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Abstract

The random search problem has long attracted continuous interest due to its broad interdisciplinary range of appli-
cations, including animal foraging, facilitated target location in biological system and human motion. In this paper,
we address the issue of statistical inference for ordinary Gaussian, Pareto, tempered Pareto and fractional Gaussian
random walk models, which are among the most studied random walk models proposed as the best strategy in the
random search problem. Based on rigorous analysis of the local asymptotic normality property and the Fisher in-
formation, we discuss some issues in unbiased joint estimation of the model parameters, in particular, the maximum
likelihood estimation. We present that there exist both theoretical and practical difficulties in more realistic tempered
Pareto and fractional Gaussian random walk models from a statistical standpoint. We discuss our findings in the
context of individual animal movement and show how our results may be used to facilitate the analysis of movement
data and to improve the understanding of the underlying stochastic process.

1 Introduction
Peculiarities of individual animal movement have been attracting considerable attention over the last three decades
(e.g. see Mandelbrot [25]; Kareiva and Shigesada [18]; Viswanathan et al. [54, 57]; Bartumeus et al. [3]; Reynolds et
al. [43]; Codling et al. [8]) as they are thought to hold the key to the understanding of the animal dispersal, and hence
to better understanding of the spatiotemporal phenomena in population dynamics such as biological invasions, pattern
formation etc. [35, 51]. Moreover, since the observed patterns in the animal movement (in particular, in foraging
behavior) are thought to optimize the search success [2], it may help to better understand some crucially important
phenomena such as population outbreaks or species extinction as well as the evolutionary aspects of the population
dynamics.

An animal path is typically continuous and that provides a considerable challenge as a consistent theoretical frame-
work allowing for analysis of continuous paths is yet largely missing [30, 31], although some progress has recently
been made [36, 37]. In contemporary practice of animal movement studies, the path is usually mapped into a broken
line where the line’s nodes correspond to animal position at certain observation times. Generally speaking, the time-
step ∆t between two subsequent observations can vary along the path; here, for the sake of simplicity, we assume it to
be constant (as is indeed the case with many field and laboratory studies). The movement along the broken line can
then be quantified by the probability distribution for the step size or “jump” between two subsequent positions and by
the probability distribution for the turning angle [51]. Therefore, researches have to work with finite amount of data.
Moreover, in order to reach a good understanding of the underlying stochastic process, it often appears necessary to
work with rare events, e.g. long jumps, where the data are scarce by definition. Since scarce data are subject to a large
statistical fluctuation, analysis of rare events is a challenging issue which requires application of advanced statistical
tools.

Application of statistical techniques to animal movement data usually consists of two steps. The first one is the
choice of the model, e.g. the type of the step size distribution. Examples of widely used models are given by the
Brownian motion (also known as Gaussian random walk), fractional Brownian motion, and Lévy walk or flight (aka
Pareto random walk). Note that animal movement usually consists of more than one mode [29], so that it can be a
combination of different movement types or behavioral states [5]. Once the distribution is chosen using an appropriate
model selection procedure [6] (e.g. the Akaike information criteria), the next step is to estimate the model parameters
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such as the variance, the value of cutoff at small steps (where applies) etc. This is normally done by using the maximum
likelihood method.

Standard approaches, however, tell little about the possible error of the parameter estimate. Meanwhile, a large
error may reduce the practical value of the estimate to zero. Consider a hypothetical example when experimental
data, for instance on the jump size distribution, are nicely fitted by a theoretical curve. In case the error of the
parameter estimation is small, that can be regarded as a successful interpretation of the data and hence can make it
possible to identify the process behind the observed pattern. However, a large error would make this interpretation
very questionable. Even more importantly, although the second step of model fitting (i.e. parameter estimation)
tends to be regarded as a technical stage rather than a conceptual one, there can be a logical loop when results from
parameter estimation may overturn the hypothesis made at the stage of model selection. An example of such situation
is considered below.

Note that mapping a continuous curve onto a discrete set (or a broken line) is of course not a one-to-one cor-
respondence, and hence some information is lost. A question arises as to how important this information loss can
be. In particular, whether the pattern of movement may change depending on the observations frequency has been a
controversial issue. Using data simulated from a mathematical model, Reynolds [44] showed that, if for a certain ∆t
the movement pattern along the broken line is a Lévy walk, then a “sub-sampling” with a larger ∆t will also result in
a Lévy walk and even with a heavier tail. Similar results were obtained by Plank and Codling [39] who also empha-
sized that standard statistical tools may sometimes fail to distinguish between the power law and the exponential rate
of decay in the step size distribution and hence fail to distinguish between the two qualitatively different movement
patterns (see also [7]). A question remains largely open as to what may happen in case of a small/decreasing ∆t. Note
that this is not only important but also a timely issue as the developments in relevant laboratory and field equipment
makes it possible to obtain high-resolution data on animal position.

Assuming that the observation frequency is properly established, another question arises as to how large should
be the total time scale of observations in order to provide robust information about the movement pattern. That
revokes a recent discussion in the literature that, in some cases, the Lévy flight may be difficult to identify in the
movement data as it results in the pattern similar to that of the correlated random walk [1, 45]. This issue was first
addressed by Viswanathan et al. [56] who, having considered the tangling impact of the turning angles [4], showed
that distinguishing between different types of movement (e.g. correlated random walk vs Lévy flight) can only only
possible when the data span over a sufficiently large time-scale, i.e. when the time series of animal positions is long
enough. Here we consider this problem from a different angle. Having chosen parameter estimators for the step
size distribution, we reveal their convergence rate(s) for a few most commonly used random walk models. This, in
principle, makes it possible to estimate the amount of data required to provide an estimate of parameters with a given
accuracy.

In this paper, we address the issue of statistical analysis of animal random walk data using a mathematically
rigorous approach borrowed from the general theory of stochastic processes. We revisit a few most commonly used
random walk types and reveal the convergence rate for different parameters. Analysis of the power law and the
truncated power law distributions lead to a conclusion that the best-fitting hypothesis may indeed depend on the time
scale of observations. Moreover, we show that an increase in the observation frequency may change the whole pattern
of movement unless some a posteriori biological information is used. We thus conclude that the random walk is not
robust to the time scale of the observation. Finally, we discuss how our findings may help researches working on
individual animal movement to reveal the movement pattern and to identify the movement type.

