-art tool that utilises the concept of heuristics for cryp-

tographic protocol verification. The idea is to construct a pattern which is a security

property to be verified , pt = (E,→), where E is a set of events and → is a relation

on the events. In order to check whether a pattern can occur in an actual trace of a

protocol, a set of explicit patterns is generated. If there exists any explicit pattern, it is

an actual trace of the protocol and represents an attack. However, sometimes a pattern

can not be realised owing to the fact that some events in the pattern are not enabled.

The verification algorithm chooses an event whose terms do not have a source. The

choice for the event is made on the basis of some heuristics investigated by Cremers

and documented in [34]. The author reports the heuristics privatekeys, constants

and decrytpions to be the most effective in reducing the number of states visited.

Privatekeys heuristic gives priority to a term containing a private key as a sub-

term over the terms containing a public key. The heuristic onstants finds a ratio of

constants to basic terms in the goal term and the goal with highest ratio is selected.

Decryptions give priority to those goals that correspond to keys needed for decrypt

events unless the keys are in the initial intruder knowledge.

The heuristics in [33] alike ours are evaluation-based. However, our heuristics
1Open variables are meant for sharing initial information such as keys and identities of the principals

playing the role of the responder.
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have an edge over the ones in [33] due to their pruning capability which does less

exploration when there is no attack.

1.5 Structure of the Thesis

The rest of the thesis is organised as follows.

Chapter 2 This chapter discusses security protocols and a few concepts necessary to

understand our work. We introduce our notations for security protocols in § 2.1, § 2.2

gives the Dolev-Yao intruder model, and § 2.3 gives types of attacks on security proto-

cols. We enumerate and briefly comment on various formal verification techniques in

§ 2.4 and focus on directed model checking in § 2.5; § 2.6 gives the reader necessary

understanding of the formal framework on which our work is based upon. The frame-

work mainly comprises a process algebra for formalising security protocols (cIP) and

a logic for defining security properties (P L); the former is explained in § 2.6.1 and

the latter in § 2.6.2.

Chapter 3 This chapter along with chapters 4 and 5 gives our core contribution. The

heuristics for the formal framework (introduced in § 2.6) are defined in this chapter.

We start by explaining how the state space is generated according to the semantics of

cIP in § 3.1. The formal definition of the heuristics H1, H2, and H3 is given respec-

tively in § 3.2, § 3.3, and § 3.4. We briefly comment on admissibility and optimality

of our heuristics in § 3.5. Finally, § 3.6 gives an intuitive approach of how heuristics

have been incorporated into a searching algorithm.

Chapter 4 The algorithm and implementation details of H -ASPASyA are reported

in this chapter; § 4.1 briefly describes the architecture of H -ASPASyA and § 4.2

gives the algorithm for H -ASPASyA.
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Chapter 5 presents our experimental results obtained by testing H -ASPASyA with

various protocols reported in Appendix A. The experiments have been conducted

varying the initial input conditions for the test protocols and have been reported in § 5.1

and § 5.2. The former gives the results on state space reduction and the latter on time

savings. We analyse the results in § 5.3. A few guidelines about choosing a heuristic

according to the choice of the security protocol and the security property are given

in § 5.4.

Chapter 6 This chapter concludes the thesis by providing a summary of our overall

contribution and a few suggestions regarding how this work can be extended.

Appendix A The Appendix A provides a list of security protocols that have been

taken as test cases. For each of the protocol, its encoding in cIP together with the

security property to be verified is also given.
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Chapter 2

Background

In this chapter, we give a few concepts necessary to understand our work. We present

security protocols, an intruder model, and attacks on security protocols respectively in

§ 2.1, § 2.2, and § 2.3. Model checking is discussed in § 2.4. We recall the essence of

informed search algorithms and directed model checking in § 2.5. Finally, § 2.6 gives

the reader necessary understanding of the formal framework our work is based upon.

2.1 Security Protocols

A security protocol is a sequence of steps that are carried out in order to accom-

plish certain security goals such as confidentiality, authenticity, data integrity, non-

repudiation, etc. A security protocol therefore is the abstract representation of the

actions carried out by the agents participating in the communication by hiding the

complexities of cryptography. Mainly, a protocol is given as a sequence of messages

exchanged between communicating parties where cryptographic primitives are repre-

sented by appropriate notations. We introduce the notations for symmetric key cryp-

tography by means of a simple example.
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1. A→ S : {Ta,B,kab}kas (2.1)

2. S→ B : {Ts,A,kab}kbs

We use the narration given in 2.1 (wide-mouthed frog protocol), to illustrate the

key ingredients in any protocol, viz.; participants, messages, and cryptographic no-

tations. Participants are represented by capital letters, such as A, B etc. Thus, the

notation A→ S is used to represent a message initiated by participant identified as A,

whose intended recipient is S. Messages exchanged during the communication can be

simple or composed, for instance in 2.1, {Ta,B,kab}kas is an example of a composed

message sent over a network. The message is obtained by composing three compo-

nents, a timestamp generated by A (Ta), the identity of the participant with which A

wants to communicate (B), and a fresh session key generated by A to be shared with B

for secure communication (kab). Message {Ta,B,kab}kas is encrypted by the secret key

kas shared between the server and A. In the second step, the server forwards the ses-

sion key along with the identity of the initiator and his own timestamp to B, encrypted

with kbs.

We use the Needham Schroeder (NS) public key protocol to introduce notations

for public key cryptography. The NS protocol consists of the following steps

1. A→ B : {na,A}B+

2. B→ A : {na,nb}A+

3. A→ B : {nb}B+

where, in step 1 the initiator A sends to B a nonce na and her identity encrypted with

B’s public key B+; in step 2, B responds to the nonce challenge by sending to A a fresh

nonce nb and na encrypted with A+, the public key of A; A concludes the protocol by
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sending back to B the nonce nb encrypted with B’s public key.

2.2 An Intruder Model

The design of secure cryptographic protocols despite of their apparent simplicity is

hard. Protocols usually operate on networks subject to the presence of malign agents

called intruders (also called attackers or spies) who can engineer a security breach

by manipulating any loopholes left by the protocol designers. An intruder model

formalises the capabilities of an intruder and describes what he is entitled to do. An

intruder is usually modelled such that he has unbound memory and computational

power. A number of intruder models have been proposed to date among which the

Dolev-Yao intruder model [37] is the most powerful and commonly used one.

A Dolev-Yao intruder controls the communication of a network and can store,

destroy, and modify any messages communicated on the network. Further he can

generate a possibly infinite set of messages from his knowledge to match any of the

inputs expected by a participant of a protocol. He can achieve this through pairing,

encryption, and decryption of the messages, provided he has appropriate keys (perfect

cryptography assumption). Thus he can apply pairing to generate a message such as

(m,n) if he can retrieve m and n from his knowledge. He can generate a messages like

{m}k provided he has the message m and the key k in his knowledge. Likewise, he can

decrypt a message {n}k only when he has appropriate decrypting key. An attack on the

Needham Schroeder protocol given in § 3.2.2 demonstrates how Dolev-Yao intruder

can manage security breach using his powers.
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2.3 Types of Attacks

A protocol can be vulnerable to many different kinds of threats when deployed on a

network. We list here three major kinds of threats a protocol can face.

A replay attack is a kind of passive attack where an attacker listens the communi-

cation and records it. He then later uses the information to make false claims such as

false identification or authentication.

A man in the middle attack is the one in which the communicating parties are

deceived by the attacker in such a way so as to make them believe they are commu-

nicating with each other. In reality the whole communication is controlled by the

attacker. An attacker establishes two sessions, one with the sender and other with the

receiver. He then relays the information between the sender and receiver, claiming to

be the other party in each case.

A reflection attack is an attack in which information from multiple sessions is used

by the attacker to complete any one of the sessions. He then simply abandons the other

sessions.

2.4 Model Checking

As stated in § 2.1, it is hard to design and implement correct protocols. Although

short and apparently simple, their design can contain inherent flaws that can lead to

severe security risks. A carefully designed protocol can later turn out to be faulty

due to the fact that it is difficult as a human to see all possible assumptions that are

required for a protocol to work. Furthermore, an intruder is highly non-deterministic

in nature and to foresee what he can manoeuvre through his tactics is not an easy task.

Formal verification of security protocols is therefore important and helps in two ways:

(i) formal representation of the protocols clarifies the assumptions and ambiguities in

19



informal representation for the protocol and (ii) verifying the protocol either proves

its correctness or reveals flaws in it. State space exploration techniques such as MC

aim at representing every possible behaviour of the protocol. The method generates

the state space associated with the protocol and try to establish if certain condition

(property) holds at each state. However, analysing a protocol for arbitrary number

of participants, multiple protocol runs, and unbounded message size, may generate

infinite state spaces. Consequently, state space exploration techniques and tools based

on them use some form of restrictions so as to make state space finite.

Model checking is quite a popular technique for security protocol verification. It

is a completely automatic process that is decidable and generates counterexamples

that help the verifier to track down the error state. A number of general purpose

model checkers such as SMV [24], Spin [49], Mocha [2], etc. have been used for

the verification of security protocols. Furthermore, special purpose security protocol

model checkers have also been introduced, such as AVISPA tool kit [7]. Other tools

such as Athena [68] and Scyther [34] combine the concepts of model checking and

theorem proving.

Model checking expects a protocol to be modelled as a transition system with

finitely many states. The model is then tested against a property that is usually ex-

pressed in some form of logic such as temporal or modal. The verification phase

reduces to a state space search problem that attempts to check whether property holds

in the given transition system or not.

The potential and widely researched problem in model checking is the exponential

growth of the state space (called state space explosion) as the number of processes

increase, generating huge possibly infinite state spaces. It is therefore mandatory to

consider few assumptions so as to make process decidable. The assumptions may

require a bound on the number of participants, sessions, or on the size of message.

Whereas these restrictions make the verification process decidable, the negative im-
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pact of these restrictions is that correctness of the protocol remains in question. This

amounts to say that if a flaw is detected in the protocol, the protocol is considered to

be incorrect; however, absence of the flaws does not guarantee the correctness.

One of the recent approaches for efficient exploration of the state space so that a

counterexample is generated before system resources exhaust is directed model check-

ing. We discuss DMC in the next section.

2.5 Directed Model Checking

As stated in § 1.1 state space explosion problem can be dealt with approaches like

abstraction [31], symmetry [42, 30], partial order reduction [32, 44], or symbolic ap-

proaches [4, 18, 19, 43]. However, even with the use of such approaches the search

space can grow enormously. Conventional MC uses blind search algorithms (such as

depth first search (DFS) or breadth first search (BFS)) to explore the state space in a

pre-defined order so as to reach the error states. This may result into a situation where

the system runs out of its resources before any conclusion is established. Lately, many

researchers have investigated on incorporating intelligent search strategies into model

checking. The combination of intelligent search strategies and model checking has

lead to directed model checking. The term has been coined in [65] adn further pro-

moted and developed in [54], and characterises a model checking approach that adopts

informed search algorithms instead of blind search algorithms to efficiently search the

state space.

2.5.1 Informed Search Algorithms

Informed search (or heuristics search) algorithms aim to explore/generate state spaces

efficiently by applying a simplification, a rule of thumb, or an educated guess. The

idea is to decide, at each branching state, which path to follow so to reach the goal
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node rather quickly. The decision is usually taken with the help of a heuristic function

that contains domain specific hints (called heuristics). The hints are in addition to the

actual problem (the goal) and help in assigning heuristic values to the nodes as they are

encountered during exploration. The heuristic values, also called estimates, influence

the order in which the nodes are to be explored as against blind search algorithms

where order of exploration is already fixed. Such algorithms do not guarantee optimal

solutions as the estimates are not always accurate. The trade off here is for efficiency

which is required when complete state space exploration is not feasible or requires

extensive time to complete the search. The examples include variants of best first

search (BFS) such as greedy best first search or A and A* algorithms. Such algorithms

evaluate each node according o a heuristic function and explore the nodes starting from

those with lowest heuristic values. For instance, greedy best first search selects nodes

that are closest to goal; if the heuristic value of the successor s of a node n is higher

that the value of n, the search continues from s (otherwise, s is en-queue according to

its heuristic value).

Algorithm 1 given below gives a basic BFS algorithm.

Algorithm 1 BestFirstSearch
1: open← n0.
2: while open 6= /0 do
3: Select best n from open

4: if n= goal then
5: return path (by backtracing path to n).
6: else
7: Expand n.
8: Using heuristic function evaluate each successor node.
9: Add successors to open.

10: end if
11: Go to step 2
12: end while

In the first step of Algorithm 1, a list open is created with initial node n0. In

the next step, the node n with best heuristic value is selected. If n is a goal node
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then algorithm terminates and return the path to n; otherwise, the successors of n are

generated and evaluated according to the heuristic function. Each successor node is

then added to the list open. The process is repeated until a goal node is found or open

is empty.

