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Abstract: We propose an optimization approach to weak approximation of Lévy-driven stochastic differential equations.
We employ a mathematical programming framework to obtain numerically upper and lower bound estimates of the target
expectation, where the optimization procedure ends up with a polynomial programming problem. An advantage of our
approach is that all we need is a closed form of the Lévy measure, not the exact simulation knowledge of the incre-
ments or of a shot noise representation for the time discretization approximation. We present numerical examples of the
computation of the moments, as well as the European call option premium, of the Doléans-Dade exponential model.
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1. INTRODUCTION

Stochastic differential equations have long been used
to build realistic models in economics, finance, biology,
the social sciences, chemistry, physics and other fields. In
most active fields of application, dynamics with possible
sudden shift have become more and more important. To
model such shifts, one would like to employ stochastic
differential equations where the underlying randomness
contains jumps. For this purpose, the well-known Wiener
process (diffusion) is not sufficient since its sample paths
are almost surely continuous. On the other hand, Lévy-
driven stochastic differential equations, which contain
diffusion as a special case, can formulate stochastic be-
havior with jumps. Regardless of its practical impor-
tance, however, the theory and the computational tech-
niques of the Lévy processes have not been developed
thoroughly as in the diffusion case. As nice references on
the subject, we refer to Applebaum [1] and Bass [2].

From a practical point of view, the sample paths ap-
proximation of stochastic differential equations has been
a central issue for the purpose of numerical evaluation
and simulation on the computer. There are two notions
of the approximation; strong and weak approximations.
The strong approximation schemes provide pathwise ap-
proximations which can be employed in scenario analy-
sis, filtering or hedge simulation. For applications such
as derivative pricing, the computation of moments or ex-
pected utilities, the so-called weak approximations are
sufficient, that is, we need to estimate the expected value
of a function. Other applications of the weak approxi-
mation include the computation of functional integrals,
invariant measures, and Lyapunov exponents.

The theoretical properties of time discretization
schemes are mostly studied for the diffusion case. See
[10,12,13,16,17] for detailed investigation. For the
Lévy-driven stochastic differential equations, the weak
rate of convergence of the Euler scheme is studied, for
example, [7, 13, 16,21]. The jump-adapted discretization

is investigated, for example, in [6,9, 17], while the jump
adaptation is only valid in the compound Poisson frame-
work.

The main purpose of this paper is to propose a new
approach to weak approximation of Lévy-driven stochas-
tic differential equations. Unlike Monte Carlo simula-
tion with the time discretization approximation of sample
paths, we employ a mathematical programming frame-
work to obtain numerically upper and lower bounds of
the target expectation, where the optimization procedure
ends up with a polynomial programming. To this end,
we follow the idea in [4, 8, 15,23]. Note that these ex-
isting results have dealt only with the pure diffusion case
(i.e., without jump component) for which standard Monte
Carlo methods are sufficient. In this sense, it should be
emphasized that our result is not a trivial extension. The
main drawback is the complexity of the Ito formula for
general Lévy processes. As such, we need to carefully
examine whether or not the resulting optimization prob-
lems are practically solvable. Fortunately, as we show in
the following sections, our approach covers various prac-
tically important Lévy processes.

The rest of this paper is organized as follows. Section
2 gives mathematical definition of Lévy-driven stochas-
tic differential equations and weak approximation prob-
lem. Section 3 introduces and studies our optimization
approach to the weak approximation with a numerical ex-
ample. In Section 4, we apply the proposed method to
the barrier option pricing problem. applies the proposed
method to discusses a way to improve the approximation
accuracy. Finally, Section 5 concludes this paper.

