
Bridging the Gap Between Fair Simulation and Trace
Inclusion !

Yonit Kesten a Nir Piterman b,∗,1 Amir Pnueli b

aDepartment of Communication Systems Engineering, Ben Gurion University,
Beer-Sheva, Israel. Email: ykesten@bgumail.bgu.ac.il

bDepartment of Applied Mathematics and Computer Science, Weizmann Institute of
Science,Rehovot 76100, Israel. Email: firstname.lastname@weizmann.ac.il

Abstract

The paper considers the problem of checking abstraction between two finite-state fair dis-
crete systems (FDS). In automata-theoretic terms this is trace inclusion between two nonde-
terministic Streett automata. We propose to reduce this problem to an algorithm for check-
ing fair simulation between two generalized Büchi automata. For solving this question we
present a new triply nested µ-calculus formula which can be implemented by symbolic
methods.
We then show that every trace inclusion of this type can be solved by fair simulation, pro-

vided we augment the concrete system (the contained automaton) by an appropriate ‘non-
constraining’ automaton. This establishes that fair simulation offers a complete method
for checking trace inclusion for finite-state systems. We illustrate the feasibility of the ap-
proach by algorithmically checking abstraction between finite state systems whose abstrac-
tion could only be verified by deductive methods up to now.

Key words: Streett automata, trace inclusion, fair simulation

1 Introduction

A frequently occurring problem in verification of reactive systems is the problem of
abstraction (symmetrically refinement) in which we are given a concrete reactive
! This research was supported in part by the Israel Science Foundation (grant no. 106/02-1)
and the John von-Neumann Minerva center for Verification of Reactive Systems.
∗ To whom correspondence should be addressed.
1 Current address: School of Computer and Communication Sciences, Ecole Polytech-
nique Federal de Lausanne, Switzerland. Email: firstname.lastname@epfl.ch

Preprint submitted to Elsevier Science 1 March 2005



system C and an abstract reactive system A and are asked to check whether A
abstracts C, denoted C " A. In the linear-semantics framework this question calls
for checking whether any observation of C is also an observation of A. For the
case that both C and A are finite-state systems with weak and strong fairness this
problem can be reduced to the problem of language inclusion between two Streett
automata (e.g., [38]).

In theory, this problem has an exponential-time algorithmic solution based on the
complementation of the automaton representing the abstract system [33]. However,
the complexity of this algorithm makes its application prohibitively expensive. For
example, our own interest in the finite-state abstraction problem stems from appli-
cations of the verification method of network invariants [17,20,40]. In a typical ap-
plication of this method, we are asked to verify the abstraction P1 ‖P2 ‖P3 ‖P4 "
P5 ‖P6 ‖P7, claiming that 3 parallel copies of the dining philosophers process ab-
stract 4 parallel copies of the same process. The system on the right has about 1800
states. Obviously, to complement a Streett automaton of 1800 states is hopelessly
expensive.

A partial but more effective solution to the problem of checking abstraction be-
tween systems (trace inclusion between automata) is provided by the notion of
simulation. Introduced first by Milner [30], we say that system A simulates system
C, denoted C $ A, if there exists a simulation relation R between the states of C
and the states of A. It is required that if 〈s, t〉 ∈ R and system C can move from
state s to state s′, then system A can move from t to some t′ such that 〈s′, t′〉 ∈ R.
Additional requirements on R are that if 〈s, t〉 ∈ R then s and t agree on the values
of their observables, and for every s initial in C there exists t initial in A such that
〈s, t〉 ∈ R. It is obvious that C $ A is a sufficient condition for C " A. For
finite-state systems, we can check C $ A in time proportional to (|ΣC | · |ΣA |)2

where ΣC and ΣA are the sets of states of A and C respectively [3,12].

While being a sufficient condition, simulation is definitely not a necessary condition
for abstraction. This is illustrated by the two systems presented in Fig. 1

a, 0

c, 1

b, 1

e, 3

d, 2

A, 0

E, 3

D, 2

B, 1

EARLY LATE

Fig. 1. Systems EARLY and LATE

The labels in these two systems consist of a local state name (a–e, A–E) and an
observable value. Clearly these two systems are (observation)-equivalent because
they each have the two possible observations 012ω + 013ω. Thus, each of them
abstracts the other. However, when we examine their simulation relation, we find
that EARLY $ LATE but LATE ($ EARLY. This example illustrates that, in some

2



cases we can use simulation in order to establish abstraction (trace inclusion) but
this method is not complete.

The above discussion only covered the case that C and A did not have any fair-
ness constraints. There were many suggestions about how to enhance the notion of
simulation in order to account for fairness [25,10,13,14]. The one we found most
useful for our purposes is the definition of fair simulation from [13]. Henzinger et
al. proposed a game-based view of simulation. As in the unfair case, the definition
assumes an underlying simulation relation R which implies equality of the observ-
ables. However, in the presence of fairness, it is not sufficient to guarantee that
every step of the concrete system can be matched by an abstract step with corre-
sponding observables. Here we require that the abstract system has a strategy such
that any joint run of the two systems, where the abstract player follows this strategy
either satisfies the fairness requirements of the abstract system or fails to satisfy the
fairness requirements of the concrete system. This guarantees that every concrete
(fair) observation has a corresponding abstract observation with matching values of
the observables.

In order to determine whether one system fairly simulates another (solve fair simu-
lation) we have to solve games [13]. When the two systems in question are reactive
systems with strong fairness (Streett), the winning condition of the resulting game
is an implication between two Streett conditions (Streett-Streett-games). In [13] the
solution of Streett-Streett-games is reduced to the solution of Streett games (i.e.,
a game where the winning condition is a Streett condition). In [23] an algorithm
for solving Streett games is presented. The time complexity of this approach is
O((|Σ

A
| · |Σ

C
| · (3m + n))2m+n · (2m + n)!) where n andm denote the number of

Streett pairs of C and A respectively. Clearly, this complexity is too high. It is also
not clear whether this algorithm can be implemented symbolically.

In [6], a solution for games with winning condition expressed as a general LTL
formula is presented. The algorithm in [6] constructs a deterministic parity word
automaton for the winning condition. The automaton is then converted into a µ-
calculus formula that evaluates the set of winning states for the relevant player.

In [9], Emerson and Lei show that a µ-calculus formula is in fact a recipe for sym-
bolic model checking 2 . The main factor in the complexity of µ-calculus model
checking is the alternation depth of the formula. The symbolic algorithm for model
checking a µ-calculus formula of alternation depth k takes time proportional to
(mn)k wherem is the size of the formula and n is the size of the model [9].

In Streett-Streett-games the winning condition is an implication between two Streett
conditions. A deterministic Streett automaton for this winning condition has 3m · n

2 There are more efficient algorithms for µ-calculus model checking [26,34,15]. The first
two require space exponential in the alternation depth of the formula. Jurdzinski’s algo-
rithm, which requires linear space, cannot be implemented symbolically.

3



states and 2m + n pairs (where n and m denote the number of Streett pairs of C
and A respectively). A deterministic parity automaton for the same condition has
3m · n · (2m + n)! states and index 4m + 2n. The µ-calculus formula constructed
by [6] is of alternation depth 4m+2n and proportional in size to 3m ·n · (2m+n)!.
Hence, in this case, there is no advantage in using [6]. Recently, it was shown
that deciding Streett-Street games is PSPACE-complete [2], so we cannot hope for
much lower complexity.

In the context of fair simulation, Streett systems cannot be reduced to simpler sys-
tems [22]. That is, in order to solve the question of fair simulation between Streett
systems we have to solve Streett-Streett-games in their full generality. However,
we are only interested in fair simulation as a precondition for trace inclusion. In
the context of trace inclusion we can reduce the problem of two reactive systems
with strong fairness to an equivalent problem with weak fairness. Formally, for the
reactive systems C and A with Streett fairness requirements, we construct CB and
A

B with generalized Büchi requirements, such that C " A iff C
B " A

B . Solving
fair simulation between C

B and A
B is simpler. The winning condition of the re-

sulting game is an implication between two generalized Büchi conditions (denoted
generalized Streett[1]).

In the case of generalized Streett[1] games, a deterministic parity automaton for
the winning condition has |JC | · |JA| states and index 3, where |JC | and |JA| denote
the number of Büchi sets in the fairness of CB and A

B respectively. The µ-calculus
formula of [6] is proportional to 3|JC | · |JA| and has alternation depth 3.

We give an alternative µ-calculus formula that solves generalized Streett[1] games.
Our formula is also of alternation depth 3 but its length is proportional to 2|JC |
· |JA| and it is simpler than that of [6]. Obviously, our algorithm is tailored for
the case of generalized-Streett[1] games while [6] give a generic solution for any
LTL game 3 . The time complexity of solving fair simulation between two reactive
systems after converting them to systems with generalized Büchi fairness require-
ments is O((|ΣA| · |ΣC | · 2m+n · (|JA| + |JC | + m + n))3) where n and m denote
the number of Streett pairs of C and A respectively.

Even if we succeed to present a complexity-acceptable algorithm for checking fair
simulation between generalized-Büchi systems, there is still a major drawback to
this approach which is its incompleteness. As shown by the example of Fig. 1, there
are (trivially simple) systems C and A such that C " A but this abstraction cannot
be proven using fair simulation. Fortunately, we are not the first to be concerned by
the incompleteness of simulation as a method for proving abstraction. In the con-
text of infinite-state system verification, Abadi and Lamport studied the method of

3 One may ask why not take one step further and convert the original reactive systems to
Büchi systems. In this case, the induced game is a parity[3] game and there is a simple
algorithm for solving it. Although both algorithms work in cubic time, the latter performed
much worse than the one described above. We cannot explain this phenomenon.