Algorithm A uses an evaluation function f (n) = g(n)+ h(n), where h(n) is the

heuristic estimate for the node n and g(n) is the cost to reach the node n from an initial

node n0. Algorithm A is not optimal, however a variant of it called A* generates

optimal solutions by using an admissible heuristic function [54].

2.5.2 Basics of Heuristics

We recall here the basic concepts on heuristics by means of a simple example. A

deeper presentation can be found in [66].

The n-puzzle (also known as the sliding-block or tile-puzzle) is a well-known puz-

zle in which the goal is to move square tiles by sliding them horizontally or vertically

in one empty tile. For n = 8 the goal configuration is depicted in Figure 2.1; a possible

initial configuration is in Figure 2.2. The problem of finding the shortest path leading

to the goal configuration is NP-hard.

Figure 2.1: The 8-puzzle goal con-
figuration

Figure 2.2: A possible start con-
figuration

A very simple heuristic (cf. [66]) for 8-puzzle can be given by

h1 = number of misplaced tiles.
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For each configuration, h1 counts the number of misplaced tiles with respect to the

goal configuration. For instance, h1 weights 8 the configuration in Figure 2.2 since all

the tiles are misplaced.

Another heuristic (cf. [66]) for 8-puzzle is the one that exploits the so called Man-

hattan distance.

h2 = sum of the Manhattan distances of non-empty tiles from their target positions.

So the configuration in Figure 2.2 is weighted 18 by h2.

2.5.2.1 Classification of Heuristic Functions

Heuristic functions can be categorised on the basis of the heuristic values they assign

to nodes. In [54], the author reports two categories of heuristic functions, namely

estimation functions and evaluation functions. An estimation function is a heuristic

function that assigns a weight to the node by estimating its distance from the goal

node. On the other hand an evaluation function assigns the weight to a node according

to the possibility that the node will lead to a goal node.

2.5.2.2 Types of Heuristics

Bloem et al, [15] classify heuristics as system-dependent and property dependent. The

former refers to the hints that are obtained by looking at the design of the program

to avoid bottlenecks of computations and the latter to the ones that guide the search

towards property violation (or preserving) states. Property dependent heuristics are

further classified as property-specific heuristics and structural heuristics. Property

specific heuristics derive the hints from the specification of property itself, while struc-

tural heuristics rely on the structure of the program to derive the hints.
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2.6 Formal Framework

We adopt the formal verification framework introduced in [43] consisting of the cIP

(after cryptographic Interaction Pattern) process calculus and the P L logic (after Pro-

tocol Logic) to respectively represent security protocols and properties. We refer the

reader to [43] for a precise and detailed presentation of the framework.

2.6.1 A Process Calculus for Security Protocols

cIP is a process calculus to formally represent a security protocol. A principal is

represented as a cIP process, where a cIP process can have an identity, a set of open

variables, and actions it can perform. In cIP, a process is given as

P ::= PN = (X)[E]

E ::= 0 | α.E | E||E | E +E

α ::= in(M) | out(M)

where PN is the identity of the process, X is the set of open variables of the pro-

cess; open variables are meant for sharing initial conditions, such as symmetric keys

or identity of the responder, and E is the behavioural expression of the process. A be-

havioural expression of a process mainly represents actions a process can perform. A

behavioural expression of a process can be an inaction (0), an action performed by the

process followed by behavioural expression (α.E), a parallel composition of expres-

sions (E||E), and non-deterministic composition of behavioural expressions (E +E).

A process can perform two types of actions, out(M) and in(M), that correspond to

sending and receiving of message M on a network.

A principal instance can join a protocol session by means of open variables. An

instance of a principal is obtained by properly indexing his identity and messages

with a natural number. A cIP session is a finite set of instances of principals and is
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represented by

{(Xi1)[Ei1], . . . ,(Xin)[Ein]}

2.6.1.1 Formalising the Needham Schroeder Protocol

We illustrate the syntax of cIP by formalising the NS protocol:

A : (r)[ out({na,A}r+).

in({na,?z}A−).

out({z}r−) ]

B : ()[ in({?x,?y}B−).

out({x,nb}y+).

in({nb}B−) ]

(2.2)

The principal A (resp. B) in (2.2) represents the initiator (resp. the responder) of the

NS protocol. The open variable r is meant to be bound to the identity of the responder.

The principal A first executes the output action and then waits for a message expected

to match the pattern specified in the in action. More precisely, A will receive any

pair encrypted with her public key whose first component is the nonce na; upon a

successful match, the second component of the pair will be assigned to the variable z.

For instance, the {na,M}A+ matches {na,?z}A− for any M and would assign M to z.

The instance of the NS initiator obtained by indexing the principal A in (2.2) with

2 is

A2 : (r2)[out({na2,A2}r+2
).in({na2,?z2}A−2

).out({z2}r+2
)] (2.3)

and a possible session for the NS protocol in which A2 participated together with B1 is

{()[out({na2,A2}B+
1
).in({na2,?z2}A−2

).out({z2}B+
1
)]

()[in({?x1,?y1}B−1
).out({x1,nb1}y+1

).in({nb1}B−1
)]}

(2.4)
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2.6.1.2 Features of cIP

cIP provides a number of unique features that allow one to test security protocols

under different conditions. The open variables in cIP are means to specify initial

conditions; in particular they are used by the principals joining a session to acquire

necessary information such as shared keys. Thus open variables together with join

formulae (cf., § 2.6.2) allow the verifier to specify interesting verification scenarios.

Furthermore, one can test the protocols with varying intruder knowledge and number

of principal instances participating in a session.

As mentioned earlier, the design of security protocol is error prone and their analy-

sis is hard due to the generality of the intruder model considered for verification. One

capability of the intruder model is to gather information from multiple sessions and

exploit it to devise an attack. cIP is capable of identifying such attacks as it supports

multi-session analysis. Principals participating in a session are indexed and P L uses

quantification over indexed principals to specify properties pertinent to particular in-

stances of the principals. This helps in bringing out any attacks engineered by the

intruder by manipulating information from various sessions.

Another issue in security protocol analysis is infinite branching. The problem

arises as the intruder can generate infinitely many messages from his available knowl-

edge using operations such as pairing, encryption, and decryption. cIP addresses the

infinite branching problem with the help of symbolic semantics. The idea is to delay

the actual instantiation of the variables, which amounts to say that a variable is not

instantiated immediately but is rather kept symbolic. Intuitively, a symbolic mapping

replaces a variable x with a symbolic variable x[κ] meaning that x can be assigned any

message derivable from κ. The actual instantiation will possibly assign (infinitely)

many messages to the variable, derivable from the associated intruder knowledge.

Thus actual instantiation of x is delayed till a concrete message is needed.
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2.6.2 Logic for Security Property Specification

We adopt the definition of P L formulae given in [43]:

φ,ψ ::= xi = m | κBm | ∀i : A.ψ | ∃i : A.ψ | ¬ψ | ψ∧φ | ψ∨φ

where xi are indexed variables.

The atomic formulae xi = m and κBm hold respectively when the variable xi is

assigned the message m and when κ (representing the intruder’s knowledge) can derive

m. A formula can universally and existentially quantify over indexes i because P L

predicates over the instances of the principals concurrently executed. A P L formula

can be a composed P L formula by using operators such as ¬, ∧, and ∨.

As an example of P L formula consider the formula ψNS predicating on (instances

of) the NS protocol:

∀i : A. ∃ j : B (x j = nai ∧ zi = nb j).

The formula ψNS states that for all instances of A there should be an instance of B that

has received the nonce nai sent by Ai and the nonce nb j is received by the instance Ai.

Another interesting feature of the framework is the use of join formulae, which

permits to specify constraints on the way principals can be connected to each other. In

this way, one can specify only those scenarios one is interested to verify. For instance,

consider following join formula for NS protocol:

(∃ j : A. true) ∧ (∃i : B. true)

which specifies that we are interested only in those runs of verification in which there

is at least an instance of A and an instance of B.
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Chapter 3

Heuristics for the Verification of

Security Protocols

This chapter introduces three heuristics (called H1, H2, and H3) for efficientlyy search-

ing the state space generated for model checking security protocols. The heuristics are

property-specific (see § 2.5) and are defined on the security formula expressed in P L .

They are efficient as they (i) can guide the searching algorithm towards promising re-

gions of the state space, and (ii) can prune those parts of the state space where there is

no chance of attack under a given security formula.

The heuristic H1 is defined in terms of two mutually recursive functions Hs and

Ht which assign weights to states and transitions, respectively. Heuristic function H2

assigns weights to states by exploiting P L formulae and the way open variables are

assigned values in the states. Heuristic H3 is a composite heuristic as it combines H1

and H2.

The state space is obtained according to the semantics of cIP defined in [43]. The

state space is informally presented with the help of the NS example in § 3.1. The

heuristics H1, H2, and H3 are given respectively in § 3.2, § 3.3 and § 3.4. An intuitive

idea of how heuristics are incorporated in the searching algorithm is given in § 3.6.
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3.1 The State Space

A state consists of a tuple 〈C ,χ,κ〉 where

• C is a context containing principal instances which joined the session,

• χ is a mapping of variables to messages, and

• κ is a set of messages representing the intruder knowledge.

A transition from one state to another can be the result of out and in actions performed

by principal instances or of join operations; join transitions may instantiate open vari-

ables by assigning them with the identity of some principal. Initially, C is empty and

therefore only join transitions are possible. When C contains an instance ready to send

a message, an out transition can be fired so that the sent message is added to κ. If C

contains a principal ready to receive a message, the intruder tries to derive from the

messages in κ a message that matches the pattern specified in the input action; if such

a message is found, χ is updated to record the assignments to the variables occurring

in the input action.

For instance, a few possible transitions for the NS protocol (described in § 2.6.1.1)

are

s0
join−→ s1

join−→ s2
out−→ s3

in−→ s4

where s0 = 〈 /0, /0,κ0 〉 with κ0 = {I, I+, I−}, namely initially no principal instance

joined the context, there is no assignment to variables, and the intruder only knows its

identity and public/private keys.
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The join transition from s0 to s1 adds a principal instance B2 to the context yielding

s1 =〈 {()[in({?x2,?y2}B−2
).out({x2,nb2}y+2

).in({nb2}B−2
)]},

/0,

κ1 = κ0∪{B2,B2
+} 〉

that is, the intruder now knows B2’s identity and (by default) its public key. Similarly,

the transition from s1 to s2 adds the principal instance A1 to the context and therefore

s2 = 〈 {()[in({?x2,?y2}B−2
).out({x2,nb2}y+2

).in({nb2}B−2
)],

()[out({na1,A1}B+
2
).in({na1,?z1}A−1

).out({z1}B+
2
)]},

{r1 7→ B2},

κ2 = κ1∪{A1,A1
+} 〉

Notice that the open variable r1 is now mapped to B2.

The transition from s2 to s3 is due to an out action performed by A1

s3 = 〈 {()[in({?x2,?y2}B−2
).out({x2,nb2}y+2

).in({nb2}B−2
)],

()[in({na1,?z1}A−1
).out({z1}B+

2
)]},

{r1 7→ B2},

κ3 = κ2∪{na1,A1}B+
2
〉

the prefix of A1 is consumed and the message is added to the intruder’s knowledge.

Finally, the transition from s3 to s4 is due to an in transition for the input prefix

of B2. The message {na1,A1}B+
2

added to the intruder’s knowledge in the previous

transition matches the pattern {?x2,?y2}B−2
specified by B2, therefore the x2 and y2 are
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assigned na1 and A1 respectively. Hence,

s4 = 〈 {()[out{na1,nb2}A+
1
).in({nb2}B−2

)],

()[in({na1,?z1}A−1
).out({z1}B+

2
)]},

{r1 7→ B2,x2 7→ na1,y2 7→ A1},

κ3 〉

In this framework, join transitions can be safely anticipated before any other tran-

sition (Observation 10.1.3 in [70], page 174).

3.2 A First Heuristic H1

The first heuristic H1 relies on two mutually recursive functions Hs and Ht (given

in Definition 2 and Definition 3 respectively) and exploits the security property ex-

pressed in P L to assign weights to states and transitions. The heuristic H1 exploits

the ”quantifiers” of the security formula and the ”context” (signifying the principal

instances which joined the session) of a state to decide heuristic values for states and

transitions. Intuitively, a formula universally quantified over principal instances can

be falsified when at least one instance of such principal has joined the session. On the

other hand, a formula with existential quantification over principal instances is negated

in the contexts that do not contain any such instance.

For simplicity and without loss of generality, we define the heuristic on Prenex

Normal Form (PNF) formulae defined below.