1.1 Outline of the Method
The local asymptotic normality property is a vital concept in asymptotically optimal statistical analysis. In short, the
local asymptotic normality property for a differentiable statistical model for the parameter θ ∈ Rd to be estimated is
defined through the weak convergence of the likelihood ratio to the Gaussian shift experiment; for each h ∈ Rd ,

dPθ+Rn(θ)h

dPθ

∣∣
Fn

L→ exp
[
⟨h,Z(θ)⟩− 1

2
⟨h,I (θ)h⟩

]
,

under Pθ , where Pθ |Fn is a probability measure associated with θ restricted to the filtration Fn, {Rn(θ)}n∈N is a
sequence of diagonal matrices in Rd×d whose diagonal entries tend to zero, I (θ) is a non-negative definite deter-
ministic matrix in Rd×d , called the Fisher information matrix, and Z(θ)∼ N (0,I (θ)) under Pθ . If the above weak
convergence holds, then we say that the local asymptotic normality (LAN) property holds at point θ with the rate
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Rn(θ) and the Fisher information matrix I (θ). The convergence is equivalent to the following locally asymptotically
quadratic structure of log likelihood function

ℓn (θ +Rn(θ)h)− ℓn(θ) =

⟨h,Rn(θ)∇θ (ℓn(θ))⟩−
1
2
⟨h,Rn(θ)Hessθ (ℓn(θ))Rn(θ)h⟩+oPθ (1), (1.1)

where the vector Rn(θ)∇θ (ℓn(θ)) converges in law to N (0,I (θ)) under Pθ , and where the matrix Rn(θ)Hessθ (ℓn(θ))Rn(θ)
converges in Pθ -probability to I (θ). Moreover, if the LAN property holds with non-singular I (θ), then a unbiased
estimator {θ̂n}n∈N of θ is said to be asymptotically efficient in a neighborhood of θ if

Rn(θ)−1
(

θ̂n −θ
)

L→ N
(
0,I (θ)−1) ,

under Pθ , that is, such estimators achieve asymptotically the Cramer-Rao lower bound I (θ)−1 for the estimation
variance. (We refer the reader to [9, 23, 24, 41] for thorough details.) Let us remark that the concept of asymptotic
efficiency resides within the situation where asymptotic normality of the estimator holds valid. The efficiency here is
not necessarily identical to the optimality in a general sense, which we will demonstrate with concrete examples in
Section 2.2 and 2.3.

Let us close this introductory section with some notation which will be used throughout the text. We denote by
Rd the d-dimensional Euclidean space with the norm ∥ · ∥ and the inner product ⟨·, ·⟩. We use the incomplete gamma
function

Γ(s,x) :=
∫ +∞

x
ts−1e−tdt,

for s ∈ R and x > 0, where the case s < 0 is well defined as long as x > 0. Let us denote by Id the identity matrix in
Rd×d . We denote by N (γ,Σ) the Gaussian law with mean γ and covariance matrix Σ, that is, its probability density
function is given by

ϕ(x) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
⟨x− γ ,Σ−1(x− γ)⟩

]
, x ∈ Rd ,

and by Exp(λ ) the exponential distribution with rate λ > 0, that is, its probability density function is given by

f (x) = λe−λx, x > 0.

2 Random Walk Models
Let us begin with a general modeling base, which applies to all the discrete time random walks models of this paper.
Let {Xn}n∈N be a discrete time stochastic process in R2. In this paper, we call it a (discrete time) random walk if

(i) the increments {Xn −Xn−1}n∈N(=: {Zn}n∈N) forms a sequence of identically distributed (not necessarily inde-
pendent) random vectors in R2,

(ii) the standardized increments {Zn/∥Zn∥}n∈N form a sequence of independent and identically distributed (iid)
uniform random vectors on the unit sphere in R2.

The condition (ii) means that each step has no preference in direction, which corresponds to an isotropic random walk;
e.g. see [8].

2.1 Ordinary Gaussian Random Walks
We mean by ordinary Gaussian random walk (also known in applications as the Brownian motion) a random walk
with {Zn}n∈N being iid with Gaussian distributed length and with no directional preference. To define this precisely
and uniquely, we first transform, without any essential loss of information, each step Zn in R2 into a random variable
Wn (that is, in R) and an angle ηn ∈ (0,π] in the polar decomposition

Zn =Wn

[
cosηn
sinηn

]
. (2.1)
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By restricting the angles {ηn}n∈N to the half circle (0,π], we let the random variables {Wn}n∈N possess a sign. In
the case of the ordinary Gaussian random walk model, {ηn}n∈N is a sequence of iid random variables in (0,π] and
{Wn}n∈N is a sequence of iid centered Gaussian, that is, L (W1) = N (0,σ2), where σ > 0 is the parameter to be
estimated. It is well known that the maximum likelihood estimator σ̂2

n := n−1 ∑n
k=1 ∥Zk∥2 is asymptotically efficient

and satisfies under Pσ0 that σ̂2
n → σ2

0 , a.s., and
√

n
(
σ̂2

n −σ2
0
) L→ N

(
0,2σ4

0
)
.

We omit the proof as those are very well known results; for example, see [13, 23].

2.2 Pareto Random Walks
We call a random walk Pareto random walk if {∥Zn∥}n∈N forms a sequence of iid Pareto random variables whose
probability density has the form

f (y;α ,0,τ) :=
ατα

yα+1 , y ∈ (τ,+∞), (2.2)

where α > 0 and τ > 0 are parameters, α > 0 quantifying the rate of decay of the probability density at large y.
In applications to animal movement, Pareto random walk as given by (2.2) is usually referred to as a “power law
distribution,” for instance, of the jump size y [3, 50, 54]. The corresponding pattern of individual animal movement
is usually referred to as a Lévy flight. Obviously, it is only valid if the value of the ‘cutoff’ τ at small jumps is
positive1. In the below, we will show that this simple observation sometimes may have crucial consequences for data
interpretation.

Generation of Pareto random variables for modelling purposes is straightforward as the probability density function
(2.2) has an inverse of its tail integral in closed form, that is,

inf
x∈(0,+∞)

{∫ +∞

x
f (y;α,0,τ)dy ≥ u

}
= τu−1/α , u ∈ (0,1).

The algorithm is as simple as;
Algorithm 1
Step 1. Generate U as uniform (0,1).
Step 2. Exit with τU−1/α .

In Figure 1, we draw typical sample paths of the rotation invariant Lévy flight in R2.

Figure 1: Typical sample paths of the rotation invariant Pareto random walk in R2 with τ = 0.1 for three different
values of the probability density decay rate: α = 1.0 (left), α = 1.5 (center) and α = 1.8 (right).

The unknown parameter to be estimated in our hypothesis is [α,τ]⊤. To state results, let us prepare some notation.
Let Θ1 and Θ2 be bounded convex domains satisfying

Θ−
1 ⊂

{
[α,τ]⊤ ∈ R2|α ∈ (0,+∞), τ ∈ (0,+∞)

}
,

Θ−
2 ⊂ {α ∈ R|α ∈ (0,+∞)} .

1Note that observation data on animal movement are usually distributed on the whole semiline, i.e. f > 0 for any y ≥ 0. It means that the events
with small jump size should either be excluded for some a posteriori reasons (see Discussion) or otherwise the probability distribution function f
should be defined additionally for 0 ≤ y ≤ τ .