4



simulation using an abstraction mapping [1]. It is not difficult to see that this no-
tion of simulation implies fair simulation as defined in [13]. However, [1] did not
stop there but proceeded to show that if we are allowed to add to the concrete sys-
tem auxiliary history and prophecy variables, then the simulation method becomes
complete. That is, with appropriate augmentation by auxiliary variables, every ab-
straction relation can be proven using fair simulation. Intuitively, the prophecy and
history variables help reduce the nondeterminism of the concrete system, enabling
to establish simulation between the two systems. For finite state fair discrete sys-
tems (FDS) we show that there always exists a non-constraining FDS such that the
synchronous composition of this FDS with the concrete system is fairly-simulated
by the abstract system. It is well known that for every LTL formula [31] one can
construct a non-constraining FDS such that a state of the FDS contains information
regarding the current validity of every one of the subformulas of the formula [37].
We call such an FDS a temporal tester. We use such a temporal tester to augment
LATE in order to establish LATE " EARLY.

The application of Abadi-Lamport, being deductive in nature, requires the users
to decide on the appropriate history and prophecy variables, and then design their
abstraction mapping which makes use of these auxiliary variables. Implementing
these ideas in the finite-state (and therefore algorithmic) world, we expect the strat-
egy (corresponding to the abstraction mapping) to be computed fully automatically.
Thus, in our implementation, the user is still expected to find the non-constraining
FDS, but following that, the rest of the process is automatic. For example, wishing
to apply our algorithm to check the abstraction LATE " EARLY, the user has to
specify the augmentation of the concrete system by a temporal tester for the LTL
formula (x = 2), i.e. a non-constraining FDS that anticipates whether a state
marked by 2 is eventually reached or not. Using this augmentation, the algorithm
manages to prove that the augmented system (LATE +tester) is fairly simulated
(hence abstracted) by EARLY.

Our interest in abstraction stems from its application in the method of network in-
variants [17,20,40]. Given a parameterized system S(n): P1 ‖ · · · ‖Pn and a prop-
erty p, uniform verification attempts to verify that S(n) |= p for every value of
the parameter n. The main idea of the network invariants method is to abstract
n − 1 of the processes, say the composition P2 ‖ · · · ‖Pn, into a single finite-state
process I, independent of n. We refer to I as the network invariant. If possible,
this reduces the uniform verification problem into the fixed size verification prob-
lem (P1 ‖ I) |= p. In order to show that I is a correct abstraction of any number
of processes (assuming that P2, . . . , Pn are all identical), it is sufficient to apply an
inductive argument, using P " I as the induction base and (P ‖ I) " I as the
inductive step.

As mentioned, the problem of abstraction is computationally intractable. Conse-
quently, in the past we have proved refinement by establishing a step-by-step sim-
ulation relation between the concrete computation and an abstract one, following

5



the abstraction mappingmethod of Abadi and Lamport [1]. Using abstraction map-
ping, we have to supply the network invariant itself (abstract system), and a map-
ping from the concrete system to the abstract one (not to mention the possible
need of augmenting the concrete system). In many cases, we can form a trivial
network invariant by combining a small number of the processes themselves. In
these cases, providing the abstraction mapping can be extremely complicated. On
the other hand, usually, there exists a network invariant that requires only a sim-
ple abstraction mapping. However, the divination of such a network invariant can
be extremely complicated. Either way, one of the stages (if not both) of finding
and proving a network invariant deductively, can be very complicated. It is our
hope, that replacing the abstraction mapping technique by the automatic proof of
fair-simulation, will allow us to use the trivial network invariants and the laborious
work of finding the abstraction mapping will not be required.

In summary, the contributions of this paper are:

(1) Suggesting the usage of fair simulation as a precondition for abstraction be-
tween two reactive systems (Streett automata).

(2) Observing that in the context of fair simulation for checking abstraction we
can simplify the game acceptance condition from implication between two
Streett conditions to implication between two generalized Büchi conditions.

(3) Providing a more efficient µ-calculus formula and its implementation by sym-
bolic model-checking tools for solving the fair simulation between two gen-
eralized Büchi systems.

(4) Proving the completeness of the fair-simulation method to establish abstrac-
tion between two systems, at the price of augmenting the concrete system by
a non-constraining automaton.

A preliminary version of this paper appeared in [16].

2 The Computational Model

As a computational model, we take the model of fair discrete system (FDS) [18].
An FDS D : 〈V , O, Θ, ρ, J , C〉 consists of the following components.

• V = {u1, ..., un} : A finite set of typed state variables over finite domains. We
define a state s to be a type-consistent interpretation of V , assigning to each vari-
able u ∈ V a value s[u] in its domain. We denote by Σ the set of all states. In this
paper we assume that Σ is finite. An assertion over V is a Boolean combination
of comparisons u = a or u = v where u, v ∈ V range over the same domain and
a is a value in the domain of u. A state s satisfies an assertion ϕ, denoted s |= ϕ,
if ϕ evaluates to true by assigning s[u] to every one of the variables appearing
in ϕ. We say that s is a ϕ-state if s |= ϕ.

6



• O ⊆ V : A subset of observable variables. These are the variables which can be
externally observed.

• Θ : The initial condition. This is an assertion characterizing all the initial states
of the FDS. A state is called initial if it satisfies Θ.

• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ
to its D-successor s′ ∈ Σ by referring to both unprimed and primed versions
of the state variables. The transition relation ρ(V, V ′) identifies state s′ as a D-
successor of state s if (s, s′) |= ρ(V, V ′), where (s, s′) is the joint interpretation
which interprets x ∈ V as s[x], and x′ as s′[x].

• J = {J1, . . . , Jk} : A set of assertions expressing the justice requirements (weak
fairness). Intentionally, the justice requirement J ∈ J stipulates that every com-
putation contains infinitely many J-states (states satisfying J).

• C = {〈p1, q1〉, . . . 〈pn, qn〉} : A set of assertions expressing the compassion re-
quirements (strong fairness). Intentionally, the compassion requirement 〈p, q〉 ∈
C stipulates that every computation containing infinitely many p-states also con-
tains infinitely many q-states.

Note that an FDS can be viewed as a Streett automaton [35] where the labels are
on vertices instead of on edges. A Streett pair 〈p, q〉 is included in the set of justice
requirements if p = T and in the set of compassion requirements if p (= T.

Let σ : s0, s1, ..., be a sequence of states, ϕ be an assertion, and j ≥ 0 be a natural
number. We say that j is a ϕ-position of σ if sj is a ϕ-state. Let D be an FDS for
which the above components have been identified. We define a run of D to be a
maximal sequence of states σ : s0, s1, ..., satisfying the requirements of

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For every j ≥ 0, the state sj+1 is a D-successor of the state sj.

The sequence σ being maximal means that either σ is infinite, or σ = s0, . . . , sk

and sk has no D-successor.

We denote by runs(D) the set of runs of D. A state is called reachable if it partic-
ipates in some run. An infinite run of D is called a computation if it satisfies the
following:

• Justice: For each J ∈ J , σ contains infinitely many J-positions.
• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions, it
must also contain infinitely many q-positions.

We denote by Comp(D) the set of all computations of D. An FDS D is called
deadlock-free if every reachable state has a D-successor. Note that all runs of a
deadlock-free FDS are infinite. We say that a state s ofD is feasible if it participates
in some computation of D. An FDS D is called viable if all reachable states in D
are feasible. It is not difficult to see that every viable FDS is deadlock-free.

7



Systems D1 : 〈V1,O1, Θ1, ρ1,J1, C1〉 and D2 : 〈V2,O2, Θ2, ρ2,J2, C2〉 are com-
posable if the intersection of their variables is observable in both systems, i.e.
V1 ∩ V2 ⊆ O1 ∩O2. For composable systemsD1 and D2, we define their asynchro-
nous parallel composition, denoted byD1 ‖D2, as the FDS whose sets of variables,
observable variables, justice, and compassion sets are the unions of the correspond-
ing sets in the two systems, whose initial condition is the conjunction of the initial
conditions, and whose transition relation is the following disjunction.

ρ = ρ1 ∧ pres(V2 \ V1) ∨ ρ2 ∧ pres(V1 \ V2)

Here pres denotes the function that preserves the values of all variables, namely

pres(V ) =
∧

v∈V

v = v′

Thus, the execution of the combined system is the interleaved execution of D1 and
D2.

For composable systems D1 and D2, we define their synchronous parallel compo-
sition, denoted byD1 |||D2, as the FDS whose sets of variables and initial condition
are defined similarly to the asynchronous composition, and whose transition rela-
tion is the conjunction of the two transition relations. Thus, a step in an execution of
the combined system is a joint step of systemsD1 and D2. The primary use of syn-
chronous composition is for augmenting an FDS with a non-constraining system.
For more details, we refer the reader to [17].

The projection of a state s on a set W ⊆ V , denoted s ⇓W , is the interpretation
of the variables in W according to their values in s. Projection is generalized
to sequences of states and to sets of sequences of states in the natural way. The
observations of D are the projections of D-computations onto O. We denote by
Obs(D) the set of all observations of D. Systems DC : 〈VC ,OC , ΘC , ρC ,JC , CC 〉
andDA : 〈VA,OA, ΘA, ρA,JA, CA〉 are said to be comparable if there is a one to one
correspondence between their observable variables, i.e. a bijection b : OC → OA

such that for every v ∈ OC , v and b(v) are of the same type and range over the
same domain. We assume that VC ∩ VA = ∅. We write s ⇓OC

= t ⇓OA
to de-

note that for every v ∈ OC the assignment s[v] = t[b(v)]. This notion is gener-
alized in the natural way to observations and sets of observations. System DA is
said to be an abstraction of the comparable system DC , denoted DC " DA, if
Obs(DC) ⊆ Obs(DA). The abstraction relation is reflexive and transitive. It is also
property restricting. That is, if DC " DA then DA |= p implies that DC |= p for
an LTL property p. We say that two comparable FDS’s D1 and D2 are equivalent,
denoted D1 ∼ D2 if Obs(D1) = Obs(D2). 4

4 The definitions of comparable and composable are exactly the conditions needed in order
to handle these operations in symbolic state manipulation environments. In order to com-
pose or compare two systems we would like the variables of both systems to co-exists in

8



Consider an FDS D: 〈V,O, Θ, ρ,J , C〉. Let ΠO denote the set of possible assign-
ments to the variables in O. We say that D is non-constraining with respect to
DC : 〈VC ,OC , ΘC , ρC ,JC , CC〉 if D and DC are composable and we have Obs(DC)
⊆ Obs(DC |||D)⇓OC

, i.e., the synchronous composition does not omit observable
behaviors. We say that D is non-constraining if for every sequence π ∈ (ΠO)ω,
we have that π is an observation of D. In particular, if D is non-constraining
and D and DC are composable then D is non constraining with respect to DC .
For a non-constraining system D such that O = OC it follows that Obs(DC) =
Obs(DC |||D).

