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Abstract 

A numerical and experimental study is presented of the flow in the gap between 

concentric rotating cylinders and of its interactions with a cylindrical probe. The radius 

ratio  of the cylinders is 0.53, 0.44, and 0.35 corresponding to an aspect ratio  of 

11.36, 7.81 and 5.32. The test cases covered the Taylor number range 2.35 x 10
6
  Ta  

17.520 x 10
6
, which is above the first critical Taylor number. The cylinders are laid 

horizontal with the inner cylinder rotating clockwise. The cylindrical probe, which is 

used to test the intrusiveness of an endoscopic probe on the ensued Taylor vortex flow, 

is 0.01m in diameter and 0.6m long into the annular region. To the author‟s best 

knowledge, no published study has analysed the intrusivity of a cylindrical probe on the 

flow in concentric rotating cylinders. The flow is herein analysed in the meridional and 

azimuthal planes.  

The results from this study further confirm that , , Ta, and the end-wall conditions are 

all important parameters that determine the flow regime in the annular gap between 

concentric cylinders. The results also show wavy vortex flow with aspect ratio   25 at 

high Taylor numbers, well beyond the published Taylor number for transition to 

turbulent flow. In this flow, the vortex centres shift toward the outer cylinder as the 

centrifugal force due to the rotation of the inner cylinder is greater than the pressure 

gradient due to the stationary outer cylinder wall. As the  increases, the vortex centres 

displace more towards the outer cylinder wall.  

Introducing the cylindrical probe changes the Taylor flow structure. It shifts and distorts 

the vortices from their original axial position, reduces and elongates the size of the 

vortices, and reduces the strength of the vortices located between the rotating inner 

cylinder and the stationary outer cylinder.  
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Chapter One: Introduction 
 

 

1.1 Background and motivation for the present work 

Laser Doppler Anemometers (LDA) and Phase Doppler Anemometers (PDA) are well-

established measurement techniques that have been widely used by researchers (Albrecht 

et al., 2003; Bates and Banerjee, 1978; Goldstein and Kreid, 1967; Jensen, 2004; 

Sommerfeld and Qiu, 1993) to obtain instantaneous velocity measurements in flows. 

These techniques allow the measurement of the instantaneous velocity by using a light 

beam thereby avoiding the necessity of introducing probes into the measuring region. 

Hence, these techniques do not perturb the flow in the measuring volume. Both LDA and 

PDA are a single-point measurement technique, which means one can only measure the 

velocity components of the flow at one single point at a time. This makes these techniques 

the proper choice when one would like to accurately determine the flow statistics, such as 

the mean flow velocity and the turbulent intensity, which require large numbers of 

samples recorded over extended periods of time (Adrian and Westerweel, 2011). The 

shortcoming of these techniques is that it is not possible to simultaneously determine the 

velocity components at several points in a flow. 

In the early eighties, Particle Image Velocimetry (PIV) was developed (Adrian, 1984; 

Pickering and Halliwell, 1984), which produces spatially resolved velocity field 

measurements simultaneously at several points in the flow. Using the PIV technique it is 

possible to obtain instantaneous velocity flow field information, which is important for 

probing the time-dependent structure of turbulent flow fields (Meinhart and Adrian, 1995; 

Westerweel et al., 1996). From the time of this development, the contribution made by 

Particle Image Velocimetry (PIV) to the study of gas and liquid flows is substantial. The 

application of PIV in a controlled laboratory environment is well-established (Adrian, 

1988; 1991; Hesselink, 1988; Hopkins et al., 2000; Keane and Adrian, 1990; 1992; Liu et 

al., 1991; McCluskey, 1992; Westerweel et al., 1996; Westerweel, 2000), while its 

application in hostile environments or to flows with poor optical access is less established.  

In the past, such environments have caused scientists and researchers accuracy problems 

in some of their measurements. Most of the commercially available PIV systems are 

incapable of operating in confined spaces or in environments with limited optical access. 

This is because they require large, expensive, complex, and delicate laboratory 
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instruments. This has been a serious concern for manufacturers of aerospace, 

turbomachinery, and chemical products.  

The need to access confined environments to obtain PIV velocity measurements is a major 

challenge, as in most cases the areas are inaccessible due to the hostility and harshness of 

the local environment. For example, the deployment of conventional PIV measurements in 

internal combustion aero-engines, bearing chamber, rotating tube heat exchangers, 

turbomachinery or pumps usually requires the manufacturing of expensive prototypes with 

large glass windows. This is because the PIV technique requires optical access for a light 

sheet as well as for a camera, as illustrated in Figure 1.1, where a Nd:YAG laser-based 

PIV system was used in a single-stage 50.8cm diameter transonic axial compressor at 

NASA Lewis. 

 

Figure 1.1: Measurements in a transonic axial compressor (Wernet, 1997). 

 

To overcome these problems, a single-stem PIV endoscope was developed and patented 

by Aroussi and Menacer (2003). Figure 1.2 shows an early example of the PIV endoscope. 

This is a conventional rigid bore endoscopic probe with an embedded laser light and 

image optics for PIV measurement. The tool comprises of two separate probes, one for the 

light sheet optics and another for the imaging optics, which relay a light sheet and imaging 

optics through endoscopes or boroscopes to a planar position (the focal plane of the 

endoscope viewing window) within the desired flow regime. Thus, this single-stem 

endoscopic probe allows for flow visualisation and for PIV measurement via small bore 

holes in a confined environment, where a conventional PIV system cannot be easily used. 
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The PIV endoscope in Figure 1.2 has been produced for commercial purposes by Olympus 

Keymed and partners.  

In order to widen the use of this PIV endoscope, the European Community‟s Sixth 

Framework Programme under project number 32669 (PROVAEN) released funds to a 

consortium including University of Leicester to further assess this new invention. The 

single-stem PIV endoscope nonetheless has some shortcomings in the sense that the probe 

induces disturbances in the flow, altering the flow field characteristics. Thus, the measured 

velocity could be significantly different from that of an undisturbed flow. The University 

of Leicester was tasked to conduct research on the intrusive effects of the endoscope on 

selected flows. This researcher‟s work for the consortium is on the flow regime in an 

annular rig and in a pneumatic particle laden rig, which are examples of enclosed flows 

where the single-stem PIV endoscope is likely to be used. These flows were selected 

based on the industrial requirement of exploring the use of the single-stem PIV endoscope 

in enclosed flow regimes as agreed by the consortium. For the purpose of the PhD, the 

work on the annular flow regime is presented. 

This thesis is motivated by the need of Olympus Keymed and partners to commercialise 

the single-stem PIV endoscopic probe for industrial and academic use. 

 

Figure 1.2: Semi-intrusive PIV endoscope (Courtesy of Keymed, 2007). 

 

1.2 Aims and objectives 

A typical example of an enclosed environment where the single-stem PIV endoscope in 

Figure 1.2 can be used is in the gap between rotating coaxial cylinders. The annular flow 

between rotating coaxial cylinders is often characterised with respect to the Taylor 

number, Ta, which expresses in non-dimensional form the importance of the centripetal 

acceleration in a rotating flow relative to the viscous forces. In this study, where only the 

inner cylinder is rotating, the Taylor number Ta is defined as 
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consistently with the definition of Barcilon and Brindley (1984), Burkhalter and 

Koschmieder (1973), Jones et al. (1973), Eagles (1974), Koschmieder (1979), Donnelly 

(1963), Schwarz et al.(1964), and Robert (1965). In equation 1.1,  = Ri/Ro is the radius 

ratio, where Ri and Ro are the radii of the inner and outer cylinder respectively, d = Ro – Ri 

is the gap width,  is the rotational speed of the inner cylinder, and  is the fluid 

kinematic viscosity. 

The study of the flow developing between coaxial rotating cylinders is an established 

interest of the academic community. Many aspects of the flow physics are yet to be fully 

detailed and, to the author‟s best knowledge, the interaction of this flow with a cylindrical 

PIV probe is not documented in the open literature. The extent of this interaction is best 

assessed in the context of back to back measurements of the flow with and without the 

cylindrical probe in the flow.  

Therefore, the first aim of this research is to provide further details on the flow features in 

the annulus between coaxial cylinders. The second aim is to investigate the intrusive 

effects of inserting a cylindrical probe, representing a PIV endoscope, on the ensued flow, 

so that the manufacturer of the single-stem PIV endoscope can use the knowledge from 

this research to develop and test alternative probe geometries for lower flow disturbance.  

Towards these aims, the first objective of this study is to investigate numerically and 

experimentally the axial, radial and tangential velocity as well as the pressure distributions 

across the full annular region of a coaxial cylinder assembly without probe. The influence 

of the gap width between the inner and the outer cylinder on the flow field will also be 

examined. 

It has been established in the literature (Andereck et al., 1986; Coles, 1965; Koschmieder, 

1979; Taylor, 1923) that the flow regime in the annular region of coaxial rotating 

cylinders changes with the Taylor number. The second objective of this study is, therefore, 

to investigate whether the stated threshold Taylor numbers for the regime change are 

absolute or whether it is possible to observe non-turbulent flow at a high Taylor number. 

The third objective is to investigate the extent to which other parameters, in addition to the 

Taylor number, determine the flow pattern in the rotating coaxial cylinders. The effects of 

the end-walls on the flow pattern in the coaxial rotating cylinder will be investigated in 
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details and measurements will be presented of flows beyond the ranges of radius ratios 

and of normalized gap widths reported in the open literature. 

The fourth objective of this study is to investigate the intrusive effects of inserting a 

cylindrical probe representing a PIV endoscope between coaxial rotating cylinders on the 

ensued flow.  

 

1.3 Methodology 

In order to achieve the research objectives stated in section 1.2, four main activities are 

identified. The first activity is to conduct Computational Fluid Dynamics (CFD) 

modelling of the flow in the concentric rotating cylinders at various aspect ratios and 

Taylor numbers. The second activity is to develop an experimental rig of concentric 

rotating cylinders to study the flow at the same aspect ratios and Taylor numbers as in 

CFD. The third activity is to validate the numerical model using the experimental data. 

The fourth activity is to determine by experiment the intrusive effects of a cylindrical 

probe model on the ensued flow by comparing the flow fields without and with the 

cylindrical probe model in the annular region of the coaxial cylinder. 

CFD and PIV have been selected for this study because the two approaches will 

supplement and complement one another. For example, the CFD approach will allow a 

better insight into the flow field in three-dimensions. The PIV approach on the other hand 

will allow the measurement of the instantaneous velocities of the flow field. 

 

1.4 Thesis layout 

This thesis is organized into nine chapters. 

Chapter one is the introductory chapter and is intended to summarize the background and 

the motivation for which this research study was carried out, the aims and objectives of 

this present research, the research methodology as well as an outline of the structure of the 

thesis.  

Chapter two provides a concise literature review of the available research to date on the 

flow regimes as well as documentation on the theories of fluid instability in concentric 

rotating cylinders. This chapter also reviews the flow around circular cylinders and a brief 

discussion on the drag reduction techniques applicable to cylindrical probes. The flow 

features around cylindrical objects, such as the flow separation near wake, and formation 

of von-karman vortices are discussed.  
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Chapter three starts by giving an overview of current CFD modelling techniques including 

the basic principles of CFD. The numerical methodology, including the numerical scheme, 

the governing equations (continuity and momentum equations), and convergence criteria 

employed for this study are discussed. The turbulence modelling and the boundary 

condition options available for this study are documented. 

Chapter four discusses the evolution of the design of concentric rotating cylinders test rig. 

The rig as built is detailed.  

Chapter five gives an overview of the working principles of PIV. It then presents the 

specific objectives of PIV in this experiment, the specific PIV experimental layout and the 

rig instrumentation. The rest of chapter five covers the PIV image acquisition and 

procedure, the data processing and analysis as well as on the experimental equipment set-

up procedure. 

Chapter six describes the CFD modelling of the air-flow between rotating coaxial 

cylinders. This chapter then details the CFD geometry and problem formulation, the mesh 

generation, the turbulence model selection, the boundary and initial conditions, the 

convergence criteria as well as the numerical accuracy estimates. The second parts of this 

chapter presents and discusses the results from the CFD predictions for the annular flow 

between coaxial cylinders of aspect ratio  = L/d = 11.36 and  = 7.81, where L is the 

axial length of the cylinders. 

Chapter seven documents the experimental investigation of the flow between concentric 

cylinders without the cylindrical probe. The first section of this chapter covers the 

convergence of the PIV data. The second section discusses the results obtained from test 

cases with aspect ratio  = 11.36 and  = 7.81, and compare them with the corresponding 

CFD predictions. The third and the final section in this chapter documents the results 

obtained from test case with aspect ratio  = 5.32.  

Chapter eight focuses on the interaction and the intrusive effects of a cylindrical probe on 

the Taylor vortex flow. The emphasis is on the experimental investigation of flow between 

concentric cylinders with aspect ratio  = 11.36 with a cylindrical probe inserted through 

the left end-wall. Data are analysed and the intrusive effects of the cylindrical probe are 

quantified and discussed. 

Chapter nine discusses the current study and what was learnt from it. Conclusions are 

drawn on the research work in this thesis, specifically, on what new knowledge has been 

exposed. From the conclusions, recommendations for further work are made. 
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Chapter Two: Literature review 
 

 

2.1 Introduction 

Improving the efficiency of turbomachines requires the understanding of the flow field 

occurring within rotating machinery in which the inner and outer cylinders co-rotate or 

counter-rotate as well as the scenario of one rotating while the other is stationary. This 

chapter gives a review of flows in coaxial annular cylinders in which either both cylinders 

rotate or one of the cylinders rotates and the other is at rest. 

 

2.2 Review of flows in concentric rotating cylinders 

The study of the flow regimes that exist between concentric independently rotating 

cylinders has attracted great attention over the years. This is attributed to its many areas of 

scientific and engineering application. Examples are found in secondary air passages for 

turbine disk cooling, rotating tube heat exchangers, electric motors, propulsion, chemical 

mixing filtration, bearing chambers, flotation cells and extractors, pumps for the oil and 

water industries as well as in the drilling of oil wells, where mud flows between the 

drilling rod and the well casing, to remove the cuttings. 

 

2.2.1 The geometry of concentric rotating cylinders 

The rotating cylinder experiment has become fundamental research tool since it was first 

designed by Couette (1890) for the study of the instability and non-linear flow behaviour. 

Thus, concentric rotating cylinders have been a popular geometry for research studies due 

to the simplicity of the assembly and the fact that it represents a classical fluid dynamic 

problem. According to Owen and Rogers (1996), as quoted by Rashaida (2005), this flow 

geometry is also a subject of widespread practical interest in connection with pumps, 

steam and gas turbines as well as other rotating fluid devices. The flow concept from this 

apparatus has also been used to investigate the heat and mass transfer characteristics of 

Newtonian and non-Newtonian fluids (Hansford and Litt, 1968; Kawase and Ulbrecht, 

1983; Mishra and Singh, 1978).  

The commonly used apparatus for studying the flow in an enclosed rotating system 

consists of two concentric cylinders of different diameter, one or both of which are 

rotating at constant speed along their common axis. The cylinders can co-rotate in the 

same direction or counter-rotate in opposite directions about a vertical or a horizontal axis, 
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as illustrated in Figure 2.1. Normally, there is a fluid (gas or liquid) in the annular gap 

between the rotating cylinders.  

 

Figure 2.1: Schematic drawing of a typical concentric rotating cylinder apparatus. 

 

2.2.2 The Taylor-Couette flow 

The study of the flow pattern that develops in the annulus of coaxial cylinders dates back 

to 1888 and 1890 when Mallock (1888) and Couette (1890) conducted independent 

experiments using concentric rotating cylinders. The former conducted his experiment by 

rotating the inner cylinder while the outer cylinder was kept fixed. The aim of his 

experiment was to determine the constant of viscosity of water. The experimental result of 

Mallock revealed anomalous behaviour because Taylor vortices occurred. Mallock (1896) 

concluded that the vortices arise from the shear flow between a rotating inner cylinder and 

a concentric, fixed outer cylinder. Couette (1890), in his own experiment, kept the inner 

cylinder fixed while the outer cylinder was rotated. His experiment is the basis for the 

modern viscometer. He avoided any vortical structure and obtained an accurate 

measurement of the viscosity of various fluids. The result of the Mallock (1888) and 

Couette (1890) experiments started the academic research on the flow pattern and flow 

instability in concentric rotating cylinders. 

The understanding of the flow regime prevailing in an annular enclosure in which the 

inner and outer cylinders co-rotate or counter-rotate, as well as the scenario of one rotating 

while the other is stationary is reasonably well established in the literature. As the inner 

cylinder rotates, it induces a centrifugal force that moves the fluid radially outward. This 

motion is resisted by the radial pressure gradient due to the stationary outer cylinder wall. 

At equilibrium, when the angular speed of the inner cylinder is moderate, the centrifugal 

force is balanced by the radial pressure gradient and the resulting swirling flow pattern 
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between the two concentric rotating cylinders is the laminar two-dimensional flow known 

as the Couette Flow (CF). If the inner cylinder is rotated fast enough, the centrifugal 

forces overcome the radial pressure gradient and the system makes a transition from the 

two-dimensional flow regime to more complex flow regime. The initial two-dimensional 

Couette flow develops into an axisymmetric flow pattern in the form of toroidal vortices, 

which are characterized by axisymmetric cells of alternating positive and negative 

circulation, stacked axially between the cylinders, known as a Taylor Vortex Flow (TVF), 

from Taylor (1923). 

Figure 2.2(a) and Figure 2.2(b) show the schematic drawing and a flow visualisation of 

the counter-rotating vortex pattern that forms in the gap between the rotating coaxial 

cylinders.  These vortices are generated at the surface of the inner cylinder and extend into 

the gap between the cylinders, depending on the flow regimes and the boundary 

conditions. Studies by Andereck et al. (1986), Coles (1965), Mallock (1896), and Taylor 

(1923) have shown that the stability or otherwise of the resulting flow pattern is highly 

dependent on the rotational speed of the inner cylinder, Ωi, on the rotational speed of the 

outer cylinder, Ωo, and on the gap d between the cylinders. 

 

(a) 

 

(b) 

Figure 2.2: Counter-rotating flow pattern that forms in the gap between the cylinders (a) 

schematic drawing and (b) flow visualisation with aluminium powder of axisymmetric 

Taylor vortices between a rotating inner and stationary outer cylinder at Ta = 1.16Tac for 

 = 0.896 and  = 122 (Koschmieder, 1993). 
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2.2.3 Flow regime transition in concentric rotating cylinders 

The Taylor-Couette system of shear flow in the gap between concentric cylinders provides 

a great insight into the centrifugal stability of rotating flows, as a result it is now 

commonly used for quantitative comparison between theory and experiment (Macumber, 

2005).  

The Couette apparatus designed by Couette (1890), as quoted by Deng (2007), consists of 

two long coaxial cylinders, the inner one being fixed and the outer cylinder rotating about 

the common axis with the annular gap between the two cylinders filled with water. The 

aim of his experiment was to determine the viscosity of water by measuring the torque 

exerted by water on the inner cylinder rather than to study the fluid stability. He observed 

that, when the angular velocity was moderate, the flow was laminar and the torque was 

proportional to the angular velocity. He also discovered that when the angular velocity 

was increased to a large value, the water flow became unstable and the slope of torque 

versus speed line plot increased. He attributed this phenomenon to the development of 

some form of turbulent motion. Subsequently, authors like Mallock (1896) developed a 

similar apparatus to investigate the moment transmitted by fluid viscosity across the 

annular space between two concentric independently rotating cylinders. His objective was 

to examine the limits between which the motion of the fluid in the annulus was stable and 

the manner in which this stability broke down. Mallock (1896) tested three different 

configurations: (1) the outer cylinder rotating while the inner one is fixed; (2) the inner 

cylinder rotating with the outer one fixed, and (3) the outer cylinder rotating while the 

inner cylinder is fixed and the width of the annulus is varied. He discovered from his 

experiment that, at all of the rotational speeds tested, the flow instability occurred at a 

lower angular speed when the inner cylinder rotates and the outer one was stationary. The 

instability also occurred when the outer cylinder rotated and the inner one was at rest at a 

large angular velocity. Neither Couette nor Mallock established a definite criterion for the 

hydrodynamic stability of the fluids. This led Rayleigh (1917) to investigate the conditions 

that promote the stability or instability of inviscid fluid motion between two concentric 

rotating cylinders. He was the first to publish a criterion for the hydrodynamic stability of 

inviscid fluid between two concentric rotating cylinders. He concluded that the inviscid 

flow remains stable only if the square of the circulation  increases with the increasing 

radius and proposed the first stability criterion for the case when both cylinders are 

rotating.  
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The work of Taylor (1923) provides experimental and analytical explanations for the 

appearance and the development of flow instabilities between rotating concentric 

cylinders. The aim of Taylor‟s experiment was to obtain a stability threshold for flow 

between two rotating cylinders by measuring the torque. Taylor‟s experiment showed that, 

when the angular velocity of the inner cylinder is increased above a certain threshold, the 

Couette flow becomes unstable. He then used linear stability analysis to predict the 

threshold analytically and succeeded in obtaining quantitative agreement between 

theoretical and experimental results for the flow instability between two concentric 

rotating cylinders. His results were compared with Rayleigh's work. He further remarked 

that the experiments done by Couette (1890) and Mallock (1896) were not suitable for 

confirming the correctness of Rayleigh's criterion, since they were concerned with 

estimating the value of viscosity of water. He demonstrated that the Rayleigh's criterion is 

only approximately satisfied in a viscous fluid. Taylor attributed the stability of the 

viscous flow to the viscous forces which damp small disturbances and thus stabilize the 

flow.  

Taylor (1923) theoretically expressed the threshold at which the flow in coaxially rotating 

cylinders becomes unstable as: 

     
           

                                         
      2.1 

 

In equation 2.1, the term 0.652d/Ri is a correction factor due to the fact that d, the distance 

between the cylinders, is not negligible compared with Ri. This correction allows 

neglecting higher-order terms of the ratio d/Ri and may be expected to hold until d/Ri 

exceeds one third. 

This resulting value of 1706 in equation 2.1 is now referred to as the first critical Taylor 

number Tac. The first critical Taylor number, Tac  is defined by Deshmukh et al. (2007) 

and Batten et al. (2002a) as the Taylor number at which the first transition occurs from 

Couette Flow (CF) to Taylor Vortex Flow (TVF). Taylor (1923) established that, below 

the first critical Taylor number, the flow is stable with no vortical structure. When the 

Taylor number (Ta) of the flow exceeds the first critical Taylor number (Ta > Tac), the 

flow is unstable and forms axisymmetric toroidal vortices.  

The mathematical description of the vortex instability by Taylor (1923) is based on the 

assumption that the distance between the inner and the outer cylinder is small compared to 

the inner cylinder radius, Ri, so that  1. From the time Taylor (1923) established the 

http://en.wikipedia.org/wiki/Taylor_number
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Tac threshold, further investigations have been conducted by both analytical and numerical 

methods on the Taylor instability of the flow between rotating cylinders. These include the 

contributions from Jeffreys (1928), Chandrasekhar (1954; 1961), and Di Prima (1961). 

Jeffreys (1928) was the first to propose an alternative solution approach for the linear 

perturbation model by Taylor. He reduces the equations of linear theory of Taylor 

instability to a single sixth-order differential equation for the case of a narrow gap d/Ri. 

Jeffreys (1928) shows the value of the first critical Taylor number to be approximately 

equal 1709 for the case o/i 1, where o/i is the ratio of the rotation rates of the 

outer and inner cylinders. This value, which is derived from an asymptotic analysis of the 

governing equations, is in good agreement with the value of 1706 obtained by Taylor 

using a linear approximation, from equation 2.1. 

Chandrasekhar (1954) and Di Prima (1961) derived another expression for the first critical 

Taylor number as a function of the gap width d and the inner cylinder radius Ri, when d is 

much smaller than Ri. This expression is given as: 

            
 

   
  2.2 

Chandrasekhar (1961) obtained two simple equations for the computation of the critical 

Taylor number depending on the value of ψ as:  

 
    

    

   
             

   

   
 
 

                 2.3 

 

                               2.4 

 

where Taco = 1182 and ψ = o/i. 

The case of wide gaps ( < 1) when o = 0 was studied numerically by Roberts (1965) 

who found the critical Taylor number to vary with the gap d as: 

                          2.5 

as reported by Deshmukh et al. (2007). Roberts (1965) and Recktenwald et al. (1993) 

determined the first critical Taylor number for various radius ratios η.  The values from 

Roberts (1965) and Recktenwald et al. (1993) are reported in Table 2-1 and Table 2-2 

respectively. As each value of Taylor number can be linked to a corresponding value of 

Reynolds number by equation 2.9, table 2-1 reports the critical Reynolds number values, 



13 

 

Rec corresponding to Tac. The critical Taylor number increases with the decrease of the 

radius ratio  as shown in Table 2-1 and Table 2-2. 

 

Table 2-1: Critical parameters for the onset of Taylor vortices for various values of η 

(Roberts, 1965). 

Radius ratio, 

η = Ri/Ro. 

Critical Taylor 

number, Tac. 

Equivalent critical 

Reynolds number, Rec. 

0.975 1723.89 260.95 

0.9625 1737.55 213.23 

0.950 1754.76 184.98 

0.925 1787.93 151.48 

0.900 1823.37 131.61 

0.875 1861.48 118.16 

0.850 1902.4 108.31 

0.750 2102.17 85.78 

0.650 2383.96 74.96 

0.50 3099.57 68.19 

0.36 4551.60 69.54 

0.28 6344.89 75.10 

0.20 10355.30 88.13 

 

Table 2-2: Critical parameters for the onset of Taylor vortices for various values of η 

(Recktenwald et al., 1993). 

Radius ratio, 

η = Ri/Ro. 

Critical Taylor 

number, Tac. 

Equivalent critical 

Reynolds number, Rec. 

0.975 1723.89 260.95 

0.900 1823.37 131.61 

0.80 1992.91 94.7 

0.70 2230.68 79.5 

0.60 2570.45 71.7 

0.50 3099.57 68.19 

 

Deshmukh et al. (2007) and Batten et al. (2002a) reported the value of Tac as 1701. This 

value is in good agreement with the value reported by Taylor (1923) in equation 2.1.  

Other estimates of the first critical Taylor number are given by Parker and Merati (1996), 

Batten et al. (2004), Shiomi et al. (2000), and more can be found in the literature.  

Based on these analytical results, several researchers have employed both experimental 

and computational techniques to understand the flow field that occurs in the gap between 

rotating cylinders. Such researchers include Chandrasekhar (1958), Donnelly (1958), 
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Brewsteret al. (1959), and Di Prima (1959). These researchers noted that the hydro-

dynamic instability and the transition between different flow regimes where both cylinders 

were rotating or when only one cylinder is rotating can be determined as functions of 

different non-dimensional parameters. 

The flow with both cylinders rotating is characterised by certain geometric parameters of 

the system. These parameters have a crucial influence on the nature of the flow dynamics 

and scaling of the system as well as the transition threshold. The main factors influencing 

the formation of different transition regimes of Taylor-Couette flow include: 

(a) The Reynolds numbers. This is the classical parameter for distinguishing between 

different flow regimes and for estimating whether a flow is stable or unstable. The 

hydrodynamic instability and the transition between different flow regimes where both 

cylinders are rotating are determined by the inner and outer cylinder Reynolds numbers 

Rein and Reout respectively. These Reynolds numbers are defined as:  

      
     

 
 2.6 

 

       
     

 
 2.7 

Rein and Reout are functions of the gap width d = (Ro – Ri), which is the distance between 

the outer radius of the inner cylinder Ri and the inner radius of the outer cylinder Ro. The 

rotational speed of the inner and the outer cylinders are Ωi and Ωo respectively, and the ν 

is the fluid kinematic viscosity. For low angular velocities of the inner cylinder, measured 

by the Reynolds number (Re), the flow is steady. When the angular velocity increases 

above a certain Re threshold, the first critical Reynolds number, the initial steady Couette 

flow changes to a Taylor vortex flow (Taylor, 1923). By further increasing the angular 

speed of the inner cylinder, the system undergoes a progression of instabilities and, 

beyond a certain Re, there is the onset of turbulence.  

(b) The radius ratio η = Ri/Ro. 

(c) The aspect ratio Γ = L/(Ro – Ri) = L/d, where L is the length or height of the cylinders. 

(d) The Taylor number. The Taylor number Ta is defined in section 1.2. For the case 

where both cylinders are rotating, the Taylor and Reynolds numbers are related by: 

           
 

  
  

   

   
  

2.8 
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where ψ is defined in equation 2.3 and Re = ΩiRid/ν. For ψ < 0, corresponding to the 

cylinders rotating in opposite directions, only the region near the inner cylinder is 

unstable. This is because the azimuthal velocity profile changes sign at some point in the 

gap between the two cylinders, due to the opposite rotation of the cylinders. 

For the case where only the inner cylinder is rotating, such as the case in this research 

work, the flow is likewise characterised by Re, η, Γ, and Ta. 

Xiao et al. (2002) conducted an investigation on the effects of radius ratio on the “Second 

Taylor Vortex Flow” in concentric rotating cylinders when the inner cylinder is subject to 

some critical acceleration. They described their “Second Taylor Vortex Flow” as a special 

type of flow regime in which Taylor vortices are axisymmetric and do not display any 

wavy motion, even though the regime is located inside the wavy flow regime under quasi-

steady condition. They concluded from their results that the “Second Taylor Vortex Flow” 

is sensitive to the gap size between the two cylinders and does not exist for some radius 

ratio. 

In the experimental investigation conducted by Xiao et al. (2002), they showed that the 

existence of the “Second Taylor Vortex Flow” regime is also sensitive to changes in the 

aspect ratio. That is, a reduction in the aspect ratio leads to an increase in the Reynolds 

number range characterised by the “Second Taylor Vortex Flow”. For example, at low 

aspect ratios of 20 and 15, their experiment shows that the Reynolds number range for 

“Second Taylor Vortex Flow” expanded and merged with the Taylor vortex flow range.  

For the case where only the inner cylinder is rotating, equation 2.8 reduces to: 

         
   

   
  2.9 

or 

       
 

  
 2.10 

Based on the four parameters (Re, η, Γ, and Ta), several flow regimes that exist in an 

incompressible fluid between two concentric independently rotating cylinders have been 

identified. For example, the experimental investigation by Taylor (1923) observed that 

further increasing the angular velocity of the inner cylinder beyond the first critical Taylor 

number results in a progression of instabilities that lead to states with greater spatio-

temporal complexity, to form a new state known as wavy vortex flow (WVF). For the case 

where the two cylinders are rotating in opposite directions, Taylor observed a state known 
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as spiral vortex flow (SVF). He also observed that increasing the inner cylinder angular 

speed beyond a certain Reynolds number leads to the onset of turbulence with the 

formation of turbulent Taylor vortex flow (TTVF). Gollub and Swinney (1975) and 

Fenstermacher et al. (1979) studied the temporal properties of the flow field for increasing 

Reynolds numbers beyond the first critical Reynolds number by using an optical 

heterodyne technique to measure the time dependence of the radial component of velocity 

at a fixed point. The power spectra obtained from the Fourier transform of the velocity 

records show (i) a transition from Couette flow to steady Taylor vortex flow, (ii) a 

transition from Taylor vortex flow to periodic wavy vortex flow (one time frequency), (iii) 

a transition to a quasi-periodic flow with two frequencies, with the new frequency 

disappearing at a larger value of the Reynolds number, and (iv) a transition to chaotic flow 

with a continuous spectrum. Walden and Donnelly (1979) have observed the same 

transitions in power spectra obtained by a different technique. In addition, for large aspect 

ratios and at large Reynolds numbers, Walden and Donnelly (1979) observed another 

frequency component. 

Andereck et al. (1986) conducted an experimental investigation in which both cylinders 

were rotated in different directions and both cylinders were rotated in the same direction. 

They observed several flow regimes, including Taylor vortex flow, wavy vortex flow, 

Modulated Wavy Vortex Flow (MWVF), Laminar Spirals Flow (LSF), interpenetrating 

spirals, spiral turbulence, turbulent Taylor vortex flow, and various combinations of these 

flows. These flow regimes are shown in Figure 2.3.  

 

Figure 2.3: Flow regimes between independently rotating concentric cylinders 

(Andereck et al., 1986). 
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Recently, Liao et al. (1999) conducted numerical simulations and established three 

regimes of the Couette-Taylor system, namely the steady circular Couette flow, the steady 

axisymmetric Taylor vortex flow, and the periodic spiral vortex flow. They validated their 

computational results using the experimental observations of Andereck et al. (1986). They 

concluded that this system exhibits a rich diversity of steady and chaotic flow patterns 

(hydrodynamic instability) that are complex in nature and may arise as a result of small 

perturbations.  

For the case in which the inner cylinder is rotating, as many as 20 to 25 different states 

have been observed at a given rotational speed by Coles (1965). Each state is defined by 

the number of Taylor vortices and the number of tangential waves. The flow regimes 

identified include the Taylor vortex flow, the wavy vortex flow, the modulated wavy 

vortex flow, and the turbulent Taylor vortex flow. Baier and Graham (1998) investigated 

the centrifugal instability of a pair of radially stratified immiscible liquids in the annular 

gap between concentric co-rotating cylinders. The aim of their paper was to show that 

two-fluid Taylor-Couette flow can be achieved by centrifugally stratifying two immiscible 

fluids between coaxial co-rotating cylinders. They used an aqueous solution of water and 

glycerine and an organic solution of white mineral oil and kerosene as the working fluids 

for their experiment. At a high inner cylinder rotation rate relative to the outer cylinder 

rotation rate, there is emulsification between the two fluids. For their final results, the 

inner cylinder rotation rate, Ωi, was kept constant at 12.5 rev/s and the outer cylinder 

rotation rate, Ωo, was varied from 7.5 rev/s to 12.5 rev/s. Lower values of Ωo less than 7.5 

rev/s were not pursued in their experiment in order to avoid emulsification. Their 

experimental results show two-layer of counter-rotating Taylor vortices, one layer for each 

phase, with a well-defined interface separating the two-layers. Their results show that such 

a two-fluid system with counter-rotating vortices lying side-by-side across the interface 

can be made stable or unstable, depending on the co-rotation or counter rotation rates of 

the cylinders. The Taylor-Couette flow pattern that forms as result of using two 

immiscible fluids within the annular cylinder geometry is schematically shown in Figure 

2.4. 

Serre et al. (2001) observed different instabilities in the boundary layers in the annulus 

between stationary and rotating discs using three-dimensional direct numerical 

simulations. The influence of curvature and confinement was studied using two 

geometrical configurations; (i) a cylindrical cavity including the rotation axis and (ii) an 

annular cavity radially confined by a shaft and a shroud. The results of their investigation 
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show a basic stationary axisymmetric steady flow, followed by three-dimensional 

structures at a critical rotational rate. At higher rotation rates, transition to unsteady flow 

was observed. 

 

Figure 2.4: Schematic of a two-fluid Taylor-Couette extractor (Baier and Graham, 1998). 

 

Czarny et al. (2002) performed a direct numerical simulation using a three dimensional 

spectral method of a short finite-length annular flow driven by counter-rotating cylinders. 

The numerical model predicted two different flow regimes, wavy vortices and 

interpenetrating spirals.  

Di Prima (1960) and Stuart (1958) reported that the flow is relatively stable when the 

outer cylinder is rotating; consequently the Rec, is larger and pressure loss is smaller than 

when the inner cylinder is rotating. Lathrop et al. (1992) examines the behaviour of the 

Couette-Taylor system over the Reynolds number range 800 ≤ Re ≤ 1.23 x 10
6
 using high-

precision torque measurements, local wall shear stress measurements, and flow 

visualisation. They found that, above a non-hysteretic transition Reynolds number, ReT = 

1.3 x 10
4
, the closed system behaves like open wall-bounded shear flows (pipe flow, duct 

flow and flow over a flat plate) at high Reynolds numbers. 

Recently, Kim et al. (2007) conducted an experimental study on the Taylor vortex flow of 

non-Newtonian fluids in a concentric annulus in which the outer cylinder was stationary 

and the inner cylinder was rotating. Their results showed that the Rec decreases as the 

rotational speed increases. They concluded that the rotation of the inner cylinder promotes 

the onset of transition due to the excitation of the Taylor vortices. An investigation on the 

Taylor vortices formed in a mineral oil between a rotating inner cylinder and a stationary 

outer cylinder with a wide gap (radius ratio η  0.613) and a short liquid column (aspect 

ratio   5.17) was conducted by Deng et al. (2005) using both experimental and 
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computational methods. Their results show that the transition to wavy vortex flow occurs 

at a very high Reynolds number compared to the flow in an infinitely long column.  

End-wall effects have been identified as one of the major factors affecting the type of flow 

regime in concentric rotating cylinders. Taylor in his original work recognised the 

important role end-walls play in his experiments. The presence of end-walls destroys the 

translation invariance characteristic of the infinite length L model. As a result, the 

bifurcation scenario is qualitatively different in the finite length L case. In their paper on 

the anomalous modes in the Taylor experiment, Benjamin and Mullin (1981) outlined the 

importance of end-wall effects. The discontinuous nature of the boundary conditions, 

where the inner cylinder meets the end-walls, generates weak circulation cells adjacent to 

the end-walls. As the Reynolds number is increased, the cellular pattern propagates 

towards the centre of the apparatus until it fills the column. They concluded that the 

transition to Taylor vortex flow is not the result of a bifurcation but of a continuous 

process. In the case when Γ = 10, the cellular pattern with ten cells is smoothly connected 

to the basic flow as Re → 0. The importance of the boundary conditions was explained by 

Benjamin and Mullin (1981) in relation to the flow governing equations. Since the 

equations of fluid motion are elliptical, this in practice means that effects from the 

boundaries are felt over the entire domain.  

 

2.2.4 The main flow regimes in concentric rotating cylinders 

This section gives a concise review of the most common flow regimes in concentric 

rotating cylinders and their characteristics as identified by various researchers. This review 

is limited to the cases in which the inner cylinder is rotating while the outer cylinder is 

stationary.  

 

Taylor Vortex Flow (TVF) 

The Taylor vortex flow is a steady axisymmetric vortex flow, in which toroidal vortices 

encircle the inner cylinder and are stacked in the axial direction. The radial motion of the 

flow between two adjacent vortices is shown by upward and downward arrows in Figure 

2.2(a). The boundaries between neighbouring vortices are flat and perpendicular to the 

cylinder axis. The flow pattern is shown by the flow visualisation in Figure 2.2(b). The 

vortical motion of the TVF grows as the Reynolds number increases. The upper limit of 

the TVF regime is marked by the appearance of azimuthal travelling waves on these 

vortices.  
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Wavy Vortex Flow (WVF) 

At larger Taylor and Reynolds numbers, the axisymmetric time-independent Taylor vortex 

flow that is developed in the annular region of concentric cylinders changes to that of non-

axisymmetric unsteady time-dependent wavy Taylor vortices. This wavy vortex flow is 

characterized by travelling azimuthal waves that are superimposed on the Taylor vortices. 

The azimuthal waves rotate around the inner cylinder at some wave speed as shown in 

Figure 2.5. The wavy vortices have a defined azimuthal wavenumber and move with a 

finite wave velocity in the azimuthal direction. The waves travel around the annulus at a 

speed that is 30% to 50% of the surface speed of the inner cylinder, depending on the 

Taylor number and other conditions (King et al., 1984). The whole wave pattern rotates as 

a rigid body about the cylinder axis, hence the pattern is at rest for an observer fixed in a 

reference frame that rotates with the waves. The wavy vortex flow is also time-periodic 

and breaks the continuous rotational symmetry of the Taylor vortex flow. 

At any given Reynolds number in the wavy vortex flow regime, several flow states are 

possible, each characterized by a different axial wavelength and azimuthal wave number 

m. This attribute makes wavy vortex flow a complicated and non-unique flow regime. An 

interesting property of the waves is the absence of dispersion. The state of the system 

depends on the Reynolds number history and other factors, but each state, once 

established, is stable over a range of Reynolds number (Coles, 1965). At any given 

Reynolds number, the wave speed is essentially independent of m (Shaw et al., 1982). In 

wavy vortex flow, the wave pattern has an m-fold rotational symmetry. Both the inflow 

and outflow vortex boundaries in wavy vortex flow are wavy and are S-shaped (Gorman 

and Swinney, 1982).  

 

Figure 2.5: Flow visualisation with aluminium powder of wavy Taylor vortices between a 

rotating inner and stationary outer cylinder at Ta = 8.49Tac,  = 0.896, and  = 122 

(Koschmieder, 1993). 
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The travelling azimuthal waves on the inflow and outflow boundaries are shifted in 

azimuthal phase angle in wavy vortex flow. This is shown by the flow visualisation in 

Figure 2.5 and further investigated experimentally by Akonur and Lueptow (2003), as 

illustrated in Figure 2.6. Akonur and Lueptow (2003) demonstrated that the distortion of 

the azimuthal velocity contours is directly dependent on the phase of the wave. Figure 2.6 

shows the azimuthal velocity contours normalised by the inner cylinder rotational speed 

Ri, that corresponds to the wave speed throughout one wave at a Reynolds number Re = 

1.48Rec. In other words, the fluid at each contour is moving at precisely the same speed as 

the azimuthal wave. Figure 2.6(a) shows five contours uniformly sampled in time through 

the first half of the wave, while Figure 2.6(b) shows the second half of the wave. 

According to Akonur and Lueptow (2003), if the contours were animated, they would 

move according to the arrows shown in Figure 2.6(a) and (b) as time progresses. The bold 

contours, which are identical in Figure 2.6(a) and (b), indicate the beginning and end of 

the half-phase. The bulges in the contours result from the radial transport of azimuthal 

momentum by the vortices. The inflow regions correspond to leftward maxima in the 

contours while outflow regions correspond to rightward maxima in the contours.  

 

                                    (a)                        (b) 

Figure 2.6: Azimuthal velocity contour corresponding to the wave speed at Re =1.48Rec.  

                   (a) up-cycle and (b) down-cycle. The limit contours at each half-cycle are bold  

                   and the (*) is the vortex centres, Akonur and Lueptow (2003). 

 

Akonur and Lueptow (2003) explained that an animation of these figures show that not 

only do the bulges oscillate up and down with the azimuthal wave, they subtly change in 

axial extent and that these changes are not sinusoidal. They also show that, at certain 
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points in the phase, the axial extent of the bulges changes more quickly than at other 

points in the phase. The asterisks in Figure 2.6 indicate the instantaneous position of the 

vortex centres, which moves radially as well as axially, even though the wave speed 

contour remains essentially centered in the annulus. The vortex centre remains fairly close 

to the wave speed contour, but is in the region of fluid that is just slightly faster than the 

wave speed. 

Akonur and Lueptow (2003) also show that the character of these contours changes 

substantially with the Reynolds number, as indicated in Figure 2.7. At the lower two 

Reynolds numbers (Re = 0.28Rec and Re = 1.48Rec), the leftward inflow and rightward 

outflow bulges are similar in size. The outflow is much stronger at the higher Reynolds 

number (Re = 5.03Rec), resulting in a broadening of the outflow bulge and a narrowing of 

the inflow bulge. In this case, the inflow bulge is only about one-third as wide as the 

outflow bulge. The strength of the outflow also results in this contour shifting radially 

outward. The fluid to the left of the contour is moving faster than the wave speed, while 

the fluid to the right is moving more slowly.  

At the highest Reynolds number, Figure 2.7 shows that a very large proportion of the fluid 

moves faster than the wave speed. At the lower Reynolds numbers about half the fluid 

moves faster than the wave speed and half moves slower. The axial transport between 

vortices is also evident in the contour at the highest Reynolds number. The narrow bulge 

to the left is tilted downward because of the net downward axial flow at this point in the 

phase. 

 

Figure 2.7: Azimuthal velocity contour corresponding to the wave speed at               

                   approximately the same phase of the wave for Re = 0.28Rec, 1.48Rec, 

and 5.03Rec (Akonur and Lueptow, 2003). 
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For the Reynolds numbers in the range from the onset of wavy vortex flow up to Re/Rec = 

10.1, velocity power spectra show that the wavy vortex flow is characterized by a single 

frequency, as shown in Figure 2.8(a). In Figure 2.8, it is evident that wavy vortex flow is 

purely periodic in nature with the amplitude of the fundamental more than 5 orders of 

magnitude above the instrumental noise level. The single frequency is found 

experimentally to equal to the frequency of travelling azimuthal waves passing a point of 

observation in the annulus. 

 
(a) 

 
(b) 

 

 

 
(c) 

Notes:  

(a) Periodic flow at Re/Rec = 5.6. All 

components are harmonically related to 1; 

the first 5 harmonics are labelled. 

 

(b) Weakly turbulent flow at Re/Rec = 15.1. 

This flow is characterised by two discrete 

fundamental frequencies, 1 and 3, and a 

broadband component. 

 

(c) Weakly turbulent flow at Re/Rec = 28.0. 

This flow is characterised by the broadband 

component B and a discrete component r, 

the component at /1=1 and 2 are 

instrumental artifacts. In (a) and (b), the 

aspect ratio is 20; in (c) it is 80. 

Figure 2.8: Power spectra for time-dependent Taylor vortex flow (Di Prima and Swinney, 

1981). 

 

Davey et al. (1968) show that, with increasing Reynolds number, a second critical 

Reynolds number that depends on radius ratio, η, is reached. This critical Reynolds 

number corresponds to the second critical Taylor number, at which there is the onset of 

wavy vortex flow. At the second critical Taylor number, the Taylor vortices become 

unstable, leading to the first transition from Taylor vortex flow to wavy vortex flow, 

which is characterised by azimuthal waves superimposed on the Taylor vortices. Davey et 
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al. (1968) have shown that the Taylor number at which the onset of wavy vortex occurs is 

between 8% to 20% above the Taylor number at which the Taylor vortex flow first 

appears.  

The Taylor number for the transition from axisymmetric toroidal Taylor vortices to non-

axisymmetric wavy vortices is not firmly established, theoretical and experimental results 

show that the critical Taylor number at which wavy vortex flow starts depends on: 

(1) Radius ratio: The transition to onset of wavy vortex flow was theoretically predicted 

by Eagles (1971) and Snyder and Lambert (1966) to occur at a Taylor number over the 

range 1.05Tac to 1.1Tac for a radius ratio 0.85  η  0.95 in infinitely long cylinders. 

Eagles (1971) calculated the stability of the Taylor vortex flow using fifth-order terms in 

amplitude and found that the onset of the wavy vortex flow is at a Taylor number about 

10% above the first critical Taylor number for η = 0.95. Experiments by Serre et al. (2008) 

indicate a range of higher Taylor number values for the onset of the wavy vortex flow to 

be between 1.14Tac and 1.31Tac over the range 0.85  η  0.95 depending on the 

experimental conditions. This value is much larger than 10Tac, for the radius ratio η = 0.5 

(Debler et al., 1968; Snyder and Lambert, 1966; Snyder, 1969b). 

Schwarz et al. (1964) observed that the critical Taylor number for the onset of wavy 

vortices was 5% to 8% above the critical Taylor number for the onset of Taylor vortices 

for radius ratio  = 0.95. In the experimental investigation conducted by Donnelly (1963), 

the Taylor number for the onset of wavy vortex flow was found to be 15% above the first 

critical Taylor number, for radius ratio  = 0.95. In the experiment conducted by Coles 

(1965) using an apparatus with a radius ratio  = 0.874 and aspect ratio  = 27.9, the 

critical Taylor number for the onset of wavy vortex flow is estimated to be about 55% 

above which the Taylor vortex flow first occurs. In the experimental investigation conduct 

by Coles (1965), the wavy nature of the Taylor vortex and the numbers of vortices was 

determined to be dependent on the way in which the rotational speed of the cylinders is 

varied and on the method used to increase or decrease the speed. 

(2) Aspect ratio: Cole (1976) presented experimental results on the effect of the annulus 

length on the critical speeds at which Taylor vortices and, subsequently, wavy vortices are 

formed, by torque measurements and visual observations. He observed that only the onset 

of wavy vortices is significantly affected by the reduction of the annulus length. Cole 

(1976) further observed that aspect ratio values greater than 40 are required before the 

second critical Taylor number is within a few percent of the theoretical value calculated 
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for infinite cylinders (Di Prima and Swinney, 1981). He concluded that the aspect ratio 

affects the formation of wavy vortex flow whereas the value of the critical Taylor number 

at which Taylor vortex flow occurs is insensitive to annulus length. Walden and Donnelly 

(1979) and Walden (1978) have also found that the Taylor numbers for some higher mode 

transitions depend on the aspect ratio.  

Walden and Donnelly (1979), Takeda (1999) and, recently, Wang et al. (2005) observed 

the possibility for re-emergence of wavy modes above the turbulent vortex transition for a 

sufficiently large aspect ratio, greater than 25, and the influence of end effects in short 

devices. 

Many researchers have conducted numerical investigations to address the physical 

mechanism responsible for the azimuthal waviness in a circular Couette system. Marcus 

(1984) investigated numerically the Taylor vortex flow and wavy vortex flow. The results 

of his computation suggested that a local inviscid centrifugal instability of the strong 

radial motion at the outflow boundaries between vortices is responsible for the azimuthal 

waviness. He also indicated that the waviness results in fluid being mixed between 

adjacent vortices. Jones (1985) noted that the radial outflow jet results in strong azimuthal 

jets at the outflow region as it carries high azimuthal momentum outward. He suggested 

that it is the azimuthal jets, which are stronger than the radial jets, which destabilise the 

axisymmetric flow and make the vortices wavy. He concluded that the onset of wavy 

vortices occurs close to the onset of axisymmetric vortices for narrow gaps. Coughlin and 

Marcus (1992) conducted numerical simulations on a Taylor-Couette flow and concluded 

that the important features related to waviness are at the outflow jet, where both the radial 

and azimuthal velocities as well as the axial gradient of the azimuthal velocity are greatest. 

Wereley and Lueptow (1998) conducted experimental investigations using a PIV 

technique to measure the axial and radial velocities in a meridional plane for non-wavy 

and wavy Taylor-Couette flow in the annulus between a rotating inner cylinder and a fixed 

outer cylinder with fixed end conditions. The experimental results for the Taylor vortex 

flow indicate that, as the inner cylinder Reynolds number increases, the vortices become 

stronger and the outflow between pairs of vortices becomes increasingly jet-like. They 

concluded that the waviness of the boundary is directly related to the degree of fluid 

transfer between vortices.  

Akonur and Lueptow (2003) used a PIV technique to measure the azimuthal and radial 

velocities in azimuthal planes perpendicular to the axis of rotation. Their study was 

conducted for a wavy vortex flow in the annulus between a rotating inner cylinder and a 
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fixed outer cylinder with fixed end conditions. Their measurements were matched with 

previous measurement by Wereley and Lueptow (1998),  resulting in a time-resolved 

three-dimensional field of all three velocity components for wavy vortex flow. The results 

of their experiment show that waviness is related to the motion of the vortex centres. 

Because their results show a relatively strong shear layer in the azimuthal velocity 

compared to the radial inflow and outflow shear layers between the vortices, they 

concluded that the azimuthal waviness is more likely related to an instability in the 

azimuthal velocity profile, as proposed by  Jones (1985). 

 

Modulated Wavy Vortex Flow (MWVF) 

At higher Taylor numbers, the wavy vortices transition to rotating waves that appear to be 

modulated. At this flow regime, two fundamental frequencies in the coaxial cylindrical 

flow appear in the power spectrum (see labelled ω3 in Figure 2.8) with no hysteresis 

observed. This was first discovered by Gollub and Swinney (1975). This type of flow is 

termed quasi-periodic because it has approximate but not exact recurrence. As Re is 

increased still further, the amplitude of the azimuthal waves begins to vary with time, 

giving rise to quasi-periodic regimes known as modulated wavy vortex flow (MWVF) and 

chaotic wavy flow (CWF) (Takeda, 1999). The latter flow regimes are distinguished by 

the absence or presence, respectively, of a broad peak in the velocity power spectra. When 

the flow changes to MWVF, the flow pattern changes from the S-shape to a slight 

flattening of the wavy vortex outflow boundary. All the waves in the axial direction are 

modulated in phase, while, in the azimuthal direction, the wave modulation can have the 

same phase, or the modulation phase can vary with angle (Gorman and Swinney, 1982). 

In MWVF, there are two rotating waves superimposed on the Taylor vortices with 

different frequencies and in general, different azimuthal wave-numbers. The modulated 

wavy vortex flow is time-periodic. The transition to a MWVF is most easily detected from 

the spectral analysis of the velocity or of the reflected light measured at a single point in 

the flow. The WVF has a single peak at a frequency related to the passage of the azimuthal 

wave. The MWVF introduces a second spectral peak at a lower frequency related to the 

modulation. Investigations has been conducted on MWVF by many researchers like 

Gorman and Swinney (1982) and Shaw et al. (1982). 

At still higher Taylor numbers, the waviness gives way to turbulence that raises the 

spectral amplitude level at all frequencies. The vortices are still axisymmetric but the flow 

is turbulent at small scales. The MWVF is the final pre-turbulent flow regime. 

http://www.scholarpedia.org/article/Turbulence
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Turbulent Taylor Vortex Flow (TTVF) 

As the Reynolds number is further increased above Re/Rec = 13, a weak broad component 

appears in the velocity spectrum (Figure 2.8(b) labelled B). The flow can no longer be 

described by a small number of well-defined characteristic frequencies. The flow can only 

be described as chaotic or turbulent (Di Prima and Swinney, 1981). Cole (1965) observed 

this type of flow regime and concluded that the discrete spectrum changes gradually and 

reversibly to a continuous one by the broadening of the initially sharp spectral lines. 

 Upon further increasing Re, azimuthal waves disappear altogether, marking the onset of 

“weakly turbulent” or “soft turbulent” flow, although the axial periodicity associated with 

the Taylor vortices remains. This turbulent Taylor vortex flow (TTVF) becomes 

increasingly complex as the Taylor number ratio increases beyond 5 x 10
5
 until the vortex 

structures themselves eventually become indiscernible (Smith and Townsend, 1982). 

Koschmieder (1993) stated that order emerges from chaotic flow that leads to turbulent 

flow when Ta ≈ 1000Tac. In the case of the inner cylinder rotating and the outer cylinder 

fixed, increasing the Taylor number above the critical Taylor number results in higher 

instabilities than in the case of the outer cylinder rotating. In this flow, the vortical 

structure is retained, but the vortices are modified. Figure 2.9 shows the of turbulent 

Taylor flow pattern at Ta = 1625Tac for  = 0.896 and  = 122 from Koschmieder (1993). 

 

Figure 2.9: Flow visualisation with aluminium powder of turbulent Taylor vortices 

between a rotating inner and stationary outer cylinder at Ta = 1625Tac for  = 0.896 and  

= 122 (Koschmieder, 1993). 

 

2.2.5 Theories of fluid instability in concentric cylinders 

In this section, some of the known theories of fluid instability in concentric cylinders are 

reviewed. Since the work of Taylor on instability, theories predicting the growth of the 

Taylor vortices and the mechanism of flow instability with further increase of speed were 

proposed by many investigators. These theories include (i) the linear stability theory, (ii) 
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the energy method, and (iii) the weak nonlinear stability theory by Stuart (1958) and 

Davey (1962). 

 

Rayleigh criterion for instability 

Neither Couette nor Mallock was able to establish a definite criterion for the 

hydrodynamic stability of the fluid in the gap between rotating cylinders. The first 

hydrodynamic stability criterion for inviscid fluids was derived by Rayleigh (1917) who 

formulated a stability criterion for the mean viscous flow between two concentric rotating 

cylinders which was based on the inviscid perturbation equations. Rayleigh considered a 

basic swirling flow of an inviscid fluid which moves with angular velocity Ω about the 

axis of rotation. The equations of motion allow Ω to be an arbitrary function of the 

distance r from the axis, provided the velocities in the radial and axial directions are zero. 

Rayleigh did not establish his criterion for stability by an analytical discussion of the 

relevant perturbation equations but by a simple physical argument.  

The kinetic energy of the fluid contained in two elemental rings with r = R1, and r = R2, 

with equal volumes dV can be expressed as: 

  

 
    

   
     

   
      2.11 

where Г (= ru) is the angular momentum of a fluid element per unit mass. 

Assuming the fluids contained in the two elementary rings are interchanged, as the angular 

momentum of an element of the inviscid fluid is constant, the resulting kinetic energy is: 
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The change in the kinetic energy as a result of the interchange is:  
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The change in the kinetic energy is therefore proportional to: 

 
   

    
     

     
    2.14 

Suppose that R2 > R1, then the change in kinetic energy is negative provided   
  >   

  and 

positive if   
  <   

 . Thus, if Г
2
 decreases with r anywhere, this would increase the kinetic 

energy and would imply instability. On the other hand, if Г
2
 increases with r, this would 

lower the kinetic energy and would imply stability. This is simply Rayleigh‟s criterion 
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which states that the necessary and sufficient condition for a distribution of angular 

velocity Ω(r) to be stable (to axisymmetric disturbances) is when the condition  

  

  
         2.15 

is satisfied everywhere in the flow field and that the distribution of angular velocity Ω(r) is 

unstable if (r
2
Ω)

2
 decreases with increasing r anywhere inside the flow field. 

However, Rayleigh‟s stability criterion can only be applied to the case of inviscid flow or 

when the effect of viscosity is assumed not to affect the onset of instability. In addition, 

Rayleigh‟s physical arguments were based on axisymmetric disturbances to the flow. At a 

low rotational speed, viscosity damps the perturbations, thereby preventing the formation 

of vortices. For such a case, the flow develops as a basic Couette flow for the case of a 

fluid between two concentric rotating cylinders. This implies that another theory is needed 

to deal with viscous fluid flow. This gives rise (drove) to the development of a linear 

instability theory where transition to instability is governed by the critical Taylor number, 

depending on the radius ratio of the cylinders and on the rotational speeds.  

 

Linear theory of instability 

Taylor (1923) was the first to successfully apply linear stability theory to a specific 

incompressible fluid dynamic problem and succeeded in obtaining quantitative agreement 

between theory and experimental results for the onset of the flow instability between two 

concentric rotating cylinders. In contrast to Rayleigh‟s analysis, Taylor considered an 

incompressible viscous fluid in steady motion between two infinitely long concentric 

cylinders, which are rotated about a common axis with constant angular velocity 1 at r = 

Ri and 2 at r = Ro where Ro > Ri. One of the aims was to determine the velocity 

distribution within the annulus.  

Taylor (1923) assumed a Bessel function series solution for the streamwise velocity 

perturbation u1 as: 

 
           

 

   

   2.16 

where B1(kmr) is a Bessel function of order 1 and km is the m
th

 wavenumber. This satisfies 

the conditions u1 = 0 at Ri and Ro. Taylor substituted the solution of equation 2.16 into the 

momentum perturbation equations to obtain the complete solution for v1 and w1.  
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A system of linear homogenous equations in am, 1  m  , was obtained by Taylor after 

the application of the boundary conditions u1 = v1 = w1 = 0 at r = Ri and r = Ro Taylor was 

able to eliminate all the unknowns from the equations of disturbed motion since the 

number of the unknowns is the same as that of the equations. The resulting equation takes 

the form of an infinite determinant equating to zero, which can be regarded as an equation 

to determine the growth rate q of a given initial harmonic type disturbance. Taylor used 

the solution as a criterion for the stability of a given initial disturbance and concluded that 

if the value of q is real, then the motion is stable or unstable according as whether q is 

negative or positive. Similarly, if q is complex, the motion is unstable, if the real part of q 

is positive. The motion is then an oscillation of increasing amplitude.  

After Taylor‟s first success in the calculation of the critical Taylor number by using linear 

stability theory, many authors such as Jeffreys (1928), Chandrasekhar (1961), Di Prima 

(1960), Di Prima and Swinney (1981), and Sparrow (1964) have made significant 

improvements to the linear stability theory both analytically and numerically.  

The linear stability theory has become a useful tool in analysing the stability or otherwise 

of flow regimes. As such, researchers such as Renardy and Joseph (1985), Joseph et al. 

(1984) have employed linear stability theory to the flow of two immiscible fluids lying 

between concentric cylinders when the outer cylinder is fixed and the inner cylinder 

rotates, with the interface assumed to be concentric with the cylinders, and the 

gravitational effects neglected. The effects of different viscosities, densities and surface 

tension on the linear stability of the Couette flow were studied numerically. Their results 

indicate that, with the surface tension, a thin layer of the less viscous fluid next to either 

cylinder is linearly stable and that it is possible to have stability with less dense fluid lying 

outside. The study also revealed that the stable configuration with less viscous fluid next 

to the inner cylinder is more stable than the one with the less viscous fluid next to the 

outer cylinder. They concluded that the onset of Taylor instability for one fluid may be 

delayed by the addition of a thin layer of less viscous fluid on the inner wall and promoted 

by a thin layer of more viscous fluid on the inner wall.  

This theory agrees well with experimental data for Taylor-Couette flow and Rayleigh-

Bernard convective problem. However, the theory fails when used for wall bounded 

parallel flows such as plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow. 
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Energy theory of instability 

The energy theory method helps to understand the physical processes that lead from a 

linear instability to a non-linear instability in flows (Criminale(Jr) et al., 2003). The 

energy theory method has been used in the study of flow instabilities by Schmid and 

Henningson (2001), Betchov and Criminale (Jr) (1967), Lin (1955), Joseph (1976), and 

Drazin and Reid (2004). This method involves observing the rate of increment of the 

disturbance energy of the flow system with time. The critical condition is determined by 

the maximum Reynolds number at which the disturbance energy in the system 

monotonically decreases with time (Dou, 2006). Dou (2006) observed that the critical 

Reynolds number obtained using the energy method by Betchov and Criminale (Jr) 

(1967), Drazin and Reid (2004), and Schmid and Henningson (2001) is much lower than 

that obtained in experiment. 

In the flow system, it is considered that turbulent shear stresses interact with the velocity 

gradient and a flow disturbance gets energy from mean flow in such a way. Thus, a small 

flow disturbance can be amplified by the large energy gradient. When disturbances are 

amplified, they suppress the mean flow energy, when disturbances are decaying, the mean 

flow internal energy increases (Criminale(Jr) et al., 2003).  

Although it is possible to understand the transition process from the energy theory 

method, the mechanism is still not fully understood and the agreement with the 

experimental data is still not satisfying. As such, Dou (2006) proposed another mechanism 

for flow instability and transition to turbulence in wall-bounded shear flows (which 

include the plane Poiseuille flow, the pipe Poiseuille flow, and the plane Couette flow). 

This mechanism suggests that the energy gradient in the transverse direction plays a role 

in the amplification of a disturbance, whereas the energy loss in streamline direction 

serves the function of damping the disturbance. The related analysis obtains consistent 

agreement with the experimental data at the critical condition for wall-bounded shear 

flows. 