4



We denote by θ0 := [α0,τ0]
⊤ ∈ Θ1 the true value of the unknown parameter. We denote by Pθ the probability measure

associated with θ ∈ Θ1, or with θ ∈ Θ2 and τ0 being known.

Theorem 2.1. (i) The minimum mink=1,...,n ∥Zk∥ is the maximum likelihood estimator of τ0. In particular, it holds
under Pθ0 -a.s. that as n ↑+∞,

n
(

min
k=1,...,n

∥Zk∥− τ0

)
L→ Exp

(
α0

τ0

)
. (2.3)

(ii) Suppose that τ0 is known. The LAN property holds at the point α ∈ Θ2 with

Rn(α) =
1√
n
=: Rn, I (α) =

1
α2 .

In particular, letting

α̂n :=

(
1

n−1

n

∑
k=1

ln
∥Zk∥

τ0

)−1

, n ∈ N,

it holds under Pθ0 that as n ↑+∞, α̂n → α0, a.s., and

√
n(α̂n −α0)

L→ N
(
0,α2

0
)
. (2.4)

Note that for each n ∈ N, Varθ (∂τ ∑n
k=1 ln f (∥Zk∥;α,0,τ)) = 0. This indicates that the Cramér-Rao bound for τ is

infinite. In the meantime, due to (i) of Theorem 2.1, the simple minimum mink=1,...,n ∥Zk∥ of the sample converges to
the true value at the much faster rate of n and is not asymptotically normal. It is noteworthy that this faster convergence
in (2.3) is realized without knowing the true value of α . Therefore, in practice, given a certain number of sample steps,
the parameter τ is estimated via (2.3), then the parameter (c,α) is estimated jointly via (2.4) with τ0 being the estimate
from the first procedure. Note that the maximum likelihood estimator of α is

α̂∗
n =

(
1
n

n

∑
k=1

ln∥Zk∥− lnτ0

)−1

,

rather than α̂n above. For each n ∈ N, however, it is neither an unbiased estimator nor attains the Cramér-Rao bound.
See Rytgaard [47] for more details. Also, once τ0 is known, the Pareto sample is nothing but a disguised exponential
sample, as L (ln(∥Zn∥/τ0)) = Exp(α). Hence, the Pareto sample with known τ0 can be analyzed with various known
techniques for exponential distributions.

2.3 Tempered Pareto Random Walks
As before, we call a random walk tempered Pareto random walk if {∥Zn∥}n∈N forms a sequence of iid tempered Pareto
random variables, while there could exist two definitions.

2.3.1 Tempering Density Function

The first definition is given in the form of probability density function

f (y;α,κ,τ) =
1

κα Γ(−α ,κτ)
e−κy

yα+1 =
e−κy

α(κτ)α Γ(−α,κτ)
f (y;α ,0,τ), y ∈ (τ,+∞), (2.5)

where α ∈ (0,+∞), κ ∈ (0,+∞) and τ ∈ (0,+∞). For convenience, we interpret (2.5) as the distribution of the jump
size y of animal movement along the path. Correspondingly, the distribution defined by (2.5) is usually known as a
“truncated power law” or, in a more precise manner, as a power law with exponential cutoff at large distances [12, 26,
33]. In terms of the underlying stochastic process, truncated power law may indicate a transition from superdiffusive
Lévy flight to a more usual, diffusive Brownian motion, e.g. due to the boundedness of the available space [12, 26].

In view of the limiting relation

lim
κ↓0

κα Γ(−α,κτ) =
1

ατα , (2.6)
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the Pareto random walk can also be thought of as a limit of this tempered Pareto random walk. This definition provides
a simpler acceptance-rejection method.
Algorithm 2
Step 1. Generate U as uniform (0,1).
Step 2. Generate V through Algorithm 1, independent of U .
Step 3. If U ≤ e−κV , then exit with V . Otherwise, return to Step 1.

The acceptance rate at Step 3 is

P
(
U ≤ e−κV )= E

[
e−κV ]= α(κτ)α Γ(−α,κτ),

which tends up to 1 as κ ↓ 0, while down to 0 as κ ↑+∞. Hence, this acceptance-rejection method tends to terminate
more quickly with smaller κ . In Figure 2, we draw typical sample paths of the rotation invariant truncated Lévy flight
in R2. Evidently, sample paths look more like non-tempered Pareto random walk for smaller κ .

Figure 2: Typical sample paths of the rotation invariant tempered Pareto random walk ((α,τ) = (1.5,0.1)) in R2 under
two different tempering parameters; κ = 0.01 (left), κ = 1.0 (center) and κ = 2.0 (right).

The unknown parameter to be estimated in our hypothesis is [α ,κ,τ]⊤. In a similar manner to before, let Θ3 and
Θ4 be bounded convex domains satisfying

Θ−
3 ⊂

{
[α,κ,τ]⊤ ∈ R3|α ∈ (0,+∞), κ ∈ (0,+∞), τ ∈ (0,+∞)

}
,

Θ−
4 ⊂

{
[α,κ]⊤ ∈ R2|α ∈ (0,+∞), κ ∈ (0,+∞)

}
.

We denote by θ0 := [α0,κ0,τ0]
⊤ ∈ Θ3 the true value of the unknown parameter and by Pθ the probability measure

associated with θ ∈ Θ3, or with θ ∈ Θ4 and τ0 being known.

Theorem 2.2. (i) The minimum mink=1,...,n ∥Zk∥ is the maximum likelihood estimator of τ0. In particular, it holds
under Pθ0 that as n ↑+∞,

n
(

min
k=1,...,n

∥Zk∥− τ0

)
L→ Exp

(
e−κ0τ0

τα0+1
0 κα0

0 Γ(−α0,κ0τ0)

)
. (2.7)

(ii) Suppose that τ0 is known. The LAN property holds at the point θ := [α,κ]⊤ ∈ Θ4 with

Rn(θ) =
1√
n
I2 =: Rn, I (θ) =

[
I11(θ) I12(θ)
I12(θ) I22(θ)

]
,

where

I11(θ) :=

∫ +∞
κτ0

z−α−1e−z(lnz)2dz

Γ(−α ,κτ0)
−

(∫+∞
κτ0

z−α−1e−z(lnz)dz

Γ(−α,κτ0)

)2

,

I12(θ) :=

∫ +∞
κτ0

z−α−1e−z(lnz)dz

κΓ(−α,κτ0)

Γ(1−α,κτ0)

Γ(−α ,κτ0)
−
∫

κτ0
z−α e−z(lnz− lnκ)dz

κΓ(−α,κτ0)
, (2.8)

I22(θ) :=
Γ(2−α,κτ0)

κ2Γ(−α,κτ0)
−
(

Γ(1−α,κτ0)