All our concrete examples are given in SPL (Simple Programming Language),
which is used to represent concurrent programs (e.g., [28,27]). Every SPL program
can be compiled into an FDS in a straightforward manner. In particular, every state-
ment in an SPL program contributes a disjunct to the transition relation. For exam-
ple, the assignment statement “&0: y := x + 1; &1:” contributes to ρ the disjunct

ρ"0 : at−&0 ∧ at′−&1 ∧ y′ = x + 1 ∧ x′ = x.

The predicates at−&0 and at′−&1 stand, respectively, for the assertions πi = 0 and
π′

i = 1, where πi is the control variable denoting the current location within the
process to which the statement belongs. Every FDS that is generated by an SPL
program is viable.

Every FDS can be converted to a viable FDS that has the same set of computations,
by restricting the transition relation to viable states [19]. Without loss of generality,
we assume that every FDS is viable. In particular, when considering the asynchro-
nous or synchronous parallel composition of two FDS’s we assume that the resulting
FDS is viable. This is also the case with the conversion from FDS to JDS described
in the following section.

From FDS to JDS

An FDS with no compassion requirements is called a just discrete system (JDS).
Note that a JDS can be viewed as a generalized Büchi automaton.

Theorem 1 [5] For every FDS with set of states Σ and set of compassion require-
ments C there exists a JDS DB with |Σ|·2|C|+1 states such thatObs(D) = Obs(DB

).

the same environment. Accordingly, when comparing two systems we would like to be able
to handle the states of each of the systems separately without affecting the other system,
hence their variable sets should be disjoint. When composing two systems, we would like
the composition to behave differently from each of the systems alone, hence their observ-
able variables should intersect.

9



PROOF. LetD : 〈V,O, Θ, ρ,J , C〉 be an FDS where C = {〈p1, q1〉, . . . , 〈pm, qm〉}
and m > 0. We define a JDS DB

: 〈V B
,OB

, Θ
B
, ρ

B
,J B

, ∅〉 equivalent to D, as
follows:

• V
B

= V ∪ {n pi : boolean | 〈pi, qi〉 ∈ C} ∪ {xc}.
That is, for every compassion requirement 〈pi, qi〉 ∈ C, we add to V

B a boolean
variable n pi. Variable n pi is a prediction variable intended to turn true at a
point in a computation fromwhich the assertion pi remains false forever. Variable
xc, common to all compassion requirements, is intended to turn true at a point
in a computation satisfying ∨m

i=1(pi ∧ n pi), which indicates an instance of
mis-prediction.

• OB
= O

• Θ
B

= Θ ∧ xc = 0 ∧
∧

〈pi,qi〉∈C
n pi = 0

That is, initially all the newly introduced boolean variables are set to zero.
• ρ

B
= ρ ∧ ρn p ∧ ρc, where

ρn p :
∧

〈pi,qi〉∈C
(n pi → n p′i)

ρc : x′
c =



xc ∨
∨

〈pi,qi〉∈C
(pi ∧ n pi)





The augmented transition relation allows each of the n pi variables to change
non-deterministically from 0 to 1. Variable xc is set to 1 on the first occurrence
of pi ∧ n pi, for some i, 1 ≤ i ≤ m. Once set, it is never reset.

• J B
= J ∪ {¬xc} ∪ {n pi ∨ qi | 〈pi, qi〉 ∈ C}

The augmented justice set contains the additional justice requirement n pi ∨
qi for each 〈pi, qi〉 ∈ C. This requirement demands that either n pi turns true
sometime, implying that pi is continuously false from that time on, or qi holds
infinitely often.
The justice requirement ¬xc ensures that a run with one of the variables n pi set
prematurely, is not accepted as a computation.

The transformation of an FDS to a JDS follows the transformation of Streett au-
tomata to generalized Büchi automata (see [5] for finite state automata and [38] for
infinite state automata). For completeness of presentation, we include in Appen-
dix A the proof that Obs(D) = Obs(DB

).

3 The Open View of a System

Our main motivation for considering the problem of abstraction is the method of
verification by network-invariants [17,20,40], aimed at the verification of parame-

10



terized systems.

A parameterized system has the general form S(n) : P [1] ‖ · · · ‖P [n] and repre-
sents an infinite family of systems, one for each value of the parameter n > 1.
We are interested in the uniform verification of this family, showing that the sys-
tem S(n) satisfies the property p for every value of n > 1. In order to ensure the
soundness of the network-invariant method, it is necessary to have a compositional
abstraction, i.e. a notion of abstraction such that P " Q implies (P ‖R) " (Q ‖R)
[17]. To obtain this kind of abstraction, it is necessary to formulate a different no-
tion of computation which can be applied to a component (process) in a system
rather than to the entire system.

The standard definition of a computation of a program views the entire program
as a closed system. When studying a process or a component of a system we need
an open-system view. In order to enable an open view of processes within a bigger
system, we identify for each process the variables owned by a process. These are
the variables that only the process itself (never the environment) can modify.

Thus, we define a fair discrete module (FDM) to be given by M = 〈 V , W , O, Θ,
ρ, J , C〉 where the components V , O, Θ, J , C are defined as for an FDS, and the
added component is

• W ⊆ V – A set of owned variables. These are variables which can only be
modified by the module itself but not by its environment. By default, all the
variables in V −W can potentially be modified by the environment.

Open Computations and Observations

LetM : 〈V, W,O, Θ, ρ,J , C〉 be an FDM. An open computation ofM is an infinite
sequence of states

σ : s0, s1, s2, ...,

satisfying the following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For each j = 0, 1, ...,

s2j+1[W ] = s2j[W ]. That is, s2j+1 and s2j agree on the interpretation of the
owned variablesW .
s2j+2 is a ρ-successor of s2j+1.

• Justice and Compassion: As before.

Thus, an open computation of a module consists of alternating environment and
module steps. An environment step, always applied to evenly indexed states, only

11



guarantees to preserve the owned variables. A module step, always applied to oddly
indexed states, must obey the transition relation ρ. In a closed systemW = V , i.e.,
all variables are owned by the system and environment moves cannot be distin-
guished from idling moves.

We also provide a restriction operation, which moves a specified variable to the cat-
egory of owned variables and makes it non-observable. We denote by [local x; D]
the system obtained by restricting variable x in system D.

Two FDM’s M1 and M2 are composable ifW1 ∩W2 = ∅ and V1 ∩ V2 ⊆ O1 ∩ O2.
The asynchronous parallel composition of two composable FDM’s M = M1 ‖M2

is defined similarly to the composition of two FDS’s where, in addition, the owned
variables of the newly formed module is obtained as the union ofW1 andW2. The
FDM M2 is said to be an abstraction of a comparable FDM M1, denotedM1 "M

M2,
if Obs(M1) ⊆ Obs(M2).

Binary Processes

We define a binary process Q('x, 'y) to be a process with two ordered sequences of
observable variables 'x and 'y. When 'x and 'y consist of a single variable we use the
notationQ(x, y). Two binary processes Q and R can be composed to yield another
binary process, using the modular composition operator ◦ defined by

(Q ◦R)('x, 'z) = [local 'y; Q('x, 'y) ‖ R('y, 'z)]

Binary processes P1, . . . , Pm can be composed into a closed ring structure (having
no observables) defined by

(P1 ◦ · · · ◦Pm ◦) = [local 'x1, . . . , 'xm; P1('x1, 'x2) ‖ · · · ‖ Pm('xm, 'x1)]

The dangling ◦ denotes that process Pm is composed with P1. We are interested
in parameterized systems of the form P (n) = [P1 ◦ · · · ◦Pn ◦], where each Pi is
a finite state binary process. Such a system represents in fact an infinite family of
systems (one for each value of n). Our objective is to verify uniformly (i.e., for
every value of n > 1) that a property p is valid. For simplicity of presentation,
assume that the property p only refers to the observable variables of P1 and that
processes P2, . . . , Pn−1 are identical (up to renaming) and can be represented by
the generic binary process Q. That is, P2('x, 'y) = · · · = Pn−1('x, 'y) = Q('x, 'y).

12



The Network Invariant Method

The network invariants method can be summarized as follows:

(1) Devise a network invariant I = I('x, 'y), which is an FDS intended to provide
an abstraction for the (open) parallel composition Qn = Q ◦ · · · ◦Q︸ ︷︷ ︸

n

for any

n ≥ 2.
(2) Confirm that I is indeed a network invariant, by establishing that Q "

M
I

and (Q ◦I) "
M

I.
(3) Model check (Q ◦I ◦Pn ◦) |= p.

As presented here, the rule is adequate for proving properties of P1. Another typical
situation is when we wish to prove properties of a generic Pj for j < N . In this
case, we model check in step 3 that (I ◦Q ◦I ◦Pn ◦) |= p.

4 Fair Simulation and Simulation Games

We already defined the notion of observations of an FDS and the notions of equiv-
alence (∼) and preorder (") with respect to observations. There are also other no-
tions of equivalence / preorder for systems that consider the possible branching in
every state. The main notion of preorder between two systems, considering branch-
ing, is simulation [30]. We say that state s of DA simulates state t of DC if they
are observationally equivalent and for every transition of DC to s′ there exists a
transition of DA to t′ such that t′ simulates s′. Formally we have the following.

Let DC : 〈VC ,OC , ΘC , ρC ,JC , CC 〉 and DA : 〈VA,OA, ΘA, ρA ,JA, CA〉 be two com-
parable FDS’s. Let ΣC and ΣA denote the set of states of DC and DA respectively.
A relation R ⊆ ΣC × ΣA is a simulation relation between DC and DA if for every
pair 〈s, t〉 the following hold.

