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We consider the convective instability of stationary and traveling modes within the boundary layer
over a disk rotating in a uniform axial flow. Complementary numerical and high Reynolds number
asymptotic analyses are presented. Stationary and traveling modes of type I (crossflow) and type II
(streamline curvature) are found to exist within the boundary layer at all axial flow rates
considered. For low to moderate axial flows, slowly traveling type I modes are found to be the
most amplified, and quickly traveling type II modes are found to have the lower critical Reynolds
numbers. However, near-stationary type I modes are expected to be selected due to a balance being
struck between onset and amplification. Axial flow is seen to stabilize the boundary layer by
increasing the critical Reynolds numbers and reducing amplification rates of both modes. However,
the relative importance of type II modes increases with axial flow and they are, therefore, expected
to dominate for sufficiently high rates. The application to chemical vapour deposition (CVD)
reactors is considered. VC 2011 American Institute of Physics. [doi:10.1063/1.3662133]

I. INTRODUCTION

This paper extends the work of Refs. 1 and 2 by consid-
ering the effect of a uniform axial flow on the type I and II
modes of convective instability within the boundary-layer
flow over a rotating disk. This paper is part of a series by the
present authors which consider the convective instability of
the boundary-layer flow over a family of rotating cones
(including the disk as the limiting half angle) both in and out
of axial flow. This series commenced with an investigation
into a family of cones rotating in an otherwise still fluid3

using both numerical and asymptotic methods, as is done
here. The mathematical formulation of the rotating-disk
problem in axial flow is necessarily different to that for the
rotating cone and this motivates separate publication of the
preliminary cone investigation in Ref. 4.

The transition of the boundary layer on the surface of
rotating disks and cones has been the subject of a number of
experimental investigations. These were motivated by the
desire to understand transition to turbulence of crossflow vor-
tices, present in three-dimensional boundary layers. Although
we are unaware of experimental investigations explicitly into
the vortex dynamics within boundary-layer flows over rotat-
ing disks placed in axial flow, equivalent experimental inves-
tigations on broad cones (half-angle> 40!) placed in axial
flow are extensive. Early experimental work on such cones
was limited to measurements of the transitional Reynolds
numbers.5–8 Following these, detailed flow visualizations and
hot-wire measurements by Kobayashi and Izumi,9 Kobayashi
et al.,10 and Kohama11 demonstrated the existence of
co-rotating spiral vortices in the non-turbulent part of the
boundary layer, which are fixed on the cone for all rotation
and axial flow rates. These vortices are identical to those
observed on the disk rotating in still fluid12,13 and on the
rotating sphere.14 Such vortices are known to arise from type

I (crossflow) and type II (streamline curvature) modes of
instability. More recently, the experimental investigations of
Corke and co-workers15–17 on disks rotating in otherwise still
fluid have shown that traveling modes can be important in
the transition process over smooth, clean disks.

Our interest in the rotating-disk boundary layer arises
from the desire for completeness in the series of papers on
the family of rotating cones and also from industrial applica-
tions in the electrochemical industry, in particular. Here,
flows arising from rotating disks are present in types of
chemical vapour deposition (CVD) reactors used for deposit-
ing thin films of optical and electrical materials on sub-
strates. Such reactors operate by forcing a carrier gas
(containing the reactive molecules) onto the substrate held
within a disk-like support placed horizontally in the flow.
The set-up is contained within a closed reactor and the sup-
port is rotated to compensate for any non-uniformity of the
incident flow. The gas flow can be considered as a uniform
axial flow incident on a rotating disk and it is desirable that
the flow close to the substrate be laminar and free from insta-
bility to ensure uniform deposition. Although a large amount
of literature exists on the theoretical and experimental study
of the reactor-flow parameters (see Refs. 18–20 and referen-
ces contained therein), these are concerned with the changes
in the laminar-flow profiles that can be achieved and the
effect these have on deposition growth rates; no stability
analyses exist for the flows in question. We pay particular
attention to Ref. 18 which considers a simple laminar-flow
model that is closely related to the basic flow used in the sta-
bility investigation presented here. Although the temperature
and compressibility of the carrier gas are important in the
physical process of deposition and are indeed considered in
Ref. 18 and all following laminar-flow investigations, the
incompressible study presented in this paper can be
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considered as a preliminary investigation into how relevant
instability analyses are to the design of CVD processes.

This paper is related to the theoretical investigations of
Garrett and Peake,21 recently revisited by the current
authors,4 which consider the absolute instability of the
boundary-layer flows over a family of cones rotating within
imposed axial flows. There the rotating disk is considered as
a special case of cone with half-angle 90!. As can be seen in
those papers, the onset of absolute instability is sensitive to
the imposed axial flow rate and the location of onset is sig-
nificantly delayed with increased flow. Absolute instability is
not considered further here.

The current paper begins with a description of the math-
ematical formulation of the problem in Sec. II and outlines
the asymptotic stability analyses in Sec. III. We subsequently
proceed to study the neutral curves for stationary modes of
instability using complementary asymptotic and numerical
methods in Sec. IV. The asymptotic analysis for stationary
modes is presented in more detail in Ref. 22, while the nu-
merical analysis is used to study the linear growth rates
within the unstable regime. Traveling modes are subse-
quently studied in Sec. V using two distinct formulations.
The first is in the rotating frame of reference and presents
neutral curves and growth rates for disturbances traveling at
fixed frequencies, in an approach that is consistent with, for
example, Turkyilmazoglu and Gajjar’s work.23–25 Both as-
ymptotic and numerical approaches are used. The asymptotic
approach models traveling modes in axial flow for the first
time, and as such builds on the analyses in Hussain’s Ph.D.
dissertation22 (still fluid) and23–25 (traveling modes). Mean-
while, the second formulation is in the inertial (stationary)
frame of reference and considers disturbances traveling at
fixed phase speeds with respect to the disk surface. This is
related to Garrett’s recent numerical studies of the rotating
disk, cone, and sphere boundary layers26–28 where disturban-
ces traveling at around 75% of each body’s surface are found
to be most amplified. This is consistent with Kobayashi and
Arai’s29 experimental observation of slow vortices over
rotating spheres under particular conditions. In the analysis
of stationary modes, identical neutral curves arise in the two
frames of reference. Furthermore, in the analysis of traveling
modes, the two formulations lead to neutral curves which
must be compared at specific values of the local Reynolds
number. Following this approach, we observe excellent
agreement for a range of traveling modes in axial flow.

II. FORMULATION

The asymptotic and numerical investigations presented
in this paper use slightly different formulations. We give a
summary of the formulation used in the asymptotic investi-
gation here and mention the amendments relevant to the for-
mulation of the numerical investigations at relevant points in
the text.