κΓ(−α ,κτ0)

)2

.
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In particular, the matrix I (θ) is not singular.
(iii) For each n ∈ N, define

θ̂n :=
[

αn
κn

]
:=

1
(x1,n − τ0)x3,n − x2

2,n + τ0x2,n(x1,n + τ0)− τ2
0 x2

1,n

[
x1,nx3,n −2x2

2,n +2τ0x1,nx2,n − τ2
0 x2

1,n
(x1,n −2τ0)x2,n + τ2

0 x1,n

]
, (2.9)

where xp,n := n−1 ∑n
k=1 ∥Zk∥p, p = 1,2,3, and define

θ ∗
n := θ̂n +

1
n
I
(

θ̂n

)−1 n

∑
k=1

 ∫+∞
κnτ0

z−αn−1e−z(lnz)dz
Γ(−αn,κnτ0)

− ln(κn∥Zk∥)
Γ(1−αn,κnτ0)

κnΓ(−αn,κnτ0)
−∥Zk∥

 . (2.10)

Then, it holds under Pθ0 that as n ↑+∞, θ ∗
n → θ0, a.s., and

√
n(θ ∗

n −θ0)
L→ N

(
0,I (θ0)

−1) .
As before, estimation of the parameter τ is possible at the much faster rate n without knowing the true value of

(α,κ). Efficient estimation of (α ,κ) here is not a trivial problem, since the likelihood equation is highly involved
and requires numerical approximation methods to solve. The condition (iii) of the above Theorem claims that the
method of moments with the so-called method of scoring achieves the asymptotic efficiency. (It is not clear whether
the method of moments alone achieves the asymptotic efficiency.) Let us however note two possible issues in this
approach. First, we might be careful in estimation accuracy of xl,n’s, in particular of higher orders, which may require
an extremely great number of sample when the distribution has a heavy tail, that is, when κ0 is close to zero. Also,
it is a little cumbersome to compute the matrix I (θ ∗

n ) for every n, which may be addressed by somehow avoiding to
update the matrix at each iteration.

In principle, the model based on the tempered Pareto distribution is not appropriate either when κ is very large or
when it is very close to zero. If κ is very large, on the one hand, the tempered Pareto distribution is nearly exponential
at infinity. A simpler model based on the exponential distribution is then enough to describe sample paths. Note that
the issue of higher moments in the above method of moments is likely to disappear, while estimates of α0 tend to
be very unstable in return. On the other hand, if κ is very close to 0, then the tempered Pareto distribution is nearly
non-tempered. In this case, the non-tempered Pareto model should work sufficiently well. The user can therefore
select the models with a posteriori knowledge.

2.3.2 Tempering Tail Probability

There exists another definition of the tempered Pareto distribution based on the tail probability∫ +∞

x
f (y;α,κ,τ)dy = τα eκτ e−κx

xα , x ∈ (τ,+∞), (2.11)

where α ∈ (0,+∞), κ ∈ [0,+∞), τ ∈ (0,+∞) and where the probability density function f (y;α ,κ,τ) is also available
in closed form

f (y;α,κ,τ) = τα eκτ e−κy

yα+1 (α +κy) = e−κ(y−τ)
(

1+
κ
α

y
)

f (y;α ,0,τ), y ∈ (τ,+∞), (2.12)

with f (y;α ,0,τ) being the Pareto density function (2.2). Clearly, it reduces to the Pareto density as soon as κ = 0.
Rather than a numerical inversion of the tail probability (2.11), the density function suggests the following acceptance-
rejection method.
Algorithm 3
Step 1. Generate U as uniform (0,1).
Step 2. Generate V through Algorithm 1, independent of U .
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Step 3. If

U ≤
(

e−max(0,1−α−κτ) max
(

1+
κτ
α

,
1
α

))−1 f (V ;α ,κ,τ)
f (V ;α,0,τ)

=
e−κ(V−τ)(1+κV/α)

e−max(0,1−α−κτ) max(1+κτ/α,1/α)

then exit with V . Otherwise, return to Step 1.
The acceptance rate at Step 3 is

P

(
U ≤ e−κ(V−τ)(1+κV/α)

e−max(0,1−α−κτ) max(1+κτ/α,1/α)

)
= E

[
e−κ(V−τ)(1+κV/α)

e−max(0,1−α−κτ) max(1+κτ/α,1/α)

]

=
1

e−max(0,1−α−κτ) max(1+κτ/α,1/α)
,

which tends up to αe1−α
1(α ∈ (0,1))+1(α ∈ [1,+∞)) as κ ↓ 0, while down to 0 as κ ↑+∞.

Recently, the estimation problem of the tempered Pareto distribution of this form is addressed in [27], based on
Hill-type estimators. We simply describe the LAN property and refer the reader to [27] for more details on estimation.
The sets Θ3 and Θ4 are the same respectively as the ones in Theorem 2.2.

Theorem 2.3. (i) The minimum mink=1,...,n ∥Zk∥ is the maximum likelihood estimator of τ0. In particular, it holds
under Pθ0 that as n ↑+∞,

n
(

min
k=1,...,n

∥Zk∥− τ0

)
L→ Exp

(
α0

τ0
+κ0

)
.

(ii) Suppose that τ0 is known. The LAN property holds at the point θ := [α,κ]⊤ ∈ Θ4 with

Rn(θ) =
1√
n
I2, I (θ) =

 E
[

1
(α+κ∥Z1∥)2

]
E
[

∥Z1∥
(α+κ∥Z1∥)2

]
E
[

∥Z1∥
(α+κ∥Z1∥)2

]
E
[

∥Z1∥2

(α+κ∥Z1∥)2

]  .
In particular, the matrix I (θ) is not singular.

2.4 Fractional Gaussian Random Walks
We mean by fractional Gaussian random walk a random walk with {Zn}n∈N being identically distributed with a
common Gaussian distribution, while not necessarily independently distributed. We again use the polar decomposition
(2.1) to transform {Zn}n∈N in R2 into a sequence {Wn}n∈N of random variables in R with L (Wn) =N (0,σ2), n ∈N,
and a sequence {ηn}n∈N of iid uniform random variables over (0,π]. In addition, we hypothesize that steps are not
necessarily independent and have the autocovariance structure

Cov
(
Wk1 ,Wk2

)
=

σ2

2

(
|k1 − k2 +1|2H −2 |k1 − k2|2H + |k1 − k2 −1|2H

)
, k1,k2 ∈ N,

where H ∈ (0,1) is often called the Hurst parameter. In this sense, the fractional Gaussian random walk lies in the class
of correlated random walks. However, contrary to the standard CRW [18], here the correlation is between the step
sizes rather than between the turning angles. Therefore, the path does not necessarily show any directional preference.
In Figure 3, we draw typical sample paths of the fractional Gaussian random walk in R2. Note that when H = 1/2,
this model reduces to the ordinary Gaussian random walk discussed in Section 2.1.