Recently, Dou et al. (2008) utilised the new energy gradient theory mechanism to study 

the instability of Taylor-Couette flow between concentric cylinders. The aim of their 

investigation was to demonstrate that the mechanism of instability in the Taylor-Couette 

flow can be explained via the energy gradient concept. They gave detailed derivation for 

the calculation of the energy gradient parameter in the flow between concentric rotating 

cylinders. Their calculated results for the critical condition of primary instability (with 

semi-empirical treatment) are found to be in very good agreement with the experiments in 
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the literature. Their results also show that a mechanism of spiral turbulence generation 

observed for counter-rotation of two cylinders can be explained using the energy gradient 

theory and that the energy gradient theory can serve to relate the condition of transition in 

Taylor–Couette flow to that in plane Couette flow. 

 

Weakly non-linear theory  

The linear theory only considered the infinitesimal disturbances in the flow. As such, only 

the initial growth of the disturbance can be determined. The linear theory of 

hydrodynamic stability can easily predict correctly the critical Taylor number, but it 

cannot predict the establishment of a new equilibrium flow, the Taylor vortex flow, above 

the critical Taylor number. The exponential growth of the disturbances considered in 

linear theory cannot be sustained long in time and, in a real flow, the growth rate is 

suppressed by viscous effects. Therefore, it is necessary to solve the nonlinear equations, 

which means that the higher order terms cannot be neglected (Deng, 2007). 

Stuart (1958) extended the linear theory to larger amplitude disturbances by studying the 

mechanics of disturbance growth taking the non-linearity of the hydrodynamic system into 

account. Davey (1962) made use of a weakly non-linear approach to obtain a Landau-type 

equation that describes the time evolution of the vortex velocity field. A good agreement 

was found between Davey‟s result and the one obtained by Donnelly (1958) over the 

range of the Taylor numbers above the critical value for which the perturbation theory is 

expected to be valid.  

 

Non-linear theory 

Jones (1981) proposed an approach that is valid near the stability boundary for the onset of 

wavy vortex flow for two radius ratios,  = 0.8757 and  → 1 at a large Taylor numbers. 

They employed the Galerkin method for the solution of the partial differential equations in 

two spatial variables with prescribed boundary values. In the Galerkin method, the 

stability problem is solved by finding the eigen-values of the matrices related to the 

differential equations. They applied their techniques only for the case where the inner 

cylinder is rotating and the outer cylinder is at rest. The results obtained using their 

method show agreement with the results of Zarti and Mobbs (1979). 
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2.3 Review of flow around cylinders 

This section is concerned with the review of the flow around cylinders, which are bluff 

bodies. Bluff bodies are structures with shapes that disturb the flow around them. The 

geometry of the PIV endoscopic probe in Figure 1.2 is similar to that of a cylinder. In this 

thesis, a cylinder is used to test by experiment the intrusivity of this probe, by inserting it 

in the test rig annular gap. As such, the author thought it wise to briefly review the 

aerodynamics behind bluff body configurations.  

Over the years, several attempts have been made to study the flow field around circular 

cylinders. There are many reasons for the continuing interest in the study around this 

geometry. Firstly, there are huge amount of experimental data on cylindrical flows to 

validate analytical and numerical flow models. Secondly, the associated flow field 

displays fundamental flow phenomena that form the building blocks of more complex 

flows. Thirdly, it is a good problem for testing methods for modelling flows past other 

bodies of practical importance.  

The flow field around cylinders has been studied extensively through experimental and 

computational methods. For example, the flow field over and behind a circular cylinder 

with its axis aligned with the free stream was investigated experimentally by Higuchi et al. 

(2006) using PIV technique to study the behaviour of the leading edge separating shear 

layer and its effect on the wake. These authors discovered that the shear layer reattaches 

with subsequent boundary layer growth for large length to diameter ratio (L/D), whereas 

the shear layer remains detached for a shorter length diameter ratio. Higuchi et al. (2006) 

also investigated and analysed the flow structures of the separating and reattaching shear 

layer and of the wake behind a sting-mounted cylinder with the Proper Orthogonal 

Decomposition (POD), using  both flow visualisation and PIV technique. POD is a 

technique to capture the overall behaviour of a dynamic system by generating an 

eigenvector matrix that captures the non-linearity of the input system. The result of the 

experiment and anlyseis revealed that the wake of a supporting strut was found to 

influence the cross-sectional velocity profile downstream. The Turbulence properties in 

unsteady flows around a circular cylinder wake at high Reynolds numbers with a low 

aspect ratio and high blockage coefficient was studied by Braza et al. (2006) using PIV 

techniques. Adaramola et al. (2006) experimentally studied the turbulent wake of a finite 

length circular cylinder mounted normal to a wall and partially immersed in a turbulent 

boundary layer using two-component thermal anemometry in a low-speed wind tunnel. 
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The flow along a circular cylinder involves a leading edge separation that reattaches on the 

side surface, depending on the length of the cylinder. The phenomenon of flow separation 

has been a subject of research studies, for example, Kiya (1991) studied flow separation 

from the shoulder of the cylinder and its reattachments and found a cellular structure in the 

reattachment region.  

The turbulent wake of flow across a circular cylinder over a wide range of Reynolds 

number develops a von-Karman vortex street. The flow characteristics across a circular 

cylinder are determined by the Reynolds number, Re, which is the ratio of inertia forces to 

the viscous force. Mathematically, this is defined by: 

 
   

   

 
 2.17 

where  is the density (kg/m
3
) of the fluid, v is the free-stream velocity (m/s), D is the 

diameter of cylinder (m), and  = dynamic viscosity of air (kg/ms).    

Different flow regimes display different flow characteristics. Flows that display similar 

characteristics over a range of Reynolds numbers are grouped together and described by 

certain flow regimes. Table 2-3 shows the different regimes of flow across a cylinder at 

different Reynolds numbers. Included in the table are the lists of representative 

experiments for each flow regime.  

At a Reynolds number less than approximately 40, the flow is steady and laminar. The 

separation of the boundary layer on the surface of the cylinder occurs at a Reynolds 

number between 3.2 and 5 (Nisi and Porter, 1923; Taneda, 1956) and a pair of steady 

symmetric vortices form behind the cylinder. At Reynolds numbers between 10 and 40, 

the velocity profiles in the wake are self-similar past 10 diameters downstream of the 

cylinder. The length of the recirculation zone behind the cylinder grows linearly with 

Reynolds number and the velocity distributions across the rear symmetry axis in the 

recirculation zone at different Reynolds numbers exhibit streamwise similarity (Nishioka 

and Sato, 1974). 

Experiments have shown that, the steady flow for the circular cylinder becomes unstable 

at Re ≥ 40 and starts to shed vortices. A characteristics frequency, expressed in non-

dimensional form as Strouhal number, is associated with the wake at this Reynolds 

number. The Strouhal number is defined as: 

 
   

  

 
 2.18 
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where f is the frequency of the vortex shedding and D and v are defined in equation 2.17.  

The critical Reynolds numbers at which shedding first occurs was quoted at Re = 30 by 

Taneda (1956), whereas Kovasznay (1949) and Roshko (1954b) found that vortex 

shedding starts at Re = 40. Monkewitz (1988) applied linear parallel stability theory to the 

cylinder wake and established that the flow becomes absolutely unstable at Re = 25. The 

concept of global instability was used by Chomaz et al. (1988) to show that global 

oscillations of a shear flow will occur only once a critical sub-volume of the flow is 

absolutely unstable. 

For Re < 150, the flow remains laminar (Bloor, 1964; Roshko, 1954a), the shed vorticity 

decays as it convects downstream, and the Strouhal number increases with the Reynolds 

number. At Re = 80, transition to a three-dimensional near wake occurs and this is 

signalled by two discontinuities in the Strouhal-Reynolds number relation. The first 

discontinuity, at around Re = 180, arises from the generation of vortex loops evolving into 

pairs of counter-rotating streamwise vortices in the wake. The second discontinuity comes 

from a transition to fine scale streamwise vorticity over the range 230 ≤ Re ≤ 260  

(Beaudan and Moin, 1994). 

The sub-critical range regimes cover the range 300 ≤ Re ≤ 2 x 10
5
. Over this Reynolds 

number range, the flow around the entire cylinder is laminar and transition to turbulence 

occurs in the separated free shear layers (Cardell, 1993). At Re = 300, the wake becomes 

fully turbulent between 40 and 50 cylinder diameters downstream of the cylinder (Uberoi 

and Freymuth, 1969), after which distance the regular vortices have completely decayed. 

When Re > 10
4
, transition in the shear layers occurs very close to the separation points, 

and the base pressure coefficient Cpb, drag coefficient Cd, and Strouhal number St are 

approximately constant at values of 1.1, 1.2 and 0.2 respectively (Roshko and Fiszdon, 

1969). The mean aerodynamic properties of the cylinder are sensitive to free stream 

disturbances in the sub-critical Reynolds number range. These disturbances, as well as the 

cylinder surface roughness, the blockage ratio, and other geometric parameters, have been 

shown by Norberg (1987) to influence the transition to turbulence in the free shear layer, 

as well as the mixing and entrainment in the wake region for sub-critical and critical 

Reynolds numbers up to 3 x 10
5
. Over the range 2 x 10

5
 ≤ Re ≤ 3.5 x 10

6
, which is 

referred to as the critical Reynolds number transition range, two transitions of drag 

coefficient named by Roshko (1961) as lower and upper transitions are identified. The 

results of the experiment by Roshko (1961) show that the drag coefficient drops abruptly 

from 1.2 to about 0.3 over the lower transition range 2 x 10
5
 ≤ Re ≤ 5 x 10

5
. 
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Table 2-3: Flow regimes over a cylinder. 

Regime Reynolds 

number 

Flow characteristics Experiments 

Steady 0 ≤ Re ≤ 5 Attached boundary layer.  

Kovasznay (1949) 

 

Coutanceau and 

Bouard (1977) 

 

Tritton (1959; 

1971)  

 

~5 Flow convectively unstable. 

5 ≤ Re ≤ 40 Symmetric, attached twin vortices. 

~25 Flow absolutely unstable (parallel 

stability theory). 

Unsteady 

laminar 

40 ≤ Re ≤150 Stable vortex street, decaying 

downstream. 

~ 90 Oblique vortex shedding. 

Transitional 150 ≤ Re ≤ 

300 

Transitional to turbulence in the 

wake.  

Fully turbulent wake in 40 at 50D 

downstream. 

 

Williamson (1989) 

 

Sub-critical 300 ≤ Re ≤ 2 x 

10
5
 

Transition in the free shear layers. Cantwell and Coles 

(1983) 

Roshko (1954) 
Re  ≥ 10

4
 Most of the shear layers is turbul-

ent;  

Base pressure coefficient insensitive 

to Re. 

Critical 2 x 10
5 

 ≤ Re ≤  

5 x 10
5
 

Lower transition in Cd from ≈ 1.2 to 

≈ 0.3; 

Near wake width decreases to less 

than 1D; 

Separation moves to rear of 

cylinder; 

Laminar separation, transition, 

reattachment and turbulent 

separation of boundary layer. 

 

Achenbach (1968) 

 

Norberg (1987) 

 

Delaney and 

Sorensen (1953) 

5 x 10
5
 ≤ Re ≤ 

3.5 x 10
6
 

Upper transition in Cd from; 

Near wake width increases (stays 

less than 1D); 

Separation point moves forward. 

Post-critical ≥ 3.5 x 10
6
 Turbulent cylinder boundary layer; 

Regular vortex shedding (St ≈ 0.27), 

Cd ≈ 0.7; 

Transition precedes separation, no 

reattachment. 

Roshko (1961) 

Shih et al. (1992) 
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It was discovered that a laminar separation of the boundary layer is followed by transition 

to turbulence, reattachment and a final turbulent separation. The separation point moves 

from the front to the downstream side of the cylinder and the width of the near wake 

decreases to less than 1 diameter. Over the upper transition range 5 x 10
5
 ≤ Re ≤ 3.5 x 10

6
, 

the base pressure coefficient Cpb, which is the pressure coefficient on the leeward side of 

the cylinder (Ackerman et al., 2009), decreases monotonically from approximately -0.2 to 

-0.5, while the drag coefficient Cd increases from 0.3 to 0.7 and remains at this value for 

Reynolds numbers up to 10
7
. When the Reynolds number is increased further, the 

separation point moves forward but remains on the downstream side of the cylinder. At 

the same time, the wake width increases but stays smaller than one cylinder diameter.  

In the post-critical regime, at Re > 3.5 x 10
6
, the boundary layer on the cylinder surface 

becomes turbulent before it separates. The separation-reattachment bubble present in the 

critical region disappears. The base pressure coefficient Cpb continues its monotonic 

decrease started at Re = 5 x 10
6
 reaching -0.6 at Re = 8 x 10

6
. The drag coefficient Cd is 

constant at around 0.7 and vortices are shed regularly at an approximately constant St = 

0.27 (Roshko, 1961). 

With the advent of high-speed computers and time resolved experimental techniques, 

complex flow phenomena about a circular cylinder have been discovered at both low and 

high Reynolds numbers. This has helped to resolve the flow features around this geometry 

in great details and provided answers to questions on the asymptotic development of the 

recirculation region (wake bubble), drag, separation point location, vorticity, and of the 

pressure distribution. All of these flow phenomena are relevant to the understanding of 

high-Reynolds number flows. Fornberg (1980; 1985) numerically obtained predictions of 

the steady viscous flow past a circular cylinder at Reynolds  numbers up to 600. The aim 

of his study was to provide further information on the limiting properties of the steady 

flow at increasing Reynolds numbers on the development of the recirculation region 

(wake bubble), drag, separation point location, vorticity, and pressure distribution. The 

results obtained show some new trends in the predicted flow shortly before Re = 300. As 

vorticity starts to recirculate back from the end of the wake region, this region becomes 

wider and shorter. He also noticed that other flow quantities, like the position of the 

separation point, drag, pressure and vorticity distributions on the body surface, appear to 

be quite unaffected by this reversal of trends. 

Kalro and Tezduyar (1997) presented a parallel three-dimensional (3D) finite-element 

computation of an unsteady incompressible flow around a circular cylinder over the range 
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300 ≤ Re ≤ 1.0 x 10
5
. They employed stabilised finite-element formulations to solve the 

Navier-Stokes equations on a CM-5 supercomputer to resolve the flow features around the 

cylinder in great detail by capturing the strongly 3D character of the circular cylinder. 

Figure 2.10 shows the variation of the drag coefficient of cylinders and spheres with their 

Reynolds number. An enlarged view of a section of Figure 2.10 with the corresponding 

flow patterns is shown Figure 2.11. As the Reynolds number increases, the variation in the 

drag coefficient Cd (based on the front cross-sectional area) decreases and, over the range 

10
3
  Re  and 10

5
, Cd is nearly constant.  

 

Figure 2.10: Variation of the drag coefficient of a smooth cylinder and of a sphere with 

Reynolds number (Acheson, 1995). 

 

 

 

Figure 2.11: Variation of the cylinder drag coefficient with Reynolds number and 

corresponding flow patterns (Acheson, 1995). 

 

Over the range 10
5
 ≤ Re ≤ 10

6
, the drag coefficient Cd takes a sudden dip.  The dip 

indicates that the pressure drag has suddenly become smaller. The dip in the drag 

coefficient Cd occurs at the point where the circular cylinder boundary layer changes from 

laminar to turbulent. When the flow is laminar (Re < 10
5
), separation starts very near the 
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shoulder of the cylinder and a large wake forms. Whereas, when the flow is turbulent (Re 

> 10
6
), separation is delayed and the wake is correspondingly smaller. The Reynolds 

number at which the flow changes with a sudden decrease in the drag is termed as the 

critical Reynolds number, Rec. 

 

2.3.1 Flow and drag reduction techniques 

When the Reynolds number is very low, the flow over a bluff body is highly viscous with 

skin friction attributed for the force exerted on the body. At a higher Reynolds number, 

beyond the critical value, vortex shedding occurs in the wake, resulting in a significant 

pressure drop on the rear surface of the body. The vortex shedding is responsible for 

serious structural vibrations, acoustic noise and resonance, enhanced mixing, and a 

significant increases in the drag and lift fluctuations (Choi et al., 2008). 

Flow control aims at controlling the different parameters of the flow around a bluff body 

to achieve desired flow characteristics. The main objectives of most of the flow control 

techniques to manipulate the wake flows behind circular cylinder are outlined by Kuo and 

Chen (2009). These are; (i) to reduce the form drag (Tokumaru and Dimotakis, 1991), (ii) 

to suppress vortex shedding, and (iii) to change the heat transfer characteristics (Lange et 

al., 1998). 

Drag reduction has been a major area of research for decades. Increasing environmental 

awareness (global warming crisis) has further intensified the need to investigate such 

technology. Drag reduction is closely related to energy saving and  extensive efforts have 

been made to reduce the drag acting on moving bluff bodies (Lim and Lee, 2003). This 

research is limited by the assessment of the drag experienced by a cylindrical probe in an 

annular flow. The implementation of an effective flow control method to reduce the probe 

drag is left as future work and is beyond the scope of this PhD.  
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Chapter Three: Computational Fluid Dynamic technique 

 

3.1 Introduction 

Computational Fluid Dynamics (CFD) has been employed in this present research study to 

complement an experimental investigation of the annular flow between rotating cylinders 

because of its cost effectiveness, easy accessibility and ability to render three-dimensional 

flow maps. The modelling in this research study was carried out using the commercial 

software ANSYS FLUENT, version 6.3. This chapter gives a detailed overview of the 

specific application of ANSYS FLUENT to the modelling of the annular flow. The basic 

principles and governing equations that ANSYS FLUENT uses to solve an incompressible 

fluid dynamic problem are presented. The realisable k- turbulence model proposed by 

Shih et al. (1995) and its application to the annular flow is also discussed.  

 

3.2 Basic principles of CFD 

There are three main elements in a CFD simulation. These are: (1) pre-processing, (2) 

processing (solver), and (3) post-processing.  

The pre-processing comprises of the definition and discretisation of the geometry to be 

analysed. Specifically, the geometry or flow domain is divided up into a number of 

discrete elements by a grid or mesh. The geometry describes the shape of the problem to 

be analysed. There are various ways of creating the geometry, depending on the 

complexity of the flow domain. This study used Gambit, version 2.4.6. This is a 

commercial mesh generator that is part of the ANSYS FLUENT software license package. 

The design and construction of a good quality grid is crucial to the success of the CFD 

analysis. The computational cells within the flow domain define an assembly of unit 

control volumes. The flow problem is solved in each cell. The cell shape and size has a 

significant impact on the rate of convergence, solution accuracy, and the CPU time 

required. Many different cell elements and grid types are available. A mesh can be coarse, 

medium, or fine. The appropriate choice of the mesh depends on complexity of the 

geometry on flow field, and on the cell types that are supported by the solver. Triangular 

and quadrilateral cells are commonly used for two-dimensional (2D) problems, in which 

the flow depends only on two spatial coordinates. The pre-processing aspect is important, 

as over 50% of the time spent in industry on a CFD project is devoted to the definition of 

the domain geometry and grid generation (Versteeg and Malalasekera, 1995). 
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The processing stage (solver) involves the selection of an appropriate physical model for 

the flow that needs to be modelled, the specification of the fluid properties inside the  

domain, the definition of appropriate boundary and operating conditions as well as of  

thermodynamic properties of the flow. This stage involves the discretisation of the 

governing equation (Navier-Stokes equations) of the system so that they can be solved 

iteratively. Versteeg and Malalasekera (1995) identified four major numerical solution 

techniques commonly used for discretised problems in commercial CFD. These solution 

techniques are: (1) the finite difference method, (2) the finite element method, (3) the 

finite volume method, and (4) the spectral method. In this work, the finite volume 

approach is followed, which is discussed in section 0. The advantages of this method over 

the others are also discussed in section 0. 

Post-processing is the process of displaying and visualising the CFD results through the 

manipulation of the numerical output. In ANSYS FLUENT, some post-processing tools 

are incorporated into the academic license package to visualise the flow, extract, and 

manipulate CFD data. Flow properties such as the static pressure, velocity magnitude, 

turbulent kinetic energy, and velocity vectors are computed and plotted from the flow state 

output of the flow solver. An adequate analysis of the variation of the flow properties at 

any point in the medium can be performed using ANSYS FLUENT‟s graphical interface. 

Several other features like 2D and 3D surface plots, particle tracking, view manipulations 

(translation, rotation and scaling) and colour postscript output can be displayed. A key 

functionality of the post-processing software is the ability to visualize complex flows. 

In the ANSYS FLUENT software, it is possible to export the geometry and the flow data 

to other post-processing software, such as Tecplot and Matlab. Tecplot offers a greater 

level of sophistication in the geometry and flow rendering tool, aiding the visualisation 

and the interpretation of the predicted flow pattern. Matlab has been used in this thesis to 

complement the analysis of the results by the Tecplot. While Matlab does not offer the 

body fitted (curvilinear) geometry render of Tecplot, it can perform spectral analysis in 

frequency or wavenumber of the predicted flow, using its signal processing toolbox.  

 

Numerical method 

There are three fundamental principles that govern physical aspects of any continuous 

flow, including turbulent ones (Anderson, 1995; Versteeg and Malalasekera, 1995). These 

three fundamental principles are: 

 The conservation of mass.  
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 Newton‟s second law for the conservation of momentum. 

 The first law of thermodynamics for the conservation of energy. 

 

The governing equations 

The above three fundamental principles can be expressed in terms of basic mathematical 

equations, the continuity equation, the momentum equations, and the energy equation 

which, in their most general form, are either integral or partial differential equations. 

These governing equations are solved subject to boundary conditions describing the 

physical state of the flow at the computational domain boundaries. The behaviour of the 

fluid properties is generally described in terms of macroscopic intensive properties such as 

velocity, pressure, density, temperature, and specific energy. Anderson (1995) identified 

three important principles that are helpful for obtaining the basic equations of fluid motion 

as: 

 Choosing of appropriate set from any of the law of physics described earlier. 

 Application of this set to a suitable model of the flow. 

 Obtaining an equation which represents the set. 

In this study, all the CFD simulations assume an isothermal, viscous, and incompressible 

fluid condition. For an incompressible flow, the density is constant. As such the energy 

equation becomes uncoupled from the continuity and momentum equations. Therefore, all 

the discussions in this section will only focus on the continuity and momentum (Navier-

Stokes) equations. The summary of these equations are presented in this thesis, while the 

detailed derivations of these equations can be found in Versteeg and Malalasekera (1995), 

Anderson (1995), and in other fluid mechanics text books. 

 

The continuity equation 

The law of conservation of mass can be applied to any fluid flow in a control volume, so 

that the change of mass in the control volume is equal to the mass that enters through its 

faces minus the total mass leaving its faces. The unsteady, three-dimensional continuity 

equation can be written in conservative form as: 

   

  
          3.1 
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The first term on the left hand side of equation 3.1 is the rate of change in time of the 

density (mass per unit volume). The second term describes the net mass flux across the 

boundaries of an element control volume and it is called the convective term.  

For an incompressible flow, the density,  is constant, hence the continuity equation 3.1 

simplifies to: 

       3.2 

 

The momentum or Navier-Stokes equations 

When Newton‟s second law of motion is applied to the fluid flow in a moving control 

volume, the rate of change of momentum of a fluid particle equals to the sum of the forces 

acting on the particle (F = ma). There are two types of forces acting on a fluid particle, 

namely, surface forces and body forces. Surface forces act directly on the surface of the 

fluid element. They are due to only two forces: (a) the thermodynamic pressure 

distribution acting on the surface, imposed by the outside fluid surrounding the fluid 

element, and (b) the shear and normal viscous stresses acting on the surface, also imposed 

by the outside fluid “tugging” or “pushing” on the surface by means of friction (Anderson, 

1995). The body forces act directly on the volumetric mass of the fluid element. These 

forces “act at a distance”. Examples are gravitational, centrifugal, Coriolis, and 

electromagnetic forces (Anderson, 1995).  

The Navier-Stokes equations applied to a fixed control volume are represented in vector 

form by:  

 
 
  

  
                3.3 

This vector equation involves four basic quantities: Local acceleration, convective 

acceleration, the pressure gradient and viscous forces. The viscous forces are the normal 

and shear stress distributions acting on the surface. These are modelled in equation 3.3 

assuming a Newtonian fluid. In the momentum equation, it is a common practice to 

highlight the contribution due to the surface forces as separate terms and to include the 

effects of the body forces as source terms. Therefore, the conservative form of the linear 

vector momentum equation 3.3 expressed in terms of surface (pressure and viscous 

stresses) and including the body forces is given as: 

 
 
  

  
                 3.4 
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Neglecting the effects of the body forces as source terms, equation 3.4 becomes 

    

  
               3.5 

The continuity equation 3.2 and momentum equation 3.3 can be re-cast into an integral 

form by integrating them over an arbitrary volume V bounded by a close surface S. This 

gives: 

 
      

 

   3.6 

 

 
  

  

  
 

                      

 

        

  

 3.7 

By the application of the Gauss divergence theorem, these become: 

 
     

 

   3.8 

 

 
 

 

  
  

 

           

 

         

 

       

 

 3.9 

where I is the identity unit diagonal matrix. 

In flows of simple geometry, the continuity and Navier-Stokes equations can be solved 

analytically, while more complex flows can be tackled numerically with CFD techniques, 

such as the finite volume method, without additional approximations at low and moderate 

Reynolds numbers (Versteeg and Malalasekera, 1995). The ease with which solutions can 

be obtained and the complexity of the resulting flows often depend on which quantities are 

important for a given flow.  

 

Numerical scheme 

The CFD software package ANSYS FLUENT used in this research work is a finite 

volume code. The computational domain is divided into unit control volumes. To solve the 

flow governing equations numerically in each control volume, they have to be transformed 

into algebraic expressions. The process of transforming these equations into solvable 

algebraic expressions is known as discretisation. The finite volume approach in ANSYS 

FLUENT involves the integration of the flow governing differential equations over all the 
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control volumes of the solution domain to yield a volume averaged estimate of the flow 

state at each cell. The discretisation using the finite volume method involves the 

substitution of piece-wise constant approximations for the terms in the integral equation 

representing flow processes such as convection, diffusion, and sources terms. This 

converts the integral equations into a system of linear algebraic equations (Versteeg and 

Malalasekera, 1995). These linear algebraic equations are solved iteratively over the 

control volumes to compute the flow state until convergence. The accuracy of a converged 

solution is dependent on the physical models, on the grid resolution, as well as on the 

problem setup (FLUENT, 2006). The advantages of finite volume method over all other 

techniques as outlined in ANSYS FLUENT 6.3 user‟s guide (2006) include: 

 Flexibility in terms of its usage on either a structured or unstructured mesh.  

 Its economical use of computer memory and speed for very large problems, higher 

speed flows, turbulent flows, and source term dominated flows.  

 Easy programming in terms of CFD code development.  

 

There are two numerical solution techniques provided by ANSYS FLUENT (2006). These 

are: 

 A pressure based solver (segregated and coupled algorithms). 

 A density based solver. 

In both methods, the velocity field is obtained from the momentum equations. The integral 

form of the governing equations for the conservation of mass and momentum are solved 

using either method. Both methods use a control-volume-based technique and the 

discretisation process for the two numerical methods is the finite-volume one. The two 

methods differ in the approach used to linearize and solve the discretised equations.  

The pressure based solver is formulated either as a segregated or a coupled algorithm. In 

this thesis, the pressure based segregated solver has been used. In this solver, each discrete 

governing equation is linearised implicity with respect to the conservative variable of that 

equation. That is, the conservative variables in the governing flow equations are solved 

implicitly by considering all cells one after another in a sequential manner. This results in 

a system of linear equations with one equation for each cell in the domain. The reason for 

selecting the pressure based segregated solver is that this is computer memory efficient, 

since the discretized equations need only be stored in the memory one at a time. The 

pressure based segregated solver requires about 1.5 to 2.0 times less computer memory 

than the pressure based coupled solver. The general solution procedure for the pressure 
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based segregated and coupled algorithms as well as the density based solvers is fully 

described in ANSYS FLUENT (2006). 

 

3.2.1 Spatial discretisation 

In all CFD simulations involving finite volume method, the computational domain is 

divided into a finite number of elements or cells. The cell is the control volume into which 

the physical domain is broken down by the regular and irregular arrangement of nodes to 

construct the mesh. The flow problem is solved in the cell that is defined around grid 

points or nodes. The cell averaged flow state is determined at these nodes, so that the flow 

can be described mathematically by specifying the cell averaged flow state at all grid 

points in space and time. The accuracy and stability of the numerical computation is 

dependent on the quality of the mesh. The attributes associated with mesh quality outlined 

in ANSYS FLUENT (2006) are the node point distribution, the smoothers, the cell 

skewness and the cell aspect ratio. 

The node point distribution determines the degree to which shear layers, separated 

regions, shock waves, and boundary layers are resolved. Poor node density and node 

distribution in critical regions leads to poor resolution, which adversely affects the flow 

predictions. To achieve a good resolution of the boundary layer for a laminar flow, the 

grid adjacent to the wall should satisfy the condition 

 

   
   

  
   3.10 

where yp is the distance to the wall from the adjacent cell centroid, u∞ is the free stream 

velocity, ρ is density of the fluid,  is the dynamic viscosity of the fluid, and x is the 

distance along the wall from the starting point of the boundary layer. Equation 33.1100 places 

the first grid point within the lower quarter of the boundary layer thickness. The resolution 

of the laminar boundary layer plays a significant role in the accuracy of the computed wall 

shear stress. 

The numerical results for the turbulent flows tend to be more susceptible to grid 

dependency than those for a laminar flow, due to the interaction of the mean flow and 

turbulence. The mesh resolution required at the near-wall region depends on the 

turbulence closure model being used. 
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Smoothness in the computational mesh reduces the truncation error of the numerical 

solution. The smoothness of the mesh can be improved by refining the mesh based on the 

change in cell volume or the gradient of the cell volumes along computational mesh lines. 

The cell skewness is the difference between the shape of the cell and the shape of an 

equilateral cell of equivalent volume. Highly skewed cells can decrease the solution 

accuracy and de-stabilise the solution procedure. For a good unstructured mesh, the 

skewness should always be below 0.98 (FLUENT, 2006). 

The cell aspect ratio is a measure of the stretching of the cell. It is defined as the ratio of 

the maximum distance between the cell centroid and face centroid to the minimum 

distance between the nodes of the cell. A general rule of thumb is to avoid aspect ratios in 

excess of 5:1 (FLUENT, 2006). 

The three major types of mesh that are generally used in CFD simulation are the single-

block structured, single-block unstructured, and multi-block structured meshes. The 

choice of the type of mesh depends on the problem and the solver capabilities.  

A structured mesh is typically restricted to topologically rectangular computational 

domains and is hexahedral in shape. This type of mesh is preferred for analysis of 

rectangular shapes and of simple cuboid geometries. An unstructured mesh, on the other 

hand, is typically a mesh with irregular spacing between grid points that are joined to form 

a tetrahedral mesh. This type of mesh is designed for more complex geometries as nodes 

can be placed within the computational domain depending on the shape of the body. In 

other word, the grid can acquire a shape more closely matching a body surface. 

Multi-block structured meshes combine the lower computing cost associated with a 

structured mesh and the flexibility associated with an unstructured mesh. In this type of 

mesh, the computational domain is subdivided into different blocks that can be structured 

meshed. An unstructured mesh has been used in this study. 

 

Equation discretisation 

There is the need to solve the integral form of the governing partial differential equations 

3.6 and 3.7 by the CFD solver. The flow governing equations are solved for each control 

volume iteratively in discrete form. The discretisation process results in a set of algebraic 

equations that resolve the variables using a pseudo-time integration method at a specified 

finite number of points within the control volumes. The flow field within the whole 
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domain is then obtained (Fokeer, 2006). The semi-discrete form of the governing 

equations is given by: 

 

       

 

   

 3.11 

 

 

 
 

  
                          

 

   

 

   

 

   

 3.12 

where 

 
        

 

  

and ΔS is the i-th facet of each control volume V, which is fully enclosed by N facets. The 

equations solved by ANSYS FLUENT are defined at the control volumes generated by the 

unstructured computational grid. The discrete variable values such as pressure, velocities 

and specific turbulent kinetic energy are calculated and stored at the cell centres by 

ANSYS FLUENT. Using the finite volume method, the integral conservation laws are 

approximately satisfied over the control volume. That is, the net flux through the control 

volume boundary is the sum of integrals over the different control volume faces as the 

control volumes do not overlap. At the control volume faces, the values of the integrand 

are required for the convection terms of the turbulence closure model. This can only be 

determined by interpolation from the cell-averaged flow state. This is accomplished by 

using an upwind scheme to determine the values at the faces. The up-winding is the 

process of deriving the cell face values of the state variables from quantities in the cell 

upstream, relative to the direction of the mean velocity.  

The finite-volume discretisation method and formulae are further explained with relevant 

examples in Blazek (2001) and Versteeg and Malalasekera (1995). 

 

3.2.2 Upwind integration schemes 

Four upwind schemes are available in ANSYS FLUENT (2006). These four upwind 

schemes are first-order upwind, second-order upwind, power law, and the QUICK 

scheme. The first-order upwind and the second-order upwind schemes used in this 

research are briefly discussed. The detailed description of these schemes can be found in 

ANSYS FLUENT (2006) and are also treated by Versteeg and Malalasekera (1995) and 

Blazek (2001). 
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First-order upwind scheme 

This is the simplest numerical scheme available in ANSYS FLUENT. In this scheme, 

quantities at the cell faces are determined by assuming that, for any variable throughout 

the entire cell, the face values are identical to the cell average. Hence, when the first-order 

upwind scheme is selected, the face value of a variable is set equal to the cell average 

value of the variable in the upstream cell (Versteeg and Malalasekera, 1995). 

The main advantages of this scheme are: 

 Easy to implement resulting in very stable calculations.  

 Can yield better convergence.  

 Can be applied without any significant loss of accuracy when the flow is aligned 

with the grid, especially for a quadrilateral or hexahedral grid, so that numerical 

diffusion is naturally low. 

 Can be used as a starter to perform first a few iterations for any numerical 

simulation that involves complex flows. 

The disadvantage is that this scheme is prone to numerical discretisation errors (numerical 

diffusion) in a tetrahedral mesh and it will yield less accurate results than on a hexahedral 

mesh. 

 

Second-order upwind scheme 

This scheme is more appropriate than a first order scheme for triangular and tetrahedral 

grids where the flow is never aligned with the grid. The scheme is more accurate than the 

first-upwind scheme because it applies a reconstruction of the state variable gradient 

inside each cell. In this scheme, quantities at cell faces are computed using a 

multidimensional linear reconstruction approach, whereby higher-order accuracy is 

achieved at cell faces through a Taylor series expansion of the cell-centred solution about 

the cell centroid. Hence the face value of a variable is computed by averaging the cell 

values in the two cells adjacent to the face using a gradient method. The main 

disadvantage of this scheme is that it can result in face values that are outside of the range 

of cell values in regions with strong gradients. In such case, it is then necessary to apply 

limiters to the predicted face values to achieve accuracy and stability. The Green-Gauss 

node based method is applied as the limiter for the computation of the gradients in the cell 

centers. The Green-Gauss node based method computes the arithmetic average of the 
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nodal values on the face. The nodal values are computed from the weighted average of the 

cell values surrounding the nodes of the face.  

 

3.2.3 Numerical scheme for pressure 

The conservative variables in the vector momentum equation are stated in the form of 

convection-diffusion terms, except for pressure. Pressure appears as a source term in the 

integral momentum equation 3.7, thus, the pressure field needs to be calculated at the 

computational cell boundaries in order to solve these equations. Therefore, an 

interpolation scheme is required to compute the face values of pressure from the cell 

values. 

 

Pressure interpolation schemes 

This scheme computes the face values of pressure from the cell values.  The standard 

scheme method that is available in ANSYS FLUENT (2006) has been used in this thesis. 

This scheme interpolates the pressure values at the faces using momentum equation 

coefficients and is only applicable when the pressure variation between cell centres is 

smooth. The detailed descriptions of the standard pressure interpolation scheme can be 

found in ANSYS FLUENT (2006). 

 

Pressure-velocity coupling 

In an incompressible flow model, the density is constant and hence it is not linked to 

pressure. As there is no governing partial differential equation for pressure, a constraint is 

therefore introduced in the coupling between pressure and velocity on the solution of the 

flow field. The continuity equation can only be satisfied for the velocity field if the correct 

pressure field is applied to the momentum equations. To achieve this, a pressure-velocity 

coupling algorithm adds a correction factor to the face flux, so that the corrected face flux 

satisfies the continuity equation (FLUENT, 2006).  

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm that uses a 

relationship between velocity and pressure corrections to enforce mass conservation and to 

obtain the pressure field has been employed in this work. This algorithm substitutes the 

flux correction equations into the discrete continuity equation to obtain a discrete equation 

for the pressure correction in the cell. The SIMPLE algorithm is recommended for steady-

state calculations.  
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3.2.4 Convergence criteria 

In all CFD simulations, the governing equations must be transformed to algebraic 

expressions that are solved iteratively. To obtain a solution, there is the need to specify the 

information that is required to control the numerical solution algorithm. During the 

process of CFD simulation, there are integration errors in the discretised equations, 

summed over all control volumes, which may lead to inaccuracy in the flow solution. The 

solution to the numerical equations can be used to evaluate such errors. These measures of 

error, which are generally known as residual errors or residuals, can be used as a guide to 

see if a solution process is converging or not. The residual is the imbalance of the 

conservation equation for either mass or momentum summed over all the computational 

cells. The residual of the solutions can also be used to monitor the performance of a 

simulation. Progress towards a converged solution can be greatly assisted by the careful 

selection of the settings of various under-relaxation factors (FLUENT, 2006). Each Under-

Relaxation Factor (URF) is adjusted ad hoc for its respective conservative variable in 

order to improve the convergence rate. As the solution process progresses from iteration to 

iteration, the residual errors from each equation should reduce. Low residuals suggest a 

solution that converges and the simulation can be considered stable if the residuals keep 

decreasing in magnitude monotonically with further iterations. That is, solutions of CFD 

problems are considered to converge when the flow field and the scalar fields are no 

longer changing. 

In many applications, the momentum and continuity residuals are monitored to measure 

the error in the solution. When the value of each residual is between three to four orders of 

magnitude below its initial value, the solution is said to achieve convergence to an 

acceptable level (FLUENT, 2006), depending on the level of accuracy required. At the 

completion of every flow solver iteration, the sum of the residual squared of each 

conserved variable is computed and stored to a data file or displayed on terminal screen, 

where the convergence history is visualised. This enables a quick check on the progress of 

the solution to be made. Low residuals do not however guarantee that the converged 

solution is correct. Additional reports of integrated quantities at surfaces and boundaries 

are often used to judge convergence. A physical variable of the solution flow field 

therefore needs to be monitored to ensure the convergence of the computation to a 

physically correct solution. This convergence is reached when the physical variable 

remains constant for a sufficient number of iterations and the residuals have reached a pre-

determined reduction. Mass imbalance is also often used to monitor convergence. This is a 
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report of the mass flow rates at the inlet and outlet flow boundaries, which should add to 

zero for a converged solution (Fokeer, 2006). 

 

3.3 Turbulence modelling techniques 

Turbulence modelling is an important consideration in CFD. Most flows of engineering 

importance are turbulent. As such, there is the need to have access to viable tools capable 

of representing the effects of turbulence on the mean flow. Turbulent flows are 

characterised by fluctuations in the velocity fields. These fluctuations mix transported 

quantities such as momentum, and cause the transported quantities to diffuse in the mean 

flow. Simulating these small scale and high frequency fluctuations directly in practical 

engineering calculations is often too computationally expensive. Instead, the instantaneous 

(exact) governing equations can be time averaged, ensemble averaged, or otherwise 

manipulated to remove the small scales, resulting in a modified set of equations that are 

computationally less expensive to solve. However, the modified equations contain 

additional unknown variables such as, the Reynolds stresses, and turbulence models are 

needed to determine these variables in terms of known quantities. A turbulence model is 

therefore a computational procedure to close the system of mean flow equations so that a 

range of turbulent flow problems can be modelled. The purpose of a turbulence model is 

to provide numerical values for the additional stresses (the Reynolds stresses) due to 

velocity fluctuations at each point in the flow. The objective is to represent the Reynolds 

stresses and the turbulent scalar transport terms as realistically as possible, while 

maintaining a low level of complexity. The effects of the turbulence on the mean flow are 

modelled so that the details of the turbulent fluctuations are not required to predict the 

mean flow (FLUENT, 2006). The choice of the turbulence model depends on 

considerations such as the flow physics, the established practice for a specific class of 

problems, the level of accuracy required, the available computational resources, and the 

amount of time available for the simulation. The most important aspect is to ensure that 

the selected turbulence model is suited to the particular flow being considered. A wide 

range of models are available and understanding the limitations and advantages of the 

selected one is required if useful flow predictions are to be obtained with minimum 

computational cost. It should be noted that no single turbulence model is universally 

accepted as being superior for all classes of problems. 
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3.3.1 Reynolds averaged flow equations 

The Reynolds-Averaged Navier-Stokes (RANS) equations govern the transport of the 

averaged flow quantities, with the whole range of the scales of turbulence being modelled. 

The process of Reynolds-averaging involves the decomposition of each flow variable in 

the instantaneous (exact) Navier-Stokes equations into its mean (time averaged) and 

fluctuation components. The velocity vector is represented by equation 3.13 while the 

pressure and other scalar quantities are represented by equation 3.14. 

         3.13 

 

          3.14 

where    is the velocity vector,  

    and    are the mean and fluctuation for the velocity vector, 

    denotes a scalar quantity such as pressure, specific energy etc, 

    and    are the mean and fluctuation for the scalar quantity. 

Substituting expressions of this form for the flow variables into the instantaneous 

continuity and momentum equations and taking a time average (and dropping the overbar 

on the mean velocity   ) gives the Reynolds averaged continuity and Navier-Stokes 

equations for incompressible flow. These can be written in vector form as: 

       3.15 

 

 
 
  

  
                             3.16 

The above equations have the same general form as the instantaneous Navier-Stokes 

equations, with the velocities and other solution variables now representing time-averaged 

values. In equation 3.16, additional terms appear that represent the effects of turbulence. 

These Reynolds stresses,            , must be modelled in order to close the system of 

equation 3.15 and equation 3.16. 

Many of the turbulence models are based on the assumption that there exists an analogy 

between the action of viscous stresses and Reynolds stresses on the mean flow. Both 

stresses appear on the right hand side of the momentum equations. It has been shown from 

Newton‟s law of viscosity that the viscous stresses are proportional to the rate of 

deformation of a fluid element. For an incompressible fluid, this is represented by: 
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       3.17 

where the strain tensor s is given as:  

 
  

 

 
           3.18 

It was experimentally discovered that turbulence decays unless there is shear in isothermal 

incompressible flows. Turbulence stresses are found to increase as the mean rate of 

deformation increases. Boussinesq (1877) proposed the hypothesis that the Reynolds 

stresses could be taken as proportional to the mean rate of deformation. This is represented 

by: 

                 3.19 

Equation 3.17 and equation 3.19 show that the constant of proportionality between  and 

             is the turbulent or eddy viscosity, t which has the same units as that of molecular 

viscosity, Pa.s. It is possible to also define a kinematic turbulent or eddy viscosity, t = 

t/ with units m
2
/s. The turbulent or eddy viscosity is in-homogenous, but it is assumed 

to be isotropic. This assumption is valid for many flows except for flows with strong 

separation or swirl. Using this assumption allows to simplify the problem from 

determining the n
2
 components of the Reynolds stress tensor  in an n-dimensional 

problem to determining just one scalar field variable t. The turbulent viscosity is used to 

close the momentum equations.  

The rest of this section presents brief overview of the turbulence model for the CFD 

solutions used in this thesis. The mathematical details of this model can be found in most 

CFD text books. 

 

The Realizable k-ε model 

The eddy viscosity t distribution in the computational domain can be evaluated using the 

realizable k-ε model. The realizable k-ε model by Shih et al. (1995) belongs to the family 

of k-ε models proposed by Launder and Spalding (1972). Since then, it has become the 

most widely used two equations turbulence model in practical engineering flow 

calculations (FLUENT, 2006). It is a semi-empirical model based on the transport 

equations for the Reynolds averaged turbulence kinetic energy k and its dissipation rate ε. 

The model transport equation for k is derived directly from the Navier-Stokes equations, 

while the model transport equation for ε was obtained using physical reasoning. In this 
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model, the solution of two separate transport equations allows the turbulent kinetic energy 

and its length scale to be independently determined. This two-equation model estimate k 

and ε. The turbulent (or eddy) viscosity t, is computed by combining k and ε 

algebraically, using dimensional analysis: 

 
      

  

 
  3.20 

where  is the density of the fluid and C is the model closure constant. 

The realizable k-ε model by Shih et al. (1995) is a relatively recent model and differs from 

the standard k-ε model in that it contains a new formulation for the turbulent viscosity. 

Secondly, the derivation of a new transport equation for the dissipation rate ε has been 

obtained from an exact equation for the transport of the mean-square vorticity fluctuation. 

This model satisfies certain mathematical constraints on the Reynolds stresses, consistent 

with the physics of turbulent flows. 

For this model, the transport equations for the turbulent kinetic energy k and its rate of 

dissipation ε are given respectively in ANSYS FLUENT (2006) as: 

  

  
                

  

  
                3.21 

and 

  

  
                

  

  
             

  

     
    

 

 
      3.22 

Gk represent the generation of turbulent kinetic energy due to the mean velocity gradients, 

Gb is the generation of turbulent kinetic energy due to buoyancy. YM represent the 

contribution of the fluctuating dilatation in compressible turbulence to the overall 

dissipation rate (this is normally neglected in the modelling of incompressible flows).  C1, 

C2, C1ε, and C3ε are constants while σk and σε are the turbulent Prandtl numbers for k and ε 

respectively.  

Neglecting the generation of turbulent kinetic energy due to buoyancy Gb and the 

contribution of the fluctuating dilatation YM, equations 3.21 and 3.22 can be rewritten 

respectively as: 

  

  
                

  

  
          3.23 
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and 

  

  
                

  

  
             

  

     
 3.24 

Gk is modelled from the exact equation for the transport of k as: 

                   3.25 

 

Equation 3.25 can be re-written in a manner consistent with the Boussinesq hypothesis as: 

       
  3.26 

where 

 
             

 

   
       

 

 
           

In ANSYS FLUENT (2006), the values of the model closure constants are: Cε1 = 1.44, C2 

= 1.9, σk = 1.0, σε = 1.2. 

The second term on the left hand side of equations 3.23 and 3.24 is the convection term, 

the first term on the right hand side of both equations is diffusion term, the second term on 

the right hand side of both equations is the production term while the third term on the 

right hand side of both equations is the destruction term. 

The k equation for the realizable model by Shih et al. (1995) is the same as that in the 

standard k-ε model and in the Renormalization Group (RNG) k-ε model by Yakhot and 

Orszag (1986) except for the model constants. The only difference among these models is 

in the ε equation. The production term in the ε-equation of the realisable k-ε model (the 

second term on the right hand side of equation 3.24) does not involve the production of k, 

which makes the model a better representation of the spectral energy transfer. Another 

difference is the fact that the C is not a constant in this model, but it is a function of the 

mean strain and rotation rates, the angular velocity of the system rotation, and the 

turbulence fields (k and ε). The relationship between these parameters is:  

 
    

 

     
   

 

 
3.27 

where 

                  3.28 

and       
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              3.29 

where     is the mean rate of the rotation tensor. The model constant A0 and AS are given 

by: 

 
                     

3.30 

where 

 
  

 

 
             

     

   
         3.31 

One benefit of the realizable k-ε model is that it predicts the spreading rate of both planar 

and round jets more accurately than the standard k- model (FLUENT, 2006). It is also 

likely to provide superior performance for flows involving rotation, boundary layers under 

strong adverse pressure gradients, separation, and recirculation (FLUENT, 2006). The 

realizable k-ε model has shown substantial improvements over the standard k-ε model 

where the flow features include strong streamline curvature, vortices, and rotation. One 

limitation of the realizable k-ε model is that it produces non-physical turbulent viscosity in 

situations in which the computational domain contains both rotating and stationary fluid 

zones, such as with multiple reference frames and with rotating and sliding meshes 

(FLUENT, 2006). This is not the case in any of the simuations in this thesis.  

 

3.4 Boundary conditions 

In the annular flow between co-rotating cylinders, the walls are the main source of mean 

vorticity and turbulence. Therefore, the wall model is likely to have significant impact on 

the numerical solution. In the near-wall region, the solution variables have large gradients. 

The momentum and other scalar transports occur most vigorously in the near wall regions. 

Viscous damping reduces the tangential velocity fluctuations, while kinematic blocking 

reduces the normal fluctuations very close to the wall. The boundary condition at a 

stationary wall is usually specified as no-slip. In order to satisfy this, the mean velocity at 

the wall has to be zero, thereby creating a steep velocity gradient starting as highest at the 

inner cylindrical wall and decreasing at increasing wall-normal distance. The rate of 

decrement depends on the computational domain. Therefore, the accurate representation of 

the flow in the near-wall region is a necessary requirement for the successful prediction of 
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any wall-bounded laminar/turbulent flows. The turbulent flow in the near-wall region is 

subdivided into three layers (FLUENT, 2006; Schlichting, 1979): 

 The innermost layer, which is called the "viscous sub-layer'', is a region where the 

flow is almost laminar and the (molecular) viscosity plays a dominant role in the 

momentum and mass transfer.  

 The outer layer is usually called the mixing layer. In this region, the Reynolds 

stresses play a major role.  

 Finally, there is an overlap region between the viscous sub-layer and the mixing 

layer, where the effects of molecular viscosity and turbulence are equally 

important.  

The three sub-divisions of a turbulent boundary layer are illustrated in Figure 3.1. This 

diagram specifically refers to a fully developed turbulent boundary layer flow under zero 

stream-wise pressure gradient at a Reynolds number Rex = vx/  200, where x is the 

streamwise distance from the flat plate leading edge and , v, and  are defined as in 

equation 2.17. The boundary layer mean velocity profile exhibits in this case a logarithmic 

overlap region. 

A higher mesh density and special wall modelling procedures are required to resolve the 

velocity gradient and better predict the flow behaviour in the near-wall region. ANSYS 

FLUENT (2006) identifies two alternative approaches, which are the wall function 

method and the near-wall modelling method. These are discussed briefly in sections 3.4.1 

and 3.4.2. 

 

Figure 3.1: Subdivisions of the near-wall region (FLUENT, 2006). 
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3.4.1 The wall function approach 

In modelling the near wall region, the viscosity-affected inner region (viscous sub-layer 

and buffer layer), where the solution variables change most rapidly, is not resolved. As 

such, there is the need to model the effects of the unresolved inner layer on the resolved 

outer layer. This is done by using semi-empirical formulas known as wall functions. The 

wall functions comprise of the von-Karman law of the wall for the mean velocity and 

algebraic formulae for the near-wall turbulent quantities. The use of the wall function 

particularly in high Reynolds number flows eliminates the need to modify the turbulence 

models to account for the presence of the wall and saves computational resources. This 

method is being used because it is economical, robust, and reasonably accurate and, as 

such, it is the best practical option for the near-wall treatment of industrial flow 

simulations. However, this method is not suitable for situations where low-Reynolds 

number effects are pervasive in the flow. 

 

3.4.2 Near-wall modelling approach 

In the near-wall modelling approach, turbulence models are modified to enable the 

viscosity-affected region to be resolved with a mesh all the way to the wall, including the 

viscous sub-layer. This method is suitable for situations where the low-Reynolds number 

effects are pervasive in the flow domain. In addition, the near-wall modelling approach 

combined with adequate mesh resolution in the near-wall region can be used for situations 

where there is transpiration through the wall, where there is a severe pressure gradient 

leading to boundary layer separations, where there are strong body forces like in the flow 

over a rotating disk and finally where there is high three-dimensionality in the near-wall 

region (FLUENT, 2006). The near-wall modelling approach can be used with the 

realisable k-ε model with the standard wall function option. 

 

3.4.3 Near-wall treatment 

Four different methods are available in ANSYS FLUENT (FLUENT, 2006) for the 

modelling of the near wall region. These are standard wall function, enhanced wall 

treatment, non-equilibrium wall function, and user-defined wall function. The Standard 

wall function has been used in this thesis and this is briefly discussed. 
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Standard wall function 

This function has been widely used for industrial flows and is based on a variant of the 

log-law proposed by Launder and Spalding (1974). The application of the wall function is 

based on the assumption that the production of the turbulent kinetic energy k and its 

dissipation rate ε is equal in the cells adjacent to the wall.  

The logarithmic law of the wall for the mean velocity of the flow is expressed as: 

 
    

 

 
         3.32 

where   

 

    
    

 
   

 
 

  
 

  3.33 

 

 

    
   

 
   

 
   

 
  

3.34 

and  κ  = von Kármán constant ( = 0.4187) 

       E = wall constant (= 9.793) 

     UP = mean flow tangential velocity at point P 

    kP = turbulent kinetic energy at point P 

    yP = wall normal distance from point P to the wall 

    ρ = fluid density 

    μ = dynamic viscosity of the fluid 

  w = wall shear stress 

The logarithmic law for the mean flow velocity is known to be valid over the range 30 < 

y
*
 < 300. However, in ANSYS FLUENT (2006), the log-law is employed for y

*
 > 11.225. 

Where the mesh at the wall-adjacent cells is such that y
*
 < 11.225, the laminar stress-strain 

relationship U
*
 = y

*
 is used. 

The standard wall function has been reported to give reasonably accurate predictions for 

the majority of high Reynolds number wall-bounded flows (FLUENT, 2006). The 

disadvantage of the standard wall function is that it becomes less reliable when the near-

wall flows are subjected to severe pressure gradients. In such case, the non-equilibrium 

wall functions can improve the results (FLUENT, 2006). The full details on the near-wall 

function treatment can be found in ANSYS FLUENT (2006). 
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Rotational wall boundary 

The rotational wall boundary is used for modelling the inner cylinder rotating surface. In 

this situation, the rotational option is enabled and the rotational speed is defined about a 

specific axis in ANSYS FLUENT. More information on the use of rotational wall 

boundary condition for two-dimensional and three-dimensional problems can be found in 

ANSYS FLUENT (2006). 
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Chapter Four: Experimental rig design 
 

 

4.1 Introduction 

Experimental rigs are the basic tools for conducting practical engineering investigations. 

The purpose of the investigation determines the configuration of the experimental rig to be 

designed and constructed. This research aims to provide further information on the flow 

pattern that develops in concentric rotating cylinders and to investigate the intrusive 

effects of the cylindrical probe model on the ensued flow features. This chapter details the 

design and the construction of an assembly of concentric rotating cylinders that targets this 

aim. 

4.2 Rig specifications 

A concentric rotating cylinder assembly is considered in this study as this is a common 

geometry in many engineering applications, examples of which are given in section 2.2. 

The experimental test rig was designed to:  

 Allow the physical simulation of the different flow regimes that exist within the 

annular region of concentric rotating cylinders in a laboratory environment. 

 Help investigating the intrusive effect of a cylindrical probe model on the flow 

pattern between the rotating concentric cylinders.  

 Allow the comparison of the experimental results with CFD predictions. 

 

4.2.1 Design of the experimental rig 

A feasibility study was conducted on building an annular concentric rig that would fit the 

aims of this research work. A conscious effort was made to achieve a flexible geometry of 

simple construction. The design constraints include making the gap between the inner 

cylinder and the outer cylinder wide enough to allow the insertion of a cylindrical probe. 

Secondly, the length of the cylinders was to be made long enough in order to obtain a 

large aspect ratio so as to eliminate the phenomenon of the „end effects‟ that causes 

distortion/interference in spatially-periodic Taylor-Couette flow (Baier, 1999; Moser et 

al., 2000; Youd, 2005).  

Air was selected as the working fluid to eliminate the complexity of a change in the 

refractive index when using optical measurement techniques and to avoid any leakage 

problem from getting the probe into the annular region had liquid been used. Air has been 
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used previously by other researchers as the working fluid in the annular region of 

concentric cylinders. For instance, an experimental and theoretical-numerical investigation 

was conducted by Kuehn and Goldstein (1976) within a horizontal annulus using water 

and air at atmospheric pressure with a ratio of gap width to inner-cylinder diameter of 0.8 

to study the velocity and temperature distributions as well as the local heat-transfer 

coefficients for natural convection. Dyko et al. (1999) investigated by numerical and 

experimental methods the development of spiral flow in air-filled moderate-gap annuli, its 

interaction with the primary flow, and the factors influencing the number and size of the 

spiral vortex cells.  

Based on this review of past concentric cylinder rigs, the experimental test rig was 

designed, built, and commissioned. The isometric drawing of the design of the concentric 

rotating cylinders is shown in Figure 4.1, while the final assembly based on this design is 

shown in Figure 4.2. The concentric rotating cylinder design went through a series of 

modifications to arrive at the final design shown in Figure 4.1. The experimental rig 

consists of two main parts: the drive system and the test section. The detailed drawings 

and the descriptions of the major components of this rig are shown in Figure A 1 to Figure 

A 3 of appendix A. 

 

The drive system 

The drive system consists of three parts: the adjustable speed motor controller, the motor, 

and the drive belts. The apparatus uses an adjustable speed controller. The controller on 

this rig is a solid-state reversing variable-speed drive with dynamic braking. The controller 

is suitable for permanent-magnet and shunt-wound motors up to 750W. The controller is 

used to adjust the speed of the motor and for controlling the rotation of the cylinders in the 

clockwise or anticlockwise directions. The speed of the DC motor is controlled by a 

potentiometer using a linear closed loop control. The minimum and maximum speeds are 

pre-settable by means of timer potentiometers mounted on the controller printed circuit 

board. There are two speed controllers on the rig. Each controller is connected to the DC 

motor that drives one of the cylinders as shown Figure 4.2. The speed indicator on the 

controller specifies a range between 0 and 10. The actual operating speed is measured and 

monitored during the experiment using a tachometer.  
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The two motors on the rig are the SD12C 220V (series DC) model made by Parvalux. 

Each of the motor is rated at 150Watts with a rated maximum speed of 4000RPM. The 

speed of each motor is controlled by the DC reversing speed controller.  

For this apparatus, the motor shaft driving the inner cylinder is connected to the inner 

cylinder shaft by an adjustable belt coupling through a pulley system, as is the outer 

cylinder. The two motors that rotate both the inner and the outer cylinder are bolted 

directly to the metal steel base platform shown in Figure 4.2. Whereas the rig was 

designed to rotate the two cylinders independently, all the experimental results in this 

thesis are obtained with the outer cylinder not rotating. 

The test section  

The main structural component of the test section is a long shaft made of steel. This is 

shown in Figure A 1 of appendix A. This long shaft is being supported by two bearing 

blocks. The bearing blocks house the bearings through which the long shaft is connected 

to the two DC motors and the inner cylinder. Apart from giving supports, the bearing 

blocks serve as stabilizers for the whole assembly by reducing the shaft vibration as the 

inner cylinder rotates at speed. The inner cylinder is mounted on the steel shaft in the test 

section and is propelled by one of the two electric motors through the shaft and the 

bearings. The inner cylinder is made of PVC tube, it has an axial length of 500mm and an 

outer diameter of 50mm. The thickness of the cylinder is 3mm. The inner cylinder is 

coated in black to minimize the reflection from the impinging light sheet from the PIV 

laser, which is detailed in chapter five. As the PVC inner cylinder is push fitted over the 

steel shaft, this fabrication process helps to remove any camber and stenotic thickness 

extrusion error in the PVC. 

An outer cylinder was mounted coaxially with the inner cylinder. The outer cylinder is a 

perspex transparent tube. The choice of the transparent tube is to enable optical access to 

the test section for PIV measurements, for flow visualisation, and to keep costs to a 

minimum. The outer cylinder has an axial length of 520mm, a 100mm outer diameter, and 

is 3mm thick. This gives the system a gap width of 22mm and a cylinder radius ratio  of 

0.53. The accuracy of the diameter of the Perspex is within 1.5mm.The parameters for 

this apparatus are different from all of the previous research work on Taylor-Couette flow 

instability. The major difference is the use of a wide gap between the inner and outer 

cylinders so that it can accommodate a 10mm diameter cylindrical probe, which is 

representative of the single-stem endoscopic PIV probe in Lad (2011).  
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The difference of approximately 20mm in the axial length between the inner cylinder and 

the outer cylinder is the length occupied by the free end collars of the two bearings. The 

free collars are fitted with three stud spacers each that support the outer cylinder as shown 

in Figure 4.1 and Figure 4.2.  

The free end collar allows the outer cylinder to rotate independently from the inner 

cylinder. At the rear end of the outer cylinder, the collar takes the form of a long outer 

shell boss. The long outer shell boss, the spacers and the free end collar are shown in 

Figure 4.1 and Figure 4.2. The rig details are presented in Figure A 2 of appendix A.  

 
Figure 4.1: Isometric view of the concentric rotating cylinder assembly. 

 
Figure 4.2: Concentric rotating cylinder test rig after assembly. 

The stud spacers serve to support and balance the whole assembly, they allow the 

concentric positioning of the outer cylinder relative to the inner cylinder, and they reduce 

the vibration that develops by the apparatus as the inner cylinder rotates at speed. The stud 

spacers are prevented from influencing the flow by the use of end-walls. This is discussed 

in details in section 4.3. Further reductions in the vibration could have been achieved by 

simply supporting the free end of the non-rotating cantilevered outer cylinder. It was 

Rotating or stationary  

outer cylinder 

Speed controlling 

device 

DC motor 
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preferred to keep the cantilever support arrangement to provide a consistent benchmark for 

future tests involving the rotation of the outer cylinder.  

The entire rig is securely fitted on a thick metal steel base platform with a wider area in 

consideration of the load it has to support. The metal steel frame base allows all 

operational electrical components to be fitted conveniently around the rig. The whole rig 

is structured as an independent and complete stand-alone unit and can be easily relocated 

without dismantling it. A drawing of the steel platform with the concentric cylinders is 

shown in Figure A 4 of appendix A.  

 

4.2.2 Further design modifications of the test rig for parametric study 

As the research work progressed, further investigations required to further modify the test 

rig. One of the considerations for selecting the outer cylinder radius was the size of the 

probe to be inserted in the gap width between the cylinders. Reducing the size of the outer 

cylinder below 100mm would have reduced the clearance between the walls of the inner 

and of the outer cylinders and the cylindrical probe, creating excessive blockage. 