Definition 1 (Prenex Normal Form). A P L formula is in prenex normal form if it is of

the form

Q1i1 : A1. · · · .Qnin : An.φ
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where φ is a quantifier-free formula, for 1 ≤ j ≤ n, Q j ∈ {∀,∃}, each i j is an index

variable, and A j is a principal name.

Basically, a PNF formula is a formula where all the quantifiers are ”at top level”.

Notice that, in Definition 1, it can be n = 0 which amounts to say that a quantifier free

formula is already in PNF.

Theorem 3.2.1. Any P L formula can be transformed into a logically equivalent PNF

formula.

Proof. Let the function pnf :P L→P L be defined as follows:

pnf (ψ)=



ψ ψ is a quantifier-free formula.

Q i : A.pnf (ψ′) ψ≡ Q i : A.ψ′

Q i′ : A.pnf (ψ′1[i
′/i]∧ψ2) i′ fresh,ψ≡ ψ1∧ψ2 and pnf (ψ1)≡ Q i : A.ψ′1

Q i′ : A.pnf (ψ′1[i
′/i]∨ψ2) i′ fresh,ψ≡ ψ1∨ψ2 and pnf (ψ1)≡ Q i : A.ψ′1

Q i : A.pnf (¬ψ′′) ψ≡ ¬ψ′ and pnf (ψ′)≡ Q i : A.ψ′′

where ≡ defines the syntactic equality between formulae and Q represents negation of

Q. The proof of theorem 3.2.1 follows from the properties of pnf given by Lemmas

3.2.2 and 3.2.3 below.

Lemma 3.2.2. For any P L formula ψ, pnf (ψ) is in PNF.

Proof. We proceed by induction on the structure of ψ.

If ψ is a quantifier free formula then it is in PNF and, by definition of pnf , pnf (ψ)=

ψ.

The inductive case is proved by case analysis.

• Assume ψ is Q i : A.ψ′, then by definition of pnf , pnf (ψ) = Q i : A.pnf (ψ′). By

inductive hypothesis pnf (ψ′) is in PNF and therefore pnf (ψ) is in PNF.
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• If ψ = ψ1∧ψ2 then, assuming pnf (ψ1) = Q i : A.ψ′1, by definition of pnf

pnf (ψ) = Q i′ : A.pnf (ψ′1[i
′/i]∧ψ2)

For fresh index i′ not occurring in ψ2. By the inductive hypothesis pnf (ψ′1[i
′/i]∧

ψ2) is in PNF, therefore pnf (ψ) is in PNF.

• The case ψ = ψ1∨ψ2 is analogous.

• If ψ = ¬ψ′ then, assuming pnf (ψ′) = Q i : A.ψ′′, by definition of pnf , pnf (ψ) =

Q i : A.pnf (¬ψ′′). By inductive hypothesis pnf (¬ψ′′) is in PNF, therefore pnf (ψ)

is in PNF.

Lemma 3.2.3. pnf (ψ)⇔ ψ.

Proof. We proceed by induction on the structure of ψ.

If ψ is a quantifier free formula then pnf (ψ) = ψ and therefore pnf (ψ)⇔ ψ.

Again the proof for the inductive case is given by case analysis.

• Assume ψ is Q i : A.ψ′, then by definition of pnf , pnf (ψ) = Q i : A.pnf (ψ′).

By inductive hypothesis pnf (ψ′)⇔ ψ′ hence pnf (ψ) ≡ Q i : A.ψ′ and therefore

pnf (ψ)⇔ ψ.

• If ψ = ψ1∧ψ2 then, assuming pnf (ψ1) = Q i : A.ψ′1, by definition of pnf

pnf (ψ) = Q i′ : A.pnf (ψ′1[i
′/i]∧ψ2)

For i′ fresh (namely, i′ does not occur in ψ2). By the inductive hypothesis

pnf (ψ1)⇔ ψ1 hence

ψ⇔ pnf (ψ1)∧ψ2 = (Q i : A.ψ′1)∧ψ2
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It is trivial to prove that for any P L formula (Q i : A.ψ)∧φ⇔ Q i : A.(ψ∧φ) and

therefore pnf (ψ)⇔ ψ.

• The proof for ψ = ψ1∨ψ2 is similar.

• If ψ=¬ψ′, assume pnf (ψ′)= Q i : A.ψ′′. By definition, pnf (ψ)= Q i : A.pnf (¬ψ′′).

By inductive hypothesis pnf (ψ′) ⇔ ψ′ and therefore ψ ⇔ ¬pn f (ψ′), hence

ψ⇔¬(Q i : A.ψ′′)⇔ Q i : A.¬ψ′′ and therefore pnf (ψ)⇔ ψ.

The heuristic function Hs is given in Definition 2 and depends on the function Ht

given in Definition 3 below.

Definition 2 (Weighting states). Given a state s and a formula φ, the state weighting

function is given by

Hs(s,φ) =



max
t∈sϒ

Ht(t,φ), sϒ 6= /0

−∞, φ≡ ∀i : A. φ′ ∧ sϒ = /0 ∧ s∩ [A] = /0

0, otherwise

where sϒ is the set of join transitions departing from s, [X ] be the set of all instances

of a principal X, and assuming s = 〈C ,χ,κ〉, s∩ [A] stands for κ∩ [A].

The function Hs takes a state, say s= 〈C ,χ,κ〉, and a formula φ as input and returns

the maximum among the weights computed by Ht on the join transitions departing

from s for φ. The weight −∞ is returned if

• φ is a universal quantification on a principal instance A (∀i : A. φ′),

• s does not have outgoing join transitions (sϒ = /0), and

• there is no instance of A in the context (s∩ [A] = /0).
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The heuristic Hs has been designed considering that a formula universally quanti-

fied on instances of A is falsified in those states where there is at least one instance of

A. Therefore a context without an instance of the quantified principal, has no chance

of falsifying the formula. In fact, the condition sϒ = /0 ensures that no principal in-

stance can later join the context. As a result, there is no possibility of falsifying the

property in all paths emerging from this state which can therefore be pruned.

The heuristic that assigns weights to transitions is given in Definition 3.

Definition 3 (Weighting transitions). Given a state s and a transition t from s to s′ =

〈C ′,χ′,κ′〉 in sϒ, the weighting transitions function Ht is

Ht(t,φ) =



1+Hs(s′,φ′), φ≡ ∀i : A. φ′ ∧ κ′∩ [A] 6= /0,

1+Hs(s′,φ), φ≡ ∃i : A. φ′ ∧ κ′∩ [A] = /0,

Hs(s′,φ′), φ≡ ∃i : A. φ′ ∧ κ′∩ [A] 6= /0,

Hs(s′,φ), φ≡ ∀i : A. φ′ ∧ κ′∩ [A] = /0,

0 otherwise.

The function Ht takes as input a transition t and invokes Hs to compute the weight

of t depending on the structure of the formula φ. As specified in Definition 3, the value

of the weight of the arrival state is incremented if either of the two following mutually

exclusive conditions hold:

• φ universally quantifies on instances of A (∀i : A. φ′) for which some instances

have already joined the context (κ′∩ [A] 6= /0);

• φ existentially quantifies on an instance of A (∃i : A. φ′) which is not present in

the context (κ′∩ [A] = /0).

Instead, the heuristic Ht assigns the weight of its arrival state if either of the following
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mutually exclusive1 conditions hold:

• φ existentially quantifies on an instance of A (∃i : A. φ′) which is present in the

context (κ′∩ [A] 6= /0);

• φ universally quantifies on instances of A (∀i : A. φ′) and the context does not

contain any such instance (κ′∩ [A] = /0).

Again the intuition behind Ht is based on quantifiers. The formula φ that universally

(resp. existentially) quantifies on instances of A can be falsified only if such instances

will (resp. not) be added to the context. Therefore all transitions that (resp. do not)

add an instance of A get a higher value.

It is important to mention that in the first and third cases of Definition 3, the re-

cursive call to Hs takes as input φ′, the sub formula of φ in the scope of the quantifier.

This is due to the fact that once an instance of the quantified principal has been added

we are not interested in more instances and therefore consume the quantifier. The

heuristic Ht returns 0 when φ is a quantifier free formula. In fact, due to the absence

of quantifiers we cannot assess how promising is t to find an attack for φ.

Finally, we remark that Hs and Ht terminates on a finite state space because the

sub-graph consisting of the join transitions forms a tree by construction. Therefore,

the recursive invocations from Ht to Hs will eventually be resolved by the last two

cases of Hs in Definition 2.

3.2.1 Correctness of H1

Theorem 3.2.4 states the correctness of the heuristic H1, namely pruned parts of the

state space do not contain an attack. We first present the models for P L formulae

borrowed from [43].
1Note that all the conditions of the definition of Ht are mutually exclusive.
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Model for P L formulae

Definition 4 (Model for P L formulae). Let χ be a substitution from indexed variables

to indexed messages, κ a knowledge and φ a closed formula of P L . Then 〈κ,χ〉 is

a model for φ if κ |=χ φ can be proved by the following rules (where n stands for an

instance index):

xanχ = mχ

(=)
κ |=χ xan = m

κBmχ

(B)
κ |=χ κBm

exists n s.t. An ∈ κ κ |=χ φ[n/i]
(∃)

κ |=χ ∃i : A. φ

forall n s.t. An ∈ κ κ |=χ φ[n/i]
(∀)

κ |=χ ∀i : A. φ

κ |=χ φ κ |=χ ψ

(∧)
κ |=χ φ∧ψ

κ |=χ φ

(∨1)
κ |=χ φ∨ψ

κ |=χ ψ

(∨2)
κ |=χ φ∨ψ

κ 6|=χ φ

(¬)
κ |=χ ¬φ

Theorem 3.2.4. If Hs(s,φ) =−∞ then for any state s’ = 〈C ′,χ′,κ′〉 reachable from s=

〈C ,χ,κ〉,κ′ 6|=χ′ ¬φ

Proof. If κ′ |=χ′ ¬φ, by Definition of |= , there is An ∈ κ′( because φ ≡ ∀i : A. φ′).

However by hypothesis s∩ [A] = /0 and sϒ = /0 hence s′∩ [A] = /0 and therefore s′ does

not satisfy ¬φ.

3.2.2 Evaluation of H1

In this section we illustrate the efficiency of our approach with the help of examples.

In the first example H1 is applied to the NS protocol and in the second example it is

applied to the KSL protocol.
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The examples show that H1 is able to guide the searching algorithm towards

promising paths containing attacks. Moreover, a considerable part of the state space is

pruned, reducing the number of states to be explored by the searching algorithm.

3.2.2.1 Applying the Heuristic to the Needham-Schroeder Protocol

Let us consider the property ψNS given in § 2.6.1 as

∀i : A. ∃ j : B (x j = nai ∧ zi = nb j) (3.1)

Figure 3.1(a) illustrates a portion of the state space of the NS protocol after the first

two join transitions when ψNS is considered. Notice that ψNS can be falsified in a path

where there is a context containing at least one instance of A and no instances of B.

B1A1

B1,B2B1,A2A1,B2A1,A2

(a) Join transitions of the NS protocol

B1A1

B1,B2B1,A2A1,B2A1,A2

22 1

1 0 1 -∞

1 1

0 0 0 -∞

(b) Weighted states in the NS protocol

Figure 3.1: Join transitions and weighted states in the NS protocol

H1 will assign weights to states and transitions as in Figure 3.1(b). The highlighted

paths (those with ’fat’ arrows) are the ones to be explored; the context {A1,A2} con-
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tains the famous Lowe attack [56] reported below:

1. A1→ I : {na1,A1}I+

2. A2→ I : {na2,A2}I+

3. I→ A1 : {na1,na2}A1
+ κBna1,na2

4. I→ A2 : {na2,na1}A2
+ κBna1,na2

5. A1→ I : {na2}I+

6. A2→ I : {na1}I+

The intruder acts as responder for both A1 and A2. As a result of step 1 and 2, κ

contains na1 and na2; enabling the intruder to send messages to A1 and A2 at step 3

and 4 respectively. This results into assignments like zA1 = na2 and zA2 = na1; such

assignments yield the falsification of ( 3.1) which requires a nonce generated by B to

be assigned to both variables.

The other two highlighted paths contain a similar attack, we report the one with

context {A1,B2}.

1. A1→ I : {na1,A1}I+

2. I→ A1 : {na1, I}A1
+, κBna1, I

3. A1→ I : {I}I+

4. I→ B2 : {na1, I}B2
+, κBna1, I

5. B2→ I : {na1,nb2}I+

6. I→ B2 : {nb2}B2
+, κBnb2

Again at step 2 and 4, A1 and B2 are receiving the identity of intruder instead of nonce

by B, resulting into an attack.