Consider a rigid disk of infinite extent rotating about the
z*-axis which passes through the center of the disk. The ra-
dial and azimuthal coordinates are x* and h, respectively,
which rotate with the disk surface. The disk is placed in an
incompressible fluid with oncoming axial flow aligned paral-

lel to the z*-axis at upstream infinity. At the edge of the
boundary layer, the dimensional surface velocity distribution
along the disk is given by the well-known potential-flow so-
lution U"0 x"ð Þ ¼ C"x" (see Refs. 30 and 31 for example).
Here, C* is a scale factor determined by the free-stream axial
flow incident on the disk. Asterisks indicate dimensional
quantities. A diagram of the formulation can be seen in
Figure 1 of Ref. 21 when setting the half-angle to w¼ 90!.

The non-dimensionalization of the asymptotic study
follows that detailed in Ref. 3 when w¼ 90!, leading to the
Reynolds number

R ¼ X*l*2

!*
: (1)

Here, X* is the angular speed of rotation of the disk, l* is
a characteristic length scale along the disk surface, and !*
is the kinematic viscosity of the fluid. Distances in the
z*-direction are scaled on the boundary-layer thickness
d*¼ (!*=X*)1=2, leading to the non-dimensional variable
f¼ z*=d*. We note that the boundary-layer thickness is
O(R&1=2). Note that this scaling is different to that used in
Ref. 18 and this is discussed in Sec. VI.

The basic steady flow over the disk has the form
xU(f; Ts), xV (f; Ts), and R&1=2W(f; Ts) in the radial,
azimuthal, and normal directions, respectively, and these are
determined by the non-dimensional Navier–Stokes and
continuity equations at leading order,

W0 þ 2U ¼ 0; (2)

WU0 þ U2 & ðV þ 1Þ2 ¼ T2
s þ U00; (3)

WV0 þ 2UðV þ 1Þ ¼ V00; (4)

subject to boundary conditions

U ¼ 0; V ¼ 0; W ¼ 0; on f ¼ 0;

U ! Ts; V ! &1; as f!1: (5)

A prime denotes differentiation with respect to f. The param-
eter Ts is the ratio of the local slip velocity at a radial posi-
tion to the rotational speed of the disk surface at that
location,

Ts ¼
C*x*

X*x*
¼ C*

X*
:

We note that in this geometry, Ts is independent of x* and
this simplifies the analysis for the rotating disk; this is a cru-
cial difference between this analysis and that of a rotating
cone in axial flow. Ts¼ 0 represents the disk rotating in oth-
erwise still fluid and we recover the familiar von Kármán
equations.32

Equations (2)–(4), subject to conditions (5), are solved
using a fourth-order Runge–Kutta integration method, in
conjunction with a two-dimensional Newton–Raphson
searching routine to iterate on the outer boundary conditions
for different values of Ts. Figure 1 shows the resulting mean-
flow profiles for Ts¼ 0 – 0.25.
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III. LINEAR STABILITY ANALYSIS

We consider type I and type II modes in order to derive
estimates of the wavenumber cd" and waveangle / of the
resulting disturbances in the large Reynolds number limit.
To derive the linear disturbance equations, we introduce
small perturbations around the basic flow which lead to gov-
erning equations independent of Ts and identical to those
given by Eqs. (3.1)–(3.4) of Ref. 3. The analysis of each
basic-flow profile determined by Ts= 0 then proceeds in a
similar way to that given in Refs. 1,3, and 22. For this rea-
son, we focus on the quantitative differences that arise in the
analysis of Ts= 0 and present only a brief overview of the
methods used. The interested reader is referred to Refs. 1,3,
and 22 for full details.

A. Inviscid type I modes

Physically, modes of type I are known to arise from an
inflection point in the mean velocity profiles and are inviscid
in origin. To analyse these modes, the disturbance wave-
lengths are scaled on the boundary-layer thickness. A small
parameter e ¼ R&

1
6 is introduced and we define the perturba-

tion velocities and pressure as functions of the wall-normal
coordinate z¼ f"3 in the form,

ð~u; ~v; ~w; ~pÞ ¼ ðuAðzÞ; vAðzÞ;wAðzÞ; pAðzÞÞ

( exp
i

"3

ðx

aAðx; "Þdxþ bAð"Þh& "xAt

" #$ %
:

The disturbances associated with these perturbations are neu-
trally stable and hence aA and bA are considered as real quan-
tities. We proceed by expanding the radial and azimuthal
wavenumbers as well as the traveling mode frequency in the
form,

aA ¼ a0 þ "a1 þ ) ) ) ;
bA ¼ b0 þ "b1 þ ) ) ) ;
xA ¼ x0 þ "x1 þ ) ) ) ;

where the perturbation radial velocity in the inviscid layer is
expanded as

uA ¼ u0ðfÞ þ "u1ðfÞ þ ) ) ) :

Similar expansions are used for vA, wA, and pA, and the
resulting perturbation equations are solved at each order.

Consequently, for the first order eigenmodes, follow-
ing Ref. 1, we observe the existence of two layers: an
inviscid layer of thickness O("3) and a viscous layer of
thickness O("4) to incorporate the no-slip condition at the
wall, which is found by balancing convection and diffusion
terms in the disturbance equations. Subsequently, we pro-
ceed to match the leading-order solution in the wall layer,
using the wall-normal coordinate r¼ "&4z, to the first-
order solution in the inviscid layer to arrive at the follow-
ing eigenrelation:

w0ð0Þ2Ai0ðs0Þ
c
Ð1
s0

AiðsÞds
¼ 2 a0a1þ

b0b1

x2

$ %
I1þ

a1

b0

&b1a0

b2
0

 !

I2þx0
!I3:

(6)

Here w is the leading-order Rayleigh eigenfunction, normal-
ised such that its wall-gradient w0(0)¼ 1. Furthermore,
c¼ [i(a0xU0(0)þb0V0(0))]1=3 and the integrals I1, I2 are
defined and calculated numerically in Refs. 1,3, and 22.
Meanwhile, the eigenrelation differs from the stationary
modes case only in the Airy function terms on the left-hand
side as well as the addition of the third term on the right-
hand side, which is observed also by Turkyilmazoglu and
Gajjar23 for traveling modes over a rotating disk in still
fluid. The wall layer normal coordinate is re-scaled to give
s¼ crþ s0, where s0¼&ix0=c

2 and the integral, as defined
in Ref. 24 for the still fluid problem is

!I3 ¼
ð1

0

w2
0ðhÞ

!!U
00ðhÞ

!!U
2ðhÞ

dh:

The effective velocity profile !!U ¼ a0xU þ b0V is defined in
Refs. 1,3, and 22. In a similar fashion to I2 in Refs. 1,3, and

22, !I3 is calculated using numerical integration and the resi-
due theorem due to the singularity present at the location of

the inviscid critical layer, where !!U ¼ !!U
00 ¼ 0. The values of

!I3 corresponding to axial flows in the range Ts¼ 0–0.25 are
given in the Appendix.