Therefore, the cylinder gap width ratio was varied in the experiment by increasing the 

diameter of the outer cylinder while the diameter of the inner cylinder remained fixed. 

This increased the gap width between the cylinders and created more clearance between 

the probe and the walls of the inner and of the outer cylinders. This modification allows a 

parametric study on the intrusivity of the cylindrical probe at different flow regimes in the 

annular region. It is expected that the flow regimes will change due to increase in the 

Reynolds number as a result of the increase in the gap width d. It is of interest to explore 

how the changes in radius ratio and aspect ratio affect the flow regime that develops in the 

annular region of the cylinders and the effect that these changes have on the interaction of 

the ensuing flow field with the cylindrical probe.  

It is acknowledged that altering the Reynolds number by increasing the cylindrical gap 

width d may create more problems as already observed by Taylor (1923), who noted that 

end-wall effects due to the finite length of the cylinders will be significant and difficult to 

eliminate when the radius of the inner cylinder is much less than half of the outer cylinder 

radius. As a result, the flow pattern will cease to be the same as that between two infinitely 

long cylinders. 

To conduct a parametric study on the gap width effect on the annular flow between 

coaxial cylinders, two more annular rigs of different radius ratio were built. Since there 

was no change in the other components of the apparatus apart from the outer cylinder, the 
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final design layout remained the same as that of Figure 4.1. This resulted in the three 

interchangeable layouts shown in Figure 4.3. The test assemblies shown in Figure 4.3 

have a common inner cylinder outer diameter of 50mm, an outer cylinder inner diameter 

of (a) 100mm, (b) 120mm, and (c) 150mm, and a common outer cylinder thickness of 

3mm.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

Figure 4.3: Assembly of concentric rotating cylinders with various aspect and radius  

                   ratios viewed in perspective and in the azimuthal plane without and with 

                   cylindrical probe. (a) test case 1, (b) test case 2, and (c) test case 3. 

 

4.3 Concentric rotating apparatus with cylindrical probe 

As the research work progressed, it was realised that there was a mismatch in the end-wall 

conditions between the experimental apparatus of Figure 4.3 and the CFD model geometry 

detailed in chapter six. It was thought that changing the boundary conditions of the CFD 

geometry would have led to a computationally more expensive simulation. It was 

therefore decided that modifying the end-walls of the experimental apparatus was the 
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more attractive option. As such, end-walls of the experimental apparatus at the left and 

right sides were changed to solid walls. This change in the boundary conditions of the 

experimental apparatus makes it easy to have the same visualisation area as the total 

geometry area of the CFD simulations, such that the geometries for the two techniques 

have the same aspect ratio and radius ratio. However, there is a slight difference in the 

boundary condition at the left end-wall. This is due to the fact that the light sheet from the 

laser during PIV measurement passes through the left end-wall.  

 

Figure 4.4: Azimuthal plane showing the left end-wall without the cylindrical probe. 

 

Figure 4.5: Azimuthal plane showing the left end-wall with the cylindrical probe. 

 

An attempt was made to use a transparent end-wall at the left boundary for the passage of 

the light sheet from the laser. This attempt was discontinued due to the difficulty in getting 

the cylindrical probe and the seeding particles through to the annulus of the concentric 

cylinders. As such, a slit was created on the left end-wall to allow the passage of the light 

sheet. This was implemented by positioning a black perspex sheet with the slit at the left 

end-wall of the concentric cylinders. The front view of the modified apparatus is shown in 

Figure 4.4 and Figure 4.5 without and with the cylindrical probe in position respectively.  
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4.4 Particle feeder 

The annular air gap between the two concentric cylinders in Figure 4.3 is seeded by liquid 

droplets for Particle Image Velocimetry using a particle feeder device. The particle feeder 

employed in this study is the high volume liquid seeding generator (10F03) shown in 

Figure 4.6. This seeding generator produces droplets designed for PIV and LDA 

measurements. It is Dantec‟s preferred seeding solution for medium to large size facilities.  

 

Figure 4.6: High volume liquid seeding generator (10F03). 

The seeding generator works by injecting air into a fluid, normally olive oil or other 

recommended products, at near sonic velocity via a number of Laskin nozzles. Each 

nozzle produces micro-bubbles with micro-droplets with a typical diameter of 1-5 micron. 

These bubbles reach the free oil surface and burst, releasing the micro-droplets. Internal 

baffles are used to remove unwanted large droplets that can be produced by the splash 

when a bubble bursts. The density of the micro-droplets is determined by the air flow rate 

through the nozzles and by the number of nozzles. It is important to have a large free 

surface where the bubbles burst to avoid foaming. This sets the upper limit of the micro-

droplet production rate. Control of the micro-droplet production rate is provided by 

turning nozzles on and off and by adjusting the air supply pressure. This level of control 

tends to produce a fixed seed density at a variable flow rate. In order to provide control of 

the seed density and avoid the need for a mixing plenum in the experiment, dilution air 

can be admitted to the generator so that lower seed densities can be produced when 

required. Details of the seeding particle parameters and how the seeding generator is used 

to seed the annular air gap between the coaxial cylinders are further discussed in section 

5.6.3. 
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Chapter Five: Instrumentation – Particle Image Velocimetry 

(PIV) 
 

 

5.1 Introduction 

This chapter is concerned with the instrumentation and the detailed description of the 

experimental techniques used to investigate the flow in the concentric rotating cylinders. 

The specific details of the experimental set-up and data acquisitions procedure, data 

processing and analysis are also discussed. Two sets of experimental investigations were 

conducted using the same PIV measuring technique. The two sets of experiments were 

conducted back to back. The first set of experiments was to investigate the different flow 

regimes that exist in the annular region of coaxial rotating cylinders with the inner 

cylinder rotating and the outer cylinder at rest at various aspect and radius ratios. The 

second set of experiments was to investigate the intrusive effect of inserting a cylindrical 

probe into the annular gap of the concentric rotating cylinders. This was achieved by 

comparing the results from the second set with the ones from the first set of experiments. 

The method and criteria employed for determining the PIV results convergence and 

accuracy are discussed in chapter seven.  

 

5.2 Particle Image Velocimetry 

PIV is an optical, non-intrusive measurement technique used to simultaneously determine 

the velocities at many points in a flow, thereby permitting spatially resolved velocity field 

measurements. PIV measures the velocity of a fluid element indirectly by means of the 

measurement of the velocity of tracer particles within the flow (Raffel et al., 2007). It 

allows to record spatially resolved flow images in a variety of applications in gaseous and 

liquid media and to extract instantaneous velocity fields out of these images. These 

features are unique to PIV, as most of the other techniques for velocity measurements only 

allow the measurement of the velocity of the flow at a single point (Adrian, 1991; Rostami 

et al., 2007).  

PIV is a very important technique in research today because it provides spatially resolved 

velocity measurements instantaneously even in high speed flows with shocks or in 

boundary layers close to a wall, where the flow may be disturbed by the presence of the 

probes. It is capable of measuring a whole two-dimensional (2D) flow field at once with 

more than one velocity components. The 2D PIV data can also be used to compose a 3D 
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volume for the time mean statistics by combining several individual measurement planes. 

The results from PIV provide a reliable basis of experimental flow field data to 

complement and validate numerical and computational techniques (Adrian, 1991; 

Westerweel, 2000).  

 

5.3 Principle of PIV 

The general principle of PIV measurements is illustrated in Figure 5.1. PIV is based on the 

ability to accurately measure the position of small tracers suspended in the flow as a 

function of time. PIV measures the distance travelled by seeding particles that are 

entrained in the flow over a known time interval. The technique involves seeding the flow 

region of interest with tracer particles. A light sheet generated by a laser illuminates the 

flow field so that the tracer particles in the flow can be photographed. This light sheet is 

pulsed to produce a stroboscopic effect that freezes the movement of the particles. The 

principle is that the particles scatter light into a photographic lens located at 90° to the 

light sheet. The photographic lens is positioned so that its in-focus object plane coincides 

with the illuminated slice of fluid. The laser sheet is formed by opening up an 

axisymmetric laser beam by a cylindrical lens located between the laser head and the flow. 

Two images of the region of interest are captured in rapid succession on a Charge Coupled 

Device (CCD) camera. The camera is able to capture the light scatter from the tracer 

particles from each light sheet pulse in separate image frames. It is important that the 

duration of the illumination light pulse be short enough to freeze the motion of the 

particles during exposure in order to avoid the blurring of the image (Raffel et al., 2007). 

Each frame is time stamped by the illumination pulse time t, so that the time difference t 

= t1 – t2 of each pair of frames taken at time t1 and t2 in rapid succession is available for 

the data analysis. The images are subsequently transferred to a computer where 

appropriate software is installed for the data analysis. The digital images are used to 

determine the particle positions in the laser sheet. The images are divided into small sub-

sections called interrogation areas. The objective of the image interrogation is to 

determine the displacement between two patterns of particle images. The interrogation 

areas are determined by calculating the average particle displacement. The interrogation 

areas from each image frame are cross-correlated with each other, pixel by pixel. For an 

accurate velocity measurement, an interrogation area should contain at least seven to ten 

particle pairs, where one pair refers to a particle imaged at both time t1 and t2 (Keane and 

Adrian, 1992). Raffel et al. (2007) showed that particle concentration influences the 
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probability of detecting the correct particle displacement as well as the particle 

displacement measurement uncertainty. Tests with changing particle concentration 

showed that the number of particles in each interrogation area should be higher than five.  

 

Figure 5.1: Principle of Particle Image Velocimetry (Dantec-Dynamics, 2006). 

 

The cross-correlation between interrogation areas produces a signal peak, identifying the 

average particle displacement x in the interrogation area pair. A displacement vector map 

over the entire flow field area of interest is obtained by repeating the cross-correlation for 

each interrogation area over the two image frames captured by the CCD camera. Tests 

conducted by Raffel et al. (2007) to determine the influence of the particle displacement 

on the velocity measurement accuracy showed that the maximum particle displacement 

between two frames should be less than 50% of the interrogation area.  

The velocity is estimated as a function of displacement and time as: 

 
            

  

  
 5.1 

 

where x is the average displacement of the particles in the fluid over the time interval t 

= t2 – t1 between successive light pulses (Adrian, 1991). The time delay between the light 

pulses is set by the PIV user, based on the image magnification factor of the CCD camera 

and on an a priori estimate of the mean flow velocity. 
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5.4 Objectives of the PIV experimental investigations 

The first objective of using PIV in this study is to provide information that will enhance 

the current understanding of the flow that develops in the annular region of concentric 

rotating cylinders at different radius and aspect ratios when the inner cylinder is rotated 

and the outer cylinder is at rest. The second objective is to investigate the intrusive effects 

of a circular probe inserted in the annular region between the concentric cylinders on the 

flow that was observed in the first set of experiments. The understanding of the flow 

phenomena and of the degree of the intrusiveness from the cylindrical probe will help the 

manufacturers of PIV endoscopic probes to design PIV probes that give a reduced flow 

interference. Finally, the data obtained from PIV will provide a reliable basis for direct 

comparison with numerical predictions of the flow. 

 

5.5 PIV instrumentation set-up  

A correct PIV set-up is vital to the success of any experimental investigation, as an 

inappropriate set-up of the instrumentation often leads to inaccurate results. In order to 

obtain results that can be compared with one another, all the set-up parameters of the PIV 

equipment are kept constant during each measurement. This implies using the same 

equipment and running conditions throughout the duration of the experiment. 

 

5.5.1 PIV layout 

The PIV system consists of several sub-systems. The standard layout of the PIV 

equipment used in this research is shown in Figure 5.2. The same layout has been used for 

all the test cases reported in chapter seven. This layout is made up of three sections; (1) 

the laser sheet creation section, (2) the test section, and (3) the image recording section. 

 

5.5.2 Laser sheet creation section 

The laser sheet creation section comprises of Litron Nano L laser and of the laser sheet 

optics. The laser provides the light source while the laser optics creates a light sheet to 

illuminate the tracer particles in the measurement plane. The high-power Litron Nano 

laser that generates a pulsed light sheet consists of a two-cavity double pulsed Nd:YAG 

(Neodymium Yurium Aluminium Garnet) laser with an infra-red radiation emission that is 

frequency-doubled to a wavelength of 532nm. The maximum pulse energy output of the 

laser is 400mJ. The pulse duration is 4ns. A pulse rate of 15Hz is used to generate the light 



74 

 

sheet. A cylindrical lens of approximately 5mm diameter is fixed at the output beam 

aperture of the laser head. A plano-convex spherical lens with an anti-reflective coating of 

focal length 0.35m is positioned between the laser and the test section as shown in Figure 

5.2. The purpose of the lenses is to transform the beam into a sheet of light 1mm thick and 

they can also control the collimation, height and width of the light sheet.  

The laser unit is mounted on a Dantec traverse system that is used to align the laser with 

the meridional plane of the concentric cylinders at the beginning of the experiment. The 

traverse system is controlled by the computer system, as such it is possible to move the 

laser in the horizontal (left and right) and also in the vertical (up and down) directions. 

The traverse system has four heavy duty locking caster wheels that provide a stable 

platform for the laser operation.  

 

Figure 5.2: PIV experimental arrangement for the Taylor-Couette flow apparatus.  

 
5.5.3 The test section 

PIV measurements are taken in the annulus between a rotating inner cylinder and a 

concentric stationary outer cylinder over a test section 250mm in length. The detailed 

description of the materials and dimensions of the test rig used for this study are given in 

chapter four. The main test rig and field of view (test section) parameters are summarised 

in Table 5-1 and Table 5-2 respectively. The aspect ratio and the radius ratio are stated 

according to their definition in section 1.2 and section 1.4. 

 

Table 5-1: Summary specifications for the three test rigs. 

Description Inner 

cylinder 

length (m) 

Outer 

cylinder 

length (m) 

Inner cylinder 

outer diameter 

(m) 

Outer cylinder 

inner diameter  

(m) 

Width gap 

d (m) 

Test case 1 0.5 0.52 0.05 0.094 0.022 

Test case 2 0.5 0.52 0.05 0.114 0.032 

Test case 3 0.5 0.52 0.05 0.144 0.047 
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Table 5-2: Experimental field of view area. 

Description Axial length of 

the view area  

Radial length of the 

view area  

Aspect 

ratio 

Г = L/d 

Radius 

ratio 

 = Ri/Ro 

Clearance 

ratio = 

d/Ri 

Test case 1 0 ≤ X/Ri ≤ 10 -1.88 ≤ r/Ri ≤ 1.88 11.36 0.53 0.88 

Test case 2 0 ≤ X/Ri ≤ 10 -2.28 ≤ r/Ri ≤ 2.28 7.81 0.44 1.28 

Test case 3 0 ≤ X/Ri ≤ 10 -2.88 ≤ r/Ri ≤ 2.88 5.32 0.35 1.88 

 

5.5.4 The image recorder 

The PIV images are acquired using a Dantec DynamicStudio FlowSense 4M CCD camera 

with a resolution of 2048 x 2048 pixels with a 60mm AF Micro Nikon image lens, 

operated at a frequency of 4Hz. The camera encodes images with a 12 bit data resolution. 

The camera is mounted on a square steel stand and placed directly on top of the wooden 

sheet cover on which the experimental rig is mounted. This CCD camera is placed at a 

right angle to the light sheet for recording the PIV flow images. The camera lens has an 

aperture range of f/2.8 to f/32. An f/4 aperture is used in this study.  

 

5.6 Equipment start-up and image acquisition procedure 

5.6.1 Safety precautions  

Operating the Nd:YAG laser requires extra care, as it is classified as Class 4 radiation 

hazards. For the safety and security of the operator, of other electronic operated equipment 

(CCD camera), as well as of any third party, it is very important before and during the 

experimental investigation to follow an appropriate safety protocol. Througout the 

duration of this study, appropriate protocols are followed to ensure the safety of the 

operator, of any third party, and of the equipment. 

 

5.6.2 Calibration target 

The camera needs to be calibrated so that tracer particle displacement in pixels on the 

CCD image can be converted into distance in millimetres (mm) on the cylinder meridional 

plane before any image can be processed. This calibration requires the user to focus the 

camera on an object of known size, acquire an image, and then select two points on the 

captured image from which the object to image size ratio is estimated. In this research 

study, the camera was calibrated by focussing the camera on a steel ruler positioned in the 

annular region of the concentric cylinders where the flow is to be measured, as shown in 
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Figure 5.3. It is important that the calibration target is aligned with the light sheet and 

installed at the centre of the camera field of view. In other words, the calibration target 

should be positioned at the actual location where the light sheet illuminates the flow being 

measured. In order to obtain a sharp image, the steel ruler needs to fall within the depth of 

field of the camera lens. This is the region in which the image is acceptably sharp. It is 

possible to calculate the magnification ratio since the camera has a fixed number of pixels 

in each direction. For this research study, the pixel matrix of the CCD camera is 2048 x 

2048 and the field of view is 250mm, resulting in a magnification ratio of 0.122mm/pixel. 

The same magnification ratio applies in the axial and radial directions of the CCD camera 

view plane, due to the low optical distirtion through the outer cylinder from using air as 

the working fluid. 

 

Figure 5.3: PIV calibration target. 

 

5.6.3 Image acquisitions 

In PIV, digital images of the flow with embedded particles are acquired to estimate the 

velocity of the fluid. Figure 5.2 shows the standard PIV arrangement used for the image 

acquisition in this study. The light sheet of approximately 1mm thickness is shone through 

the slit as shown in Figure 4.4 to illuminate the tracer particles in the measurement plane 

of the annular region. The pulsed light sheet and the camera are synchronised by a PIV 

processor that is installed with the PC running the Dynamic studio PIV software so that 

the particle positions are recorded together with each pulse/frame time. Inside the PIV 

processor, the synchronising unit provides a physical platform for communicating signals 

to and from the illuminating systems (comprising of the laser and the laser shutter), the 

camera and the trigger device.  
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Special care was taken to ensure that the time delay between the illumination pulses is 

long enough to accurately determine the displacement between the images of the tracer 

particles with sufficient resolution and short enough to avoid particles with an out of plane 

velocity component leaving the light sheet between subsequent illuminations. The out of 

plane motion was particularly significant in the choice of the time delay in this study, 

since the out of plane flow velocity is the dominant velocity component in this flow. The 

time delay between pulses is also chosen based on the mean flow velocity and on the 

image magnification factor of the CCD camera. The pulse settings are adjusted until 

reasonable results are achieved. The time interval between the two frames for an inner 

cylinder angular speed of 500 rpm is set to 10
-3

s for all the three test cases reported in 

Table 5-2. 

Measurements are taken as the inner cylinder rotates at an angular speed of 500rpm (52.36 

rad/s) with the outer cylinder at rest. The rotating speed of the inner cylinder  = 

52.36rad/s is the same for all the test cases. The start-up procedure for all the experiments 

in this study is a sudden start condition in which the desired rotating speed of the inner 

cylinder is reached within one second. The speed of the inner cylinder shaft is set and 

monitored by a handheld laser micro-processor tachometer. The tachometer is a CT6 

series with a measurement range from 3rpm to 99,999rpm. It includes a standard 

optical/laser system that operates at a stand-off distance between 1 meter and 2 meters. 

The laser tachometer uses laser pulses to count rotations per minute of the spinning object 

and displays the result on the screen. This is achieved by pulsing a beam of light against 

the rotating inner cylinder on which a reflective device is attached and the tachometer 

measures the rate at which the light beam is reflected back. During the test, the speed was 

kept constant within 1 rpm. The speed can be translated to the tangential velocity of the 

inner cylinder using v = ΩRi, where v is the velocity (m/s), Ω is the angular rotational 

speed (rad/s), and Ri is the radius of the inner cylinder (m). The tangential speed of the 

inner cylinder for all the test cases is therefore 1.31m/s. 

The seeding generator model 10F03 from Dantec Dynamics Studio discussed in 4.4 is 

used to atomize a mixture of 20% polyethylene glycol (PEG600) and 80% water as 

seeding particles. The density and dynamic viscosity of polyethylene glycol is 

approximately 1125kg/m
3
 and 0.14kg/ms respectively at room temperature, while the 

density and dynamic viscosity for water is 1000kg/m
3
 and 0.001kg/ms respectively. The 

nominal diameter of the polyethylene glycol droplets is 1-5m. 
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The seeding generator works by injecting air into the fluid, as discussed in section 4.4. In 

all the test cases, compressed air is supplied to the fluid in the seeding generator from the 

low pressure (100 psig) compressed air distribution rig of the Thermodynamics laboratory, 

University of Leicester. The air and seeding particle mist output from the seeding 

generator is then introduced into the annular region between the cylinders via a 

compressed gas hose in such a manner that it produces a region of uniformly seeded flow 

within the test section. The valve control unit on the seeding generator allows the rate of 

air and seeding particle mist output that goes into the annular region between the cylinders 

to be controlled. The air and seeding particle mist output from the seeding generator are 

introduced into the annular region of the experimental rig before starting the DC motor 

that rotates the inner cylinder. After the inner cylinder has reached the desired constant 

speed, the mist output is allowed to develop for between 2 to 5 minutes to ensure that the 

flow is uniformly distributed and fully developed before PIV measurements begin. As the 

cylinders are fitted with end-walls, the particles in the annular region take more than 20 

minutes before they finally disappear from the test section, therefore no further seeding 

particle is added during the PIV image acquisition. The seeding particles generated are 

assumed small enough to follow the flow accurately because the Stokes number is far less 

than 0.14, which is the maximum Stokes number for which a particle can be assumed to 

accurately follow the flow, according to Dring (1982).  

The temperature of the mist output in the apparatus is monitored to avoid large 

temperature fluctuations. Temperature is measured before and after each set of data 

acquisitions using a K-type thermocouple. This was found to be within 0.5
o
C of the 

ambient temperature. 

Raw particle images are captured by the image grabbing facility controlled by the 

Dynamic Studio software. The PIV recording method is the double frame-single exposure 

recording technique. This double pulsed system enables the light scattered by the particles 

to be recorded on two frames, to which different correlation algorithms are applied to 

obtain the particle displacement vectors. 

Statistical convergence measurements were initially performed to test the number of 

images needed for an accurate result. During this initial testing, it was discovered that a 

minimum of 30 images are required to obtain reliable PIV output results. This is discussed 

in details in chapter seven. In all the PIV measurements in this study, the number of 

acquired image pairs for the ensemble average statistics was 100. The field of view 

covered 0.25m with stationary end-walls at both sides. During the testing for repeatability 
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of the experiment, the time interval between successive sets of experiments is more than 

one hour to avoid possible “memory effect” of the fluid (Xiao et al., 2002). The measured 

velocity profile was confirmed to be repeatable and statistically steady for the ensemble 

size of 100 images. 

 

5.6.4 Image masking 

Masking of the image is the first step in the PIV data processing. It follows the acquisition 

of the raw images by the CCD camera that is stored on the PIV computer hard disk. The 

purpose of masking is to remove from the image areas of no interest or areas that may 

produce bad vectors due to the presence of a wall or of a spurious source of light scatter, 

like a shiny edge. This process prevents spurious particle displacement vectors from 

interfering with the normal vectors in the flow. 

  

5.6.5 Image interrogation 

The subsequent data analysis sub-divides the area of the recorded image frames into small 

units called interrogation areas. The CCD camera, via the personality module, detects and 

transmits the images to the PIV processor in the PC that divides the camera images into 

interrogation areas to determine the displacement vectors in the flow. In the correlation 

software module, images from each pulse are correlated to produce an average 

displacement vector in each interrogation area.  

Dividing each particle displacement by the known time between the captured images gives 

a raw velocity vector map. It is assumed that the tracer particles move with the local flow 

velocity between the two illuminations. Validation algorithms are applied to the raw 

velocity vector map so that erroneous vectors can be detected and removed to produce a 

validated vector map. The Dantec Dynamic Studio software stores the vector maps in a 

database in the computer. The database is also used to keep track of the data and of the 

corresponding data acquisition and analysis parameters.  

Before the images are correlated, a background image is subtracted from the PIV images 

to produce digital images of a uniform gray background with particles. The particle image 

intensity is equalized and pixel noise is reduced by the Gaussian smoothing option 

available in the Dantec Dynamic Studio software.  

Care was taken in the choice of the interrogation area as its inaccurate selection affects the 

quality of the results. As suggested by Raffel et al. (2007), the number of particles in each 

interrogation area should be higher than five and the maximum particle displacement 
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between two frames should be less than 50% of the interrogation area. In this study, a 16 x 

16 pixels interrogation area was used to correlate the two frames with horizontal and 

vertical 50% overlaps. The average particle displacement was estimated to be 

approximately six pixels which is less than 50% of the interrogation area, in agreement 

with the PIV measurement best practice recommended by Raffel et al. (2007). The enable 

averaging of 100 vector maps detailed in section 5.6.6 compensates for the loss of vector 

field spatial resolution during the processing of individual image vectors.  

 

5.6.6 Post-processing of data 

This process involves the statistical processing of the ensemble of 100 instantaneous 

velocity fields, data validation, removal of erroneous data, replacement of removed data, 

and data smoothing. Various validation algorithms, such as range validation, and the 

moving average validation are embedded in the Dynamic Studio software for processing 

the data. In this study, the local displacement vector is determined for each interrogation 

area by means of an adaptive correlation. It is assumed that the tracer particles move with 

the local flow velocity between the two image frames. The adaptive correlation algorithm 

essentially calculates a displacement vector with an initial Interrogation Area (IA) of the 

size N time the size of the final IA and uses this intermediate result as information for 

defining the boundary of the next IA of smaller size, until the final IA is reached 

(Dynamics, 2006). The smaller interrogation area on the second frame is defined to be 

shifted from the first frame by the displacement vector estimated from the larger IA. The 

main benefits from using a shifted window is that particles which have left the 

interrogation area during the time between the two light pulses (in-plane dropout) can be 

identified and ignored, as they would otherwise result in erroneous vectors. Local 

validation algorithms are added to the adaptive correlation so that less bad vectors are 

generated and local interpolations (green vectors) are added as a realistic correction to the 

measured velocity field. This is illustrated in Figure 5.4 where the blue velocity vectors 

are shown as validated vectors and the green vectors are the realistic correction vectors 

generated automatically by the adaptive algorithm. The advantage of using the adaptive 

correlation is the ability to track well the motion of fluid in rotation, shear, and expansion. 

Spurious vectors are replaced during the adaptive correlation by adding a local 

neighbourhood validation. The way the local neighbourhood validation works is by 

comparing among individual vectors in the neighbourhood vector area, with size set in this 

study as 3 x 3. If a spurious vector is detected, it is removed and replaced by a vector 
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calculated by a local interpolation of the vectors present in the 3 x 3 neighbourhood vector 

area. In this study, the interpolation is performed using a moving average, which compares 

each vector with the average of the vectors in a defined neighbourhood. An acceptance 

factor of 0.12 and three moving average iterations are employed in computing the 

estimated values. Any other spurious or outlying vector that is not removed by the 

adaptive correlation is eliminated using the range validation algorithm. This is achieved by 

fixing a velocity threshold (minimum or maximum) such that all the velocity vectors that 

exceed a prescribed threshold are eliminated. The thresholds are user-defined based on an 

assessment of the range of velocities that are physically possible in a given flow geometry. 

This means it is essential to have prior knowledge of the flow structure. 

 

 

Figure 5.4: Typical instantaneous velocity vector map calculated by adaptive correlation 

                 with a 16 x 16 IA and 50% overlap. The green vectors are the correction to 

  the velocity vector map from the local neighbourhood validation. 

 

Following this experimental procedure, one set of 100 instantaneous velocity vector maps 

was acquired for each of the concentric cylinder test cases detailed in Table 5-2. These 

measurements are discussed in details in chapters seven and eight. 
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Chapter Six: Modelling of gas flows between coaxial rotating 

cylinders 
 

 

6.1 Introduction 

In this chapter, the CFD modelling of the air-flow in the annular gap between two 

concentric rotating cylinders is documented. The computational approach used in this 

work develops from past CFD studies on both axisymmetric and non-axisymmetric 

Taylor-Couette flows in coaxial rotating cylinders reported in the literature. For example, 

Wild et al. (1996) studied by experiment and computation the Taylor vortex flow in a 

centrifugal rotor using the standard k-ε, the Renormalisation Group (RNG), and the 

Reynolds Stress Model (RSM) for the turbulence closure of the Reynolds Averaged 

Navier-Stokes (RANS) equations. Batten et al. (2002a) studied the transition from 

axisymmetric vortex flow to non-axisymmetric wall-driven turbulence flow in the Taylor-

Couette system in concentric rotating cylinders using the k-ω turbulence model simulation 

developed by Wild et al. (1996). The aim of their study was to examine the predicted 

velocity distribution in the viscous sub-layer at the cylindrical surfaces with respect to 

standard k-ε model prediction. Other researchers, such as Deshmukh et al. (2007) have 

also used CFD to investigate the flow pattern in concentric rotating cylinders using the 

Reynolds Stress Model (RSM). Marcus (1984) simulated numerically the stable 

axisymmetric Taylor-Couette flow and the stable non-axisymmetric wavy vortex flow 

with one travelling wave. The Reynolds Stress Model was used by Zhou et al. (2007) to 

study the characteristics of  the turbulent Taylor vortex flow in concentric rotating 

cylinders. 

This present work expands on the knowledge from previous computational studies in the 

available literature by modelling the air-flow in the annular gap between coaxial cylinders 

with different radius ratio using the commercial CFD package, ANSYS FLUENT 6.3.26 

(2006). The results obtained are validated in chapter seven against PIV experimental 

results. The basic steps in the CFD simulation discussed in chapter three have been 

followed for all the CFD models described in this chapter. 

Based on the results of earlier researchers such as Taylor (1923), the flow regimes in this 

study are in the parameter region above the critical Taylor number at which an 

axisymmetric counter-rotating Taylor vortex structure is formed. Therefore, the 

axisymmetric Taylor vortex flow that is contained in the gap between a rotating inner 
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cylinder and an outer stationary cylinder with fixed end-walls has been modelled as a 

steady incompressible three-dimensional flow. This study employed an implicit finite-

volume RANS method coupled with the realisable k-ε turbulence model for turbulence 

closure. The advantages of this turbulence model for different flow regimes has been 

discussed in details in chapter three and more information can be found in the ANSYS 

FLUENT user‟s guide (2006).  

 

6.2 Geometry and problem formulation 

The geometries adopted for the investigation of flow instability in coaxial rotating 

cylinders are described in this section. The concentric rotating cylinders for the test cases 

1 and 2 detailed in chapters four and five and reported in Table 5-1 and Table 5-2 are 

investigated computationally in this chapter. The two different geometries have been 

developed for the coaxial assembly to allow a parametric study of the Taylor vortex flow 

pattern, which exists in the annular region of the coaxial cylinders. The model aims to 

represent the experimental rig discussed in chapter four as closely as possible. However, 

modelling the whole experimental rig would have been too computationally intensive and 

would have required computational resources that were above what was available to the 

author. As such, only half of the total length of the experimental rig has been modelled, 

which is the total view area for the PIV experiment reported in Table 5-2.  

The rotating speed of the inner cylinder  of 52.36 rad/s is constant in all test cases, 

giving an angular velocity Ri = 1.31m/s. The Taylor number and the Reynolds number 

tabulated in Table 6-1 are calculated for each test case using equations 1.1 and 2.6 

respectively.  

 

Table 6-1: Flow parameters. 

Description Taylor number (Ta) Reynolds number (Re) 

Test case 1 2.35 x 10
6
 1.97 x 10

3
 

Test case 2 6.47 x 10
6
 2.87 x 10

3
 

 

6.3 Cylindrical reference system of the coaxial rotating cylinders 

A three-dimensional (3D) numerical model has been chosen for the present work so that 

the flow details can be examined in more than one plane. Whilst a 3D model is more 

demanding both in terms of its development time and of the computational resources, it 
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has the potential to resolve the time-average of the localised flow disturbances induced by 

the rotation of the inner cylinder.  

A cylindrical reference system is used for the CFD modelling as shown in Figure 6.1(a). 

The orthographic plan view of the geometry as seen by the PIV CCD camera in the 

experimental set up is shown in Figure 6.1(b). The cylinders are coaxial with the axis 

coinciding with the X-direction of a cylindrical reference system (r, θ, X). All the 

geometries of the concentric rotating cylinders modelled in this study are created in 

GAMBIT version 2.4.6.  

 

 

 
(a) 

 

 

 
(b) 

Figure 6.1: (a) Cylindrical reference system of the concentric cylinder assembly and  

(b) meridional plane. 

 

6.4 Mesh generation 

A numerical mesh was generated to create the control volumes inside the flow domain and 

the control surfaces at all computational domain boundaries in order to numerically solve 

the governing equations. The geometry of the domain and the areas of flow of interest 
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determine the way the mesh is built. For example, in areas where the gradients of the flow 

are high, a large number of unit control volumes are required to accurately predict the 

flow.  

All the computational domains in this study were meshed using an unstructured meshing 

technique using the commercial mesh generation software package GAMBIT version 

2.4.6. An unstructured meshing technique was selected for the simulations taking into 

consideration the degree of grid resolution required in each region of the domain and the 

capacity of the available computer memory.  

 

6.4.1 Face and volume meshing 

Two types of unstructured grid were initially tested for the meshing of the computational 

domain. These are: (1) a combination of quadrilateral/hexahedral-copper tools and (2) 

quadrilateral/tetrahedral cells. The latter produced the best results when compared with 

experiment. Therefore, the computational domain in the current work has been discretised 

using a combination of finite-volume quadrilateral cells on the wall faces and a tetrahedral 

unstructured mesh for the computational domain interior. The flow regime is expected to 

be dominated by a Taylor vortex pattern of characteristic size d. The Delaunay 

triangulation is designed to obtain a spatially isotropic mesh, which is appropriate for 

resolving the large-scale instability in a near-uniform mesh. This type of mesh was used 

by Wardle et al. (2006) and was found to be appropriate for successfully predicting the 

flow pattern in the annular region of concentric cylinders. It is therefore adopted in the 

current study. 

The entire computational domain has four faces; the inner cylinder surface, the outer 

cylinder surface, the left and the right end-walls. Each face was first discretised before the 

computational domain interior. This was done so that the mesh density in each section of 

the faces could be controlled in such a way that a denser mesh could be created in regions 

of interest. The refinement of meshing around the inner cylinder surface was implemented 

by using the size functions tool available in GAMBIT 2.4.6. Size functions are used to 

smoothly control the growth of the mesh size over any particular region of the geometry. 

Size functions allow the direct control of cell size distribution in edges, faces and volumes 

directly for automatic meshing, thereby eliminating the need to pre-mesh these regions 

manually. Size functions are generally designed to grade meshes with tetrahedral grids, 

even though they can be used with a hexahedral mesh (FLUENT, 2006). Size functions 

require the specification of the type and each size function type requires the specification 
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of source entities, attachment, and size parameters. The type of size function dictates the 

criteria upon which the mesh will grow. For all the test cases in this work, the fixed type 

method was chosen, the sources entities are the faces while the attachment is the volume. 

The size function method used in this work employed a constant starting cell size of 

1.0mm for all the test cases. This value was increased by 50% and 40% for growth rate 

and maximum cell size respectively for the test cases  = 11.36 and 7.81. The size 

function has been normalised by the inner cylinder radius Ri. The detailed normalised 

parameters of the size functions used for the final meshing of the coaxial rotating cylinder 

cases are shown in Table 6-2. A typical unstructured tetrahedral mesh for the 

computational domain is show in Figure 6.2. 

 

Table 6-2: Size function parameters for the coaxial rotating cylinders. 

Size function parameters 

 

Aspect ratio Г  = 11.36 Aspect ratio Г = 7.81  

Starting cell size 0.04 0.04 

Growth rate 0.06 0.056 

Maximum cell size 0.06 0.056 

 

 

(a) 

     

                                                (b)                                                 (c) 

Figure 6.2: (a) Tetrahedral computational mesh structure and (b, c) computational mesh 

detail at the left-end wall. 
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6.4.2 Meshing quality assessment 

The tetrahedral cells are associated with an unstructured mesh that tends to have a large 

aspect ratio that affects the cell skewness, which can in turn reduce the accuracy and the 

convergence rate of the solution. Therefore, the mesh quality for all the geometries was 

assessed by evaluating the cell skewness throughout the computational domain, using 

Gambit 2.4.6. The skewness of a cell is defined as:  

 
         max  

       

      
 
       

  
   6.1 

where  max = largest angle in degrees between faces or cells. 

             min = smallest angle in degrees between faces or cells. 

             e    = angle in degrees for an equiangular cell. For a triangular cell, e = 60
o
   

                        and for  a hexahedral cell, e = 90
o
. 

QEAS values range from 0 to 1. 0 is the the skewness of an equiangular cell, which is a cell 

with the lowest skewness for a given mesh element type, and 1 is the skewness of a highly 

skewed cell. 

Based on the definition of skewness given in equation 6.1, the maximum cell skewness for 

all the test cases were found to be within the range 0.50 – 0.7. ANSYS FLUENT (2006) 

user‟s guide recommends that, for a good tetrahedral mesh, the skewness should always be 

below 0.90, which suggests that all the meshes in this work are of good quality. The 

volume statistics including minimum, maximum and total cell volume in m
3 

was also 

checked in ANSYS FLUENT 6.3.26. The meshing result shows there was no negative 

value for the minimum volume, which indicates that all edges were properly connected. A 

negative minimum volume could have occurred due to the incorrect orientation of a face 

or due to large boundary surface curvature. Improperly connected edges may occur at the 

apex of geometry with large concavity, where two edges may intersect, creating a pinched 

surface. There was no such occurrence in this model. 

 

6.5 Computational techniques and procedure 

This section details the techniques and procedure used for all the CFD modelling in this 

work. 

6.5.1 Procedure 

After the completion of the meshing process and the checking of the mesh quality in 

Gambit 2.4.6, the models were imported into ANSYS FLUENT. In ANSYS FLUENT the 
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physical properties and the initial flow conditions are set as discussed in chapter three. The 

imported numerical mesh is checked against import errors, by checking the minimum and 

maximum cell size against the values reported by Gambit. In Gambit, the geometry was 

created in millimetres. In ANSYS FLUENT, the mesh is scaled to metres. The numerical 

solver, turbulence model and the initial flow conditions are selected as detailed in sub-

sections 6.5.2 to 6.5.5. The computation was monitored for convergence as detailed in 

section 6.6. All the results presented in this work were post-processed using Tecplot 2010 

and Matlab software. 

 

6.5.2 Computational modelling 

The computational domain consists of air-flow in the annular region between the inner 

rotating cylinder and the stationary outer cylinder, which is bounded at the left and the 

right by fixed end-walls with the cylindrical coordinates as defined in Figure 6.1. The flow 

needs to be simplified so that it can easily be solved numerically, as such, the flow is 

assumed isothermal, adiabatic, incompressible, and steady. Based on these assumptions, a 

steady state, segregated and pressure-based approach with absolute velocity formulation 

was defined for the model, since the segregated solver and pressure-based approach was 

developed specifically for incompressible flow (FLUENT, 2006). In the pressure-based 

segregated algorithm, the individual governing equations for the solution variables such as 

velocity, pressure, turbulent kinetic energy dissipation rate, turbulent kinetic energy are 

solved one after the other. The Green-Gauss node based scheme was used for the gradient 

option since the geometry was meshed with unstructured tetrahedral meshes. The 

advantage of this scheme over the default cell-based scheme has been discussed in chapter 

three. The standard wall function discussed in chapter three was chosen for the wall 

treatment for all the test cases.  

 

6.5.3 Boundary and initial operational flow conditions 

The internal flow between the two rotating cylinders is modelled as fully enclosed. At the 

start of the computation, zero flow conditions are imposed throughout the computational 

domain, using still air at constant density  =1.225 kg/m
3
 and at ISA ground level ambient 

pressure p = 101325 N/m
2
. The force of gravity is assumed negligible. No-slip stationary 

adiabatic wall boundary conditions are applied at the left and the right end-walls as well as 

at the outer cylindrical surface at Ro. The inner cylinder surface is modelled as a rotating 

adiabatic no-slip wall with a constant angular speed Ωi = 52.36 rad/s in the clockwise 
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direction, as shown in Figure 6.1. These boundaries fully delimit the computational 

domain. The simulations were carried out with a sudden start of the inner cylinder at the 

specified angular speed. This approximates the experimental procedure detailed in 

chapters seven and eight, in which the target rotational speed of the inner cylinder is 

reached within one second from starting the electrical motor. An adequate match of the 

acceleration profile between experiment and computation was found to be important in 

this work. Specifically, initial CFD tests with different acceleration profiles led to a 

number of Taylor vortices that was different with respect to the experiment. This led to the 

practice of using a sudden start as the CFD initial condition. This is in agreement with the 

observation made by Koschmieder (1993) that the pattern of Taylor-Couette flow is 

strongly dependent on the start-up procedure. In addition, the results of the CFD 

simulation conducted by Deshmukh et al. (2008) show that start-up procedure influences 

the number of Taylor vortices at various speeds. 

The turbulence level was specified in terms of the turbulence intensity and hydraulic 

diameter. Estimations of turbulence intensity, turbulent kinetic energy, and turbulent 

dissipation rate were calculated for all the CFD simulations and tabulated in Table 6-3, 

based on the following parameters: 

 

                                     
       6.2 

 

                                          
 
 6.3 

 

 
                                 

       
 

 

   

 6.4 

where ℓ = 0.07DH is the pipe characteristic length scale, based on the hydraulic diameter 

of the cylindrical assembly DH, and C = 0.09 is a constant. For the annular geometry 

delimited by cylinders with an inner diameter Di and outer diameter Do, the hydraulic 

diameter DH is given as Do – Di.  

The turbulence intensity levels in Table 6-3 are indicative of a turbulent flow in the 

annular region between the cylinders and are above typical values of 0.2% to 0.3% that are 

found in the test section of well-designed wind tunnels. 
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Table 6-3: Estimations of turbulence level. 

Descriptions Turbulence 

intensity TI 

Turbulent kinetic 

energy k 

Turbulent 

dissipation rate  
Coaxial cylinder with 

aspect ratio Г = 11.36 

6% 0.0093m
2
/s

2
 0.0478m

2
/s

3
 

Coaxial cylinder with 

aspect ratio Г = 7.81 

5% 0.0064m
2
/s

2
 0.0189m

2
/s

3
 

 

6.5.4 Selection of turbulence modelling 

Two turbulence models, the realisable k-ε and the RSM were evaluated for closing the 

Reynolds Averaged Navier-Stokes (RANS) equations. These models were used to run 

identical cases for each of the computational geometries. Figure 6.3(a) and Figure 6.3(b) 

show the radial velocity distributions obtained using the two turbulence closure models for 

the test cases  = 11.36 and  = 7.81 respectively. The radial velocity distributions of 

Figure 6.3(a) and Figure 6.3(b) are extracted at the gap mid-span r = Ri + 0.5d of the lower 

channel  = -/2 in the meridional plane over the range 0  X/Ri  10.  The radial velocity 

profiles in Figure 6.3 show alternating maxima and minima corresponding to upwell 

(inward flow) and downwell (outward flow) regions induced along the annulus by Taylor 

vortices. The radial velocity maxima in Figure 6.3(a) and Figure 6.3(b) are sharp and well-

localised along the cylinder axis. This flow pattern is further detailed in sections 6.7.1, 

6.7.3, 7.5.1, and 7.5.4 where results obtained are compared with experimental and 

computational studies in the open literature. 

Figure 6.3(a) and Figure 6.3(b) show that the realisable k- model predicts higher radial 

velocity maxima and lower radial velocity minima than the RSM model. This indicates 

that stronger Taylor vortices are predicted with the realisable k- model. 

Apart from the quantitative differences between the two models, the RSM took an extra 

50% to 60% of CPU time to complete the simulations for all test cases.  

Based on this preliminary test information, the recommendation from ANSYS FLUENT 

user‟s guide and the agreement between the CFD predictions and the experimental results,  

the realisable k-ε model was chosen for the simulation of the concentric cylinder with 

aspect ratios Г = 11.36 and Г = 7.81. 

  

6.5.5 Selection of solution parameters 

The discretised finite-volume form of the flow governing equations is solved numerically 

using ANSYS FLUENT‟s standard scheme for the pressure. A second-order upwind 
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approximation is used for the conservation of momentum, specific turbulent kinetic 

energy, and turbulent kinetic energy dissipation rate. The SIMPLE pressure-velocity 

coupling estimates the pressure field updates using an under-relaxation factor of 0.3 for 

pressure. The first-order scheme was employed to perform the first few iterations. This 

was later switched to the second-order scheme to continue the calculation to convergence 

as this scheme helps to reduce the effects of numerical diffusion on the solution. Double 

precision was used for all the calculations so that round-off errors are minimised. 

 

(a) 

 

(b) 

Figure 6.3: Radial velocity profiles at r = Ri + 0.5d with different turbulence models for 

the coaxial cylinders with (a) Г = 11.36 (b) Г = 7.81. 

 

6.6 Convergence criteria and numerical accuracy 

In computing the simulation, the discretised conservation equations are solved iteratively. 

For the solution to reach convergence, a number of iterations are set with the residuals 
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monitored to assess the convergence of the solution. Convergence is reached when 

changes in the solution variables from one iteration to the next one is negligible. The 

implicit scheme of section 3.2.3 is iterated to steady flow, based on the residual history of 

the momentum equations. The residual plot shows when the residual values reach a 

specific tolerance. For all the computations in this work, the solution is taken as converged 

when the momentum equation residuals reduce to 10
-4

 of their initial value. When 

convergence is reached, the overall conservation property of the solution is said to have 

been achieved. It should be noted that the accuracy of the converged solution is dependent 

on the appropriateness and accuracy of the physical models, the grid resolution and 

independence, as well as the problem setup. Each Under-Relaxation Factor (URF) is 

adjusted ad hoc for its corresponding conservative variable in order to improve the 

convergence rate. For momentum, pressure, turbulent kinetic energy and dissipation rate, 

the typical URFs vary between 0.3 and 0.8. During the simulation, the sum of the residual 

squared of each conserved variable is computed and stored in a data file at every iteration. 

Each conserved variable is also displayed on the terminal screen where the convergence 

history is visualised and a quick check on the progress of the solution is made. The same 

computational modelling procedure has been followed for all the test cases detailed in 

Table 6-1. Figure 6.4 shows typical scaled residuals from the test case  = 11.36. 

The residuals of the velocity components in Figure 6.4 are shown in Cartesian coordinates 

rather than in the cylindrical coordinates of Figure 6.3, as this was the native output from 

ANSYS FLUENT (2006). As such, the on-screen residuals plot is reported in Cartesian 

coordinates. The cylindrical coordinate system support in ANSYS FLUENT 6.3.26 was 

found to work well only for 2D axisymmetric geometries. Therefore, the 3D geometry and 

the flow solution in this study were solved in Cartesian coordinates and then projected in 

cylindrical coordinates by post-processing. The Cartesian coordinate system is related to 

the cylindrical coordinate system of Figure 6.1 by  

 

 
 

  

  

  

      
  

  
 θ

  6.5 

where 

    A =  
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All the results in the reminder of this thesis are therefore presented in cylindrical 

coordinates. 

 

Figure 6.4: A typical plot of scaled residuals. Residuals are shown in dimensional form 

with units of kg/m
3
, m/s, m

2
/s

2
, and m

2
/s

3
. 

 

6.6.1 Grid independence tests 

To test the dependence of the results upon the level of the spatial discretisation, there is 

the need to conduct a grid independence test. Grid independence simply means that the 

converged solution obtained from CFD prediction is independent of the grid density. Grid 

independence is achieved when further mesh refinement yields only very small and 

insignificant changes in the numerical results. There is tendency for numerical diffusion in 

the result if a coarse mesh is used. Numerical diffusion is due to truncation errors that are 

the result of representing the flow governing equations in an algebraic (discrete) form. The 

amount of numerical diffusion is inversely proportional to the resolution of the mesh, 

which means refining the mesh will reduce numerical diffusion. As such, three 

progressively finer meshes were tested for the coaxial cylinders with aspect ratios Г = 

11.36 and Г = 7.81  as detailed in Table 6-4.  

The CFD results at converged residuals for the different mesh types for the coaxial 

cylinders with aspect ratios Г = 11.36 and Г = 7.81 are presented in Table 6-5 and Table 

6-6 respectively. The total number of vortices, the values for average static pressure, the 

axial velocity and radial velocity were used as monitoring parameters to establish the 

independence of the grid. The values presented in Table 6-5 and Table 6-6 are the absolute 

values of each parameter average over the entire annulus. The percentage difference 

between the finest refined grid and the other grids were calculated and are reported in 
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bracket in Table 6-5 and Table 6-6. The results show the percentage difference between 

the finest refined grid and the other two mesh types were all less than 5% for all the flow 

variables. 

  

Table 6-4: Computational meshes. 

Descriptions Name No of tetrahedral cells No of nodes 

Coaxial cylinder with 

aspect ratio Г = 11.36 

 

Mesh type 1 4,193,045 753,490 

Mesh type 2  6,081,984 908,563 

Mesh type 3 7,949,361 1,402,342 

Coaxial cylinder with 

aspect ratio Г = 7.81 

 

Mesh type 1 4,869,311 857,514 

Mesh type 2 6,886,264 998,982 

Mesh type 3 8,678,719 1,587,213 

 

Table 6-5: Grid independence results for the coaxial cylinders Г = 11.36. 

Mesh type No of cells No of 

vortices 

Gauge static 

pressure 

magnitude (Pa) 

Axial velocity 

magnitude 

(m/s)  

Radial velocity 

magnitude 

(m/s)  

Mesh type 

1 

4.2Millions 12 0.1169 

 (0%) 

0.2413 

(0.08%) 

0.3139 (3.42%) 

Mesh type 

2 

6.1Millions 12 0.1113 (4.8%) 0.2367 

(1.99%) 

0.3087 (1.71%) 

Mesh type 

3 

7.9Millions 12 0.1169  

(basis) 

0.2415  

(basis) 

0.3035  

(basis) 

 

Table 6-6: Grid independence results for the coaxial cylinders Г = 7.81. 

Mesh type No of cells No of 

vortices 

Gauge static 

pressure 

magnitude (Pa) 

Axial velocity 

magnitude 

(m/s) 

Radial velocity 

magnitude 

(m/s) 

Mesh type 

1 

4.9Millions 8 0.1149 

 (0.53%) 

0.2390 

(1.19%) 

0.3104 

 (4.58%) 

Mesh type 

2 

6.9Millions 8 0.1095 (4.20%) 0.2342 

(0.85%) 

0.3042  

(2.49%) 

Mesh type 

3 

8.7Millions 8 0.1143  

(basis) 

0.2362  

(basis) 

0.2968  

(basis) 

 

The CFD flow predictions of the radial velocity profiles for the coaxial cylinders with 

aspect ratio Г = 11.36 and Г = 7.81 using different levels of computational mesh 

refinement, as defined in Table 6-5 and Table 6-6, are presented in Figure 6.5(a) and 

Figure 6.5(b) respectively. The radial velocity distributions of Figure 6.5 are extracted at 
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the same gap mid-span of the lower channel  = -/2 in the meridional plane of the 

annulus as in Figure 6.3. The radial velocity profiles in Figure 6.5 have the same trends as 

in Figure 6.3. The predicted flow characteristics are further detailed in sections 6.7.1 to 

6.7.3, while the flow features for the experimental results at the same test conditions are 

discussed in sections 7.5.1 to 7.5.4. In these sections, the number of vortices is shown to 

be dependent on the experimental conditions and other flow parameters, as discussed in 

the literature review in chapter two.  

 

(a) 

 
(b) 

Figure 6.5: Radial velocity profiles for the different levels of computational mesh 

refinement at r = Ri + 0.5d for test cases (a) Г = 11.36 and (b) Г = 7.81. 

 

Different levels of computational mesh refinement have little significant impact on the 

axial spacing of the Taylor vortices, as shown by the spacing between the maxima and 

minima reported in Figure 6.5(a) and Figure 6.5(b). Predictions obtained using mesh types 
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1 to 3 displays an appreciable overlap in radial velocity over the entire range 0 ≤ X/Ri ≤ 

10. These indicate that the numerical scheme is predicting the same Taylor vortex pattern 

at all the three levels of mesh refinement. 

Computational mesh type 2 was chosen for the two test cases as sufficiently grid 

independent since the difference in static pressure, axial velocity and radial velocity values 

between refined grid case 3 and case 2 were less than 5%, as detailed in Table 6-5 and  

Table 6-6. Whereas the mesh convergence of the numerial model for the purposes of 

predicting the conventional Taylor vortex instability is adequate, the present work did not 

attempt to investigate whether the critical Taylor number for staging to wavy vortex flow 

was mesh independent. The mesh convergence claim is therefore limited to the specific 

flow regime of conventional Taylor vortex flow that results at one inner cylinder rotational 

speed. The behaviour of the model at increasing speeds, in particular for what concerns 

mode staging, is untested. 

 

6.7 Numerical results and discussion for the coaxial cylinders  = 11.36 and  

 = 7.81 

All the numerical results are based on the cylindrical reference system in which the 

cylinders are co-axial with the axis coinciding with the X-direction of the cylindrical 

reference system (r, θ, X) shown in Figure 6.1. The orthographic view of the meridional 

plane of the coaxial cylinders presented here is consistent with the plan view of the PIV 

experiment as seen from the top by the PIV CCD camera.  

 

6.7.1 Flow pattern in the annulus of the coaxial cylinders  

Figure 6.6(a) and Figure 6.6(b) show the predictions of the velocity vectors in the 

meridional plane for the test cases  = 11.36 and  = 7.81 respectively. The velocity 

vectors have been normalised by the inner cylinder angular speed, Ri. The axial and 

radial positions are normalised by the inner cylinder radius Ri. This makes the normalised 

computational domain for the test cases  = 11.36 and  = 7.81 cover the ranges stated in 

Table 5-2. A typical Taylor vortex flow pattern is observed in the entire computational 

domain. Since the Taylor number for the test cases  = 11.36 and  = 7.81 is above the 

critical Taylor number, the steady viscous flow at the start of the computation becomes 

unstable and pairs of counter-rotating, axisymmetric toroidal vortices spaced periodically 

along the inner cylinder axis are established. The axisymmetric flow pattern of pairs of 
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counter-rotating vortices is repeated along the axial shaft with the consecutive cells 

moving the flow in the same direction at their meeting point. Along the axial direction of 

the computational domain, the velocity vectors of Figure 6.6(a) show twelve vortices for 

the test case  = 11.36, while Figure 6.6(b) shows eight vortices for the test case  = 7.81. 

The number of vortices in the computational domain for the test case  = 7.81 is less than 

the number of vortices obtained for the test case  = 11.36, due to the difference in the gap 

width d.  

 
(a) 

 
(b) 

Figure 6.6: Normalised velocity vectors in the meridional plane of the annulus for test  

                    cases (a)  = 11.36 and (b)  = 7.81. The reference velocity vector is                                        

                                                                      0.5Ri. 

 

As the inner cylinder rotates, the fluid particles near the wall of the inner cylinder 

experience a higher centrifugal force and show a tendency of being propelled outwards. 

The radial velocity induced by the vortices convects the fluid with high tangential 
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momentum near the rotating inner cylinder radially outward, in the outflow regions 

between two adjacent pair of vortices, as indicated by the arrow A in the enlarged Figure 

6.7. Symmetrically, low speed fluid from near the stationary outer cylinder is convected 

radially inward in the inflow (upwell at  = -/2) regions between two adjacent vortices, 

as indicated by arrow B in the enlarged Figure 6.7. This redistributes the angular 

momentum of the fluid across the annulus. The consequent redistribution of mass flow 

across the annulus affects the inward flow and the outward flow velocity distribution. 

Thus, the radial outflow between the vortices is substantially stronger than the radial 

inflow, as evidenced by the magnitude of the vectors in Figure 6.6 and Figure 6.7, in 

agreement with experimental observation of Wereley and Lueptow (1998).  

 

 

 

 
Figure 6.7: Enlarged normalised velocity vectors in section 1.84 ≤ X/Ri ≤ 4.19 of Figure 

6.6(a). 

 

The two vortices near the left and right end-wall boundaries of the computational domain 

in Figure 6.6(a) and Figure 6.6(b) are elongated more than the remaining vortices in the 

central region of the annulus. This is due to the effects of the stationary end-walls. This 

flow pattern is consistent and in qualitative agreement with observation made in previous 

studies by Parker and Merati (1996), Haut et al. (2003), and Deshmukh et al. (2007). 

Neglecting the right and the left side vortices, a pair of counter-rotating vortices in the 

central region has a periodic length that is about twice the width, d, of the gap between the 

coaxial cylinders. 

The weaker radial inflow at the end-walls of the vortices at 0 ≤ X/Ri ≤ 1.09 and 8.95 ≤ 

X/Ri ≤ 10 in Figure 6.6(a) for the test case  = 11.36 and at 0 ≤ X/Ri ≤ 1.47 and 8.47 ≤ 

X/Ri ≤ 10 in Figure 6.6(b) for the test case  = 7.81 is due to the end-walls being fixed to 
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the stationary outer cylinder. The no-slip boundary conditions imposed at the end-walls 

generate a boundary layer flow, driven by the discontinuity in velocity at the junctions 

between the rotating inner cylinder and the stationary end-walls. These end-walls cause an 

imbalance in the pressure gradient and in the centrifugal forces. As the centrifugal forces 

fall off towards the ends of the cylinders, there is an inward flow at the stationary end-

walls. Thus, the presence of the end-walls determines the rotation of the vortices nearest to 

the end-walls. A vortex cell pattern propagates from the end-walls toward the centre until 

it fills the entire domain. The rotation of the other vortices in the central region is thus 

determined by the direction of the end-wall vortices. This is in agreement with the 

observations of Smieszek and Egbers (2005) and Deng et al. (2009). This flow pattern 

formation is also in agreement with the numerical results of Neitzel (1984) and the 

experimental results of Koschmieder (1979), where Taylor vortices were first observed to 

form at the end-walls. In addition, the discontinuity of the boundary conditions at the 

meeting point of the inner cylinder and the end-walls generates a weak circulation cell 

adjacent to each end-wall, as observed in Figure 6.6. A scenario whereby a radially 

outward boundary layer flow in a vortex cell pattern is obtained under anomalous 

conditions has been studied extensively by Benjamin and Mullin (1981) and Benjamin 

(1978). 

A noticeable feature of the velocity vectors in Figure 6.6(a) and Figure 6.6(b) is the 

mixing and exchange of momentum at the meeting point of two adjacent vortices. At this 

meeting point, there is significant flow mixing between adjacent vortices, with each vortex 

adding to the mixing region at the centre of a vortex pair, close to the inner cylinder and 

then receiving fluid from this mixing region, close to the outer cylinder. A similar mixing 

process occurs at the inflow region, between neighbouring vortex pairs. 

Another noticeable observation of the velocity vectors in Figure 6.6(a) and Figure 6.6(b) is 

the shifting of the vortex centres toward the outer cylinder. This is attributed to the high 

Reynolds number at which the flow regime is investigated. At a high Reynolds number, 

the centrifugal force due to the rotation of the inner cylinder is greater than the pressure 

gradient due to the stationary outer cylinder wall. This imbalance between these two 

forces causes the vortex centre to be shifted towards the wall of the outer cylinder. This is 

in qualitative agreement with the study conducted by Deng et al. (2009), in which they 

noticed that, when the Reynolds number is below 100, the radial positions of the vortex 

centres are located in the middle of the annulus, whereas, when the Reynolds number is 

increased, the vortex centres tend to shift toward the wall of the outer cylinder. 
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6.7.2 Flow field in the meridional plane of the coaxial cylinders 

Figure 6.8, Figure 6.9, and Figure 6.10 show respectively the contour plots of axial 

velocity, radial velocity and tangential velocity in the meridional plane of the annulus for 

the test cases  = 11.36 and  = 7.81. All the velocity variables are normalised by the 

surface tangential speed of the inner cylinder Ri. The axial and radial positions are 

normalised by the inner cylinder radius Ri, thus making the extent of the computational 

domain for the test cases  = 11.36 and  = 7.81 the same as those shown in Figure 6.6(a) 

and Figure 6.6(b) respectively. The contour lines in Figure 6.8 and Figure 6.9 have been 

evenly spaced with a contour spacing of 0.03Ri.  

Figure 6.8(a) and Figure 6.8(b) show the formation of an alternating pattern of axial 

velocity maxima and minima in the annulus at the same axial postion as the vortex centres 

for the test cases  = 11.36 and  = 7.81 respectively. This flow pattern is due to the high 

rotational speed of the inner cylinder, resulting in the transition between a steady Couette 

flow to a Taylor vortex flow, which is characterised by the formation of vortices spanning 

the gap between the inner cylinder and the outer cylinder.  

These velocity maxima and minima are induced by the vortex motion and are aligned 

radially above and below each vortex core of Figure 6.6. The zero contour lines between 

the maxima and minima values of Figure 6.8 correspond to the radial positions of the 

centre core of the vortices in Figure 6.6. Figure 6.8 shows that each clockwise Taylor 

vortex induces axial velocity maxima radially below its core near the wall of the inner 

cylinder, and axial velocity minima radially above its core near the wall of the outer 

cylinder on the  = -/2 plane.  

The radial velocity contour plots for test cases  = 11.36 and  = 7.81 in Figure 6.9(a) and 

Figure 6.9(b) show an alternating pattern of radial velocity minima and maxima along the 

positive axial direction. The radial flow is due to the imbalance between the centrifugal 

forces exerted on the fluid due to the rotation of the inner cylinder and radial pressure 

gradients restoring radial momentum equilibrium in the flow. The magnitude of the 

alternating radial velocity maxima and minima are reported at the centre of their 

corresponding concentric contours in Figure 6.9(a) and Figure 6.9(b). 
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(a) 

 

(b) 

Figure 6.8: Contour plots of axial velocity in the meridional plane normalised by Ri with 

contour spacing, ux = 0.03Ri for test cases (a)  = 11.36 and (b)  = 7.81. 

 

The contour plot is colour coded such that the red colour corresponds to positive values of 

radial velocity and the blue colour corresponds to the negative values of radial velocity. 

The positive and negative values on these contour maps show the direction of rotation of 

the Taylor vortices. A red coloured contour cluster followed by a blue coloured contour 

cluster in the positive axial direction designates an anti-clockwise vortex on the  = -/2 

plane. Similarly, a blue coloured contour cluster followed by a red coloured contour 

cluster designates a clockwise Taylor vortex. 