It is evident from the Figure 3.1(b) that H1 assigns appropriate weights to the

paths that contain an attack. It is worthy mentioning that the context {B1,B2} has

been labeled −∞, therefore the search will never explore this state that indeed does
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not lead to attacks.

3.2.2.2 Applying the Heuristic to the KSL protocol

We consider the analysis of (the second phase of) KSL [52], done in [43]. The protocol

provides repeated authentication and has two phases; in the first phase (i) a trusted

server S generates a session key kab to be shared between A and B, and (ii) B generates

the ticket {T b,A,kab}k for A (where T b is a timestamp and k is known only to B).

In the second phase, A uses the ticket (until it is valid) to repeatedly authenticate

herself to B without the help of S. The second phase can be specified as follows:

1. A→ B : na,{T b,A,kab}k

2. B→ A : nb,{na}kab

3. A→ B : {nb}kab

A sends a fresh nonce na and the ticket to B that accepts the nonce challenge and sends

nb together with the cryptogram {na}kab to A. In the last message, A confirms to B

that she got kab.

In cIP, A and B can be represented as follows:

A : (b,sk, tk)[ out(na,{b,A,sk}tk).

in(?y,{na}sk).

out({y}sk)]

B : (a,sk, tk)[ in(?x,{B,a,sk}tk).

out(nb,{x}sk).

in({nb}sk)]

(where for simplicity the timestamp generated by B is substituted by his identity).

Authentication is based on the mutually exchanged nonces, and formalised as follows:

ψKSL = ∀l : B. ∀ j : A.(b j = Bl ∧al = A j→ xl = na j∧ y j = nbl)

which reads any pair of properly connected “partners” Bl and A j (b j = Bl ∧ al = A j)
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eventually exchange the nonces na j and nbl .

B1A1

B1,B2B1,A2A1,B2A1,A2

21

-∞ 2

1 1

-∞ 0 0 -∞

2

1 -∞

(a) 2 principals

B1A1

B1,B2B1,A2A1,B2A1,A2

2
2

1 2

2
1

1 1 0 1

2

1 1

A1 A2 
B3

A1 A2 
A3

-∞ 0
A1 B2 

B3
A1 B2 

A3

0 0
-∞ 1 11

B1 A2 
A3

0

0

B1 A2 
B3

0
0

B1 B2 
A3

0

1

B1 B2 
B3

-∞

-∞

(b) 3 principals

Figure 3.2: Join transitions of the KSL protocol

Figures 3.2(a) and 3.2(b) depicts the weighted join transitions for 2 and 3 principal

instances respectively. The verification with 2 principal instances reports no attack

and the conclusion can be derived by just exploring half of the state space (the con-

text {A1,A2} and {B1,B2} are labeled −∞; see Figure 3.2(a)). In case of 3 principal

instances the attacks are found in highlighted paths (those with ’fat’ arrow in Fig-

ure 3.2(b)). H1 assigns appropriate weights to such paths and two states are labeled

−∞ referring to the fact that they will never be explored.

3.3 Another Heuristic

We introduce a second heuristic called H2 that relies on security formulae and open

variables. The heuristic H2 requires two inputs, a state 〈C ,χ,κ〉 and the disjunctive

normal form (DNF, cf., Definition. 5) of the negation of a formula and returns an

integer.

Heuristic H2 relies on the (quantifier free part of the) security formula. For each

state, the heuristic parses the security formula until an atomic formula is found. Specif-

ically, H2 searches for atomic formulae containing open variables: the state gets the

value depending on the way open variables is instantiated in the state. The value of a
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state is a higher if the assignment of open variables complies with the atomic formula

specification, lower otherwise.

Definition 5 (Disjunctive Normal Form). A formula φ, is in Disjunctive Normal Form

if it is of the form φ≡ φ1∨ . . .∨φn where each φi has the form ψ1,i∧ . . .∧ψn,i and each

ψ j,i is an atomic formula or a negation of an atomic formula.

Before defining H2 we introduce some auxiliary functions.

Definition 6. Given a state s = 〈C ,χ,κ〉, a formula φ of the form φ1∧ . . .∧φn where

each φi is in DNF, the function H∧(s,φ) is defined as

H∧(s,φ) =


max

i=1,...,n
H2(s,φi) , H2(s,φi)≥ 0 for each φi

min
i=1,...,n

H2(s,φi) , otherwise

In order to satisfy φ, a state must satisfy each φi. Therefore, H∧(s,φ) evaluates

each φi and returns the maximum value if every invocation results into a positive value

otherwise it returns the minimum value (and hence a negative value). Therefore a

positive heuristic value for a state indicates that the state satisfies φ and a negative

value otherwise.

Definition 7. Given a state s = 〈C ,χ,κ〉 and a formula φ of the form x = m, the

function H=(s,φ) is defined as

H=(s,φ) =


νs,φ , χ(x) = m or (χ(x) = x [κ] and κBm)

−1 , χ(x) 6= m or (χ(x) = x [κ] and κ 6Bm)

0 , χ(x) =⊥

where νs,φ is the number of open variables in s and φ.

H=(s,φ) ranks high states satisfying φ while states violating φ are assigned−1 and

must be pruned. The final case in H=(s,φ) deals with a state that does not instantiate
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x. Since, no hint is available to evaluate the state therefore a neutral value such is 0 is

assigned to it.

Definition 8. Given a state s= 〈C ,χ,κ〉 and a formula φ of the form x 6=m the function

H6=(s,φ) is defined as

H6=(s,φ) =



νs,φ , χ(x) 6= m or (χ(x) = x [κ] and κ 6Bm)

−1 , χ(x) = m

νs,φ−1 , χ(x) = x [κ] and κBm

0 , χ(x) =⊥

where νs,φ is the number of open variables in s and φ.

Cases 1, 2, and 4 in H6=(s,φ) follow the same intuition as for H=(s,φ) that a state

satisfying φ should be ranked high. Noteworthy, case 3 evaluates a state where x is

mapped symbolically. Recall that a symbolic variable is not instantiated immediately

(cf.,§ 2.6.1.2). Since such state can neither be pruned not ranked high, H6= lowers its

heuristic value by decrementing νs,φ.

We now define H2 that depends on functions given in Definition 6, 7, and 8.

Definition 9 (Heuristic H2). Given a state s = 〈C ,χ,κ〉 and a formula φ the heuristic

function H2 is defined as
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H2(s,φ) =



max
i=1,...,n

H2(s,φi), φ≡ φ1∨ . . .∨φn

H∧(s,φ) , φ≡ φ1∧ . . .∧φn

H=(s,φ) , φ≡ x = m

H6=(s,φ) , φ≡ x 6= m

1 , φ≡ true

−1 , φ≡ f alse

0 , otherwise

The recursive application of H2 over the formula φ along with s determines the

heuristic value to be assigned to the state. We discuss each case and describe why a

particular value has been chosen.

Case 1 is applied when φ is a disjunction, i.e., φ≡ φ1∨ . . .∨φn. Each disjunct φi is

evaluated individually and the maximum value is returned. Intuitively, a state satisfies

φ when it satisfies at least one φi. Thus H2(s,φ) returns a positive value if, and only if,

φ is satisfied. Hence, if H2(s,φ)< 0 then the state s can be pruned.

Case 2 is used when φ is a conjunction, i.e., φ = φ1∧ . . .∧φn. The state must be

model for all the conjuncts and is evaluated by H∧ given in Definition 6.

Cases 3-7 are used when φ is an atomic formula. Cases 3 and 4 respectively deals

with the atomic formula of the form x=m and x 6=m and are evaluated by the functions

H= and H6= respectively. The other cases are trivial.

3.3.1 Improving H2

H2 can be improved by slightly modifying H∧ so that the values returned on sub-

formulas are added up in order to guarantee that a state satisfying more conjuncts is

preferred. The drawback of this approach is that the new heuristic may produce two
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different values for a state against logically equivalent formulae. For instance, true

and true∧ true would be evaluated to 1 and 2 respectively. However, we conjecture

that the new heuristic is correct (i.e., no attacks are eliminated when pruning the state

space). In fact, when a state is pruned the minimal value is returned as per case 2 of

Definition. 6.

3.3.2 Evaluation of H2

It is important to mention that H1 is generally more efficient than H2 as H1 inspects

the quantification (over principal instances) in a security formula and for each state

tries to establish if such principal (instances) have joined the context. On the other

hand, H2 exploits open variables (i.e., symmetric keys and identities) and assigns a

weight to a state depending on how such variables have been instantiated in the state.

We conjecture that H2 can perform better than H1 when the security formula specifies

symmetric keys in addition to principal identities.

We illustrate this with the help of the following example. We have designed two

security formulae for the ISO protocol. Both formulae specify principal identities but

only one specifies symmetric keys.

The ISO protocol belongs to a family of authentication mechanisms presented

in [50]. It performs unilateral authentication of a principal A to a principal B. The

informal specification for ISO is:

1. B→ A : nb, Text1

2. A→ B : Text3,{nb,B,Text2}kab

A and B share a symmetric key, called kab. B sends to A a random number (nb) along

with a text field. For verification purposes, the text field is represented by a nonce.

A sends back a cryptogram containing nb and B′s identity, thus B believes that he is
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talking to A.

A : (b,sk)[ in((?r,?td)).

out(na,{((r,b),nc)}sk)]

B : (sk)[ out(nb,nd).

in(?ta,{(nb,B),?tc)}sk)]

The protocol is verified against a security formula that specifies symmetric keys

and is given as

ψISO1 = ∀l : A. ∃o : B. bl = Bo =⇒ skl = sko

which states that if A is connected to B then they share the same symmetric key.

(a) H1 (b) H2

Figure 3.3: Partial state space (weighted) for the ISO with ψISO1

Figure 3.3(a) and Figure 3.3(b) respectively show the weights assigned to states

by H1 and H2 for ψISO1 . The path leading to an attack is depicted as a dotted line

and shaded states represent the pruned states. Note that in Figure 3.3(a), the context

{B1,B2,B3} is shaded representing the fact that this state will not be explored further

for analysis. However, H2 as shown in Figure 3.3(b) can prune all the traces emerging

from {B1,B2,B3} and additionally prunes one trace from the context {A1,A2,B3} and

three traces from the context {A1,B2,B3}. Thus H1 reduces the state space by 6%

while H2 reduces the state space by 16% (see § 5.1.4 for actual numbers).

We now consider a formula which specifies identities and nonces instead of sym-

metric keys.

ψISO2 = ∀l : A. ∃o : B. bl = Bo =⇒ rl = nb j
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which states that if A is connected to B then the nonce received by A, rl is the one sent

by B, nb j.

(a) H1 (b) H2

Figure 3.4: Partial state space (weighted) for the ISO with ψISO2

Figure 3.4 shows the state space as evaluated by H1 and H2 for ψISO2 . Note that

the efficiency of H2 and H1 will be approximately the same as H2 does not prune

any additional traces from the contexts {A1,A2,B3} and {A1,B2,B3}. The additional

pruning in the case of ψISO1 is due to the specification of symmetric keys and thus in

the case of ψISO2 both heuristics give the same efficiency.

3.4 Combining H1 and H2

We have combined the heuristic functions H1 and H2 to obtain a composite heuris-

tic [66] called H3. A composite heuristic has more than one heuristic functions at

its disposal permitting it to choose the most appropriate function for evaluating each

state. The heuristic H3 applies H1 for states that are generated due to join transitions

and H2 to the states that are generated due to instantiation of open variables.

Definition 10. Given a state s, a transition t from s to s′ = 〈C ′,χ′,κ′〉 in sϒ, and a

formula φ, the heuristic function H3 is given by

H3(s′,φ) =


Hs(s′,φ) , ∀ A ∈ C ′, ∀ x ∈ XA : χ(x) =⊥

H2(s′,φ) , ∃ A ∈ C ′,∃ x ∈ XA : χ(x) 6=⊥
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where, given a principal A, we let XA denote its set of open variables.

Thus heuristic function H3 is invoked if the state s′ is the outcome of a join tran-

sition. The function H3 takes the state s′ and φ as input and checks s′ to decide the

appropriate heuristic function for evaluating the state s′. If the open variables associ-

ated with the principal instances particiapting in the context are not yet initialized, it

invokes the heuristic Hs. Otherwise, H3 invokes the heuristic function H2.

3.5 Properties of the Heuristics

In this section we present some comments on admissibility and optimality of our

heuristics.

3.5.1 Admissibility

Admissibility ensures that heuristic estimates for a state are always lower than the ac-

tual cost to reach the goal state [54]. Admissibility is therefore desirable for estimation-

based heuristic functions to ascertain the optimality of the obtained solution. Our

heuristic functions (H1, H2, H3) are defined as evaluation based functions that eval-

uate the likeliness for the state (and transitions) to lead to an attack. The weights

assigned by the heuristics to states do not correspond to the proximity to a target state.

