
Modular Performance Modelling of

Mobile Applications using Graph

Transformation

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Niaz Hussain Arijo

Department of Computer Science

University of Leicester

April 2012

Dedication

I dedicate this thesis to my loving parents and my beloved brother, Shaman
Ali, who are the source of inspiration for me throughout my life.

Declaration

I hereby declare that this submission is my own work and that it is the result
of work done during the period of registration. To the best of my knowledge, it
contains no previously published materiel written by another person. None of
this work has been submitted for another degree at the University of Leicester
or any other University.

Parts of this thesis submission appeared in the following publications, to
each of which I have made substantial contributions.

• N. Arijo, R. Heckel, M. Tribastone, and S. Gilmore. Modular Perfor-
mance Modelling for Mobile Applications. In Samuel Kounev, Vittorio
Cortellessa, Raffaela Mirandola, and David J. Lilja, editors, ICPE’11 -
Second Joint WOSP/SIPEW International Conference on Performance
Engineering, Karlsruhe, Germany, March 14-16, 2011. ACM, 2011.

• N. Arijo and R. Heckel, View-based Modelling and State-Space Gener-
ation for Graph Transformation Systems, GT-VMT’12, 11th Interna-
tional Workshop on Graph Transformation and Visual Modeling Tech-
niques, March 24-25, 2012, in Tallin, Estonia.

Modular Performance Modelling of Mobile Applications using
Graph Transformation

Niaz Hussain Arijo

Abstract

Graph transformation provides a visual and formal notation for modelling
systems of dynamic nature. We use graph transformation for modelling mo-
bility and performance, and provide a methodology for modular system mod-
elling to handle scalbility issues of large systems. In our methodology we
have distinguished three approaches for system modelling, monolithic, top-
down and bottom-up. In the monolithic approach, a system is modelled as
a global or whole-world system. In the top-down approach, a global system
is projected to its views based on their local type graphs. In the bottom-up
approach, a system is modelled as a set of subsystems with shared interface.
A whole system is composed from its subsystems.

We generate labelled transition systems (LTSs) from graph transforma-
tion systems/views in GROOVE and transform them into Continuous Time
Markov Chains (CTMCs). These CTMCs are further translated into the
Performance Evalution Process Algebra (PEPA) or PRISM. In PEPA and
PRISM subsystems are synchronized over shared labels to compose a global
system. We demonstrate that the composed model is bisimilar to its original
global model. In addition stochastic analysis of models are also carried out
in PEPA or PRISM for performance checking.

We have given tool support for view generation from a global graph trans-
formation system in GROOVE and transforming LTSs generated from graph
transformation systems, into CTMCs, and CTMCs into PEPA or PRISM
models.

Acknowledgements

My first and foremost thanks go to Allah, The Almighty, for all His blessings.
This thesis definitely would not have been possible without my supervisor
Professor Reiko Heckel, who guided and encouraged me during my PhD stud-
ies. While working on this thesis, he took great interest in reviewing and proof
reading the drafts and his valuable feedback has made possible this thesis in
its current shape. I sincerely appreciate the time and effort that he put into
this thesis.

I am grateful to Dr. Mirco Tribastone from the Institut für Informatik,
LMU München and Prof. Stephen Gilmore from the School of Informatics,
University of Edinburgh who helped us in the development phase of the tool
for translating GROOVE models into PEPA models.