The negative and positive values on these contour clusters indicate inward flow regions 

(upwells) and outward flow regions (downwells) respectively at  = -/2 at the meeting 

point of adjacent vortices of Figure 6.6(a) and Figure 6.6(b). The radial velocity maxima 

occur in the radial outward flow regions of Figure 6.6(a) and Figure 6.6(b), such as the 
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location identified by arrow A in Figure 6.7. The radial velocity minima occur in the radial 

inward flow regions of Figure 6.6(a) and Figure 6.6(b), such as the location identified by 

arrow B in Figure 6.7. The zero velocity contours corresponds to the centre position of the 

vortices in Figure 6.6(a) and Figure 6.6(b).  

 
(a) 

 
(b) 

Figure 6.9: Contour plots of radial velocity in the meridional plane normalised by Ri 

with contour spacing, ur = 0.03Ri for test cases (a)  =11.36 and (b)  = 7.81. 

 

The flow pattern of alternating axial and radial velocity maxima and minima in Figure 6.8 
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experimental measurements by Deshmukh et al. (2007), Parker and Merati (1996), Deng 

et al. (2009) and Haut et al. (2003). For instance, Deng et al. (2009) show the radial 

velocity distribution along the mid-gap of two cylinders of aspect ratio 5.17 and radius 

ratio 0.613. Three velocity maxima are shown in a pattern of six vortices, corresponding to 
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one velocity maximum per vortex pair, which is the same pattern as in the current CFD 

predictions. 

The radial velocity minima near the end-walls at X/Ri = 0 and X/Ri = 10 in Figure 6.9(a) 

and Figure 6.9(b) are lower than the corresponding values in the central region of the 

computational domain due to the use of side wall non-slip boundary conditions that 

constrained the development of the first Taylor vortex and of the last Taylor vortex, 

thereby reducing their strength.  

The radial velocity contour plots in Figure 6.9(a) and Figure 6.9(b) show radial velocity 

extrema appearing before and after the centres of each vortex. It is observed that the 

number of the extrema does not correspond with the number of vortices. For example, the 

velocity vector maps in Figure 6.6(a) and Figure 6.6(b) show respectively twelve and eight 

vortices in the entire domain, whereas the radial velocity contours in Figure 6.9(a) and 

Figure 6.9(b) show the number of the extrema to be thirteen and nine for the 

corresponding test cases  = 11.36 and  = 7.81. The one additional minimum in Figure 

6.9(a) and Figure 6.9(b) is attributed to the presence of the end-walls. The difference in 

the number of extrema between test case   = 11.36 and  = 7.81 in Figure 6.9(a) and 

Figure 6.9(b) is attributed to the diffenece in the gap width d.  

The contour plots of the tangential velocity in Figure 6.10(a) and Figure 6.10(b) for the 

test cases  = 11.36 and  = 7.81 have been evenly spaced with a contour spacing of 

0.1Ri. These contour plots show a minimum tangential velocity near the wall of the 

inner cylinder and a maximum tangential velocity near the wall of the outer cylinder. The 

magnitude of the tangential velocity minimum is higher than that of the tangential velocity 

maximum. That is, the tangential flow speed is maximum near the inner cylinder in 

agreement with the direction of rotation of the inner cylinder that drives the flow by 

rotating at constant angular speed Ri. This is expected since the convected fluid motion 

induced by the rotating inner cylinder rotates with the solid body with maximum angular 

velocity u = Ri at the inner cylinder surface. The negative value of the tangential 

velocity observed near the wall of the inner cylinder is due to the direction of rotation of 

the inner cylinder based on the cylindrical reference system in Figure 6.1.  

The fluid tangential velocity has two attributes: a magnitude (speed) and a direction. In 

this instance, the speed of the inner cylinder is constant at the inner cylinder outer surface, 

and the direction of the angular speed of the rotating inner cylinder has been specified as 

clockwise. The change in direction of the tangential velocity vectors in the azimuthal 
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plane gives rise to a net centripetal force which is directed toward the centre of the rotating 

cylinder. The clockwise inner cylinder rotation, based on the right handed cylindrical 

reference system shown in Figure 6.1, is responsible for the negative values of the 

tangential velocity in Figure 6.10(a) and Figure 6.10(b). Therefore, the red and the blue 

colour codes on the contour plots correspond respectively to minimum and maximum 

negative values of tangential velocity. 

 
(a) 

 

 

(b) 

Figure 6.10: Contour plots of tangential velocity in the meridional plane normalised by 

Ri with contour spacing, u = 0.1Ri for test cases (a)  =11.36 and (b)  = 7.81. 

 

In Figure 6.10(a) and Figure 6.10(b), the contours bulge outward in the radial outward 

flow regions as high tangential momentum fluid is transported by the Taylor vortices from 

near the inner rotating cylinder outwardly toward the stationary outer cylinder. The 

contours bulge radially inward in the inward flow regions as low momentum fluid is 
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transported by the Taylor vortices from near the wall of stationary outer cylinder inwardly 

toward the wall of rotating inner cylinder. The contour lines are more sharply curved in 

the outward flow regions than in the inward flow regions due to the shorter distance 

between the Taylor vortex centres and the outward flow saddle planes, which results in a 

greater outward flow radial velocity induced by the Taylor vortices in the outflow regions. 

This feature also indicates the strength of the induced velocity by the Taylor vortices in 

these regions. 

The pressure distribution in the annulus of coaxial cylinders is a critical factor for journal 

bearing design. The study by Deng (2007) shows that the pressure distribution is 

significant for the formation of vortex cells and transition to different flow regimes 

(Taylor-Couette flow to Taylor vortex flow regimes) in the annulus of coaxial cylinders. 

The detailed pressure distribution in the gap between the coaxial cylinders for the test 

cases  = 11.36 and  = 7.81 is documented in this section.  

In incompressible turbomachinery aerodynamics (Cumpsty, 2003; Gostelow, 1984), the 

relationship between the static and stagnation pressure is given as: 

 
  

 

 
         6.6 

where P = static pressure (Pa) 

           0.5v
2
 = dynamic pressure (Pa) 

            = density of the fluid = 1.225kg/m
3
 

           v = velocity of the flow (m/s) 

           Po = stagnation pressure (Pa)  

 

In the case of horizontal coaxial rotating cylinders with angular velocity u = R, equation 

6.6 becomes: 

 
   

 

 
         6.7 

Equation 6.7 shows that the pressure distribution is a function of radius. This means there 

will be no pressure variation in the axial direction as there is no gravitational force. The 

pressure distribution is determined by the balance between a radial pressure gradient and 

the centrifugal force associated with the circular motion. Figure 6.11 and Figure 6.12 

show the contour plots of gauge static pressure and dynamic pressure in the meridional 

plane respectively. Pressure (static and dynamic) has been normalised by 0.5Ri
2


2
. The 

contour lines are evenly spaced with contour spacing of 0.01Ri
2


2
. 
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The contours of the gauge static pressure (pressure measured relative to the atmospheric 

pressure) in the meridional plane shown in Figure 6.11(a) and Figure 6.11(b) for the test 

cases  = 11.36 and  = 7.81 respectively show a pressure gradient along the radial 

direction in agreement with equation 6.7 with a gauge static pressure minimum near the 

wall of the inner cylinder and a gauge static pressure maximum near the wall of the outer 

cylinder. 

 
(a) 

 
(b) 

Figure 6.11: Contour plots of gauge static pressure in the meridional plane normalised by 

0.5Ri
2


2
 with contour spacing p = 0.01Ri

2


2
 for test cases (a)  =11.36 and (b)  = 

7.81. 

 

When the inner cylinder rotates, it causes all the particles of the fluid in direct contact with 

it to translate and rotate as a solid body, such that there is no relative motion between 

particles. Therefore, the fluid element is said to be in an equilibrium state.  The rotating 

inner cylinder generates tangential shear stress acting on the fluid particles further away 

from its surface, due to the action of centrifugal force, and induce fluid to rotate along the 
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circumference of the cylinder. This results in the rotating fluid requiring a centripetal 

acceleration that is provided by the radial pressure gradient. The centripetal acceleration 

acting on the body of the rotating fluid results in higher pressure being exerted from the 

stationary outer cylinder towards the centre of rotation. This pressure balances the 

centripetal force to keep the fluid moving in a circular path, which explains the reduced 

gauge static pressure near the wall of the inner cylinder and the static pressure increase 

near the wall of the stationary outer cylinder.   

The sharp curved contour lines in the outward flow regions in Figure 6.11 indicate the 

greater magnitude of the radial velocity induced by the Taylor vortices in these regions 

compared to the inward flow regions, as confirmed by the velocity vector map of Figure 

6.6. The gauge static pressure flow pattern is in qualitative agreement with observation 

made in the CFD study by Zhou et al. (2007). 

The contour plots in Figure 6.12(a) and Figure 6.12(b) show the distribution of dynamic 

pressure in the meridional plane for the test cases  = 11.36 and  = 7.81 respectively. 

The contour plots in Figure 6.12 show dynamic pressure maxima near the wall of the inner 

cylinder and dynamic pressure minima near the wall of the outer cylinder. This is expected 

as the rotating inner cylinder drives the tangential motion, resulting in a maximum flow 

tangential velocity, which is the dominant contribution to the dynamic pressure at the 

rotating inner cylinder surface. The flow tangential velocity gradually decreases toward 

the outer cylinder wall. As dynamic pressure is directly proportional to the fluid velocity, 

as the velocity of the fluid near the rotating inner cylinder decreases toward the outer 

stationary cylinder, the dynamic pressure also decreases.  

Along the radial direction in Figure 6.12, the gradient of the dynamic pressure at the 

outward flow regions is high compared to the gradient at the inward flow regions. The 

contours bulge outward in the radial outward flow regions as high tangential momentum 

fluid is convected from near the inner rotating cylinder outwardly toward the stationary 

outer cylinder by the Taylor vortices. Similarly, the contours bulge radially inward in the 

inward flow regions as low momentum fluid is convected from near the wall of the 

stationary outer cylinder inwardly toward the wall of the rotating inner cylinder. The high 

tangential momentum fluid requires a greater adverse radial pressure gradient by the 

stationary outer cylinder to be maintained in a circular motion around the annulus. As in 

Figure 6.11, the contour lines in Figure 6.12 are more sharply curved in the outward flow 

regions than in the inward flow regions. This has been discussed in the contex of Figure 

6.11. 
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(a) 

 
(b) 

Figure 6.12: Contour plot of dynamic pressure in the meridional plane normalised by 

0.5Ri
2


2
 with contour spacing p = 0.01Ri

2


2
 for test cases (a)  =11.36 and (b)  = 

7.81. 

 

6.7.3 In-plane velocity profiles in the meridional plane  

This section is concerned with the detailed quantitative discussion of the in-plane velocity 

profiles obtained from the predicted velocity vectors in the meridional plane of Figure 

6.6(a) and Figure 6.6(b). To discuss in details the variation of the velocity distributions, 

profiles at three constant radial positions along the axial direction on the upper ( = /2) 

and lower ( = - /2) channels of the annulus have been extracted and plotted. The radial 

positions on the upper and the lower channels are r = Ri + 0.95d (1mm away from the wall 

of the outer cylinder), r = Ri + 0.5d (the mid-span gap of the annulus) and r = Ri + 0.045d 

(1mm away from the wall of the inner cylinder) for the test case  = 11.36. The positions 

of the constant radial line where the profiles are extracted are illustrated and shown with 
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dotted lines in Figure 6.13. For the test case  = 7.81, the positions of the constant radial 

line where the profiles are extracted are taken at the same percentage gap width d as for 

test case  = 11.36. The velocity profiles have been normalised with respect to the inner 

cylinder surface speed Ri.  

 

Figure 6.13: Location of velocity profiles at constant radial positions in the meridional 

plane along the axial direction. 

 

Figure 6.14(a) and Figure 6.14(b) show the normalised axial velocity profiles at the three 

constant radial positions illustrated in Figure 6.13 on the lower and upper ( = /2) 

channels of the annulus for the test cases  = 11.36 and  = 7.81 respectively. The axial 

velocity profiles traverse through the inward and outward flow regions of Figure 6.6(a) for 

the test case  = 11.36 and Figure 6.6(b) for the test case  = 7.81. The centres of the 
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crossings in between, which is where the r = Ri + 0.5d gap mid-span cylindrical surface 
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marked as zero on the contour lines in Figure 6.8(a) and Figure 6.8(b).  
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maxima occur radially above the cores of the anti-clockwise vortices and the axial velocity 

minima occur radially above the cores of the clockwise vortices. This trend reversal near 

the wall of the outer cylinder is due to the change in direction of the axial velocity induced 

by the Taylor vortices as the fluid approaches the wall of the outer cylinder. This is clearly 

shown in the velocity vectors of Figure 6.6(a) and Figure 6.6(b) for the test cases  = 

11.36 and  = 7.81 respectively. The velocity maxima and minima at r = Ri + 0.045d and r 

= Ri + 0.95d occur almost at about the same axial location along X/Ri. Each velocity 

maximum and minimum pair is almost radially aligned. The axial velocity is driven by the 

Taylor vortex pattern. Each clockwise Taylor vortex induces an axial velocity maximum 

radially below its core at r = Ri + 0.045d and a minimum radially above its core at r = Ri + 

0.95d. This is clearly shown in the contour plot of the axial velocity in Figure 6.8(a) and 

Figure 6.8(b) for the test cases  = 11.36 and  = 7.81 respectively. 

 

(a) 

 
(b) 

Figure 6.14: Normalised axial velocity profiles in the meridional plane at constant radial 

positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d for the test cases (a)  = 11.36 

and (b)  = 7.81.  
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The profiles in Figure 6.14 show almost the same amplitude of axial velocity maxima and 

minima near the inner cylinder wall at r = Ri + 0.045d in the central region of the annulus 

at 1 ≤ X/Ri ≤ 9 for the test case  = 11.36 and at 1.5 ≤ X/Ri ≤ 8.5 for the test case  = 7.81. 

Similarly, the profiles show almost the same axial velocity maxima and minima near the 

outer cylinder wall, at r = Ri + 0.95d, at 1 ≤ X/Ri ≤ 9 for the test case  = 11.36 and at 1.5 

≤ X/Ri ≤ 8.5 for the test case  = 7.81. At the end-wall boundaries of the computational 

domain, the axial velocity maxima and minima at r = Ri + 0.045d and r = Ri + 0.95d are 

slightly higher in amplitude than along the central region at the same radial position.  

At the radial position r = Ri + 0.045d for the test case  = 11.36 in Figure 6.14(a), the axial 

velocity maxima and minima near the end-walls are approximately 0.15Ri and -0.15Ri 

respectively, while the axial velocity maxima and minima at the central region of the 

computational domain are approximately 0.13Ri and -0.13Ri respectively. These 

values correspond to approximately 15% and 13% of the speed of the inner cylinder 

respectively. At the radial position r = Ri + 0.95d in Figure 6.14(a), the axial velocity 

maxima and minima near the end-walls are approximately 0.14Ri and -0.14Ri 

respectively, while the axial velocity maxima and minima at the central region of the 

computational domain remain at 0.13Ri and -0.13Ri respectively. 

At the radial position r = Ri + 0.045d for the test case  = 7.81 in Figure 6.14(b), the axial 

velocity maxima and minima near the end-walls are approximately 0.14Ri and -0.14Ri 

respectively, while the axial velocity maxima and minima at the central region of the 

computational domain are approximately 0.12Ri and -0.12Ri respectively. Similarly, at 

the radial position r = Ri + 0.95d in Figure 6.14(b), the axial velocity maxima and minima 

near the end-walls are approximately 0.13Ri and -0.13Ri respectively, while the axial 

velocity maxima and minima at the central region of the computational domain are 

approximately 0.12Ri and -0.12Ri respectively. The agreement in the axial velocity 

maximum and axial velocity minimum values obtained at the same percentage gap width 

over the central region for the test cases  = 11.36 and  = 7.81 show a good consistency 

among the CFD simulations. 

The variation in the axial velocity between the central region and the right and left sides of 

the computational domain at radial positions r = Ri + 0.045d and r = Ri + 0.95d is due to 

the presence of the end-walls. The axial velocity profiles at r = Ri + 0.045d and r = Ri + 

0.95d display a low amplitude high wavenumber fluctuation superimposed on the Taylor 

vortex driven maxima and minima. This high wavenumber fluctuation observed in Figure 
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6.14 near the wall of the inner and outer cylinders may be due to the stabilizing effect of 

an axial flow which sometimes leads to an unstable region close to the wall of the 

cylinders (Coney and Simmers, 1979). 

On the saddle planes, the axial velocity is essentially zero. The zero crossings that mark 

the axial position of the saddle planes between the neighbouring toroidal Taylor vortices 

offer a good visual reference point to appreciate how the vortex pattern changes axially.  

In Figure 6.14(a) and Figure 6.14(b), it is observed that the axial position of the maxima 

and minima near the wall of the inner cylinder is not exactly the same as the 

corresponding axial position of the minima and maxima near the wall of the outer 

cylinder. This feature may be attributed to the vortical structures in which the vortex 

centres has been shifted toward the wall of the outer cylinder. Another factor may be the 

difference in fluid transport momentum. As the fluid with high transported momentum is 

been convected from the wall of the inner cylinder the fluid mixes at the meeting point of 

the adjacent vortex. As the fluid moves toward the outer cylinder, there is a reduction in 

the fluid momentum, such that the amount of fluid momentum that was coming from the 

inner cylinder has been significantly reduced before it gets to the axial position where the 

fluid near the wall of the outer cylinder displays an axial velocity peak. This results in the 

small axial offset of velocity maxima near the wall of the inner cylinder and minima near 

the wall of the outer cylinder at below and above each vortex core. The same process 

drives the axial offset of velocity minima near the wall of the inner cylinder and maxima 

near the wall of the outer cylinder around clockwise Taylor vortices. The offset is more 

pronounced for the test case  = 7.81 in Figure 6.14(b) than for the test case  = 11.36 in 

Figure 6.14(a), due to the increase in the gap width between the cylinders.  

The axial velocity distributions obtained for the test cases  = 11.36 and  = 7.81 in 

Figure 6.14(a) and Figure 6.14(b) is in qualitative agreement with the CFD and with 

experimental results obtained by Zhou et al. (2007), Deng et al. (2009) and Haut et al. 

(2003). 

Figure 6.15(a) and Figure 6.15(b) show the enlarged normalised axial velocity profile at r 

= Ri + 0.5d (the gap mid-span of the annulus) for the test cases  = 11.36 and  = 7.81 

respectively. The axial velocity maxima occur close to the cores of clockwise vortices and 

the axial velocity minima occur close to the cores of the anti-clockwise vortices. Had all 

the vortex centres been located in the gap mid-span of the annulus instead of being shifted 

toward the wall of the outer cylinder, as earlier observed and discussed in the context of 
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Figure 6.6, the axial velocity would have been zero at r = Ri + 0.5d. However, since the 

centres of the vortices do not lie on r = Ri + 0.5d, there is a small axial velocity induced by 

the Taylor vortices along r = Ri + 0.5d. The magnitude of the axial velocity maxima and 

minima at this radial position in Figure 6.15(a) and Figure 6.15(b) is relatively small 

compared to the axial velocity maxima and minima at r = Ri + 0.045d and r = Ri + 0.95d.  

 

(a) 

 
(b) 

Figure 6.15: Normalised axial velocity profiles in the meridional plane at constant radial   

         position r = Ri + 0.5d for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

The profile in Figure 6.15(a) shows that the minima and the maxima in the central region 

over the range 1.3  X/Ri  8.7 of the computational domain have almost the same axial 

velocity magnitude of approximately 0.04Ri. This corresponds to approximately 4% of 

the speed of the inner cylinder. Similarly, the profile in Figure 6.15(b) shows that the 

minima and the maxima in the central region over the range 1.9  X/Ri  8.1 of the 

computational domain have almost the same axial velocity magnitude of approximately 

0.046Ri. This corresponds to approximately 4.6% of the speed of the inner cylinder. The 
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position of the axial velocity minima and maxima at r = Ri + 0.5d indicate the approximate 

location of the vortex cores. Hence, the slight difference in the maximum and minimum 

values between the test cases  = 11.36 and  = 7.81 may be attributed to the difference in 

the radial location of the vortex cores in each test cases. 

The axial velocity profiles in Figure 6.15 seem to be symmetric about the cylinder mid-

span X/Ri = 5. That is, the profiles at 0  X/Ri  5 and 5  X/Ri  10 seem to be mirror 

images of one another. A normalised axial velocity profile inflection point is shown at 

position A in Figure 6.15(a) and Figure 6.15(b). The inflection point at position A in both 

figures corresponds to the axial mid-point about which the flow is symmetric at X/Ri = 5. 

This position lies in an inflow region, where low momentum fluid near the outer wall is 

convected inwardly by the radial inflow. The inflection is likely to be due to a greater 

separation between the Taylor vortex pairs that lie either side of A.  

The axial velocity at the wall is zero as expected, due to no-slip boundary condition. The 

zero crossings mark the axial position of the saddle planes between the neighbouring 

toroidal Taylor vortices.  

Figure 6.16(a) and Figure 6.16(b) show respectively profiles of radial velocity at the same 

three radial positions along the axial direction as in Figure 6.14 for the test cases  = 11.36 

and  = 7.81. The profiles of radial velocity at both the lower and upper channels exhibit 

the same trend, as in Figure 6.14. At the edges of the computational domain, at X/Ri = 0 

and X/Ri = 10, the radial velocity is zero due to the no-slip wall boundary condition 

imposed. This is because the velocity of the fluid in contact with the wall moves at the 

same velocity as the wall, and in this case, the wall is stationary. The no-slip condition at 

the end-walls causes the fluid to shear resulting in shear stress.  Away from the modelled 

solid end-walls in the central region of the computational domain, the radial velocity 

exhibits alternating minima and maxima. The locations of the maxima in Figure 6.16 mark 

the meeting points of the radial outflow between two adjacent vortices (induced 

downwells at  = -/2 and induced upwell at  = /2) on the meridional plane of Figure 

6.6. Similarly, the locations of minima radial velocity mark the meeting point of the radial 

inward flow between two adjacent vortices (induced upwells at  = -/2 and induced 

downwell at  = /2) in the meridional plane of Figure 6.6. The locations of the zero 

crossing of the radial velocity mark the centres of each vortex.  

The radial velocity in Figure 6.16(a) and Figure 6.16(b) exhibit a periodic trend along the 

axial direction. This periodic trend is more obvious in the profile at the gap mid-span 



115 

 

radial position r = Ri + 0.5d ( = /2), this being the position at which the radial velocity 

reaches the maximum value. At this radial position (r = Ri + 0.5d), approximately six and 

four cycles of normalised radial velocity oscillation along X/Ri are shown in Figure 

6.16(a) and Figure 6.16(b) for the test cases  = 11.36 and  = 7.81 respectively. Each 

cycle corresponds to a maximum outward flow followed by a minimum inward flow at the 

saddle planes between the boundaries of two adjacent Taylor vortices. The velocity 

profiles in Figure 6.16(a) and Figure 6.16(b) show that the radial velocity is not symmetric 

along the gap mid-span (r = Ri + 0.5d) about ur = 0. The asymmetry in inflow (negative ur) 

and outflow (positive ur) regions is apparent in the radial velocity profiles at r = Ri + 0.5d 

( = /2). This feature is attributted to the vortex centres that are positioned close to each 

other either side of an outflow saddle plane, as shown in Figure 6.6(a) and Figure 6.6(b). 

The radial velocity distribution at the radial position r = Ri + 0.5d along the meridional 

plane of the annulus is consistent and in good agreement with the experimental and 

computational results obtained by Wereley and Lueptow (1998) and Deng et al., (2005). 

The flow parameter of the coaxial cylinders investigated by Deng et al., (2005) at different 

Reynolds numbers is  = 5.17 and  = 0.613. 

Figure 6.16(a) and Figure 6.16(b) show that the magnitude of the normalised radial 

velocity maxima is almost constant while the magnitude of the inflow radial velocity 

minima varies along the profiles at r = Ri + 0.5d ( = /2). For instance, the radial 

velocity local minima near the boundaries at 0 ≤ X/Ri ≤ 0.065 and 0 ≤ X/Ri ≤ 0.935 are 

higher than the corresponding values in the central regions of the computational domain 

for the test case  = 11.36 in Figure 6.16(a). A similar trend is observed for the test case  

= 7.81 in the profile of Figure 6.16(b). Specifically, the magnitude of the radial velocity 

minima at X/Ri = 2.65 and X/Ri = 7.45 are higher than the corresponding values at X/Ri = 

5 at the centre of the computational domain. This flow pattern is a result from the use of 

side wall boundary conditions that constrained the development of the first Taylor vortex 

and of the last Taylor vortex thereby reducing their strength, as shown in Figure 6.6. To 

compensate for this increment in the axial extent of the end wall vortices, the inward flow 

velocity minima at X/Ri = 2.65 and X/Ri = 7.45 increase. 

At the gap mid-span r = Ri + 0.5d, the outward radial velocity maxima are greater in 

magnitude than the inward radial velocity minima, which agrees with the strength of the 

radial inward flow between the vortices being weaker than that of the outward flow, as 

observed in Figure 6.6. This result is not surprising, as the Taylor vortices transport higher 
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tangential momentum fluid outwardly to the wall of the outer cylinder and convect fluid 

with lower momentum inwardly. This resulted in a powerful outward efflux of flow with 

tangential momentum and a weaker influx of tangential momentum, the imbalance being 

accounted for by viscous dissipation at the outer cylinder wall. This result is consistent 

with the results obtained by Snyder and Lambert (1966) and Wereley and Lueptow (1998) 

who obtained higher radial velocities at the outflow regions.  

 

(a) 

 
(b) 

Figure 6.16: Normalised radial velocity profiles in the meridional plane at constant radial 

positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d for the test cases (a)  = 11.36 

and (b)  = 7.81. 

 

The maximum outflow velocity for test case  = 11.36 in Figure 6.16(a) is approximately 

0.24Ri while the maximum inflow velocity in the central region is approximately -

0.15Ri. Similarly, the magnitude of the maximum radial flow velocity in the outflow 

regions for test case  = 7.81 in Figure 6.16(b) is approximately 0.24Ri while the radial 

velocity minimum in the central region of the computational domain is approximately -
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0.12Ri.  For test case  = 11.36, at X/Ri = 0.05 and X/Ri = 9.95, the radial velocity 

minima are approximately -0.10Ri while for test case  = 7.81, at X/Ri = 2.65 and X/Ri 

= 7.45, the radial velocity minima are approximately -0.14Ri.  

A noticeable feature of the radial velocity in Figure 6.16(a) and Figure 6.16(b) is the shape 

of the velocity peak at the outflow regions. This is sharper than the velocity trough at the 

inflow regions. This feature is attributed to the difference in the magnitudes of the Taylor 

vortex induced velocity at the saddles planes between two adjacent vortices. At these 

planes, the magnitude of the velocity vectors of the outflow regions is stronger than the 

magnitude of the velocity vectors of the inflow regions, as shown in Figure 6.6. The 

sharper maxima (crests) in Figure 6.16(a) and Figure 6.16(b) correspond to jet-like 

outflows in the radial direction while the wider minima (valleys) correspond to sink-like 

inflows in Figure 6.6(a) and Figure 6.6(b). The width of the wider minima for the test case 

 = 11.36 in Figure 6.6(a) is almost 1.5 times that of the shaper maxima as measured 

between the zero crossings in Figure 6.16(a). For the test case  = 7.81 in Figure 6.16(b), 

the width of the troughs (valleys) at X/Ri = 2.65 and X/Ri = 7.45 is about 23.5% greater 

than that of the shaper peaks (crests), as measured between the zero crossings. Similarly, 

the width of the trough (valley) in the central region at X/Ri = 5.00 is about 53% greater 

than that of the shaper peaks (crests) at X/Ri = 2.65 and X/Ri = 7.45, as measured between 

the zero crossings. This flow feature was also observed in the literature by Wereley and 

Lueptow (1998) and Deng et al.(2009). In general the radial velocity distributions 

obtained for the test cases  = 11.36 and  = 7.81 at r = Ri + 0.5d and  = /2 in Figure 

6.16(a) and Figure 6.16(b) are in qualitative agreement with the CFD and with 

experimental results obtained by Deng et al. (2009) and Haut et al. (2003).  

Figure 6.17(a) and Figure 6.17(b) show the enlarged view of the normalised radial 

velocity profiles at r = Ri + 0.045d and r = Ri + 0.95d for the test cases  = 11.36 and  = 

7.81 respectively. The profiles show that the magnitude of the outward flow radial 

velocity maxima near the inner cylinder at r = Ri + 0.045d is almost twice the magnitude 

of the inward flow radial velocity minima. The radial velocity peak of the outward flow 

regions is sharper than the radial velocity troughs of the inward flow regions along r = Ri 

+ 0.045d due to the strength of the induced velocity by the vortices at the either side of the 

saddle planes.  

The normalised radial velocity profile at r = Ri + 0.95d differs from the profile predicted at 

r = Ri + 0.045d. At the outward flow regions, the profiles at the two radial positions 



118 

 

exhibit similar trends and the respective radial velocity maxima are of almost equal 

magnitude. The inward flow pattern is instead quite different, as the single trough minima 

observed at the r = Ri + 0.045d has been replaced by double trough minima at r = Ri + 

0.95d, as shown by the two arrows labelled A in Figure 6.17(a) and Figure 6.17(b).  

 
(a) 

 
(b) 

Figure 6.17: Normalised radial velocity profiles in the meridional plane at constant radial 

positions r = Ri + 0.045d and r = Ri + 0.95d for the test cases (a)  = 11.36 and (b)  = 

7.81. 

 

This may be attributed to the vortical structures in which the vortex centres are shifted 

towards the outer cylinder. The shifting of each vortex centre creates a variation in the 

boundary layer of the inward flow regions near the wall of the stationary outer cylinder. 

The boundary layer approaching the inward flow region is subject to an adverse 

streamwise pressure gradient as discussed in the context of Figure 6.11, prompting flow 

separation. The resulting shear layer velocity profile gives the double trough in the 

normalised radial velocity minima of Figure 6.17(a) and Figure 6.17(b). 
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The single through observed near the wall of the inner cylinder occurs in inwards flow 

regions. In these regions, low tangential momentum fluid is approaching the inner rotating 

cylinder. As the inner cylinder rotates at a constant angular speed, it imparts tangential 

momentum to the neighbouring fluid. This creates a thick tangential boundary layer with a 

dominant tangential shear at the periphery of the rotating inner cylinder. The flow is 

accelerating tangentially under the action of this shear stress. This acceleration sustains the 

confluence of the radial inflow at r = Ri + 0.045, such that the single peak is observed at r 

= Ri + 0.045 in Figure 6.17(a) and Figure 6.17(b). The comparison of the radial velocity 

distributions at the radial positions r = Ri + 0.045d and r = Ri + 0.95d with published work 

for the test cases  = 11.36 and  =7.8 cannot be made because the radial velocity 

distribution at these radial positions appears not to have been reported in the open 

literature.  

Figure 6.18(a) and Figure 6.18(b) show the profiles of normalised tangential velocity in 

the meridional plane of the annulus for the test cases  = 11.36 and  =7.81 respectively. 

The profiles show negative tangential velocity minima near the wall of the inner cylinder 

and negative tangential velocity maxima near the wall of the outer cylinder. The 

magnitude of the tangential velocity minima is higher than that of the tangential velocity 

maxima. The negative values of the tangential velocity observed near the wall of the inner 

cylinder are due to the clockwise rotation of the inner cylinder with respect to the 

cylindrical reference system in Figure 6.1 as discussed in the context of Figure 6.10. The 

zero tangential velocity at the boundaries X/Ri = 0 and X/Ri = 10 is due to no-slip 

boundary conditions imposed at the end-walls of the computational domain as explained 

in the context of Figure 6.16. 

Near the wall of the outer cylinder, at r = Ri + 0.95d, the positions of negative tangential 

velocity minima correspond to outflow regions, while the positions of negative tangential 

velocity maxima correspond to the inflow regions in Figure 6.6(a) and Figure 6.6(b). In 

Figure 6.18(a) for the test case  = 11.36, the negative tangential velocity minima are 

approximately -0.2Ri, while the negative tangential velocity maxima are approximately -

0.03Ri. For the test case  = 7.81 shown in Figure 6.18(b), the negative tangential 

velocity minima are approximately -0.16Ri, while the negative tangential velocity 

maxima are approximately -0.02Ri. The shape of the velocity peak of the outward flow 

regions and the velocity trough of the inflow regions are almost the same in Figure 
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6.18(a), which indicate radial equilibrium in the strength of the Taylor vortices at these 

regions. The same feature is observed in Figure 6.18(b). 

Similarly, the normalised tangential velocity profile near the wall of the inner cylinder, at r 

= Ri + 0.045d in Figure 6.18(a) and Figure 6.18(b), also show that the positions of 

negative tangential velocity minima correspond to the outflow regions, while the positions 

of negative tangential velocity maxima correspond to the inflow regions in Figure 6.6(a) 

and Figure 6.6(b). The negative tangential velocity minima are approximately -0.82Ri, 

while the negative tangential velocity maxima are approximately -0.53Ri for the test 

case  = 11.36 in Figure 6.18(a). For the test case  = 7.81 in Figure 6.18(b), the negative 

tangential velocity minima are approximately -0.82Ri, while the negative tangential 

velocity maxima are approximately -0.56Ri.  

 

(a) 

 

(b) 

Figure 6.18: Normalised tangential velocity profiles in the meridional plane at constant 

radial positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d for the test cases (a)  = 

11.36 and (b)  = 7.81. 
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The shape of the velocity trough of the outward flow regions is sharper than that of the 

velocity peak of the inflow regions in Figure 6.18(a) and Figure 6.18(b), an indication that 

the transported tangential momentum by the outflow is greater than the transported 

tangential momentum by inflow near the wall of the inner cylinder. 

The normalised tangential velocity profiles at the gap mid-span r = Ri + 0.5d in Figure 

6.18(a) and Figure 6.18(b) also show negative minima and maxima localised respectively 

at the outward and inward flow regions in Figure 6.6(a) and Figure 6.6(b). The shapes of 

the velocity trough of the outward flow regions and that of the velocity peak of the inflow 

regions are approximately the same. This indicates that the strength of the tangential 

momentum transport at the inward flow regions is the same as the strength of the 

tangential momentum transport at the outward flow regions at the gap mid-span of the 

annulus. The shape of the tangential velocity profiles at this radial position may be 

associated with the vortical structure in the mid-span of the annulus and is consistent 

between test cases  = 11.36 and  = 7.81.   

As for the radial velocity profiles, the tangential velocity profiles in the meridional plane 

of the annulus along these radial positions (r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 

0.95d) appears not to have been reported in the open literature.  

 

6.7.4 In-plane pressure profiles in the meridional plane 

A quantitative analysis of the pressure field at the three radial positions as in Figure 6.14 is 

presented in this section for the test cases  = 11.36 and  = 7.81. Pressure has been 

normalised with respect to 0.5Ri
2


2
.  

Figure 6.19(a) and Figure 6.19(b) show the gauge static pressure profiles in the meridional 

plane of the annulus for the test cases  = 11.36 and  = 7.81 respectively. These figures 

show that the distributions of gauge static pressure at equal radial distance are independent 

of the azimuthal angle  on the meridional plane. The profiles clearly show the gauge 

static pressure near the wall of the outer cylinder higher than the pressure near the wall of 

the inner cylinder, due to the tangential flow velocity and the requirement for radial 

momentum equilibrium. As the inner cylinder rotates, the centrifugal forces due to the 

rotation of the inner cylinder is balanced by the pressure gradient forces due to the 

stationary outer cylinder in order for a fluid element rotating around the cylinder axis to be 

in a state of radial equilibrium, as discussed in the context of Figure 6.11. 
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Near the wall of the inner cylinder at r = Ri + 0.045d in Figure 6.19(a) and Figure 6.19(b), 

the negative gauge static pressure minima occur in the outward flow region, while the 

negative gauge static pressure maxima are present in the inward flow regions of Figure 

6.6(a) and Figure 6.6(b). At this radial position, the negative gauge static pressure maxima 

(peaks) are observed to be sharper than the negative gauge static pressure minima 

(troughs). Near the wall of the outer cylinder, at r = Ri + 0.95d in Figure 6.19(a) and 

Figure 6.19(b), the gauge static pressure maxima occur in the outward flow regions while 

the gauge static pressure minima are present in the inward flow regions of Figure 6.6(a) 

and Figure 6.6(b). At this radial position, the gauge static pressure peaks are sharper, 

while the gauge static pressure troughs of the minima at inward flow regions are flatter, an 

indication that the radial pressure gradient exerted on the outer cylinder wall at the 

outflow regions is greater than the radial pressure gradient at the inward flow regions. This 

causes the radial velocity at the outward flow regions to be higher than the radial velocity 

at the inward flow regions. 

The difference observed between the profiles at r = Ri + 0.045d  and those at r = Ri + 

0.95d may be attributed to the action of centrifugal forces that must be balanced by the 

pressure gradient as a result of the stationary outer cylinder in order to maintain radial 

equilibrium.  

At the gap mid-span r = Ri + 0.5d, the streamwise variation in the gauge static pressure is 

relatively small compared with the one near the walls of the inner and the outer cylinders. 

The gauge static pressure minima are close to the position of the vortex centres.  This is 

analogous to a free vortex in classical potential flow theory, in which the static pressure is 

expected to be at minimum at the centre of the vortex. Since the radial position r = Ri + 

0.5d does not pass through the centre of the vortices, it is expected that there will be some 

non-uniformity in the gauge static pressure axial distribution between the centre of each 

Taylor vortex and the corresponding minimum at r = Ri + 0.5d in Figure 6.19 as the 

traverse cuts below the centre of the vortices, which are locations of local pressure 

minima. 

Another noticeable feature of the profiles at r = Ri + 0.5d for test cases  = 11.36 and  = 

7.81 in Figure 6.19(a) and Figure 6.19(b) is the position of the gauge static pressure 

maxima. It is observed that the gauge static pressure maxima are located in both the 

outward flow and inward flow regions, alternating one another in the positive axial 

direction, with the inward flow region maxima greater than the outward flow region 

maxima. The gauge static pressure maxima observed in the outward flow regions are 
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lower than the gauge static pressure maxima in the inward flow regions due to the 

structure of the vortices. As the axial centre (xc) of each vortex is closer to the outward 

flow regions, pressure is expected to be a minimum at the vortex core, therefore the 

position near the vortex core (outward flow region) will experience a lower maximum 

gauge static pressure than the position near an inward flow region. This results in the 

pressure minima at either side of an outflow saddle plane in Figure 6.19. 

 

(a) 

 
(b) 

Figure 6.19: Normalized gauge static pressure profiles in the meridional plane at constant 

radial positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d for the test cases (a)  = 

11.36 and (b)  = 7.81. 

 

Figure 6.20(a) and Figure 6.20(b) show the streamwise distributions of the normalised 

dynamic pressure at different radial positions for the test cases  = 11.36 and  = 7.81 

respectively. These profiles show that the dynamic pressure near the wall of the inner 

cylinder is high and that the dynamic pressure progressively decreases toward the wall of 

the outer cylinder. This is expected, as the fluid near the inner cylinder has a higher 

tangential momentum than the fluid near the wall of the outer cylinder. This results in high 
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dynamic pressure near the wall of the inner cylinder and in low dynamic pressure near the 

wall of the outer cylinder. At the three radial positions of Figure 6.20(a) and Figure 

6.20(b), the dynamic pressure minima are in the inward flow regions while the dynamic 

pressure maxima are in the outward flow regions of Figure 6.6(a) and Figure 6.6(b). The 

shape of the dynamic pressure maxima (peaks) in the outward flow regions are sharper 

than that of the dynamic pressure minima (troughs), indicating the strength of the dynamic 

pressure distributions present in the flow at these regions. 

 

(a) 

 

(b) 

Figure 6.20: Normalised dynamic pressure profiles in the meridional plane at constant 

radial positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d for the test cases (a)  = 

11.36 and (b)  = 7.81. 

 

At the gap mid-span r = Ri + 0.5d, the peak of the dynamic pressure at the inward flow 

regions is almost flat and not well-defined. This feature is attributed to the vortical 

structures in this locality, since the centres of the vortices are further apart from this saddle 
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plane than at the saddle plane of an outflow region. This reduces the strength of the vortex 

induced velocity, flattening the dynamic pressure profile.  

The fluid tangential momentum is at r = Ri + 0.5d is lower than that of the fluid close to 

the wall of the inner cylinder. This gives a lower dynamic pressure at r = Ri + 0.5d 

compared to the dynamic pressure at r = Ri + 0.045d. Similarly, the dynamic pressure 

profile near the wall of the outer cylinder is lower than the profiles at r = Ri + 0.5d and r = 

Ri + 0.045d, due to low momentum of the fluid near the wall of the outer cylinder. 

As for the tangential velocity distribution, profiles of gauge static pressure and of dynamic 

pressure in the meridional plane have not been reported in the literature along the radial 

positions r = Ri + 0.045d, r = Ri + 0.5d, and r = Ri + 0.95d. As such, no comparison is 

made between the results obtained in this research and previous studies. 

 

6.7.5 Flow pattern in the azimuthal plane 

One of the advantages of a three-dimensional (3D) numerical model is the ability to 

examine the flow details in more than one plane. A detailed analysis of the flow in the 

azimuthal plane for the test cases  = 11.36 and  = 7.81 is therefore documented in this 

section so as to complement the information obtained from the results in the meridional 

plane, therefore achieving a clearer understanding of the flow in the annular gap between 

coaxial rotating cylinders. Various cross-sections have been sliced vertically, normal to 

the axial direction of the coaxial cylinders, in order to obtain azimuthal planes from which 

various flow variables are analysed. The flow pattern at the location near the end-walls is 

included in order to understand the effects of the end-walls on the azimuthal plane flow.  

In all, six different flow patterns (including the flow pattern at the end-walls) are identified 

within the computational domain. Four out of the six patterns recur in the axial direction 

with the spatial period of one Taylor vortex pair. The sliced positions are marked with 

different colours and labelled alphabetically in Figure 6.21(a) and Figure 6.21(b) for the 

test cases  = 11.36 and  = 7.81 respectively for easy identification. These cross-sections 

are: (a) the left end-wall, (b) the clockwise vortex centre, (c) the downwell (outward flow) 

region, (d) the anti-clockwise vortex centre, (e) the upwell (inward flow) region, and (f) 

the right end-wall. This nomenclature is based on the flow visualisation at the lower 

channel of the annulus at  = -/2. These sections define the azimuthal planes where the 

flow pattern is investigated. 
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Figure 6.22 and Figure 6.23 show the velocity vector maps of different flow patterns at 

various axial locations projected on the azimuthal plane for the test cases  = 11.36 and  

= 7.81 respectively.  The location of the various flow patterns shown in Figure 6.22 for the 

test case  = 11.36 corresponds to axial positions: (a) X/Ri = 0.05, (b) X/Ri = 0.65, (c) 

X/Ri = 1.07, (d) X/Ri = 1.41, (e) X/Ri = 1.84, and (f) X/Ri = 9.95 as illustrated in Figure 

6.22(a). Similarly, the location of the various flow patterns shown in Figure 6.23 for the 

test case  = 7.81 correspond to axial positions: (a) X/Ri = 0.05, (b) X/Ri = 0.92, (c) X/Ri 

= 1.47, (d) X/Ri = 1.97, (e) X/Ri = 2.62, and (f) X/Ri = 9.95 as illustrated in Figure 

6.21(b). 

 

 
(a) 

 
(b) 

Figure 6.21: Axial locations of flow cross-sections on azimuthal planes for test cases (a)  

= 11.36 and (b)  = 7.81. 
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The velocity vectors in Figure 6.22 and Figure 6.23 are normalised by the surface speed of 

the inner cylinder Ri. The reference vector is shown on each velocity map so that the 

magnitude of the vectors can be quantified. The direction of the vectors indicates a flow 

driven by the clockwise rotation of the inner cylinder. These figures show that the velocity 

vectors near the inner cylinder display a higher tangential velocity magnitude than the 

vectors near the outer cylinder, consistent with Figure 6.18. The velocity at the wall of the 

outer stationary cylinder tends to zero, primarily to satisfy the no-slip condition imposed 

on the wall of the outer cylinder. These velocity vector maps indicate that the tangential 

velocity is the dominant velocity component, as the radial velocity is relatively weak.  

Figure 6.22(a) and Figure 6.22(f) for the test case  = 11.36, as well as Figure 6.23(a) and 

Figure 6.23(f) for the test case  = 7.81, show the normalised velocity vector maps near 

the end-walls at X/Ri = 0.05 and X/Ri = 9.95 respectively. These locations correspond to 

the positions of radial velocity minima in Figure 6.16(a) for the test case  = 11.36 and in 

Figure 6.16(b) for the test case  = 7.81 at these axial locations. It is observed that the 

magnitudes of the velocity vectors at these locations are relatively small compared with 

other locations in the central region of the computational domain. This is primarily due to 

the no-slip boundary conditions that are imposed at the end-wall, in addition to the effects 

of wall shear stresses and frictional forces at these locations.  

Figure 6.22(b) and Figure 6.22(d) show normalised velocity vectors at X/Ri = 0.65 and 

X/Ri = 1.41 for test case  = 11.36, while Figure 6.23(b) and Figure 6.23(d) show the 

normalised velocity vectors at X/Ri = 0.92 and X/Ri = 1.97 for test case  = 7.81. These 

locations correspond to the centres of a clockwise vortex and of an anti-clockwise vortex 

respectively in Figure 6.6(a) and Figure 6.6(b). The flow pattern in the azimuthal plane of 

Figure 6.22(b) and Figure 6.22(d) for the test case  = 11.36 are similar to each other in 

terms of the velocity vector magnitude, although in the meridional plane of Figure 6.21(a), 

the axial velocity components are opposite to one another. The velocity vectors in Figure 

6.23(b) and Figure 6.23(d) for the test case  = 7.81 show the same trends in velocity 

magnitude as for test case  = 11.36. The axial locations X/Ri = 0.65 and X/Ri = 1.41 for 

the test case  = 11.36 and X/Ri = 0.92 and X/Ri = 1.97 for the test case  = 7.81 

correspond to axial locations of almost zero radial velocity in Figure 6.16(a) and Figure 

6.16(b). The axial locations of Figure 6.22(b) and Figure 6.22(d) correspond to axial 

velocity maxima and minima in the axial velocity profile of Figure 6.15(a) for the test case 

 = 11.36. Similarly, the axial locations of Figure 6.23(b) and Figure 6.23(d) correspond  
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(a) X/Ri = 0.05.  

 

(b) X/Ri = 0.65.  

 

(c)  X/Ri = 1.07.  

 

(d) X/Ri = 1.41.  

 

(e) X/Ri = 1.84. 

 

(f) X/Ri = 9.95. 

Figure 6.22: Velocity vectors in the azimuthal plane normalised by Ri for  = 11.36. 
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(a) X/Ri = 0.05. 

 

(b) X/Ri = 0.92. 

 

(c) X/Ri = 1.47. 

 

(d) X/Ri = 1.97. 

 

(e) X/Ri = 2.62. 

 

(f) X/Ri = 9.95.  

Figure 6.23: Velocity vectors in the azimuthal plane normalised by Ri for  = 7.81. 
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to axial velocity maxima and minima in the axial velocity profile of Figure 6.15(b) for the 

test case  = 7.81. 

Figure 6.22(c) and Figure 6.23(c) show the normalised velocity vectors at X/Ri = 1.07 for 

the test case  = 11.36 and at X/Ri = 1.47 for the test case  = 7.81. The axial location 

X/Ri = 1.07 corresponds to the outward flow region in Figure 6.6(a) at the same axial 

location, while the axial location X/Ri = 1.47 corresponds to the outward flow region in 

Figure 6.6(b) at the same axial location. The flow pattern at these locations shows that the 

magnitude of the velocity vectors is higher compared with the magnitude of the velocity 

vectors at the other five locations in Figure 6.22 and Figure 6.23. These positions are 

where high radial momentum fluid is being carried outwardly by the Taylor vortices 

toward the stationary outer cylinder. These positions correspond to zero axial velocity in 

Figure 6.14(a) and Figure 6.14(b) and of radial velocity maxima in Figure 6.16(a) and 

Figure 6.16(b) at these axial locations.  

Figure 6.22(e) and Figure 6.23(e) show the normalised velocity vectors at X/Ri = 1.84 for 

the test case  = 11.36 and at X/Ri = 2.62 for the test case  = 7.81. These locations 

correspond to inflow regions in Figure 6.6(a) and Figure 6.6(b) for the test cases  = 11.36 

and  = 7.81 respectively at these axial locations. The magnitude of the velocity vectors at 

these locations is lower compared with the magnitude of the velocity vectors at X/Ri = 

1.07 for the test case  = 11.36 and at X/Ri = 1.47 for the test case  = 7.81. At these 

locations, low tangential momentum fluid is being carried inwardly by the radial velocity 

induced by the Taylor vortices from the stationary outer cylinder toward the rotating inner 

cylinder. These positions correspond to the positions of radial velocity minimum in Figure 

6.16(a) and Figure 6.16(b), and of zero axial velocity in Figure 6.14(a) and Figure 6.14(b) 

at these axial locations. 

 

6.7.6 Parametric study of flow pattern in the azimuthal plane  

The objective of this parametric study is to examine quantitatively various flow variables 

at the axial locations shown in Figure 6.21(a) and Figure 6.21(b) for the test cases  = 

11.36 and  = 7.81 respectively. Figure 6.22 and Figure 6.23 show that the flow patterns 

exhibit similar trends on selected azimuthal planes for the test cases  = 11.36 and  = 

7.81 respectively, since the inner cylinder rotates with the same angular velocity in the 

same direction in both test cases.  
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Figure 6.24 shows the contour plots of axial velocity in the azimuthal plane normalised by 

ΩRi for the test case  = 11.36. The flow variables are examined at axial positions a, b, c, 

d, e, and f as defined in Figure 6.21(a). The contour plots of Figure 6.24 show that the 

axial velocity distribution is essentially axisymmetric.  

Figure 6.24(a) and Figure 6.24(f) show respectively the normalised axial velocity contour 

plots near the end-walls at X/Ri = 0.05 and X/Ri = 9.95 in Figure 6.21(a). The magnitude 

of the axial velocity at these locations is relatively small, in agreement with the observed 

flow pattern of Figure 6.22. The axial velocity magnitude is of the order 0.01ΩRi. The no-

slip boundary conditions that are imposed at the end-walls constrain the fluid movement 

thereby retarding the fluid motion. The effects of wall shear stress and friction as a result 

of the end-walls also contribute to the low velocity observed at these locations.  

Figure 6.24(b) and Figure 6.24(d) display the normalised contour plots of the axial 

velocity at X/Ri = 0.65 and X/Ri = 1.41, which correspond to the axial locations of the 

centres of the clockwise and anti-clockwise vortices respectively in Figure 6.6(a). The 

contours are colour coded such that the blue colour corresponds to the minimum axial 

velocity and the red colour corresponds to the maximum axial velocity. As observed for 

the meridional plane where the axial velocity distribution is axisymmetric, the 

distributions of the axial velocity within the annulus in the azimuthal plane in Figure 

6.24(a) and Figure 6.24(b) are also essentially axisymmetric. Figure 6.24(b) also displays 

symmetry in the velocity magnitude about the gap mid span. In Figure 6.24(b), an axial 

velocity maximum of 0.15ΩRi is observed near the wall of the inner cylinder, while an 

axial velocity minimum of almost equal magnitude is observed near the wall of the outer 

cylinder, with zero axial velocity almost mid-way across the annulus at r = Ri + 0.5d. The 

first Taylor vortex induces a positive axial velocity close to the rotating inner cylinder at 

X/Ri = 0.65 and a negative axial velocity close to the stationary outer cylinder. This gives 

the axial velocity local maximum of 0.15Ri at r → Ri and an axial velocity local 

minimum of -0.15Ri at r → Ro shown in Figure 6.24(b).  

In Figure 6.24(b), a positive axial velocity maximum at r → Ro highlights the axial mass 

transport of fluid across the outer portion of the Taylor vortex towards the inflow region at 

X/Ri = 1.07. The negative axial velocity minimum highlights the axial mass transport of 

fluid close to the outer cylinder towards the left end-wall in Figure 6.6(a). 

As the cylinder radius increases from Ri to Ro, the azimuthal cross-sectional area in which 

the axial velocity is positive tends to be larger than the cross-sectional area in which the  
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(a) X/Ri = 0.05 with contour spacing 

0.01 ΩRi. 

 
 (b) X/Ri = 0.65 with contour spacing 

0.03ΩRi. 

 
(c) X/Ri =1.07 with contour spacing  

0.01ΩRi. 

 
(d) X/Ri =1.41 with contour spacing 

0.03ΩRi. 

 
(e) X/Ri =1.84 with contour spacing 

0.01ΩRi. 

 
(f) X/Ri =9.95 with contour spacing 

0.01ΩRi. 

Figure 6.24: Contour plots of axial velocity in the azimuthal plane normalised by ΩRi for 

the test case  = 11.36. 
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axial velocity is negative so the net axial mass flow rate through the azimuthal plane is 

zero. This satisfies the conservation of mass in this enclosed system. As a result of this 

axial flow radial asymmetry, the centre of the vortex has been shifted toward the wall of 

the outer cylinder.  

Figure 6.24(d) shows the opposite trend of Figure 6.24(b) with an axial velocity minimum 

near the wall of the inner cylinder and an axial velocity maximum near the wall of the 

outer cylinder. The change of sign is a result of the change in the direction of rotation of 

the second Taylor vortex in Figure 6.6(a) with respect to the first Taylor vortex. In the 

axial velocity profiles of Figure 6.15, the axial locations of Figure 6.24(b) and Figure 

6.24(d) correspond to an axial velocity maximum and minimum respectively in the 

meridional plane. 

Figure 6.24(c) shows the normalised contour plot of the axial velocity at X/Ri = 1.07, 

which corresponds to the radial outward flow region in Figure 6.6(a) at the same axial 

location. At this location, the axial velocity is essentially zero, as shown by the contour 

levels of axial velocity in the meridional plane in Figure 6.24(c). This is in agreement with 

the contours of axial velocity in the meridional plane at the same axial location in Figure 

6.8(a). This position corresponds to the position of maximum radial velocity in Figure 

6.16(a) and of a zero crossing of axial velocity in Figure 6.14(a) at the same axial location.  

Figure 6.24(e) shows the normalised contour plot of the axial velocity at X/Ri = 1.84, 

which corresponds to the radial inflow region in Figure 6.6(a) at the same axial location. 

At this location, the axial velocity is also essentially zero as observed in Figure 6.24(c). 

This position corresponds to the position of minimum radial velocity in Figure 6.16(a) and 

of a zero crossing of axial velocity in Figure 6.14(a) at the same axial location.  

Figure 6.25 shows the contour plots of tangential velocity in the azimuthal plane 

normalised by ΩRi at the axial positions a, b, c, d, e, and f of Figure 6.21(a) for test case  

= 11.36. These plots display a tangential velocity minimum close to the wall of the inner 

cylinder and the tangential velocity maximum close to the wall of the outer cylinder. The 

blue colour corresponds to the negative tangential velocity minimum and the red colour 

corresponds to the negative tangential velocity maximum. The magnitude of the tangential 

velocity minimum is higher than that of the tangential velocity maximum, as discussed in 

the context of Figure 6.10(a). 

Figure 6.25(a) and Figure 6.25(f) show the contour plots near the end-walls at X/Ri = 0.05 

and X/Ri = 9.95 respectively. At these locations, the tangential velocity has the same 

trends, with a negative tangential velocity local minimum near the wall of the inner  
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(a) X/Ri =0.05 with contour spacing 

0.1Ri. 

 
(b) X/Ri = 0.65 with contour spacing 

0.1Ri. 

 
(c) X/Ri = 1.07 with contour spacing 

0.1Ri. 

 
(d) X/Ri = 1.41 with contour spacing 

0.1Ri. 

 
(e) X/Ri =1.84 with contour spacing  

0. 1Ri. 

  
(f) X/Ri = 9.95 with contour spacing 

0.1Ri. 

Figure 6.25: Contour plots of tangential velocity in the azimuthal plane normalised by Ri 

for the test case  = 11.36. 
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cylinder from where the motion of the fluid is been induced. The tangential velocity local 

minimum then rapidly increases toward the wall of the outer cylinder. That is, the 

tangential velocity magnitude decreases toward the wall of the outer cylinder. The zero 

velocity observed at the wall of the outer cylinder is due to the no-slip boundary condition 

that is imposed at r = Ro. 

Figure 6.25(b) and Figure 6.25(d) show the contour plots of normalised tangential velocity 

at X/Ri = 0.65 and X/Ri = 1.41, which correspond to the centre of the clockwise and anti-

clockwise vortices respectively in Figure 6.6(a) at the same axial locations. The negative 

tangential velocity local minimum is near the wall of the inner cylinder and the negative 

tangential velocity local maximum is near the wall of the outer cylinder, in agreement with 

Figure 6.10. The tangential velocity magnitude in both Figure 6.25(b) and Figure 6.25(d) 

decreases monotonically toward the wall of the outer cylinder, the decrement of tangential 

velocity magnitude in Figure 6.25(d) is however more rapid than the one observed in 

Figure 6.25(b). This is shown by the difference in contour line packing between Figure 

6.25(b) and Figure 6.25(d). 

Figure 6.25(c) and Figure 6.25(e) show the contour plots of the normalised tangential 

velocity at X/Ri = 1.07 and X/Ri = 1.84 which, respectively, correspond to the radial 

outward flow region and radial inward flow region in Figure 6.6(a) at the same axial 

locations. The decrease of tangential velocity magnitude from the inner cylinder to the 

outer cylinder in Figure 6.25(c) is less rapid than the decrease observed in Figure 6.25(e), 

as shown by the packing of the contour lines of both plots.  

The equivalent of the axial velocity and tangential velocity contour plots shown in Figure 

6.24 and Figure 6.25 were produced for the test case with aspect ratio 7.81. The flow 

pattern is substantially similar to that of the test case with aspect ratio 11.36. The contour 

plots for the axial velocity and the tangential velocity for the test case  = 7.81 are 

therefore not repeated in this thesis. However, the velocity and the pressure profiles for the 

test cases  = 11.36 and  = 7.81 in the azimuthal plane are presented and discussed in 

section 6.7.7. 

 

6.7.7 Velocity profiles in the azimuthal plane 

Radial profiles of flow variables at the various cross-sections of Figure 6.21(a) and Figure 

6.21(b) for the test cases  = 11.36 and  = 7.81 were extracted at the azimuthal location 

AA illustrated in Figure 6.26.  
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Figure 6.26: Azimuthal locations of radial profiles. 

 

The profiles in the azimuthal plane are axisymmetric, as shown by the contour maps of 

Figure 6.24 and Figure 6.25. As such, the profiles at the different azimuthal positions 

around the annulus coincide. The profile at a single azimuthal location extracted from the 

azimuthal plane at the same axial locations as in Figure 6.25 is therefore presented for 

selected flow variables. These profiles enable to assess the radial dependence of the flow 

variables more readily than the meridional and cascade plane plots. The profiles, therefore, 

provide detailed information about the radial velocity distributions, clarifying further the 

trends shown by the velocity vectors in Figure 6.22 and Figure 6.23. The velocities are 

normalised by the inner cylinder surface velocity Ri, while pressure is normalised by 

0.5Ri
2


2
. The abscissa in Figure 6.27(a-f) to Figure 6.33(a-f) is the radial distance from 

the inner cylinder surface to the outer cylinder surface, normalised by the gap width, d. It 

is related to the cylindrical coordinates system of Figure 6.1 by (r – Ri)/d. 

The axial velocity profiles shown in Figure 6.27(a-f) and Figure 6.28(a-f) detail the radial 

distribution of axial velocity at axial positions labelled as a, b, c, d, e, and f in Figure 

6.21(a) and Figure 6.21(b) for the test cases  = 11.36 and  = 7.81 respecetively with the 

same letter designating a recurring flow region along the axis of the cylinders. The profiles 

extracted from the recurring azimuthal plane flow regions along the axial span of Figure 

6.21(a) and Figure 6.21(b) for the test cases  = 11.36 and  = 7.81 respectively are 

therefore grouped together. The radial profiles of the normalised axial velocity in Figure 

6.27(a-f) and Figure 6.28(a-f), show different patterns, depending on the axial locations. 

These profiles show that test cases  = 11.36 and  = 7.81 exhibit similar trends. In Figure 

6.27(a, c, e, and f) and Figure 6.28(a, c, e, and f), the profiles show that the axial velocity 

is relatively small when compared with the velocity of the rotating inner cylinder.  

For the test case  = 11.36, the normalised axial velocity profile in Figure 6.27(a) shows 

an axial velocity maximum close to the wall of rotating inner cylinder. The axial velocity 

A
 

A 
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then rapidly decreases from the inner cylinder wall to (r – Ri)/d  0.03 and stabilises over 

the range 0.1  (r – Ri)/d  0.18 from where it increases again over the range 0.18  (r – 

Ri)/d  0.24.  

For the test case  = 7.81, the normalised axial velocity profile in Figure 6.28(a) exhibits a 

similar trend as in Figure 6.27(a) with an axial velocity maximum close to the wall of 

rotating inner cylinder. The axial velocity rapidly decreases over the distance 0  (r – Ri)/d 

 0.08 and plateaus between at 0.08  (r – Ri)/d  0.18 from where it increases over the 

range 0.18  (r – Ri)/d  0.24.  

At approximately (r – Ri)/d = 0.24, the axial velocity profiles in Figure 6.27(a) and in 

Figure 6.28(a) start decreasing monotonically and become negative in the central region of 

the annulus, from where the velocity decreases to minimum close to the outer stationary 

cylinder at (r – Ri)/d  0.74. The profiles thereafter increase monotonically again until the 

axial velocity reaches zero at the wall of the stationary outer cylinder, due to the 

application of the non-slip boundary conditions at the cylindrical walls in the numerical 

model.  

Figure 6.27(f) and Figure 6.28(f) display similar axial velocity trends as in Figure 6.27(a) 

and Figure 6.28(a) but the velocity variations have opposite sign, due to the anti-clockwise 

inward flow of the Taylor vortices at these locations. The observed axial velocity common 

trends over the range 0.1  (r – Ri)/d  0.24 in Figure 6.27(a) and Figure 6.27(f) as well as 

in Figure 6.28(a) and Figure 6.28(f) is attributed to the effect of the end-walls that affect 

the boundary layer at these locations.   

Figure 6.27(b) and Figure 6.27(d) show the axial velocity profiles for the test case  = 

11.36. The profiles show that the maximum axial velocity (0.16Ri) in the coaxial 

cylinders occurs at the azimuthal planes through the centres of the Taylor vortices. The 

two plots through the centres of clockwise vortices and the centres of anti-clockwise 

vortices show similar axial velocity trends but a change in sign mirrored about the ur = 0 

line. This symmetry is in agreement with the direction of rotation of the adjacent vortices, 

as observed in Figure 6.6(a).  