Since our heuristics do not represent the cost to reach the goal node therefore admis-

sibility in this case cannot be applied.

3.5.2 Optimality

We discuss two different notions of optimality and comment about optimality of our

heuristics in both cases.
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An optimal solution is said to be obtained when the search finds the best solution

from an available set of feasible solutions. In terms of directed model checking this can

be put as having different possible goal states and heuristics guiding the search towards

the best goal state thus yielding the optimal solution. In the case of security protocols

the goal is an ”attack”, namely a state that violates the security property. Typically,

it is very hard to compare the importance of different attacks as the violation of a

property may be due to many causes (as for the NS Example in § 3.2.2.1). Therefore,

isolating any solution (i.e., an attack) as an optimal solution is hard. Thus finding an

attack quickly is what is desired and that can be achieved by using evaluation based

heuristics such as H1, H2, and H3.

Another criteria for optimality is the length of the path leading to an attack state.

This has an additional advantage of producing shorter counter examples in addition

to finding goals quickly. However, this notion of optimality is only possible with

admissible heuristics. As said earlier, admissibility applies only to estimation-based

heuristics thus our heuristics do not achieve this notion of optimality. Nevertheless,

we envisage the importance of estimation-based heuristics for security protocol veri-

fication as they generate shorter counter examples. However, this thesis does not deal

with estimation based heuristics for security protocol verification.

3.6 Incorporating Heuristics into a Searching Algorithm

The heuristics defined in § 3.2, § 3.3, and § 3.4 are incorporated into a searching

algorithm which is a hybrid algorithm as the initial phase of verification is informed

while the second phase is done with a conventional DFS. An intuition of how the

algorithm works is given in Figure 3.5 where join transitions (the state space consisting

of states ABCDEF) are explored according to their heuristic values while the search
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Figure 3.5: Combining Heuristic Search and Conventional DFS

in the remaining state space (abcd) remains uninformed.

We now justify the need for a hybrid algorithm and discuss if heuristics can be

applied in the remaining state space.

Heuristic H1 is only applied to join transitions. Technically, it cannot be extended

to communication transitions as it exploits the information available only in join tran-

sitions.

Heuristic H2 can be adapted for communication transitions. However, one of the

major issues in heuristic searches is the cost of computing the heuristic function. Thus,

heuristics should only be applied if their cost is less than the efficiency obtained. We

conjecture that more efficiency can be achieved by applying heuristics in the join tran-

sitions. More precisely, maximum branching occurs due to join transitions because

all possible combinations of protocol participants and instantiations of open variables

must be tried. Thus more efficiency is obtained if heuristic search efficiently explores

join transitions. Nevertheless, in future, we intend to extend our hybrid algorithm to a

complete DMC algorithm by adapting H2 for communication transitions.
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Chapter 4

Architecture and Implementation of

H -ASPASyA

The extension of ASPASyA with our heuristics will hereafter be referred to as H -

ASPASyA. Actually, H -ASPASyA can explore states according to the weights as-

signed to them by either H1, H2, or H3, respectively referred to as H1-ASPASyA,

H2-ASPASyA, and H3-ASPASyA.

The architecture for ASPASyA and H -ASPASyA is respectively shown in Fig-

ure 4.1(a) and 4.1(b). Note that in Figure 4.1(b), Heuristic is the abstract represen-

tation for the module responsible for assigning weights to states. The actual structure

of the module Heuristic varies with heuristic H1, H2, and H3 and will be detailed

in appropriate sections. In § 4.1, we describe the architecture of H -ASPASyA and in

§ 4.2 we illustrate the details of its implementation.

Before describing the architecture of H -ASPASyA it is worth to briefly comment

on the architecture of ASPASyA (see [9] for a detailed description).

The main modules of ASPASyA are in Figure 4.1(a) and are called States,

Configuration, and Formula. They have been extended as shown in Figure 4.1(b)
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(a) ASPASyA (b) H -ASPASyA

Figure 4.1: Architecture of ASPASyA and H -ASPASyA

to accommodate a new module, called Heuristic, and a new component added to the

module Formula called prenex.

The module Configuration serves as the basic building block for computing

states and has three components namely context, assignment, and knowledge to

represent a state 〈C ,χ,κ〉. The module States invokes Configuration to perform a

transition so to update context, assignment, and knowledge accordingly and return

the next configuration to States. The module States has two components namely

join and step. The former implements join transitions and the latter deals with

communication transitions. The module Formula consists of the components logic,

verifier, and csolver. The first component converts a P L formula into DNF, the

second checks whether a given configuration is a model for the formula, and the latter

deals with constraints on symbolic variables.

The input expected by ASPASyA consists of (i) the protocol formalised in cIP

(say pr), (ii) the security property (say pl), (iii) the join formula (say pj) in P L ,

(iv) a finite set of messages representing the initial knowledge of the intruder (say

kb), and (v) the maximum number of instances (say m) that can join a session. From

the initial input, ASPASyA first generates the join transitions by invoking the module

States; which in turn invokes configuration to update context, assignment, and
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Figure 4.2: Module Heuristic for H1-ASPASyA

knowledge. The module States now interacts with the module Formula so to filter

out the states that do not satisfy pj and expand those satisfying it with communica-

tion transitions. The module States invokes configuration on each context to fire

communication transitions according to the semantics of cIP. Configurations are then

forwarded to Formula to check the presence of possible attacks.

The modular structure of ASPASyA has been instrumental to straightforwardly

apply our modifications to accommodate heuristics; the implementation remains mostly

unaffected and only requires the introduction of new modules and minor changes to

the existing ones.

4.1 Architecture of H -ASPASyA

4.1.1 H1-ASPASyA

The module Heuristic assigns weights to states and transitions depending on the

P L security formula. As shown in Figure 4.2, Heuristic contains two components

namely h 1 and misc. The component h 1 assigns weights and provides the core

implementation for the heuristic functions Hs and Ht defined in § 3.2, while misc

contains miscellaneous functions that are used by the component h 1. Further, the

module Formula has been modified so as to have an additional component called

prenex, that converts a P L formula into an equivalent PNF. The other components of

the module Formula namely Logic, verifier, and csolver remain unaffected.

The Architecture of H1-ASPASyA has been designed so to pre-process join tran-
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sitions and weight them. Weighted join transitions are generated by the component

h 1 which relies on prenex and States to respectively transform pl in PNF and to

generate join transitions as in ASPASyA.

However, the data structure used by ASPASyA for representing states is rather

more complex than what the heuristic needs; for the sake of simplicity and to limit

the changes to ASPASyA to a minimum, we decided to use a simpler data structure

in the module Heuristic. The states in Heuristic are represented with contexts

only instead of 〈C ,χ,κ〉. This requires to map back the states in Heuristic to those

in States so that the latter generates the communication transitions after acquiring

weights. Therefore, the component misc yields a functionality to match the states of

Heuristic with those of States. Intuitively, there is a match between two such states

when their corresponding contexts have same principal instances. The weighted states

are then re-ordered and given back to States to explore them further.

4.1.2 H2-ASPASyA

H2-ASPASyA refers to extension of ASPASyA with the heuristic H2. The module

Heuristic for H2-ASPASyA contains two components i.e., h 2 and h var, as shown

in Figure 4.3. The former contains the implementation for the heuristic function H2

Figure 4.3: Module Heuristic for H2-ASPASyA

presented in § 3.3 and the latter contains some auxiliary functions used by H2 and

described below.

As in ASPASyA the module States generates join transitions; followed by gen-

eration of new states by instantiating open variables with possible values. Afterwards,
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States invokes the function H2 in the component h 2 to weight the new states. The

component h 2 interacts with Formula to obtain DNF of P L formulae. It then weights

the states accordingly and passes them to h var for further processing. More precisely,

some states are pruned and remaining ones are ordered according to the weights as-

signed to them by h 2. Likewise in h 1, the ordered set of states is then returned to the

module States to be model checked.

4.1.3 H3-ASPASyA

H3-ASPASyA is the name given to the extension of ASPASyA with H3 that com-

bines H1 and H2. The module Heuristic as shown in Figure 4.4, therefore contains

components h 1 and misc for implementing H1, h 2 and h var for implementing H2,

and a new component h 3.

Figure 4.4: Module Heuristic for H3-ASPASyA

The module States first generates states where required number of instances have

joined the context and passes them to h 3 which invokes h 1 to weight them. After

weighting, pruning and re-ordering, the states are returned to States which expands

them by instantiating open variables. The resulting set of states is handed over to h 3

that invokes h 2 to evaluate them. The re-ordered set of states is finally returned to the

module States.
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4.2 Algorithms and Implementation for H -ASPASyA

ASPASyA is implemented in Ocaml (version 3.06). Ocaml is a strongly typed func-

tional language that supports recursive data structures and pattern matching. Exploit-

ing such features, the state space of H -ASPASyA is implemented as a tree-like struc-

ture that can be traversed using pattern matching. We report the algorithm for H1-

ASPASyA in § 4.2.1, followed by algorithm for H2-ASPASyA in § 4.2.2, and finally

the algorithm for H3-ASPASyA is in § 4.2.3.

We first detail the data structures used and then report the algorithm for H1-

ASPASyA.

The generation of join transitions in H1-ASPASyA is materialised using a tree

data structure defined by using sum types (i.e., Ocaml union types) and tuples. Ocaml

pattern matching mechanisms are used for traversal of the following data types

type weight= Int of int | −Infty

type princlist= (string ∗ int) list

type node= Node of (weight ∗ princlist)

(4.1)

where a weight can be an integer or a special value−Infty to represent−∞, princlist

is a list of principal instances representing contexts (an instance is modelled as a pair

whose first component is the identity of principal and the second component is its

index), and a node is a pair of weight and princlist.

The type wt of a weighted tree is defined as

type wt = WT of node ∗ (weight ∗ wt) list

A weighted tree (wt) is a pair of a node and a list of tuples representing transitions

associated to that node. Each tuple contains the weight of the transition and a weighted
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tree wt for representing subtree attached to that transition.

4.2.1 Algorithm for H1-ASPASyA

The computational steps for H1-ASPASyA are sketched in Algorithms 2 and 3. Al-

gorithm 2 is basically a slight modification of ASPASyA and shows that at step 3 we

invoke compute H1 function reported in Algorithm 3.

Hereafter, we denote states of ASPASyA as 〈C ,χ,κ〉 and use the data types in (4.1)

to indicate the structure of H1-ASPASyA. We demonstrate the algorithms with the

help of our running example of the NS.

Algorithm 2 H -ASPASyA – Input: pr, pl, pj, kb, m
1: n← 〈 /0, /0,kb〉
2: l← a list of states 〈C ,χ,κ〉
3: ol← Compute H1(l)
4: ll← for each state in ol generate a list of states with open variables

instantiated to possible values.
5: For each context start communication between participants.
6: Verify each configuration according to pl

The first step of Algorithm 2 creates the root node with the empty context /0, the

empty substitution /0, and initial knowledge kb. The next step generates a list l of

states each of which can have at most m principal instances in the context. We invoke

the function Compute H1 at step 3 to compute the weights of the states generated at

step 2. Step 4 of Algorithm 2 computes the mappings of open variables and generates

new configurations. The final steps generate communication transitions and verify

them according to P L .

We continue commenting on Algorithm 3 described by the following ocaml pseudo-

code.
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Algorithm 3 Compute H1 – Input: l, pr, pl, m,
1: let t← gen tree (m, pr) in
2: let ht← H1 (t, pnf (pl)) in

let wl← ext context (ht) in
3: let wc← find w (l wl) in

let swc← sort w (wc) in
sc← re order (swc)

In step 1 of Algorithm 3, gen tree (in component h 1) is invoked with the for-

malised protocol pr to return the contexts (with weights initialised to zero) obtained

by joining m principals (join transitions are generated using the data structures given

in (4.1)).

For the NS, the tree generated with m= 2 is given in Figure 4.5 where (on the left-

WT (State (0, [ ])
[(0,
WT (State (0, [ A1 ]),
[(0,WT (State (0, [A1;A2]), [ ]));

(0,WT (State (0, [A1;B2]), [ ]))]));
(0,
WT (State (0, [ B1 ]),
[(0,WT (State (0, [B1;A2]), [ ]));

(0,WT (State (0, [B1;B2]), [ ]))]))])

Figure 4.5: Join transitions for NS with weights initialised to zero

hand-side) the root node has empty list of principals and two associated transitions;

each transition has a weight initialised to zero and an associated subtree. The left

subtree adds a principal instance A1 to the context inherited from parent node and the

right subtree adds B1 to its parent context. The process is repeated until the required

number of instances have joined the context.