2. PROBLEM SETTING

Let us begin this section with general notations which
will be used throughout the text. For k € N, d; indicates
the partial derivative with respect to k-th argument. We
denote by CK1#2 the class of continuous functions with
continuous differentiability of ki-time for the first argu-



Fig. 2 Typical sample path of Lévy driven stochastic pro-
cess

ment and of k,-time for the second argument.
Let Xy be given in R and let 7 > 0. Consider a one-
dimensional Lévy-driven stochastic differential equation

dXt =day (Xt)dt+a1 (Xt)det (l)
+ [ ) (w-v)dzdr), refo.T),
Ro

where {W; : # > 0} is a standard Brownian motion and
where U is a Poisson random measure on Ry whose com-
pensator is given by the Lévy measure v. In order for the
solution of (1) to be well defined, we impose the usual
Lipschitz conditions and linear growth conditions on ay,
a; and b.

Typical sample paths of Lévy process (jump compo-
nent) and Lévy-driven stochastic system are illustrated
Figs. 1 and 2, respectively. For an example to provide a
concrete image of Lévy processes, see the Doléans-Dade
exponential in Appendix.

Our interest throughout this study is in approximating
the expectation

E[V(Xr)], 2)

for V :[0,400) x R — R such that E[|V (X7)|] < +eo. This
class of V covers most of prictically interesting case. We

here show 2 direct application of this problem. If we take

0, x<
v@)::{l o

for 1 > 0, then (2) is the tail probability of X7:
EIV (X7)] = PlX; > 1.

If we take

V(x) = (x—K)+ :=max{x—K,0}

for K > 0, then (2) is the European call option premium
with the strike price K at period T'.

3. MAIN RESULT
3.1 Lévy-Ito formula

We are now in a position to introduce our optimiza-
tion approach to the weak approximation. Let 2 (C R)
be a support of {X; : ¢ € [0,7]} defined in (1). For
feCh2([0,T] x 27;R), the Tto formula yields
df(t,X;) =< f(t,X)dt + 02 f (1, X )ar (X, )dW,

+/R B.f (t.X_) (1 —v)(dzdi), as.,
0
where the infinitesimal generator is given by

ﬂff(tvx) ZZ(?]f(l‘,)C) +82f(tax)a0(x)
3R (3

+ [ (Bef(0.x) = 0b(x.2) v(d),
and for z € Ry,

B.f(t,x) = f(t,x+zb(x)) — f(t,x).

We can then derive the corresponding Dynkin formula,

for T >0,
{/ A f(t Xt)dt]

Therefore, as soon as one finds an f € C'2([0,T] x
Z;R) such that &7 f(¢,x) <0 for (¢,x) € [0,T] x £, and
that f(T,x) > V(x) forx € 2, we get

E[f(T,Xr)] - £(0,X0) =

EV(Xr)] <E[f(T,Xr)] < f(0,Xo0).

Clearly, f(0,Xp) serves as an upper bound of E[V (Xr)].
To minimize the upper bound f(0,Xp), we now turn to
the optimization problem

min  f(0,Xp)

st. f(T,x)>V(x),xe 2,
o f(1,%) <0, (1,%) € [0,T] x 2,
fec‘z([()T}xgz”R)



3.2 Main result

This optimization problem is very difficult to deal with
since the class definitions of the functions f and V are
too broad. To ease the above optimization problem, we
restrict the class of the function f to be a polynomial both
in ¢ and x, that is, in the form

flt,x) = ) Chy J 142, 3)
{0<k; <K1,0<ko<Kp}

for some natural numbers K; and K, and for a sequence
{¢k, jo, } 1y <K, ko <K, Of constants. For convenience in nota-
tion, we henceforth denote by C, the class of polynomial
functions in the form (3). We also need to set V to be a
piecewise polynomial both in ¢ and x. Moreover, we as-
sume that both ag and a; are polynomials. We are then
instead to solve the following optimization problem

min  f(0,Xo)

st.  f(T,x)>V(x), xe Z, )
o f(t,x) <0, (¢,x) €[0,T] x 2,
fec,.