We want to mention it here that, as well as the models considered above, the fractional Gaussian random walk was
suggested as a possible stochastic process underlying animal movement [15, 46].

The unknown model parameters to be estimated are θ := (σ ,H) ∈ (0,+∞)× (0,1). Let Θ5 be bounded convex
domain satisfying

Θ−
5 ⊂

{
[σ ,H]⊤ ∈ R2|σ ∈ (0,+∞), H ∈ (0,1)

}
,

8



Figure 3: Typical sample paths of the fractional Gaussian random walk in R2 with three different Hurst parameters;
H = 0.15 (left), H = 0.5 (center) and H = 0.85 (right).

We denote by θ0 := [σ0,H0]
⊤ ∈ Θ5 the true value of the unknown parameter and by Pθ the probability measure

associated with θ ∈ Θ5. The random vector Yn := [W1, . . . ,Wn] in Rn has the probability density function

fn(y; θ) :=
1

(2π)n/2σn|Tn(H)|1/2 exp
[
− 1

2σ2

⟨
y,Tn(H)−1y

⟩]
, y ∈ Rn, θ ∈ Θ5,

where Tn(H) is the symmetric Toeplitz matrix which indicates the autocorrelation structure

(Tn(H))k1,k2
:= Corr

(
Wk1 ,Wk2

)
=

1
2

(
|k1 − k2 +1|2H −2 |k1 − k2|2H + |k1 − k2 −1|2H

)
,

for k1,k2 = 1, . . . ,n.

Theorem 2.4. The LAN property holds at the point θ ∈ Θ5 with

Rn(θ) :=
1√
n
I2 =: Rn, I (θ) := 2

[ 1
σ2

lnH
σ

lnH
σ (lnH)2

]
.

In particular, the matrix I (θ) is singular for every θ ∈ Θ5.

Due to the singularity of the Fisher information matrix, the conventional asymptotic efficiency theory is not ap-
plicable to the full joint estimation of the two parameters. Nevertheless, as soon as either σ or H is fixed, the matrix
reduces to R1×1 with a strictly positive entry. It is noteworthy that the singularity across σ and H occurs also under
high-frequency sampling, as discussed in Kawai [19, 20]. We omit a practical estimation procedure which attains the
above efficiency, as it is essentially very involved. For details on estimation based on Whittle maximum likelihood
estimators and a plug-in version of maximum likelihood estimators, we refer the reader to, for example, [10, 14]. From
a parameter estimation point of view, thus, this model is not necessarily the best candidate among the random walk
models discussed in this paper.

3 Discussion and Conclusions
Analysis and interpretation of animal movement data is one of the most controversial issues in contemporary ecology.
Importance of rare events such as long-distance jumps and, on the other hand, availability of large amount of high-
resolution data due to recent developments in the methodology and equipment for field and laboratory experiments
[26, 31] pose a considerable challenge for data analysis. Commonly used statistical approaches do not always allow
distinguishing unambiguously between qualitatively different processes such as, for instance, correlated random walk
and the Lévy flight, and that has caused a heated debate [5, 12, 39, 45, 52]. Moreover, it remains a largely open
question to what extent the inherently continuous animal movement can be adequately described by discrete random
walk models as it is intuitively clear (cf. Turchin [51]) that the results may depend on the time-step of the observation
[7, 39, 44].

In this paper, we addressed this issue by considering the problem of parameter estimation for random walk data.
Having applied methods of the stochastic processes theory (the Fisher information for unbiased joint estimation of
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the model parameters) we provided ready-to-use formulas to estimate parameter values for a few widely used random
walk models such as ordinary and fractional Gaussian random walk, Pareto random walk (also known as power law)
and tempered Pareto random walk (aka truncated power law). We have shown that there exist both theoretical and
computational difficulties in the “more realistic” models. In particular, in the tempered Pareto model, a root of its
likelihood equation is unavailable in closed form. In the fractional Gaussian random walk model, the conventional
asymptotic optimality theory is not applicable to the full joint estimation of its two model parameters as the Fisher
information matrix is singular. This fact suggests that much care should be taken in the choice of the underlying
model. Moreover, a posteriori knowledge may be important; see the comments at the end of section 2.3.1.

Note that here we focused on Gaussian, Pareto and tempered Pareto random walk models as they are widely
regarded as paradigms of a few qualitatively different types of individual animal movement. However, our approach
is not reduced to these cases only, and its extension onto some other cases may be possible. For instance, a relatively
straightforward yet meaningful extension of the proposed framework can be done by introducing some preference in
directions for Gaussian and fractional Gaussian random walks, instead of them being equiprobable. It is readily seen
that, if the distribution of the turning angles is symmetric with respect to zero (e.g. like in the standard correlated
random walk), then our results remain essentially the same.

3.1 Theoretical implications
One of the main problems in individual animal movement studies is to identify the pattern of movement. Now we are
going to discuss how our findings may help to solve this problem. However, before we move to a further discussion,
a general remark seems to be necessary in order to clarify the issue. In the literature on individual animal movement,
the power law distribution f (y) ∼ y−(α+1) (cf. Eq. (2.2)) is often called “scale-free” for the reason that, if α ∈ (0,1],
then the average step size ⟨y⟩ does not exist as the corresponding integral is diverging. However, we believe that this
terminology is confusing and misleading. We want to emphasize it here that, whatever is the type of the individual
movement (e.g. Brownian motion or a Lévy flight or walk), the movement is never really scale-free2. There always
exists a characteristic step size, although it may be defined somewhat differently. Below we mention just a few
possibilities:

Median of the distribution. Consider y∗ such as∫ y∗

0
f (y)dy =

∫ ∞

y∗
f (y)dy =

1
2
. (3.1)

Obviously, y∗ gives a characteristic scale of the random walk with a very clear meaning.

Dimensions analysis 1. Another argument resulting in a characteristic scale is based on the observation that, if
we consider the distribution f (y) of the step size, then y is not an abstract number but has the dimension of length,
which we denote as [y] = L. Correspondingly, the probability density distribution f is measured not in abstract units
but has the dimension of inverse length, i.e. [ f ] = L−1. It means that, apart from a senseless case of α = 0, the step
size probability distribution function must always include a parameter with the dimension of length, which then can
be regarded as a characteristic scale. In particular, we immediately observe that Eq. (2.2) contains the cutoff parameter
[τ] = L.

Dimensions analysis 2. Note that the step size probability distribution with an asymptotic power law behaviour at
large y can be written in a different form (known as a Cauchy-type distribution):

f (y) =
Cp,α

pα+1 + yα+1 ∼
Cp,α

yα+1 , y ↑+∞, (3.2)

where p > 0 is a parameter and Cp,α is the normalizing constant. Equation (3.2) does not contain a cutoff but it has
got another parameter p instead. It is readily seen that [p] = L, so it can be regarded as a characteristic scale of the
movement.