The normalised axial velocity profiles for the test case  = 7.81 in Figure 6.28(b) and 

Figure 6.28(d) are the plots through the centres of clockwise vortices and the centres of 

anti-clockwise vortices in Figure 6.21(b). The axial velocity exhibits similar trends as for 

the test case  = 11.36 discussed in the context of Figure 6.27(b) and Figure 6.27(d). 
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The profiles through the centres of clockwise vortices in Figure 6.27(b) and Figure 6.28(b) 

show that the axial velocity maximum occurs close to the wall of the rotating inner 

cylinder at (r – Ri)/d  0.1 for both test cases. The axial velocity then decreases 

monotonically to zero near the central region of the annulus at (r – Ri)/d  0.58 for the test 

case  = 11.36, and at (r – Ri)/d  0.60 for the test case  = 7.81.  

The profiles in Figure 6.27(b) and Figure 6.28(b) show an axial velocity minimum close to 

the wall of the outer cylinder, at (r – Ri)/d  0.90, from which the axial velocity increases 

to zero at the wall of the outer cylinder. This observed trend is due to the fluid motion 

induced by the neighbouring Taylor vortices. The fact that the zero crossing of the plots 

does not lie at radial position (r – Ri)/d = 0.50 is an indication that the centre of the Taylor 

vortices are shifted from the centre of the annulus toward the wall of the outer cylinder as 

discussed in the context of Figure 6.6. 

Consequently, the area of positive axial velocity is greater than the area of negative axial 

velocity in Figure 6.27(b) and Figure 6.28(b). This difference satisfies mass conservation 

across the azimuthal planes given the difference in flow area for the positive inner axial 

flow and the negative outer axial flow observed in Figure 6.24. 

In the profiles through the centres of anti-clockwise vortices presented in Figure 6.27(d) 

and Figure 6.28(d), the axial velocity minimum occurs close to the wall of rotating inner 

cylinder at (r – Ri)/d  0.1 for the test case  = 11.36 and  = 7.81. The axial velocity 

profiles then increase to zero near the central region of the annulus at (r – Ri)/d  0.58 for 

the test case  = 11.36, and at (r – Ri)/d  0.60 for the test case  = 7.81. The velocity 

further increases and reached an axial velocity maximum close to the outer stationary 

cylinder wall at (r – Ri)/d  0.90 in Figure 6.27(d) and Figure 6.28(d). Similar to the 

observation made in Figure 6.27(b) and Figure 6.28(b), the zero crossing of the profile 

does not lie at radial position (r – Ri)/d = 0.50, due to the vortex centre being located 

toward the wall of the outer cylinder. The area of negative axial velocity near the inner 

cylinder is greater than the area of positive axial velocity near the outer cylinder. This 

difference is also to satisfy mass conservation on the azimuthal planes as the axial mass 

flux through the negative axial velocity area balances the axial mass flux through the 

positive axial velocity area in Figure 6.24. 

The axial velocity profiles in Figure 6.27(b) and Figure 6.27(d) for the test case  = 11.36 

as well as in Figure 6.28(b) and Figure 6.28(d) for the test case  = 7.81 show that the 

clockwise and the anti-clockwise vortices are almost symmetric about the line  
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(a) X/Ri = 0.05. 
 

(b) Profiles through the centres of 

clockwise vortices. 

  
 (c) Downwell positions. (d) Profiles through the centres of 

clockwise vortices. 

 
(e) Upwell positions. (f) X/Ri = 9.95. 

Figure 6.27: Normalised axial velocity profiles in the azimuthal plane at  = -/2 for the 

test case  = 11.36. 
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(a) X/Ri = 0.05. 

 
(b) Profiles through the centres of the 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of the anti-

clockwise vortices. 

 
(e) Upwell position. 

 
(f) X/Ri = 9.95. 

Figure 6.28: Normalised axial velocity profiles in the azimuthal plane at  = -/2 for the 

test case  = 7.81. 
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corresponding to zero axial velocity. The only exception is for the profiles near the end-

walls at X/Ri  0.65 and X/Ri  9.36 for the test case  = 11.36, and at X/Ri  0.92 and 

X/Ri  9.14 for the test case  = 7.81. At these axial locations, the profiles show a higher 

axial velocity maximum and a lower axial velocity minimum, compared to the axial 

velocity distribution in the central region. This is due to the effect of the end-walls that 

elongate the first and the second vortices more than the vortices at the central region. The 

normalised axial velocity is lowest and equal to zero at the wall of the rotating inner 

cylinder and at the wall of the stationary outer cylinder, due to the no-slip condition. The 

trends observed in Figure 6.27(b) and Figure 6.27(d) for the test case  = 11.36 as well as 

in Figure 6.28(b) and Figure 6.28(d) for the test case  = 7.81 is in agreement with the 

axial velocity profiles predicted by CFD by Deshmukh et al. (2007). 

Figure 6.27(c) and Figure 6.27(e) show the axial velocity profiles in the outflow regions 

and in the inflow regions respectively for the test case  = 11.36. The profiles in Figure 

6.27(c) show greater variations in the axial velocity than the profiles in Figure 6.27(e). 

This variation has to be considered in the context of the ordinate scale of Figure 6.27(c) 

and Figure 6.27(e) being ten times that of Figure 6.27(b). This makes these variations in 

axial velocity comparatively small. The small variation in the axial velocity observed is 

due to the axial locations of these profiles being that of saddle planes between two 

adjacent Taylor vortices.  

Similarly, Figure 6.28(c) and Figure 6.28(e) show the axial velocity profiles in an outflow 

region and in an inflow region respectively for the test case  = 7.81. These profiles 

exhibit similar trends as for test case  = 11.36 discussed in the context of Figure 6.27(c) 

and Figure 6.27(e). 

The differences in the vortex centre positions, which are reported later on in Figure 6.36, 

turns the saddle plane between two consecutive vortices into a curved surface, which 

allows a non-zero axial velocity distribution in the radial direction. 

Figure 6.29(a-f) and Figure 6.30(a-f) show the radial profiles of tangential velocity in the 

azimuthal plane at the axial locations shown in Figure 6.21(a) and Figure 6.21(b) for the 

test cases  = 11.36 and  = 7.81 respectively. The predicted flow tangential velocity, 

normalised by the inner cylinder tangential rotational speed Ri, is here plotted as 

clockwise negative, to be consistent with the right handed reference system of Figure 6.1. 

Figure 6.29 and Figure 6.30 use the same lettering (a-f) of Figure 6.21 to identify the 

predicted normalised tangential velocity profiles in the azimuthal plane at the same axial 
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locations. In Figure 6.29(a-f) and Figure 6.30(a-f), a more boundary layer-like velocity 

profile is obtained near the wall of the cylinders. The profiles show that the tangential 

velocity is the dominant component of the in-plane velocity, which has a maximum 

magnitude at the inner rotating wall and zero magnitude at the outer stationary wall. This 

confirms the dominance of the clockwise motion shown by the velocity vector maps of 

Figure 6.22 and Figure 6.23.  

Despite the trends in the radial distribution of the tangential velocity being similar at the 

azimuthal planes (b-e) of Figure 6.29 and Figure 6.30 in both test cases, there are still 

some differences among the profiles due to the variation in flow characteristics at these 

axial locations.  

The profiles near the end-walls shown in Figure 6.29(a) and Figure 6.29(f) for the test case 

 = 11.36 show three regions where the profiles change, one near the wall of the inner 

cylinder, the second at the central region of the cylinder, and the last near the wall of the 

outer cylinder. The tangential velocity magnitude near the wall of the inner cylinder 

decreases rapidly up to the radial position (r – Ri)/d  0.12 which corresponds to a 

negative tangential velocity of -0.06Ri and then stabilises in the central region over the 

range 0.12  (r – Ri)/d  0.60. The tangential velocity magnitude then further decreases 

over the range 0.60  (r – Ri)/d  1.0. For the test case  = 7.81, the normalised tangential 

velocity profiles near the end-walls shown in Figure 6.30(a) and Figure 6.30(f) exhibit 

similar trends as for the test case  = 11.36 shown in Figure 6.29(a) and Figure 6.29(f). 

The profiles through the centres of the clockwise and the centres of the anti-clockwise 

vortices shown in Figure 6.29(b) and Figure 6.29(d) respectively for the test case  = 

11.36, as well as in Figure 6.30(b) and Figure 6.30(d) for the test case  = 7.81, show the 

same trend. The profiles show three distinctive regions where the profiles change. The 

tangential velocity magnitude  near the wall of the inner cylinder decreases rapidly up to 

the radial position (r – Ri)/d  0.2, which corresponds to a negative tangential velocity of -

0.3Ri. The tangential velocity magnitude then stabilises in the central region, over the 

range 0.2  (r – Ri)/d  0.90, and then decreases rapidly over the region 0.90  (r – Ri)/d  

1.0 where it reaches zero at the wall of the outer cylinder as a result of the no-slip 

boundary condition.  

In the outflow regions in Figure 6.29(c) for the test case  = 11.36, the normalised 

tangential velocity magnitude decreases less rapidly than in Figure 6.29(b) near the wall of 

the inner cylinder and through the centre of the annulus. The profiles then increase more  
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(a) X/Ri = 0.05. (b) Profiles through the centres of the 

clockwise vortices. 

(c) Downwell positions. (d) Profiles through the centres of the anti-

clockwise vortices. 

 
(e) Upwell positions. (f) X/Ri = 9.95. 

Figure 6.29:  Normalised tangential velocity profiles in the azimuthal plane at  = -/2 for 

the test case  = 11.36.  
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(a) X/Ri = 0.05. 

 
(b) Profiles through the centres of the 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of the anti-

clockwise vortices. 

 
(e) Upwell position. 

 
(f) X/Ri = 9.95. 

Figure 6.30:  Normalised tangential velocity profiles in the azimuthal plane at  = -/2 for 

the test case  = 7.81. 
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rapidly near the wall of the outer cylinder. The region with the lower tangential velocity 

magnitude decay rate is 0  (r – Ri)/d  0.92, which corresponds to the tangential velocity 

range -1.0Ri  u  -0.24Ri. The region with rapid decay rate is 0.92  (r – Ri)/d  1.0, 

which corresponds to the tangential velocity range -0.24Ri  u  0. The normalised 

tangential velocity magnitude in Figure 6.30(c) for the test case  = 7.81 also decreases 

less rapidly than in Figure 6.30(b) and exhibits a similar trend as in Figure 6.29(c). 

At the inflow regions in Figure 6.29(e) for the test case  = 11.36 and Figure 6.30(e) for 

the test case  = 7.81, the tangential velocity magnitude decreases monotonically in two 

regions. The first region is near the inner cylinder at 0  (r – Ri/d)  0.18, which 

corresponds to the tangential velocity range -1.0Ri  u  -0.24Ri. The second region is 

in the region 0.18  (r – Ri)/d  1.0, which corresponds to the tangential velocity range -

0.24Ri  u  0. 

From the radial profiles of the in-plane normalised tangential velocity in Figure 6.29 and 

Figure 6.30 for the test cases  = 11.36 and  = 7.81 respectively, the tangential velocity 

magnitude rapidly decays from the inner rotating cylinder at all axial locations, the decay 

rate being more modest in the outflow region.  

The normalised tangential velocity profiles in Figure 6.29 for the test case  = 11.36 and 

in Figure 6.30 for the test case  = 7.81 are in good qualitative agreement with a previous 

study by Deshmukh et al. (2007). The only difference is a change in the sign of the 

tangential velocity between the two studies, which is due to the clockwise rotation of the 

inner cylinder with respect to the cylindrical reference system in Figure 6.1. 

Figure 6.31(a-f) and Figure 6.32(a-f) show respectively the radial distribution of gauge 

static pressure for the test cases  = 11.36 and  = 7.81 at the same axial positions as in 

Figure 6.29 and Figure 6.30. These radial profiles of the in-plane gauge static pressure 

show that the normalised gauge static pressure close to the surface of the rotating inner 

cylinder is minimum, while the normalised gauge static pressure close to the surface of the 

stationary outer cylinder is maximum. As the inner cylinder rotates, it imparts a tangential 

velocity to the fluid in the annulus. For the mass of the tangentially rotating fluid to be in a 

state of momentum equilibrium in the radial direction, the centrifugal forces must be 

balanced by the pressure forces. Therefore, the fluid between the rotating inner cylinder 

and stationary outer cylinder develops a radial pressure gradient. This opposes the 

centrifugal force, thereby restoring radial equilibrium in the force momentum balance. As 

such, the gauge static pressure at the outer stationary cylinder is greater than that at the 
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surface of the inner cylinder, with negative values of gauge static pressure at the wall of 

the inner cylinder.  

The radial profiles of normalised gauge static pressure near the end-walls at X/Ri = 0.05 

and X/Ri = 9.95 are shown in Figure 6.31(a) and Figure 6.31(f) for the test case  = 11.36, 

as well as in Figure 6.32(a) and Figure 6.32(f) for the test case  = 7.81. At these radial 

positions, three forces are acting on the fluid particles. These are the centrifugal forces, the 

pressure gradient forces, and the viscous forces. These forces affect differently the 

normalised gauge static pressure at these axial positions as compared with the other axial 

positions in the centre of the computational domain. The normalised gauge static pressure 

at the positions near the end-walls in Figure 6.31(a), Figure 6.31(f), Figure 6.32(a), and 

Figure 6.32(f) displays a lower radial gradient in the positive radial direction. This is due 

to the viscous forces in the boundary layer flow over the end-walls counter-balancing 

some of the centrifugal forces generated by the fluid rotary motion, which leads to a 

reduction in the radial pressure gradient required to obtain radial equilibrium in the force-

momentum balance. 

The radial profiles of normalised gauge static pressure in the azimuthal plane through the 

centre of the clockwise and the anti-clockwise Taylor vortices are shown in Figure 6.31(b) 

and Figure 6.31(d) respectively for the test case  = 11.36. The normalised gauge static 

pressure displays similar pressure minima of 0.05Ri
2


2
 close to the rotating inner 

cylinder. The magnitude of the normalised gauge static pressure is lowest (minimum) 

close to the rotating inner cylinder. It then increases at increasing radial distance through 

the central region, from where the normalised gauge static pressure gradient further 

increases toward the stationary outer cylinder. The normalised gauge static pressure at 

these locations ranges from -0.05Ri
2


2
 to 0.03Ri

2


2
. The normalised gauge static 

pressure through the centre of the clockwise and the anti-clockwise Taylor vortices for the 

test case  = 7.81 in Figure 6.32(b) and Figure 6.32(d) show similar trends as in Figure 

6.31(b) and Figure 6.31(d) for the test case  = 11.36. 

The radial profiles of normalised gauge static pressure in the outflow regions are shown in 

Figure 6.31(c) for the test case  = 11.36 and in Figure 6.32(c) for the test case  = 7.81. 

These profiles monotonically increase at increasing radial distance toward the stationary 

outer cylinder. The gauge static pressure gradient is highest close to the rotating inner 

cylinder. The gauge static pressure then plateaus in the middle of the annulus, from where  
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(a) X/Ri = 0.05. 

 
(b) Profiles through the centres of 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of anti-

clockwise vortices. 

 
(e) Upwell positions. 

 
(f) X/Ri = 9.95. 

Figure 6.31: Normalised gauge static pressure profiles in the azimuthal plane at  = -/2 

for the test case  = 11.36. 
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(a) X/Ri = 0.05. 

 
(b) Profiles through the centres of the 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of the anti-

clockwise vortices. 

 
(e) Upwell position. 

 
(f) X/Ri = 9.95. 

Figure 6.32: Normalised gauge static pressure profiles in the azimuthal plane at  = -/2 

for the test case  = 7.81. 
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the static pressure gradient increases again close to the outer cylinder. The gauge static 

pressure at the outer cylinder wall in the outflow regions is higher than that at any other 

axial plane within the computational domain. The normalised gauge static pressure in 

Figure 6.31(c) and Figure 6.32(c) ranges from -0.065Ri
2


2
 to 0.05Ri

2


2
. 

The radial profiles of normalised gauge static pressure in the inward flow regions are 

shown in Figure 6.31(e) for the test case  = 11.36 and in Figure 6.32(e) for the test case  

= 7.81. These profiles display a gradual increase in gauge static pressure at increasing 

radial distance toward the stationary outer cylinder. The gauge static pressure gradient is 

highest close to the rotating inner cylinder as in Figure 6.31(c) and Figure 6.32(c). The 

gauge static pressure gradient then decreases in the central region of the annulus, from 

where the gradient increases again. The gauge static pressure then plateaus close to the 

wall of the outer cylinder. The normalised gauge static pressure at these axial positions 

ranges from -0.02Ri
2


2
 to 0.03Ri

2


2
. 

The normalised dynamic pressure profiles at the same locations as in Figure 6.31 and 

Figure 6.32 are shown in Figure 6.33(a-f) and Figure 6.34(a-f) for the test cases   = 11.36 

and  = 7.81 respectively. All the profiles in Figure 6.33 and Figure 6.34 show similar 

trends with the maximum dynamic pressure close to the surface of the rotating inner 

cylinder that gradually decreases toward the stationary outer cylinder. This is due to the 

action of the rotating inner cylinder that drives the fluid motion with high angular 

momentum near the wall of the inner cylinder. Since the momentum of the fluid near the 

wall of the inner cylinder is high, the dynamic pressure near the wall of the inner cylinder 

is also expected to be high, as discussed in the context of Figure 6.12. The in-plane profile 

of dynamic pressure is lowest and equal to zero at the stationary outer cylinder, due to the 

no-slip boundary condition imposed. 

The normalised dynamic pressure profiles near the end-walls at X/Ri = 0.05 and X/Ri = 

9.95 are shown in Figure 6.33(a) and Figure 6.33(f) respectively for the test case  = 

11.36. These profiles exhibit similar trends to one another. The dynamic pressure at these 

positions is small compared to that in the central region of the computational domain, due 

to the effects of the end-walls, as discussed in the context of Figure 6.22 and Figure 6.23. 

These plots show three regions where the profile changes. The first region is near the wall 

of the inner cylinder, the second region is in the middle of the annulus, and the last region 

is near the wall of the outer cylinder. The dynamic pressure near the wall of the inner 

cylinder decreased rapidly up to the radial position (r – Ri)/d  0.12. The dynamic pressure 
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then plateaus in central region of the annulus over the radial position range 0.2  (r – Ri)/d 

 0.60, from where the pressure further decrease over the range 0.60  (r – Ri)/d  1.0 

toward the wall of the outer cylinder. The normalised dynamic pressure profiles in Figure 

6.34(a) and Figure 6.34(f) for the test case  = 7.81 exhibit similar trends as in Figure 

6.33(a) and Figure 6.33(f) for the test case  = 11.36. 

The dynamic pressure profiles across the azimuthal plane through the centres of the 

clockwise and anti-clockwise vortices are shown in Figure 6.33(b) and Figure 6.33(d) 

respectively for the test case  = 11.36, as well as in Figure 6.34(b) and Figure 6.34(d) for 

the test case  = 7.81. These plots exhibit similar trends to those of Figure 6.33(a), Figure 

6.33(f), Figure 6.34(a), and Figure 6.34(f). These profiles show three distinctive regions 

where the dynamic pressure gradient changes. The dynamic pressure near the wall of the 

inner cylinder decreases rapidly in the positive radial direction over the range 0  (r – 

Ri)/d  0.2. Specifically, the normalised dynamic pressure decreases from 0.325Ri
2


2
 at 

(r – Ri)/d = 0 to 0.06Ri
2


2
 at (r – Ri)/d = 0.2 for the test cases  = 11.36. The test case  

=7.81 exhibits the same trend with similar values of dynamic pressure extrema over the 

range 0  (r – Ri)/d  0.2. 

Across the remainder of the annulus, the dynamic pressure trends of test cases  = 11.36 

and  =7.81 continue to be similar. The dynamic pressure in Figure 6.33(b), Figure 

6.33(d),  Figure 6.34(b), and Figure 6.34(d) decreases more slowly in the middle of the 

annulus and further decreases at a higher rate over the radial position range 0.90  (r – 

Ri)/d  1.0. The dynamic pressure finally reduces to zero at the wall of the outer cylinder, 

as a result of the no-slip boundary condition. 

The radial profiles of the normalised dynamic pressure at the outflow positions in Figure 

6.33(c) and in Figure 6.34(c) for the test cases  = 11.36 and  = 7.81 respectively show a 

modestly different trend when compared with the other plots in Figure 6.33 and Figure 

6.34. At any radial location, the dynamic pressure in the outflow regions in Figure 6.33(c) 

and in Figure 6.34(c) is shown to be higher than in Figure 6.33(a, b, d, e, and f) and Figure 

6.34(a, b, d, e, and f) at the same radial location. This is attributed to the transport of flow 

with high tangential momentum by the radial velocity through the outward flow region in 

the saddle plane between two adjacent vortices. In Figure 6.33(c) and Figure 6.34(c), the 

dynamic pressure decreases from the wall of the inner cylinder to the wall of the outer 

cylinder where it reaches a value of zero. 
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(a) X/Ri = 0.05. (b) Profiles through the centres of 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of anti-

clockwise vortices. 

 
(e) Upwell positions. (f) X/Ri = 9.95. 

Figure 6.33: Normalised dynamic pressure profiles in the azimuthal plane at  = -/2 for 

the test case  = 11.36. 
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(a) X/Ri = 0.05. 

 
(b) Profiles through the centres of the 

clockwise vortices. 

 
(c) Downwell positions. 

 
(d) Profiles through the centres of the anti-

clockwise vortices. 

 
(e) Upwell position. 

 
(f) X/Ri = 9.95. 

Figure 6.34: Normalised dynamic pressure profiles in the azimuthal plane at  = -/2 for 

the test case  = 7.81. 
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On the other hand, the radial profiles of normalised dynamic pressure at the inward flow 

regions in Figure 6.33(e) and in Figure 6.34(e) for the test cases  = 11.36 and  = 7.81 

respectively show two regions of decreasing dynamic pressure with different gradients. 

The first decrement occurs near the wall of the inner cylinder over the radial position 

range 0  (r – Ri)/d  0.12. This corresponds to the normalised dynamic pressure reducing 

from 0.27Ri
2


2
 to 0.05Ri

2


2
 for the test case  = 11.36 and  = 7.81. This is followed 

by the second more gradual decrement in dynamic pressure which occurs through the 

central region of the annulus to the wall of the outer cylinder over the radial position 0.12 

 (r – Ri)/d  1. The difference in the dynamic pressure trends at the outflow and inflow 

positions may be attributed to the rate of mixing of the fluid from the two adjacent 

vortices at their meeting point, one being an outward flow with high momentum and the 

other being an inward flow with low momentum. 

The analysis of the gauge static pressure and of the dynamic pressure profiles in the 

azimuthal plane has not been documented in the open literature. As such, no comparison is 

made between the results obtained in this research and previous studies. 

 

6.7.8 Parametric analysis of the Taylor vortices 

The parametric analysis of the Taylor vortices formed in the region between the rotating 

inner cylinder and stationary outer cylinder is documented in this section. This analysis 

differs from the parametric analysis of the Taylor flow presented in [ref intro] as it does 

not aim to describe the global flow regime in the flow domain but rather to detail the 

geometry and the flow characteristics of the individual vortices therein. 

There is no universally accepted definition of a vortex for unsteady viscous flows. 

However, the main parameters that characterise a vortex include location, extension, 

maximum circumference velocity, maximum vorticity, and strength (Vollmers, 2001). A 

vortex is distinguished by streamline patterns like foci and centres. According to Robinson 

(1991), a vortex exists when instantaneous streamlines mapped onto a plane normal to the 

vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference 

frame moving with the centre of the vortex core. Other definitions have been given by 

researchers such as Chong et al. (1990), Robinson et al. (1989), Chakraborty et al. (2005), 

Haller (2005), and Jeong and Hussain (1995). Singer and Banks (1994) used both the 

vorticity and the pressure fields to trace vortex lines in three-dimensional transitional flow. 
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Vortex centre  

Velocity, pressure, and vorticity can all be used to identify a vortex centre. In this study, 

the vortex centres are defined as the locations where the meridional plane fluid velocity 

equals zero in the annulus of the cylinder excluding the wall boundaries where no-slip 

conditions are imposed (Deng et al., 2009). The vortex centres may also be defined as the 

location where the local static pressure reaches a minimum (Haller, 2005). The vortex 

centres is also defined by Ma and Zheng (1994) as the maximum vorticity point in the 

region of the vortex. The vortex centre position corresponds to a local minimum of the 

velocity and the pressure, and the maximum of the vorticity.  

Different researchers have used different methods to locate the vortex centre depending on 

the flow types. For example, Deng et al. (2009) used a spline interpolation method to 

obtain the axial and radial position of vortex centres. Agrawal and Prasad (2002) used an 

automated method to identify the radial and axial coordinates of the vortex centers to 

determine the properties of vortices in the self-similar turbulent jet. Ma and Zheng (1994) 

employed the tracing algorithm for identifying the vortex core using both the vorticity and 

velocity fields. Another method that has been used to locate the vortex centre by 

researchers such as Dubief and Delcayre (2000) and Lesieur et al., (2003) is the Q-

criterion. The Q-criterion captures the vortex centre based on the sign of the second 

invariant of the velocity gradient (Alim, 2007).  

In this section, the centres and the size of the Taylor vortices are estimated. As earlier 

observed in Figure 6.6, the vortex centres are not all located at the gap mid-span of the 

annulus (Ri + 0.5d) but are shifted toward the wall of the outer cylinder. This has also 

been confirmed by Figure 6.27(b and d) and Figure 6.28 (b and d).  

In this study, the radial and axial coordinates of the Taylor vortex centres are determined 

by the cross-sectional lines algorithm described by Vollmers (2001), which is based on 

obtaining the difference between vortex induced velocity extrema. It is understood that the 

component of velocity perpendicular to a line cutting a vortex will exhibit a maximum 

difference between its extrema when the line intersects the centre of the vortex (Vollmers, 

2001). Using this principle, the location of vortex centres was determined from the 

following six-step procedure. 

1. Generate a set of parallel lines within the area of interest in the vicinity of the 

vortex centre, such as axial lines on the meridional plane with a constant radial 

stagger, as illustrated in Figure 6.35. A refinement step may be employed if the 

spacing between the lines is too large. 
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2. Obtain the absolute magnitude u of the local radial velocity at discrete points on 

these lines. 

3. Compute for each line the maximum difference umax – umin in u.  

4. The line with the highest absolute radial velocity difference umax – umin identifies 

the axial coordinate of the vortex centre Xc. 

5. Generate a set of radial lines on the meridional plane with a constant axial stagger, 

as illustrated in Figure 6.35, analogous to step 1. 

6. Repeat steps 2 to 4 to determine the radial coordinate rc of the vortex centre, based 

on the line with the highest absolute axial velocity difference umax – umin, where u 

is the absolute magnitude of the local axial velocity at discrete points on these 

lines. 

 

Figure 6.35: Cross-sectional lines used to locate vortex centres. 

The above procedures was employed to estimate the centre of the vortices for both lower 

and upper channels of the annulus, starting from left to right in Figure 6.36, using the 

cylindrical frame of reference of Figure 6.1(a). The axial coordinate Xc and the radial 

coordinate rc of each vortex were use to indicate the centres of the vortices in Figure 

6.36(a) and Figure 6.36(b) for the test cases  = 11.36 and  = 7.81 respectively. The 

detailed coordinate values for the test cases  = 11.36 and  = 7.81 are reported in Table 

B 1 and Table B 2 of appendix B respectively. The vortices shown in Figure 6.36(a) and 

Figure 6.36(b) have been numbered starting at the left end-wall with the sequence 

increasing in the positive axial direction toward the right end-wall. 

Figure 6.37(a) and Figure 6.37(b) show the normalised radial position of the Taylor vortex 

centres for the test cases  = 11.36 and  = 7.81 respectively, as a function of their 



156 

 

normalised axial position in the meridional plane. The axial position has been normalised 

by the inner cylinder radius Ri, while the radial positions has been normalised by the 

cylinder gap width, d. This is related to the cylindrical coordinates system of Figure 6.1 by 

the ordinate in Figure 6.37 being equal to (r – Ri)/d. Figure 6.37 uses the same open and 

filled circles as Figure 6.36 to identify the vortex centres at  = /2 for the test cases  = 

11.36 and  = 7.81.   

 
(a) 

 
(b) 

Figure 6.36: Velocity vectors showing the centre of the vortices in red and black in the 

meridional plane of the annulus for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

From Figure 6.36, the axial distance from the centre of each vortex to the centre of the 

next one to the right of it in the same plane at  = /2 is estimated. Figure 6.37 is used to 

illustrate the spread of the vortex centres in the meridional plane in both the lower and 

upper channels ( = /2) for the test cases  = 11.36 and  = 7.81. The orange dashed 

lines toward the top and bottom of Figure 6.37(a) and Figure 6.37(b) represent 
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respectively the maximum and minimum limits of the spread band about the vortex centre 

mean value. The standard deviation of the vortex radial positions was used to size the 

spread band for the two test cases, assuming a normal distribution. The standard deviation 

was estimated using 

 

   
 

   
         
 

   

 6.8 

where σ is the standard deviation, 

           N is the number of samples, 

           xi is the i
th

 data point, 

               is the mean (average) of the data points.  

Figure 6.36 and Figure 6.37 report a measurable change in the radial position of the vortex 

centres for the test cases  = 11.36 and  = 7.81, as the vortex centres in both the lower 

and upper channels are not all at the same radial position. However, this variation is small. 

When the vortex centres in the lower and upper channels ( = /2) of the annulus are 

compared in Figure 6.37(a) for the test case  = 11.36, it is evident that the flow is 

essentially axisymmetric, as many of the vortex centres at  = /2 have almost the same 

axial and radial positions as the corresponding ones at  = -/2. Figure 6.37(b) for the test 

case  = 7.81 exhibits a similar trend. In both test cases, the variation in the radial 

positions of the vortex centres between  = /2 and  = -/2 is more obvious than vortex 

centre axial variation. 

The axisymmetry of the vortex centres indicates that the simulation is modelling a 

Conventional Taylor Vortex Flow (CVF). The use of perfectly orthogonal end walls in the 

model and the numerical viscosity that is intrinsic in the flow solver prevent the growth of 

secondary flow instabilities that the flow requires for staging to a higher Taylor mode, 

such as the Wavy Vortex Flow. Whilst the flow is essentially axisymmetric, Figure 6.37 

shows an axial pattern of small changes in the radial position of the vortex centres. Figure 

6.37 shows that the flow in the test case  = 7.81 is more axisymmetric than in the test 

case  = 11.36, as the variation in the radial positions of vortex centres between  = /2 

and  = -/2 is comparatively lower. 

In the two test cases in Figure 6.37, the radial locations of the vortex centres are anti-

symmetric about the axial positon X/Ri = 5.0. The axial locations of the vortex centres are 
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instead symmetric about the axial position X/Ri = 5.0. The normalised axial spacing 

between the vortex centres is larger than the normalised radial spacing between the vortex 

centres for both test cases. The physical axial spacing is also larger than the physical radial 

spacing between the vortex centres. This result agrees with the conventional description of 

Taylor vortices of being an array of counter-rotating vortex pairs with their vortex centres 

approximately aligned along the gap mid-span.  

 

(a) 

 

(b) 

Figure 6.37: Axial and radial position of vortex centres in the meridional plane of the 

annulus for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

As a result of the variations in the radial positions of vortex centres and the anti-symmetry 

of the vortex centres about the axial positon X/Ri = 5.0, the distribution of vortex centres 

in Figure 6.37 is complex. 
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Based on the dimensions of the computational domain, the gap width between the inner 

and the outer cylinders ranges from 0  (r - Ri)/d  1. This means the gap mid-span (r = Ri 

+ 0.5d) of the annulus is located at (r - Ri)/d = 0.5. From Figure 6.37(a) for the test case  

= 11.36, the area occupied by vortex centres is confined over the range 0.574  (r - Ri)/d  

0.596 radially. Similarly, the area occupied by vortex centres for the test case  = 7.81 in 

Figure 6.37(b) is confined over the range 0.594  (r - Ri)/d  0.616 radially. This further 

confirms that the vortex centres are not symmetric about the gap mid-span of the annulus 

as the vortex centres do not coincide with the annulus gap mid-span. In fact, all the vortex 

centres are located more toward the wall of the stationary outer cylinder, as discussed in 

the contex of Figure 6.6, Figure 6.27(b, d), and Figure 6.28(b, d). As the gap width d 

between the cylinders increases, the vortex centres are more displaced toward the wall of 

the outer cylinder for the test case  = 7.81 than for the test case  = 11.36, as shown by 

the dashed lines in Figure 6.37(a) and Figure 6.37(b).  

In Figure 6.37(a) and Figure 6.37(b), approximately 83.3% and 75% of the vortex centres 

is within the respective spread bands, which are delimited by the dashed orange lines, 

suggesting that there are a few outliers outside 1 standard deviation bands for the two test 

cases.  

 

Vortex size and end-wall effects 

Taylor vortices are commonly sized by their wavelength , which is defined as the ratio of 

the axial length of a pair of vortices divided by the gap width d (Koschmieder, 1979; Xiao 

et al., 2002).  

The wavelength  is obtained from the average Taylor vortex pair size over the entire 

view area of the annulus. In this work, the half wavelength, /2 for each vortex was 

measured for the test cases  = 11.36 and  = 7.81. The half wavelength was measured as 

the distance between consecutive radial outflow and inflow regions which define the axial 

size of one vortex. The half wavelength is hereby referred to as the axial vortex size. The 

axial vortex size was estimated from Figure 6.36(a) and Figure 6.36(b) and reported in 

Table 6-7 and Table 6-8 for the test cases  = 11.36 and  = 7.81 respectively. For the test 

case  = 11.36 in Table 6-7, from the left end-wall, vortex 1 and, from the right end-wall, 

vortex 12 are directly affected by the stationary end-walls. Similarly, for the test case  = 

7.81 in Table 6-8, from the left end-wall, vortex 1 and, from the right end-wall, vortex 8 

are directly affected by the stationary end-walls. 
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Table 6-7 shows how the elongated vortices 1 and 12 for the test case  = 11.36 affected 

the vortex axial length XL of the neighbouring vortices toward the central region of the 

annulus, specifically vortices 2, 3, and 4 as well as vortices 9, 10, and 11. Similarly, in 

Table 6-8 for the test case  = 7.81, the elongated vortices 1 and 8 affected the vortex 

axial length XL of the neighbouring vortices 2 and 3 as well as vortices 6 and 7.  

 

Table 6-7: Variation of vortex axial length with vortex number for the test case  = 11.36. 

Vortex number Vortex  axial length  

XL = X/Ri 

Variation  
          

1 1.07 0.282 

2 0.77 -0.018 

3 0.72 -0.068 

4 0.79 0.002 

5 0.84 0.052 

6 0.81 0.022 

7 0.84 0.052 

8 0.84 0.052 

9 0.83 0.042 

10 0.71 -0.078 

11 0.73 -0.058 

12 1.05 0.262 

 

Average 

 

 

 

Variance 

 

 

 

 

 

Standard deviation 

 

    
 

  
      

  

   

       

 

   
 

 
         

 

  

   

 

 

=  0.002751
 

 

    = 0.05245 

 

 

 

From Table 6-7, considering the vortices as pairs, the first pair is composed of an 

elongated vortex 1 and a shortened vortex 2. Vortex 2 compensates for the elongated 

vortex 1 by its reduction in size. Likewise, vortex 4 compensates for the reduction in the 

size of vortex 3 by an increase in its size. Similarly, from the right end-wall, the same 

trend is observed as vortex 11 compensates for the elongated vortex 12 by a reduction in 



161 

 

its size. Vortex 9 compensates for the reduction in the size of vortex 10 by an increase in 

its size.  As the vortices develop toward the centre of the computational domain, the size 

of neighbouring vortices 5, 6, 7, and 8 become almost the same.  

For the test case  = 7.81 in Table 6-8, the same pattern of alternating elongated and 

shortened vortices near the end-wall boundaries is observed as for the test case  = 11.36. 

The affected vortices are vortices 1, 2, 3 and 6, 7, 8. The vortices towards the centre of the 

computational domain, which are vortices 4 and 5, are comparatively less affected. 

 

Table 6-8: Variation of vortex axial length with vortex number for the test case  = 7.81. 

Vortex number Vortex  axial length XL = X/Ri Variation  XL-     

1 1.47219 0.28923 

2 1.14438 -0.03858 

3 1.13153 -0.05143 

4 1.25977 0.076812 

5 1.28334 0.100382 

6 1.13435 -0.04861 

7 1.14438 -0.03858 

8 1.43006 0.2471 

 

 

Average 

 

 

 

Variance 

 

 

 

 

Standard deviation 

 

X L=
 

 
 (XL)

i

7

i=2

=1.18296 

 

   
 

 
          

 

 

   

 

 

= 0.004792
 

 

    = 0.069225 

 

 
 

 

From the estimated vortex axial length, an average is calculated without the first and the 

last vortices in Table 6-7 and Table 6-8 being included. Since vortices 1 and 12 for the test 

case  = 11.36 and and vortices 1 and 8 for the test case  = 7.81 are significantly longer 

in the axial direction than the reminder vortices in the central region of the annulus, 

including them in the axial vortex size average would significantly affect the vortex axial 

length variance. Table 6-7 and Table 6-8 show that the estimated average vortex axial size 
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(half wavelength) is 0.788Ri and 1.183Ri for the test cases  = 11.36 and  = 7.81 

respectively.  

From the vortex axial length estimates for test cases  = 11.36 and  = 7.81, the variance 

and the standard deviation of vortex axial size are determined and reported in Table 6-7 

and Table 6-8 . The variations in vortex axial length         tabulated in the third 

column of Table 6-7 and Table 6-8 was used for producing the residual plots shown in 

Figure 6.38 for both test cases. 

 

6.7.9 Residual plot 

Residual plots are used herein to assess the statistical regression of the vortex axial size. A 

null residual plot shows that there are no obvious defects in a regression, a curved residual 

plot indicates non-linearity in the regressed model, whereas a double-bow or a fan shaped 

pattern indicates a non-constant variance (Tsai et al., 1998). The residual E is the 

difference between the observed value of the dependent variable Y and the predicted value 

Y
i
. This is represented as E = Y –Y

i
. Both the sum and the mean of the residual plots are 

equal to zero. The predicted value can be obtained from the general equation for a linear 

plot given as Y
i
 = mX + b, where X is the independent variable, m is the slope and b is the 

intercept. Once the predicted value is known, the residual can be calculated and plotted 

against the independent variable. Therefore, the residual can be estimated using the 

relation E = Y – (mX + b). In producing the residual plot in Figure 6.38(a) and Figure 

6.38(b) for the vortex axial length, m = 0 and b =    . 

Figure 6.38(a) and Figure 6.38(b) are therefore the residual plots of the vortex axial length 

in the meridional plane at  = - /2 for the test cases  = 11.36 and  = 7.81 respectively. 

These plots show that there are no obvious defects in the model as the residual is scattered 

about the zero x-axis with no significant bias. Without vortices 1 and 12, the residual of 

the remaining ten vortices are well defined, with the minimum and maximum deviation 

from the zero axis estimated as -0.08Ri and 0.06Ri respectively for the test case  = 11.36. 

Similarly, for the test case  = 7.81 without vortices 1 and 8, the residuals are evenly 

distributed about the zero x-axis with no significant bias. The residual of the six vortices 

in the central region of the computational domain display a minimum and maximum 

deviation from the zero axis of -0.06Ri and 0.11Ri respectively. 

The two outliers on the plot in Figure 6.38(a) are the residuals from vortex 1 and 12 in 

Figure 6.36(a) and show the direct effects of the end-walls on the axial length of these two 
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vortices. The outliers on the plot in Figure 6.38(b) are the variation due to the end-walls at 

vortex 1 and 8 in Figure 6.36(b). This is in agreement with the observation made earlier 

that the end-walls directly affect the vortices next to it. The residual plots in both test cases 

exhibit a similar pattern and are well defined as shown by the red curve in Figure 6.38(a) 

and Figure 6.38(b). 

 

(a) 

 

(b) 

Figure 6.38: Residuals plot of vortex axial length variation in the meridional plane at  

 = -/2 for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

Figure 6.39(a) and Figure 6.39(b) show the axial distributions of normalised radial and 

normalised axial velocities in the meridional plane showing the zero crossing positions for 

the test cases  = 11.36 and  = 7.81 respectively. The ordinates on the right and left hand 
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sides in Figure 6.39 are of axial velocity and of radial velocity respectively. The axial and 

radial velocity distributions use different ordinate scales so as to capture on each scale the 

full dynamic range of the respective velocity component. The abscissa is the total length 

of the computation domain normalised by the inner cylinder radius Ri. The horizontal 

dashed line on each of the two plots marks the zero value of radial and axial velocities. 

Vertical dashed lines across radial velocity maxima mark the maxima axial positions. 

These lines are a good prediction of the axial position where the axial velocity crosses the 

horizontal zero line. From the normalised axial velocity profile in Figure 6.39(a) and 

Figure 6.39(b), there is a good match between the zero crossings of the axial velocity 

profile and the axial location of the radial velocity maxima. This is expected because at the 

saddle planes, where the radial velocity is maximum, the axial velocity is expected to be 

zero. Also, at the vortex centres, where the radial velocity is minimum, the axial velocity 

is expected to be maximum. The little offset observed at point 1 and point 6 in Figure 

6.39(a) and point 1 and point 4 in Figure 6.39(b) is due to the effect of the end-walls at 

X/Ri = 0.0 and X/Ri = 10.0 that elongated vortices 1 and 12 in Figure 6.6(a) and vortices 1 

and 8 in Figure 6.6(b). 

In addition, Figure 6.39 can also be used to confirm the spatial wavelength of the Taylor 

vortices estimated in Table 6-7 and Table 6-8. For example, for the test case  = 11.36 in 

Figure 6.39(a), the tick blue lines delimit one wavelength, which is the distance between 

one radial inward flow region to the next radial inward flow region to the right of it in the 

same plane along the positive axial direction. This delimits the axial size of one vortex 

pair. The spatial wavelength can also be estimated as the distance between one clockwise 

vortex to the next clockwise vortex to the right of it in the same plane along the positive 

axial direction. From Figure 6.39(a), using the former definition, the axial wavelength  is 

estimated to be approximately 1.667Ri/d = 1.9. Similarly, for the test case  = 7.81, the 

axial wavelength  is estimated from Figure 6.39(b) to be approximately 2.5Ri/d = 1.95. 

This estimate of the wavelength  has been checked by a simpler method used in previous 

work by Koschmieder (1979).  By considering the vortices as pairs, the axial wavelength 

can be estimated from the number of vortices in the computational domain. If the two 

vortices at the end walls are included, the average axial wavelength using the expression  

= L/Nd given by Koschmieder (1979) is calculated to be approximately 1.9 and 1.95 for 

the test cases  = 11.36 and  = 7.81 respectively, where L is the length of the cylinders, 

N is the number of vortex pairs, and d is the gap width. These  estimates are in good 
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agreement with the theoretical value of  = 2.0 reported in the literature by Roberts 

(1965).   

 

(a) 

 
(b) 

Figure 6.39: Axial distributions of radial and axial velocities in the meridional plane 

showing the zero crossing positions for the test cases (a)  = 11.36 and (b)  = 7.81.  
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Chapter Seven: Experimental investigation of flow between 

coaxial rotating cylinders 
 

 

7.1 Introduction 

This chapter is concerned with the experimental investigation of the flow regimes in the 

annular region between coaxial rotating cylinders. PIV has been employed for all the 

experimental measurements discussed in this chapter. The advantage of using PIV for 

flow diagnostic such as in rotating equipment is the ability to obtain instantaneous planar 

velocity measurements, as discussed in chapter five.  

The experimental investigations reported in this chapter were focused toward two 

objectives. The first objective was to understand in detail through experimentation the 

flow in the annular region of concentric rotating cylinders of different aspect ratio when 

the inner cylinder is rotating and the outer cylinder is stationary. Understanding this flow 

will help subsequently to assess the level of intrusiveness that a cylindrical probe in the 

annular region has on the ensued Taylor-Couette flow. The second objective was to 

validate the results obtained from the CFD simulation by comparing the PIV results with 

those obtained from the computational prediction of the flow. 

 

7.2 Experimental investigation parameters  

The flows under consideration are generated in an apparatus with a rotating inner cylinder 

and a concentric stationary outer cylinder with stationary end-walls as detailed in chapter 

five. The detailed description of the materials and dimensions of the test, as well as the 

PIV arrangement, are given in chapter four and chapter five. The experimental field of 

view is reported in Table 5-2 and is the same as the one for the CFD in chapter six.  

In this chapter, PIV measurements were obtained of the flow between concentric rotating 

cylinders of aspect ratios  = 11.36,  = 7.81, and  = 5.32. The experimental set-up and 

the start-up procedure were the same for all three test cases as discussed in chapter five. 

 

7.3 PIV measurement accuracy 

The accuracy of the PIV results depends on a combination of many factors ranging from 

the equipment set up, the recording process, to the analysis of data. In this section, the 

method and the criteria for verifying the convergence and accuracy of the data are 

discussed in details. The convergence of PIV data is assessed by testing whether a certain 
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number of PIV vector maps are enough to obtain an average vector map with a low 

statistical uncertainty. A converged PIV vector map is such that, by taking and averaging 

more PIV vector maps, there is no significant change in the average. If the PIV vector 

maps have not converged, then more PIV vector maps are needed to make them converge. 

From previous research by Prasad (2000) on PIV vector map averaging, it was established 

that the number of PIV vectors map needed to obtain a converged average ranges from 25 

to 250.  

For this research work, two methods have been used to determine the convergence of the 

PIV data. The first involves a quantitative analysis of every vector in the vector map, by 

estimating the average and the standard deviation of all the PIV image snapshots at every 

single point in the flow. The second method was based on calculating the mean of the 

average velocity at constant radial positions in the meridional plane. The process and the 

procedures for these two methods are summarised below: 

 

Method 1 

1. Acquisition of specific number of images and taking the time average of all the 

PIV image snapshots at every single point in the flow field. 

2. Estimation of the standard deviation  at every single point. 

3. Estimation of the statistical uncertainty in the average (/ N
0.5

) at every single 

point.  

4. Estimation of the relative uncertainty in the average (/ (N
0.5

)) at every single 

point.  

5. Estimation of the average value of the relative uncertainty (/ (N
0.5

)) over all 

points in the vector map.  

6. Steps 1 to 5 were repeated with an increasing number of images. 

 

Method 2 

1. Acquiring a number N > 25 of image pairs to obtain an ensemble average velocity 

vector map of the N PIV instantaneous vector maps from the image pairs. 

2. Extracting profiles at constant radial positions in the meridional plane at  = - /2 

along the axial direction from the ensemble average in-plane velocity magnitude 

distribution. The profiles are extracted at an increment radial distance of 2mm, the 

first and the last being 3mm away from the wall of the inner and outer cylinders. 
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The constant radial positions where the average was estimated are illustrated in 

Figure 7.1 with the black lines on the meridional plane at  = - /2. 

3. Estimating the average velocity magnitude of all the data points along the constant 

radial positions selected in step 2 and normalising the velocity magnitude by the 

inner cylinder tangential speed Ri. 

4. Steps 1 to 3 are repeated with an increasing number of image snapshots N. 

 

Figure 7.1: Typical velocity vectors from where velocity profiles are extracted for PIV 

convergence. 

 

7.4 PIV measurement accuracy results and discussions 

Figure 7.2 and Figure 7.3 show the results obtained from the two methods discussed in 

section 7.3. Figure 7.2 shows that the mean relative uncertainty in the ensemble averaged 

velocity decreases monotonically with increasing number of PIV images. For example, 

from the analysis of 30 images, the mean relative uncertainty of the ensemble averaged 

velocity is about 22%. As the number of PIV images increases to 90, this value drops to 

approximately 6.5%.  

As the number of PIV images increases, between 100 and 120 images the mean relative 

uncertainty in the PIV velocity becomes nearly constant at approximately 5.5%, 

suggesting that taking more PIV data is not likely to change the result. This result shows 

that the PIV data is converged with 100 images. 

Figure 7.3 shows the mean of all the data points at constant radial positions r = Ri + 

0.136d, r = Ri + 0.318d, r = Ri + 0.5d, r = Ri + 0.682d, and r = Ri + 0.864d in the 

meridional plane along the axial direction on the lower ( = - /2) channel of the annulus, 

as illustrated in Figure 7.1 with the black lines. The mean velocity magnitude on the 
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ordinate of Figure 7.3 is expressed as a percentage of the inner cylinder tangential speed 

Ri. Figure 7.3 shows a high percentage value at lower number of PIV snapshots at all the 

radial positions. As the number of PIV snapshots increases, the ensemble averaged of the 

in-plane velocity magnitude at all the radial positions reduces monotonically. Figure 7.3 

shows the plot at all radial positions becoming flat at around 90 images with a near-

constant value of approximately 5% in the central region of the annulus at r = Ri + 0.318d, 

r = Ri + 0.5d, and r = Ri + 0.682d.  

 

Figure 7.2: PIV data convergence based on the mean of the relative uncertainty in the 

velocity magnitude. 

 

Near the walls of the inner and outer cylinders, at r = Ri + 0.136d and r = Ri + 0.864d in 

Figure 7.3, the mean relative uncertainty is slightly higher than the corresponding values 

in the central region of the annulus. This is because there are spurious vectors due to a 

reflection of the PIV light sheet near the walls. This reflection obscures the particle light 

scatter, giving rise to uncertainty in the velocity measurements. The reflection intensity is 

greater near the wall of the outer cylinder, as shown by the r = Ri + 0.864d curve in Figure 

7.3 being above the other ones. At these radial positions, the mean relative uncertainty of 

the velocity was estimated at approximately 22% with a 30 image average.  

This value reduces to approximately 6.5% with a 90 image average. When more than 90 

PIV images are averaged, Figure 7.3 shows no considerable change in the mean relative 

uncertainty of the velocity magnitude, an indication that taking more images does not 

improve the result. These plots confirm that the PIV results can be taken as statistically 

converged with about 90 images. 
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Figure 7.3: PIV data convergence based on the mean of the normalised in-plane velocity 

magnitude. 

 

7.5 Experimental results and discussions for concentric cylinders  = 11.36  

and  = 7.81 

The flow characteristic features in the annulus of the coaxial rotating cylinders, obtained 

from the PIV measurements for the test case with aspect ratio  = 11.36 and  = 7.81 are 

discussed in this section. All the velocity fields have been normalised by the inner cylinder 

tangential speed, Ri. The PIV measurement area for these test cases is equal to the area 

of the computational domain. Therefore, the PIV measurement area for all the PIV results 

has been normalised by the inner cylinder radius Ri consistently with the CFD results, as 

discussed in section 6.7.1.  

 

7.5.1 Flow regime and pattern in the annulus of the coaxial cylinders  

The geometry and the flow parameters of the apparatus used for this PIV investigation are 

the same as those presented in Table 6-1 for the CFD simulations. Based on these flow 

parameters, the Taylor number is above the first critical Taylor number. As such, Taylor-

Couette instability is expected to characterise the flow. The PIV results obtained suggest 

that the flow regime in the test cases  = 11.36 and  = 7.81 is the wavy vortex flow. 

This wavy vortex flow is characterized by travelling azimuthal waves that are 

superimposed on the Taylor vortices (Gollub and Swinney, 1975). The azimuthal waves 

rotate around the inner cylinder at some wave speed (Youd, 2005). The azimuthal waves 

have a defined azimuthal wave-number m and move at a finite wave velocity in the 

azimuthal direction. In the wavy vortex flow regime, the flow is characterised by vortex 

contraction, expansion, and undulation. There is significant cyclic exchange of fluid 
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between vortices. In the wavy vortex flow regime, the boundaries between adjacent 

vortices are dynamic, with their position and orientation changing as a function of time 

(Wang et al., 2005), whereas in the Taylor vortex flow regime, the boundaries between 

adjacent Taylor vortices are stationary and the inflow and outflow boundaries remain flat 

and perpendicular to the cylinder walls. This means that the wavy vortex flow is time-

periodic and breaks the continuous rotational symmetry of the conventional Taylor vortex 

flow. A detailed description of different flow regimes was presented in chapter 2, section 

2.2.4 

The waves travel around the annulus at a speed that is 30% to 50% of the surface speed of 

the inner cylinder, depending on the Taylor number and other conditions (King et al., 

1984). The whole wave pattern rotates as a rigid body about the cylinder axis, hence the 

pattern is at rest for an observer fixed in a reference frame that rotates with the waves. An 

interesting property of the waves is the absence of dispersion. The state of the system 

depends on the Reynolds number history and on other factors, but each state, once 

established, is stable over a range of Reynolds numbers (Coles, 1965). At any given 

Reynolds number, the wave speed is essentially independent of m (Shaw et al., 1982). In 

wavy vortex flow, the wave pattern has an m-fold rotational symmetry. The vortex 

boundaries in the wavy vortex flow are wavy and are S-shaped (Gorman and Swinney, 

1982).  

The travelling azimuthal waves along the boundary between two neighbouring vortices are 

shifted in azimuthal phase angle. As the inner cylinder rotates, the flow pattern and the 

travelling azimuthal waves are non-axisymmetric and unstable, such that the flow 

undulates and deforms in a wavy-like pattern. Because of this instability and undulation, 

the flow is eccentric as it travels round the axis of the cylinder, due to the azimuthal 

instability that develops in addition to the conventional Taylor vortex axisymmetric 

instability in the flow. Figure 7.4 and Figure 7.5 show schematic illustrations of the 

characteristic features of the resulting flow pattern. The assembly in Figure 7.4 is defined 

with respect to the cylindrical reference system (r, , x) as in Figure 6.1, where r is the 

distance from the inner cylinder axis,  is the azimuthal angle about the axis, and x is the 

distance along the axis that coincides with the axis of rotation. Figure 7.4 shows the time-

averaged vortex eccentricity by the axial and radial displacement of the vortex centres as 

azimuthal momentum is being transported around the axis of the rotating inner cylinder. 

The positions of the vortex centres are shown by the oblique ellipses in Figure 7.4. The 
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dots on the ellipses are the positions of the vortex centres at  = /2. These are arranged 

in an alternate pattern and do not all lie at r = Ri + 0.5d, which is the centre of the annulus.  

Figure 7.5(a) shows the variation of the vortex centre position with time. The vortex 

centre displaces radially with time. This is shown by the round dotted circles in Figure 

7.5(a). The displacement amplitude varies with the azimuthal position . In Figure 7.5(a), 

the displacement amplitude is shown to be maximum at  = 0 and  =  and zero at  = 

/2. This periodic motion can be represented by the linear superimposition of a pair of 

azimuthal waves, of unit circular wave-number, zero phase angle, and wave speeds of 

opposite sign, as shown in Figure 7.5(b) and Figure 7.5(c). The long dashed eccentric 

circle in Figure 7.5(b) shows the anti-clockwise m = 1 component of the wave pair. The 

wave positive maximum is indicated by a solid line at the azimuthal angle  = -/6. The 

dash dot eccentric circle in Figure 7.5(b) shows the clockwise m = -1 component of the 

wave pair. The wave positive maximum is indicated by a second solid line at the 

azimuthal angle  = /6. The linear interference of the two waves gives the round dotted 

eccentric circle, which is symmetric about  = 0 and describes one Taylor vortex centre 

position at a given instant in time around the inner cylinder. As the azimuthal position of 

the two azimuthal waves vary by the same magnitude but opposite sign over time, the 

radial position of the vortex centre changes as shown in Figure 7.5(c). The vortex centre 

new position is shown by a round dotted eccentric circle as in Figure 7.5(b). 

The dotted eccentric circles from Figure 7.5(b) and Figure 7.5(c) are reproduced in Figure 

7.5(a) in order to appreciate better the vortex centre motion. The eccentric square dot 

circle in Figure 7.5(a) denotes the time-averaged position of one of the vortex centres 

shown in Figure 7.4. The round dotted circles represent two instances of the time-resolved 

position of the vortex core at times t and t + t, indicating that the vortex position and 

orientation changes as a function of time. 

 
Figure 7.4: Drawing of concentric rotating cylinders showing the time-averaged 

eccentricity of the vortex centres as azimuthal momentum is being transported around the 

axis of the rotating inner cylinder. 
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      (a)                             (b)       (c)       (d) 

 

Figure 7.5: (a) Variation of radial displacement of the vortex centre with time, (b, c) linear 

superimposition of a pair of azimuthal waves, of unit circular wave-number, zero phase 

angle, and wave speeds of opposite sign, and (d) Particle Laser Induced Fluorescence flow 

visualisation of wavy vortex flow (Ohji and Amagai, 1988). 

 

The two black dots represent the centre of the vortex at a nodal position for |m| = 1. The 

positions of the dotted circles show that the radial position of the vortex centre is in anti-

phase on the  = 0 and  =  planes because, when the vortex centre at  = 0 moves 

radially outward, the same vortex centre moves radially inward at  = . Particle Laser 

Induced Fluorescence (PLIF) flow visualisation of wavy vortex by Ohji and Amagai 

(1988) provides independent experimental evidence of the vortex core eccentricity in the 

wavy vortex flow. 

For an azimuthal wave pair of zero amplitude, the vortex centres become steady and 

concentric with the cylinders. The resulting flow is the conventional Taylor Vortex Flow 

(TVF), which can therefore be interpreted as a sub-class or a special case of the more 

general wavy vortex flow instability. 

Figure 7.6 shows the schematic drawing of the time-averaged wavy vortex flow for the 

test case  = 11.36. Figure 7.6(a) shows the three-dimensional drawing of the concentric 

cylinder assembly with the eccentricity pattern of the vortices. Figure 7.6(a) is slightly 

differs from Figure 7.4 in that the axial displacement of the vortex centres is not so 

obvious in this test case, as shown later on in section 7.5.2. The assembly in Figure 7.6(a) 

is defined with respect to the cylindrical reference system (r, , x) of Figure 6.1. The 

positions of the vortex centres are shown by the eccentric circles in Figure 7.6(a). The red 

dots on the eccentric circles mark the positions of the vortex centres at  = /2. These are 

arranged in an alternate pattern along the positive axial direction and do not lie along r = 

Ri + 0.5d at the centre of the annulus.  

The 2D drawing in Figure 7.6(b) shows the third angle projection of the flow pattern and 

the azimuthal waves as viewed by a fixed observer. The inner and the outer black 
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concentric circles in Figure 7.6(b) are the rotating inner cylinder and the stationary outer 

cylinder respectively. The eccentric circles in Figure 7.6(a), represented by the square 

dotted eccentric circle in Figure 7.6(b), are the positions of the vortex centres that are 

displaced radially by the azimuthal waves as the waves travel around the rotating inner 

cylinder. The two solid dots in Figure 7.6(b) represent the positions of the Taylor vortex 

centre at  = /2. 

The flow pattern illustrated in Figure 7.6 is assumed to involve only one azimuthal wave-

number, based on the result of the experimental investigation conducted by King et al. 

(1984). King et al. (1984) observed that, whenever the aspect ratio is reduced below  = 

18 (in this study  = 11.36), the wavy vortex flow has just one azimuthal wave-number. 

As the inner cylinder rotates, the travelling azimuthal waves propagate in a moving flow. 

Where the wave phase speed matches the tangential velocity of the oncoming flow, for 

instance, at the annulus mid-gap, the wave will appear stationary to a fixed observer in the 

frame of reference of the outer cylinder. 

       
          (a)          (b) time averaged 

Figure 7.6: Schematic drawing of concentric rotating cylinders showing the eccentricity of 

the Taylor vortices as observed in the experiment. 

 

PIV ensemble averaged velocity vector maps 

Figure 7.7(a) and Figure 7.7(b) display the normalised ensemble averaged velocity vector 

maps obtained from 100 pairs of PIV images in the meridional plane of the annulus for the 

test cases  = 11.36 and  = 7.81 respectively. The meridional plane is as defined in 

Figure 6.1. The extent of the PIV experimental view area for the test cases  = 11.36 and 

 = 7.81 is as given in Table 5-2. Figure 7.7(a) and Figure 7.7(b) show that the ensemble 

averaged flow in the annular region between the rotating inner cylinder and the concentric 

stationary outer cylinder is dominated by Taylor vortices in the entire measurement area. 

The ensemble averaged velocity vector maps in Figure 7.7(a) and Figure 7.7(b) consist of 

pairs of counter-rotating, toroidal vortices spaced periodically along the inner cylinder 

axis, modulated by the waviness of the flow. This flow pattern of pairs of counter-rotating 
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vortices, driven by the motion of the rotating inner cylinder, is repeated along the axial 

shaft with the abutting vortices in consecutive cells rotating in opposite direction at their 

meeting point. Along the axial direction of the PIV measurement view area, the velocity 

vectors of Figure 7.7(a) and Figure 7.7(b) show twelve vortices for the test case  = 11.36 

and eight vortices for the test case  = 7.81 respectively. This is in both qualitative and 

quantative agreement with the numerical result presented in Figure 6.6. 

In Figure 7.7(a) and Figure 7.7(b), the radial motion induced by the Taylor vortices 

convects the fluid with high azimuthal momentum near the rotating inner cylinder radially 

outward, in the outflow regions between two adjacent pair of vortices at  = -/2. The 

consequent redistribution of mass flow across the annulus affects the inward flow and the 

outward flow velocity distribution. Thus, the radial outflow between the vortices is 

stronger than the radial inflow, as evidenced by the length of the velocity vectors in Figure 

7.7(a) and Figure 7.7(b) in agreement with the numerical results of Figure 6.6(a) and 

Figure 6.6(b). The strong radial azimuthal motion at the outflow boundaries and the 

mixing of fluid between the adjacent vortices are responsible for the azimuthal waviness 

(Coughlin and Marcus, 1992; Jones, 1985; Marcus, 1984; Wereley and Lueptow, 1998). 

The two vortices near the left and right end boundaries of the PIV experimental view area 

in Figure 7.7(a) and Figure 7.7(b) are slightly more elongated than the remaining ten 

vortices in the central region of the annulus, as confirmed by the vortex axial length in 

Table 7-1 and on pages 207 - 208 for the test cases  = 11.36 and  = 7.81 respectively. 

The formation of the elongated vortices near the left and right end boundaries and the 

compressed vortices in the central region are consistent with the numerical results of 

Figure 6.6. This feature is attributed to the effects of the stationary end-walls, as discussed 

in section 6.7.1. 

In Figure 7.7(a) and Figure 7.7(b), the vortex centres are displaced toward the wall of the 

outer cylinder. This feature is attributed to the high Taylor number at which the 

investigations were conducted, as discussed in the context of the numerical results of 

Figure 6.6. 