B. Viscous type II modes

Physically, modes of type II are known to originate from
viscous effects close to the disk boundary. To analyse these
modes, we consider a triple-deck structure to be built on a
small parameter, now given by " ¼ R&

1
16. The lower, main,

and upper decks have thicknesses of order "9, "8, and "4,
respectively, and we define inner variables n, f, and Z to rep-
resent O(1) variation within these decks. The wavenumbers
are scaled upon a viscous length-scale, so that the velocity
and pressure perturbations become

FIG. 1. Basic-flow profiles for Ts¼ 0, 0.05, 0.15, and 0.25 (arrow indicates
direction of increasing Ts).
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ð~u; ~v; ~w; ~pÞ ¼ ðuAðzÞ; vAðzÞ;wAðzÞ; pAðzÞÞ

( exp
i

"4

ðx

aAðx; "Þdxþ bAð"Þh& "2xAt

" #$ %
:

We proceed by expanding the radial and azimuthal wave-
numbers as well as the frequency as

aA ¼ a0 þ "2a1 þ "3a2 þ ) ) ) ;
bA ¼ b0 þ "2b1 þ "3b2 þ ) ) ) ;
xA ¼ "x0 þ "2x1 þ "3x2 þ ) ) ) :

noting that the O(") terms in aA, bA are zero, while ai, bi are
real quantities (where i¼ 0, 1, 2,…).

The solution for the first-order problem, which matches
with the main deck, follows the form of that found in Ref. 25
for the type II modes of a rotating disk in still fluid; the main
difference is the presence of the traveling mode frequency
leading to an additional term in x0. This is manifest in the
modified eigenrelation

c2
0I3 þ

ic0b0U0ð0Þ
ðb0 & a0xTsÞ2

1þ V0ð0Þ2

U0ð0Þ2

 !

I4 þ
ic0x0D

3
4

ðb0 & a0xTsÞ2
I5

¼ ic0D
1
2

ðb0 & a0xTsÞ2
ða1xU0ð0Þ þ b1V0ð0ÞÞ; (7)

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þ b2
0=x2

q
is the leading order type II wave-

number and I3, I4 are numerical integrals defined and calcu-
lated in Refs. 1,3, and 22. The final integral on the left-hand
side is also calculated numerically and given by

I5 ¼
Ð1

0 h2Uð0; hÞdh
ffiffiffi
2
p

Uð0; 0Þ
¼ 1:347;

where U(0, h) is the parabolic cylinder function defined in
Ref. 33.

As discussed in Refs. 1,3, and 22, we investigate the
boundary-layer structure by obtaining leading order solutions
in each of the decks. In the upper deck, disturbances decay
exponentially, whereas in the main deck, we use the no-slip
condition to argue that the effective wall shear tends to zero
as f ! 0. This was experimentally observed by Fedorov
et al.13 for Ts¼ 0 and is numerically verified in Sec. IV B for
all Ts. The leading-order radial and azimuthal wavenumbers
are therefore chosen such that

a0U0ð0; TsÞ þ
b0

x
V0ð0; TsÞ ¼ 0: (8)

In the lower deck, the decay of the leading order solution is
manifest in terms of the parabolic cylinder function
Uð0;

p
2D

1
4nÞ through the balance of viscous and Coriolis

forces, where

D ¼ i

2
ða0xU00ð0Þ þ b0V00ð0ÞÞ

¼ & ia0x

2
ð1þ T2

s Þ:

IV. THE ANALYSIS OF STATIONARY MODES

A. Asymptotic analysis in the rotating frame

For both type I and type II modes, the asymptotic analy-
ses for stationary modes correspond directly to the lack of
time-dependent terms in the linearised perturbation equa-
tions. Hence, the absence of the traveling mode frequency
such that xA¼ 0 leads to the simplification of both the invis-
cid and viscous stability analyses. For type I modes, there is
no need to calculate the integral !I3, whereas for type II
modes, the integral I5 is not required; both are eliminated
from the process of solving eigenrelations (6) and (7),
respectively.

1. Inviscid type I modes

As discussed in Ref. 3, estimates for cd" and / for vorti-
ces arising from the type I mode are expressed as

cI
d" ¼ a2

A þ
b2

A

x2

$ %1
2

¼ c0 þ a0a1 þ
b0b1

x2

$ %
"=c0 þ ) ) )

¼ AI
s & BI

sR
&1=3
L þ ) ) ) (9)

and

tan
p
2
& /I

( )
¼ aAx

bA

¼ a0x

b0

þ a1

b0

& b1a0

b2
0

 !

x"þ ) ) )

¼ CI
s þ DI

sR
&1=3
L þ ) ) ) ; (10)

where the numerical values of AI
s, BI

s, CI
s, and DI

s are listed in

Table I. Note that c2
0 ¼ a2

0 þ
b2

0

x2 and RL¼R1=2x is the Reyn-

olds number based on the boundary-layer thickness (this
removes any dependence on the radial location x). Numerical
values for some underlying quantities are given in the
Appendix for comparison with those calculated by Hall,1

Garrett et al.,13 and Hussain22 when Ts¼ 0.

2. Viscous type II modes

The analysis leads to the following estimates for the
properties of the vortices arising from type II instabilities:

TABLE I. Numerical values for the asymptotic expansions of cI
d" and /I in

Eqs. (9) and (10), respectively.

Ts AI
s BI

s CI
s DI

s

0.00 1.162 8.314 4.256 16.535

0.05 1.224 8.476 3.932 12.710

0.10 1.294 8.817 3.561 9.449

0.15 1.369 9.252 3.203 6.984

0.20 1.445 9.755 2.879 5.200

0.25 1.522 10.335 2.596 3.918
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cII
d" ¼ a2

A þ
b2

A

x2

$ %1
2

R&
1
4;

¼
1þ V0ð0Þ2

U0ð0Þ2

 !3
4

1þ V0ð0ÞTs

U0ð0Þ

****

****

U0ð0ÞI4

I3

$ %1
2

x&
1
2R&

1
4 þ ) ) ) ;

¼ AII
s R
&1

2
L þ ) ) ) (11)

and

tan
p
2
& /II

( )
¼ aAx

bA
;

¼ a0x

b0

þ "2 a1

b0

& b1a0

b2
0

 !

xþ ) ) ) ;

¼ CII
s þ DII

s R
&1

4
L þ ) ) ) ; (12)

where the numerical values of AII
s , CII

s , and DII
s are listed in

Table II.