At step 2, the tree t is weighted using H1 defined in the component h 1 of module

Heuristic along with prenex normal form of the security property pnf(pl) (function

pnf is in prenex). For our example, H1 will return the tree given in Figure 4.6 for
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WT (State (2, [ ])
[(2,
WT (State (1, [ A1 ]),
[(1,WT (State (0, [A1;A2]), [ ]));

(0,WT (State (0, [A1;B2]), [ ]))]));
(1,
WT (State (1, [ B1 ]),
[(1,WT (State (0, [B1;A2]), [ ]));
(−∞,WT (State (−∞, [B1;B2]), [ ]))]))])

B1A1

B1,B2B1,A2A1,B2A1,A2

22 1

1 0 1 -∞

1 1

0 0 0 -∞

Figure 4.6: Weighted join transitions for NS

NS with two instances. Function H1 inspects the formula and the context as described

before. The function ext context extracts the weighted contexts (those with m in-

stances) from the weighted tree, namely it returns the list of weighted leaves of the

tree ht (the weights are obtained by adding all the weights on the path starting from

the root node and terminating at leaf). Applying function ext context to the tree

given in Figure 4.6 yields

[(6, [A1;A2]);(5, [A1;B2]);(5, [B1;A2]);(−∞, [B1;B2])]

The function find w (in the component misc of Heuristic) takes l and wl as

inputs and finds the match for each state in l by comparing its context with the contexts

in wl. When a match is found, the weight associated to the context in wl is attached to

its corresponding context in l. This modifies the list l so that it now has the tuples of

weight and state 〈C ,χ,κ〉.

[(6,( [A1;A2], [I,I+,I−,A1,A+1 ,A2,A
+
2 ], [ ]));

(5,( [A1;B2], [I,I+,I−,A1,A+1 ,B2,B
+
2 ], [ ]));

( −∞,( [B1;B2], [I,I+,I−,B1,B+1 ,B2,B
+
2 ], [ ]))]

It is worth noting that ASPASyA has an optimization where contexts that are per-
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mutations of each other are represented just once. For example in the NS protocol

the contexts {A1,B2} and {B1,A2} are permutation of each other and it is sufficient to

explore any one of them. Thus before matching l with wl, the states that are permuta-

tions of other states are discarded so that the numbers of states in l and wl remain the

same.

The function sort w sorts the list wc on weights in descending order yielding

[ (6,( [A1;A2], [I,I+,I−,A1,A+1 ,A2,A
+
2 ], [ ]));

(5,( [A1;B2], [I,I+,I−,A1,A+1 ,B2,B
+
2 ], [ ]));

(−∞,( [B1;B2], [I,I+,I−,B1,B+1 ,B2,B
+
2 ], [ ]))]

Finally the function re order removes the first element of each tuple i.e., the weight.

It also removes the context(s) that have received the weight of −∞ giving

[ ( [A1;A2], [I,I+,I−,A1,A+1 ,A2,A
+
2 ], [ ]);

( [A1;B2], [I,I+,I−,A1,A+1 ,B2,B
+
2 ], [ ]) ]

4.2.2 Algorithm for H2-ASPASyA

Algorithm 4 and 5 specify computation steps required for implementing heuristic H2.

Algorithm 4 is an adaptation of ASPASyA where at step 4, the heuristic function

Compute H2 is invoked to weight the states generated at step 3 of Algorithm 4.

Algorithm 4 H2-ASPASyA – Input: pr, pl, pj, kb, m
1: n← 〈 /0, /0,kb〉
2: l← a list of states 〈C ,χ,κ〉
3: ll← for each state in l generate a list of states with open variables

instantiated to possible values.
4: Compute H2(ll,pl)
5: For each context start communication between participants.
6: Verify each configuration according to pl

Algorithm 2 and Algorithm 4 are similar and differ at step 3 and 4. In H1-
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ASPASyA, the heuristic function Compute H1 is invoked at step 3 to assign heuristic

estimates to the states generated at step 2. Whereas in H2-ASPASyA, step 3 generates

states with open variables instantiated to possible values and are handed over to the

heuristic function Compute H2 at step 4 to acquire weights. The function Compute H2

is given in Algorithm 5; we use our running example of NS protocol to explain each

step of the Algorithm 5.

Algorithm 5 Compute H2 – Input: l, pl
1: let wl← H2 (l, pl) in
2: let pr l← remove w (wl) in

ol← re order (pr l)

Algorithm 5 takes in input a list l generated at step 3 of Algorithm 4 and the

security formula pl in DNF. In step 1 of Algorithm 5, H 2 (in the component h 2)

returns a list wl; the elements of wl are list of pairs value-state (v,s) representing the

value v of a state s according to H2 (as specified in Definition 9). For instance, the

invocation of H2 for the NS protocol yields

[ [(1, ([A1;A2], . . .))]; [(0, ([A1;B2], . . .))]; [(−1, ([B1;B2], . . .))] ]

where the ellipses stand for the mapping of variables and knowledge of the intruder

(they are not given because immaterial). At step 2 the states with weight −1 are

discarded and each sub-list is re-ordered to give

[ [ (1, ([A1;A2], . . .))]; [(0, ([A1;B2] . . .))] ]

Note that in the case of NS protocol each sub-list comprises of only one state and

therefore re-ordering is not possible. The resultant list is returned to the Algorithm 4,

which proceeds by generating new configurations which emerge as a result of com-

munication actions executed by the participants.
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4.2.3 Algorithm for H3-ASPASyA

The computational steps for H3-ASPASyA are listed in Algorithm 6, where both

heuristics (H1 and H2) have been incorporated in ASPASyA.

Algorithm 6 H3-ASPASyA – Input: pr, pl, pj, kb, m
1: n← 〈 /0, /0,kb〉
2: l← a list of states 〈C ,χ,κ〉
3: Compute H1(l)
4: ll← for each state in ol generate a list of states with open variables

instantiated to possible values.
5: Compute H2(ll,pl)
6: For each context start communication between participants.
7: Verify each configuration according to pl

At step 3 of Algorithm 6, the function Compute H1 has been invoked. The pseu-

docode for the function Compute H1 is reported in Algorithm 3 which weights the list

of states l generated at step 2 of Algorithm 6. Each state in the list (of states) returned

by compute H1 is expanded by instantiating open variables. The new list generated is

weighted by compute H2 function reported in Algorithm 5. Afterwards, the states are

expanded with communication transitions and verified according to pl.

Figures 4.7(a) and 4.7(b) illustrates the weights assigned to the NS protocol by H2

and H3 respectively. Note that Figure 4.7 extends Figure 4.6, where each context has

been expanded with possible instantiations of open variables. For the NS protocol,

there is only one such possibility therefore each context has only one child node. Note

that in Figure 4.7(a), the shaded state is assigned the value−1 and will not be explored

further. However, since H1 prunes the context {B1,B2} (see Figure 4.7(b)) therefore

the combined efficiency of H3 in the case of NS protocol will not be better than that

of H1.
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(a) H2 (b) H3

Figure 4.7: Weighted (partial) state space for NS protocol with H2 and H3
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Chapter 5

Experimental Results and Analysis

The evaluation of the effectiveness of our heuristics has been measured in a number of

experiments where a valuable set of protocols have been model checked against a few

security properties under different conditions (the complete references for protocols

are in Appendix A)1. More precisely, the protocols are verified using different join

formulae, different security properties, and varying the maximum number of principal

instances.

5.1 Results on the State Space

In this section, we present our results for the efficiency obtained in terms of the size of

state space. In § 5.1.1 and § 5.1.2, we give the results for the protocols verified with an

arbitrary join and constrained join respectively. In § 5.1.3, we demonstrate the results

for a few protocols that have been tested with four instances of the principals. Finally,

in § 5.1.4 we give the results for experiments designed specifically for H2.

The results reported in this section correspond to two capabilities of the heuristics

mentioned in § 1.2, i.e., re-ordering and pruning. Re-ordering refers to the directed

1H -ASPASyA is available at http://www.cs.le.ac.uk/people/et52/aspasya/h-aspasya.html.
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search; more precisely, H -ASPASyA explores the states according to the heuristic

values assigned to them and stops as soon as the first attack is found. The number of

states explored helps in assessing whether the order in which heuristics put the states

is reasonable.

Pruning on the other hand is also helpful when one is interested in discovering all

attacks possible on a protocol for the stated security property. Such situation requires

exhaustive search of the state space and re-ordering does not help as visiting the states

in a particular order does not make any difference. However, pruning in this case is

helpful as it reduces the overall size of the state space. In addition to this, pruning is

also useful in verifying protocols that are safe i.e., the specified security property is

”true” in all states.

5.1.1 Experiments for Arbitrary Join

Hypothesis The first set of experiments is designed where contexts are freely formed,

namely the join formula is just ”true”. In the absence of any constraints on the prin-

cipals joining a session, the state space grows exponentially and this can possibly be

controlled with the help of heuristics. We investigate how efficient are the heuristics

in the absence of any constrained join.

Setting This set of experiments consists of eight protocols. All protocols are tested

with arbitrary join and three instances of principals in each case. Furthermore, we

have also tested a subset of these test cases (i.e., NS, ISO, and the BY protocols) with

2 instances of principals participating in each session.

Results Table 5.1 and Table 5.2 summarise the results for the experiments conducted

to see the efficiency of heuristics in the absence of any join formula. The first two

columns of each table respectively give the protocols that have been taken as test
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cases and presence of attacks in the protocol. The next two columns yield the results

for pruning and re-ordering. In both cases we report the results for ASPASyA and

our three heuristics. An entry marked NA (after ”No Attack”) represents a fact that a

protocol is free of any attack therefore the numbers for re-ordering will correspond to

the numbers for pruning.

Table 5.1: Protocols with arbitrary join and 2 instances
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 158 129 130 129 67 25 39 25
ISO Yes 41 34 37 34 14 12 14 12
BY Yes 1292 1134 440 438 335 873 179 177
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(b) Constrained join

Figure 5.1: No. of states explored with arbitrary & constrained join for 2 instances

Table 5.2: Protocols with arbitrary join and 3 instances
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 5183 4942 4943 4942 1288 197 1048 197
KSL No 10240 3332 3607 3332 NA NA NA NA
ISO Yes 333 312 318 312 31 26 31 26
WMF Yes 1055 563 838 563 451 111 196 111
Carlsen No 9792 867 1142 867 NA NA NA NA
DS Yes 76273 31379 31381 31379 39438 22 26 22
BY Yes 236497 226562 113512 113507 28995 132115 19065 9732
BKE No 6316 5700 5701 5700 NA NA NA NA
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Figure 5.2: No. of states explored with arbitrary join for 3 instances

Interpretation Table 5.1 and Table 5.2 show that the overall efficiency of all heuris-

tics is better than ASPASyA when the state space is completely explored or when the

search halts on the first attack. However, with the exception of the BY protocol, H1

is comparatively more efficient then H2 while their combination (i.e., H3) is no better

than H1 (see § 5.1.4 for experiments demonstrating efficiency of H2).

The best results for pruning are obtained in the verification of DS, KSL, and

Carlsen where more then 50% of the original state space is cut; more precisely, 58%

in the case of DS, 67% in the case of KSL and 88% in the case of Carlsen. The least

efficiency has been observed for the ISO and the NS where the reduction is roughly

4.5% of the original state space (Table 5.2). For re-ordering, the highest efficiency

has been observed in the case of DS protocol and the least efficiency is in the case

of ISO. Figure 5.1(a) and Figure 5.2 graphically represent the comparison between

ASPASyA and our heuristics for an arbitrary join formula.

5.1.2 Experiments for Constrained Join

Hypothesis This set of experiments aims to gauge the performance of heuristics in

the presence of a constrained join. Recall that a join formula specifies the valid con-

nections between the participants and thus restricts the state space by pruning those

contexts that are not validated by the specified join formula (cf. § 2.6.2). Thus heuris-

68



tics performance will not be as good as in the case of arbitrary join. We use these

experiments to see if the heuristics can show any improvement over ASPASyA in the

presence of a constrained join.

Setting For the above hypothesis, we designed 10 different experiments that were

carried on a total of seven protocols. All the seven protocols are tested with three in-

stances of principals participating in a session and three of the protocols (i.e., NS, ISO,

and BY) are also tested with (maximum of) two instances of principals participating

in a session. In each case an appropriate join formula is also specified.

Results Table 5.3 and Table 5.4 highlight the results when a non-trivial join formula

is defined. The former gives the results for protocols executed with (maximum of) two

instances of the principal instances and the latter with (maximum of) three instances

of the principal instances participating in each session.