(1) s⇓OC
= t⇓OA

.
(2) For every state s′ such that (s, s′) |= ρC there exists a state t′ such that (t, t′) |=

ρA and 〈s′, t′〉 ∈ R.

We say that DA simulates DC if there exists a simulation relation R between DC

and DA and for every initial state s ∈ ΣC there exists an initial state t ∈ ΣA such
that 〈s, t〉 ∈ R.

Note that the notation (s, s′) is used for two states s and s′ of the same struc-
ture where s is interpreted over the variables and s′ over the primed copy of the
variables. The notation 〈s, t〉 is used to bound together two states from (possibly)
different structures for the purpose of simulation or (in what follows) to create a

13



state of a game structure.

Simulation can be defined also by means of two player games. We define a game
structure whose locations are pairs of states from DC and DA . The game is played
between two players A and C. Player A tries to show that DA simulatesDC , while
player C tries to show that this is not the case. We establish that DA simulates DC

by proving that player A wins the game. From a pair 〈s, t〉 the play proceeds by
player C choosing a successor of s and then player A choosing a successor of t.
The play ends if the play reaches a location where s and t do not agree on the
values of the observable variables, in which case player C wins. Player A wins if
the play goes ad-infinitum. We say that DA simulates DC if for every initial state
s ∈ ΣC there exists an initial state t ∈ ΣA such that from 〈s, t〉 player A can win
the game. One could verify that the game semantics of simulation is equivalent to
the semantics given above [13].

The problemwith simulation is that it does not account for fairness. There are many
suggestions how to extend simulation to account for fairness [25,10,13,14]. We
choose the definition of [13] and denote it as fair-simulation. In order to formally
define fair-simulation we first give a definition of games.

Let DC : 〈VC ,OC , ΘC , ρC ,JC , CC 〉 and DA : 〈VA,OA, ΘA, ρA ,JA, CA〉 be two com-
parable FDS’s, i.e. there is a bijection b : OC → OA and VC ∩VA = ∅. We denote by
ΣC and ΣA the sets of states of DC and DA respectively. We define the simulation
game structure (SGS) associated with DC and DA to be the tuple G : 〈DC ,DA〉.
A state of G is a type-consistent interpretation of the variables in VC ∪ VA . We
denote by ΣG the set of states of G. We say that a state s ∈ ΣG is correlated, if
s⇓OC

= s⇓OA
. We denote by Σcor ⊂ ΣG the subset of correlated states.

For two states s and s′ of G, s′ is an A-successor of s if (s, s′) |= ρA and s⇓VC
=

s′⇓VC
. Similarly, s′ is a C-successor of s if (s, s′) |= ρC and s⇓VA

= s′⇓VA
. A play

σ of G is a maximal sequence of states σ : s0, s1, . . . satisfying the following:

• Consecution: For each j ≥ 0, s2j+1 is a C-successor of s2j .

s2j+2 is an A-successor of s2j+1.

• Correlation: For each j ≥ 0, s2j ∈ Σcor .

Let G be an SGS and σ be a play of G. The play σ can be viewed as a play of
a two player game. Player C, represented by DC , taking ρC transitions from even
numbered states and player A, represented by DA , taking ρA transitions from odd
numbered states. The observations of the two players are correlated on all even
numbered states of σ.

A play σ is winning for player A if it is infinite and either σ ⇓VC
is not a com-

14



putation of DC or σ ⇓VA
is a computation of DA , i.e. if σ |= FC→FA, where for

η ∈ {A, C},

Fη :
∧

J∈Jη

J ∧
∧

〈p,q〉∈Cη

( p→ q).

Otherwise, σ is winning for player C.

Let DA and DC be some finite domains, intended to record facts about the past
history of a computation (serve as a memory). A strategy for player A is a partial
function f : DA × ΣG 8→ DA × Σcor such that if f(d, s) = (d′, s′) then s′ is an A-
successor of s. If |DA| = 1, we say that f is memoryless and write f : ΣG 8→ Σcor .
Let f be a strategy for player A, and s0 ∈ Σcor . A play s0, s1, . . . is said to be
compliantwith strategy f if there exists a sequence ofDA-values d0, d2, . . . , d2j , . . .
such that (d2j+2, s2j+2) = f(d2j, s2j+1) for every j ≥ 0. Strategy f is winning for
player A from state s ∈ Σcor if all s-plays (plays departing from s) which are
compliant with f are winning for A. We denote byWA the set of states from which
there exists a winning strategy for player A. A strategy for player C is a partial
function f : D

C
× Σcor 8→ D

C
× ΣG such that if f(d, s) = (d′, s′) then s′ is

a C-successor of s. Memoryless strategy, play compliant with strategy, winning
strategy, and winning set (WC ) are defined dually to the above.

An SGS G is called determinate if the sets WA and WC define a partition on Σcor .
It is well known that every SGS is determinate [11].

We are now ready to define fair-simulation as in [13]. Just like simulation, fair-
simulation is defined via a game where player A tries to establish fair-simulation
while playerC tries to falsify it. GivenDC andDA , we form the SGS G : 〈DC ,DA〉.
We say that S ⊆ Σcor is a fair-simulation between DA and DC if there exists a
strategy f for player A such that every f -compliant play σ from a state s ∈ S
is winning for player A and every even state in σ is in S. We say that DA fairly-
simulates DC , denoted DC $f DA , if there exists a fair-simulation S such that for
every state s ∈ ΣC satisfying s |= ΘC there exists a state t ∈ S such that t ⇓VC

= s
and t |= ΘA .

5 µ-Calculus over Game Structures

We define µ-calculus [21] over game structures. Consider two FDS’s DC : 〈 VC ,OC ,
ΘC , ρC , JC , CC 〉, DA : 〈VA,OA, ΘA, ρA ,JA, CA〉 and the SGS G : 〈DC ,DA〉. For
every variable v ∈ VC ∪ VA the formulas v = u and v = i where u and v are
type consistent and i is a constant that is type consistent with v are atomic formulas
(denoted p below). Let V = {X, Y, . . .} be a set of relational variables. The µ-

15



calculus formulas are constructed as follows.

ϕ ::= p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ | µXϕ | νXϕ

A formula ϕ is interpreted as the set of states in Σcor in which ϕ is true. We write
such set of states as [[ϕ]]eG whereG is the SGS and e : V → 2Σcor is an environment.
The environment assigns to each relational variable a subset of Σcor . We denote by
e[X ← S] the environment such that e[X ← S](X) = S and e[X ← S](Y ) =
e(Y ) for Y (= X . The set [[ϕ]]eG is defined inductively as follows 5 .

• [[p]]eG = {s ∈ Σcor | s |= p}
• [[¬p]]eG = {s ∈ Σcor | s (|= p}
• [[X]]eG = e(X)
• [[ϕ ∨ ψ]]eG = [[ϕ]]eG ∪ [[ψ]]eG
• [[ϕ ∧ ψ]]eG = [[ϕ]]eG ∩ [[ψ]]eG

• [[ ϕ]]eG =




s ∈ Σcor

∣∣∣∣∣∣
∀s′, (s, s′) |= ρC → ∃s′′ such that (s′, s′′) |= ρA

and s′′ ∈ [[ϕ]]eG






A state s is included in [[ ϕ]]eG if player A can force the play to reach a state in
[[ϕ]]eG. That is, regardless of how player C moves from s, player A can choose
an appropriate move into [[ϕ]]eG.

• [[ ϕ]]eG =




s ∈ Σcor

∣∣∣∣∣∣
∃s′ such that (s, s′) |= ρC and
∀s′′, (s′, s′′) |= ρA → s′′ ∈ [[ϕ]]eG






A state s is included in [[ ϕ]]eG if player C can force the play to reach a state
in [[ϕ]]eG. As player C moves first, she chooses a C-successor of s all of whose
A-successors are in [[ϕ]]eG.

• [[µXϕ]]eG = ∪iSi where S0 = ∅ and Si+1 = [[ϕ]]e[X←Si]
G

• [[νXϕ]]eG = ∩iSi where S0 = Σcor and Si+1 = [[ϕ]]e[X←Si]
G

When all the variables in ϕ are bound by either µ or ν the initial environment is not
important and we simply write [[ϕ]]G. In case that G is clear from the context we
simply write [[ϕ]].

In our definition we allow applying negation only to atomic formulas (positive nor-
mal form). We can convert a µ-calculus formula with negations to positive normal
form by using de-Morgan rules and replacing ¬(µY f(Y )) by νY ¬f(¬Y ), replac-
ing ¬(νY f(Y )) by µY ¬f(¬Y ), replacing ¬ f by ¬f , and replacing ¬ f
by ¬f .

Consider for example an SGS G : 〈D
C
,D

A
〉 and the formula ϕ = νX( X). A

state s ∈ Σcor is in [[νX( X)]] if s⇓VA
simulates s⇓VC

. Indeed, player A can
force the game to another state in [[νX( X)]] an so on ad-infinitum.

5 Only for finite game structures.

16



The complement ¬ϕ = µX( X) characterizes the set of states where simulation
does not hold. Indeed, player C can force the game in a finite number of steps to
the set [[ X]]e[X←∅]. A state s is in [[ X]]e[X←∅] if it has some C-successor s′

such that all the A-successors of s′ are not correlated.

The alternation depth of a formula is the number of alternations in the nesting of
least and greatest fixpoints. A µ-calculus formula defines a symbolic algorithm for
computing [[ϕ]] [9]. For a µ-calculus formula of alternation depth k, the run time of
this algorithm is O(|Σcor |k). For a full exposition of µ-calculus we refer the reader
to [7]. We often abuse notations and write a µ-calculus formula ϕ instead of the set
[[ϕ]].

In some cases, instead of using a very complex formula, it may be more readable
to use vector notation as in Equation (1) below.

ϕ = ν




Z1

Z2








µY ( Y ∨ p ∧ Z2)

µY ( Y ∨ q ∧ Z1)



 (1)

Such a formula, may be viewed as the mutual fixpoint of the variables Z1 and Z2

or equivalently as an equal formula where a single variable Z replaces both Z1 and
Z2 and ranges over pairs of states [24]. The formula above characterizes the set of
states from which player A can force the game to visit p-states infinitely often and
q-states infinitely often. We can characterize the same set of states by the following
‘normal’ formula 6 .