B. Numerical analysis in the inertial frame

The numerical study uses the length scale provided by
the boundary-layer thickness in all spatial scalings, and we
consider the disk to be rotating in a fixed frame of reference.
This formulation is consistent with that discussed in the rele-
vant sections of Refs. 3,4,21,26–28 and permits control of
the speed at which vortices rotate with respect to the disk
within the analysis.34

The mean flow is found by solving equations equivalent
to Eqs. (2)–(4) but with amendments due to the different
frame of reference. The governing disturbance equations are
then formed by perturbing the mean flow with quantities

ðû; v̂; ŵ; p̂Þ ¼ ðuðfÞ; vðfÞ;wðfÞ; pðfÞÞ expðiðaxþ bRLh& ctÞÞ:

The quantity a is complex and b and c are real, as required
by the spatial analysis used here. It is assumed that b is O(1).
As defined above, RL is the local Reynolds number that
arises from using the boundary-layer thickness as the length
scale, whereas the non-dimensional normal distance variable
f is defined in the asymptotic analysis.

The governing perturbation equations in this formula-
tion are identical to those given as Eqs. (4.2)–(4.7) in Ref. 3,
and we see that the effect of Ts= 0 is to change the basic
flow on which the analysis is performed. The analysis on

each basic flow is similar to that described in Ref. 3 and
interested readers are referred there for further information.

1. Neutral curves

We begin by explicitly assuming that the vortices rotate
with the surface of the disk; this involves fixing the disturb-
ance phase velocity c¼ c=b¼ 1. Spatial branches for each Ts

have been plotted by solving the dispersion relation for com-
plex a¼ arþ i ai at fixed RL by marching through values of
c¼b. This approach has been denoted method 2 in Ref. 26.
At each Ts, two spatial branches are found to determine the
instability of the flow, with behavior similar to those shown
in Figure 7 of Ref. 3. These branches arise from crossflow
(type I) effects and streamline-curvature (type II) effects.
The associated neutral curves (described by ai¼ 0 at each
RL) have two distinct lobes with the larger lobe, character-
ized by higher wavenumbers, due to the type I instability,
and the smaller lobe due to the type II instability. The neutral
curve calculated for Ts¼ 0 is identical to that calculated by
Malik.2

Figures 2 and 3 show a comparison between the numeri-
cally calculated neutral curves and asymptotic estimates at
high Reynolds number, in terms of the wavenumber

kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and waveangle "¼ arctan(b=a) which are

identified with the asymptotic quantities cd" and /, respec-
tively. We see excellent agreement between the numerical
and asymptotic predictions of wavenumber and waveangle
for both modes of instability, even though different frames
of reference and formulations have been used.

Figures 2 and 3 show that the type I mode remains the
most dangerous (has lower critical RL) for the values of Ts

considered. However, as the axial flow rate is increased, the
type II mode becomes more important. Figure 4 shows the
neutral curves in terms of ar for Ts¼ 0–0.40, and we see that
the type II mode has become the most dangerous by
Ts¼ 0.40. Physically, this behavior is to be expected as
increasing the axial flow rate forces fluid towards the disk

TABLE II. Numerical values for the asymptotic expansions of cII
d" and /II

in Eqs. (11) and (12), respectively.

Ts AII
s CII

s DII
s

0.00 1.225 1.207 2.312

0.05 1.323 1.222 2.249

0.10 1.438 1.231 2.164

0.15 1.571 1.232 2.060

0.20 1.720 1.224 1.939

0.25 1.884 1.207 1.809

FIG. 2. Neutral-stability curves in terms of predicted wavenumber for
Ts¼ 0, 0.05, 0.15, and 0.25 (a)–(d). Solid line: numerical, dashed line:
asymptotic.
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surface and so any instability is more likely to develop from
viscous effects close to the wall location, rather than further
up in the boundary layer. The type II modes should, there-
fore, become dominant as Ts increases. Plots of the effective
velocity profile, Q(f; U, Ts)¼U(f; Ts) cos (U)þV (f; Ts) sin
(U), resolved at an angle from the radial direction in the
direction of rotation, U, show the presence of an inflection
point at certain values of U for all values of Ts (see Figure 5
for example). Hence, the type I mode is expected to exist at
all axial flow rates, as is observed in Figure 4.

The asymptotic analysis assumes that the effective wall
shear is zero along the lower (type II) branch. This assump-
tion is not necessary in the numerical investigation and
indeed we are able to justify it using the numerical formula-
tion. The effective wall shear along the lower branch can be
calculated from the values of aU0(0; Ts)þ bV0(0; Ts) along
the type II branch of the numerical results. This quantity is
identified with Eq. (8) from the asymptotic investigation and

has been investigated for Ts¼ 0–0.40. We can confirm that
its value tends to zero as RL increases and is consistent with
the equivalent calculation of Ref. 2 for Ts¼ 0.

2. Linear amplification rates

We have so far shown that the critical Reynolds number
for the type II mode is reduced relative to the type I mode as
the axial flow rate is increased. However, in order to better
understand the mode selection process in practice, it is nec-
essary to consider the linear growth rates of both modes
through the convectively unstable region. In doing this, we
follow the analysis of Ref. 26 that considers linear growth
rates within the rotating-disk boundary layer for Ts¼ 0. That
work has since been extended to the boundary-layer flows
over the family of rotating cones and spheres by Garrett27,28

with a view to understanding the vortex-speed selection pro-
cess over smooth bodies (see Sec. V).

In order to compare the effect of incident axial flow, the
amplification rates over an equal extent of RL are required.
We have chosen to consider a region of extent of 215 in RL.
This is approximately the extent of the convectively unstable
region for Ts¼ 0 until local absolute instability is encoun-
tered at RA * 507, as determined by Lingwood.35,36 This is
known to be close to the experimentally observed onset of
turbulence for a rotating disk (see Ref. 37 for example), and
so for comparison purposes can be interpreted as the extent
of spiral vortices within the boundary layer. However, recent
investigation by Healey38 suggests that edge effects of the
rotating disk may contribute to the linear global instability of
the flow, and that infinite rotating disks may remain globally
stable despite the existence of local absolute instability. Fur-
thermore, axial flow is known to significantly delay the onset
of absolute instability and so potentially the onset of turbu-
lence (see Refs. 4 and 21). Hence, a range of RL should be
considered, and so to facilitate the comparison, an extent of
215 is used for all Ts> 0.

Figure 6 shows the amplification rates of stationary
modes through a convective unstable region of around 215

FIG. 3. Neutral-stability curves in terms of predicted waveangle for Ts¼ 0,
0.05, 0.15, and 0.25 (a)–(d). Solid line: numerical, dashed line: asymptotic.