I am very much thankful to the teaching staff, administrative staff and
colleagues of the Department of Computer Science, University of Leicester
for their timely help and support during my PhD studies. I owe my sincere
thanks to my friends, especially Hyder Ali Nizamani, Muhammad Naeem,
Bashir Ahmed Memon, Muhammad Zahir, Mumtaz Yatu and Ajab Khan for
their valuable company and help during my stay in Leicester.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 2

1.3 Our Approach . 3

1.4 Contributions . 4

1.5 Overview of the Chapters . 6

2 Related Work 8

2.1 Compositionality in Graph Transformation 8

2.2 Performance Modelling and Analysis for Mobile Applications . 11

2.3 Comparison with Related Approaches 12

2.4 Summary . 13

3 Background 14

3.1 Graph Transformation . 14

3.1.1 Type and Instance Graphs 15

3.1.2 Attributed Type Graphs 16

3.1.3 Graph Transformation 17

3.1.4 Graph Transformation Systems 19

3.1.5 Graph Transition System 24

3.2 Stochastic Graph Transformation 25

3.3 GROOVE . 26

3.4 Performance Evaluation Process Algebra 26

3.5 PRISM . 32

3.6 Summary . 34

4 Methodology 35

4.1 Monolithic Approach . 35

4.1.1 System Modeling as Graph Transformation 36

4.1.2 Generation of the LTS 36

4.1.3 Transforming the LTS into a CTMC 37

4.2 Top-down Approach . 37

4.2.1 Generation of Local Views 39

4.2.2 Synchronization of Local Views 39

4.3 Bottom-up Approach . 40

4.3.1 Modelling of Views . 41

4.3.2 Performance Analysis 41

4.4 Summary . 42

5 Traffic Information System: A Case Study 43

5.1 System Modeling as Graph Transformation 43

5.2 Generation of the LTS . 48

5.3 Transforming the LTS into a CTMC 49

5.4 Summary . 50

6 Modularization: Top-down and Bottom-up Approaches 51

6.1 Top-down Approach . 51

6.1.1 Generation of Local Views 52

6.1.2 Synchronization of Local Views 58

6.2 Bottom-up Approach . 59

6.2.1 Modelling of Views . 59

6.2.2 Performance Analysis 60

6.3 Summary . 62

7 Composition and Decomposition 63

7.1 Typed Attributed Graph Transformation 64

7.2 Signatures and Systems . 67

7.3 Projection and Composition of Systems 70

7.4 Operations on Transition Systems 75

7.5 Summary . 80

8 Generating CTMCs 82

8.1 From Transition Systems to Markov Chains 82

8.2 Choosing Transition Rates . 85

8.3 CTMCs Generated from LTSs 87

8.4 Summary . 88

9 Tool Support 89

9.1 Transforming GROOVE Models into CTMCs 89

9.1.1 PEPA . 90

9.1.2 PRISM . 96

9.2 A Tool for Generation of Local Views 102

9.3 Summary . 106

10 Evaluation 107

10.1 Global vs Synchronized Model 107

10.2 Decomposition of Views . 109

10.3 Performance Analysis . 109

10.4 Summary . 113

11 Conclusion 114

11.1 Summary of Contributions . 114

11.2 Evaluation . 115

11.3 Future Work . 117

List of Figures

3.1 Type graph of the Traffic Information System. 17

3.2 Instance graph . 17

3.3 Start graph of the Traffic Information System (match for

moveCar(1) indicated in bold) 21

3.4 Rule, moveCar(car) models the mobility of a Car following a

Path. 23

3.5 Resulting graph after applying moveCar(1) to the graph in

Fig. 3.3 . 23

3.6 A graph transition system . 25

3.7 The syntax of PEPA . 27

4.1 Monolithic approach . 36

4.2 Top-down modularity approach 38

4.3 Bottom-up modularity approach 40

5.1 Type graph of the Traffic Information System 44

5.2 Start graph of the Traffic Information System (match for

moveCar(1) indicated in bold) 45

5.3 Rule moveCar(car) models the mobility of a Car following a

Path. 45

5.4 Resulting graph after applying moveCar(1) to the graph in

Fig. 5.2 . 46

5.5 Rules modelling the occurrence and removal of Accidents. . . . 47

5.6 Rules for the TIS to receive Accident information and pass it

to other Cars . 47

5.7 Rule detour(car) shows how a Car takes a detour to avoid an

Accident spot. 48

5.8 Rule rejoin(car) shows how a Car rejoins its previous Path. . 48

5.9 Rule arriveAtDest(car) shows a Car finishing its journey. . . 49

5.10 Rule assign(car) depicts that TowTruck is assigned to an Ac-

cident. 49

5.11 Rule moveTowTruck(car) shows a TowTruck moving towards

an Accident spot. 50

5.12 Rule moveBackTowTruck depicts a TowTruck moving back

to its garage. 50

6.1 Type graph of the Traffic Information System and TIS package

diagram . 53

6.2 Depicting the decomposition of a global graph into subgraphs