ϕ = νZ ([µY ( Y ∨ p ∧ Z)] ∧ [µY ( Y ∨ q ∧ Z)])

6 Trace Inclusion and Fair Simulation

In the following, we summarize our solution to verifying abstraction between two
FDS’s, or equivalently, trace inclusion between two Streett automata.

LetDC : 〈VC ,OC ,ΘC , ρC , JC , CC 〉 andDA : 〈VA ,OA ,ΘA , ρA , JA , CA〉 be two com-
parable FDS’s. We want to verify that DC " DA . One solution to solve abstraction
is by complementing the abstract system [33]. Let ΠOA

denote the set of possible
assignments to the variables inOA . Then, we need to construct an FDS DA

such that
Obs(D

A
) = (ΠOA

)ω \ Obs(OA). It follows that DC " DA iff Obs(DC ||| D
A
) = ∅.

The problem with this approach is that the algorithm of [33] is exponential and

6 This does not suggest a canonical translation from vector formulas to plain formulas. The
same translation works for the formula in Equation (2) in Section 6. Note that the formula
in Equation (1) and the formula in Equation (2) have a very similar structure.

17



hence impractical. We therefore advocate to verify fair simulation [13] as a precon-
dition for abstraction.

Claim 2 [13] IfDC $f DA then DC " DA . The reverse implication does not hold.

It is shown in [13] that we can determine whether DC $f DA by computing the
set WA ⊆ Σcor of states which are winning for A in the SGS G: 〈DC ,DA〉. If for
every state sC ∈ Σc satisfying sC |= ΘC there exists some state t ∈ WA such that
t ⇓VC

= sC and t |= ΘA , then DC $f DA .

Let n = |CC | (number of compassion requirements of DC ), m = |CA |, k = |ΣC | ·
|Σ

A
| · (3m + n), and h = 2m + n.

Theorem 3 [13,23]We can solve fair simulation forDC and DA in time O(k2h+1 ·
h!).

As we are interested in fair simulation as a precondition for trace inclusion, we
take a more economic approach. Given two FDS’s, we first convert the two to JDS’s
using the construction in Section 4. We then solve the simulation game for the two
JDS’s.

Consider the FDS’s DC and DA . Let D
B

C
: 〈V B

C
,OB

C
,ΘB

C
, ρB

C
, J B

C
, ∅〉 and DB

A
:

〈V B

A
,OB

A
,ΘB

A
, ρB

A
, J B

A
, ∅〉 be the JDS’s equivalent toDC and DA . Consider the game

G : 〈DB

C
,DB

A
〉. The winning condition for this game is:

∧

JC∈J B
C

JC →
∧

JA∈JB
A

JA

We call such games generalized Streett[1] games. From here forward when we say
game we mean generalized Streett[1] game. Let DC : 〈VC , OC , ΘC , ρC ,JC , ∅〉 and
DA: 〈VA, OA, ΘA, ρA ,JA, ∅〉 be two JDSs where JC = {JC

1 , . . . , J
C

m} and JA =
{JA

1 , . . . , J
A

n }. Let G: 〈DC ,DA〉 be the simulation game structure associated with
DC andDA . We claim that the formula in Equation (2) evaluates the setWA of states
winning for player A. Intuitively, for i ∈ [1..n] and j ∈ [1..m] the greatest fixpoint
νX(J

A

i ∧ Zi⊕1 ∨ Y ∨ ¬J
C

j ∧ X) characterizes the set of states from
which player A can force the play either to stay indefinitely in ¬J

C

j states (thus
violating the fairness of DC ) or in a finite number of steps reach a state in the set
J

A

i ∧ Zi⊕1 ∨ Y . The two outer fixpoints make sure that playerAwins from the
set JA

i ∧ Zi⊕1 ∨ Y . The least fixpoint µY makes sure that the unconstrained
phase of a play represented by the disjunct Y is finite and ends in a J

A

i ∧ Zi⊕1

state. Finally, the greatest fixpoint νZi is responsible to make sure that after visiting
J

A

i we can loop and visit J
A

i⊕1 and so on. By the cyclic dependence of the outermost
greatest fixpoint, either all the sets in JA are visited or getting stuck in some inner

18



greatest fixpoint, some set in JC is visited finitely often.

ϕ = ν





Z1

Z2

...

...

Zn









µY




m∨

j=1

νX(J
A

1 ∧ Z2 ∨ Y ∨ ¬J
C

j ∧ X)





µY




m∨

j=1

νX(J
A

2 ∧ Z3 ∨ Y ∨ ¬J
C

j ∧ X)





...

...

µY




m∨

j=1

νX(J
A

n ∧ Z1 ∨ Y ∨ ¬J
C

j ∧ X)









(2)

Claim 4 W
A

= [[ϕ]]

We show first that player A wins from every state in [[ϕ]]. We define N strategies
for playerA. The strategy fi is defined on the states in Zi. We show that the strategy
fi either forces the play to visit J

A

i and then proceed to Zi⊕1, or eventually avoids
some J ∈ JC . We show that by combining these strategies, either playerA switches
strategies infinitely many times and ensures that the play be winning according to
the fairness of DA or eventually uses a fixed strategy ensuring that the play does
not satisfy the fairness of DC . In the other direction we show that in every stage
of the computation, the value of Zi (for all i) is an over approximation of WA .
Specifically, we show that when Zi⊕1 is an over approximation of WA , then even
states winning for player A in a simpler game (i.e., winning in the simulation game
implies winning in the simple game) are maintained in Zi. The full proof of the
claim is presented in Appendix B.

Using the algorithm in [9] the set [[ϕ]] can be evaluated symbolically.

Theorem 5 A generalized Streett[1] game G can be solved by a symbolic algo-
rithm in time O((|ΣB

C
| · |ΣB

A
| · |J B

C
| · |J B

A
|)3).

PROOF. From Claim 4 it follows that the formula ϕ in Equation (2) computes the
set of winning states inG. Using the symbolic algorithm of [9] we can compute the
set of states that satisfy ϕ in time O((|ΣB

C
| · |ΣB

A
| · |J B

C
| · |J B

A
|)3).

We note that using the algorithm in [15] the same set of states can be evaluated
in time O((|ΣB

C
| · |ΣB

A
| · |J B

C
| · |J B

A
|)2). However, Jurdzinski’s algorithm cannot

be implemented symbolically. Also the algorithms in [26,34] work in quadratic
time rather than cubic time. Both can be implemented symbolically. Seidl’s algo-
rithm requires automatic modification of the µ-calculus formula which our tools
do not support. The algorithm of Long et al. requires storing intermediate results

19



of the fixpoint computation and using them in later stages of the computation. For
a µ-calculus formula of alternation depth 3 the memory management is not com-
plicated. We implemented the algorithm of [26]. On our examples, the algorithm
of [26] shortens the run time in about 10% (vs. [9]). This is probably due to the
fact that there are only a few iterations of the outer most fixpoint until convergence.
To summarize, in order to use fair simulation as a precondition for trace inclusion
we propose to convert every FDS into a JDS and use the formula in Equation (2) to
evaluate symbolically the winning set for player A.

Corollary 6 Given DC and DA , we can determine using a symbolic algorithm
whetherDB

C
$f DB

A
in time proportional toO((|Σ

C
| · |Σ

A
| ·2n+m · (n+ |J

C
|+m+

|JA|))3).

7 Closing the Gap

As presented in Claim 2, fair simulation implies trace inclusion but not the other
way around. In [1], a notion of fair simulation is considered in the context of
infinite-state systems. It is easy to see that the definition of fair simulation given
in [1], implies fair simulation according to the definition in [13]. As shown in [1],
if we are allowed to add to the concrete system auxiliary history and prophecy vari-
ables, then the fair simulation method becomes complete for verifying trace inclu-
sion. Similarly, for finite state systems, we prove that there exists a non-constraining
FDS with respect to the concrete system that can be composed synchronously with
the concrete system, making the method complete for checking refinement. The
proof is based on using the abstract system. In practice, if we have to augment the
concrete system, we find that in many realistic examples a simple FDS can be used,
or even an LTL tester [18]. For example, the simple EARLY and LATE example re-
quires the temporal tester for the LTL formula (x = 2). Dining-philosophers (see
Section 9), on the other hand, does not require augmentation at all. We expect the
user to devise this FDS.

Theorem 7 Let DC and DA be two comparable FDS’s such that DC " DA . Then
there exists an FDS DD that is non-constraining with respect to DC such that
(DC ||| DD) $f DA .

We first show that in order to establish Theorem 7 we must work with viable FDS.
Consider the JDS’s in Fig. 2. The double cycle represents a fair state. While both
systems have the same set of traces, the system on the right cannot simulate the sys-
tem on the left. In a way, the concrete system willingly enters a state that is unfair,
however the abstract system cannot follow. This seems to be a ‘technical difficulty’
that stops us from proving fair-simulation. There are two ways in which we can

20



solve this problem. We can either remove unfeasible states from both systems 7 , or
we can add an unfair sink component 8 to the abstract system and add an option
to move to this sink component from every state of the abstract system. We choose
the first option and assume that the first step of establishing fair-simulation is to
remove the set of unfeasible states from both systems [19].

0

0

1

0

0

Fig. 2. Removal of unfeasible states.

PROOF. Let DC : 〈VC ,OC , ΘC , ρC ,JC , CC 〉 and DA: 〈VA,OA, ΘA, ρA,JA, CA〉 be
two comparable FDS (i.e., there is a bijection b : O

C
→ O

A
and V

C
∩ V

A
= ∅).

Let b : OC → OA be the bijection between the observable variables of DC and
the observable variables of DA . Consider a copy DD of DA where the variables in
VA are renamed as follows. Every variable v ∈ OA is renamed to b(v) ∈ OC and
every variable v ∈ (VA \ OA) is renamed v̇. Accordingly, we adapt ρD , ΘC , JD ,
and CD according to this renaming scheme. Clearly, DC and DD have the same
set of observable variables and hence are composable and can be synchronuously
composed.