A distinct pattern of Figure 7.7(a) and Figure 7.7(b) is the spatial oscillation of the Taylor 

vortices, resulting in the radial and axial displacement of their centres. In Figure 7.7(a) and 

Figure 7.7(b), the radial displacement of the vortices is clearly shown by the location of 

the vortex centres. Comparing the vortices at  = -/2 and those at  = /2 with one 

another at the same axial position in Figure 7.7(a) and Figure 7.7(b), an axial oscillation of 
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the vortex centre position is not so evident in these time-averaged velocity vector maps, 

whereas it is more evident in the evolution of the instantaneous flow field in time 

discussed in Figure 7.8(a) and Figure 7.8(b), section 7.5.2.  

 

(a) 

 

(b) 

Figure 7.7: Normalised velocity vectors in the meridional plane of the annulus for the test 

cases (a)  = 11.36 and (b)  = 7.81. The reference vector is 0.5Ri. 

 

The vortices in Figure 7.7(a) and Figure 7.7(b) are organised in a definite pattern in three 

regions along the axial direction. The first region is toward the left end-wall, the second 

region is the central region along the length of the cylinders, and third region is the region 

near the right end-wall. For instance, in Figure 7.7(a), the first region toward the left end-

wall (the region marked with red colour) ranges over 0  X/Ri  4.2. The second region is 

the central region along the length of the cylinders and ranges over 4.2  X/Ri  5.8. The 

third region is the region near the right end-wall (the region marked with blue colour) and 

ranges over 5.8  X/Ri  10. The first and the third regions are organised in the same 
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pattern, in which the centres of a pair of vortices are displaced in an alternate manner, such 

that when the centre of one vortex is displaced toward the outer cylinder, the centre of the 

next vortex inbounds is displaced toward the wall of the inner cylinder. For example, on 

the lower channel of the meridional plane at  = -/2, the centre of the first clockwise 

vortex near the left end-wall is displaced toward the wall of the outer cylinder, while the 

centre of the second anti-clockwise vortex is displaced toward the wall of the inner 

cylinder. The next pair of vortices follows the same pattern. Similarly, from the right end 

wall, the same pattern is observed, in which the centre of the last anti-clockwise vortex at 

 = -/2 is displaced toward the outer cylinder and the centre of the next inbound 

clockwise vortex is displaced toward the wall of the inner cylinder. The instance at which 

the vortex centre is closest to a wall corresponds to the instance that the fluid is winding 

around the opposite side of the vortex. This results in an axial transport of the flow 

inbounds at  = -/2 and outbounds at  = /2, as indicated by the arrows of the coloured 

wavy markers in Figure 7.7(a). These two mass fluxes balance each other to satisfy the 

continuity of mass in this enclosed flow. The radial translation of the vortex centres may 

be related to the degree of axial flow. A similar flow pattern was observed by Wereley and 

Lueptow (1998).  

In these two regions, the radial motion of the vortex centres can be described to be out of 

phase because where one vortex moves radially outward at  = -/2, the same vortex 

moves radially inward at  = /2. This phenomenon has been illustrated and explained in 

the context of Figure 7.5. In the first and the third regions of Figure 7.7(a) for the test case 

 = 11.36, there is evidence of transfer and mixing of fluid between adjacent vortices in 

the outflow and inflow regions, indicating that vortex cells are not independent in these 

regions. Also in these regions, the outflow is stronger than the inflow, consistent with 

previous measurements reported in the literature by Berland et al. (1986), Heinrichs et al. 

(1988), and Wereley and Lueptow (1994) for non-wavy and wavy Taylor vortex flows. 

The stronger outflow results from high azimuthal momentum being convected from the 

rotating inner cylinder toward the wall of the stationary outer cylinder. This high 

azimuthal momentum may result in a varying high axial and azimuthal shear stress at the 

wall of the outer cylinder.  

At the centre of the vortex, the flow azimuthal wave velocity is such that its product with 

the distance of the vortex centre from the cylinder axis is constant for all phases in the 

wave, even though the position of the vortex centre is displaced radially. Akonur and 
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Lueptow (2003) observed that the wave speed of the travelling azimuthal wave is equal in 

magnitude and opposite in sign with respect to the flow azimuthal velocity at the centre of 

the vortex in their experimental investigation.  

In the second region in Figure 7.7(a), which is the central region, the centres of the 

vortices are almost at the same radial position for both the lower ( = -/2) and upper ( = 

/2) channels. In this region, the inflow and outflow boundaries at  = -/2 seem 

perpendicular to the inner and outer cylinder walls. The transfer and mixing of fluid 

between adjacent vortices is small and the vortex cells seem independent. This is to say 

that the cross-flow between the vortices in this region is small when compared with the 

cross-flow in the other two regions at the end boundaries. This region may be described as 

a region of zero net axial flow and sits between the other two regions as their common 

interface. 

The three regions identified in Figure 7.7(a) also exhibit a unique flow pattern at the 

inflow and the outflow boundaries. In the first and third regions in Figure 7.7(a), the 

inflow and outflow boundaries are twisted along the path marked by the red and blue 

curves and they are not perpendicular to the inner and outer cylinder walls. These flow 

patterns are typical characteristics of wavy vortex flow, as detailed in the review of section 

2.2.4.  

The velocity vector map of Figure 7.7(b) for the test case  = 7.81 exhibits a similar 

pattern to the one of the velocity vector map for test case  = 11.36, with three regions 

along the axial direction. The first region ranges over 0  X/Ri  3.8, the second region 

ranges over 3.8  X/Ri  6.2, and the third region ranges over 6.2  X/Ri  10. In the first 

and the third regions, the centres of a pair of vortices are displaced in the same alternate 

pattern as in Figure 7.7(a) for the test case  = 11.36. As observed for the test case  = 

11.36 in Figure 7.7(a), transfer and mixing of fluid between adjacent vortices occurs in 

these two regions, especially in the outflow regions, indicating that vortex cells are not 

independent in these regions. Also, in these regions, the outflow is stronger than the 

inflow, consistent with the result for the test case  = 11.36.  

In the second region in Figure 7.7(b), which is the central region, over the range 3.8  X/Ri 

 6.2, the centres of the vortices do not lie on r = Ri + 0.5d line. The vortex centres are 

displaced toward the wall of the outer cylinder and are almost at the same radial position 

in both the lower ( = -/2) and the upper ( = /2) channels. In this region, the transfer 

and mixing of fluid between adjacent vortices is comparably small.  
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As in test case  = 11.36 in Figure 7.7(a), in the first and third regions in Figure 7.7(b), the 

outflow boundaries are twisted and they are not perpendicular to the inner and outer 

cylinder walls. In the second region of Figure 7.7(b), the inflow and outflow boundaries at 

 = /2 are more perpendicular to the inner and outer cylinder walls. However, the radial 

variation of the vortex centre position along the axis approaching the end walls indicates 

that the flow regime is still that of a wavy vortex flow. It is more difficult to detect the 

waviness of the flow in the second region from the velocity field in the meridional plane 

shown in Figure 7.7(b) by visual observation. However, close examination of the velocity 

field in Figure 7.7(b) shows a radial displacement of the vortices based on the location of 

the vortex centres. The axial displacement of the vortex centre in the axial position at  = 

/2 is not as evident in Figure 7.7(b) as in Figure 7.7(a). However, from Figure 7.8(b), 

there is clear evidence of axial and radial displacement as well as of waviness in the flow 

at  = 7.81. 

In Figure 7.7 for both test cases, it is also observed that (1) the interaction of the waviness 

with the end-walls does not result in disorder in the flow, either in the vortex near each 

end-wall or in those farther from the end-walls, (2) the waviness does not significantly 

alter the boundary layer between the vortex near the end-walls and the end-walls, and (3) 

the waviness penetrates through the full axial extent of the cylinders and it is not limited to 

the end-walls in these test cases. In Figure 7.7(a) and Figure 7.7(b), the waviness seems 

stronger at the end-walls compared to the central regions of the annulus. In Figure 7.7(a) 

for the test case  = 11.36, the observed waviness seems to extend more into the central 

region of the annulus from the end-walls than for the test case  = 7.81 in Figure 7.7(b). 

However, the instantaneous velocity vector map in Figure 7.8(b) for the test case  = 7.81 

discussed in section 7.5.2 shows that the waviness also penetrates through the full axial 

extent of the cylinders.  

Observations (1) and (2) in the previous paragraph are in agreement with those made by 

Czarny et al. (2004). However, there are some discrepancies in the flow pattern observed 

in this work with respect to the one modelled by CFD by Czarny et al. (2004), especially 

in Figure 7.7(a). Firstly, Czarny et al. (2004) observed a diminished waviness near the 

end-walls in their numerical predictions. They attributed this result to the flatness of the 

end-walls rather than a result of the no-slip condition. Secondly, they reported that the 

observed waviness is present just one or two vortices away from the end-walls, indicating 

that the effect of the end-walls on the waviness does not penetrate far from the end-walls. 
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These observations are different from the experimental evidence in this work. There are 

two likely reasons for these discrepancies. The first reason is that the study by Czarny et 

al. (2004) was not an experimental investigation, but rather a numerical simulation with 

perfectly normal and smooth end-walls and with certain assumptions being made. The 

second reason is that the radius ratio upon which their investigation was conducted is 

different from the radius ratio studied in this work. The extent of the waviness cannot be 

adequately quantified by a mere flow pattern visualisation and further insight is given 

from the analysis of the location of the vortex centres presented in section 7.5.5. 

In Figure 7.7, the variation in the radial position of the vortices in the axial direction is 

shown by the location of the vortex centres. When the vortices at  = -/2 and those at  = 

/2 are compared with one another at the same axial position, a variation of the axial 

position of the vortex centres is not clearly seen. In the present study, the normalised axial 

spacing between the vortex centres is larger than the normalised radial spacing between 

the vortex centres for both test cases. The physical axial spacing is also larger than the 

physical radial spacing between the vortex centres. This may explains why the axial 

displacement of the vortex centres is not clearly seen in this study. In the experimental 

investigation conducted by Wereley and Lueptow (1998), they observed oscillations in 

both the axial and radial directions, with the former being the greatest. In their experiment, 

the working fluid was a mixture of water, glycerol, sodium iodide, and trace amounts of 

sodium thiosulfate with silver-coated hollow glass spheres of an average diameter of 

14m added as PIV seed particles in a volume concentration of about 1.0 x 10
-4

. In the 

current work, air at ambient temperature and pressure is the working fluid. The observed 

difference may be ascribed to the different fluids being used in the two experiments. 

Generally, it is difficult to make a direct comparison between the results obtained in this 

study and those reported in the literature, as the flow characteristics depend on the 

combination of radius ratio (), aspect ratio (), end-wall conditions, and Reynolds 

number/Taylor number. In this work,  = 11.36,  = 0.53, and Re = 1973 for the first test 

case. For the second test case,  = 7.81,  = 0.53, and Re = 2870.  In both test cases, the 

resulting flow regime is Wavy Vortex Flow (WVF). Wereley and Lueptow (1998) first 

observed non-wavy vortex flow at Re = 102 and WVF at Re = 131, which persisted up to 

Re = 1221, while testing at  = 47.7 and  = 0.830. Walden and Donnelly (1979) observed 

transition to WVF at different Reynolds numbers depending on . For instance, at  = 20 

and  = 80, the transition to WVF occurred at Re = 2614 and at Re = 3089 respectively. 
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Their test range was   20 and  = 0.875. Walden and Donnelly (1979) stated that the re-

emergence of wavy vortices above the turbulent vortex transition occurs only for a 

sufficiently large aspect ratio   25. They attribute this threshold to the influence of end 

effects in short devices. Takeda (1999) determined by experiment the first critical 

Reynolds number Rec = 134.57 and observed WVF over the range 1830  Re  4845 at  

= 20 and  = 0.904. Wang et al. (2005) observed the reappearance of azimuthal waves at a 

high Reynolds number in cylinders at  = 34 and  =0.733. Akonur and Lueptow (2003) 

first observed non-wavy vortex flow at Re = 97.1 and WVF at Re = 126 for  = 47.8 and 

 = 0.81. The geometry parameters used by these investigators are quite different from the 

ones used in this work. Lewis and Swinney (1999) acquired velocity measurements at a 

high Reynolds number in an apparatus with an aspect ratio  over the range 9.8    

11.4. The aspect ratio used in the current work falls within this range, but the radius ratio 

 = 0.724 is higher than in this work. They observed the presence of azimuthal waves up 

to a Reynolds number Re = 9375, which is higher than the Reynolds numbers Re = 1970 

and Re = 2870 in this work. Therefore, some differences in the flow documented in this 

work with respect to the one in other investigations are to be expected, due to the 

differences in , , Re/Ta, and in the end-wall conditions. These four parameters have 

been shown by Cole (1976), Debler et al. (1968) Eagles (1971), Snyder and Lambert 

(1966), Snyder (1969a) to greatly influence the flow regime in Taylor-Couette system.  

 

7.5.2 Instantaneous flow structures 

The evolution of the instantaneous flow field in time was obtained in order to improve the 

understanding of the flow regime that develops in the annular region for test cases  = 

11.36 and  = 7.81. The velocity vectors in Figure 7.8(a) and Figure 7.8(b) show a 

sequence of three instantaneous velocity fields in the meridional plane  = -/2 for test 

cases  = 11.36 and  = 7.81 respectively. The velocity fields are taken in quick 

succession at recording times t = t0 + 0.0s, t = t0 + 0.25s, and t = t0 + 0.50s with the time 

increasing from bottom to the top, as shown by the arrows, where t0 is the PIV image 

acquisition start time. PIV acquisition is started after the inner cylinder has reached the 

steady rotational speed Ri. The instantaneous velocity vectors have been normalised by 

Ri. In each time frame in Figure 7.8(a) and Figure 7.8(b), the wall of the rotating inner 

cylinder is on the top side and the wall of the stationary outer cylinder is on the bottom 

side. The flow patterns in Figure 7.8(a) and Figure 7.8(b) show that the vortex centres 
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oscillate in the radial and axial directions. The result of this oscillation is the shift in the 

vortex centres with time, as shown by the black arrows in Figure 7.8(a) and Figure 7.8(b). 

However, the shifting of the vortex centres in the axial direction is more prominent in the 

test case  = 7.81 than in the test case  = 11.36. The flow pattern observed for the test 

case  = 7.81 is best described schematically by the wavy vortex flow pattern sketched in 

Figure 7.4. At the boundaries of the inflow and outflow regions, there is a slight 

displacement of the radially aligned velocity vectors in the axial direction with time, 

though not as significant as the vortex centre motion, as indicated by the red arrows in 

Figure 7.8(a) and Figure 7.8(b).  

 

    (a) 

 
  (b) 

Figure 7.8: Instantaneous velocity vectors in the meridional plane ( = -/2) for test cases 

(a)  =11.36 and (b)  =7.81. The time sequence t = t0 + 0.00s, t = t0 + 0.25s, and t = t0 + 

0.50s. 
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As earlier observed in Figure 7.7, the inflow and outflow boundaries are twisted. The 

observed flow features are evidence of the presence of azimuthal waves that characterise 

the wavy vortex flow regime. In Figure 7.8(a) and Figure 7.8(b), the magnitude of the 

vortex motion and of the oscillation of the inflow and outflow boundaries are not so 

significant as to fully disrupt the main Taylor vortex flow pattern. In Figure 7.8(b), the 

flow regime does not change with respect to that of Figure 7.8(a) but the instability 

develops across one additional degree of freedom, which is the axial motion of the 

instability waves. This is shown schematically in Figure 7.4. 

Considering the Taylor number at which the measurements are taken, the vortex centre 

motion suggests that the flow regime is the wavy vortex flow that probably re-emerges at 

high Taylor numbers. This may be related to the re-emergence of azimuthal waves at high 

Taylor number and larger aspect ratios reported by Walden and Donnelly (1979), Takeda 

(1999), Lewis and Swinney (1999), and Wang et al. (2005). The type of fluid mixing 

between adjacent vortices reported by Wereley and Lueptow (1998) at a high Taylor 

number is evident in the instantaneous velocity vectors in Figure 7.8(a) and Figure 7.8(b). 

The time-averaged velocity vectors and the instantaneous velocity vector field in Figure 

7.7 and Figure 7.8 show that the inflow and the outflow boundaries are not all flat and 

perpendicular to the cylinder wall. 

Figure 7.9(a) and Figure 7.9(b) show the normalised instantaneous radial velocity profiles 

at a constant radial distance r = Ri + 0.5d on the lower ( = -/2) channels of the 

meridional plane for the test cases  = 11.36 and  = 7.81. The profiles are obtained from 

the sequence of the three velocity vector map in Figure 7.8 for both test cases. These 

profiles exhibit the same trend of alternating radial velocity maxima and minima. The 

shapes of the radial velocity maxima and minima are essentially constant in the time 

sequence of 0  t + t0  0.5 seconds. The locations of the radial velocity maxima in Figure 

7.9 mark the meeting points of the radial outflow between two adjacent vortices (induced 

downwells at  = -/2 and induced upwell at  = /2) on the meridional plane. Similarly, 

the locations of radial velocity minima mark the meeting point of the radial inward flow 

between two adjacent vortices (induced upwells at  = -/2 and induced downwell at  = 

/2) in the meridional plane, as discussed in the context of Figure 6.16. The locations of 

the zero crossing of the radial velocity mark the centres of each vortex. The radial velocity 

profiles in Figure 7.9 further confirm that the variation in the radial velocity distribution 

among the three instantaneous flow fields is quite small. The profiles in Figure 7.9(a) for 
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the test case  = 11.36 show a smaller variation in the radial velocity distribution among 

the three instantaneous flow fields when compared with the profiles in Figure 7.9(b) for 

the test case  = 7.81.  

From the instantaneous velocity vectors of Figure 7.8 and the radial velocity profiles in 

Figure 7.9, there seems to be a small contribution to the unsteady radial velocity due to 

travelling azimuthal waves. This indicates that the travelling azimuthal waves responsible 

for the wavy vortex flow are present at this high Reynolds number. Some of the features 

of wavy vortex flow reported by previous researchers are not observed in both the mean 

velocity vector maps and the instantaneous velocity vectors of Figure 7.7 and Figure 7.8 

respectively. However, based on the visual observation and the analysis from Figure 7.7 to 

Figure 7.9, the flow pattern throughout the annulus in these test cases exhibits the main 

characteristics of wavy vortex flow. 

 

(b) 

 

(b) 

Figure 7.9: Normalised instantaneous radial velocity at constant radial position r = Ri + 

0.5d on the meridional plane  = -/2 at times t = t0 + 0.00s, t = t0 + 0.25s, and t = t0 + 

0.50s for the test cases (a)  = 11.36 and (b)  =7.81. 
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7.5.3 Axial and radial velocity contour plots  

Figure 7.10 and Figure 7.11 show the contour plots of axial and radial velocity in the 

meridional plane from PIV for the test cases  = 11.36 and  = 7.81. All velocities are 

normalised by the surface speed of the inner cylinder Ri. The contour lines of the plots in 

Figure 7.10 and Figure 7.11 are evenly spaced with the contour spacing of 0.03Ri, which 

is the same contour spacing used for the coaxial cylinder test cases  = 11.36  and  = 

7.81 in the CFD simulations in chapter six.   

Figure 7.10(a) and Figure 7.10(b) show the contour plots of the axial velocity for the test 

cases  = 11.36 and  = 7.81 respectively. The formation of an alternating pattern of axial 

velocity maxima and minima in the annulus in the same axial position as the vortex 

centres is shown in Figure 7.10 for both test cases. 

 

(a) 

 

(b) 

Figure 7.10: Contour plots of axial velocity in the meridional plane normalised by Ri 

with contour spacing ur = 0.03Ri for the test cases (a)  = 11.36 and (b)  = 7.81. 
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The zero contour lines between the axial velocity maxima and minima in Figure 7.10(a) 

and Figure 7.10(b) are the radial positions of the vortex centres in Figure 7.7(a) and Figure 

7.7(b). The contour plots in Figure 7.10 exhibit similar features as the contour plots 

obtained from the CFD simulation results discussed in details in the context of Figure 6.8.  

Figure 7.11(a) and Figure 7.11(b) show the normalised radial velocity contour plots for the 

test cases  = 11.36 and  = 7.81 respectively with an alternating pattern of radial velocity 

minima and maxima along the axial direction. As in the radial velocity contour plots 

obtained from the CFD simulations in Figure 6.9, the contour plots in Figure 7.11 are 

colour coded. This feature has been discussed in the context of Figure 6.9. The positive 

and negative values on these contour clusters indicate outward flow regions and inward 

flow regions respectively at  = -/2 at the meeting point of two adjacent vortices in 

Figure 7.7. 

 

(a) 

 

(b) 

Figure 7.11: Contour plot of radial velocity in the meridional plane normalised by Ri 

with contour spacing ur = 0.03Ri for the test cases (a)  = 11.36 and (b)  = 7.81. 

-0.06

0 0 0 0 0 0

0.03

-0.12

0.03

-0.12

0.03

-0.12
0

0.03

0
-0.12

0

0.03

0
-0.12

0

0.03

0

-0.03

X/R
i

r/
R

i

0 1 2 3 4 5 6 7 8 9 10

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6
0

0.03

0
-0.09

0

0.03

0
-0.09

0

0.03

0
-0.12

0

0.03

0
-0.12

0

0.03

0 -0.12
0

0.03

0

-0.03

-0.06

-0.12

0

0.15

0

-0.12

0

0.15

0

-0.12

0
0.18

0

-0.12

0
0.15

0
-0.09

X/R
i

r/
R

i

0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0

0.15

-0.12

0

0.15

0

-0.12

0

0.18

0

-0.12

0

0.15

0
-0.12-0.12



187 

 

The axial boundaries that show the zero velocity contours between the negative and 

positive values on these contour clusters run through the centres of the vortices in Figure 

7.7. The radial velocity contours in Figure 7.11 show the same features and are consistent 

with the contour plots of Figure 6.9 for the CFD simulations. The observed twelve 

vortices and thirteen radial velocity extrema shown for the test case  = 11.36 in Figure 

7.11(a), and eight vortices and nine radial velocity extrema shown for the test case  = 

7.81 in the entire domain of Figure 7.11(b) is in quantitative agreement with the CFD 

simulation result in Figure 6.9. All the flow features observed in Figure 7.11(a) and Figure 

7.11(b) has been discussed in details in the context of Figure 6.9 in chapter six. 

 

7.5.4 In-plane velocity profiles in the meridional plane 

This section presents a detailed quantitative analysis of the in-plane velocity profiles 

obtained from the velocity vectors in the meridional plane of Figure 7.7(a) and Figure 

7.7(b) for the test cases  = 11.36 and  = 7.81. Velocity profiles were extracted and 

plotted at three constant radial positions along the axial direction on the lower ( = - /2) 

channel of the annulus from Figure 7.7(a) and Figure 7.7(b). The radial positions along the 

lower channel on the meridional plane for the test case  = 11.36 are r = Ri + 0.875d 

(2.75mm away from the wall of the outer cylinder), r = Ri + 0.5d (the mid-span gap of the 

annulus), and r = Ri + 0.125d (2.75mm away from the wall of the inner cylinder). The 

positions of the constant radial line where the profiles are extracted are 1.75mm inbounds 

from the walls of the inner and outer cylinders with respect to the positions shown in 

Figure 6.15 for the test case  = 11.36. These positions are chosen because the PIV 

interrogation areas overlap close to the wall, as such the PIV is unable to measure 

accurately closer than 2mm from the wall. For the test case  = 7.81, the positions of the 

constant radial line where the profiles are extracted are taken at the same percentage gap 

width d as for test case  = 11.36. The velocity profiles presented here have been 

normalised with respect to the inner cylinder surface speed Ri.  

The velocity profiles cut through the inward and outward flow regions of Figure 7.7(a) 

and Figure 7.7(b) for the test cases  = 11.36 and  = 7.81 respectively. In the velocity 

profiles of Figure 7.12 to Figure 7.17, the PIV error bands are included to document the 

experimental uncertainty. The experimental uncertainty is calculated based on the standard 

deviation, , computed from the measurements. The standard deviation shows how much 

variation or dispersion a set of data has from its average or mean value. A low standard 
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deviation indicates that the data points tend to be very close to the mean, whereas a high 

standard deviation indicates that the data points are spread out over a large range of 

values. Equation 6.8 has been used to compute the standard deviation values. 

In Figure 7.12 and Figure 7.13, the centres of the inward and outward flows are oblique 

saddle planes of axial velocity separating each Taylor vortex. The axial velocity profiles 

display alternating maxima and minima, with zero crossings in between, which is where 

the r = Ri + 0.5d, mid-span cylindrical surface intersects the oblique saddle planes in the 

meridional planes. The axial velocity is observed to be relatively small compared with the 

surface speed of the inner cylinder, with each maximum and minimum at r = Ri + 0.125d 

and r = Ri + 0.875d indicating the axial position of a vortex core.  

Figure 7.12(a) and Figure 7.12(b) show the normalised axial velocity profiles for the test 

cases  = 11.36 and  = 7.81 respectively along the meridional plane at constant radial 

positions r = Ri + 0.125d and r = Ri + 0.875d on the lower ( = -/2) channel with the PIV 

experimental uncertainty σ in black and red dashed lines.  

The normalised axial velocity profiles in Figure 7.12 show that the axial velocity maxima 

occur radially below the cores of clockwise vortices and the axial velocity minima occur 

radially below the cores of anti-clockwise vortices of Figure 7.7 for the profiles near the 

wall of the inner cylinder at r = Ri + 0.125d and  = -/2 for both test cases. Similarly, the 

profiles near the wall of the outer cylinder at r = Ri + 0.875d and  = -/2 show that the 

axial velocity maxima occur radially above the cores of the anti-clockwise vortices and the 

axial velocity minima occur radially above the cores of the clockwise vortices of Figure 

7.7 for both test cases.  

The normalised axial velocity maxima and minima at r = Ri + 0.125d and r = Ri + 0.875d 

in Figure 7.12 for both test caes occur almost at the same axial location along X/Ri. Each 

axial velocity maximum and minimum pair is almost radially aligned. The axial velocity is 

driven by the motion of the vortices. Each clockwise vortex induces an axial velocity 

maximum radially below its core at r = Ri + 0.125d and a minimum radially above its core 

at r = Ri + 0.875d at  = -/2. Similarly, each anti-clockwise vortex induces an axial 

velocity minimum radially below its core at r = Ri + 0.125d and a maximum radially 

above its core at r = Ri + 0.875d and at  = -/2. This flow pattern is similar and consistent 

with the computational results of Figure 6.8 and Figure 6.14 for both test cases. 

The profiles near the inner cylinder wall at r = Ri + 0.125d in Figure 7.12 show that the 

flow is almost centrally symmetric about the cylinder length mid-span at X/Ri = 5. That is, 
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the profile over the range 0 ≤ X/Ri ≤ 5 and the one over the range 5 ≤ X/Ri ≤ 10 seem to be 

mirror image of one another about the symmetry point X/Ri = 5. This is shown by the 

magnitude of the axial velocity maximum and minimum near the left end-wall and near 

the right end-wall respectively having almost the same magnitude. The profiles also show 

almost the same magnitude of the axial velocity maxima and minima in the central region 

of the annulus at 1.4 ≤ X/Ri ≤ 8.8 for the test case  = 11.36, and at 2 ≤ X/Ri ≤ 8 for the 

test case  = 7.81, about the mid-span length at X/Ri = 5.  

For the profile near the wall of the inner cylinder at r = Ri + 0.125d for the test case  = 

11.36 in Figure 7.12(a), the axial velocity maximum and minimum near the end-wall 

boundaries are approximately 0.2Ri and -0.2Ri respectively. For the same profile and 

the same test case, the axial velocity maxima and minima in the central region are 

approximately 0.17Ri and -0.17Ri respectively. These values correspond to 20% of the 

speed of the inner cylinder at the boundaries and approximately 17% in the central region. 

For the profile at the radial position r = Ri + 0.125d for the test case  = 7.81 in Figure 

7.12(b), the axial velocity maximum and minimum near the end-wall boundaries are 

approximately 0.17Ri and -0.17Ri respectively, while the axial velocity maxima and 

minima in the central region are approximately 0.15Ri and -0.15Ri respectively. These 

values correspond to 17% of the speed of the inner cylinder at the boundaries and 15% of 

the speed of the inner cylinder in the central region. At this radial position, the difference 

in the axial velocity between the two test cases is approximately 2%. 

The profile near the wall of the outer cylinder at r = Ri + 0.875d in Figure 7.12(a) for the 

test case  = 11.36 shows that the magnitude of the axial velocity minimum near the left 

end-wall is lower than the magnitude of the axial velocity minima in the central region of 

the annulus as well as near the right end-wall. The magnitude of the axial velocity minima 

is highest in the central region over the range 3.9  X/Ri  7.2. The magnitude of axial 

velocity maxima for the profile at this radial position is higher near the left end-wall over 

the range 1.4  X/Ri  4.6, from where it decreases toward the right end-wall. Over the 

range 1.4  X/Ri  4.6 in Figure 7.12(a), the axial velocity maxima near the left end-wall 

are 0.17Ri, whereas the axial velocity maximum near the right end-wall is 0.13Ri. The 

difference in the magnitude of axial velocity maximum near the left and the right end-

walls may be attributed to the influence of the slit at the left end wall through which the 

laser light sheet illuminates the flow in the PIV measurement area. The right end-wall was 

a complete end wall without any slit. The second factor may be due to the effect of light 
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reflection at the right end-wall during the experimental measurement. The difference in 

the end-wall conditions and the effect of light reflection gives the observed asymmetry 

near the wall of the outer cylinder. The axial velocity maxima over the range 4.6  X/Ri  

7.8 are approximately 0.15Ri. The axial velocity minima near the left and the right end-

walls at the same radial position r = Ri + 0.875d are approximately -0.12Ri and -0.16Ri 

respectively, whereas the axial velocity minima at the central region of the annulus over 

the range 3.9  X/Ri  7.2 is approximately -0.17Ri.  

The profile near the outer cylinder wall at r = Ri + 0.875d in Figure 7.12(b) for the test 

case  = 7.81 shows that the axial velocity is centrally symmetric about the mid-span X/Ri 

= 5. For instance, the magnitude of the axial velocity minimum near the left end-wall and 

the magnitude of the axial velocity maximum near the right end-wall are almost the same. 

Similarly, the axial velocity maximum at X/Ri = 2 is almost the same as the axial velocity 

minimum at X/Ri = 8. This trend is repeated along the central region of the annulus up to 

the mid-span position 4.3 ≤ X/Ri ≤ 5.7 where the axial velocity maximum and minimum 

are almost the same. This flow pattern is similar and consistent with the axial velocity 

profile from the CFD simulation in Figure 6.14(b). At this radial position, the axial 

velocity minimum near the left end-wall at X/Ri ≈ 0.8 is approximately -0.14Ri, whereas 

the axial velocity maximum near the right end wall at X/Ri ≈ 9.3 is approximately 

0.11Ri. The difference in the magnitude between these two axial velocity extrema has 

been attributed to the effect of light reflection at the right end-wall during the experimental 

measurement. The axial velocity minima and maxima at this radial position in the central 

region of the annulus are approximately -0.15 and 0.15 respectively.  

Figure 7.12(a) for the test case  = 11.36 shows that the PIV measurement uncertainty 

band is narrower near the left end-wall over the range 0  X/Ri  3, whereas the 

measurement uncertainty band is larger over the range 3  X/Ri  10, resulting in a larger 

spread of data points about the mean velocity profile.  

In Figure 7.12(b) for the test case  = 7.81, the PIV measurement uncertainty band is 

larger near the left and the right end-walls over the ranges 0  X/Ri  2.6 and 7.6  X/Ri  

10, whereas the measurement uncertainty band is narrower over the range 2.6  X/Ri  

7.6, resulting in a smaller spread of data points about the mean velocity profile in the 

central region of the annulus.  

The negatively sloped inflection points on the profile near the wall of the outer cylinder at 

r = Ri + 0.875d in Figure 7.12 correspond to the positions of the inflow regions in Figure 
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7.7 for both test cases. These positions correspond to the area where low momentum fluid 

near the outer wall is convected inwardly by the radial inflow. The inflections may 

therefore be an indication of a non-monotonic shear layer at the inflow region as a result 

of low radial momentum convected from the stationary outer cylinder.  

 

(a) 

 

(b) 

Figure 7.12: Normalised axial velocity profiles in the meridional plane at constant radial 

positions r = Ri + 0.125d and r = Ri + 0.875d with PIV error bands ( = -/2) for the test 

cases (a)  = 11.36 and (b)  = 7.81. 

 

The difference in the magnitude of the axial velocity near the wall of the inner cylinder 

and that near the wall of the outer cylinder in Figure 7.12 for both test cases is observed to 

be small, indicating that there is just a small imbalance of net axial flow along both walls, 

due to the flow regime being that of wavy vortex flow. In Figure 7.12(a) and Figure 

7.12(b), it is observed that the axial position of the maxima and minima near the wall of 

the inner cylinder are aligned with the corresponding axial position of the maxima and 
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minima near the wall of the outer cylinder. This further confirms the near zero net mass 

flux balance in the axial flow along both walls. As the fluid with high transported 

momentum is been convected from the wall of the inner cylinder, there is mixing of fluid 

at the confluence with the mirror stream from the adjacent vortex. As the fluid moves 

toward the outer cylinder, the amount of azimuthal momentum that was imparted by the 

inner cylinder rotation has not been significantly reduced before recirculating flow gets to 

the same axial position where the fluid near the wall of the outer cylinder displays an axial 

velocity peak, resulting in the velocity maxima near the wall of the inner cylinder and 

minima near the wall of the outer cylinder to almost be of similar magnitude at the same 

axial position. The same process applies to the axial velocity minima near the wall of the 

inner cylinder and maxima near the wall of the outer cylinder around clockwise Taylor 

vortices. 

Figure 7.13(a) and Figure 7.13(b) show the normalised axial velocity profiles at r = Ri + 

0.5d (the gap mid-span of the annulus) at  = -/2 for the test cases  = 11.36 and  = 7.81 

respectively. Axial velocity maxima occur close to the cores of clockwise vortices and 

axial velocity minima occur close to the cores of the anti-clockwise vortices. The speed 

range covered by the normalised axial velocity profiles at this radial position is relatively 

small compared to the surface speed of the rotating inner cylinder and the speed range of 

the corresponding profiles at r = Ri + 0.125d and r = Ri + 0.875d. These profiles 

qualitatively match the CFD trend discussed in Figure 6.15. Actually, the normalised axial 

velocity at this radial position should have been zero if not for the radial displacement of 

the vortex centres that prevents the centres from lying at r = Ri + 0.5d. Since the centres of 

the vortices do not lie along the r = Ri + 0.5d line, there is a small axial velocity induced 

by the vortices at Ri + 0.5d. The normalised axial velocity profiles in Figure 7.13 show 

that the axial velocity maxima are higher near the left end-wall than the axial velocity 

maxima in the central region and near the right end-wall, with the axial velocity maxima 

decreasing monotonically from the left end-wall to the right end-wall. For instance, Figure 

7.13(a) for the test case  = 11.36 shows the axial velocity maxima near the left and the 

right end-walls to be approximately 0.09Ri and 0.01Ri respectively. The normalised 

axial velocity profiles in Figure 7.13(a) shows that the axial velocity minima near the end-

walls are almost the same and are higher than the axial velocity local minima in the central 

region.  In the central region over the range 1  X/Ri  9, the axial velocity minima have 

almost the same magnitude of 0.04Ri. This corresponds to 4% of the surface speed of the 
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inner cylinder. This trend, which was also observed near the wall of the outer cylinder, has 

been discussed in the context of Figure 7.12. Figure 7.13(b) shows a similar trend as 

Figure 7.13(a). For the test case  = 7.81 in Figure 7.13(b), the axial velocity maxima near 

the left and the right end-walls are approximately 0.07Ri and 0.02Ri respectively. The 

axial velocity profile in Figure 7.13(b) shows that the axial velocity minimum near the left 

end-wall is higher than the axial velocity minima in the central central region and the axial 

velocity minimum near the right end-wall. 

 

(a) 

 

(b) 

Figure 7.13: Normalised axial velocity profiles in the meridional plane at constant radial 

position r = Ri + 0.5d ( = -/2) with PIV error bands for the test cases (a)  = 11.36 and 

(b)  = 7.81. 

 

It is not clear why there should be the axial decay in the magnitude of the axial velocity 

extrema with X/Ri along the constant radial position Ri + 0.5d shown in Figure 7.13, 

considering the fact that all the PIV vectors in Figure 7.7 seem validated, based on the 
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validated result in Figure 7.2 and Figure 7.3. The trend of the axial velocity profiles at this 

radial position has been attributed to a combination of two factors. These are (1) the effect 

of light sheet reflection at the right end-wall, the PIV being unable to measure accurately 

close to the wall, and (2) the misalignment in the wall boundaries, that is, if the end-wall 

boundaries were not perfectly aligned perpendicular to the inner cylinder rotation axis, 

then this may have resulted in a periodic forcing of the flow. A further contributory factor 

may be other unavoidable mechanical perturbations of the system.  

Figure 7.14(a) and Figure 7.14(b) show the normalised radial velocity profiles at the radial 

positions r = Ri + 0.125d, r = Ri + 0.5d, and r = Ri + 0.875d in the meridional plane of the 

lower ( = -/2) channel for the test cases  = 11.36 and  = 7.81 respectively. The radial 

velocity profiles in Figure 7.14 show that away from the end-wall boundaries, in the 

central region over the range 1  X/Ri  9 for the test case  = 11.36 and over the range 

1.4  X/Ri  8.56 for the test case  = 7.81, the radial velocity exhibits alternating minima 

and maxima along the positive axial direction. The radial velocity maxima and minima 

correspond to the outward flow regions and inward flow regions identified in Figure 7.7. 

The observed trend in Figure 7.14 is the same as that of the radial velocity profiles for the 

CFD results in Figure 6.16. The locations of the radial velocity maxima and the radial 

velocity minima in Figure 7.14 mark the meeting points of the radial outflow and radial 

inward flow respectively, between two adjacent vortices (induced downwells at  = -/2) 

on the meridional plane of Figure 7.7. The locations of the zero crossing of the radial 

velocity in Figure 7.14 mark the centres of each vortex at  = -/2 on the meridional plane 

of Figure 7.7.  

As in Figure 6.16 for the CFD, the radial velocity profiles in Figure 7.14 exhibit a periodic 

trend along the axial direction. This periodic trend is more obvious in the profile at the gap 

mid-span radial position r = Ri + 0.5d (-/2), this being the position at which the radial 

velocity reaches its maximum value. At this radial position, approximately six and four 

cycles of a periodic oscillation along X/Ri are shown in Figure 7.14(a) and Figure 7.14(b) 

for the test cases  = 11.36 and  = 7.81 respectively. The radial velocity profiles of 

Figure 7.14 also show that the radial velocity is not symmetric about ur = 0 along the gap 

mid-span r = Ri + 0.5d. For instance, the magnitude of maximum radial velocity at r = Ri + 

0.5d ( = -/2) for test case  = 11.36 is approximately 0.22Ri and the magnitude of 

minimum radial velocity is approximately 0.16Ri. This feature is as result of the 

displacement of the vortex centres in both the axial and radial directions discussed in 
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details in section 7.5.1 in the context of Figure 7.7 and Figure 7.8. The asymmetry of the 

radial velocity profiles has also been discussed in section 6.7.3 in the context of Figure 

6.16. 

The profiles in Figure 7.14 are replotted in Figure 7.15 to Figure 7.17 with the PIV 

experimental measurement uncertainty included. The red dashed lines above and below 

the velocity profiles in Figure 7.15 to Figure 7.17 delimit the PIV measurement 

uncertainty error band, which is determined from the statistical procedure of section 6.7.3 

using equation 6.8. 

 

(a) 

 

(b) 

Figure 7.14: Normalised radial velocity profiles in the meridional plane at constant radial 

positions r = Ri + 0.125d, r = Ri + 0.5d, and r = Ri + 0.875d at  = -/2 for the test cases 

(a)  = 11.36 and (b)  = 7.81. 

 

Figure 7.15(a) and Figure 7.15(b) show the enlarged normalised radial velocity profiles at 

r = Ri + 0.125d for the test cases  = 11.36 and  = 7.81 respectively. The radial velocity 
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maxima and minima near the left end-wall of Figure 7.15 are observed to be slightly 

different compared to the ones at the right end-wall. This feature is probably due to the 

difference in the boundary conditions at the two end-walls, as discussed in the context of 

Figure 7.12 and to the limitations of the PIV techniques as discussed in the context of 

Figure 7.13. 

 

(a) 

 

(b) 

Figure 7.15: Normalised radial velocity profiles in the meridional plane at constant   

      radial position r = Ri + 0.125d,  = -/2 with PIV error band for the test cases (a)  = 

11.36 and (b)  = 7.81. 

 

The peak of the outward flow in Figure 7.15 is sharper than the peak of the inward flow, 

indicating that the strength of the induced radial velocity by the vortices is higher at the 

outflow regions than at the inward flow regions at either side of each oblique saddle plane. 

Figure 7.16(a) and Figure 7.16(b) display the normalised radial velocity profiles at the gap 

mid-span of the annulus at r = Ri + 0.5d for the test cases  = 11.36 and  = 7.81 
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respectively, with the PIV uncertainty error band. The trend of the radial velocity profile 

in Figure 7.16 is similar to that of the CFD results discussed in the context of Figure 6.17.   

The radial velocity profiles in Figure 7.16 show that the radial velocity local minimum 

near the left end-wall is lower than the radial velocity local minimum near the right end-

wall. The variation is attributed to the difference in the boundary conditions at these walls. 

At the central region of the annulus, the radial velocity local minima are smaller than the 

radial velocity local minima near the left and the right end-walls.  

 

(a) 

 

(b) 

Figure 7.16: Normalised radial velocity profiles in the meridional plane at constant     

   radial position r = Ri + 0.5d,  = -/2 with PIV error band for the test cases (a)  = 11.36 

and (b)  = 7.81. 

 

The radial velocity maxima near the end-wall boundaries in Figure 7.16 are almost the 

same, with radial velocity magnitude of approximately 0.2Ri. Near the right end-wall in 

Figure 7.16(a), the radial velocity maximum is slightly lower with a magnitude of 
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approximately 0.18Ri. At the central region of the annulus in Figure 7.16, the radial 

velocity maxima are almost the same with a radial velocity magnitude of approximately 

0.22Ri.  

In Figure 7.16, the PIV measurement uncertainty band is essentially uniform in the axial 

direction over the range 1  X/Ri  9.2 for test case  = 11.36 and over the range 1.4  

X/Ri  8.6 for test case  = 7.81. This resulted in a narrower spread of data points about 

the mean velocity profile over the entire annulus compared to Figure 7.15. The peak of the 

outward flow in Figure 7.16 is sharper than the trough of the inward flow. This trend has 

been discussed in the context of Figure 7.15. 

Figure 7.17(a) and Figure 7.17(b) display the normalised radial velocity profiles near the 

wall of the outer cylinder at r = Ri + 0.875d for the test cases  = 11.36 and  = 7.81 

respectively. These profiles differs from the profiles at r = Ri + 0.125d shown in Figure 

7.15. At the outward flow regions, the profiles at the radial positions r = Ri + 0.125d and r 

= Ri + 0.875d show one single peak. The inward flow pattern is instead quite different, as 

the single trough minima observed at r = Ri + 0.125d in Figure 7.15 has been replaced by 

double trough minima at r = Ri + 0.875d in the profiles of Figure 7.17. This trend was also 

observed in the CFD radial velocity profiles in Figure 6.17 for the same test cases. This 

phenomenon has been discussed in details in chapter six in the context of Figure 6.17.  

The normalised radial velocity profiles in Figure 7.17(a) and Figure 7.17(b) display higher 

amplitude radial velocity maxima and minima near the left end-wall than at the right end-

wall. In Figure 7.17(a) and and Figure 7.17(b), the magnitudes of the radial velocity 

maxima and minima vary from one axial location to the other in the entire annulus. This 

trend, which is attributed to the misalignment in the wall boundaries and other 

unavoidable mechanical perturbations of the system, has been discussed in the context of 

Figure 7.13. 

In Figure 7.17(b), the normalised radial velocity profiles seem to be an approximate mirror 

image of one another about the annulus mid-span X/Ri = 5, allowing for the asymmetric 

end-wall boundary effects. At X/Ri = 5, the double trough minima have almost the same 

radial velocity magnitude. Similarly, the radial velocity maxima over the range 3.8  X/Ri 

 6.2 have almost the same magnitude. The radial velocity profile to the left and right of 

X/Ri = 5 over the range 3.8  X/Ri  6.42 in Figure 7.17(b) exhibits a symmetric trend. 

This symmetry indicates a net balance in the radial velocity mass transport along the 

central region of the annulus near the wall of the outer cylinder. 
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(a) 

 

 

(b) 

Figure 7.17: Normalised radial velocity profiles in the meridional plane at constant    

      radial position r = Ri + 0.875d,  = -/2 with PIV error band for the test cases (a)  = 

11.36 and (b)  = 7.81. 

 

7.5.5 Parametric analysis of the Taylor vortices 

This section documents the variation of the Tayor vortex centre and Taylor vortex size 

with the parameter  for the test cases  = 11.36 and  = 7.81.  

 

Analysis of Taylor vortex centres 

The locations of the Taylor vortex centres for the coaxial cylinders test cases  = 11.36 

and  = 7.81 are estimated as in section 6.7.8. The axial coordinate Xc and the radial 

coordinate rc of each of the vortex centre are used to mark the centres of the vortices in 

Figure 7.18. The numerical values of the vortex centre coordinates for the test cases  = 

11.36 and  = 7.81 can be found in Table B 3 and Table B 4 of appendix B.  
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(a) 

 

(b) 

Figure 7.18: Velocity vectors showing the centre of the vortices in red and black on the 

meridional plane at  = /2 for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

The axial and radial values reported in Table B 3 and Table B 4 and the positions of red 

and black markers on both the lower ( = -/2) and the upper ( = /2) channels of Figure 

7.18 further confirm that the vortex centre radial positions vary along X/Ri. The amplitude 

of the spatial oscillation of the vortex centres is analysed in details in the discussion of 

Figure 7.19 and Figure 7.20. 

Figure 7.19(a) and Figure 7.19(b) show the plots of the normalised axial position of the 

Taylor vortex centres as a function of their normalised radial position in the meridional 

plane for the test cases  = 11.36 and  = 7.81 respectively. Figure 7.19 uses the same 

open and filled symbols as in Figure 7.18 to identify the vortex centres at  = /2. Figure 

7.19(a) and Figure 7.19(b) are used to illustrate the radial spread of the vortex centres in 
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the meridional plane at  = /2 for both test cases. The black dashed lines toward the top 

and bottom of Figure 7.19 represent respectively the maximum and minimum limits of the 

spread band about the vortex centre mean radial position value, averaged along X/Ri. The 

standard deviation of the vortex radial positions was used to size the spread band using 

equation 6.8, assuming a normal distribution. The axial position in Figure 7.19 has been 

normalised by the inner cylinder radius Ri, while the radial position is normalised by the 

cylinder gap width d. This is related to the cylindrical coordinates system of Figure 6.1 by 

the ordinate in Figure 7.19 being equal to (r – Ri)/d. The vortices have been numbered in 

the sequence shown in Figure 7.18, starting at the left end-wall along the positive axial 

direction. From Figure 7.18, the axial distance from the centre of each vortex to the centre 

of the next one to the right of it in the same plane at  = /2 is estimated. From Figure 

7.18(a), Figure 7.18(b), Figure 7.19(a), and Figure 7.19(b), a streamwise variation in the 

radial position of the Taylor vortex centres along the cylinders in each channel is evident.  

Comparing the locations of the vortex centres between the lower and upper channels of 

the annulus in Figure 7.19, a small variation in the axial position of the vortex centres 

between  = /2 and  = -/2 is noticeable.  In Figure 7.19, there is a larger variation in 

the radial location of the vortex centres at  = -/2 and  = /2 for many of the vortices 

due to the spatial oscillation of the vortices along X/Ri in the normalised radial position (r 

– Ri)/d. These observations stand whether the vortex radial and axial coordinates are stated 

as dimensional or non-dimensional. 

The vortex centres in both the lower and the upper channels ( = /2) in Figure 7.18(a) 

and Figure 7.18(b) are displaced in a well-organised pattern, such that, when one vortex is 

displaced toward the wall of the stationary outer cylinder, the next vortex is displaced 

toward the wall of the rotating inner cylinder. This is also shown in Figure 7.19(a) and 

Figure 7.19(b), suggesting that this feature is independent from the aspect ratio  over the 

range tested. This pattern further confirms the inference from Figure 7.7 and Figure 7.8 

that the flow regime in the coaxial cylinder test cases  = 11.36 and  = 7.81 is that of 

wavy vortex flow.  

In Figure 7.19, it is observed that the radial displacement of the vortex centres in the lower 

and upper channels ( = /2) is highest near the end-walls over the range 0  X/Ri   4.5 

and 6.2  X/Ri   10 for the test case  = 11.36, and over the range 0  X/Ri   3.2 and 6.7 

 X/Ri   10 for the test case  = 7.81. That is, the radial spacing of the vortex centres 

toward the end-wall boundaries is higher than in the central region and follows a 
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symmetric pattern about X/Ri = 5. In the central region of the annulus, the radial spacing 

of the vortex centres at  = /2 are less spread out radially, as observed and discussed in 

the context of Figure 7.7. 

Figure 7.19(a) for the test case  = 11.36 shows that there is a larger radial spacing 

between the centres of vortices 1 and 2, 2 and 3, 3 and 4, 4 and 5, 8 and 9, 9 and 10, 10 

and 11, as well as 11 and 12 in both the lower and upper channels ( = /2) of the 

annulus. These are the vortices near the end-wall boundaries. The radial spacing between 

vortices 1 and 2 as well as vortices 11 and 12 is directly affected by the end-wall 

boundaries, as discussed in section 6.7.8. The radial spacing between the centres of the 

vortices 5 and 6, 6 and 7, and 7 and 8 is comparatively smaller, these being the vortices in 

the central region of the annulus. That is, the vortices in the central region of the annulus 

are less scattered radially. 

Similarly, the plot for the test case  = 7.81 in Figure 7.19(b) shows that, in both the lower 

and the upper channel ( = /2), a larger radial spacing occurs between vortices 1 and 2, 

2 and 3, 6 and 7, as well as vortices 7 and 8. These are also the vortices near the end-wall 

boundaries. As for the test case  = 11.36 in Figure 7.19(a), the radial spacing between 

vortices 1 and 2 as well as vortices 7 and 8 are directly affected by the end-wall 

boundaries for the test case  = 7.81. The radial spacing between vortices 3 and 4, 4 and 5, 

and 5 and 6 is comparatively smaller. These vortices in the central region of the annulus 

are relatively well-organised with a lower amplitude radial oscillation at both the upper 

and lower channels ( = /2) compared to the vortices at end-walls and those nearest to 

it. This feature shows the effect of the end-walls on the vortex centre distribution in 

addition to the flow regime type for both test cases. In Figure 7.19(b), the vortices in both 

the lower ( = -/2) and the upper ( = /2) channels exhibit an approximately symmetric 

trend about (r – Ri)/d = 0.59. 

Based on the dimensions of the geometry of the PIV experimental apparatus, the 

normalised radial position between the inner and the outer cylinders is in the range 0  (r - 

Ri)/d  1, which means the gap mid-span (r = Ri + 0.5d) of the annulus is located at (r - 

Ri)/d = 0.5 for both test cases. In Figure 7.19(a) for the test case  = 11.36, 92% of the 

vortex centres lie above the mid-gap r = Ri + 0.5d. This clearly shows that the Taylor 

vortex centres are not symmetric about the gap mid-span of the annulus. Figure 7.19(a) 

shows that approximately 71% of the vortex centres is within the spread band delimited by 
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the dashed lines, an indication that there are a few outliers outside the 1 standard 

deviation band.  

 

(a) 

 

(b) 

Figure 7.19: Axial and radial position of vortex centres in the meridional plane with    

         data spread bands about the vortex centre mean value from PIV for the test cases (a) 

 = 11.36 and (b)  = 7.81. 

 

Figure 7.19(b) for the test case  = 7.81 shows that all vortex centres lie above the mid-

gap r = Ri + 0.5d. This result is consistent with the result obtained from the CFD in Figure 

6.37(b), in which all the vortex centres are displaced toward the wall of the outer cylinder. 

This features is however different from the results obtained for the PIV test case  = 

11.36, in which the centres of some vortices are located toward the wall of the outer 
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cylinder above the mid-gap r = Ri + 0.5d, while some are located toward the wall of the 

inner cylinder below the mid-gap r = Ri + 0.5d, as shown in Figure 7.19(a).  

Despite the fact that all the vortex centres cluster toward the wall of the outer cylinder for 

the test case  = 7.81, Figure 7.19(b) shows that approximately 69% of the vortex centres 

is within the radial spread band, so that 31% of the vortex centres lie outside the 1 

standard deviation band.  

Comparing Figure 7.19(a) with Figure 7.19(b), it is noticeable that the vortex centres for 

the test case  = 11.36 are more scattered radially within the annulus than the vortex 

centres for the test case  = 7.81. This is evidenced by the spread bands of the vortex 

centres in Figure 7.19(a) and Figure 7.19(b). In fact, the area occupied by the vortex 

centres spreads over the range 0.46  (r - Ri)/d  0.65 radially for the test case  = 11.36, 

while the area occupied by vortex centres spreads over the narrower range 0.54  (r - Ri)/d 

 0.64 radially for the test case  = 7.81. This shows that the radial spread of the vortex 

centres in these PIV experimental test cases is affected by the change in the gap width d. 

Figure 7.20(a) and Figure 7.20(b) display the spread of the vortex centre positions in the 

axial and radial directions in the meridional plane at the lower ( = -/2) channel from 

Figure 7.18. The spread is estimated from the analysis of 100 instantaneous PIV vector 

maps, following the same procedure detailed in section 6.7.3. The vertical orange bars 

show the minimum and maximum radial displacement of each vortex centre at  = -/2 

estimated from one standard deviation of the 100 vector maps, while the horizontal blue 

bars represent the minimum and maximum axial displacement of each vortex centre mean 

value at  = -/2. The standard deviation of the vortex radial and axial displacements was 

used to size the spread band in Figure 7.20 using equation 6.8, assuming a normal 

distribution. The bars in Figure 7.20 show the extent by which the vortex centres are 

displaced radially and axially in the annulus as azimuthal waves travel around the axis of 

the rotating inner cylinder. As the azimuthal waves travel around the rotating inner 

cylinder, the vortex centres are displaced vertically upward and downward, as well as 

horizontally backward and forward with time, as discussed in the context of Figure 7.5. 

The displacement of the vortex centres in these directions results in the spread rate about 

the vortex centre mean value in the axial and radial directions shown by the plots in Figure 

7.20. In agreement with the observation made in Figure 7.7 and Figure 7.18, the time 

average positions of the vortex centres are displaced toward the inner cylinder and toward 

the outer cylinder in an alternating fashion, so that where the mean position at  = /2 is 
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towards the inner rotating cylinder at a given X/Ri, the corresponding mean radial position 

of the vortex centre at  = -/2 at the same X/Ri is towards the stationary outer cylinder. In 

Figure 7.20(a) and Figure 7.20(b), although the spread of vortex centres in the axial and 

radial positions of the meridional plane at the upper ( = /2) channel was not estimated, 

these figures clearly indicate that there would be an overlap in the spread for both the 

upper and lower channels. 

 

(a) 

 

(b) 

Figure 7.20: Statistical data spread rate of vortex centre in the axial and radial positions in 

the meridional plane at  = -/2 for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

The axial displacement of the vortex centres cannot be compared directly with the radial 

displacement of the vortex centres in Figure 7.20, as both axes are not on the same scale. 

The axial variation of the vortex centre appears to be small compared to the axial spacing 

of the vortices. 
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Vortex size and end-wall effects 

The half wavelength, /2, as defined in the analysis of the vortex size in section 6.7.8, was 

estimated from Figure 7.18 for each vortex using the same procedure discussed in chapter 

six. The axial vortex size estimated from Figure 7.18 is tabulated in Table 7-1 and for the 

test cases  = 11.36 and  = 7.81 respectively. From Table 7-1 and Table 7-2, the effect of 

end-wall boundaries and of the flow waviness on the axial distribution of the vortex 

centres is apparent. For the test case  = 11.36 in Table 7-1, from the left end-wall, vortex 

1 and, from the right end-wall, vortex 12 are directly affected by the stationary end-walls. 

Similarly, for the test case  = 7.81 in Table 7-2, from the left end-wall, vortex 1 and, 

from the right end-wall, vortex 8 are directly affected by the stationary end-walls.  

From Table 7-1 for the test case  = 11.36, it is observed that the elongated vortices 1 and 

12 and the flow waviness affect the vortex axial length XL of the neighbouring vortices 

toward the central region of the annulus. Specifically, vortices 2, 3, and 4, as well as 

vortices 9, 10, and 11 are affected by these end-wall vortices. Similarly, from Table 7-2 

for the test case  = 7.81, the elongated vortices 1 and 8 and the flow waviness affect the 

vortex axial length XL of the neighbouring vortices 2 and 3 as well as vortices 6 and 7. 

This trend matches that from the CFD predictions in 6.7.8. 

From Table 7-1 and Table 7-2, the axial half wavelength of the vortices shows a definite 

pattern. Specifically, the axial spacing between consecutive vortices varies in an alternate 

manner for the test case  = 11.36 and varies in a symmetric manner for the test case  = 

7.81. For test case  = 11.36 in Table 7-1, considering the vortices as pairs, the first set is 

composed of an elongated vortex 1 and an axially shortened vortex 2. Vortex 2 

compensates for the elongated vortex 1 by a reduction in its axial length. Likewise, vortex 

4 compensates for elongated axial size of vortex 3 by a decrease in its axial length. From 

the right end-wall, the same trend is observed with the axial length of vortex 11 reduced to 

compensate for the elongated vortex 12. Vortex 9 is reduced to compensate for the 

elongated in the axial length of vortex 10.  As the vortices develop toward the centre of 

the computational domain, the vortices become more equi-spaced with the axial length of 

the vortices 5, 6, 7 and 8 being almost the same.  

For the test case  = 7.81 in Table 7-2, considering the first three vortices from the left 

end-wall, their axial length reduces monotonically in the positive axial direction. A 

symmetric trend is observed at the right end-wall, in which the vortical axial length 

reduces monotonically in the negative axial direction. In the central region, vortices 3 and 
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4 form a shorter vortex pair than vortices 1 and 2, compensating for the elongation of 

vortices 1 and 2, due to the end-wall effects. Similarly, vortices 5 and 6 are a shorter pair 

compared to the end-wall vortex pair 7 and 8. This trend is different with respect to the 

alternating pattern of vortex lengths predicted by the CFD simulations in chapter six and 

results from the wavy vortex flow regime of the PIV experiment.  

From the estimated vortex axial length, an average is computed for both test cases without 

the first and the last vortices being included in the average, as their axial length is more 

affected by the end-walls than that of the vortices in the central region, as in the CFD 

prediction in chapter six.  

 

Table 7-1: Variation of vortex axial length with vortex number for test case  = 11.36. 

Vortex number Vortex  axial length  

XL = X/Ri 

Variation  

 XL       

1 1.033 0.236 

2 0.793 -0.004 

3 0.82 0.023 

4 0.751 -0.046 

5 0.807 0.01 

6 0.806 0.009 

7 0.793 -0.004 

8 0.807 0.01 

9 0.751 -0.046 

10 0.830 0.033 

11 0.811 0.014 

12 0.998 0.201 

 

Average 

 

 

 

Variance 

 

 

 

Standard deviation 

 

X L=
 

  
 (XL)i

11

i=2

=0.797 

 

 

   
 

 
         

 

  

   

 

 

=  0.001 

 

    = 0.027 
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Table 7-2: Variation of vortex axial length with vortex number for test case  = 7.81. 

Vortex number Vortex  axial length  

XL = X/Ri 

Variation  

 XL       

1 1.399 0.192 

2 1.276 0.069 

3 1.137 -0.07 

4 1.134 -0.073 

5 1.219 0.012 

6 1.186 -0.021 

7 1.290 0.083 

8 1.358 0.151 

 

Average 

 

 

 

 

Variance 

 

 

 

 

Standard deviation 

 

X L=
 

 
 (XL)

i

7

i=2

=1.207 

 

   
 

 
         

 

 

   

 

 

                 =  0.005 

 

    = 0.067 

 

 

The estimated average vortex axial size (half wavelength) is 0.797Ri for test case  = 

11.36 and is 1.207Ri for test case  = 7.81. 

There is an agreement in the estimated vortex mean axial size (half wavelength), variance, 

and standard deviation between the measured values of 0.797Ri, 0.001Ri, and 0.03Ri in 

Table 7-1 and the CFD estimate values of 0.788Ri, 0.003Ri, and 0.05Ri in Table 6-7 for 

test case  = 11.36. For the test case  = 7.81, there is also an agreement in the estimated 

vortex mean axial size (half wavelength), variance, and standard deviation between the 

measured values of 1.207Ri, 0.005Ri, and 0.067Ri in Table 7-2 and the CFD estimate 

values of 1.183Ri, 0.005Ri, and 0.069Ri in Table 6-8.  

 

7.5.6 Residual plot 

The variations in the vortex axial size tabulated in Table 7-1 and Table 7-2 give the axial 

length residual plots of Figure 7.21(a) and Figure 7.21(b). These residual plots are 

obtained based on the same procedure described in chapter six for Figure 6.38. 
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Figure 7.21(a) and Figure 7.21(b) are the residual plots of vortex axial length with respect 

to its mean value in the meridional plane at  = - /2 for the test cases  = 11.36 and  = 

7.81 respectively. The plots in Figure 7.21 show that the residuals are evenly distributed 

about the zero x-axis with no significant bias. The residuals from the ten vortices in the 

central region of the PIV domain display a minimum and maximum of -0.06Ri and 0.04Ri 

respectively for the test case  = 11.36. Similarly, the residuals from the six vortices in the 

central region of Figure 7.18(b) for test case  = 7.81 display a minimum and maximum 

values of -0.08Ri and 0.10Ri respectively.  

 

(a) 

 

(b) 

Figure 7.21: Residual plots of vortex axial length variation in the meridional plane at  

 = -/2 for the test cases (a)  = 11.36 and (b)  = 7.81.  