Table 5.3: Protocols with constrained join and 2 instances
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 50 49 50 49 39 38 39 38
ISO No 17 15 17 15 NA NA NA NA
BY Yes 1292 1134 440 438 335 873 179 177

Table 5.4: Protocols with constrained join and 3 instances
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 1589 1588 1589 1588 1048 599 1048 599
KSL No 550 275 550 275 NA NA NA NA
ISO Yes 138 131 138 131 89 84 89 84
WMF Yes 522 247 522 247 497 222 497 222
Carlsen No 534 259 534 259 NA NA NA NA
BY Yes 236497 226562 113512 113507 28995 132115 19065 9732
Yahalom Yes 2706 1559 2706 1559 1990 983 1990 983
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Figure 5.3: No. of states explored with constrained join for 3 instances

Interpretation It follows from the results that for both pruning and re-ordering

heuristics H1 and H3 give a reduction in the state space but H2 does not show any

improvement over ASPASyA (with the exception of the BY protocol). This is due to

the fact that the use of join formulae in ASPASyA can avoid that some of the initial

nodes are expanded; thus a join formula may be as effective as our heuristics. Never-

theless, the join formulae must be specified by the user and it is not simple to design

them. Moreover, a weak join formula does not give results comparable to the cut pro-

duced by our heuristics. Figure 5.1(b) and Figure 5.3 are the graphical representation

for the results of Table 5.3 and Table 5.4 respectively.

5.1.3 Experiments with Four Instances

Hypothesis The aim of these experiments is to show that heuristics are effective in

addition to be efficient. More precisely, the size of the state space increases with an

increase in the number of principal instances participating in a session and can possibly

result into the state space explosion. We show with the help of the experiments that

our heuristics may possibly avoid the state space explosion by reducing the size of the

state space.
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Setting Three protocols are taken as test cases, each of the protocol is executed

with arbitrary join as well as a constrained join. The protocols are tested with four

instances of the participants in each session.

Results Table 5.5 and 5.6 show the results for various protocols executed with 4

instances. The former gives the results for arbitrary join and the latter for constrained

join. An entry in the table marked as ”OF” suggests state space explosion.

Table 5.5: 4 instances and arbitrary join
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 378265 375596 375597 375596 60192 6550 57524 6550
KSL No OF 2717158 OF 271758 NA NA NA NA
Carlsen No OF 12140 OF 12140 NA NA NA NA

Table 5.6: 4 instances and constrained join
Protocols Attacks pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
NS Yes 92813 92812 92813 92812 60192 6550 57524 6550
KSL No OF 2717158 OF 271758 NA NA NA NA
Carlsen No OF 12140 OF 12140 NA NA NA NA

Interpretation As said, as number of instances increases, the state space grows and

can possibly explode.

Table 5.5 shows that, for KSL and Carlsen verified with 4 instances, ASPASyA

gives an error and terminates as it can not handle the state space explosion. However,

H -ASPASyA (with H1 and H3) successfully verifies the protocols.

5.1.4 Experiments with H2

Hypothesis As evident from Tables 5.2 and 5.4, the efficiency shown by H2 is not

comparable to H1 (except for few cases) due to the reasons illustrated in § 3.3.2. We

want to show with the help of these experiments that the heuristic H2 can outperform
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H1 in verifying some special cases. More precisely, the performance of H2 is best with

a security property that specifies symmetric keys in addition to principal identities.

Setting We have designed experiments to specify the conditions under which H2

can outperform H1. Three symmetric key protocols ISO, WMF, and Yahalom have

been chosen as test cases. All protocols have been tested with arbitrary join and three

instances of the principal instances to check the secrecy of private keys and proper

sharing of private keys.

Results Table 5.7 shows the results from the experiments conducted to demonstrate

the efficiency of H2.

Table 5.7: 3 instances and arbitrary join
Protocols Attacks Pruning Re-ordering

A H1 H2 H3 A H1 H2 H3
ISO yes 315 295 265 260 31 26 31 26
WMF no 406 453 391 453 1104 999 978 999
Yahalom no 1750 1690 1742 1682 2869 2809 2768 2708

Interpretaion As expected, H2 performs better than H1 as can be observed from the

Table 5.7. In particular, H2 performs better than H1 for pruning in the case of ISO and

Yahalom protocols and for the re-ordering in the case of WMF protocol.

The reason for the efficiency of H2 is the security formula. For instance, consider

the ISO protocol presented in the § 3.3.2. The Figure 3.4(a) represents the state space

generated for the ISO protocol for which actual number of states explored is given

in Table 5.7. Note that H1 prunes the state with the context {B1,B2,B3}. However,

heuristic H2 can utilise the information given in the security formula (about symmetric

keys) to prune some additional traces. This is reflected in the pruning results of ISO

given in Table 5.7, where H2 explores 265 sates compared to 295 states explored by

H1 making a difference of 30 states in overall size of the state space.
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Noteworthy, the first attack is discovered rather quickly by H1 as compared to H2.

Apparently, the re-ordering capability of H1 is better than H2 as H1 discovers attack

in fewer states. However, analysis of the results show that the attack is in the first

trace emerging from the context {A1,A2,A3} (c.f., Figure 3.4(a)) which is by default

the first state to be explored by ASPASyA. This suggests that results for ASPASyA

and H -ASPASyA should be same. In fact, the efficiency shown by H1 in discovering

first attack is actually due to pruning rather on to re-ordering. The context {B1,B2,B3}

was not explored further by H1 thereby discovering the first attack quicker.

5.2 Time Analysis

Hypothesis The aim of this set of experiments is to see the efficiency achieved in

terms of time when exploring the state space with the help of the heuristics H1,H2,

and H3.

Settings Five protocols have been taken as test cases. All the protocols have been

tested with arbitrary join as well as constrained join.

Results Tables 5.8 and 5.9 report the execution time 2 for various protocols with

respect to arbitrary join and constrained join respectively.

2The time reported is the aggregate of the time spent by the process in user and kernel mode and
corresponds to the execution on a Pentium 4 CPU 3.20 GHz with 1010.3 MB of memory
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Table 5.8: Execution time for protocols using arbitrary join
Protocols Instances Time (mm:ss:ms)

A H1 H2 H3
NS 2 00:01:780 00:01:824 00:01:888 00:01:788
NS 3 00:17:501 00:16:141 00:16:937 00:16:224
ISO 2 00:01:628 00:04:436 00:01:652 00:01:644
ISO 3 00:04:564 00:01:684 00:04:597 00:04:508
KSL 2 305:37:358 02:35:466 299:06:809 03:34:741
BKE 2 00:02:440 00:02:364 00:02:420 00:02:504
BKE 3 00:12:953 00:12:117 00:12:565 00:12:212
DS 3 09:11:446 00:21:759 14:12:737 08:42:676

Table 5.9: Execution time for protocols using constrained join
Protocols Instances Time (mm:ss:ms)

A H1 H2 H3
NS 2 00:01:664 00:01:806 00:01:764 00:01:704
NS 3 00:05:412 00:05:240 00:05:500 00:05:284
NS 4 06:46:449 06:50:538 07:17:611 06:29:964
ISO 2 00:01:500 00:01:596 00:01:532 00:01:484
ISO 3 00:02:028 00:02:096 00:02:020 00:02:044
KSL 3 04:07:299 00:14:901 00:01:520 00:12:077
DS 3 00:04:748 00:02:632 00:04:756 00:02:728

Interpretation We get efficiency in terms of time for most of the protocols which

is most significant in case of KSL where the verification took almost 5 hours for

ASPASyA as compared to 2 min by H1 (see Table 5.8). Note that the KSL was

also the best protocol when testing our heuristics in terms of the state space. For the

protocols such as NS, the gain is not much significant (the time savings is in sec-

onds); this suggests that efficiency of heuristics in terms of time savings is not directly

propotional to the efficiency in terms of the state space reduction.

Remark As shown in [43], ASPASyA’s benchmark are comparable to other state-

of-the-art verification frameworks.

5.3 Analysis of the Results

We report the following observations.
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• ASPASyA and H -ASPASyA yield the same attacks. This is not surprising

for H1 because its correctness has been proved in [73]. The correctness of H2

and H3 has not been demonstrated, however our experiments hint that they are

correct. We remark that our DMC approach is effective as H1 and H2 cut the

state space. Hence, as illustrated in Table 5.2, the cases with no attack are in

general more efficiently explored in H -ASPASyA.

• As proved by Table 5.5, DMC mitigates the state explosion problem to the point

that memory overflow is avoided in a few cases. Notice that for small state

spaces DMC yields a limited improvement. For instance, in the case of NS

executed with three principal instances there is a reduction of 4.4 % of the total

state space (cf., Table 5.2). On the other hand, as the state space grows DMC

may drastically reduce the search space. For instance, Table 5.2 shows that in

the Carlsen protocol with three instances only 9% of the state space is explored

by H -ASPASyA.

• Our heuristics play an important role in the absence of any constrained join. It

can be observed from Table 5.2 that there is a huge reduction in the state space

in the case of Carlsen and KSL protocols. For the KSL protocol without a join

formula we are able to cut-down almost 67% of the original state space.

• The results for re-ordering are encouraging for heuristic H1 and H3. For in-

stance, in the case of the DS protocol the first attack is discovered by exploring

a very tiny portion of the state space by H -ASPASyA while ASPASyA visits

a large number of states. However, the results of heuristic H2 for re-ordering

are not as significant as for pruning. The re-ordering capability of H2 can be

improved as mentioned in § 3.3.1.
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5.4 Choosing the Right Heuristic

We remark that heuristics are ”rules of thumb” and to describe precise conditions un-

der which each heuristic can give best performance is hard. However, we provide

a basic comparison and a few suggestions that can serve as guidelines for using ap-

propriate heuristics according to the choice of the protocol and security property in

question.

As observed from results, the overall efficiency of H1 is better than the efficiency

of H2. H1 is a better choice when the verifier is interested in finding an attack on a

protocol. However, when the security property of interest refers to symmetric keys, H2

seems to be more reasonable choice. The behaviour of H3 for re-ordering is difficult

to predict. Usually, the efficiency of H3 is equal to H1 except for few cases where H2

can outperform H1 (such as WMF verification, cf., Table 5.7).

For complete state space exploration, we consider H3 to be best choice regard-

less the nature of the protocol and the property to verify. We argue that contrary to

re-ordering, H3 is the best heuristic. The reason is that pruned states can never be

recovered and therefore H2 can only add to the set of states pruned by H1. Therefore,

the efficiency of H3 is either equal to or better than the individual efficiencies of H1 or

H2 (whichever is maximum).

5.5 On the Experimental Setting

In this section we discuss a few aspects of our experimental settings. More precisely,

we investigate the impact of chosen test cases, verification tool, and properties. More-

over, we discuss if our experimental setting for verification can possibly affect the

efficiency of our heuristics and consequently the generality of our approach.
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5.5.1 Choosing the Verification Framework and the Tool

The verification framework chosen to define the heuristics is the one given in [21].

However, as mentioned in § 1.1, the idea of our heuristics can be adapted by other

security verification frameworks. The framework in [21] is taken as the test case

to demonstrate that the heuristics can possibly enhance the performance of the MC

algorithm by quickly exploring the attacks and by possibly reducing the size of the

state space.

The framework was chosen due its different features discussed in § 2.6.1.2. Here,

we only summarise the key characteristics of the framework.

The framework provides a convenient way to express the security properties and

to formalise the protocols. These two aspects are independent of each other as against

some verification frameworks where security property is embedded in the formalised

protocol [74]. This simplifies the verification task as verifying the protocol for dif-

ferent properties will require the alteration of security property alone and not the for-

malised protocol.

Most of the attacks on security protocols are due to the capability of the intruder

to collect information from different sessions and manipulate it. ASPASyA supports

multi-session analysis, by uniquely identifying each session, its participants, and the

variables associated with each participant.

The framework also supports a wide range of security and authentication properties

that can be expressed in P L . Furthermore, it provides the unique feature of join

formula which allows the user to specify the interested scenarios for verification.

5.5.2 Choosing Security Protocols

In this section, the factor under consideration is the set of security protocols that are

taken as test cases for evaluating the efficiency of our heuristics. More specifically,
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one could argue that the security protocols we have considered are indeed the ones

that highlight the efficiency of our designed heuristics. In this context we report the

following observations.

The heuristics H1, H2, and H3 are property-specific, i.e., they rely on the property

specification to derive their hints in order to evaluate the states. This suggests that

the heuristics are in fact protocol independent and their efficiency does not rely on the

choice of the protocol.

However, we would also like to mention here that heuristics rely on domain spe-

cific hints to evaluate the states. Therefore, it is certainly possible that the heuristics

behave differently with different types of the the protocols. For example, as mentioned

in § 3.3.2, heuristic H2 performs better for symmetric key protocols as against heuris-

tics H1 and H3. Having said that, we emphasize that actual efficiency of the heuristic

H2 depends on the security property rather than on the protocol. This amounts to say

that a symmetric key protocol alone would not be sufficient for H2 to produce bet-

ter efficiency. It will only perform better when the security property also specifies

symmetric keys in the property specification.