Similar arguments apply to truncated power law as well. Note that here we talk not about an external spatial scale
which can arise due to the boundedness of the space available for the random walk (consider, for instance, dispersal
of terrestrial birds in a small island). Although its importance for the movement pattern has been widely recognized

2The situation is different in time-continuous stochastic processes, e.g. see [48].
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[55] so that there is even an opinion that it may turn the power law into a truncated power law [12], the existence of
an external spatial scale is in many cases obvious. Instead, here we talk about something much less obvious, i.e. about
an inherent spatial scale that originates in the power law itself and hence would have been present even in an idealistic
case of movement in unbounded space.

The actual issue with the power law distribution is not the absence of a characteristic scale – which, as we have
shown it above, always exists – but whether this scale is representative of the process(es) resulting in a heavy-tailed
distribution. It is this issue that our findings seem to make a significant contribution to the understanding of. For
instance, in case of Pareto distribution (2.2) with α close to zero, the frequency of large jumps can be high but the
scale parameter τ presumably remains small being estimated as the minimum value observed in the data; see (2.3).
We have therefore shown that, in fact, parameter τ controls the type of the distribution. Indeed, the power law and
truncated power law distributions are only formally valid when the minimum jump size is positive, whatever good
may be the fitting of the data at large and intermediate jumps. This leads to a counter-intuitive conclusion that, for an
individual movement described by Pareto distribution, we cannot separate the apparently different scales of small and
large jumps and the result of the analysis of long-distance dispersal essentially depend on animal movements on small
scale. We refer to this situation as a genuine Lévy flight. It is not scale-free, as it was suggested by earlier studies, but
its specifics is that the small and large scales appear to be equally important and cannot be separated.

Applying this result to movement data, we note that animal movement is never uninterrupted, usually alternating
periods of fast movement with periods of slow movement or rest [21, 22, 26, 32]. Therefore, having the time step
chosen sufficiently small, which seems to be prescribed by a natural desire to have the data as detailed as possible, the
data set inevitably includes periods of rest when the increment in the animal position is zero (up to the measurement
error). In this case, a power law-type distribution is not valid since the estimation procedure gives τ = 0, see the equa-
tions (2.3) and (2.7). However, by means of coarsening the time-grid, the zero-valued increments can be eliminated,
which restore validity of the power law (or truncated power law) distribution.

A question then arises as to what should be the course of action if the data fitting at large and intermediate jumps
do suggest a power law but the estimate (2.3) results in τ = 0. We hypothesize that, in this situation, the movement
pattern is not actually a Lévy flight and fitting the data with a power law is descriptive but not insightful. Such an
‘artificial’ power law may appear as a result of heterogeneity of the movement data, e.g. when movement tracks of
different animals are pooled together [38] or when a few different movement modes are mixed [11], even when each
of the tracks/modes may be a Brownian motion [17]. We refer to this situation as a superficial Lévy flight. We
want to mention it here that, in this situation, a power law may appear to be the best fit simply because the range of
hypothesis from which the choice is made was not sufficiently broad [11, 17]. It will then be outperformed by the true
model (e.g. a composite Brownian motion) once this true probability distribution is added into the range [17]. Our
conclusions are in a good agreement with an earlier study by Benhamou [5] who showed that one should distinguish
between the Lévy flight with the Lévy pattern.

For similar reasons, we believe that the Cauchy-type distribution is not an appropriate model for a genuine Lévy
flight. Unlike (2.2), distribution (3.2) only predicts a power law at very large jump size, but the deviation from the
power law becomes significant already at the intermediate scale y ∼ p. If (3.2) appears to be the best fit to explain
movement data, that may indicate that the data is a mixture of different movement modes.

We therefore demonstrated that the properties of a given random walk can be essentially different on a different
time scale, i.e. for a different frequency of observations. Note that the zero-valued increments or jumps can be removed
from the data set by distinguishing between different movement modes, e.g. by separating the periods of actual
movement (also known as bouts) from the periods of slow movement or rest [26]. However, this procedure is purely
heuristic and usually based on a conventional value of a “threshold” jump value separating the movement and the rest.
Although it is often used in practice, such a separation is lacking a solid theoretical basis, and the question about the
possible impact of the threshold value on the type of the distribution as well as on the corresponding parameter values
is largely open. Our findings suggest that not only parameter estimation but, in some cases, also the model itself can
be quite sensitive to the choice of this threshold.

3.2 Implications for data analysis
On a more technical side, we have shown that, even within the same model, the convergence rate for different parame-
ters can be different. Especially the latter seems to bring a practically important message that, given required accuracy
of parameter estimation, the constraint on the minimum number of the data-points originates in the parameter with
the slowest convergence rate. Taking into account recent growth in availability of high-resolution data (cf. Nathan et
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al. [31]), this seems to be a useful and timely result.
In conclusion, we show how our results on the convergence rate and the residual error distribution may help to

evaluate the amount of data that is required to estimate parameter values with a give accuracy or tolerance. Consider
Pareto distribution (2.2) as an important example. Let τ(n) is an estimate of τ obtain from a dataset containing n
datapoints, i.e.

τ(n) = min
k=1,...,n

∥Zk∥,

see (2.3). Suppose we wish to ensure with the (100σ)%-confidence that the difference between the estimate τ(n)
and the actual value τ is less than the prescribed tolerance ε > 0. Then, we need at least the following number of
observations:

n(ε,σ ;α,τ) := ceil
(

ln(1−σ)

α(ln(τ)− ln(τ + ε))

)
, (3.3)

where the function ceil(A) rounds A to the nearest integer greater than or equal to A. Indeed,

σ = P
(

min
k=1,...,n

∥Zk∥− τ ≤ ε
)

= 1−P
(

min
k=1,...,n

∥Zk∥− τ > ε
)

= 1− (P(∥Z1∥> τ + ε))n

= 1−
(∫ +∞

τ+ε
f (y;α,0,τ)dy

)n

= 1−
(

τ
τ + ε

)αn

,

from which we immediately obtain (3.3).
If, by way of example, we now set ε = τ/10 and σ = 0.99 (i.e. to estimate τ with 10% tolerance and 99%

confidence), then we obtain:

n(τ/10,0.99;α,τ) = ceil
(
− ln(0.01)

α ln(1+0.1)

)
≈ ceil

(
48.317716

α

)
. (3.4)

Note that the above estimate is obtained without any initial guess or a priori information about the true value of τ . For
a few hypothetical values such as α = 0.5, α = 1.0 and α = 1.75, we obtain, respectively:

n(τ/10,0.99;0.5,τ) = 97, n(τ/10,0.99;1.0,τ) = 49, n(τ/10,0.99;1.75,τ) = 33. (3.5)

Interestingly, the smaller is α (i.e. the heavier is the tail of the distribution) the larger is the required amount of data.
Now we recall that the rate of convergence for τ is n−1/2 while the rate of convergence for parameter α is n−1.