For the purpose of comparison, suppose that there is
no jump in (1), that is, » = 0 as in [20]. This assumption
clearly makes 7 f a polynomial, and consequently (4)
is a polynomial optimization problem. This is the main
reason that the pure diffusion case is easier to deal with
in this framework. In general, polynomial optimization
problems are still NP hard. However, if the degrees of f
are fixed, sums of squares relaxation enables us to solve
the problem efficiently. For details, we refer to Parrilo
[18]. On the other hand, this technique is not directly
applicable to the model with general stochastic jumps.
This is because <7 f is not necessarily a polynomial due
to the additional integral term.

To make this problem numerically tractable, we de-
compose the function b as follows:

Assumption 1: Functions ag, a; and b are polynomi-
als and Lévy measure satisfies

/Iﬁv@@<+w,kzznw&.
Ry

O

The next assumption is on the existence of the mo-
ments.

Assumption 2: For any ¢ € [0,T] there exist integer-
order moments of X;:

EX/| <o, k=1,...,Ks.

O

Theorem 1: Under Assumptions 1 and 2, for any

polynomial f(¢,x), < f(¢,x) is also a polynomial whose
coefficients are affine with respect to those of f.

Proof: A simple algebra yields
o f(t,x) =i f(t,x) + A f(t,x)ao(t,x)
T

k
+ Z Cly ot Ix
{0<k;<K1,2<k<K»}
k=2
k ko —k
Z szkx b](l‘,x) 2 Mkz—k
k=0

where
M, = / 2vidz), 1=2,...,Ks.
JRg

This completes the proof. g

Clearly, the optimization (4) is now a polynomial pro-
gramming problem. To be more precise, this problem
is numerically tractable for any piecewise polynomial V.
Finally, to obtain a lower bound for E[V (Xr)], we are to
find a g € C), via the polynomial programming

max 2(0.)

st. g(Tx)<V(x),xe Z, )
Ag(t,x) >0, (t,x) € [0, T x X,
g€Cy.

Notice that our optimization approach does not require
the sample paths simulation at all for the computation of
the expectation E[V (Xr)]. It is a great advantage of our
approach that all we need is the Lévy measure in closed
form, not the exact knowledge of the increments or of a
shot noise representation for sample paths simulation for
the weak approximation with the sample paths discretiza-
tion.

Remark 1: The weak approximation problem is well-
posed whenever E[V (X;)] is finite. On the contrary, most
of existig numerical approaches listed above impose As-
sumption 2. However, this assumption rules out some
interesting processes. For example, the stable subordina-

tor
t

X,:// zdu(dt,dz)
0 JR,

with

1
V(dZ) = 217

Ta dZ, z€E R+, (6)

and o € (0,1), or even Ornstein-Uhlenbeck process
driven by the stable subordinator

Xy =—-AX+ | zdu(dt,dz), A >0
Ry

have no (finite) interger order moments. In addition, even
in the case where these moments exist, it is not necessar-
ily trivial to prove it especially in the case of stochastic
differential equations with jumps. Exponential temper-
ing technique, proposed by the authors in the preceding
research [11] enables to circumvent this issue, along with
some accuracy improvement. O



3.3 Numerical example (Moment estimation)

In this section, we test numerically our method on
a Doléans-Dade stochastic exponential without the dif-
fusion component, that is, a;(t,x) = 0. We here con-
sider the polynomial moment of those processes, which
can be derived in closed form. By obtaining tight upper
and lower bounds for those moments, we illustrate that
our optimization approach is able to capture the distri-
butional transition of Lévy-driven stochastic differential
equations.