FIG. 4. Neutral-stability curves in the (ar, RL)-plane for Ts¼ 0 (dotted line),
0.05, 0.15, 0.25, 0.30, 0.35, and 0.40 (left to right).

FIG. 5. The effective mean velocity profiles (in the rotating frame) for
Ts¼ 0.40 at U¼ 90!–0! in increments of 10! (bottom to top).
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in RL from the onset of the type I mode in the range
Ts¼ 0–0.25. We see that the amplification rates are signifi-
cantly reduced with axial flow and the type II mode becomes
increasingly important relative to the type I mode. For suffi-
ciently high axial flow rates, the amplification rates of the
type II mode is expected to become larger than the type I
mode and could be selected in practice. However investiga-
tions have showed that this would be at rates far in excess of
T¼ 0.40. Similar behavior has been found in the rotating-
sphere boundary layer in Ref. 28.

V. THE ANALYSIS OF TRAVELING MODES

As discussed in Sec. I, the recent experimental investi-
gations of Corke and co-workers, for example, have shown
that non-stationary modes can be important in the transi-
tion process over smooth disks. This is particularly rele-
vant in the CVD application where highly polished and
clean surfaces are used. It is important to note that this
experimental observation is consistent with the theoretical
investigations into the boundary-layer flow over a disk
rotating in otherwise still fluid due to Turkyilmazoglu and
Gajjar.23–25 There, results are presented which demonstrate
that disturbances arising from the type II mode moving at
different speeds relative to the disk surface can have con-
siderably lower critical Reynolds numbers than the station-
ary type I mode.

The stability of traveling disturbances for different val-
ues of Ts is considered here using two distinct approaches.
The first is consistent with the rotating-frame analyses in the
literature referred to above, and both numerical and asymp-
totic analyses are presented within this frame. The second
approach is via method 2 within the inertial frame, as dis-
cussed in Sec. IV B. Although it was possible to compare the
rotating-frame asymptotic analysis with the inertial-frame
numerical analysis in Sec. IV B, this was only because sta-
tionary disturbances were being considered. The approaches
in the different frames are inconsistent for traveling modes
and direct comparisons of the neutral curves are not possible.

A. Rotating-frame asymptotic analysis

We now consider the case of traveling modes of
frequency xA for type I and type II disturbances. In both
cases, the stability analyses presented are similar to
Sec. IV A for stationary modes. However, the inclusion of
time-dependence in the disturbance equations leads to an
additional terms in the eigenrelation for both the inviscid and
viscous modes. These distinguish the analyses from those
presented in Ref. 22 for stationary modes and Refs. 23–25
for traveling modes in still fluid.

1. Inviscid type I modes

The inviscid traveling mode analysis reveals the non-
existence of time-dependent terms in the leading order solu-
tion. As a result, we recover the leading-order estimates for
the stationary type I modes, so that for any xA= 0 the
leading-order wavenumber AI

t ¼ AI
s and the leading-order

waveangle CI
t ¼ CI

s for varying axial flow strengths Ts; in the
still fluid case of the rotating disk, the same is observed by
Turkyilmazoglu.24

As in Sec. III A, we proceed to solve Eq. (6) for x0= 0
and re-scale in terms of the Reynolds number based on
boundary-layer thickness RL. Hence, we arrive at the first-
order corrections for the type I wavenumber cI

d" and wavean-
gle /I, which are given by

cI
d" ¼ AI

t & BI
tR
&1=3
L þ ) ) ) (13)

and

tan
p
2
& /I

( )
¼ CI

t þ DI
t R
&1=3
L þ ) ) ) ; (14)

where the numerical values of BI
t and DI

t are given in
Table III for values of xA corresponding to numerical
traveling-mode frequencies x¼&5, 4, 7.9, and 10 at
RL¼ 107 (see Sec. V B for a definition of x).

2. Viscous type II modes

In the upper and main decks, the analysis leads to
Eq. (8), due to the requirement of zero effective wall shear.
Hence, at leading-order, the traveling mode solution for the
waveangle /II agrees with the stationary mode case, so that
CII

t ¼ CII
s . Qualitatively, the effects of time-dependent terms

in /II do not appear until the first-order problem is consid-
ered within the lower deck.

FIG. 6. Linear convective growth rates for stationary disturbances at various
Ts at a fixed extent of 215 in RL into the convectively unstable region.

TABLE III. First-order numerical values for the asymptotic expansions of

cI
d" and /I in Eqs. (13) and (14), for x&2=3x0¼&0.0001, &0.000862,

0.00017, and 0.000215 (left to right), which correspond to x¼&5, 4, 7.9,
and 10, respectively, at RL¼ 107.

Ts BI
t DI

t BI
t DI

t BI
t DI

t BI
t DI

t

0.00 8.318 16.541 8.314 16.547 8.313 16.549 8.312 16.551

0.05 8.478 12.708 8.474 12.713 8.472 12.715 8.471 12.716

0.10 8.843 9.500 8.839 9.503 8.837 9.505 8.836 9.506

0.15 9.321 7.089 9.316 7.091 9.314 7.092 9.313 7.093

0.20 9.900 5.362 9.895 5.365 9.893 5.366 9.892 5.366

0.25 10.596 4.134 10.591 4.136 10.588 4.137 10.587 4.137
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We proceed to solve Eq. (7) for x0= 0 to obtain esti-
mates for the leading order wavenumber and the first order
waveangle. Comparing real and imaginary parts leads to the
following eigenrelation:

aII !x0 þ bII!c0

1
4 & !c0

9
4 ¼ 0; (15)

where !x0 ¼ x0x&1=8, !c0 ¼ c0x1=2 and the coefficients

aII ¼
cos

3p
8
& sin

3p
8

+ ,

1þ V0ð0ÞTs

U0ð0Þ

$ %2

V0ð0Þ
U0ð0Þ

$ %3
4 1þ T2

s

2

$ %3
4

( 1þ V0ð0Þ2

U0ð0Þ2

 !5
8
I5

I3
;

bII ¼ U0ð0Þ

1þ V0ð0ÞTs

U0ð0Þ

$ %2
1þ V0ð0Þ2

U0ð0Þ2

 !3
2
I4

I3
:

For a given re-scaled frequency !x0, the solution to Eq. (15)
is shown in Figure 7, with increasing axial flow having the
effect of increasing the re-scaled leading-order wavenumber
!c0. Substituting this solution back into Eq. (7) leads to a cor-
responding eigenrelation for the first-order waveangle in the
form,