5.5.3 Choosing Security Properties

As mentioned earlier in this section, our heuristics are property-based. Hence, security

properties are the main factor that can affect the efficiency of the heuristics. In the

following we argue that our results are not biased by the choice of the properties.

Most of our protocols are tested for secrecy, integrity, and authentication. These

are rather general properties which are considered in most of the works done in the

area of security protocol verification.

Heuristic H1 exploits the quantification over principal instances and checks if such

principals have joined the context. Furthermore, if the security property specifies uni-
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versal quantification over a principal instance which never joins the context, then the

context can be safely pruned. Therefore, we conjecture that the pruning capability of

H1 increases with the number of universal quantifiers in the security property. Note

that our test cases are not biased on the security property. In out of nine test cases, only

two test cases specify more than one universal quantification in the security property.

This shows that the test cases are devised without keeping in mind the specific features

that enhance the performance of the heuristics.

For heuristic H2 we think that it yields better efficiency if security property spec-

ifies the symmetric keys as in the case of ISO example illustrated in § 3.3.2. Again,

note that the security protocols and their properties to be verified are chosen irrespec-

tive of the features required by the heuristics to perform strongly. We have conducted

only two experiments where security property specifies symmetric key.

Finally, we would like to add that if the protocol is attack free, re-ordering capa-

bility has no role to play. In such cases, our heuristics have pruning capability that can

contribute towards efficient exploration of the state space. Further note that we have

included a substantial number of such experiments where protocol enjoys the prop-

erty. More precisely, there are twelve experiments out of thirty that resulted into the

outcome ”no attack” for the protocol under specified property.
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Chapter 6

Summary and Future Directions

6.1 Published Works

The heuristic H1 was first time presented in [73]. The paper proposed the idea of using

heuristics for security protocol verification and contained the definition of H1 along

with proof of its correctness. Our paper [72] presented formal verification of a feder-

ated identity management protocol using ASPASyA. This thesis takes a few examples

from [72], the definition of H1 from [73], and the proof for the correctness of H1 from

[73]. The thesis further extends the works presented in [72] and [73] by implementing

H1, defining two new heuristics, implementing H2 and H3, and performing an analysis

of the experimental results.

6.2 Summary

The idea of incorporating intelligent search strategies in model checking to increase

efficiency is not novel. Model checking with heuristic search strategies is commonly

known as directed model checking [54] and a few significant works employing di-

rected model checking are [40, 46, 39, 53]. Surprisingly, though directed model
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checking has found its way in general model checkers, its feasibility for security

protocol verification has not been investigated vigorously. To the best of our knowl-

edge, the only work that mentions the use of heuristics in security protocol verification

is [34, 11].

In this context, we studied some heuristics tailored for security protocol verifica-

tion. The study was carried out using the formalism given in [43], which comprises

of a process calculus to encode protocols, a logic to define security properties, and a

tool called ASPASyA. We have defined three heuristics that are property-dependent

as they direct the search towards the states that violate the security property; more pre-

cisely, they are property-specific as they rely on the property to be checked to weight

the states. An additional feature of our heuristics is pruning, namely the states that

cannot lead to an attack are curtailed. The heuristics therefore have a dual role to play

(i) to explore the states according to their likeliness of leading to an attack and (ii)

pruning the states that have no chance of leading to an attack. We consider our DMC

approach to be different from others as (i) we use heuristic functions that are evalua-

tion based in contrast to other works such as [40, 46, 53] where an estimation based

function is used (ii) only a part of the state space is explored by means of directed

search.

The first heuristic (called H1) exploits security formulae and weights join transi-

tions. Each context is heuristically evaluated by analysing its principal instances and

the way they are quantified in security formulae. A principal that is universally quanti-

fied in the security formula but is absent from a context suggest a possible violation of

the security property. The second heuristic weights states by looking at open variables

in the security formula. The states that violate the assignments of open variables (as

specified in security formula) are explored before the others. The third heuristic H3 is

composite i.e., it can rank a state either with H1 or H2 whichever is appropriate for the

state in question.
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The heuristics are incorporated into the symbolic model checker ASPASyA yield-

ing a new tool H -ASPASyA. A number of protocols have been tested with H -

ASPASyA, with each protocol tested with H1, H2, and H3 to analyse the respective

efficiency of each heuristic. The overall results are encouraging and demonstrate ef-

fectiveness of our approach. In some cases the heuristics explore only a fraction of

the state space to discover attacks. Although, all three heuristics contribute to effi-

ciency, generally H3 outperforms the other two heuristics. Along with contributing to

efficiency, heuristics are able to successfully verify a few protocols that could not be

verified with conventional model checking approach due to state space explosion.

Heuristic H1 has been proved correct, namely pruned parts of the state space are

free of attacks. For H2 and H3 there are no such formal results but experiments suggest

their correctness as H -ASPASyA (with H2 and H3) reports all those attacks that were

initially exposed by ASPASyA.

6.3 Future Directions

The model checking algorithm for H -ASPASyA is a hybrid of directed and conven-

tional model checking. More precisely, our heuristics are applied only in an initial

phase of the verification where the contexts containing the instances of participants

are formed. In this phase, the contexts are cut and ordered according to our heuristics

and then, in a second phase, they are model-checked without further intelligent search.

This hints that further improvements could be obtained by exploiting more heuristics.

For instance, it would be straightforward to define a heuristic for communication tran-

sitions working on the idea of H2. Further, one could also define general heuristics

about the choice of messages the attacker sends to the protocol so to further limit the

size of the state space.

Although our heuristics are tailored for the framework introduced in [43], they
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can be easily adapted to other security verification frameworks. Since every model

checking framework has a notion of security property similar to H -ASPASyA there-

fore they can use our idea of heuristics to benefit from the directed model checking

approach.

We also plan to compare H -ASPASyA with other state-of-the-art model checkers.

Note that typically the efficiency of model checkers is not compared quantitatively

(i.e., on the basis of time or space) such as [12, 53]. The comparison with other tools

is either done on the basis of model checking approach or on the restrictions on the

execution model of the protocol. A quantitative comparison as noticed in [33] is hard

to perform due to a number of reasons. Mainly, the infinite state spaces are differently

dealt with by each tool; more precisely, each tool imposes some kind of restrictions

on the behaviours of the protocol explored. These restrictions determine the size of

the state space to be explored. Thus each tool essentially explores a few possible

behaviours and gives its results according to those behaviours. This makes it difficult

to compare two different tools. It is suggested in [34] to compare the tools by first

generating the uniform state spaces for each tool and then testing the protocols on

these comparable state spaces to see the relative efficiency of the tools. This demands

ample amount of time as it requires a protocol to be modelled in different formalisms,

determining the comparable state spaces in different tools, and expert knowledge of

tools under the analysis. Due to shortage of time, quantitative comparison of H -

ASPASyA with other tools has not been performed and remains in the scope of future

work.

83



Appendix A

Security Protocols

1. NS, Needham Schroeder Public Key Protocol [25], [61]

Formalized Protocol

A : (x) [out({(A,na)}x+).in({(na,?y)}A−).out({y}x+)]

B : () [in({(?z,?u)}B−).out({(u,nb)}z+).in({nb}B−)]

Security Property

φNS = (∀i : B. (κBnbi =⇒ zi = I0)∨

(∃ j : A. zi = A j =⇒ x j = Bi))

2. WMF, Wide Mouthed Frog Protocol [25]

Formalized Protocol

A : (x,s) [out((A,{na,(x,kab)}s))]

S : (u,a,v,b) [in((u,{(?t,(v,?r))}a)).out({(ns,(u,r))}b)]

B : (s) [in({(?t,(?z,?r))}s)]
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Security Property

(∀ j : B. ∃l : S. ∃i : A.

((vl = B j∧ul = Ai∧ xi = B j) =⇒ (tl = nai∧ t j = nsl ∧ r j = kabi)))

3. KSL, Kehn Schönwälder Langendörfer Protocol [51]

Formalised protocol

A : (b,sk) [out(na,A).in(({((na,b),?r)}sk,?tkb),?bn),{na}r)).out({bn}r)]

B : (sk) [in((?cn,?u)).out((((cn,u),nb),B)).in(({((nb,u),?r)}sk,?tka)).

out((((tka,{((nt,u),r)}kbb),nc),{cn}r)).in({nc}r)]

S : (a,ak,b,bk) [in((((?cna,a),?cnb),b)).out(({((cnb,a),kab)}bk,{((cna,b),kab)}ak))]

Security Property

φksl = (∀l : B. ∃ i : S.∃ j : A.

(bi = Bl ∧b j = Bl ∧ai = A j) =⇒ cnl = na j

∧ ul = A j∧ bn j = ncl ∧ r j = kabi

∧ rl = kabi∧ cnai = na j∧ cnbi = nbl)

4. ISO, ISO/IEC Protocol [50]

Formalized Protocol

A : (b,sk) [in((?r,?td)).out((na,{((r,b),nc)}sk))]

B : (sk) [out((nb,nd)).in((?ta,{((nb,B),?tc)}sk))]

Security Property

∀i : A. ∃ j : B. bi = B j =⇒ ri = nb j∧ tc j = nci
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5. Carlsen, Carlsen Protocol [26]

Formalized protocol

A : (b,sk) [out((A,na)).in((({((na,b),?r)}sk,{na}r),?tb)).out({tb}r)]

B : (sk) [in((?a,?ta)).out((((a, ta),B),nb)).in(({((?r,nb),a)}sk,?c)).

out(((c,{ta}r),nc)).in({nb}r)]

S : (u,uk,v,vk) [in((((u,?tu),v),?tv)).out(({((kab, tv),u)}vk,{((tu,v),kab)}uk))]

Security Property

∀i : A. ∃ j : B.∃l : S. ul = Ai∧ vl = B j∧bi = B j =⇒

a j = Ai∧ ri = r j∧ r j = kabl ∧ tbi = nb j∧ ta j = nai∧ tul = nai∧ tvl = nb j

6. DS, Denning-Sacco Protocol [35]

Formalized protocol

S : ( ) [in((?x,?y)).out(({(x,x+)}S−,{(y,y+)}S−))]

A : (x,y) [out((A,y)).in(({(A,A+)}x+,{(y,?z)}x+)).

out((({(A,A+)}x−,{(y,z)}x−),{k}A−}z))]

B : (x) [in((({(?w,?y)}x+,(B,B
+)x+),{{?r}y}B−

))]

Security Property

∀i : B. κ 6Bri∧∀ j : B. ∃k : A. y j = Ak =⇒ yk = B j
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7. BY, Beller-Yacobi Protocol [13]

Formalized protocol

A : (b,s) [out((A,A+)).in({?r}A−).out({na}r).

in({(((b,?bk),{(b,bk)}s),{na}b−}r)]

B : (s) [in((?a,?ak)).out({kab}ak).in({?ta}kab).

out({(((B,B+),{(B,B+)}s),{ta}B−)}kab)];

Security Property

∀i : B. (κB kabi =⇒ ai = I0)∨ (∃ j : A.b j = Bi =⇒

r j = kabi∧bk j = B+
i ∧ tai = na j∧κ 6Bkabi))

∨(∀ l : A.(κBnal =⇒ bl = I0))

8. BKE, Bilateral Key Exchange Protocol [29]

Formalized protocol

A : () [in((?b,{(?tb,b)}A−)).out({(((tb,na),A),kab)}b+).in({na}r)]

B : (a) [out((B,{(nb,B)}a+)).in({(((nb,?ta),a),?r)}B−).out({ta}r)];

Security Property

∀i : B.(∃ j : A. ai = A j =⇒ tb j = nbi∧ tai = na j

∧ri = kab j∧b j = Bi∧κ 6Bri)

∨(ai = I0)
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9. Yahalom, Yahalom Protocol [25]

Formalized protocol

A : (b,sk) [out((A,na)).in(({(((b,?r),na),?tb)}sk,?c)).out((c,{tb}r))]

B : (sk) [in((?a,?ta)).out((B,{((a, ta),nb)}sk)).in(({(a,?r)}sk,{nb}r))]

S : (u,uk,v,vk) [in((u,{((v,?tv),?tu)}uk)).out(({(((u,kab), tv), tu)}vk,{(v,kab)}uk))];

Security Property

∀ j : A. ∃l : B.∃i : S. ui = Bl ∧ vi = A j∧b j = Bl =⇒

r j = rl ∧ rl = kabi∧ tal = tvi∧ tvi = na j∧ tui = tb j∧ tb j = nbl
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[51] A. Kehne, J. Schönwälder, and H. Langendörfer. A Nonce-based Protocol for

Multiple Authentications. SIGOPS Operating System Review, 26, October 1992.

95
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