 

There is an agreement between the minimum and maximum values obtained from the PIV 

and the estimated CFD values of -0.08Ri and 0.06Ri for the test case  = 11.36 and of -

0.06Ri and 0.11Ri for the test case  = 7.81 in section 6.7.9 of chapter six. The outliers on 
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the plot in Figure 7.21(a) and Figure 7.21(b) are the residuals from the vortex 1 and 12 in 

Figure 7.18(a) and Figure 7.18(b) respectively, which were excluded from the regression. 

 

7.6 Comparison between CFD simulation and PIV results for test cases  =      

11.36 and  = 7.81 

Many of the modelling assumptions in the CFD simulation are necessary in order to 

simplify the flows that are to be modelled. In this process, errors are introduced into the 

simulation. Errors in the CFD simulation may be due to many factors, such as modelling, 

discretisation, iteration, and implementation methods. In an attempt to reduce the effect of 

such simplifications and approximations, selected CFD flow variables are validated against 

experimental data to determine their accuracy. The CFD predictions can then be used to 

investigate the effects of changing the experimental conditions. 

Experiments are used to study flow phenomena both qualitatively and quantitatively using 

measurements. No measurement, however carefully made, can be completely free from 

uncertainty. Sources of error in the experiment are a combination of many factors, which 

can be classified as either systematic or residual errors. It therefore means that both CFD 

and experiment are affected by errors.  

In this section, qualitative and quantitative comparisons of the flow features are made 

between the results from CFD simulations and PIV measurements for the concentric 

annular cylinder with aspect ratios  = 11.36 and  = 7.81 in the meridional plane of the 

annulus. These comparisons are presented in the context of the experimental error 

estimated for this flow. 

 

7.6.1 Qualitative and quantitative analysis of the flow pattern  

The flow patterns that developed in the concentric rotating cylinders with aspect ratio  = 

11.36 and  = 7.81 using both CFD simulation and PIV measurement techniques are 

compared qualitatively and quantitatively.  

Figure 6.6(a,b) and Figure 7.7(a,b) display respectively the normalised velocity vector 

maps obtained from the CFD simulations and the time-averaged velocity vector maps 

from PIV measurements, in the meridional plane of the annulus for the test cases  = 

11.36 and  = 7.81. Figure 6.6(a,b) and Figure 7.79(a,b) show that the flow pattern from 

the steady CFD simulations and the time-averaged flow from the PIV measurements is 

similar in the entire annulus for test cases  = 11.36 and  = 7.81. The detailed features of 
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this flow pattern are discussed in the context of Figure 6.6(a,b) and Figure 7.7(a,b). Both 

CFD and PIV results show counter-rotating of pairs of Taylor vortices, a stronger radial 

outflow between the vortices, elongated vortices near the left and the right end boundaries, 

and the same number of the Taylor vortices. This shows that the flow patterns from CFD 

and PIV are in general agreement for the test cases  = 11.36 and  = 7.81. 

 

7.6.2 Qualitative and quantitative analysis of the in-plane velocity  

A detailed qualitative and quantitative comparison of the in-plane velocity profiles 

between the CFD simulations and the PIV experimental measurements in the meridional 

plane is presented in this section. The velocity profiles in Figure 7.22 to Figure 7.27 for 

the CFD and the PIV are obtained from the velocity vectors in the meridional plane of 

Figure 6.6 and Figure 7.7 respectively. The velocity profiles presented here have been 

normalised with respect to the inner cylinder surface speed Ri. 

Figure 7.22(a) and Figure 7.22(b) show the normalised axial velocity profiles from the 

CFD simulations and the PIV experiments at a constant radial position r = Ri + 0.125d 

along the axial direction on the lower ( = - /2) channel of the annulus for the test cases  

= 11.36 and  = 7.81 respectively. The PIV error bands delimited by the orange dashed 

lines are included in the profiles of Figure 7.22(a) and Figure 7.22(b) to document the 

experimental uncertainty. The experimental uncertainty shows how much variation the 

PIV data has from the PIV mean value and can therefore be used to judge the accuracy of 

both the CFD and PIV results in test cases  = 11.36 and  = 7.81. The profiles from both 

the CFD and the PIV results at the constant radial position r = Ri + 0.125d and at  = -/2 

in Figure 7.22(a) and Figure 7.22(b) show that the axial velocity maxima occur radially 

below the cores of clockwise vortices and the axial velocity minima occur radially below 

the cores of the anti-clockwise vortices. The axial velocity profiles in Figure 7.22(a) and 

Figure 7.22(b) show that each clockwise vortex from the CFD and PIV results induces an 

axial velocity maximum radially below its core at  = -/2 plane. The axial velocity 

profiles from both CFD and PIV at the radial position r = Ri + 0.125d show that the flow is 

almost centrally symmetric about the cylinder length mid-span at X/Ri = 5. This is shown 

by the magnitude of the axial velocity maximum and minimum near the left end-wall and 

near the right end-wall respectively, having almost the same magnitude. Although the 

axial velocity local minimum from the CFD near the right end-wall in Figure 7.22(b) for 

the test case  = 7.81 is slightly lower than the radial velocity local minimum from the 
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PIV at the same axial position, the CFD profile is still within the PIV measurement 

uncertainty band. The profiles in Figure 7.22(a) and Figure 7.22(b) also show almost the 

same maxima and minima axial velocity magnitudes in the central region of the annulus 

over the range 1 ≤ X/Ri ≤ 9 for the test case  = 11.36 and over the range 1 ≤ X/Ri ≤ 8 for 

the test case  = 7.81. 

 

(a) 

 
(b) 

Figure 7.22: Normalised axial velocity profiles in the meridional plane at the constant   

                      radial position r = Ri + 0.125d at  = -/2 from PIV and CFD, with the PIV 

error band for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

The magnitude of the axial velocity maxima near the left end-wall and the magnitude of 

the axial velocity minima near the right end-wall from the PIV results for the test cases  

= 11.36 and  = 7.81 has been discussed in details in the context of Figure 7.12. For the 

CFD, the magnitude magnitude of the axial velocity maxima near the left end-wall and the 

magnitude of the axial velocity minima near the right end-wall are approximately 0.18Ri 
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for both test cases. Over the range 0 ≤ X/Ri ≤ 8.8 for the test case  = 11.36 in Figure 

7.22(a), the axial velocity profile for the CFD is within the upper and the lower limits of 

the PIV experimental error band. Near the right end-wall over the range 8.8 ≤ X/Ri ≤ 10, 

the CFD profile is phase lagging behind the PIV profile and the CFD profile is slightly 

outside the experimental uncertainty band. This observation may be attributed to the 

misalignment of the right end-wall in the experiment, which may have been not 

orthogonal to the cylinder axis. 

For the test case  = 7.81 in Figure 7.22(b), the axial velocity profile from the CFD is 

phase leading that of the PIV over the range 5.7 ≤ X/Ri ≤ 6.6. Along the entire annulus, 

the axial velocity profile from the CFD is within the upper and the lower limits of the 

experimental uncertainty band. 

The profiles in Figure 7.22(a) and Figure 7.22(b) show that there is a good agreement 

between the results from the CFD simulations and the PIV measurements for the test cases 

 = 11.36 and  = 7.81.  

Figure 7.23(a) and Figure 7.23(b) show the normalised axial velocity profile at r = Ri + 

0.5d (the gap mid-span of the annulus) from the CFD simulation and PIV for the test cases 

 = 11.36 and  = 7.81 respectively. The profiles from both the CFD and the PIV in 

Figure 7.23 show that the normalised axial velocity at this radial position is relatively 

small compared with the surface speed of the rotating inner cylinder and the speed range 

of the corresponding profiles at r = Ri + 0.125d and r = Ri + 0.875d for the test cases  = 

11.36 and  = 7.81. The trend of these profiles for the CFD and the PIV are discussed in 

the context of Figure 6.15 and Figure 7.13 for both test cases.  

The normalised axial velocity profiles in Figure 7.23 show that the axial velocity maxima 

from PIV are higher than the ones from CFD near the left end-wall over the range 0 ≤ 

X/Ri ≤ 4 for the test case  = 11.36 and over the range 0 ≤ X/Ri ≤ 3.3 for the test case  = 

7.81.  

For the test case  = 11.36 in Figure 7.23(a), over the range 0 ≤ X/Ri ≤ 4, the axial 

velocity maxima from the CFD simulation are 0.04Ri, whereas the corresponding axial 

velocity maxima from the PIV measurement range from 0.05Ri to 0.09Ri.  At the axial 

position X = 5.3Ri, the axial velocity maximum is almost the same from both the CFD and 

the PIV with an approximate value of 0.04Ri. Near the right end-wall, the axial velocity 

maxima from the CFD are higher than the ones from the PIV over the range 7 ≤ X/Ri ≤ 

8.4. The axial velocity maxima from the CFD and the PIV in this range are 0.04Ri and 
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0.025Ri respectively. The profiles at r = Ri + 0.5d in Figure 7.23(a) show that the axial 

velocity minima almost overlap between CFD and PIV, with an axial velocity magnitude 

of 0.04Ri. The CFD profile in Figure 7.23(a) is within the PIV error band except near the 

end-walls, where the CFD profile over-shoots the upper limit of the PIV error band.  

 

(a) 

 

(b) 

Figure 7.23: Normalised axial velocity profiles in the meridional plane at the constant  

                  radial position r = Ri + 0.5d ( = -/2) from PIV and CFD, with the PIV error 

band for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

For the test case  = 7.81 in Figure 7.23(b), over the range 0 ≤ X/Ri ≤ 3.3, the highest 

magnitude of the axial velocity from the CFD and the PIV are 0.04Ri and 0.07Ri 

respectively. Also, the axial velocity maxima from the CFD are slightly higher than the 

ones from PIV over the range 5.6 ≤ X/Ri ≤ 8, with the highest magnitude of the axial 

velocity for the CFD simulation and the PIV being approximately 0.04Ri and 0.03Ri 
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respectively. Near the right end-wall, the axial velocity maxima from both the CFD and 

the PIV have almost the same magnitude of approximately 0.01Ri.  

The profiles in Figure 7.23(b) show that the axial velocity minima from the PIV are higher 

than the axial velocity minima from the CFD over the range 2 ≤ X/Ri ≤ 4.2. Over this 

range, the axial velocity minima for both the CFD and the PIV are approximately -

0.04Ri and -0.03Ri respectively. Over the range 6.6 ≤ X/Ri ≤ 9, the axial velocity 

minima from both the CFD and the PIV are almost the same with the highest axial 

velocity magnitude of approximately 0.04Ri. The profiles in Figure 7.23(a) and Figure 

7.23(b) show a good agreement between the results from the CFD simulations and the PIV 

measurements.  

The normalised axial velocity profiles near the wall of the outer cylinder at r = Ri + 0.875d 

from CFD and PIV are shown in Figure 7.24(a) and Figure 7.24(b) for the test cases  = 

11.36 and  = 7.81 respectively. The axial velocity profiles from CFD and PIV at this 

radial position in Figure 7.24 exhibit similar trends for both test cases. The trend of these 

velocity profiles has been dicussed in details in the context of Figure 6.14 and Figure 7.12. 

The profiles near the outer cylinder wall at r = Ri + 0.875d in Figure 7.24 show that the 

axial velocity local minimum near the left end-wall for the PIV is slightly higher than that 

of the CFD profiles, with an axial velocity of approximately -0.15Ri and -0.13Ri 

respectively in both test cases. Near the right end-wall in Figure 7.24, the axial velocity 

maximum from the CFD is greater than the axial velocity maximum from the PIV. The 

axial velocity maxima from the CFD and PIV at this axial position are approximately 

0.15Ri and 0.11Ri respectively for the test case  = 11.36 in Figure 7.24(a) and 

approximately 0.16Ri and 0.14Ri for the test case  =7.81 in Figure 7.24(b). 

For the test case  = 11.36 in Figure 7.24(a), the axial velocity maxima from the PIV are 

greater than the axial velocity maxima from the CFD over the range 1.4 ≤ X/Ri ≤ 4.6 with 

the magnitude of the axial velocity maxima from CFD and PIV approximately 0.13Ri 

and 0.17Ri respectively. The axial velocity maxima from the CFD and the PIV are 

almost of the same magnitude estimated to be approximately 0.16Ri over the range 6.2 ≤ 

X/Ri ≤ 8.  

In Figure 7.24(a), the axial velocity local minima from the CFD are higher over the range 

4 ≤ X/Ri ≤ 9 than the axial velocity local minima from the PIV measurement. In this 

region, the axial velocity minima from the CFD and the PIV are approximately -0.13Ri 

and -0.15Ri respectively.  
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(a) 

 

(b) 

Figure 7.24: Normalised axial velocity profiles in the meridional plane at the constant  

                        radial position r = Ri + 0.875d at  = -/2 from PIV and CFD, with the PIV 

error band for the test cases (a)  = 11.36 and (b)  = 7.81.  

 

Near the left end-wall over the range 0.6 ≤ X/Ri ≤ 1.4 in Figure 7.24(a), the CFD profile is 

phase leading the PIV profile. In the central region over the range 1.4 ≤ X/Ri ≤ 8.2 the 

profiles for both the CFD and the PIV are almost at the same spatial phase. Near the right 

end-wall, over the range 8.2 ≤ X/Ri ≤ 9.4, the CFD profile is phase lagging the PIV 

profile. In the axial velocity profile in Figure 7.24(a), over the range 0 ≤ X/Ri ≤ 8.2, the 

CFD profile is within the uncertainty band of the PIV measurements.  

The test case  = 7.81 in Figure 7.24(b) displays the same trend of Figure 7.24(a) of the 

axial velocity maxima from the PIV being slightly higher than the axial velocity maxima 

from the CFD. This trend occurs over the range 2 ≤ X/Ri ≤ 6.6, with the axial velocity 

magnitude from the CFD and the PIV being approximately 0.14Ri and 0.15Ri 
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respectively. The axial velocity minima from both the CFD and the PIV are nearly the 

same over the range 0 ≤ X/Ri ≤ 8. In this region, the axial velocity minima from the CFD 

and the PIV are approximately -0.15Ri.  

In Figure 7.24(b), the CFD profile is phase leading the PIV profile over the ranges 0.8 ≤ 

X/Ri ≤ 2 and 5.8 ≤ X/Ri ≤ 7.4. In the central region, over the range 2 ≤ X/Ri ≤ 5.8, the 

profiles from both the CFD and the PIV are almost at the same spatial phase. Over the 

range 8 ≤ X/Ri ≤ 9.4, the CFD profile is phase lagging the PIV profile. The observed 

difference in the profiles from the CFD and the PIV near the right end-wall in Figure 7.24 

for both test cases is attributed to the misalignment of the end-wall in the PIV 

measurements and to the effect of light reflection at the right end-wall.  

The fact that most of the axial velocity profile from the CFD is within the experimental 

uncertainty in Figure 7.24(a) and that the axial velocity profile from the CFD in the entire 

annulus is within the uncertainty band of the PIV measurements in Figure 7.24(b) shows 

there is a good qualitative agreement between the CFD simulations and the PIV 

experiments for both test cases. 

Figure 7.25(a) and Figure 7.25(b) show the normalised radial velocity profiles from the 

CFD simulations and the PIV measurements at r = Ri + 0.125d for the test cases  = 11.36 

and  = 7.81 respectively, with the PIV error bands included. The radial velocity profiles 

from CFD and PIV in Figure 7.25 exhibit the same trend, with the radial velocity maxima 

and minima corresponding to maximum outward flow regions and minimum inward flow 

regions respectively. The sharper peaks than the troughs observed in the radial velocity 

profiles from CFD and PIV in Figure 7.25 has been discussed in the context of Figure 6.16 

and Figure 7.15. In Figure 7.25(a) and Figure 7.25(b), the radial velocity maxima from the 

CFD simulations are observed to be higher than the radial velocity maxima from the PIV 

measurements in the entire annulus for both test cases. 

For the test case  = 11.36 in Figure 7.25(a), the magnitude of the radial velocity maxima 

from the CFD along the entire annulus are approximately 0.1Ri, while the radial velocity 

maxima measured by PIV increase progressively in magnitude from the left end-wall to 

the right end-wall. The magnitude of the radial velocity maxima ranges from 0.07Ri near 

the left end-wall to 0.09Ri near the right end-wall. 

The radial velocity minima from CFD are observed to be higher than the radial velocity 

minima from PIV in the entire annulus, except near the left end-wall at X = 0.1Ri, where 

the radial velocity minimum from CFD and PIV are almost the same. The radial velocity 
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minima from the CFD over the range 1.8 ≤ X/Ri ≤ 8.2 are almost of the same value of 

approximately -0.06Ri. Near the end-walls, the CFD radial velocity minima are 

approximately -0.04Ri.  

 

(a) 

 

(b) 

Figure 7.25: Normalised radial velocity profiles in the meridional plane at the constant  

radial position r = Ri + 0.125d at  = -/2 from PIV and CFD, with the PIV error band for 

the test cases (a)  = 11.36 and (b)  = 7.81. 
 

The radial velocity local minima measured by PIV decrease progressively from the left 

end-wall over the range 0 ≤ X/Ri ≤ 6.7. Over this region, the value of the radial velocity 

minima ranges from -0.04Ri near the left end-wall to -0.10Ri at X/Ri = 6.7. The radial 

velocity local minima from the PIV increase over the range 6.7 ≤ X/Ri ≤ 10, with the 

magnitude of the radial velocity minima ranges from -0.1Ri to -0.08Ri near the right 

end-wall. The CFD and PIV radial velocity profiles in Figure 7.25(a) are almost at the 
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same spatial phase in the entire annulus, except over the range 8 ≤ X/Ri ≤ 9 where the 

CFD profile is phase lagging.  

For the test case  = 7.81 in Figure 7.25(b), the magnitude of the radial velocity maxima 

from the CFD along the entire annulus is approximately 0.13Ri whereas, the magnitude 

of the radial velocity maxima from the PIV along the entire annulus ranges from 0.10Ri 

to 0.11Ri. The radial velocity minima from CFD and PIV are almost overlapping except 

toward the right end-wall where there is a significant difference. At the axial positions 

X/Ri ≈ 0.2, X/Ri ≈ 2.6, and X/Ri ≈ 7.4, the radial velocity minima are almost the same for 

both the CFD and the PIV, with a radial velocity magnitude of approximately 0.06Ri. At 

the axial position X/Ri ≈ 5, the radial velocity minimum from the CFD is slightly higher 

than that from the PIV, with radial velocity minimum of approximately -0.05Ri and -

0.06Ri respectively. Near the right end-wall at X/Ri ≈ 9.8, the radial velocity minimum 

from the CFD is lower than that from the PIV, with values of approximately -0.06Ri and 

-0.01Ri respectively.  

Over the entire annulus, the profiles from both the CFD and the PIV in Figure 7.25(b) are 

almost at the same spatial phase, except over the range 5.1 ≤ X/Ri ≤ 6.2, where the PIV 

profile is phase lagging the CFD profile. Over the range 6.2 ≤ X/Ri ≤ 6.8 and 7.3 ≤ X/Ri ≤ 

8, the CFD profile is phase leading.  

Notwithstanding the observed discrepancies between the CFD and the PIV profiles of 

Figure 7.25(a) and Figure 7.25(b), each CFD profile is within its corresponding PIV 

experimental uncertainty band. This shows that there is a broad qualitative agreement 

between the CFD simulations and the PIV measurements.  

Figure 7.26(a) and Figure 7.26(b) display the normalised radial velocity profile at the gap 

mid-span of the annulus at r = Ri + 0.5d from CFD and PIV for the test cases  = 11.36 

and  = 7.81 respectively. The PIV uncertainty error bands are included in Figure 7.26 to 

quantify the accuracy of the PIV experiments. The trend of the radial velocity profiles in 

Figure 7.26 is similar between CFD and PIV. This trend is discussed for the CFD and the 

PIV results in the context of Figure 6.16, Figure 7.14 and Figure 7.16 for both test cases. 

As in Figure 7.25, the radial velocity maxima from the CFD are observed to be higher 

than the radial velocity maxima from the PIV in Figure 7.26(a) and Figure 7.26(b). At this 

radial position, the magnitude of the radial velocity maxima from the CFD is 

approximately 0.24Ri for both test cases in the entire annulus.  
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In Figure 7.26(a) and Figure 7.26(b), the two radial velocity maxima from the PIV nearer 

the end-wall boundaries for both test cases are almost the same, with a magnitude of 

approximately 0.19Ri. This increases to 0.21Ri in the central region of the annulus 

over the range 2.6 ≤ X/Ri ≤ 7.5 for the test case  = 11.36, and over the range 3.6 ≤ X/Ri ≤ 

6.2 for the test case  = 7.81. The difference between the radial velocity magnitude in the 

central region and that at the end-wall boundaries is attributed to the approximate 

alignment of the end-wall boundaries orthogonal to the cylinder axis in the experimental 

setup. 

 

(a) 

 

(b) 

Figure 7.26: Normalised radial velocity profiles in the meridional plane at the constant  

                     radial position r = Ri + 0. 5d ( = -/2) from PIV and CFD, with the PIV 

error band for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

In Figure 7.26(a) for the test case  = 11.36, the radial velocity minima from the CFD are 

observed to be higher than the radial velocity minima from the PIV measurement, except 
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near the left and right end-walls over the range 1 ≤ X/Ri ≤ 1.8 and 8.2 ≤ X/Ri ≤ 10, where 

the radial velocity minima from the CFD and the PIV are almost of the same magnitude. 

In Figure 7.26(a), the CFD radial velocity profile lies within the PIV measurement 

uncertainty band except near the right end-wall over the range 8.4  X/Ri  9.6. In this 

region, the CFD radial velocity profile is phase lagging the PIV profile.  

For the test case  = 7.81, the radial velocity minima from both the CFD and the PIV are 

almost of the same magnitude in the entire annulus, except at X/Ri = 5, where the radial 

velocity minimum from the CFD is slightly higher than that from the PIV, with the 

magnitude of the radial velocity minimum at this axial position for the CFD and the PIV 

being approximately 0.12Ri and 0.14Ri respectively. Near the end-wall boundaries at 

X = 0.2Ri and X = 9.8Ri in Figure 7.26(b), the radial velocity minima have almost the 

same magnitude of approximately 0.12Ri.  

At the central region over the range 2.6 ≤ X/Ri ≤ 7.4 in Figure 7.26(b), the radial velocity 

minima from the PIV are the same, with a magnitude of approximately 0.14Ri. The 

profiles of the normalised radial velocity from the CFD and the PIV in Figure 7.26(b) 

show that the CFD profile is phase leading over the range 5.4  X/Ri  7.4, whereas both 

the CFD and the PIV profiles are almost at the same spatial phase at other axial positions 

along the annulus. The profiles in Figure 7.26(a) and Figure 7.26(b) show an appreciable 

agreement between the CFD and the PIV measurements. 

Figure 7.27(a) and Figure 7.27(b) display the normalised radial velocity profiles near the 

wall of the outer cylinder at r = Ri + 0.875d from the CFD simulations and the PIV 

measurements for the test cases  = 11.36 and  = 7.81 respectively. The black dashed 

lines represent the upper and lower limits of the PIV measurement uncertainty. The 

normalised radial velocity profiles from PIV and CFD exhibit a similar trend of the 

outward flow regions featuring one single peak, while the inward flow regions over the 

range 1.8 ≤ X/Ri ≤ 8.2 for the test case  = 11.36, and over the range 2.6 ≤ X/Ri ≤ 7.4 for 

the test case  = 7.81 exhibit double trough minima. This trend has been discussed in the 

context of Figure 6.17 and Figure 7.17. 

In Figure 7.27, over the range 1 ≤ X/Ri ≤ 9 for the test case  = 11.36 and over the range 

1.4 ≤ X/Ri ≤ 8.6 for the test case  = 7.81, the radial velocity maxima from the CFD are 

greater than the radial velocity maxima from the PIV. The magnitude of radial velocity 

maxima from the CFD is almost constant in the entire annulus and approximately equal 

0.09Ri for both test cases. Similarly, the magnitude of the radial velocity minima from 
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the CFD is almost constant over the range 1.6 ≤ X/Ri ≤ 8.4 for the test case  = 11.36 in 

Figure 7.27(a) and over the range 0.6 ≤ X/Ri ≤ 9.4 for the test case  = 7.81 in Figure 

7.27(b), with a magnitude of approximately 0.04Ri for both test cases. 

 
(a) 

 
(b) 

Figure 7.27: Normalised radial velocity profiles in the meridional plane at the constant  

                      radial position r = Ri + 0.875d at  = -/2 from PIV and CFD, with the PIV 

error band for the test cases (a)  = 11.36 and (b)  = 7.81. 

 

For the test case  = 11.36 in Figure 7.27(a), the magnitude of the radial velocity minima 

from the CFD and the PIV near the left end-wall at X/Ri = 0.4 is approximately 0.03Ri 

and 0.06Ri respectively. Near the right end-wall at X/Ri = 9.4, the radial velocity 

minimum from CFD and PIV is approximately 0.03Ri and 0.015Ri respectively.   

For the test case  = 7.81 in Figure 7.27(b), the trend of the normalised radial velocity 

minima from the CFD and the PIV in Figure 7.27(b) exhibit the same symmetrical trend 

about the axial position X/Ri = 5. This symmetrical trend has been discussed in the context 
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of Figure 7.17(b). The profile from the PIV in Figure 7.27(b) shows that the radial 

velocity maxima in the central region over the range 3.8 ≤ X/Ri ≤ 6.2 have a radial 

velocity magnitude of approximately 0.07Ri. This value is greater than the magnitude of 

the radial velocity maxima near the left and the right end-walls. 

The trend of the normalised radial velocity profile from the PIV in Figure 7.27 has been 

discussed in details in the context of Figure 7.17. The radial velocity profiles from the 

CFD simulations and the PIV measurements in Figure 7.27 show that there is a qualitative 

agreement between the results from both techniques. 

 

7.6.3 Vortex centre analysis  

Figure 7.28(a) and Figure 7.28(b) show the normalised radial position of the Taylor vortex 

centres as a function of their normalised axial position from both the CFD simulations and 

the PIV measurements in the meridional plane at both the lower and the upper channels ( 

= /2) of the annulus. The radial position of the vortex centres for the CFD and the PIV 

are estimated from Figure 6.36(a,b) and Figure 7.18(a,b) respectively for each test case. 

Figure 7.28(a) and Figure 7.28(b) also show how the vortex centres spread radially in the 

annular region of the cylinder about their mean value in both the CFD and the PIV results 

by the inclusion of their respective spread bands. The spread bands are estimated using 

equation 6.8.  

The black dashed lines toward the top and bottom of Figure 7.28 represents respectively 

the maximum and minimum limits of the spread band about the vortex centre mean value 

from the PIV measurements. The red dashed lines of Figure 7.28 represent the maximum 

and minimum limits of the spread band about the vortex centre mean value from the CFD 

simulations. Figure 7.28 show that all vortex centres from the CFD simulations lie within 

the PIV spread band without any outlier.  

This shows that there is an agreement between the CFD and the PIV results for both test 

cases. The effects of the gap width on the vortex centre locations for both the CFD and the 

PIV are further discussed in section 7.6.4. 

 

7.6.4 Effects of radius ratio on the vortex centres 

The spread rates of the vortex centres for the test cases  = 11.36 and  = 7.81 in Figure 

7.28(a) and Figure 7.28(b) can be compared directly with one another, as both the 

horizontal and the radial axes in both test cases are the same. Comparing Figure 7.28(a) 
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with Figure 7.28(b), it is noticeable that more vortex centres for the test case  = 11.36 are 

closer to the wall of the inner cylinder than those for the test case  = 7.81. That is, the 

vortex centres of the test case  = 7.81 are displaced more toward the wall of outer 

cylinder than in the test case  = 11.36. In addition, the PIV measured vortex centres for 

the test case  = 11.36 are more scattered radially within the annulus than the vortex 

centres for the test case  = 7.81.  In order words, the measured vortex centres of the test 

case  = 7.81 are more regularly spaced than the ones of the test case  = 11.36. 

 

(a) 

 
(b) 

Figure 7.28: Axial and radial position of vortex centres in the meridional plane with    

                       data spread band about the vortex centre mean value from CFD and PIV for 

the test cases (a)  = 11.36 and (b)  = 7.81. 
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over the range 0.46  (r - Ri)/d  0.66 radially for the test case  = 11.36, while the area 

occupied by measured vortex centres spreads over the narrower range 0.54  (r - Ri)/d  

0.64 radially for the test case  = 7.81. 

Careful examination of Figure 7.28(a) and Figure 7.28(b) show that the spread bands from 

the CFD in both figures are similar. This suggests that the spread of the vortex centres in 

cylinder with aspect ratios  = 7.81 and  = 11.36 is almost proportional to the gap width 

d in the CFD, whereas in the PIV, the spread of the vortex centres are affected by a change 

in the flow regime and by the gap width d. 

 

7.7 Experimental results and discussions for concentric cylinders  = 5.32 

The PIV experimental results documented in this section are concerned the rotating 

concentric cylinders with aspect ratio 5.31 and radius ratio 0.35. The geometry and the 

flow parameters of the apparatus used for this PIV experimental investigation are the same 

as those presented in Table 5-2. All the velocity fields have been normalised by the inner 

cylinder surface speed, Ri.  

 

7.7.1 Flow regimes and patterns in the annulus of the concentric cylinders   

At the aspect ratio  = 5.32, radius ratio  = 0.35, and at the rotational speed of the inner 

cylinder  = 52.36 rad/s, the PIV flow map of Figure 7.29 shows that the flow is 

unsteady, suggesting a transition to a turbulent flow. This type of flow is particularly 

complex due to the occurrence of strong shear layers near the wall boundaries. As 

discussed in chapter two, turbulent Taylor vortices exist at a Taylor number greater than 

Ta ≈ 1000Tac (Koschmieder, 1993). In chapter two, Table 2-1 and Table 2-2 show the 

critical parameters for the onset of Taylor vortices for various values of radius ratio η. At 

the experimental conditions at which this test was conducted, using Table 2-1, the critical 

Taylor number Tac is estimated as 4775.76. Based on this value of Tac and on the Taylor 

number for the existence of turbulent Taylor vortices given by Koschmieder (1993), the 

Taylor number at which transition to a turbulent flow regime is expected for this test case 

is estimated as Ta ≈ 1000Tac = 4.776 x 10
6
. Table B 6 in appendix B shows that there have 

been just a few studies on turbulent Taylor vortices at Taylor and Reynolds numbers 

similar to the ones in this work. 
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7.7.2 Instantaneous flow structures 

The velocity vector maps in Figure 7.29 show a sequence of three instantaneous velocity 

fields in the meridional plane of the annulus ( = /2), taken in quick succession at 

recording times t = t0 + 7.25s, t = t0 + 7.50s, and t = t0 + 7.75s, where t0 is defined as in 

section 7.5.2. 

The normalised instantaneous velocity vectors in Figure 7.29 shows there is a change in 

the flow regime between test case  = 7.81 and test case  = 5.32. The time sequence of 

velocity vector maps in Figure 7.29 shows that the flow field is characterised by 

randomness and it is not clear how each next flow map can be elicited from its preceding 

one. This is a recognisable feature of turbulent flow in which the time evolution is 

stochastic rather than deterministic. The flow field is changing so rapidly that it was not 

possible to observe undistorted regular Taylor vortices in all the three PIV snap shots in 

Figure 7.29 as observed for the test cases  = 11.36 and  = 7.81 in Figure 7.8(a) and 

Figure 7.8(b).  

This flow regime is representative of the trend observed throughout a set of 100 vector 

maps. In some snap shots, Taylor vortices are not identifiable in the fully irregular 

turbulent flow and, at other times, distorted Taylor vortices are present that they cannot be 

easily distinguished in the background turbulent flow. This flow pattern can no longer be 

described by well-defined Taylor vortices, although structures associated with the Taylor 

vortices remain. 

The instantaneous flow field in Figure 7.29 shows vortices of different sizes from larger 

sized vortices to smaller eddies. In Figure 7.29(a-c) there is breakdown of axial periodicity 

in the flow pattern. This flow pattern is in agreement with the observation made by Smith 

and Townsend (1982) for high Taylor number flow.  

Figure 7.29 suggests that the flow field consists of large-scale motion with many small-

scale vortices embedded within it. The turbulent motion is a result of variations in the 

increase in the Reynolds number that promotes the decay of large scale instabilities. The 

small-scale vortices are not so well-defined in the flow field, due to the limitation of the 

PIV in which the spatial resolution of the experimental apparatus used was unable to 

capture secondary instabilities, as the time between the pulses was too long for this PIV 

system to capture such features in this highly turbulent flow.  
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(a) 

 
(b) 

 

 
(c) 

Figure 7.29: Normalised instantaneous vector maps along the meridional plane at times (a) 

t = t0 + 7.25s, (b) t = t0 + 7.50s, and (c) t = t0 + 7.750s. 
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Figure 7.30 shows the power spectral density of the radial velocity obtained from 

ensemble averaging 100 Discrete Fourier Transforms (DFT) of the instantaneous axial 

profiles of radial velocity for the test case  = 5.32. Instantaneous axial profiles of radial 

velocity are first extracted from 100 vector maps at the constant radial position r = Ri + 

0.5d on the lower channel ( = -/2) of the annulus of Figure 7.29. Then the Discrete 

Fourier Transform of each profile is obtained in Matlab R2010(a) using the DFT 

formulation reported in Ifeachor and Jervis (2002). The power spectral density in Figure 

7.30 is plotted in logarithmic scale as a function of the axial wavenumber k = 2/, where 

 is the axial wavelength defined in section 6.7.8. The power spectral density is computed 

by the product of the Discrete Fourier Transform with its complex conjugate value divided 

by Discrete Fourier Transform vector length. The results are then ensemble averaged to 

reduce the noise associated with the PIV measurement technique. The power spectral 

density of radial velocity in Figure 7.30 shows no evidence of any sharp peak but rather 

the presence of a broad-band peak centred at a wavenumber of approximately 16m
-1

, at 

which E(k) approximately equals 0.17 m
3
/s

2
. The broad-band peak in Figure 7.30 is 

evidence of the onset of significant non-linearity in the kinetic energy field. This is an 

indication that the flow is turbulent with eddies covering a continuous broad range of 

length scales.  

The power spectral density of a fully developed turbulent flow typically displays three 

regions, which are the energy producing range, the inertial sub-range, and the viscous 

dissipation range. The power spectral density of radial velocity in Figure 7.30 does not 

show all the three regions. Figure 7.30 also shows the slopes of the PIV spectrum for this 

study and the Kolmogrov -5/3 power law for the decay of homogeneous isotropic 

turbulence. Figure 7.30 shows that the decay rate for this present study is steeper than the 

conventional Kolmogrov -5/3 law. A roll-off rate in the inertial sub-range steeper than -

5/3 was also obtained by de Jong et al. (2009) from PIV measurements of zero-mean 

“isotropic” turbulence in an enclosed chamber. This trend indicates that turbulence in the 

present study is not fully developed so that turbulence decay is influenced by intermittent 

large-scale structures associated to the Taylor instability. These structures have a dynamic 

equilibrium with the remainder of the turbulent kinetic energy spectrum different than that 

of a fully developed turbulent flow.  

Figure 7.30 does not show a viscous dissipation range, which is a region of steeper kinetic 

energy roll-off at wavenumbers higher than the Kolmogrov wavenumber. In order to 
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explain the apparent absence of the viscous dissipation range in the PIV results, the 

dynamic range of the PIV measurements was determined. The dynamic range 

determination was based on the estimated value of the peak power spectral level, the 

displacement of tracer particles associated to this peak velocity fluctuation, and the 

assumption that the minimum spatial resolution of the PIV system is given by the size of 

one pixel on the CCD array. 

 
Figure 7.30: Energy spectrum of velocity component. 

 

The estimated dynamic range of the PIV system is shown in Figure 7.30 by the dotted 

black lines and is 0.004  E(k)  0.17. The lowest measurable value of E(k) is 0.004, 

which represents the measurement noise floor level. This suggests that any power spectral 

density value measured by PIV that is below 0.004 includes a significant component of 

measurement noise. This explains why the power spectral density starts to increase with 

increasing wavenumber above k = 100, instead of decaying due to further energy 

cascading and viscous dissipation. The vertical balck dashed line in Figure 7.30 shows the 

location of the cut-off wavenumber kc above which the instrumentation noise in the 

measured power spectral density makes the measured E(k) unreliable. 

The instantaneous velocity fields for the test case  = 5.32 in Figure 7.29 show that the 

flow contains some large structures of characteristic size similar to one annular gap d. This 

is the same characteristic size of a Taylor vortex. Four of such structures can be seen at  

= -/2 in Figure 7.29(b). There seems to be an approximate but not exact recurrence of 

Taylor vortices. The results obtained suggest that the Taylor-Couette flow is more 
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intermittent. This intermittency prevents the flow from developing into a fully developed 

turbulent state. As such, an ensemble average of all the instantaneous velocity fields in the 

meridional plane of the annulus was performed to obtain the mean velocity vector map 

shown in Figure 7.31. The PIV measurement area is normalised by the inner cylinder 

radius Ri, consistently with the other test cases, as shown in Table 5-2. The ensemble 

averaged velocity vector map in Figure 7.31 shows a typical Taylor-Couette flow pattern 

similar to the time averaged velocity vector maps obtained from CFD and PIV for the test 

cases  = 11.36 and  = 7.81 in the entire measurement area. This flow pattern has been 

discussed in details in the context of Figure 6.6 and Figure 7.7. Along the axial direction 

of the PIV measurement view area, the velocity vectors of Figure 7.31 show four vortices. 

The number of vortices in this test case is less than the number of vortices obtained for the 

test cases  = 11.36 and 7.81, despite the fact that the axial length and the angular speed of 

the inner cylinder are the same. The reduction in the number of vortices can therefore be 

attributed to the difference in the aspect and radius ratios of this test case when compared 

with the other two test cases.   

The two vortices near the left and right end boundaries of the computational domain in 

Figure 7.31 are more elongated than the remaining two vortices in the central region of the 

annulus. This end-wall effect has been discussed in the context of Figure 6.6 and Figure 

7.7. The two elongated vortices in Figure 7.31 are almost of the same length and are 

mirror image of one another, although the effect of light sheet reflection is noticeable near 

the right end-wall boundary as the velocity vectors in this region are lower in magnitude 

with respect to the symmetric ones near the left end-wall boundary. The inward radial 

direction of the velocity vectors ( = -/2) at the end-walls is in agreement with CFD and 

PIV experimental results for test cases  = 11.36 and  = 7.81 and this has been discussed 

in the context of Figure 6.6 and Figure 7.7. 

As in test cases  = 11.36 and  = 7.81, there is transfer and mixing of fluid between 

adjacent vortices in the outflow and inflow regions in Figure 7.31. At X/Ri = 5.0 in Figure 

7.31, where the mixing of fluid between the adjacent vortices is not so obvious may be 

described as the region of zero net axial flow and sits between the two counter-rotating 

vortices as their common interface. The Taylor vortices are therefore observed to be 

symmetrical about the axial length of the annulus at X/Ri = 5.0.  

In Figure 7.31, the outflow region boundaries are twisted and they are not perpendicular to 

the inner and outer cylinder walls. Also, the vortices are organised in a definite pattern in 
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that the vortex centres of the two vortices at the end-wall boundaries at  = -/2 are 

displaced radially toward the outer cylinder and the vortex centres of the two vortices at 

the central region along the length of the cylinder are displaced radially toward the inner 

cylinder. This pattern is similar to the one observed for the test cases  = 11.36 and  = 

7.81 discussed in the context of Figure 7.7. 

 

Figure 7.31: Normalised ensemble average of the velocity vector map in the meridional 

plane of the annulus. 

 

7.7.3 The axial and radial velocity contour plots  

The contour plots of the axial and radial velocity components in the meridional plane for 

the test case  = 5.31 are shown in Figure 7.32 and Figure 7.33 respectively. The same 

even contour line spacing of 0.03Ri is used in Figure 7.32 and Figure 7.33  as Figure 

7.32.  The features and structures of the normalised axial velocity contour plot in Figure 

7.32 are similar to the ones obtained for test cases  = 11.36 and 7.81 for CFD and PIV in 

Figure 6.8 and Figure 7.10 respectively. However, the axial velocity magnitude both at the 

outward flow and inward flow regions for this test case is very small compared with the 

axial velocity magnitude for the test cases  = 11.36 and  = 7.81. The low axial velocity 

magnitude is due to the kinetic energy transfer between the large scale eddies and the 

smaller eddies that develop in the flow at this high Reynolds number. The velocity and 

time scales of these smaller eddies is therefore expected to be smaller compared to the 

ones of the larger eddies that characterise the test cases  = 11.36 and  = 7.81. The 

formation of an alternating pattern of axial velocity maxima and minima in the annulus at 
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the same axial positions as the vortex centres is shown in Figure 7.32. This feature has 

been discussed in the context of Figure 6.8 and Figure 7.10. 

Figure 7.32 further shows that the centres of the vortices at the end-walls are displaced 

radially toward the outer cylinder at  = -/2, while the centres of the vortices in the 

central region are displaced radially toward the inner cylinder. The reverse trend is shown 

at  = /2. The offset of the vortex centres from the annulus radial centre is attributed to 

the centrifugal forces acting to throw the fluid away from the inner cylinder at high 

Reynolds number (Parker and Merati, 1996). 

 

Figure 7.32: Contour plot of axial velocity in the meridional plane normalised by Ri with 

contour spacing ux = 0.03Ri.  
 

Figure 7.32 shows that the zero axial velocity contour along the radial direction for the 

two vortices near the end-walls and the two vortices at the central region is located at 

approximately r/Ri = 2.1 and r/Ri = 2.0 respectively in the lower channel ( = - /2) of the 

annulus. In the upper channel ( = /2), the zero axial velocity along the radial direction 

for the two vortices near the end-walls and the two vortices at the central region is located 

at approximately r/Ri = 1.9 and r/Ri = 2.15 respectively. A detailed description of the axial 

velocity flow field is discussed in the context of CFD results in Figure 6.8 and Figure 7.10 

for the test cases  = 11.36 and 7.81.  

The normalised radial velocity contour map in Figure 7.33 shows an alternating pattern of 

radial velocity minima and maxima along the axial direction. The radial contour map in 

Figure 7.33 does not show clearly packed contour lines like the ones in Figure 7.11 for the 

test cases  = 11.36 and  = 7.81. However, Figure 7.33 still shows distinctive features of 
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Taylor vortices also observed in Figure 7.11, using the same rainbow contour colour 

notation. The positive (yellow) and negative (cyan) values on the contour lines indicate 

the direction of the vortex circulation, as in Figure 7.33.  

 
Figure 7.33: Contour plot of radial velocity in the meridional plane normalised by Ri 

with contour spacing ur = 0.03Ri. 

 

The axial boundaries between the negative and positive values of these contour clusters 

delimit inward flow regions and outward flow regions at  = -/2 at the meeting point of 

two adjacent vortices in Figure 7.33. The radial velocity maxima occur in the radial 

outflow regions between adjacent vortices. This is because centrifugal forces act to 

increase the outward radial velocity in these regions and slow down the returning flow at 

the inward flow region. The radial velocity magnitude for this test case is very small 

compared with radial velocity magnitude for the test cases  = 11.36 and 7.81. These 

features have been discussed in details in the context of Figure 6.9 and Figure 7.11. 

 

7.7.4 RMS meridional plane velocity contours and velocity profiles 

Figure 7.34 and Figure 7.35 show the contour plots of normalised Root Mean Square 

(RMS) of axial and radial velocity fluctuations in the meridional plane for the test case  

= 5.32. The RMS velocity fluctuations are a measure of the flow turbulent kinetic energy 

in the annular region of the cylinder. The RMS was computed using equation 6.8. 

The RMS levels of axial and radial velocity fluctuations are normalised by the surface 

speed of the inner cylinder Ri. The contour levels in Figure 7.34 and Figure 7.35 are 

evenly spaced, with a contour spacing of 0.015Ri. The RMS contour levels are higher 
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than 3% of the surface speed of the inner cylinder Ri throughout the annulus, indicating 

that the observed flow regime in this test case at the test Taylor number is turbulent Taylor 

vortex flow. 

The normalised axial and radial velocity RMS contours in Figure 7.34 and Figure 7.35 

show that the turbulence level is high toward the wall of the rotating inner cylinder. This 

decreases in the positive radial direction toward the wall of the outer cylinder, where the 

turbulence level is lower. The high turbulence level toward the wall of the inner cylinder 

may be attributed to the large tangential velocity gradient in the boundary layer causing a 

higher shear rate in this region. In Figure 7.34 and Figure 7.35, it is observed that the RMS 

velocity in the meridional plane is non-uniform, which suggests that turbulence is not 

homogenous (uniformly distributed) and isotropic along the axial direction. This is in 

contrast to the Kolmogorov theory for an open free flow where turbulence can be 

homogenous and isotropic at a very high Reynolds number. The inhomogeneity and 

anisotropy may be due to fluctuations in the velocity field and the fact that the flow may 

not have reached a fully developed turbulent state in this test case. 

In Figure 7.34 and Figure 7.35, at approximately X/Ri = 3.0 and 7.0, the turbulence 

intensity is higher than in any other regions in the annulus. These axial positions 

correspond to the outflow regions in Figure 7.31. Since more turbulence exists near the 

wall of the inner cylinder due to the high local shear rate, larger zones of high turbulence 

intensity occur at the radial outflow regions near the inner cylinder. Specifically, the radial 

outflow transports the turbulence generated near the rotating inner cylinder outwards 

towards the outer cylinder. This result further confirms that the axial and radial velocities 

at the outward flow regions are stronger than that at the inward flow region. 

The observed dominant turbulent flow near the wall of the inner cylinder affects the RMS 

of axial velocity and radial velocity fluctuations as shown in the contour plots of Figure 

7.34 and Figure 7.35 respectively. In Figure 7.34, larger zones of high turbulence intensity 

for the axial velocity component occur at the radial outflow near the wall of the inner 

cylinder. In Figure 7.35 on the other hand, larger zones of high turbulence intensity for the 

radial velocity component occur at the radial outflow regions near the mid-span gap width 

of the annulus. This results agrees with the observation made by Parker and Merati (1996). 
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Figure 7.34: RMS axial velocity contours in the meridional plane normalised by Ri with 

contour spacing uRMS = 0.015Ri. 

 

 
Figure 7.35: RMS radial velocity contours in the meridional plane normalised by Ri with 

contour spacing uRMS = 0.015Ri. 

 

Figure 7.36 and Figure 7.37 show respectively the axial profiles of normalised RMS axial 

velocity and RMS radial velocity at three constant radial positions in the meridional plane 

on the lower ( = - /2) channel of the annulus for the test case  = 5.32. The radial 

positions along the lower channel where the profiles are extracted are r = Ri + 0.125d 

(5.875mm away from the wall of the inner cylinder), r = Ri + 0.5d (the mid-span gap of 

the annulus), and r = Ri + 0.875d (5.875mm away from the wall of the outer cylinder). The 

positions of the constant radial line where the profiles are extracted are taken at the same 
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percentage gap width d as test cases  = 11.36 and  = 7.81. The reason for extracting the 

velocity profiles at these positions has been discussed in the context of Figure 7.12. The 

RMS velocity profiles presented here have been normalised with respect to the inner 

cylinder surface speed Ri. The normalised RMS axial velocity and RMS radial velocity 

profiles in Figure 7.36 and Figure 7.37 traverse through the inward and outward flow 

regions of Figure 7.34 and Figure 7.35 respectively. 

The normalised RMS axial velocity profiles in the meridional plane at the three constant 

radial positions in Figure 7.36 show a progressive increase in the fluctuations amplitude of 

the axial velocity along the axial direction from the left end-wall boundary towards the 

centre of the annulus. The normalised RMS axial velocity profiles at the three radial 

positions show a first peak at the first outflow region near the left end-wall boundary at 

the axial position X/Ri of approximately 3.3, from where the profiles decrease to a local 

minimum along the axial direction in the range 3.4  X/Ri  6.6. A second peak is 

observed at the second outflow region near the right end-wall boundary at approximately 

X/Ri = 6.6. From this axial position, the profiles decrease monotonically to almost zero at 

the right end-wall boundary. Therefore, the turbulence level is higher at the outflow 

regions and lower at the inflow region, in agreement with the observation made in the 

context of Figure 7.34 and Figure 7.35.  

The normalised RMS axial velocity profiles in Figure 7.36 show that the turbulence 

intensity is high near the wall of the inner cylinder at r = Ri + 0.125d. Near the end-wall 

boundaries, over the ranges 0  X/Ri  3.4 and 6.6  X/Ri  10, the fluctuation amplitudes 

for the three profiles are close in magnitude to one another. The difference among the 

three profiles is best observed in the central region over the range 3.4  X/Ri  6.6. At the 

radial position r = Ri + 0.125d, the magnitude of the normalised RMS axial velocity 

maxima uRMS/Ri at the outflow regions are approximately 0.08, while the magnitude of 

the RMS axial velocity minimum uRMS/Ri at the inflow region is approximately 0.054. 

For the profile at the mid-span gap r = Ri + 0.5d, the magnitude of the RMS axial velocity 

maxima uRMS/Ri at the outflow regions is approximately 0.068, while the magnitude of 

the RMS axial velocity minimum uRMS/Ri at the inflow region is approximately 0.04. 

Similarly, for the profile near the wall of the outer cylinder at r = Ri + 0.875d, Figure 7.36 

shows that the magnitudes of the RMS axial velocity maxima and minimum uRMS/Ri at 

the outflow and inflow regions are approximately 0.058 and 0.04 respectively. In the 

central region of Figure 7.36, the RMS axial velocity minima uRMS /Ri for the profile at 
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the mid-span gap at r = Ri + 0.5d and for the profile near the wall of the outer cylinder at r 

= Ri + 0.875d have nearly the same value.  

 

Figure 7.36: Normalised RMS axial velocity profiles in the meridional plane at  

                          constant radial positions r = Ri + 0.125d, r = Ri + 0. 5d, and r = Ri + 

0.875d ( = -/2) from PIV for the test case  = 5.32. 

 

The normalised RMS radial velocity profiles in the meridional plane at the three constant 

radial positions in Figure 7.37 exhibit similar trends as the ones in Figure 7.36. The 

normalised RMS radial velocity profiles in Figure 7.37 show that the turbulence level near 

the wall of the inner cylinder at r =  Ri + 0.125d and at the centre of the annulus, which is 

at the gap mid-span r = Ri + 0.5d, is higher than the turbulence near the wall of the outer 

cylinder.  

The normalised RMS radial velocity at r = Ri + 0.5d is slightly higher than the normalised 

RMS radial velocity at r = Ri + 0.125d, except at the inflow region. For instance, the 

magnitude of the normalised RMS radial velocity uRMS/Ri at r = Ri + 0.5d in the outflow 

region close to the right end-wall is approximately 0.074, while the magnitude of the 

normalised RMS radial velocity uRMS/Ri at the inflow region is approximately 0.046. 

For the profile at r = Ri + 0.125d, the maximum and minimum magnitudes of the 

normalised RMS radial velocity uRMS/Ri at the outflow and inflow regions are 

approximately 0.07 and 0.052 respectively. For the profile near the wall of the outer 

cylinder, the maximum and minimum magnitude of the normalised RMS radial velocity 

uRMS/Ri at the outflow and the inflow regions are approximately 0.028 and 0.016 

respectively. This result shows that there is a strong radial shear rate at the inner cylinder 
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surface and in the mid-span gap of the annulus. This shear rate is reduced approaching the 

wall of the outer cylinder. 

 
Figure 7.37: Normalised RMS radial velocity profiles in the meridional plane at  

                          constant radial positions r = Ri + 0.125d, r = Ri + 0. 5d, and r = Ri + 

0.875d ( = -/2) from PIV for the test case  = 5.32. 

 

7.7.5 Convergence of the RMS velocity 

As discussed in section 7.3, convergence in PIV statistical data is obtained when taking 

and averaging more PIV vector maps does not affect the result. As such, the convergence 

of the RMS velocity was tested at selected radial positions along the axial direction of the 

annulus. This was determined by extracting RMS axial velocity uRMS/Ri profiles at three 

constant radial positions r = Ri + 0.125d, r = Ri + 0.5d, and r = Ri + 0.875d in the 

meridional plane along the axial direction on the lower ( = - /2) channel of the annulus. 

The RMS axial velocity uRMS/Ri was estimated from fifty and one hundred instantaneous 

images taken in succession.  U50 is the RMS velocity computed from 50 images and U100 

is the RMS velocity computed from 100 images. For the estimation of the convergence, 

the L and L2 norms were computed. L is a measure of the ratio of the maximum absolute 

difference between two data sets to the average of the same sets of data. L2 is a measure of 

the ratio of the mean absolute difference between two data sets to their average value. The 

L and L2 are given respectively by equation 7.1 and 7.2. 
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where i is the i
th

 data point and N is the number of data points in the X-direction. 

Figure 7.38 shows the RMS axial velocity uRMS/Ri at the three constant radial positions 

for each data set. Using equations 7.1 and 7.2, the values of L and L2 obtained for the 

profiles near the wall of the inner cylinder at r = Ri + 0.125d are approximately 0.19 and 

0.055 or 19% and 6% of the inner cylinder rotational speed, respectively. For the profiles 

at the mid-span gap r = Ri + 0. 5d of the annulus, the values of L and L2 are estimated as 

33% and 8% respectively. The values of L and L2 are approximately 20% and 6% 

respectively for the profiles near the wall of the outer cylinder at r = Ri + 0.875d. 

 

Figure 7.38: Normalised RMS of axial velocity profiles in the meridional plane at   

                     constant radial positions r = Ri + 0.125d, r = Ri + 0. 5d, and r = Ri + 0.875d   

( = -/2) from PIV for the test case  = 5.32. 

 

The results show that the L norm gives a high value with the L2 maximum occurring at 

the mid-span gap of the annulus. However, the L2 norm gives a reasonably low value 

along the entire annulus, with a maximum of 8% at the mid-span gap r = Ri + 0. 5d. This 

result suggests that the RMS velocity estimates are, on average, converged to within 8%. 

There are areas where the flow statistics seems to be changing over time. This may result 

from a form of Taylor mode staging in the flow with a greater number of transitions 

between a turbulent flow with embedded strong Taylor vortices and more random motion 

in the set of 100 images than in the set of 50 images. Direct observation of the two image 

sets did not provide further supportive evidence towards this hypothesis, partly due to the 

difficulty of identifying the variation in the outflow regions where the L maxima occur in 

Figure 7.38. 
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Chapter Eight: Effects of a cylindrical probe on the annular 

flow 
 

8.1 Introduction 

This chapter is concerned with the experimental investigation on the intrusive effect of a 

cylindrical probe representing a PIV endoscope inserted in the annular gap between two 

concentric rotating cylinders. The effects of a cylindrical probe on the Taylor vortex flow 

pattern that develops in the annular region of concentric rotating cylinders are examined 

by means of PIV. The objective is to examine the degree of intrusiveness that a cylindrical 

probe configuration inserted in the annular region of the coaxial cylinders has on the flow 

field. It is also of interest to determine any change in the flow regime that takes place in 

the annular region of concentric cylinders due to the insertion of the cylindrical probe by 

comparing the flow pattern with the ones presented in chapter seven. The results obtained 

from this study will help the understanding to what extent the insertion of a PIV 

endoscopic probe alters the flow regimes and the flow pattern that exist in the annular 

region of a concentric rotating cylinder or similar rotating equipment. The result obtained 

with the cylindrical probe inserted in the annulus will serve as a benchmark upon which 

alternative probe geometries can be tested for lower flow disturbance in the enclosure. 

 

8.2 Experimental apparatus and technique 

The flows under consideration are generated in an apparatus similar to the one used in 

chapter seven, apart from the introduction of the cylindrical probe in the annular region of 

the concentric cylinders. As such, the geometrical parameters for the concentric rotating 

cylinders are the same as those used for the PIV experimental investigation with no probe 

in chapter seven as listed in Table 5-1 and Table 5-2. The cylindrical rod representing the 

probe is approximately 0.06m long into the annular region with a diameter Dp = 0.01m, 

giving a probe diameter to annulus gap width ratio Dp/d = 0.46 and a probe length to inner 

cylinder radius ratio Lp/Ri = 2.4. 

Figure 8.1 shows the layout of the stationary outer cylinder and the rotating inner cylinder 

with the cylindrical probe inserted in the annular region of the cylinders in the meridional 

plane as measured in the laboratory frame of reference. In Figure 8.1, the cylinders are co-

axial with the axis coinciding with the X-coordinate of the cylindrical reference system (r, 

θ, X). 
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(a) 

 

 
(b) 

Figure 8.1: (a) Cylindrical reference system of the concentric cylinder assembly with the 

cylindrical probe inserted (b) Meridional plane. 

 

A PIV experimental investigation with the cylindrical probe in the annular region was 

conducted for the concentric rotating cylinders test case   = 11.36 discussed in chapter 

seven. The experimental set-up for this test case is shown in Figure 8.2. The side view 

from the laser is as shown in Figure 4.5. The same start-up procedure was followed as in 

the PIV experimental test case with no probe in the annular region, in which the 

acceleration of the inner cylinder was started suddenly and the final speed was achieved 

within one second. Similarly, the same procedure for image acquisition as in the test case 

with no cylindrical probe in the annular region was used. The measurement procedure 

discussed in chapter five was followed. The two experiments without and with the 

cylindrical probe were conducted back to back using the same data processing. Therefore, 

convergence and accuracy of the results documented in chapter seven is taken to be 

applicable to this test case.  
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Figure 8.2: PIV experimental arrangement for the Taylor Couette flow apparatus with 

cylindrical probe model. 
 

8.3 Results presentation and discussions 

The PIV field of view in the annulus of the coaxial rotating cylinders in this section is the 

same as the one of the PIV measurements with no cylindrical probe discussed in chapter 

seven, section 7.5. The axial and radial length of the PIV results have been normalised by 

the inner cylinder radius Ri, consistent with the PIV results of chapter seven, section 7.5. 

All the velocity fields have been normalised by the inner cylinder angular speed Ri, as in 

chapter seven.  

 

8.3.1 Flow pattern in the annulus of concentric cylinders at  = 11.36 with a probe 

The Taylor number in this test case is the same as the one for the test case with no 

cylindrical probe in the annulus discussed in chapter seven. The PIV results in this section 

suggest that the flow regime in this test case is wavy vortex flow, consistent with the PIV 

result without the cylindrical probe discussed in chapter seven, section 7.5.1. This type of 

flow regime, which is characterised by travelling azimuthal waves superimposed on the 

Taylor vortices, has been discussed extensively in the context of Figure 7.4 to Figure 7.6. 

Figure 8.3 shows the normalised time average of the velocity vector map obtained with the 

cylindrical probe in the annular region in the meridional plane for this test case. Figure 8.3 

shows that the time average flow in the annular region between the rotating inner cylinder 

and the concentric stationary outer cylinder in the entire measurement area that is not 

occupied by the probe is similar to the flow pattern obtained for the test case with no 

cylindrical probe in the annulus. The features of this flow pattern have been discussed in 
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details in the context of Figure 7.7(a). There is qualitative agreement between the PIV 

results obtained without and with the cylindrical probe in the annulus. 

As in Figure 7.7(a), Figure 8.3 shows that there is a slight oscillation of the Taylor vortices 

resulting in the radial displacement of the vortex centres. This is noticeable in both the 

upper and lower channels ( = /2) of the annulus where an axial pattern of vortices 

similar to that of Figure 7.7(a) is shown. In the upper channel ( = /2) of the annulus, 

starting from the left end-wall, over the ranges 0  X/Ri  4.7, the centres of a pair of 

vortices are displaced in the same alternate manner as described in the context of Figure 

7.7(a). From the right end-wall over the range 4.8  X/Ri  10, the same pattern is 

observed as in Figure 7.7(a). This pattern is symmetric about the axial length of the 

annulus at X/Ri ≈ 4.7.  

In the lower channel ( = -/2) of the annulus, in the area not occupied by the probe over 

the range 2.4  X/Ri  5.8, the centre of the clockwise vortex near the tip of the cylindrical 

probe is displaced toward the wall of the outer cylinder, while the centre of the next 

inbound anti-clockwise vortex is displaced toward the wall of the inner cylinder. The next 

pair of vortices follows the same pattern. Similarly, from the right end-wall over the range 

5.8  X/Ri  10, the same pattern is observed, in which the centre of the last anti-

clockwise vortex is displaced toward the outer cylinder and the centre of the next inbound 

clockwise vortex is displaced toward the wall of the inner cylinder. This pattern is 

asymmetric about the axial length of the annulus at X/Ri ≈ 5.8. The effect of this vortex 

centre radial displacement pattern on the axial flow has been discussed in the context of 

Figure 7.7. The alternate displacement of the vortex centres at the upper and lower 

channels of the annulus is in qualitative agreement with the result obtained for the PIV test 

case with no probe in Figure 7.7(a). 

In Figure 8.3, the twisting at the inflow and the outflow boundaries between the vortices is 

more pronounced in this test case compared to the test case without the cylindrical probe 

in Figure 7.7(a), resulting in the velocity vectors of the flow field inclining at an angle of 

about 45
o
 in the outflow and inflow regions. Mass transfer of fluid from each clockwise 

vortex to the next anti-clockwise vortex along the positive axial direction is shown in 

Figure 8.3 as in the test case without the cylindrical probe in the  = -/2 plane. The fluid 

mass flux reverses in the  = -/2 plane, so that the net mass flux across the azimuthal 

plane is zero. These flow features are also in qualitative agreement with the result obtained 

for the PIV with no probe in the annulus of the cylinder in as in Figure 7.7(a). 
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However, the introduction of the cylindrical probe changes many aspects of the flow 

pattern in the annulus between the cylinders, as anticipated. For instance, the presence of 

the probe reduces the number of vortices in the meridional plane from twelve in as in 

Figure 7.7(a) to ten in Figure 8.3. In addition, the probe distorts and shifts the vortices in 

Figure 8.3 from their original axial position of Figure 7.7(a). This is most evident in the 

upper channel ( = /2) of the annulus, where the presence of the probe at  = -/2 

affected the first, the second, and the third vortex, creating an elongated third vortex at  = 

/2. This vortex is shown encircled by a black ellipse in Figure 8.3. At the same axial 

location in the lower channel ( = -/2), Figure 8.3 shows that the cylindrical probe tip has 

constrained the third Taylor vortex toward the wall of the outer cylinder. Consequently, 

the centre of this vortex is shifted away from r = Ri + 0.5d toward the wall of the outer 

cylinder. Around the probe tip, the cross-sectional area of this Taylor vortex is about 50% 

smaller than that of the corresponding Taylor vortex without probe in Figure 7.7(a). This 

result and the one obtained for the PIV test case with no probe show that, whenever there 

is a perturbation in the form of a wall boundary, the centre of the vortex next to the wall 

boundary displaces radially from the r = Ri +0.5d line. This determines an alternated 

pattern of vortex centre radial displacement in the central region of the annulus. 