Set Xo > 0, ag(t,x) = a;(t,x) =0, by (t,x) = x, ba(z) =
z, and

—bz
v(dz) = al

dz, z>0,
b4

for a > 0 and b > 0, that is a gamma Lévy measure. In
this setting, (1) reduces to a Doléans-Dade stochastic ex-
ponential driven by gamma process

dX, =X, - /R z2(u—v)(dz,dt), Xo>0, (7)
0

which is a martingale with respect to its natural filtration.
It is clear that E[X7] = X,. Moreover, we have E[X?] =

oneb%t, since by the Ito-Wiener isometry,
T
E [X7] :X§+/ 2v(dz)E [/ thdt}
R+ 0
_x2+ 2 [ Ex2)ar
=Xy + 2 Jo ;| dt,

where the interchange of the integrals holds by the Fubini
theorem with the almost sure nonnegativity of X,z.
Here, we test our optimization approach on E[X;] = Xp

and on E[X?] = Xgeb%t. Noting that 2" = R and that

k—1)!
/R Zkv(dz)za(bik)forkzz,&...,
N

where we used the formula

/ e idz=(n—1)!, n=12,---.
0

Then, we have for f € C,([0,T] x R_;R),

A f(t,x) = Z ckl’kzkltklflxkz
{1<k1 <K1,0<k<K>}
(kp —k—1)!

k-2

ki ko a

+ Z Chy Jeo ¥ x* Z ko Ck pla—k
{0<k; <K; 2<kr <K, } k=0

Let us consider the p-th moment estimation to compute
E [xﬂ by taking

Vix):=x".

We present numerical results in Table 1. Note that, when
X is unbounded, we must choose K, > p for the es-
timation of the p-th moment because of the constraint
f(T,x) > xP for x € 2. In view of this, we choose the

minimal degree K, = p. We set K; = Kj. In the numer-
ical examples presented hereafter, we utilized MATLAB
SOSTOOLS combined with SeDuMi [19,22], using a
computer with a Pentium 4 3.2GHz processor and 2 GB
memory. It took at most 1 second to obtain a bound. We
can see from Table 1 that even such a low degree polyno-
mial f can achieve the tight upper and lower bounds.

4. APPLICATION TO OPTION PRICING

4.1 Weak approximation formulated by using stop-
ping time

In this section we generalize the procedure in the pre-

vious section to some extent.
First, fix B, > Xy and define sets

Eo:=1[0,T] x[0,B.],
E,:=[0,T] x [U,+),
E.:={T}x[0,B,].

Theorem 2: Let 7 be the (.F);c(o,r)-stopping time
defined by

T:=inf{r >0:X; ¢ Eo} AT,

that is, the first exit time of {X; : ¢ € [0,T]} out of Ej.
Suppose f satisfies

flt,x) >V(t,x), (t,x) € E\ :=E,UE, (8)
A f(t,x) <0, (t,x) € Ep. )
Then,

£(0,X0) > E[V(7,Xs)].
Proof:  Define the exit location measure by

Vo(B) :=P((7,X;) € B), B€ B(E)

and the expected occupation measure up to time 7 by

T
vi(B):=E [ fo X(z,x,)eBdt} , B€ #(Ep).

Then, we derive the so-called basic adjoint equation

E[f(t,X:)] = £(0,Xo) + E UE o f(t,x)vi(dt,dx) | .

Combining this equation with
E[f(7,X:)] =2 E[V(7,X:)],

we obtain the desired inequality. O
This theorem means that we can compute the upper
and lower bounds for

E[V(z,Xq)] (10)

by solving the following optimization problems:

max f(07X0)
st.  f(T,x) >V(t,x), (t,x) € Ej, .
o f(t,x) <0, (t,x) € Ey, (11

f€C,.



Table | Moment transition with Xo = 1 and (a,b) = (0.1,1.0). The numbers in parentheses indicate theoretical value.

I =08 |

t=1.0 t=02

E[X;] || 1.0000000 — 1.0000000 | 1.0000000 — 1.0000000
&) &)

()

1.0000000 — 1.0000000

E[X?] || 1.0832865 — 1.0832889 | 1.1051694 — 1.1051754
(1.1051709)

(1.0832871)

1.1274938 — 1.1275064
(1.1274969)

E[X?] || 1.4922061 — 1.4914382 | 1.6489387 — 1.6484948

1.8252420 — 1.8164289

E[X] || 49367416 — 5.1987506 | 7.3128369 — 7.9377967 | 11.3286418 — 11.3566778

max  g(0,Xop)

s.t.  g(T,x) <V(t,x), (t,x) € Eq, (12)
Ag(t,x) >0, (t,x) € Ep,
g€Cy.