which are typed over the views’ local type graphs 54

6.3 Type graphs of Car, Recovery and Service views 55

6.4 Start graphs of Car, Recovery and Service views 56

6.5 In Car view removeAccident rule is the projection of the

global rule of Fig. 5.5(b). 56

6.6 Service view projections of accident(car), removeAccident(car) 57

6.7 The TIS global model vs the TIS synchronized model and their

probability distributions of arriveAtDest rule 61

7.1 Type graph of the Traffic Information System and TIS package

diagram . 64

7.2 Top to bottom: Rules moveCar and sendAccidentInfo 67

7.3 Rule detour for Car to avoid location of Accident 67

8.1 The LTS of the TIS inteface 85

8.2 Q-matrix of the TIS inteface 85

9.1 The architecture of PEPA model generation 90

9.2 Input files needed for a CTMC generation 90

9.3 Steady-state of TIS synchronized model 95

9.4 Throughput analysis of TIS synchronized model 96

9.5 The architecture of PRISM model generation. 98

9.6 PRISM system file (TISGlobalModel.sm) is loaded in editor . 101

9.7 PRISM CSL file (TISGlobalModel.csl) is loaded in properties

view . 101

9.8 The View Generator tool takes a global model as an input. . . 104

9.9 Service view projections of accident(car) 105

List of Tables

2.1 Comparison of our work with other approaches 13

6.1 The TIS global model vs the TIS synchronized model and their

probability distributions of arriveAtDest rule 61

8.1 Rule labels and their rates . 86

10.1 Global vs synchronized model 108

10.2 Global model vs local views state and transition ratio 108

10.3 Rule labels and their rates . 111

10.4 Steady-state of the TIS Interface 111

10.5 Rule labels and their throughput 112

10.6 The performance of arriveAtDest and detour rules are shown,

when the rate of removeAccident is increased from 8 to 24 . . 112

Chapter 1

Introduction

1.1 Motivation

Mobile applications often have to be location-aware to deliver the desired

functionality. The increasing use of mobile technology makes it necessary to

address issues such as performance and reliability caused by limitations in

resources and connectivity typical of the mobile platforms and the domain

of application it is operating in.

This domain is potentially very complex, incorporating features of the

virtual as well as the physical environment. To illustrate this we consider the

example of a traffic information system (TIS). Such an application lives in an

environment determined by the road network (used by vehicles) and existing

wireless networks for propagating accident information. The application will

consist of central components (servers providing traffic information, a mobile

phone network, etc.) as well as mobile devices carried by vehicles. To predict

the success or otherwise of such an application, or optimise its parameters, we

1

have to be aware of this environment and incorporate this into our models.

We use graph transformation as modelling language for developing ab-

stract models of systems of dynamic nature. This allows to capture commu-

nication, mobility and dynamic change of software architecture. Like other

rewriting techniques, graph transformation has a reduction semantics, appli-

cations of rules making local changes in the model without reference to an

external environment. This is in contrast to the reactive semantics enjoyed

by process algebra where an action typically involves communication with

an environment that is unkown at the moment (often called a reaction). In

process algebra, the overall system behaviour results from synchronization of

different models, in which one plays the role of environment for the other.

To analyze performance of models we combine graph transformation sys-

tems, providing a visual notation for structural changes and computations,

with stochastic delays for rule applications leading to a semantics in terms of

Continuous-Time Markov Chains (CTMCs). Analysis techniques for CTMCs

allow us to reason about reliability and performance. However, in order to

derive a CTMC from a graph transformation system we have to generate

its state space first and face the usual scalability problems. The thesis will

attempt to answer this challenge by introducing modularity into the process

of state space generation.