It is straight forward to see thatDD is non-constraining with respect toDC . Indeed,
consider an observation π ∈ Obs(DC). From the fact that DC " DA it follows that
there exists a computation σ of DA such that σ ⇓OA

= π. We convert the compu-
tation σ to a computation σ̇ of DD according to the renaming of variables above.
Obviously π is also an observation of DD .

Next, we show that (DC |||DD) $f DA . Let us consider the simulation game
G: 〈(DC |||DD),DA〉.

Every state p ∈ ΣG is a pair p = 〈s, t〉 where s is a state of DC |||DD , and t is
a state of DA . Let S ⊆ Σcor be a simulation and f : ΣG 8→ Σcor a memoryless
strategy for player A defined as follows. For a state s of DC ||| DD , let s⇓VA

denote
the state t of DA such that for every v ∈ OC we have s[v] = t[b(v)] and for every

7 Removing unfeasible states from the abstract system helps us by reducing its size. It does
not help to establish fair simulation.
8 Here, a component would be a set of states that form a clique, a state for every possi-
ble assignement to the observable variables. We have to add such a component and not a
single state because we have to allow in the abstract system every possible sequence of
observations.

21



v ∈ VA \ OA we have s[v̇] = t[v].

S = {〈s, t〉 | t = s⇓VA
} f(〈s, t〉) =






s⇓VA
If (t, s⇓VA

) |= ρA

undefined Otherwise

We show that f is a winning strategy for player A from every state in S. Consider
a play σ : p0, p1, . . . of G compliant with f . Let pi = 〈si, ti〉. We prove that if
p0 ∈ S then for all j > 0 we have p2j ∈ S and that the strategy is well defined.
Suppose that p2j ∈ S. By definition of S, we have s2j ⇓VA

= t2j . By definition of
G, we have (s2j, s2j+1) |= ρD and t2j = t2j+1. It follows that (s2j, s2j+1) |= ρA .
In particular (t2j+1, f(p2j+1)) |= ρA and the strategy is well defined. Furthermore,
since f(p2j+1) = s2j+1⇓VA

it follows that s2j+2⇓VA
= t2j+2 and p2j+2 ∈ S.

Since for every j we have s2j⇓VA
= t2j andDD contains the justice and compassion

requirements of DA , it follows that every play compliant with f is winning for
player A. Finally, for every state p ∈ ΣG such that s |= ΘC ∧ ΘD there exists a
unique state p′ ∈ S such that p′⇓

VC ∪V̇D
= p⇓

VC ∪V̇D
and p′ |= ΘA .

To summarize, according to Theorem 7 for every two systems DC and DA such
that DC " DA we can find an FDS DD non-constraining with respect to DC such
that by augmenting the concrete system with DD we can establish fair-simulation.
However, in order to prove that D

D
can be used to augment D

C
we have to show

thatDD is non-constraining with respect toDC . The latter is exactly identical to the
original problem we were facing: showing that DC " DA . In many cases, it makes
more sense to use an FDS DD that is composable withDC and non-constraining (in
the general sense). In particular, for an LTL formula ϕ [31] we can automatically
construct a non-constraining FDS Tϕ (called temporal tester) such that from the
states of Tϕ we can deduce whether the formula ϕ and every one of its subformulas
is true for the future of the computation or not [37]. Similarly, for every FDS D,
we can construct a non-constraining FDS D′ such that from the state of D′ we can
deduce whether the future of the computation is an observation of D or not [36]. In
Fig. 5, we give a simple extension to EARLY and LATE that shows that LTL testers
are not sufficient and sometimes we need the full power of automata.

8 Examples

The algorithm described in this paper was implemented within the TLV system
[32]. TLV is a flexible verification tool implemented at the Weizmann Institute of
Science. TLV provides a programming environment which uses OBDDs as its basic
data type [4]. Deductive and algorithmic verification methods are implemented as
procedures written within this environment. We extended TLV’s functionality by

22



EARLY ::




&0 : x, z := {1, 2}, 1
&1 : z := 2
&2 : y, z := x, 3



 LATE ::




&0 : z := 1
&1 : x, z := {1, 2}, 2
&2 : y, z := x, 3





Fig. 3. Programs EARLY and LATE.

implementing the algorithms of [9,26] to evaluate the µ-calculus formula in Sec-
tion 6. Our program gets two FDS’s as input, constructs the appropriate simulation
game structure, and evaluates the winning states for player A.

Example 1: Late and Early

Consider the programs EARLY and LATE in Fig. 3 (graphic representation in Fig. 1).
The observable variables are y and z. Without loss of generality, assume that the
initial values of all variables are 0. This is a well known example showing the differ-
ence between trace inclusion and simulation. Indeed, the two systems have the same
set of traces. Either y assumes 1 or y assumes 2. On the other hand, EARLY does
not simulate LATE. This is because we do not know whether state 〈&1, x:0, z:1〉
of system LATE should be mapped to state 〈&1, x:1, z:1〉 or state 〈&1, x:2, z:1〉 of
system EARLY. Our algorithm shows that indeed EARLY does not simulate LATE.

Since EARLY and LATE have the same set of traces, we can augment LATE with a
non-constraining FDS that tells EARLY how to simulate it. In this case, we compose
program LATE synchronously with a tester Tϕ for the property ϕ : (y = 1). The
tester introduces a new boolean variable bϕ which is true at a state s iff s |= ϕ.
Whenever Tϕ indicates that LATE will eventually choose x = 1, EARLY can safely
choose x = 1 in the first step. Whenever Tϕ indicates that LATE will never choose
x = 1, EARLY can safely choose x = 2 in the first step. Denote by LATE+ the
synchronous composition of LATE with Tϕ. Applying our algorithm to LATE+ and
EARLY, indicates that LATE+ $f EARLY implying Obs(LATE) ⊆ Obs(EARLY).

Example 2: Late-count and Early-count

Consider the programs EARLY-COUNT and LATE-COUNT in Fig. 4 (graphic repre-
sentation in Fig. 5). The difference between the two execution paths in both pro-
grams is the number of steps from the initial state to the state marked by 1 which is
even in one branch and odd in the other. We present this example to illustrate that
although in some cases augmentation by temporal testers is sufficient, in general we
need the full power of ω-automata. Since LTL cannot count [39], it is quite obvious
that no temporal tester can help EARLY-COUNT simulate LATE-COUNT.

23



EARLY

count
::





&0 : x := {1, 2}
&1 : skip
&2 : skip
&3 : skip
&4 : goto {&2, &5}
&5 : if (x = 2) goto &7
&6 : skip
&7 : y := 1
&8 : y := 0





J : at−&8

LATE

count
::





m0 : skip
m1 : x := {1, 2}
m2 : skip
m3 : skip
m4 : goto {m2, m5}
m5 : if (x = 2) gotom7

m6 : skip
m7 : y := 1
m8 : y := 0





J : at−m8

Fig. 4. Programs EARLY-COUNT and LATE-COUNT.

0

0 0 0 0 0 0

1

00

0

0 0 0

0 01 0 0

Fig. 5. Systems EARLY-COUNT and LATE-COUNT

Indeed, our algorithm shows that without augmenting LATE-COUNT, simulation
does not hold. We can augment LATE-COUNT with the JDS EVEN-ODD presented
in Fig. 6. EVEN-ODD tells EARLY-COUNT whether all states in even distance from
the current location of (LATE-COUNT ||| EVEN-ODD) are 0 states. We obtained
EVEN-ODD from the linear µ-calculus [8] formulaϕ = νZ . ((y = 0∧ Z). The
formula ϕ holds in state s, if every state t reachable from s in an even number of
steps satisfies y = 0. The labels on the states of EVEN-ODD represent the Boolean
values of ϕ, ϕ, and y, in addition to a Boolean variable b (see below). EVEN-
ODD includes two justice requirements ϕ∨ ϕ∨ (y ∧ b) and (ϕ∧ ϕ)∨ (y ∧ b).
The states satisfying the first requirement are marked by an extra circle and the
states satisfying the second requirement by an extra bold circle. The label b results
from the translation of the µ-calculus formula ϕ into a non-constraining JDS [36] 9 .
States not containing the value of b stand for (b ∨ b). Our algorithm shows that the
synchronous composition of LATE-COUNT with the JDS EVEN-ODD is simulated
by EARLY-COUNT as expected.

9 Vardi’s construction consists of translating the µ-calculus formula into a weak alternating
automaton [29,23]. Vardi uses the weak alternating automaton and its complement together
to create a non-constraining FDS.

24



b, ϕ

ϕ

y

ϕ

ϕ

y

ϕ

ϕ

y

ϕ

ϕ

y

ϕ

ϕ

y

b, ϕ

ϕ

y

b, ϕ

ϕ

y

b, ϕ

ϕ

y

A: B:

C: D:

E: F:

G: H:

J : {ϕ ∨ ϕ ∨ (y ∧ b), (ϕ ∧ ϕ) ∨ (y ∧ b)}

Fig. 6. JDS EVEN-ODD

(Qn) where
Q(left; right) ::




loop forever do



"0 : NonCritical
"1 : request left
"2 : request right
"3 : Critical
"4 : release left
"5 : release right









I(left; right) ::




loop forever do[
"0 : request left
"1 : release left

]


 ‖





loop forever do[
m0 : request right
m1 : release right

]




J : ¬at−m1 C : (right,¬at−"1)

Fig. 7. (a) Program DINE. (b) the two halves abstraction.

Example 3: The Dining Philosophers

As a second example, we consider a solution to the dining philosophers problem.
As originally described by Dijkstra, n philosophers are seated around a table, with
a fork between each two neighbors. In order to eat, a philosopher needs to acquire
the forks on both its sides. A solution to the problem consists of protocols to the
philosophers (and, possibly, forks) that guarantee that no two adjacent philosophers
eat at the same time and that every hungry philosopher eventually eats.