Omitting calculations details, roughly speaking it means that, in order to evaluate α , the number of datapoints required
to obtain an estimate for τ (as given by Eqs. (3.4–3.5)) should be squared. Therefore, for Pareto distribution (2.2) with
a relatively fast rate of decay (α = 1.75), a dataset of about 103 datapoints should be sufficient to estimate both
parameters with a good accuracy, while a heavier tail (α = 0.5) may require a much larger data set of about 104.

Acknowledgements SP gratefully acknowledges funding from The Leverhulme Trust through grant F/00 568/X.

Appendix: Proofs
This section is devoted to proofs of the results. The complete proof entails rather lengthy arguments of somewhat
routine nature. To avoid overloading the paper, we omit non-essential details in some instances.
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Proof of Theorem 2.1 and 2.2. We prove the results under the setting of Theorem 2.2, as those of Theorem 2.1 can be
easily recovered with the help of the asymptotics (2.6).
(i) The result follows from the straightforward algebra

Pθ0

(
n
(

min
k=1,...,n

∥Zk∥− τ0

)
≤ x
)
= 1−

(∫ +∞

τ0+x/n
f (y;α0,κ0,τ0)dy

)n

= 1−

(
1−

∫ κ0τ0+κ0x/n
κ0τ0

z−α0−1e−zdz

Γ(−α0,κ0τ0)

)n

→ 1− exp

[
− e−κ0τ0

τα0+1
0 κα0

0 Γ(−α0,κ0τ0)
x

]
,

where the first equality holds since {∥Zn∥}n∈N is a sequence of iid random variables. The limiting function (in x)
indicates the exponential distribution with the desired rate.
(ii) It holds that for each n ∈ N,

ln
dPθ0+Rnh

dPθ0

∣∣
Fn

= ℓn(θ0 +Rnh)− ℓn(θ0), Pθ0 -a.s.,

where for θ ∈ Θ4,

ℓn(θ) = ln

(
n

∏
k=1

f (∥Zk∥;α ,κ,τ0)

)
= n(−α lnκ − lnΓ(−α,κτ0))−

n

∑
k=1

(κ ∥Zk∥+(α +1) ln∥Zk∥) .

We can show with the pathwise Taylor expansion and the mean value theorem that

ℓn(θ0 +Rnh)− ℓn(θ0) = ⟨
h,Rn∇θ (ℓn(θ))

∣∣
θ=θ0

⟩
+

⟨
Rnh,

(∫ 1

0

∫ δ

0
Hessθ (ℓn(θ))

∣∣
θ=θ0+εRnhdε dδ

)
Rnh
⟩

where

∇θ (ℓn(θ)) =
n

∑
k=1

 ∫+∞
κτ0

z−α−1e−z(lnz)dz
Γ(−α ,κτ0)

− ln(κ∥Zk∥)
Γ(1−α,κτ0)
κΓ(−α ,κτ0)

−∥Zk∥

 ,
and −RnHessθ (ℓn(θ))Rn is independent of n and is no longer a random matrix. First, it holds by the central limit
theorem and by the continuity of the summands in (α ,κ) that for each ε ∈ (0,1), as n ↑+∞,

−RnHessθ (ℓn(θ))
∣∣
θ=θ0+εRnhRn → I (θ0).

Note that
sup

θ∈Θ4

∥Hessθ (ℓn(θ))∥o <+∞,

due to the compactness of Θ4 and the continuity of the Hessian matrix in θ , where ∥A∥o := sup∥x∥≤1 ∥Ax∥ denotes the
operator norm of a linear transform, Hence, it holds that

Rn

(∫ 1

0

∫ δ

0
Hessθ (ℓn(θ))

∣∣
θ=θ0+εRnhdε dδ

)
Rn →−1

2
I (θ).

Next, we can deduce that for each n ∈ N,

Eθ

[
(Rn∇θ (ℓn(θ)))⊗2

]
= Eθ

[
(∇θ (ℓn,1(θ)))⊗2

]
= I (θ),

where we denote by ∇θ (ℓn,1(θ)) the independent summand in ∇θ (ℓn(θ)), that is, ∇θ (ℓn(θ)) = ∑n
k=1 ∇θ (ℓn,k(θ)).

(See Lemma 2.5 of [27].) This shows the desired local asymptotic normality property. Note that ∇θ (ℓn,1(θ)), which
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we have defined just above, is independent of n. Hence, we can show that I (θ) is not singular, with the help of the
Cauchy-Schwarz inequality.

The rest of Theorem 2.1 is obvious as I (θ) is not singular. For the part (iii) of Theorem 2.2, observe that

xp := E [∥Z1∥p] =
∫ +∞

τ0

yp f (y;α,κ,τ)dy =
Γ(p−α,κτ0)

κ pΓ(−α,κτ0)
, p = 1,2,3.

Using the recurrence relation Γ(s,z) = (s−1)Γ(s−1,z)+ zs−1e−z, we get

x1 =
−α
κ

+
κ−α−1τ−α

0 e−κτ0

Γ(−α,κτ0)
,

x2 =
1−α

κ
Γ(1−α,κτ0)

κΓ(−α ,κτ0)
+ τ0

κ−α−1τ−α
0 e−κτ0

Γ(−α ,κτ0)
=

(
1−α

κ
+ τ0

)
x1 +

ατ0

κ
,

x3 =
2−α

κ
Γ(2−α,κτ0)

κ2Γ(−α,κτ0)
+ τ2

0
κ−α−1τ−α

0 e−κτ0

Γ(−α ,κτ0)
=

2−α
κ

x2 + τ2
0

(
x1 +

α
κ

)
.

By solving the above for α and κ , we get the equations (2.9). The desired results follows from the method of scoring.
The proof is complete.

Proof of Theorem 2.4. We have

dPθ0+Rnh

dPθ0

∣∣
Fn

= ℓn (θ0 +Rnh)− ℓn (θ0) , Pθ0 -a.s.,

where
ℓn(θ) = ln( fn (Yn; θ)) =−n

2
ln(2π)−n lnσ − 1

2
ln |Tn(H)|− 1

2σ2

⟨
Yn,Tn(H)−1,Yn

⟩
.