Similarly to the previous section, these problems are
numerically solvable if V(¢,x) defined in E is a piece-
wise polynomial (with respect to ¢ and x).

We here list 2 examples for this problem. If we take

1, inkE,
V(%) ::{ 0. inE,

then (10) is the survival probability of X; in Ejy, i.e., the
probality that X; does not touch the upper boundary E,
until t =7

E[V(T,Xf)] = IP)[XT € Er].
If we take

0, inkE,
Vit,x) ::{t inE,

then (10) gives the average exit time of X; from Ej:

E[V(t,X;)] = E [/ - (dt,dx)} .

u

Another exmaple is illustrated in the next section.
4.2 Numerical example (Barrier option pricing)
In this section, we take

x—K)y, inE
V(t,x):—{( et

Then, (10) gives the European call option premium with
barrier B,, and strike price K at time T

E[V(t,X;)]=E [/ (x—K)4vi(dt,dx)| .

We consider the same stochastic process as the pre-
vious section. Table 2 shows obtained lower and upper
bounds for the barrier options, where B, = 5.

5. CONCLUSION

In this paper, we have developed a new approach to the
weak approximation of Lévy-driven stochastic differen-
tial equations via an optimization problem yielding upper

and lower bounds on the target expectation. The advan-
tage of our approach is that all we need is the Lévy mea-
sure in closed form. We need neither the exact knowl-
edge of the increments nor a shot noise representation
for sample path simulation for the weak approximation
with the sample path discretization. We have already con-
firmed [10] that our method is able to adequately capture
the distributional characteristics of other Lévy processes.
The most important remaining work is the improvement
of the approximation accuracy. Other currently ongoing
work is

« application to calibration in finance,

o construction of (infinite-time/finite-horizon) control
theory for systems described by Lévy driven stochastic
differential equations.
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APPENDIX
A DOLEANS-DADE EXPONENTIAL

It is elementary to yield the canonical form

X, = Xoexp [—t/ zv(dz) (13)
(717+°°)

At "
+/ / In(1+2)u (dzds)] -
Jo J(=1,4)

It follows from (13) that X; > 0, a.s. For the computation
of E[V(Xr)], a standard technique is the Monte Carlo
simulation with the sample generation of the marginal
Xr. To point out some difficulties arising in the approx-
imation of Lévy-driven stochastic differential equations
in a simple setting, we briefly introduce 2 typical proce-
dures.

The Euler-Maruyama scheme does not guarantee the
non-negativity of the sample paths. To illustrate this, let
N e N, let A:=T/N, and consider the equidistant time
discretization approximation of {X; : ¢t € [0,T]}, ending
up with

Xia
Xk—1)A

=14+ W (aA,b) —aA/b,

where {¥(a,b) }ren is a sequence of iid gamma random
variables with the common distribution 4% /T'(a)y*~'e="dy
ony € (0,40c0). With a choice of a, b, and A such that
1 —aA/b <0, the discretized sample paths may drop be-
low zero. Such numerical experiments provide us with a
misleading result of E [X7] < Xp. In view of (13), those
phenomena are inappropriate.

On the other hand, based upon the canonical form (13)
with a series representation due to Bondesson [5], the
sample paths can be simulated as

+o0
—tg + Z In (1 +€rk/a‘/k> %(Tk<t) y
b = b =

t€[0,T],

X = Xoexp

where {T }ren is a sequence of arrival times of a stan-
dard Poisson process, where {V;}ren is a sequence of
iid exponential random variables with unit parameter, and
where {7} }ren is a sequence of iid uniform random vari-
ables on [0,T]. It is obviously expensive to generate the
infinite sum for a single path.