In Fig. 7a we present a chain of n deterministic philosophers, each represented by a
binary processQ(left; right). This solution is studied in [20] as an example of para-
metric systems, for which we seek a uniform verification (i.e. a single verification
valid for any n).

Here, we consider the same invariants, and verify all the necessary abstractions
using our algorithm for fair simulation. As in both cases, no augmentation of the
concrete system is needed, the algorithmic method is completely automatic.

25



The “Two-Halves” Abstraction

The first network invariant I(left; right) is presented in Fig. 7b and can be viewed
as the parallel composition of two “one-sided” philosophers. The compassion re-
quirement reflects the fact that I can deadlock at location &1 only if, from some
point on, the fork on the right (right) is continuously unavailable.

To establish that I is a network invariant, we verify the abstractions (Q ◦Q) "
M
I

and (Q ◦I) "
M
I using the fair simulation algorithm.

The “Four-by-Three” Abstraction

An alternative network invariant is obtained by taking I = Q3, i.e. a chain of
3 philosophers. To prove that this is an invariant, it is sufficient to establish the
abstraction Q4 "

M
Q3, that is, to prove that 3 philosophers can faithfully emulate

4 philosophers.

Experimental Results

We include in our implementation the following optimization. Recall that fair sim-
ulation implies simulation [13]. Let S ⊆ Σcor denote the maximal simulation rela-
tion. To optimize the algorithm we further restrict player A’s moves to S instead of
Σcor .

The following table summarizes the running time for some of the experiments we
conducted.

(Q ◦Q) "
M
I 44 secs.

(Q ◦ I) "
M

I 6 secs.

Q4 "
M

Q3 178 secs.

9 Acknowledgments

We thank Orna Kupferman for suggesting the use of fair simulation in conjunction
with network invariants and the referees for many helpful comments on how to
improve the presentation of the paper. In particular, we thank one of the referees
for suggesting the use of [26].

26



References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, May 1991.

[2] R. Alur, S. L. Torre, and P. Madhusudan. Playing games with boxes and diamonds. In
14th International Conference on Concurrency Theory (CONCUR03), Lecture Notes
in Computer Science, Marseille, France, September 2003. Springer-Verlag. To appear.

[3] B. Bloom and R.Paige. Transformational design and implementation of a new efficient
solution to the ready simulation problem. Science of Computer Programming, 24:189–
220, 1996.

[4] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(12):1035–1044, 1986.

[5] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. J. Comp.
Systems Sci., 8:117–141, 1974.

[6] L. de Alfaro, T. Henzinger, and R. Majumdar. From verification to control: dynamic
programs for omega-regular objectives. In Proc. 16th IEEE Symp. Logic in Comp. Sci.
IEEE Computer Society Press, 2001.

[7] E. Emerson. Model checking and the µ-calculus. In N. Immerman and P. Kolaitis,
editors, Descriptive Complexity and Finite Models, pages 185–214. American
Mathematical Society, 1997.

[8] E. Emerson and E. Clarke. Characterizing correctness properties of parallel programs
using fixpoints. In Proc. 7th Int. Colloq. Aut. Lang. Prog., volume 85 of Lect. Notes
in Comp. Sci., pages 169–181. Springer-Verlag, 1980.

[9] E. A. Emerson and C. L. Lei. Efficient model-checking in fragments of the
propositional modal µ-calculus. In Proc. First IEEE Symp. Logic in Comp. Sci., pages
267–278, 1986.

[10] O. Grumberg and D. Long. Model checking and modular verification. ACM Trans. on
Programming Languages and Systems, 16(3):843–871, 1994.

[11] Y. Gurevich and L. Harrington. Automata, trees and games. In Proc. 14th ACM Symp.
Theory of Comp., pages 60–65, 1982.

[12] M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on finite and
infinite graphs. In Proc. 36th IEEE Symp. Found. of Comp. Sci., pages 453–462. IEEE
Computer Society Press, 1995.

[13] T. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In 8th International
Conference on Concurrency Theory (CONCUR97), volume 1243 of Lect. Notes in
Comp. Sci., pages 273–287, Warsaw, July 1997. Springer-Verlag.

[14] T. Henzinger and S. Rajamani. Fair bisimulation. In S. Graf and M. Schwartzbach,
editors, Proc. 6th Intl. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’00), volume 1785 of Lect. Notes in Comp. Sci., Springer-
Verlag, pages 299–314, 2000.

27



[15] M. Jurdzinski. Small progress measures for solving parity games. In 17th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1770 of Lect. Notes
in Comp. Sci., pages 290–301. Springer-Verlag, 2000.

[16] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and
trace inclusion. In W. Hunt Jr and F. Somenzi, editors Proc. 15th Intl. Conference on
Computer Aided Verification (CAV’03), pages 381–392, Boulder, CO, USA, August
2003.

[17] Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical
formal verification. Software Tools for Technology Transfer, 2(1):328–342, 2000.

[18] Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Inf. and
Comp., 163:203–243, 2000.

[19] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic
specifications. In K. Larsen, S. Skyum, and G.Winskel, editors, Proc. 25th Int. Colloq.
Aut. Lang. Prog., volume 1443 of Lect. Notes in Comp. Sci., pages 1–16. Springer-
Verlag, 1998.

[20] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In
13th International Conference on Concurrency Theory (CONCUR02), volume 2421
of Lect. Notes in Comp. Sci., pages 101–105. Springer-Verlag, 2002.

[21] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[22] O. Kupferman, N. Piterman, and M. Vardi. Fair equivalence relations. In S. Kapoor
and S. Prasad, editors, FST TCS 2000: Foundations of Software Technology and
Theoretical Computer Science, volume 1974 of Lect. Notes in Comp. Sci., pages 151–
163. Springer-Verlag, 2000.

[23] O. Kupferman and M. Vardi. Weak alternating automata and tree automata emptiness.
In Proc. 30th ACM Symp. Theory of Comp., pages 224–233, Dallas, 1998.

[24] O. Lichtenstein. Decidability, Completeness, and Extensions of Linear Time Temporal
Logic. PhD thesis, Weizmann Institute of Science, 1991.

[25] K. Lodaya and P. Thiagarajan. A modal logic for a subclass of events structures. In
Proc. 14th Int. Colloq. Aut. Lang. Prog., volume 267 of Lect. Notes in Comp. Sci.,
pages 290–303. Springer-Verlag, 1987.

[26] D. Long, A. Brown, E. Clarke, S. Jha, and W. Marrero. An improved algorithm for
the evaluation of fixpoint expressions. In D. Dill, editor, Proc. 6th Intl. Conference
on Computer Aided Verification (CAV’94), volume 818 of Lect. Notes in Comp. Sci.,
Springer-Verlag, pages 338–350, 1994.

[27] Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón, L. D.
Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover.
Technical Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford University,
Stanford, California, 1994.

28



[28] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York, 1995.

[29] A. Melton, D. Schmidt, and D. Strecker. Galois connections and computer science
applications. In D. Pitt, S. Abramsky, A. Poigne, and D. Rydeheard, editors, Category
Theory and Computer programming, volume 240 of Lect. Notes in Comp. Sci., pages
299–312. Springer-Verlag, 1986.

[30] R. Milner. An algebraic definition of simulation between programs. In Proc.
2nd International Joint Conference on Artificial Intelligence, pages 481–489. British
Computer Society, September 1971.

[31] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of Comp.
Sci., pages 46–57, 1977.

[32] A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic
verification. In R. Alur and T. Henzinger, editors, R. Alur and T. Henzinger, editors,
Proc. 8th Intl. Conference on Computer Aided Verification (CAV’96), volume 1102 of
Lect. Notes in Comp. Sci., Springer-Verlag, pages 184–195, 1996.

[33] S. Safra. Exponential determinization for ω-automata with strong-fairness acceptance
condition. In Proc. 24th ACM Symp. on Theory of Computing, Victoria, May 1992.

[34] H. Seidl. Fast and simple nested fixpoints. Info. Proc. Lett., 59(6):303–308, 1996.

[35] R. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Inf. and Cont., 54:121–141, 1982.

[36] M. Vardi. Personal communication. 2001.

[37] M. Vardi and P. Wolper. Reasoning about infinite computations. Inf. and Cont.,
115(1):1–37, 1994.

[38] M. Y. Vardi. Verification of concurrent programs – the automata-theoretic framework.
Annals of Pure and Applied Logic, 51:79–98, 1991.

[39] P. Wolper. Temporal logic can be more expressive. Inf. and Cont., 56:72–99, 1983.

[40] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, volume 407 of Lect. Notes in Comp. Sci., pages 68–80. Springer-Verlag,
1989.

A Proof of the Conversion of FDS to JDS

Claim 8 Obs(D) = Obs(DB
)

PROOF. Consider a computation σ : s0, s1, . . . , ofD. It follows that there exists a
set I ⊆ [1..m] such that for every i ∈ I , σ contains infinitely many qi-positions and

29



for every i /∈ I , σ contains finitely many pi-positions. Let j be the maximal value
such that j is a pi-position for some i /∈ I . Consider the computation σ ′ : s′0, s

′
1, . . . ,

of DB where for every k ≥ 0 and every i ∈ I we have s′k⇓V = sk, s′k[xc] = 0, and
s′k[n pi] = 0. For i /∈ I we have s′k[n pi] = 0 if k ≤ j and s′k[n pi] = 1 if k > j.

It is simple to see that σ ′ is a run of DB . The state s′0 satisfies Θ
B . Every two

adjacent states s′k and s′k+1 satisfy the transition ρ
B :

• As (sk, sk+1) |= ρ(V, V ′) it follows that the same holds for s′
k and s′k+1.

• For all i /∈ I , there are no pi-positions after j and the transition ρc is satisfied.
• For every i ∈ [1..m] we have n pi → n p′i.

Similarly, σ′ is also a computation. For every J ∈ J we know that there are in-
finitely many J-positions in σ and hence also in σ ′. As xc is constant 0, there are
infinitely many ¬xc-positions. Finally, for every i ∈ I there are infinitely many
qi-positions and for every i /∈ I there are infinitely many n pi positions.