1.2 Thesis Statement

Mobile applications are complex in their interaction and communication with

other components of a business domain. This new complexity poses challenges

2

for modelling and analysis, when we have to assess properties such as interop-

erability, performance and reliability. Using graph transformation to model

this complexity, state space generation represents a major bottleneck in the

derivation of the CTMC. In order to address this problem we will struc-

ture our models into different views. Correspondingly smaller LTSs are then

generated from these views independently, with transition labels designed to

support subsequent synchronization.

1.3 Our Approach

We distinguish three approaches monolithic, top-down and bottom-up, for

modelling a system by graph transformation. In the monolithic approach

we model the system by a single global graph transformation system. We

have created a global model of the Traffic Information System (TIS). When

we analyze a system through state space exploration, we face scalability

problems due to state space explosion. It prevents us from the derivation of

a CTMC for larger systems.

Through modularity we address this scalability issue by automated gen-

eration of local views from a global model. We have identified two modular-

ity approaches i) top-down and ii) bottom-up. In the top-down approach, a

global system is decomposed into local views by our View Generator tool,

which reduce the rules and start graph of graph transformation system to

their local perspectives based on their type graphs. In the bottom-up ap-

proach we model individual subsystems and indentify an interface between

them over which they cooperate. The interface is used for composing sub-

3

systems to create a global system. Apart from describing the modular ap-

proaches by means of an example, we state explicitly the conditions for their

correctness, i.e., the equivalence of the resulting synchronized LTS with the

one derived directly from a monolithic system, and evaluate the scalability

of the approach.

In order to compose the resulting behaviours and derive the synchronized

CTMC we make use of PEPA, the Performance Evaluation Process Alge-

bra [25, 26] or PRISM [32, 31], which allows us to coordinate the individual

processes derived from these views over shared labels. In this way we avoid

the state space explosion problem while at the same time benefiting from the

capabilities of PEPA and PRISM for stochastic analysis of models.

In PEPA we can analyze non-functional properties of mobile applications

such as steady-state probabilities and throughput. Steady-state analysis de-

termines the long term probability for the system to be in a certain state

and throughput analysis gives the long term frequency of its actions (rule la-

bels). PRISM supports large models compared to PEPA. In PRISM we can

analyze the steady-state of a system and service level agreements (SLAs). As

PRISM supports continuous stochastic logic, where we can define properties

and verify them, for example, the probability of arriving at the destination

within a certain period of time, and the time within which an accident will

be removed.

1.4 Contributions

Our thesis consists of the following contributions:

4

1. We model mobile applications with physical mobility, their interac-

tion and communication with other components of a business domain

through graph transformation.

2. To avoid scalability problems with state space generation, we give a

modular solution where the graph transformation system is decom-

posed into views, for which labelled transition systems (LTSs) are gen-

erated separately to be synchronized in PEPA or PRISM.

3. We generate local views from a global model by our View Generator tool

based on a given subgraph of the global model’s type graph, creating

a projection of the global graph transformation system.

4. We provide tool support for the derivation of CTMCs from LTSs and

their translation into PEPA or PRISM.

5. We demonstrate that the result of modular analysis is equivalent to

that of the monolithic approach and evaluate practicality by means of

a case study.

Parts of this thesis submission appeared in the following publications.

• N. Arijo, R. Heckel, M. Tribastone, and S. Gilmore. Modular Perfor-

mance Modelling for Mobile Applications. In Samuel Kounev, Vittorio

Cortellessa, Raffaela Mirandola, and David J. Lilja, editors, ICPE’11 -

Second Joint WOSP/SIPEW International Conference on Performance

Engineering, Karlsruhe, Germany, March 14-16, 2011. ACM, 2011.