!/1 ¼ bII
1 ð!c0

3
2 þ aII

1 !c0
&3

4 !x0Þ; (16)

where !/1 ¼ /1x&5=4 and the coefficients

aII
1 ¼

sin
3p
8

1þV0ð0ÞTs

U0ð0Þ

$ %2

V0ð0Þ
U0ð0Þ

$ %3
4 1þT2

s

2

$ %3
4

1þ V0ð0Þ2

U0ð0Þ2

 !5
8
I5

I3
;

bII
1 ¼

2I3

jU0ð0ÞV0ð0Þj
1
2ð1þT2

s Þ
1
2

1þV0ð0ÞTs

U0ð0Þ

$ %2

1þ V0ð0Þ2

U0ð0Þ2

 !&1
4

:

The solution to Eq. (16) is shown in Figure 8. For small
positive !x0, increasing axial flow has the effect of reducing
the re-scaled first-order waveangle !/1, whereas for suffi-
ciently large and negative !x0, !/1 is increased. Furthermore,
from Figures 7 and 8, it is clear that for small positive values
of !x0, a second type II mode exists, which has also been
observed in Ref. 25 for the type II traveling modes on a rotat-
ing disk in still fluid. We subsequently proceed to follow
Sec. III B, as the solutions to Eqs. (15) and (16) result in the
leading-order estimate for the type II wavenumber cII

d" and
the first-order correction for the waveangle /II in the form,

cII
d" ¼ AII

t R&1=2
L þ ) ) ) (17)

and

tan
p
2
& /II

( )
¼ CII

t þ DII
t R&1=4

L þ ) ) ) ; (18)

where the values of AII
t and DII

t are given in Table IV for
values of xA corresponding to numerical frequencies
x¼&5, 4 at RL¼ 107. The second branch is also presented
for x¼ 4 (see Sec. V B for a definition of x).

B. Rotating-frame numerical analysis

We now present a numerical analysis conducted in the
rotating frame of reference. The formulation of the problem
is slightly different to that presented in Sec. IV B in that

FIG. 8. Re-scaled first-order waveangle /1 against the re-scaled frequency
x0 shown for increasing axial flow Ts.

TABLE IV. Leading-order numerical values for the asymptotic expansions

of cII
d" and /II in Eqs. (17) and (18) for !x0 ¼ &0:667; 0:533 (left to right),

which correspond to x¼&5,4, respectively, at RL¼ 107 (the final column is
the second branch for !x0 ¼ 0:533).

Ts AII
t DII

t AII
t DII

t AII;2
t DII;2

t

0.00 1.542 1.211 0.826 3.902 0.074 16.024

0.05 1.657 1.201 0.908 3.729 0.072 16.465

0.10 1.790 1.185 1.009 3.511 0.068 17.042

0.15 1.942 1.161 1.129 3.260 0.062 17.684

0.20 2.110 1.127 1.266 2.993 0.056 18.356

0.25 2.291 1.083 1.419 2.722 0.050 18.973

FIG. 7. Re-scaled leading-order wavenumber c0 against the re-scaled fre-
quency x0 shown for increasing axial flow Ts.
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Coriolis terms appear at O(1=RL) in the perturbation equa-
tions and the azimuthal component of the basic flow is modi-
fied so as to maintain the non-slip condition. The
perturbation equations are not stated here but are identical to
those stated as Eqs. (14)–(19) in Ref. 35. To facilitate
comparisons with experiments where the frequency spectra
of traveling disturbances are studied explicitly (rather than
vortex speeds observed), we work in terms of a dimension-
less frequency x¼ cRL (see Refs. 15–17 for example).

We proceed to calculate neutral curves for fixed x,
which determines c at each location determined by RL.
Enforcing x> 0 is interpreted as analysing modes that travel
at speeds greater than the disk surface. However, the
azimuthal wavenumber b is now a free parameter and so this
analysis differs from the inertial-frame analysis in that we
are not fixing the phase speed of disturbances.

This approach is entirely consistent with the theoretical
investigation of Ref. 23 for Ts¼ 0, and we use those results to
validate the amended version of our code in this frame of
reference. Figure 9 shows neutral curves of the wavenumbers,
waveangle, and number of vortices n for various x that are
identical to those shown in Figure 5 of Ref. 23. In particular,
for x> 0, we see the exaggeration of the lower lobe leading
to lower critical Reynolds numbers for the type II mode, and
for sufficient x< 0, the lower lobe is removed. We see that a
globally minimum critical Reynolds number of RL¼ 64.47
occurs for a type II mode when x¼ 7.9. This critical Reyn-
olds number (and indeed all characteristics calculated for
each x) agrees with those of Turkyilmazoglu and Gajjar to
the second decimal place. However, as discussed in Ref. 3,
our previous numerical and asymptotic analyses have failed
to reproduce their “kink” in the lower branch at very high RL.

That the type II mode is exaggerated for disturbances
traveling more quickly than the disk surface is consistent
with the results of the inertial-frame analysis presented in
Sec. V D, although quantitative comparisons of neutral
curves are not possible between the two formulations.

Figure 10 demonstrates the effect of increasing the
enforced axial flow rate. As with the stationary-mode analy-

sis of Sec. IV B, axial flow is seen to stabilise the flow
to traveling modes of both types. For each Ts, increasing x
is again seen to exaggerate the relative importance of
the type II mode such that it becomes the most dangerous.
The value of xmin;Ts which gives the globally minimum
critical Reynolds number is seen to increase slightly
with Ts, in particular xmin,0.05¼ 8.4, xmin,0.15¼ 10.1, and
xmin,0.25¼ 11.9. Calculations of neutral curves for stationary
disturbances within the rotating frame (x¼ 0) were found to
be identical to those calculated in the inertial-frame analysis
of Sec. IV B for all Ts.

1. Linear amplification rates

As discussed in Sec. IV B, it is instructive to consider
the maximum linear growth rates in each case. We continue
by doing this in the rotating frame of reference for
Ts¼ 0–0.25.

Figure 11 demonstrates that a traveling mode with
x¼&16.5 is the most amplified in the rotating frame of

FIG. 9. Neutral-stability curves calculated in the rotating frame for x¼ 0
“–”; x¼ 4 “– –”; x¼ 7.9 “–.”; x¼ 10 “)))”; x¼&5 “–” (Ts¼ 0). FIG. 10. Neutral-stability curves of traveling modes in the rotating frame

for Ts¼ 0, 0.05, 0.15, and 0.25 (left to right).

FIG. 11. Growth rates for Ts¼ 0 in the rotating frame for various x.
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reference for Ts¼ 0. This corresponds to a mode traveling
more slowly that the disk surface, which is qualitatively con-
sistent with the prediction of slowly traveling vortices in the
inertial frame. We also see that the type II mode becomes
increasingly important for x> 0, which is again consistent
with the results of the inertial-frame analysis. Increasing x
to around 20 is sufficient for the type II mode to have the
greater amplification rate at Ts¼ 0. However, the critical
Reynolds numbers for the onset of both of these modes are
significantly higher than those that occur for jxj closer to
zero; this has implications for the mode selection process as
discussed in Sec. VI.