In what follows, we will use the notation

∇θ (ℓn(θ)) :=
[

∂σ ℓn(θ)
∂Hℓn(θ)

]
, Hessθ (ℓn(θ)) :=

[
∂ 2

σ ℓn(θ) ∂σ ∂Hℓn(θ)
∂σ ∂Hℓn(θ) ∂ 2

Hℓn(θ)

]
,

where

∂σ ℓn(θ) :=− n
σ
+

1
σ3

⟨
Yn,Tn(H)−1Yn

⟩
,

∂Hℓn(θ) :=−1
2

∂H ln |Tn(H)|− 1
2σ2

⟨
Yn,∂H(Tn(H)−1)Yn

⟩
,

∂ 2
σ ℓn(θ) :=

n
σ2 − 3

σ4

⟨
Yn,Tn(H)−1Yn

⟩
,

∂ 2
Hℓn(θ) :=−1

2
∂ 2

H ln |Tn(H)|− 1
2σ2

⟨
Yn,∂ 2

H(Tn(H)−1)Yn
⟩
,

∂σ ∂Hℓn(θ) :=
1

σ3

⟨
Yn,∂H(Tn(H)−1)Yn

⟩
.

We denote by Tn(H)−1/2 the matrix in Rn×n satisfying (Tn(H)−1/2)⊤Tn(H)−1/2 = Tn(H)−1 and write Tn(H)1/2 for the
matrix in Rn×n satisfying Tn(H)1/2Tn(H)−1/2 = In. We denote by Zn be a standard normal random vector in Rn under

Pθ . With those notations, it holds under Pθ that for each n ∈ N, (σ2Tn(H))−1/2Yn
L
= Zn, that is,

∂σ ℓn(θ)
L
=

1
σ

(
∥Zn∥2 −n

)
,

∂Hℓn(θ)
L
=−1

2
∂H ln |Tn(H)|− 1

2

⟨
Zn,(Tn(H)1/2)⊤∂H(Tn(H)−1)Tn(H)1/2Zn

⟩
,

∂ 2
σ ℓn(θ)

L
=

1
σ2

(
n−3∥Zn∥2

)
,

∂ 2
Hℓn(θ)

L
=−1

2
∂ 2

H ln |Tn(H)|− 1
2

⟨
Zn,(Tn(H)1/2)⊤∂ 2

H(Tn(H)−1)Tn(H)1/2Zn

⟩
,

∂σ ∂Hℓn(θ)
L
=

1
σ

⟨
Zn,(Tn(H)1/2)⊤∂H(Tn(H)−1)Tn(H)1/2Zn

⟩
.
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Based on the above expressions, we can show that Eθ [∇θ (ℓn(θ))] = 0, where we have used the fact that L (∥Zn∥2) is
chi-square with n degrees of freedom, the identity

∂H ln |Tn(H)|+ tr
[
∂H(Tn(H)−1)Tn(H)

]
= 0, (3.6)

and the well known property tr[ABC] = tr[CAB]. Next, again since L (∥Zn∥2) is chi-square with n degrees of freedom,
we get

1
n
Eθ

[
(∂σ ℓn(θ))2

]
=

1
nσ2Eθ

[(
∥Zn∥2 −n

)2
]
=

2
σ2 = I11(θ),

where we let Ik1k2(θ) indicate the (k1,k2)-th entry of the matrix I (θ), with a slight notational abuse for simplicity.
Next, by letting Bn := (Tn(H)1/2)⊤∂H(Tn(H)−1)Tn(H)1/2 and by using Varθ (⟨Zn,BnZn⟩) = tr(Bn(Bn+B⊤

n )) and B⊤
n =

Bn, we can show that

1
n
Eθ

[
(∂Hℓn(θ))2

]
=

1
2n

tr
[
T (H)−1∂H(Tn(H))T (H)−1∂H(Tn(H))

]
→ 1

4π

∫ +π

−π
(2lnH)2dx = 2(lnH)2 = I22(θ),

where we have used Theorem 5.1 of Dahlhaus [10] and

∂H(Tn(H)−1)Tn(H)+Tn(H)−1∂H (Tn(H)) = 0 (∈ Rn×n). (3.7)

By using the well known identity Eθ [⟨Zn,AZn⟩⟨Zn,BZn⟩] = tr[A(B+B⊤)]+ tr[A]tr[B], we can derive that

1
n
Eθ [(∂σ ℓn(θ))(∂Hℓn(θ))] =− 1

σn
tr
[
∂H(Tn(H)−1)Tn(H)

]
→ I12(θ),

where we have again used Theorem 5.1 of Dahlhaus [10] and the identities (3.6) and (3.7).
Next, we show the convergence of the Hessian matrix. It is straightforward that for each n ∈ N,

1
n

∂ 2
σ ℓn(θ)

L
=

1
σ2

(
1− 3

n
∥Zn∥2

)
Pθ→− 2

σ2 =−I11(θ),

where we have used the law of large numbers of the chi-square distribution. As before, we can show that

1
n

∂ 2
Hℓn(θ)∼

1
2n

tr
[
∂H(Tn(H)−1)∂H(Tn(H))

]
→− 1

4π

∫ +π

−π
(2lnH)2dx =−I22(θ),

1
n

∂σ ∂Hℓn(θ)∼− 1
nσ

tr
[
Tn(H)−1∂H(Tn(H))

]
→− 1

2σπ

∫ +π

−π
2(lnH)dx =−I12(θ),

where the asymptotics hold in Pθ -probability as n ↑+∞ and where we have again used Theorem 5.1 of Dahlhaus [10],
the identities (3.6) and (3.7), and

∂ 2
H ln |Tn(H)|+ tr

[
∂ 2

H
(
Tn(H)−1)Tn(H)

]
+ tr

[
∂H
(
Tn(H)−1)∂H (Tn(H))

]
= 0.

We can also show that

Rn

(∫ 1

0

∫ δ

0
Hessθ (ℓn(θ))

∣∣
θ=θ0+εRnhdε dδ

)
Rn

Pθ→−1
2
I (θ),

and that Rn∇θ (ℓn(θ))
L→ N (0,I (θ)), as n ↑ +∞, in a similar manner to the derivation of the matrix I (θ) above.

We get the desired result by applying this to the pathwise Taylor expansion with the mean value theorem

ℓn(θ0 +Rnh)− ℓn(θ0) = ⟨
h,Rn∇θ (ℓn(θ))

∣∣
θ=θ0

⟩
+

⟨
Rnh,

(∫ 1

0

∫ δ

0
Hessθ (ℓn(θ))

∣∣
θ=θ0+εRnhdε dδ

)
Rnh
⟩
.

The singularity of the matrix I (θ) is evident. The proof is complete.
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albatrosses, Nature, 381, 413-415.

[55] Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E. 2011 The Physics of Foraging: An Introduction to Random Searches and
Biological Encounters. Cambridge University Press, Cambridge UK.

[56] Viswanathan, G.M., Raposo, E.P., Bartumeus, F., Catalan, J., da Luz, M.G.E. 2005 Necessary criterion for distinguishing true superdifusion
from correlated random walk processes. Phys. Rev. E 72, 011111(6).
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