 

Figure 8.3: Normalised velocity vectors in the meridional plane with the cylindrical probe 

inserted. The reference vector is 0.5Ri. 

 

In Figure 8.3, the vortices near the right end-wall boundaries are more elongated than the 

vortices near the tip of the probe and in the central region of the annulus, as evidenced by 

the axial length of the vortices shown in Table 8-1. This is in contrast to the observed 

pattern in the flow field without the cylindrical probe in Figure 7.7(a). In that figure, the 

two vortices at the end-wall boundaries are elongated more than the vortices in the central 
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region. This difference is due to the change in the boundary condition at the left end-wall 

boundary in Figure 8.3 due to the presence of the cylindrical probe.  

Figure 8.3 shows a radial redistribution of mass flow across the annulus similar to the one 

discussed in the context of Figure 7.7. The presence of the cylindrical probe in the annulus 

affected this redistribution of mass flow in the lower channel, as the radial outflow 

between the vortices near the cylindrical probe seems stronger than the radial outflow 

between the vortices away from the probe. This is evidenced by the length of the velocity 

vectors in Figure 8.3.  

Figure 8.3 clearly shows that the presence of the cylindrical probe is responsible for a 

change in the flow pattern, especially the vortex near the tip of the cylindrical probe in the 

lower channel and the vortices at the upper channel in the same axial position as the area 

occupied by the probe in the lower channel. 

 

8.3.2 Axial and radial velocity contour plots with a cylindrical probe  

PIV contour plots of axial and radial velocity in the meridional plane of the annular region 

with the cylindrical probe in the annulus are shown in Figure 8.4 and Figure 8.5 

respectively. To be consistent with the results obtained for the contour plots with no 

cylindrical probe in the annulus in chapter seven, Figure 7.10(a) and Figure 7.11(a), all 

velocities have been normalised by the surface speed of the inner cylinder Ri. The 

contour lines in Figure 8.4 and Figure 8.5 have been evenly spaced with a contour spacing 

of 0.03Ri, which is the same contour spacing used for all the test cases discussed in 

chapters six and seven.   

Away from the probe, the features of the normalised axial velocity contour plot in Figure 

8.4 are similar to the ones obtained for the PIV test case with no probe in Figure 7.10(a). 

The formation of an alternating pattern of axial velocity maxima and minima in the 

annulus at the same axial position as the vortex centres is evident in Figure 8.4. The 

velocity maxima and minima are aligned radially above and below each vortex core. The 

zero contour lines between the maxima and minima in Figure 8.4 are the radial positions 

of the centre of the vortices in Figure 8.3. The detailed description of the axial velocity 

flow field is discussed in the context of Figure 7.10(a). 

In Figure 8.4, at approximately X/Ri = 2.4, corresponding to the axial location of the probe 

tip, the regions of high axial velocity in both the upper and lower channels of the 

meridional plane appear elongated in the axial direction, extending to almost 1.5 times the 

corresponding high velocity region at the same position in Figure 7.10(a). The same is 
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observed for the low axial velocity region in the upper portion of the meridional plane in 

Figure 8.4. 

 

 

Figure 8.4: Contour plot of axial velocity in the meridional plane with cylindrical probe 

model. The contour spacing ux = 0.03Ri. 
 

In the contour plot of axial velocity in Figure 7.10(a), the absolute value of normalised 

axial velocity maxima and minima are within the range 0  ux/ΩRi  0.15. The presence of 

the probe in the annulus changes the axial velocity magnitude to within the range 0  

ux/ΩRi  0.18, as seen in Figure 8.4. This shows that the presence of the cylindrical probe 

has increased the axial velocity magnitude in the annulus by about 20%. This will be 

discussed in details in the analysis of the in-plane velocity profiles in section 8.3.3. 

Figure 8.5 shows the normalised radial velocity contour map with an alternating pattern of 

radial velocity minima and maxima along the axial direction. The contour plot in Figure 

8.5 is colour coded as in Figure 7.11(a). The negative and positive values on these contour 

clusters indicate inward flow regions and outward flow regions respectively at  = -/2 at 

the meeting point of two adjacent vortices in Figure 8.3. These features have been 

discussed in details in the context of Figure 7.11(a). The radial velocity contours in Figure 

8.5 show the number of the radial velocity extrema in the upper channel to be eleven, 

while the number of cells is ten, as seen in Figure 8.3. This difference of one between the 

number of cells and the number of vortices is also found in the velocity vector map and 

contour plot of Figure 7.7(a) and Figure 7.11(a), for the case with no cylindrical probe, in 

which twelve vortices and thirteen radial velocity extrema are shown in the upper and 

lower channels. The difference in the number of the vortices and in the number of extrema 

has been attributed to the presence of the end-walls.  

0

0.09

-0.15 0.09

-0.09

0
-0.15

0

0.12 -0.09

0.09
0

-0.15

0

0.15 -0.09

0

0.12 -0.15
0

0.18 -0.15

0

0.12 -0.12
0

-0.12

0

0.18

0.12

X/R
i

r/
R

i

0 1 2 3 4 5 6 7 8 9 10

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0.09 0.18

-0.06 0.21

-0.15

-0.09 0.15

-0.18

-0.15 0.15

-0.18 0.12 -0.15

0.09
00

-0.15
00000

0.18 0.18

-0.09

-0.09

0.15



247 

 

 

Figure 8.5: Contour plot of radial velocity in the meridional plane with cylindrical probe 

model. The contour spacing ur = 0.03Ri. 

 

In the contour plot of radial velocity for the PIV test case with no cylindrical probe in the 

annular region in Figure 7.11(a), the absolute values of the normalised radial velocity 

maxima and minima are within the range 0  ur/ΩRi  0.18. The presence of the probe in 

the annulus has changed the radial velocity magnitude to within the range 0  ur/ΩRi  

0.21. This shows that the presence of the cylindrical probe has increased the radial 

velocity magnitude in the annulus by about 17%. This will be discussed in details in the 

analysis of the in-plane velocity profiles in section 8.3.3. It is interesting to observe that 

both the axial and radial velocity increased by the same magnitude of 0.03Ri as result of 

the cylindrical probe in the annulus. 

 

8.3.3 Analysis of the in-plane velocity profiles in the meridional plane 

A detailed quantitative analysis of the in-plane velocity profiles obtained from the velocity 

vectors in the meridional plane of Figure 8.3 and Figure 7.7(a) is discussed in this section.  

The in-plane velocity profiles for the PIV test case with cylindrical probe are extracted at 

 = - /2 at the same radial positions along the axial direction as those of the profiles 

without the cylindrical probe discussed in section 7.5.4. The velocity profiles presented 

here have been normalised with respect to the inner cylinder surface speed Ri for 

consistency.  

Figure 8.6 shows the combined normalised axial velocity profiles in the meridional plane 

at constant radial positions r = Ri + 0.125d, r = Ri + 0.5d, and r = Ri + 0.875d on the lower 

( = -/2) channel for the PIV test case with cylindrical probe in the annular region. As in 

the PIV test case with no cylindrical probe in the annular region, the axial velocity profiles 
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in Figure 8.6 traverse through the inward and outward flow regions of Figure 8.3. The 

zero crossings that mark the axial position of the saddle planes between the neighbouring 

toroidal Taylor vortices offer a good visual reference point for appreciating how the vortex 

pattern changes axially with the introduction of the cylindrical probe. 

As in the PIV test case with no cylindrical probe in the annular region, the axial velocity is 

observed to be relatively small compared with the surface speed of the inner cylinder, as 

shown by the values of the maxima and minima in Figure 8.6. Many of the features of the 

axial velocity profiles in Figure 8.6 are similar to the corresponding ones in the axial 

velocity profiles for the PIV test case with no cylindrical probe discussed in details in 

section 7.5.4 in the context of Figure 7.12. 

Near the inner cylinder wall at r = Ri + 0.125d in Figure 8.6, the profile shows that the 

magnitude of the axial velocity minima and maxima near the left end-wall over the region 

0  X/Ri  2.4 are smaller compared to the magnitude of the axial velocity minima and 

maxima along the entire annulus over the range 2.4  X/Ri  10. As this region (0  X/Ri  

2.4) is occupied by the cylindrical probe in the gap mid-span of the annulus, the flow is 

obstructed by the probe blockage that reduces the in-plane flow velocity magnitude. The 

magnitude of the axial velocity maxima and minima near the left end-wall in the region 

occupied by the probe in Figure 8.6 is approximately 0.1Ri and -0.08Ri respectively. 

The normalised axial velocity profile near the wall of the inner cylinder at r = Ri + 0.125d 

in Figure 8.6 shows that the axial velocity maximum just at the tip of the cylindrical 

probe, at X/Ri = 2.6, is higher than the axial velocity maxima in the entire annulus. This is 

a result of the presence of the cylindrical probe in the annulus in which the probe solid 

blockage close to the tip causes an increase in axial velocity away from the probe 

boundary layer. The axial velocity magnitude at this axial position X/Ri = 2.6 is 

approximately 0.2Ri. Along the rest of the annulus, over the range 2.6 ≤ X/Ri ≤ 10, the 

profile shows a progressive decrease in the axial velocity maxima toward the right end-

wall. Over the range 2.6 ≤ X/Ri ≤ 10, the normalised axial velocity minima are almost 

symmetric about X/Ri = 6.4 with axial velocity minima at X/Ri = 5.2 and X/Ri = 7.2 

approximately equal to -0.18Ri. Similarly, the normalised axial velocity minima at X/Ri 

= 3.3 and X/Ri = 9.5 are approximately equal to -0.16Ri, but their symmetry is adversely 

affected by the presence of the right end-wall. 

The normalised axial velocity profile at the gap mid-span at r = Ri + 0.5d in Figure 8.6 

shows an axial velocity absolute maximum at the tip of the probe X/Ri = 2.4. This result is 
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given by the probe solid blockage close to the tip that causes a positive axial velocity 

away from the probe boundary layer. This axial velocity absolute maximum is in 

agreement with the strong outward flow at the tip of the probe at the same axial position in 

Figure 8.3. Over the range 2.4 ≤ X/Ri ≤ 10, four further local maxima can be observed at r 

= Ri + 0.5d in Figure 8.6. The axial velocity maxima decrease progressively along the 

positive axial direction toward the right end-wall, while the axial velocity minima reduce 

along the same direction. A possible explanation for the reduction in the axial velocity 

minima is that the low mass transport at the inflow in the positive axial direction by the 

Taylor vortex compensates for the increased mass transport by the induced velocity at the 

outflow of the vortex at the tip of the cylindrical probe. This ensures that the net mass flux 

balance around the azimuthal plane at X/Ri ≈ 5 is zero, as imposed by the wall boundary 

conditions at the rotating cylinder ends, at X/Ri = 0 and X/Ri = 10. The low axial velocity 

magnitude toward the right end-wall can be attributed to the PIV laser light reflection 

from the right end-wall boundary, as discussed in the context of Figure 7.13. 

 
Figure 8.6: Normalised axial velocity profiles in the meridional plane of the lower        

                   channel at  = -/2 at constant radial positions r = Ri + 0.125d, r = Ri + 0.5d,     

and r = Ri + 0.875d with cylindrical probe model inserted. 

 

The normalised axial velocity profile near the outer cylinder wall at r = Ri + 0.875d in 

Figure 8.6 shows that the axial velocity extrema near the left end-wall over the region 0  

X/Ri  2.4 are smaller than the axial velocity extrema along the reminder of the annulus 

except near the right end-wall at X/Ri = 9.3. This result has been discussed in the context 

of the profile at r = Ri + 0.125d. Over the range 2.4  X/Ri  10, the axial velocity maxima 

decrease progressively toward the right end-wall. This agrees with the results observed in 

Figure 8.3 in which the velocity vectors at the outflow regions near the tip of the 
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cylindrical probe are longer than at the outflow regions near the right end-wall boundary. 

Near the right end-wall boundary, the axial velocity local minimum is higher than at X/Ri 

= 6.8, due to the effects of wall boundary and the PIV light reflection from the wall.  

The axial velocity maxima and minima near the left end-wall in the region occupied by the 

probe in Figure 8.6 are approximately 0.13Ri and -0.09Ri respectively, for the profile 

near the wall of outer cylinder at r = Ri + 0.875d. For the same profile, the axial velocity 

absolute maximum along the entire annulus occurs at X/Ri = 3.4 with an axial velocity 

magnitude of approximately 0.2Ri, whereas the axial velocity absolute minimum along 

the entire annulus occurs at X/Ri = 6.4 with an axial velocity of approximately -0.16Ri. 

Near the right end wall, the axial velocity maximum and minimum are approximately 

0.08Ri and -0.14Ri, respectively.  

The inflection points on this profile in Figure 8.6 correspond to the position of the inflow 

regions in Figure 8.3. These positions correspond to the area where low momentum fluid 

near the outer wall is convected inwardly by the radial inflow. The presence of the 

inflections has been discussed in details in the context of Figure 7.12. 

 

8.3.4 Quantitative analysis of the intrusive effect of the cylindrical probe 

In this section, the intrusive effects of the cylindrical probe are discussed more 

quantitatively. This is done by making a direct comparison between the PIV test case with 

and without the cylindrical probe in the annular region. The axial velocity profiles have 

been normalised with respect to the inner cylinder surface speed Ri. 

Figure 8.7 shows the normalised axial velocity profiles with and without the probe in the 

annular region of the annulus at a constant radial position r = Ri + 0.125d. Figure 8.7 

shows that the profiles with and without a probe are similar in trend in the sense that the 

axial velocity profiles display alternating maxima and minima, with zero crossings in 

between, which is where the r = Ri + 0.5d gap mid-span cylindrical surface intersects the 

saddle planes in the meridional planes. In the profiles with and without a probe, the 

centres of the inward and outward flows are saddle planes of axial velocity separating each 

Taylor vortex. These features have been discussed in the details in the context of Figure 

7.12. The profiles show that the axial velocity maxima for the profile with and without a 

probe are almost the same in magnitude, except in the region occupied by the probe. 

However, there are discrepancies in the magnitude of the axial velocity minima between 

the test case with and without a probe in the region occupied by the probe and in the 
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central region of the annulus, over the range 0  X/Ri  6.7. Toward the right end-wall 

boundary, over the range 6.7  X/Ri  8.6, the axial velocity minima of the profiles with 

and without a probe are almost the same in magnitude. At the right end-wall boundary, the 

axial velocity local minimum with the probe is higher than the axial velocity local 

minimum with no probe. 

Near the left end-wall at X/Ri = 0.5, the magnitude of the axial velocity maxima with and 

without a probe are approximately 0.1Ri and 0.2Ri respectively. In this region, the 

presence of the cylindrical probe has reduced the axial velocity magnitude by almost 50%. 

At the tip of the cylindrical probe, at the axial position X/Ri = 2.4, the magnitude of the 

axial velocity maxima with and without a probe are approximately 0.2Ri and 0.18Ri 

respectively, indicating an increase of almost 11% in the axial velocity maximum due to 

the presence of the cylindrical probe. Beyond this position, the effect of the probe on the 

magnitude of the axial velocity maxima is almost negligible. 

 

Figure 8.7: Normalised axial velocity profiles in the meridional plane of the lower    

                   channel at  = -/2 at constant radial position r = Ri + 0.125d with and    

without a probe in the annulus. 

 

As far as the axial velocity minimum at X/Ri = 1.4 is concerned, which falls within the 

region occupied by the cylindrical probe, the axial velocity minimum with and without a 

probe is approximately -0.08Ri and -0.13Ri respectively. This result shows that the 

presence of the probe has increased the axial velocity local minimum by almost 38.5%. 

Between the region occupied by the probe and the central region of the annulus, over the 

range 2.4  X/Ri  5.8, the presence of the probe has increased the magnitude of the axial 

velocity minima by almost 13.9%.  
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In Figure 8.7, over the range 5.8  X/Ri  8.0, the presence of the probe seems not to have 

any significant effect on the magnitude of the axial velocity minima. At the right end-wall 

boundary, the presence of the probe increases the magnitude of the local axial velocity 

minimum by approximately 22.2%. The difference in the magnitude of the axial velocity 

minima between the two test cases at this position is likely to be due to combinations of 

many factors, including the change in the boundary condition at the left end-wall and the 

effect of PIV light reflection from the wall. 

It is interesting to observe that, in the region occupied by the probe over the range 0  

X/Ri  2.4, the spatial phase difference between the profile with and without the probe is 

negligibly small. However, in the reminder of the annulus, over the range 2.4  X/Ri  10, 

there is a significant change in the spatial phase of the two profiles, with the profile with 

the probe phase leading the profile with no probe. The change in spatial phase between the 

axial velocity profiles increases progressively from the tip of the cylindrical probe toward 

the right end-wall boundary along the positive axial direction over the range 2.4  X/Ri  

7.6. Near the right end-wall boundary over the range 7.6  X/Ri  10, the phase difference 

between the profile with and without probe reduces. Over this region, the profile with no 

probe is phase leading the profile with probe. The large discrepancies in the spatial phase 

between the axial velocity profiles with and without probe is due to the reduction in the 

number of vortices from twelve for the latter to ten for the former as the axial length of the 

two missing vortices must be compensated by an adjustment in the spatial phase since the 

total axial length of the two test cases remains constant. 

Figure 8.8 shows the normalised axial velocity profiles with and without a probe in the 

annular region of the annulus at a constant radial position r = Ri + 0.5d. Figure 8.8 shows 

that the profiles at r = Ri + 0. 5d with and without a probe follow a similar trend especially 

in the region not occupied by the probe, which is characterised by a relatively small axial 

velocity. This trend has been discussed in the context of Figure 7.13 and Figure 8.6. The 

profiles also show a progressive decrease in the magnitude of the axial velocity maxima 

away from the cylindrical probe in the positive axial direction. In Figure 8.8, there is no 

axial velocity reported in the region 0 ≤ X/Ri ≤ 2.4 for the axial velocity profile for the 

PIV test case with probe, as this region is occupied by the cylindrical probe itself. The 

profile at r = Ri + 0. 5d with a probe shows an axial velocity absolute maximum at the tip 

of the probe at X/Ri = 2.4. This feature is not present in the profile without a probe. The 

difference between the two profiles as been attributed to the probe solid blockage close to 
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the tip of the cylindrical probe that causes a positive axial velocity away from the probe 

boundary layer. This has been discussed in the context of Figure 8.6. At this axial position, 

the magnitude of the normalised axial velocity maximum for the profile with and with no 

probe has been estimated as 0.15 and 0.07 respectively. This suggests that there is an 

increase of about 114% in the magnitude of the axial velocity maximum at this axial 

position as a result of the probe in the annular region. 

Away from the tip of the cylindrical probe, the normalised axial velocity profile of Figure 

8.8 shows that the axial velocity local maxima are almost the same in magnitude for the 

profiles with and without a probe along the positive axial direction. 

 

Figure 8.8: Normalised axial velocity profiles in the meridional plane of the lower  

                   channel at  = -/2 at constant radial position r = Ri + 0.5d with and without    

a probe in the annulus. 

 

In Figure 8.8, away from the probe, the axial velocity local minima for the test case 

without a probe are relatively lower compared with the PIV test case with a probe, 

especially over the range 3.4 ≤ X/Ri ≤ 6.8.  Over the range 3.4 ≤ X/Ri ≤ 5.4, the magnitude 

of the axial velocity minima with a probe are nearly constant at approximately 0.015Ri. 

Over the range 7.0 ≤ X/Ri ≤ 8.0, the magnitude of the axial velocity minima with probe are 

nearly constant at approximately 0.03Ri. For the profile with no probe, at axial positions 

over the range 0 ≤ X/Ri ≤ 3.0, the axial velocity minimum is approximately within the 

range -0.02Ri  to -0.03Ri. Over the range 4.1 ≤ X/Ri ≤ 8.2, the profile without a probe 

shows axial velocity minima with a constant magnitude approximately equal to 0.04Ri. 

At the right end-wall boundary, the magnitude of the axial velocity minima with and 

without a probe is approximately 0.04Ri and 0.02Ri respectively.  
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There are also discrepancies in the spatial phase of the profile with and without a probe in 

the region beyond the tip of the probe over the range 2.4 ≤ X/Ri ≤ 8.0. Over this axial 

length, the axial velocity with a probe is phase leading the profile with no probe. In Figure 

8.8, the change in phase between the axial velocity profiles increases progressively from 

the tip of the cylindrical probe toward the right end-wall boundary along the positive axial 

direction over the range 2.4  X/Ri  7.6. Near the right end-wall boundary, over the range 

7.6  X/Ri  10, the spatial phase difference between the profile with and without a probe 

reduces, with the profile without a probe phase leading the profile with a probe. This trend 

is also observed for the profiles near the wall of the inner cylinder at r = Ri + 0.125d. The 

discrepancies in the phase between the axial velocity profiles have been discussed in the 

context of Figure 8.7. 

Figure 8.9 shows the normalised axial velocity profiles with and without a probe in the 

annular region at the constant radial position r = Ri + 0.875d. Figure 8.9 shows that the 

axial velocity profiles at r = Ri + 0.875d with and without a probe display a similar trend. 

This trend has been discussed in the context of Figure 7.12. 

The normalised axial velocity profile in Figure 8.9 shows that the axial velocity maximum 

for the profile with a probe is smaller than the axial velocity maximum without a probe 

over the range 0  X/Ri  2.4, which is the region occupied by the probe. In this region, 

the magnitude of the axial velocity maximum for the test case with and without a probe is 

approximately 0.13Ri and 0.175Ri respectively. The presence of the probe has reduced 

the magnitude of the axial velocity maximum in this region by 25.7%. 

In the region immediately after the tip of the probe, over the range 2.4  X/Ri  4.0, the 

axial velocity maximum for the profile with a probe is greater than that for the test case 

without a probe. The axial velocity maximum in this region for the test case with and 

without a probe is approximately 0.2Ri and 0.175Ri respectively, indicating an 

increase of about 14.3% in the axial velocity maximum due to the presence of the probe in 

the annular region. In Figure 8.9, at the central region of the concentric cylinder, over the 

range 4.0  X/Ri  5.8, the axial velocity maxima for the profiles with and without a probe 

are almost the same. The magnitude of the axial velocity maximum over the range 4.0  

X/Ri  5.8, for the PIV test case with and without a probe, is approximately 0.17Ri. 

Similarly, over the range 5.8  X/Ri  8.7, the axial velocity maxima for the profiles with 

and without a probe are almost equal and the axial velocity magnitude in this region for 

the PIV test case with and with no probe is approximately 0.15Ri. 
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At the right end-wall boundary, the magnitude of the axial velocity maximum for the test 

case with probe is smaller compared with that of the test case with no probe with the 

former and the latter having a magnitude of 0.08Ri and 0.13Ri respectively. This 

shows a decrease of about 38.5% in the right most axial velocity maximum by the 

insertion of the probe at the left end boundary. The decrease in axial velocity at this 

position is due to the effects of the probe in the annular region and that of the PIV light 

reflection.  

As far as the axial velocity minima are concerned, the profiles in Figure 8.9 show the axial 

velocity minima with probe to be higher than the axial velocity minima without a probe in 

the entire annulus. For instance, over the range 0  X/Ri  2.6, which falls within the 

region occupied by the cylindrical probe, the profiles in Figure 8.9 show that the axial 

velocity minimum with a probe at X/Ri ≈ 0.4 is approximately -0.09Ri, while the axial 

velocity minimum for the test case without a probe is approximately -0.12Ri. At X/Ri = 

2.6, the axial velocity minimum with a probe is approximately -0.06Ri, while the axial 

velocity minimum for the test case without a probe at X/Ri = 2.2 is approximately -

0.14Ri. These results suggest a maximum increase of about 62% in the axial velocity 

minimum due to the presence of the cylindrical probe over the region 0  X/Ri  2.6.  

In Figure 8.9, over the range 3.8  X/Ri  4.6, the axial velocity minimum with a probe is 

higher than that without a probe, with the former being approximately -0.12Ri  and the 

latter being -0.16Ri respectively. This indicates an increase of about 14.3% in axial 

velocity by the introduction of the cylindrical probe model. The profile of the axial 

velocity with a probe in Figure 8.9 shows that the magnitude of the axial velocity minima 

is nearly constant over the range 5.8  X/Ri  9, with the axial velocity minima estimated 

as -0.16Ri. Similarly, over the same axial range of 5.8  X/Ri  9, the profile of axial 

velocity without a probe display two axial velocity minima approximately equal to -

0.17Ri. Over this range, the presence of the probe in the annular region causes an 

increase in the axial velocity minimum of about 6%. 

Due to the presence of the probe near the left end-wall and due to wall boundary PIV light 

reflection at the right end-wall, the axial velocity maxima and minima over the range 0  

X/Ri  10 change their values by at least 14.3% in the test with probe as compared with 

the test without probe. 

Figure 8.9 shows that the spatial phase of the axial velocity profiles with and without a 

probe is different, with the spatial phase of the axial velocity profile with a probe leading 
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that of the axial velocity profile without a probe over the region not occupied by the probe 

in the range 2.4  X/Ri  9.0. 

 

Figure 8.9: Normalised axial velocity profiles in the meridional plane of the lower  

                   channel at  = -/2 at constant radial position r = Ri + 0.875d with and   

without a probe in the annulus. 

 

Figure 8.10 shows the normalised radial velocity profiles at the same radial positions in 

the meridional plane of the lower ( = -/2) channel as in Figure 8.6. The radial velocity 

profiles in Figure 8.10 show that, away from the region occupied by the probe, in the 

region 2.4  X/Ri  9.0, the radial velocity exhibits alternating maxima and minima. This 

trend is the same as that of the radial velocity profiles for the test case with no probe in 

Figure 7.14.  

The radial velocity profile in Figure 8.10 exhibits a spatially periodic trend away from the 

region occupied by the probe along the positive axial direction. This periodic trend is more 

obvious in the profile at the gap mid-span radial position r = Ri + 0.5d (-/2), this being 

the position at which the radial velocity reaches its maximum value. In Figure 8.10, away 

from the region occupied by the probe, approximately four cycles of a periodic oscillation 

along X/Ri are shown for the radial position r = Ri + 0.125d and r = Ri + 0.5d. Also, the 

velocity profiles of Figure 8.10 show that the radial velocity is not symmetric about the 

gap mid-span. The asymmetry in inflow (negative ur) and outflow (positive ur) regions is 

more noticeable in the radial velocity profiles at r = Ri + 0.5d ( = -/2). This feature 

results from the displacement of the vortex centres in both the axial and radial directions 

discussed in section 7.5 in the context of Figure 7.7 and Figure 7.14. These trends are 

similar to the ones exhibited by the test case with no probe in Figure 7.14. 
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Figure 8.10: Normalised radial velocity profiles in the meridional plane of the lower    

                       channel at  = -/2 at constant radial positions r = Ri + 0.125d, r = Ri +      

0.5d, and r = Ri + 0.875d with cylindrical probe model inserted. 

 

Figure 8.11 displays the normalised radial velocity profiles obtained from the PIV test 

cases with and with no probe at r = Ri + 0.125d, using a smaller range for the ordinate than 

that of Figure 8.10. The magnitude of the radial velocity maxima and minima near the left 

end-wall of Figure 8.11, in the region occupied by the probe, are observed to be lower 

compared to the ones at the right end-wall. The radial velocity maxima and minima for the 

test case with no probe increase progressively in amplitude from the left end-wall to the 

right end-wall. Away from the region occupied by the probe over the range 2.8  X/Ri  

9.0, the radial velocity maxima for the test case with probe show a symmetric trend about 

X/Ri = 5.6. On the other hand, over the same region, the radial velocity minima for the 

PIV test case with probe increase progressively in amplitude from the left end-wall to the 

right end-wall. 

Figure 8.11 shows that the normalised radial velocity maxima for the profile with a probe 

are lower than the radial velocity maxima for the profile without a probe in the entire 

annulus both in magnitude and in amplitude. This attributed to the presence of the 

cylindrical probe in annulus and it is unlikely to result from an experimental error, since 

both experiments were conducted back to back. Near the left end-wall in the region 

occupied by the probe, over the range 0  X/Ri  2.4, the radial velocity maximum for the 

PIV test case with and without a probe is approximately 0.025Ri and 0.07Ri 

respectively, indicating a reduction of about 64% in the radial velocity maximum due to 

the presence of the probe in the annular region. In the region away from the tip of the 

probe, over the range 2.4  X/Ri  10, the magnitude of the radial velocity maxima for the 
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PIV test case with and without a probe is approximately 0.07Ri and 0.085Ri 

respectively. The presence of the probe in the annular region has reduced the magnitude of 

the radial velocity maxima by 17.7% in this region. 

 

Figure 8.11: Normalised radial velocity profiles in the meridional plane of the lower  

                        channel at  = -/2 at constant radial position r = Ri + 0.125d with and  

with no probe in the annulus. 

 

In the region occupied by the probe near the left end-wall at X/Ri ≈ 2, the radial velocity 

local minimum for the PIV test case without a probe is lower than the radial velocity local 

minimum with the probe. In this region, the radial velocity minima with and with no probe 

are estimated to be approximately -0.055Ri and -0.075Ri respectively. This shows that 

the presence of the probe in this region has increased the radial velocity minimum by 

about 26.6%. Away from the tip of the probe, over the range 2.4  X/Ri  10, the radial 

velocity minima for the PIV test case with and without a probe are approximately -

0.09Ri and -0.095Ri respectively. These values show that the presence of the probe in 

the annular region has increased the radial velocity local minima by just 5.3% in this axial 

region. 

From this result, it is clear that the presence of the probe in the annular region has 

increased the radial velocity maxima by a maximum amount of 17.7% and has increased 

the radial velocity local minima by 5.3% along the radial position r = Ri + 0.125d. In 

Figure 8.11, the spatial phase of the radial velocity profile with a probe is leading that of 

the radial velocity profile without a probe over the region not occupied by the probe in the 

range 2.4  X/Ri  9.0. 
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Figure 8.12 displays the normalised radial velocity profiles at the gap mid-span of the 

annulus at r = Ri + 0.5d for the PIV results with and without a probe. The trend of the 

radial velocity profiles in Figure 8.12 is similar for the PIV results with and without the 

probe. This is clearly noticeable in the region away from the tip of the probe boundary, 

over the range 2.4  X/Ri  10, where the radial velocity exhibits alternating minima and 

maxima. The radial velocity profiles in Figure 8.12 show approximately four and five 

cycles of a spatially periodic oscillation respectively for the PIV results with and without a 

probe over the range 2.6  X/Ri  10. Other features of the radial velocity profiles in 

Figure 8.12 have been discussed in details in the context of Figure 7.16. 

The amplitude of the radial velocity maxima and minima from the PIV test case with no 

probe in Figure 8.12 is observed to be higher than that from the PIV test case with a probe 

in the entire annulus. The radial velocity maxima and minima from the PIV test case with 

no probe along the central region of the annulus over the range 2.6 ≤ X/Ri ≤ 7.5 are almost 

of the same value of approximately 0.22Ri and -0.18Ri respectively. This trend has 

been discussed in the context of Figure 7.16. 

Over the range 2.6 ≤ X/Ri ≤ 7.5, the radial velocity maxima from the PIV test case with a 

probe along the central region of the annulus seem symmetric about X/Ri = 4.8. The 

magnitude of the radial velocity maxima in this region at X/Ri ≈ 3 and X/Ri ≈ 6.8 is 

approximately 0.19Ri, indicating a reduction of radial velocity magnitude of about 

13.6% in this region compared to the test case without probe. On the other hand, the radial 

velocity minima for the PIV test case with a probe increase progressively away from the 

tip of the probe toward the right end-wall boundary. Over the range 2.6 ≤ X/Ri ≤ 7.5, the 

value of the highest radial velocity minimum for the PIV result with a probe is 

approximately -0.12Ri. This results in an increase of approximately 33% in the radial 

velocity minimum at X/Ri = 7.5 due to the presence of the probe in the annular region of 

the cylinders. 

In Figure 8.12, toward the right end-wall over the range 7.5  X/Ri  9.2, the radial 

velocity maximum and minimum from the PIV test case without a probe are estimated as 

0.18Ri and -0.15Ri respectively. Over the same range of 7.5  X/Ri  9.2, the radial 

velocity maximum and minimum for the PIV test case with a probe are estimated as 

0.15Ri and -0.12Ri respectively. These results suggest that the presence of the probe in 

the annulus decreases the radial velocity maximum by 16.7% and increases radial velocity 

minimum by 20% along the radial position r = Ri + 0.5d. 
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In Figure 8.12, there is no radial velocity profile in the region 0  X/Ri  2.4, as this is 

occupied by the probe. At the tip of the probe in Figure 8.12, at X/Ri ≈ 2.4, the magnitude 

of the radial velocity minimum for the PIV test case with a probe is small compared to the 

PIV test case without a probe in the same region. This is the result of the solid blockage of 

the probe that affects the boundary layer. At the right end-wall, at the axial position X/Ri = 

10, the radial velocity minimum for the PIV test case with and without a probe have the 

same value which is estimated to be approximately -0.10Ri. 

Figure 8.12 show that the spatial phases of the radial velocity profiles with and without a 

probe are different. Over the range 2.4  X/Ri  9.0, the radial velocity profile for the test 

case with a probe is phase leading the radial velocity profile without a probe. Toward the 

right end-wall over the range 9.0  X/Ri  10, the radial velocity profile without a probe is 

phase leading. The observed phase difference between the profiles with and without probe 

in the range 3.4  X/Ri  8.4 is due to the axial length of the two missing vortices in the 

flow field of the PIV test case with a probe, as identified in Figure 8.3. 

 

Figure 8.12: Normalised radial velocity profiles in the meridional plane of the lower     

                     channel ( = -/2) at constant radial position r = Ri + 0.5d with and without    

a probe in the annulus. 

 

Figure 8.13 displays the normalised radial velocity profile near the wall of the outer 

cylinder at r = Ri + 0.875d for the PIV test case with and without a probe in the annular 

region of the concentric cylinders. The normalised radial velocity profiles from the PIV 

test case with and without a probe exhibit the same trend of the outward flow regions 

featuring one single maximum, while the inward flow regions over the range 2.4 ≤ X/Ri ≤ 

7.2 exhibit double trough minima. This trend has been explained in the context of Figure 
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6.17 and Figure 7.17. The double trough minima for the profile without a probe are still 

visible till the axial position X/Ri = 8.2, while the ones of the profile with a probe are no 

longer visible over the range 7.2 ≤ X/Ri ≤ 10. This may be due to combinations of changes 

in the boundary layer as a result of the presence of the probe in the annular region and the 

effect of the PIV light reflection from the walls. In the region occupied by the probe, over 

the range 0 ≤ X/Ri ≤ 2.4, the profile with probe did not show the double trough minima. 

This is due to the presence of the probe in this region. However, the profiles in Figure 8.13 

show some qualitative agreement between the PIV results with and without a probe in the 

annular region over the range 2.6 ≤ X/Ri ≤ 7.2. 

Apart from variation in the flow pattern observed in Figure 8.13 in the area occupied by 

the probe, the profiles in Figure 8.13 display higher amplitude radial velocity maxima in 

the entire annulus for the PIV profile with a probe than in the PIV profile without a probe, 

except toward the right end-wall where the radial velocity maxima of the PIV test case 

with and without a probe have approximately the same magnitude.  

 

Figure 8.13: Normalised radial velocity profiles in the meridional plane of the lower  

                     channel at  = -/2 at constant radial position r = Ri + 0.875d with and  

without a probe in the annulus. 

 

In the region occupied by the probe in the range 0 ≤ X/Ri ≤ 2.4, the radial velocity maxima 

for the profile with and without a probe are approximately 0.09Ri and 0.07Ri 

respectively. This suggests that the presence of the probe in the annular region has 

increased the radial velocity near the wall of the outer cylinder at r = Ri + 0.875d by 

28.6%. At the outflow region next to the tip of the probe, over the range 2.6 ≤ X/Ri ≤ 3.0, 

the radial velocity maxima are 0.075Ri and 0.06Ri respectively for the test cases with 
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and without a probe in the annulus. This is an increment of approximately 25% in the 

radial velocity at the radial position r = Ri + 0.875d. In the central region, over the range 

4.2 ≤ X/Ri ≤ 5.0, the radial velocity maxima for the test cases with and without a probe in 

the annulus are approximately 0.06Ri and 0.055Ri respectively. This result suggests 

that the presence of the probe in the annular region has increased the radial velocity by 

approximately 9.1%. In Figure 8.13, over the range 5.0 ≤ X/Ri ≤ 7.4, the radial velocity 

maxima for the test cases with and without a probe in the annulus are approximately 

0.04Ri and 0.03Ri respectively. In this region, the radial velocity has been increased by 

approximately 33.3% by the insertion of the cylindrical probe. Toward the right end-wall, 

over the range 7 ≤ X/Ri ≤ 10, the radial velocity maxima for the profiles with and without 

a probe have almost the same value and are lower compared with the other maxima in the 

annulus. This variation has been attributed to the effect of light reflection from the end-

wall boundary that affects the magnitude of the measured radial velocity in this region. 

In Figure 8.13, over the area occupied by the probe, no radial velocity minimum for the 

profile with a probe is observed. Away from the tip of the probe and in the entire annulus, 

the profiles in Figure 8.13 show that there is no significant difference between the values 

of corresponding radial velocity minima with and without a probe. However, there is a 

significant spatial phase difference between the profiles with and without a probe and this 

has been discussed in the context of Figure 8.12. 

 

8.3.5 Vortex centre analysis for  = 11.36 with and without a probe 

This section documents the comparion between the analysis of vortex centres for the test 

cases with and without the cylindrical probe model in the annulus. The method discussed 

in section 6.7.8 in chapter six is used to estimate the axial coordinate Xc and the radial 

coordinate rc of each of vortex centre for the test case with the cylindrical probe. Xc and rc 

are then used to mark the centres of the vortices in Figure 8.14. The values of Xc and rc are 

reported in Table B 5 of appendix B. The location of the vortex centres is analysed in 

details in the discussion of Figure 8.15. 

Figure 8.15 displays the normalised radial position of the Taylor vortex centres from the 

PIV result with a probe as a function of their axial position in the meridional plane. As in 

Figure 7.19, Figure 8.15 is used to illustrate the radial spread of the vortex centres in the 

meridional plane at both the lower and upper channels ( = /2). The spread band was 

estimated using equation 6.8 and plotted in Figure 8.15 using the same notation as in 
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Figure 7.19. The numbering of the vortices in Figure 8.14 follows the same method as 

discussed in section 7.6.3 in the context of Figure 7.18. 

 

Figure 8.14: Velocity vectors showing the centre of the vortices in open and closed circles 

on the meridional plane. 

 

Figure 8.15 therefore, shows the variation in both the axial and radial position of the 

centres among the vortices, with the radial variation being more pronounced than the axial 

variation, as in the test case with no probe presented in Figure 7.19(a).  

The axial and radial position of the vortex centres in Figure 8.15 confirms the type of flow 

pattern discussed in the context of Figure 7.7 and Figure 8.3. As in Figure 7.19(a), the 

difference in the radial position of the vortex centres between  = -/2 and  =  /2 in 

Figure 8.15 is higher near the end-wall boundaries  in the range 2.4  X/Ri   4.2 and 7.2  

X/Ri   10, but it is highest near the tip of the probe at X/Ri  = 2.4. Also, the radial spacing 

of the vortex centres between one vortex and the next one in the positive axial direction is 

significantly higher toward the tip of the cylindrical probe than at the left and right end-

wall boundaries. In the central region of the annulus, over the range 4.2  X/Ri   7.2, the 

vortex centres at  = /2 are less spread out radially. 

In the upper channel ( = /2) in Figure 8.15, there is a higher radial spacing between the 

centres of vortices 1 and 2, 2 and 3, 3 and 4, 4 and 5, 8 and 9, 9 and 10. These are the 

vortices near the end-wall boundaries. The radial spacing between the centres of the 

vortices 5 and 6, 6 and 7, and 7 and 8 is comparatively smaller. At the lower channel ( = 

-/2), vortices 1 and 2 are not detected due to the presence of the probe in this region. 

Therefore, the maximum radial spacing between the vortices at the lower channel ( = -

/2) occurs between vortices 3 and 4, 4 and 5, 5 and 6, 8 and 9, and 9 and 10. These are 
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also the vortices near the tip of the probe and vortices near the right end-wall boundary. At 

 = /2 the radial spacing between the vortices in the central region of the annulus is 

comparatively smaller than near the probe tip at  = -/2. The smaller radial spacing at the 

central region of the annulus at  = /2 in Figure 8.15 is similar to the observed pattern 

for the test case with no probe in Figure 7.18, in which the radial spacing between vortices 

in the central region is smaller than near the end-walls. 

 

 

Figure 8.15: Axial and radial position of vortex centres in the meridional plane with 

data spread band about the PIV vortex centre mean value. 

 

8.3.6 Effects of the probe on the vortex centre position 

Figure 8.16 displays the normalised radial position of the Taylor vortex centres as a 

function of their axial position from the PIV measurements with and without a probe in 

the meridional plane of the annular region along the lower and the upper channels ( = 

/2). Figure 8.16 also shows how the vortex centres spread radially in the annular region 

of the cylinder in the PIV results with and without a probe by the inclusion of their 

respective spread bands. It is also possible to identify the missing vortices in the test case 

with probe in Figure 8.16. The spread bands in Figure 8.16 are estimated using equation 

6.8. The black dashed lines toward the top and bottom of Figure 8.16 represent 

respectively the maximum and minimum limits of the spread band about the vortex centre 

mean value from the PIV measurement without a probe. Similarly, the orange dashed lines 

of Figure 8.16 represent the maximum and minimum limits of the spread band about the 
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vortex centre mean value from the PIV measurement with a probe. In Figure 8.16, the two 

band lower limits for the PIV test case with and without a probe overlap each other. In 

Figure 8.16, not all the vortex centres from the PIV test case with and without a probe lie 

within the spread bands.  

Figure 8.16 shows that the presence of the probe in the annular region of the cylinder has 

changed both the axial and radial position of the vortex centres. This can easily be noticed 

by considering the vortex centres with and without a probe at the upper channel ( = /2) 

and the lower channel ( = -/2) independently. The effect of the probe in the annulus is 

more pronounced on the lower channel. This is not surprising because it is the plane where 

the probe is positioned.  

At the upper channel, a significant axial and radial displacement of the vortex centres 

between the PIV test case with and without a probe occurs on vortices 2, 9 and 12, with 

vortices 5 and 10 missing. That is, there is a greater radial spacing between vortices 2, 9 

and 12 from the test case with and without a probe in the annulus than between the 

remaining vortices.  

Similarly, at the lower channel, the greater difference in axial and radial displacement of 

the vortex centres between the test case with and without a probe occurs near the tip of the 

probe where the vortex centre is displaced toward the wall of the outer cylinder, as seen in 

Figure 8.3 and Figure 8.14. Also, on the lower channel, a significant axial and radial 

displacement of the vortex centres between the test case with and without a probe occurs 

for vortices 3, 9 and 12, with vortices 1, 2, 5 and 10 missing. Figure 8.16 shows that the 

radial spacing of the vortex centres at the tip of the cylindrical probe for the PIV test case 

with and without a probe is more significant than for vortices 3, 9 and 12. 

In the central region of the annulus, in the range 4.2  X/Ri   6.4, the vortex centres for 

the PIV test case with and without a probe are less spread out radially and axially. In 

general, the PIV measured vortex centres for the test case with the probe are more 

scattered radially within the annulus than the vortex centres for the test case without a 

probe. This is evidenced by the area occupied by the measured vortex centres. For the test 

case with the probe, the measured vortex centres spread over the range 0.48  (r - Ri)/d  

0.75 radially, while the area occupied by the measured vortex centres spreads over the 

narrower range 0.46  (r - Ri)/d  0.66 radially for the test case without a probe.  
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Despite the effects of the probe on the vortex centre, there are noticeable similarities in the 

pattern of the vortex centres for the PIV test case with and without a probe in the annulus 

in Figure 8.16.  

 

Figure 8.16: Axial and radial position of vortex centres in the meridional plane with 

                     data spread bands about the vortex centre mean value from the PIV test 

cases with and without a probe. 

 

From Figure 8.14, the half wavelength, /2, for each vortex at  = -/2 was estimated 

using the same procedure used for the  = 11.36 test case without probe in chapter six. 

Table 8-1 reports the axial vortex size estimated from Figure 8.14.  

Table 8-1: Variation of vortex axial length with vortex number. 

Vortex number Vortex  axial length  

XL = X/Ri 

1 0 

2 0 

3 0 

4 0.889 

5 0.909 

6 0.990 

7 0.986 

8 1.058 

9 1.083 

10 1.147 
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Table 8-1 shows a progressive increase in the vortex size from the tip of the probe along 

positive axial direction to the right end-wall. In the central region, the axial length of the 

missing vortices is compensated by the increase in vortex size, while the elongated axial 

length of the vortex at the right end-wall is due to the boundary condition at this 

position.This is different from the trend reported for the test case without a probe in Table 

6-7 where vortex axial length is elongated near the end-wall boundaries and shorter in the 

central region of the annulus. 

Figure 8.17 shows the comparison of vortex axial length in the lower channel ( = -/2) 

for the PIV test case with and without a probe in the form of a bar chart. The effect of the 

probe in the annulus on the vortex axial length is clearly shown by this figure in that the 

size of each vortex in the PIV test case with a probe is higher than the size of the 

corresponding vortex in the PIV test case without a probe. This is due to the axial length 

of the missing vortices 5 and 10 that is compensated by an increase in the axial length of 

the remaining vortices, since the axial length of the concentric cylinders is the same in 

both tests.  

 

Figure 8.17: Comparison of vortex axial length in the lower channel ( = -/2) for the test 

cases with and with no probe in the annulus. 
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Chapter Nine: Conclusions and recommendations for further 

work 
 

9.1 Overview 

This chapter gives the conclusions and recommendations for further work from the 

numerical modelling and experimental study on the flow pattern in concentric rotating 

cylinders with and without a cylindrical probe. The conclusions focus on the outcome of 

the computational modelling, of the experimental analysis, and on the effects of the 

cylindrical probe on the Taylor vortex flow.  

 

9.2 Conclusions on the computational analysis 

The elliptical windage flow in the gap between an inner rotating cylinder and an outer 

stationary cylinder has been modelled as an incompressible three-dimensional flow using 

an implicit finite-volume RANS scheme with the realisable k-ε turbulence closure model. 

The numerical prediction shows the formation of counter rotating axisymmetric toroidal 

Taylor vortices as result of the motion of the rotating inner cylinder. The radial flow in the 

concentric rotating cylinders is due to the imbalance between the centrifugal forces 

exerted on the fluid due to the rotation of the inner cylinder and radial pressure gradient 

restoring radial momentum equilibrium in the flow (Taylor, 1923).  

This work provides more information on the velocity and pressure distributions in the 

meridional plane of the annulus. This is done by examining in details the axial, the radial, 

the tangential velocities as well as the gauge static pressure and the dynamic pressure 

across the full annular region. Previous results from the numerical investigations on the 

Taylor-Couette flow focussed mainly on the radial velocity at the gap mid-span of the 

annulus. To the author‟s best knowledge, velocity distributions near the inner and the 

outer cylinders in a rotating concentric cylinder assembly appears not to have been 

reported in the open literature. These new predictions show that the magnitude of the axial 

velocity reaches its maximum value near the wall of the inner and the outer cylinders and 

it is at a minimum at the gap mid-span. The magnitude of the radial velocity is maximum 

at the gap mid-span of the annulus and reduces towards the cylindrical walls.  

These results also show that the radial velocity of the inward flow displays single trough 

minima near the inner cylinder and double trough minima near the outer cylinder, which is 
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a previously unreported feature of Taylor vortex flows. Its presence has been explained in 

terms of a pressure gradient induced boundary layer separation in this thesis.  

At the gap mid-span of the annulus, this study confirms the observation by Deng et al. 

(2009) that the axial velocity is not zero at a high Reynolds number, since the centres of 

the vortices do not lie on r = Ri + 0.5d line. In fact, the vortex centres are shifted towards 

the wall of the outer cylinder as the centrifugal forces due to the rotation of the inner 

cylinder is greater than the pressure gradient due to the stationary outer cylinder at a high 

Reynolds number. 

The shifting of the vortex centres toward the wall of outer cylinder also causes the radial 

velocity profiles to be asymmetric along the gap mid-span. 

The CFD simulation results show that, when the inner cylinder rotates clockwise, the 

magnitude of tangential velocity is maximum near the wall of the inner cylinder and the 

magnitude of the negative tangential velocity is minimum near the wall of the outer 

cylinder. The same pattern is observed in the PIV measurement. 

Profiles of gauge static pressure and of dynamic pressure in the meridional plane near the 

wall of the inner cylinder, at the gap mid-span of the annulus, and near the wall of the 

outer cylinder have not been previously reported in the literature. The results obtained 

from this investigation show that the dynamic pressure near the wall of the inner cylinder 

is high and that the dynamic pressure progressively decreases toward the wall of the outer 

cylinder. This is due to the fluid near the inner cylinder having a higher tangential 

momentum than the fluid near the wall of the outer cylinder.  

The presence of the end-walls produced elongated vortices near the end-wall boundaries 

and compressed vortices in the central region of the annulus as observed in the previous 

studied by Haut et al. (2003) and Deshmukh et al. (2007). This thesis has given an 

explanation for this trend, based on the balance of the inertial and viscous forces in the 

neighbourhood of the end-walls. 

Finally, the results obtained from the CFD predictions show a good qualitative agreement 

with previous studies on Taylor vortex flow and documents new Taylor flow features that 

have not being reported in the literature. 

 

9.3 Conclusions on the experimental analysis 

Particle Image Velocimetry has been used to measure the flow between concentric 

cylinders with a radius ratio 0.3    0.6, aspect ratio 5    12, over the Taylor number 



270 

 

range 2.35 x 10
6
  Ta  17.5 x 10

6
. The PIV experimental results show a wavy vortex 

flow regime for the test cases  = 11.36 and  = 7.81 and a turbulent vortex flow regime 

for the test case  = 5.32 displaying the formation of counter-rotating toroidal Taylor 

vortices, as predicted by the numerical simulations.  

The experimental results show that, in the wavy vortex regime, a region of zero net axial 

flow is observed in the central region of the annulus, since there is no cross-flow between 

the vortices and vortex cells are independent. This region sits between the two regions of 

the end-wall boundaries where the inflow and outflow boundaries are not perpendicular to 

the inner and outer cylinder walls along the boundaries of two adjacent vortices. 

In the wavy vortex regime, the centres of the vortices are displaced radially in an alternate 

manner along the axial direction in the entire annulus. The centre of the vortices near the 

end-walls is displaced radially toward the outer cylinder on the lower channel and toward 

the wall of the inner cylinder at the upper channel, irrespective of the Reynolds number 

value. The results obtained suggest that the centres of vortices near to the solid end-walls 

determine the trend of the centre positions of the remaining vortices in the central region 

of the annulus in the concentric cylinder geometry. 

The results show that more vortex centres are closer to the wall of the inner cylinder for 

the test case with gap width of 0.022m than for the test case with gap width of 0.032m. 

That is, as the gap width increases, the vortex centres are displaced more toward the wall 

of the outer cylinder. In addition, the PIV measured vortex centres for the cylinders with 

gap width 0.022m are more scattered radially within the annulus than the vortex centres 

for the cylinders with gap width 0.032m, resulting in more regularly spaced vortex 

centres. 

In addition, the wavy vortex flow shows that the interaction of the waviness with the end-

wall does not result in disorder in the flow, either in the vortices near the end-walls or in 

those farther from the end-walls. The waviness does not significantly alter the boundary 

layer between the vortices near the end-walls and the end-walls. The results further 

revealed that the waviness near the end-walls does not reduce with increasing cylinder gap 

width until the flow regime changes to turbulent. The observed waviness penetrates far 

from the end-walls, that is, waviness is present more than one or two vortices away from 

the end-walls, contrary to the CFD predictions of Czarny et al. (2004). 

In the turbulent flow regime, flow field is changing so rapidly that it was not possible to 

observe a stationary time-dependent flow regime in all the PIV snapshots. The flow 
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pattern can no longer be described by well-defined Taylor vortices, although structures 

associated with the Taylor vortices remain. The turbulent motion is a result of the increase 

in the Reynolds number that promotes the decay of large scale instabilities.  

The experimental results of the turbulent flow regime in this study show that the 

instantaneous velocity field does not show a large-scale spatial periodicity, whereas a 

large-scale structure is observable in the corresponding time averaged flow results. The 

decay rate of specific turbulent kinetic energy in this flow is steeper than the conventional 

Kolmogrov -5/3 law and the specific turbulent kinetic energy spectrum does not show a 

viscous dissipation range. This is probably because the turbulent flow in the present study 

is not fully developed, such that turbulence decay is influenced by intermittent large-scale 

structures associated to the Taylor instability.  

The experimental evidence provided in this research indicates that it is possible to observe 

wavy vortex flow for concentric cylinders with aspect ratio  < 25, contrary to the 

observation of Walden and Donnelly (1979). This present work also shows that wavy 

vortex flow can be maintained over a significantly larger Taylor number range, well 

beyond the published Taylor number for transition to turbulent flow.  

Previous investigations have focussed on either qualitative flow visualisations or 

quantitative measurements at the cylinder annulus mid-gap. By presenting quantitative 

PIV measurements across the full annulus, this work documents previously unreported 

Taylor flow features over the selected range of geometry and flow parameters. 

 

9.4 Conclusions on the intrusive effects of the probe on the Taylor vortex         

flow 

A PIV investigation assessed the intrusivity that a cylindrical probe inserted in the annular 

region between coaxial cylinders has on the flow field and its impact on the flow regime. 

This investigation concerned coaxial cylinders of aspect ratio 11.36, radius ratio 0.53, 

tested at a Taylor number of 2.3 x 10
6
. 

The PIV results show that the flow regime with probe is the wavy vortex flow, consistent 

with the PIV result without the cylindrical probe. However, the introduction of the 

cylindrical probe changes the flow pattern in the annulus between the cylinders.  

The experimental results show that the presence of the probe reduces the number of 

vortices in the meridional plane from twelve vortices in the test case without a probe to ten 

in the test case with a cylindrical probe. The introduction of the cylindrical probe 

constrained the Taylor vortex next to its tip toward the wall of the outer cylinder. Around 
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the probe tip, the cross-sectional area of this Taylor vortex is about 50% smaller than that 

of the corresponding Taylor vortex without a probe. 

The experimental investigation further shows that the vortex immediately after the tip of 

the probe has its centre shifted away from r = Ri + 0.5d toward the wall of the outer 

cylinder. This result and the one obtained from the PIV test case without a probe show 

that, whenever there is a perturbation in the form of a wall boundary, the centre of the 

vortex next to the wall boundary displaces radially from the r = Ri +0.5d line. This 

determines an alternated pattern of vortex centre radial displacements in the central region 

of the annulus. 

This study also shows that the vortices near the right end-wall boundaries are more 

elongated than the vortices near the tip of the probe, contrary to the observed pattern in the 

flow field without the cylindrical probe, where the two vortices at the end-wall boundaries 

are elongated more than the vortices in the central region. This difference is due to the 

change in the boundary condition at the left end-wall. In addition, the presence of the 

probe in the annular region of the cylinder changed both the axial and radial position of 

the vortex centres. 

In spite of the observed changes in the flow with the probe, the Taylor-Couette instability 

is not suppressed by the introduction of the cylindrical probe. The absolute magnitude of 

the axial and radial velocity in the regions where no cylindrical probe is positioned and in 

the region not affected by the PIV light reflection is within 10% to 15% between the test 

cases with and without probe. Therefore, a PIV endoscopic probe device can be used in 

experiment to produce an insight into windage flows above the critical Taylor number. 

 

9.5 Future work 

This study has shown that the flow regime in the annular region of concentric cylinders 

depends on the cylinder radius ratio, aspect ratio, the end-wall conditions, and on the 

Reynolds and Taylor numbers. As such, it was practically impossible to cover the full 

parameter space in this research work. Furthermore, the interaction of the annular flow 

regimes with a cylindrical probe has not been reported in the open literature prior to the 

present work. Based on the results obtained from the CFD predictions and the PIV 

measurements, this project can be expanded in a number of ways as follows: 

(1) The present CFD work could be extended to a time-dependent simulation in which 

a structured mesh is employed for the discretisation of the flow field, enabling the 

use of Large Eddy Simulations (LES). 
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(2) The CFD simulations and PIV measurement were conducted at a constant angular 

velocity for all the test cases in this study in air. Different angular speeds and/or 

working fluids could be tested in future to cover a wider Reynolds number range. 

 

(3) The intrusive effects of a cylindrical model probe have been analysed. It would be 

of interest to model probes of non-circular cross-section and/or with riblets or 

grooves, to reduce the probe drag and therefore its intrusivity in the flow. 
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Appendices 
 

 

Appendix A 

 

 
Figure A 1: The inner shaft component. 

 

 

 
Figure A 2: The preliminary design of a concentric rotating cylinder assembly. 
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Figure A 3: Outer cylinder spiders. 

 

 

 

Figure A 4: Final design of concentric cylinders showing the mid bearing and the shaft. 
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Appendix B 

 

Vortex number Lower channel (-/2) Upper channel (/2) 

 Xc (X/Ri) rc (r/Ri) Xc (X/Ri) rc (r/Ri) 

1 0.667269 1.50676 0.666714 1.50937 

2 1.40772 1.51188 1.40613 1.51279 

3 2.24531 1.51478 2.25219 1.52228 

4 2.90015 1.51824 2.90465 1.51863 

5 3.83247 1.51229 3.82866 1.51036 

6 4.53052 1.50818 4.52843 1.51503 

7 5.48747 1.51588 5.48867 1.50851 

8 6.1877 1.51351 6.20533 1.51367 

9 7.14693 1.52152 7.17209 1.51347 

10 7.81494 1.51351 7.83274 1.51834 

11 8.62709 1.51411 8.63886 1.50773 

12 9.34521 1.50995 9.3538 1.50899 

Table B 1: Axial and radial locations of the Taylor vortex centres for the test case  = 

11.36, CFD without a cylindrical probe. 

 

 

Vortex number Lower channel (-/2) Upper channel (/2) 

 Xc (X/Ri) rc (r/Ri) Xc (X/Ri) rc (r/Ri) 

1 0.91868 1.7619 0.916393 1.76476 

2 1.96173 1.77615 1.96173 1.77901 

3 3.27012 1.77852 3.27927 1.77426 

4 4.2537 1.77377 4.25142 1.78613 

5 5.76339 1.77377 5.77025 1.77663 

6 6.76984 1.7762 6.76755 1.77189 

7 8.09424 1.7809 8.09653 1.78138 

8 9.12586 1.7619 9.119 1.76714 

Table B 2: Axial and radial locations of the Taylor vortex centres for the test case  = 

7.81, CFD without a cylindrical probe. 

 

 

 



277 

 

Vortex number Lower channel (-/2) Upper channel (/2) 

 Xc (X/Ri) rc (r/Ri) Xc (X/Ri) rc (r/Ri) 

1 0.582 1.587 0.500 1.362 

2 1.374 1.463 1.347 1.474 

3 2.277 1.538 2.222 1.449 

4 2.987 1.488 3.001 1.524 

5 3.876 1.513 3.794 1.424 

6 4.573 1.488 4.587 1.461 

7 5.475 1.488 5.434 1.474 

8 6.158 1.463 6.199 1.461 

9 7.047 1.463 6.992 1.511 

10 7.744 1.488 7.812 1.449 

11 8.742 1.438 8.660 1.524 

12 9.480 1.489 9.576 1.449 

Table B 3: Axial and radial locations of the Taylor vortex centres for the test case  = 

11.36, PIV without a cylindrical probe. 

 

 

Vortex number Lower channel (-/2) Upper channel (/2) 

 Xc (X/Ri) rc (r/Ri) Xc (X/Ri) rc (r/Ri) 

1 0.810 1.798 0.758 1.701 

2 1.968 1.705 1.940 1.813 

3 3.330 1.776 3.306 1.770 

4 4.302 1.734 4.296 1.787 

5 5.631 1.730 5.623 1.776 

6 6.658 1.752 6.662 1.768 

7 8.088 1.695 8.158 1.798 

8 9.295 1.784 9.240 1.707 

Table B 4: Axial and radial locations of the Taylor vortex centres for the test case  = 

7.81, PIV without a cylindrical probe.  
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      Vortex number Lower channel (-/2) Upper channel (/2) 

 Xc (X/Ri) rc (r/Ri) Xc (X/Ri) rc (r/Ri) 

1 0 0 0.454 1.432 

2 0 0 1.116 1.579 

3 2.667 1.655 2.397 1.481 

4 3.323 1.435 3.227 1.526 

5 4.372 1.540 4.287 1.496 

6 5.163 1.462 5.176 1.491 

7 6.310 1.483 6.209 1.508 

8 7.117 1.494 7.202 1.494 

9 8.454 1.438 8.270 1.558 

10 9.172 1.513 9.485 1.439 

Table B 5: Axial and radial locations of the Taylor vortex centres for the test case  = 

11.36, PIV with cylindrical probe. 

 

Authors Experimental 

method 

Aspect 

ratio  

Radius 

ratio  

Reynolds 

number 

Taylor 

number 

Flow 

characteristics 

Lewis and 

Swinney, 

(1999) 

Torque 

measurements 

11.4, 

9.8 

0.724 2 x 10
3
   

≤ Re ≤ 

10
6 

- WVF, TTVF 

Lathrop et al. 

(1992) 

Torque 

measurements 

and flow 

visualisation 

11.47 0.724 800        

≤ Re ≤ 

1.23 x10
6
 

 TVF, WVF 

and TTVF. 

Smith and 

Townsend 

(1982) 

Hot-wire 

probe 

23.7 0.667 7.2 x 10
3
 

≤ Re ≤ 

1.2 x 10
5
 

 Symmetric, 

attached twin 

vortices. 

Gollub and 

Swinney  

(1975) 

Optical 

heterodyne 

technique 

19.779 0.876   TVF, WVF 

and TTVF. 

Parker and 

Merati  (1996) 

LDV 20 and 

4 

0.672 73,440 2.107 x 

10
9
 

TTVF. 

Fenstermacher 

et al. (1979) 

LDV   -  - 

Batten et al. 

(2002b) 

CFD  0.734, 

0.942 

and 

0.985. 

5 x 10
3
   

≤ Re ≤   

5 x 10
4
 

 TTVF 

Table B 6: Turbulent flow regimes in concentric rotating cylinders.  
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