Investigation of traveling modes for Ts> 0 has shown
that the frequency of the most amplified mode reduces with
Ts. For example, the most amplified mode (as sampled in the
latter part of the convectively unstable region prior to the
onset of absolute instability) has x¼&22.3 at Ts¼ 0.05.

C. Comparison between asymptotic and numerical
results

In order to develop consistent comparisons for traveling
modes between the asymptotic analysis in Sec. V A and the
numerical formulation in Sec. V B, we must compare the
respective frequencies used in the normal mode expansions
of both formulations.

For type I modes, xA"&2 ¼ x. This leads to xAx&2=3

¼ R&2=3
L x, where RL¼R1=2x and "¼R&1=6. Hence, at large

displacement-thickness Reynolds numbers around O(107)
and O(1) values of the numerical frequency x, small corre-
sponding values of xAx&2=3 are required in order to achieve
relevant comparisons. For example, for type I modes with
numerical frequencies x¼&5 and 4, we require asymptotic
frequencies xAx&2=3 ¼ &0:0001 and 0.0000862, respec-
tively, in order to compare asymptotic and numerical results
at the specific displacement-thickness Reynolds number of
RL¼ 107.

Similarly, for type II modes, we have xA"&1 ¼ x. As a
result, xAx&1=8 ¼ R&1=8

L x, where RL¼R1=2x and for the
viscous modes "¼R&1=16. Therefore, for large Reynolds
numbers and O(1) numerical frequencies, again small corre-
sponding values of xAx&1=8 enable suitable comparisons. For
example, for type II modes with numerical frequencies
x¼&5 and 4, we require asymptotic frequencies
xAx&2=3 ¼ &0:667 and 0.533, respectively, to facilitate com-
parisons at RL¼ 107. Importantly, from Figures 7 and 8, we
see that there exists no traveling mode solutions for
xAx&2=3 > 0:7, which restricts the range of available com-
parisons with the numerical results.

Figure 12 shows comparisons applicable at RL¼ 9( 104

(the highest value for which the numerical code could obtain
traveling mode results for all x), at Ts¼ 0.25 and x¼&5.2
and 4. We see excellent agreement for the effective wave-
number and waveangle predictions of both mode types
(where applicable). Although only these particular cases are
shown here, very similar comparisons were found at each Ts

and x. The slight discrepancy in the type I effective wave-
number predictions is expected to be a consequence of the
relatively low Reynolds number used.

D. Numerical analysis in the inertial frame

Full neutral curves and amplification rates for vortices
traveling at particular speeds relative to the rotating-disk
surface can be computed by changing the value of c within
the method-2 analysis described in Sec. IV B, i.e., within the
inertial frame.

Disturbance speeds have been considered in the
range c¼ 0.5–20 at each Ts and neutral curves computed.
Figures 13–15 present the neutral curves in terms of ar, n, kd,
and " for c¼ 0.8, 5, and 20 together with the c¼ 1 results
from Sec. IV B. Note that c¼ 0.8 corresponds to disturban-
ces traveling at 80% of the disk surface speed, and c¼ 5 and
20 corresponds to disturbances traveling at speeds much
greater than the disk surface.

In each case, we find that the globally critical Reynolds
number for the type I mode is given for stationary disturban-
ces, c¼ 1. In addition, we find that the lobe arising from the
type II mode is sensitive to the disturbance speed. In

FIG. 12. Neutral-stability curves for Ts¼ 0.25 for traveling modes. Solid
lines: numerical, dashed lines: asymptotic.

FIG. 13. Neutral-stability curves for traveling mode disturbances for Ts¼ 0;
c¼ 0.8 “)))”; c¼ 1 “–”; c¼ 5 “–.”; c¼ 20 “–x”.
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particular, the type II lobe is quickly eliminated for c< 1 and
exaggerated for c> 1. In all cases where c> 1, the type II
mode is the more dangerous than in the type I mode in the
sense of lowest critical Reynolds number. Imposed axial
flow appears to increase the sensitivity of the type II mode to
disturbance speed.

The result that traveling type II modes are the most
dangerous (in the sense of lowest critical RL) for all Ts is
consistent with the previous theoretical results of Sec. V B.
However, it is important to note that the range of waveangles
and vortex numbers predicted to be unstable to traveling
modes is extremely narrow, which is in a sense a stabilizing
effect. The narrow range of waveangles and vortex numbers
appears to be a significant barrier to the selection of quickly
traveling modes.

How traveling modes are selected in practice is influ-
enced by the amplification rates within the convectively
unstable region. Garrett’s previous analysis in Ref. 26 has
shown that traveling modes with phase speeds of c¼ 0.75

are the most amplified in zero axial flow. Investigation of
Ts> 0 shows that the phase speed of the most amplified
mode increases very slightly with Ts. For example, the most
amplified mode (as sampled in the latter part of the convec-
tively unstable region prior to the onset of absolute instabil-
ity) remains at c¼ 0.75 for Ts¼ 0.05 and is c¼ 0.76 for
Ts¼ 0.15.

VI. CONCLUSION

In this paper, we have extended the work of Refs. 1 and
2 by considering the theoretical effect of enforcing a uniform
axial flow onto the rotating-disk boundary layer. Both
stationary and traveling modes have been considered. This
investigation is part of a series by the present authors into
the convective instability of the boundary layer over a family
of rotating cones placed both in and out of axial flow.

The introduction of axial flow necessarily affects the equa-
tions governing the basic flow. For the rotating disk, all
dependence on the radial position is removed leading to a
modified form of the von Kármán ordinary differential equa-
tions. This does not happen when axial flow is incident on a
rotating cone with w= 90!, and the resulting analysis is
different. This crucial difference motivates separate publica-
tion of the two cases and a preliminary Orr–Sommerfeld analy-
sis of the rotating-cone boundary layer is presented in Ref. 4.

A. Stationary modes

We began by explicitly studying stationary modes of
instability. This is consistent with the existence of surface
roughness on the disk (as would naturally occur in many
practical applications) which is known to select stationary
vortices.

Increasing the axial flow rate is found to stabilize the
rotating-disk boundary layer to both type I and type II sta-
tionary modes of instability. This is evident from the increas-
ingly narrow range of waveangles predicted to be unstable in
both the asymptotic and numerical investigations and also
from the increasing critical Reynolds numbers at the onset of
either mode predicted by the numerical investigation. The
numerical investigation also demonstrates that both station-
ary instability modes are evident in the boundary layer for
all axial flow rates considered, and, although the type I mode
is the most dangerous (in the sense of lowest critical Reyn-
olds number) for low rates of axial flow, the type II mode
becomes increasingly important with increased Ts, becoming
most dangerous at some critical value around 0.40. Axial
flow is seen to reduce the amplification rates of stationary
modes, confirming again that it has a stabilising effect. It
also acts to increase the importance of the type II mode rela-
tive to the type I mode. However, the type I mode is still the
most amplified for all Ts+ 0.40 considered here.