In the other direction, consider a computation σ ′ : s′0, s
′
1, . . . , of D

B . Again there
exists a set I ⊆ [1..m] such that for every i ∈ I , σ′ contains infinitely many qi-
positions and for every i /∈ I , σ′ contains infinitely many n pi-positions. Consider
the run σ : s0, s1, . . . , of D where for every k ≥ 0 we have sk = s′⇓V . Obviously
σ satisfies initiality and consecution of D. As J ⊆ J B , justice is also satisfied.
Finally for every compassion requirement 〈pi, qi〉, if i ∈ I we know that there are
infinitely many qi-positions and 〈pi, qi〉 is satisfied. If i /∈ I we know that n pi is
set in σ′ from some point onwards. As there are infinitely many ¬xc-positions in
σ′, we conclude that there are finitely many pi-positions in σ.

B Solving Generalized Streett[1] Games

Let DC : 〈VC ,OC , ΘC , ρC ,JC , ∅〉 and DA : 〈VA,OA , ΘA, ρA,JA, ∅〉 be two compa-
rable JDS’s where JC = {JC

1 , . . . , J
C

m} and JA = {JA

1 , . . . , J
A

n }. LetG : 〈DC ,DA〉
be an SGS. LetM = [1..m], N = [1..n], and IIN denote the set of natural numbers.
We use the notation i⊕ 1 for (i mod n) + 1 (i.e. cyclic addition in N). To simplify
notations we denote ¬J

C

j by qj and J
A

k by pk. It follows that a play winning for
player A must satisfy




∧

j∈M

¬qj



 →




∧

k∈N

pk



 ≡




∨

j∈M

qj



 ∨




∧

k∈N

pk





30



The set WA ⊂ ΣG of winning states for player A is evaluated by the formula in
Equation (B.1).

ϕ = ν





Z1

Z2

...

...

Zn









µY




m∨

j=1

νX(p1 ∧ Z2 ∨ Y ∨ qj ∧ X)





µY




m∨

j=1

νX(p2 ∧ Z3 ∨ Y ∨ qj ∧ X)





...

...

µY




m∨

j=1

νX(pn ∧ Z1 ∨ Y ∨ qj ∧ X)









(B.1)

Claim 4 WA = [[ϕ]]

PROOF. We claim thatWA = Z1 at the end of the fixpoint evaluation. 10

Recall, that a computation of a fixpoint (such as above) starts by setting the initial
values of greatest fixpoint (variables Z and X above) to Σcor and initial values of
least fixpoint (variables Y above) to ∅. Then, the values are computed inductively,
by using the previous value in order to get a better approximation of the fixpoint
value. Once, two successive values are equivalent, we are ensured that the value
of the fixpoint is reached. In particular, the value of the Z variables starts from
Σcor and decreases until it reaches the fixpoint value for the first time. Then, the Y
variables andX variables are initialized and the Zs are computed again to give the
fixpoint value in the second (and last) time. In this last phase of the computation Y
is initialized to ∅ and grows iteratively until it equals the value of the appropriate
Z.

We start by establishing an auxiliary lemma characterizing the states computed by
the minimal fixpoints in Equation (B.1). For simplicity of presentation we replace
pi ∧ Zi⊕1 by the atom P . The following fixpoint, is the fixpoint computing the
value of Y in Equation (B.1).

ψ = µY




m∨

j=1

νX(P ∨ Y ∨ qj ∧ X)



 (B.2)

We prove that the fixpoint in Equation (B.2) computes the set of states winning for
player A in the game whose winning condition is (

∨m
j=1 q)∨ P . Denote the

winning set in this simpler game byW .
10 Actually, all Zi’s evaluate the same set. This follows from the proof below. However, we
do not use this fact in the proof.

31



Lemma 9 [[ψ]] = W

PROOF. We start by showing that [[ψ]] ⊆ W . We denote by Y i the ith iteration of
Y . Formally, let Y 0 = ∅ and, for every i > 0, Y i =

∨m
j=1 νX(P ∨ Y i−1 ∨

qj ∧ X).

For every state s ∈ Y i, there exists a j ∈ M such that s ∈ νX(P ∨ Y i−1 ∨
qj ∧ X). It is quite simple to see that, from every such state s, player A can win
the game whose winning condition is qj ∨ (P ∨ Y i−1). So player A either
forces the game to visit P , forces the game to a lower rank Y , or remains in qj-
states forever. As [[ψ]] =

⋃
i Y

i and Y0 = ∅ it follows that from every state in
[[ψ]] player A can win the game whose winning condition is (

∨m
j=1 qj)∨ P .

That is, there exists a strategy that forces the play to a P -state, or the play eventually
remains forever in qj-states for some j ∈ M .

We prove now that W ⊆ [[ψ]]. In order to do that we complement ψ and show
that every state in [[¬ψ]] wins for player C the game whose winning condition is
(
∧m

j=1 ¬qj) ∧ ¬P .

The following formula is the positive normal form and simplified complement of
the formula in Equation (B.2). In the formula below we replace ¬P by R and ¬qj

by Tj. The ‘translated’ winning condition is (
∧m

j=1 Tj) ∧ R.

¬ψ = νY




m∧

j=1

µX(R ∧ Tj ∧ Y ∨ R ∧ X)



 (B.3)

Let Y denote the value of [[¬ψ]] and Xj denote the value of µX(R ∧ Tj ∧ Y ∨
R ∧ X)

It is quite simple to see thatXj is exactly the set of states from which player C has
a strategy that forces the game to reach in a finite number of steps an R ∧ Tj-state
from which player C can force the game to Y . Furthermore, all intermediate states
are R-states. Associate this strategy withXj.

Player C now combines these strategies in the following way. As Y ⊆ X1, the play
starts from a state in X1. From a state in Xj player C uses her strategy to force
the game to Tj and then to Y again. As Y ⊆ X(j mod m)+1, player C switches to
the strategy associated with X(j mod m)+1. During all that time the play remains
in R-states. It follows that player C wins the game whose winning condition is
(
∧m

j=1 Tj) ∧ R.

We proceed now with the main part of Claim 4. We start by proving soundness,
namely, showing that every state s ∈ Z1 is winning for player A. Let Z1, . . . , Zn

32



denote the values of the variables at the end of the fixpoint computation. We show
that, for all i, every state in Zi is winning for A in the simpler game whose winning
condition is (

∨m
j=1 qj) ∨ (pi ∧ Zi⊕1). That is, from a state in Zi player A

has a strategy so that every play either visits pi and in the next round Zi⊕1 or for
some j ∈ M , the play eventually remains forever in qj-states. These strategies are
composed in the obvious way. The play starts from Z1. From a state in Zi player
A uses the strategy associated with Zi. If the play reaches a pi-state and then Zi⊕1,
player A switches her strategy. Every time player A switches her strategy for some
i ∈ N a pi-state is visited. It follows that if player A switches strategies infinitely
often, then for every i, pi-states are visited infinitely often. If from some stage
onwards, player A uses the same strategy, then for some j, the game eventually
remains in qj-states. In both cases, player A wins. More formally, we have the
following.

Given that Zi⊕1 is the fixpoint value of the variable Zi⊕1, the fixpoint

µY




m∨

j=1

νX(pi ∧ Zi⊕1 ∨ Y ∨ qj ∧ X)





computes the value of Zi.

According to Lemma 9, from every state in Zi, player A has a strategy that either
reaches a pi-state followed by a Zi⊕1-state in the next round (by replacing P in
Equation (B.2) by pi ∧ Zi⊕1) or the play eventually remains in qj states for some
j ∈ M . Denote this strategy by fi.

Player A combines the strategies f1, . . . fn as follows. She starts from Z1 with f1, if
the game reaches a p1-state followed by a Z2-state, she switches to strategy f2 and
continues according to f2. Whenever, playerA switches strategy some pi is visited.
Consider an infinite play π. Either player A switches her strategy infinitely often
along π or from some point onwards she plays according to fi. In the first case,
whenever she switches her strategy she visits pi for some i and it follows that for
all i, pi is visited infinitely often. In the second case, playing indefinitely according
to fi means that the play eventually remains in qj-states for some j and again A
wins.

Next we prove completeness of Claim 4, namely, we show that for every state s
winning for player A, we have s ∈ Z1. We show that for all i, Zi is an over approx-
imation of WA . Obviously, this is true for the beginning of the fixpoint evaluation
when Zi = Σcor . Given some value for Zi⊕1 that is an over approximation of WA ,
we show that computing the next iteration of Zi cannot remove states that are win-
ning for player A. If a state s is winning for A it is obviously winning also in the
simpler gamewhose winning condition is (∨m

j=1 qj)∨ (pi∧ WA). We show
that even states winning in the game whose winning condition is (

∨m
j=1 qj) ∨

(pi∧ Zi⊕1) are maintained in the next approximation of Zi. As Zi⊕1 is an over

33



approximation of WA we conclude that winning states are never removed from Zi

and it remains an over approximation ofW
A
. More formally, we have the following.

For simplicity, we handle Z1 and the generalization for k ∈ N is obvious.

Recall that the computation of the fixpoint starts by setting all Zi to Σcor and com-
puting the inner subformulas in order to get better approximation of the fixpoint
value. Let Z l

2 denote some intermediate value for Z2 in the computation of the fix-
point. Assume by induction that it is an over approximation ofWA . The following
fixpoint computes the next approximation of Z1:

µY




m∨

j=1

νX(p1 ∧ Z l
2 ∨ Y ∨ qj ∧ X)



 (B.4)

Consider a state s winning for player A, i.e., s ∈ WA . In particular, player A can
win from s the simpler game whose winning condition is (

∨m
j=1 qj)∨ (p1 ∧

WA). AsWA ⊆ Z l
2 it follows that player A can win from s also the game whose

winning condition is (
∨m

j=1 qj) ∨ (p1 ∧ Z l
2).

According to Lemma 9, the fixpoint in Equation (B.4) computes the states winning
for playerA in the game whose winning condition is (

∨m
j=1 qj)∨ (p1∧ Z l

2)
(where we replace P by p1 ∧ Z l

2). In particular, every state s winning for player
A remains in the next approximation of Z1.

34