Physically, these results are to be expected as increasing
the axial flow rate forces fluid towards the disk surface and
so instabilities are more likely to develop from viscous
effects close to the wall location.

The asymptotic analysis necessarily assumes that the
effective wall shear is zero along the type II branch, and we
have been able to confirm this a posteriori at all Ts using the

FIG. 14. Neutral-stability curves for traveling mode disturbances for
Ts¼ 0.05; c¼ 0.8 “)))”; c¼ 1 “–”; c¼ 5 “–.”; c¼ 20 “–x”.

FIG. 15. Neutral-stability curves for traveling mode disturbances for
Ts¼ 0.15; c¼ 0.8 “)))”; c¼ 1 “–”; c¼ 5 “–.”; c¼ 20 “–x”.
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numerical analysis. The asymptotic and numerical investiga-
tions have shown consistent predictions of the wavenumber
and waveangle of disturbances arising from both type I and
II modes, and excellent quantitative agreement has been
found in all cases even though the two problems were formu-
lated in different frames of reference.

B. Traveling modes

In practical applications where highly polished, smooth
disks are used (for example in CVD reactors), non-stationary
modes are known to occur in the boundary layer. The stabil-
ity of traveling modes was considered using two distinct for-
mulations: The first used the rotating frame of reference and
allowed control of the disturbance frequency within the
boundary-layer flow (consistent with experiments of the type
conducted by Corke and co-workers, for example). The sec-
ond used the inertial frame of reference and allowed control
of the vortex speed with respect to the disk surface (consist-
ent with experiments of the type conducted by Kohama and
Arai on the rotating sphere). Although the two formulations
do not facilitate direct quantitative comparisons of neutral
curves, there is a common result observed in both cases:
namely, the most amplified disturbances are those traveling
slower than the disk surface. Exactly what this means for
vortex-speed selection over smooth disks is not clear cut
since the type I modes (which dominate the type II modes in
all cases considered) were found to have higher critical
Reynolds numbers than their stationary counterpart. A bal-
ance is therefore to be struck between the near-stationary
modes that occur earlier in the unstable region and the more
amplified “slow” disturbances that occur later on. It is likely
by the point that the “slow” disturbances can arise, the near-
stationary modes will have grown sufficiently to remain the
most dominant. This is a more subtle process than previously
proposed in Ref. 26.

As with stationary modes, enforced axial flow was seen
to stabilise the boundary layer by increasing the critical
Reynolds numbers and also reducing the amplification rates
of both modes. It is also seen to increase the relative impor-
tance of the type II mode with respect to the type I mode.
However, the type I mode is still dominant for all Ts consid-
ered here. Axial flow is seen to very slightly increase the
phase speed of the most amplified traveling mode, even
though the frequency of the mode becomes increasingly neg-
ative with Ts.

C. CVD applications

The scalings used in this investigation are different to
those presented by Chen and Mortazavi,18 who investigate
the laminar-flow profiles arising from an equivalent (but
compressible) model for CVD reactors. Specifically, their
boundary-layer thickness is considered to be of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!"=ðC" þ X"Þ

p
, which leads to two parameters appearing in

their basic-flow equations: R1¼X*=(C*þX*) and
R2¼C*=(C*þX*). These parameters can be expressed in
terms of our single parameter as R1¼ 1=(1þ Ts) and
R2¼Ts=(1þTs). Their investigation considers the deposition
properties of the laminar flows in the regimes R1¼ 0, R2¼ 1

(equivalent to Ts ! 1); R1¼ 0.5, R2¼ 0.5 (equivalent to
Ts¼ 1), and R1¼ 1, R2¼ 0 (equivalent to Ts¼ 0). In terms of
these parameters, our investigation has R1¼ 1 and R2¼ Ts

which is consistent with their formulation when Ts<< 1.
Our analysis focuses on Ts+ 0.25 and we therefore conclude
that the two analyses are consistent in this range. Our formu-
lation has the advantage that Ts does not appear in the pertur-
bation equations and Reynolds number, which greatly
simplifies the stability analysis and interpretation of results.
However, if we were to consider large axial flow rates (rela-
tive to rotation rate) then the scalings used in Ref. 18 would
be more suitable and compressibility would also need to be
considered.

Descriptions within Ref. 20 indicate that CVD reactor-
flows can reach Reynolds numbers of around R, 104, which
can be confirmed by noting that a typical length scale within
a reactor is around 10 cm and the substrate can be rotated at
rates up to 1500 rpm. Our results show that this Reynolds
number is well within the unstable region for all values of Ts

considered. This clearly shows that the stability characteris-
tics of any reactor-flow design should be considered if the
laminar flow is to remain in practice.

With regards the simple rotating-disk model of Ref. 18,
their results indicate that the growth rates of deposition
increase with both axial flow rate and rotation rate. This is
due to the narrowing of the boundary layer which necessarily
increases the concentration of reactive molecules close to the
substrate. Our work furthers this conclusion by suggesting
that increasing the axial flow rate is to be preferred as it may
act to preserve the laminar flow over a greater region of the
support disk. However, the impact of compressibility and
temperature profiles needs to be considered in the stability
analysis to comment further. It is not possible to summarise
previous investigations here, although the effect of wall-
cooling or heating is expected to be significant.
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APPENDIX: VALUES FROM THE ASYMPTOTIC
ANALYSES

Table V presents numerical values for some underlying
quantities used in the asymptotic analysis. These are given

TABLE V. Numerical values of quantities used in the asymptotic analysis.

Ts
!f I1 I2

!I3

0.00 1.458 0.0966 0.0582þ 0.0315i &4.4495& 1.0023i

0.05 1.394 0.0868 0.0710þ 0.0408i &4.4166& 1.0464i

0.10 1.326 0.0765 0.0902þ 0.0546i &4.3777& 1.0816i

0.15 1.260 0.0669 0.1153þ 0.0735i &4.3292& 1.1069i

0.20 1.198 0.0584 0.1466þ 0.0982i &4.2703& 1.1228i

0.25 1.140 0.0509 0.1843þ 0.1296i &4.2050& 1.1299i
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so that comparisons can be made with equivalent quantities
calculated by Hall1 and Garrett et al.3 when Ts¼ 0. The defi-
nitions of these quantities can be found in Refs. 1 and 3.
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