• N. Arijo and R. Heckel, View-based Modelling and State-Space Gener-

ation for Graph Transformation Systems, GT-VMT’12, 11th Interna-

5

tional Workshop on Graph Transformation and Visual Modeling Tech-

niques, March 24-25, 2012, in Tallin, Estonia.

In [3] we have given monolithic model of our case study, top-down mod-

ularity approach for the Car view and the Service view, stochastic analysis

of models and formalization of our modularity approach. Parts of this paper

have contributed to Chapters 5, 6 and 7.

In [2] we have extended [3] and introduced the bottom-up modularity

approach, and have given a more detailed formalization of the modularity

approaches. Parts of this paper have contributed to Chapters 6 and 7.

1.5 Overview of the Chapters

In Chapter 2 we discuss different approaches to mobility modelling, perfor-

mance modelling and analysis, and compositionality of graph transformation

systems. In Chapter 3 we give a general introduction of graph transforma-

tion, stochastic graph transformation and discuss tools GROOVE, PEPA and

PRISM that we used in our work. In Chapter 4 we give our methodology and

introduce three approaches (monolithic, top-down and bottom-up) to system

modelling. In Chapter 5 we model the global system of our case study, the

Traffic Information System (TIS) in GROOVE. In Chapter 6 we decompose

the global system of our TIS model into subsystems, i.e., Car view, Recov-

ery view and Service view through our View Generator tool. In Chapter 7

we formalise notions of views for typed attributed graph transformation sys-

tems. In Chapter 8 we discuss CTMC and how we generate it from an LTS

of graph transformation system of GROOVE and rate. In Chapter 9 we dis-

6

cuss our tool support for CTMCs generation and the tool that automatically

generates views from a global graph transformation system based on their

local type graphs. In Chapter 10 we give comparative analysis of global and

synchronized models and discuss the limitations of GROOVE, PRISM and

PEPA. In Chapter 11 we give conclusions and future work.

7

Chapter 2

Related Work

In this chapter we will discuss different approaches to modelling mobility,

performance modelling and analysis, and compositionality of graph transfor-

mation systems. We have chosen several parameters to compare our work

with related work. These parameters include the ability to model mobility,

visual notation, modularity (at type level and instance level), operational se-

mantics (loose and concrete), stochastic analysis, synchronization over shared

labels.

2.1 Compositionality in Graph Transforma-

tion

In [39, 41] a notion of composition of graph transformations is defined. Rules

are decomposed into smaller subrules using the concept of graph interface,

which works on subgraphs of the complete or whole-world start graph and its

resulting graphs. The behaviour of the original rules is captured by merging

8

corresponding subrules, but there is no actual synchronization of rules as

achieved in our case by PEPA and PRISM, where we synchronize rules over

shared labels and projection extended to NACs. Another difference is that

they do decomposition at instance level not at type level, as we demonstrate

in our case study.

More recently, the idea of “borrowed context” has been used to achieve

modularity [5]. Specifically, this idea has been applied in [40] to generate tran-

sition systems in GROOVE in a compositional way. This work shares some

of our motivation, but it does not consider negative application conditions.

In the work [17, 20, 21], a common reference model is given out of which

views are derived and later integrated to compose a system model. Each

view is a restriction of the conceptual model, which incorporates particular

aspects (perspectives) of a system. Inconsistencies between the different views

are identified, i.e.,

(1) The same concept, e.g., operation, is specified in two different views

using different names.

(2) The same names are used in two different views denoting semantically

different concepts.

(3) Execution of a view operation violates the constraints defined by an-

other view.

These inconsistencies are handled by a model manager. If needed, the orig-

inal reference model may be extended. These inconsistencies do not occur

in our top-down approach, because we are deriving views by the projection

9

of a global system, which is already defined, and synchronization of views is

carried out in PEPA or PRISM over the shared labels of a transition system.

The work in [17, 20, 21] follows a loose semantics, due to its open type speci-

fication, where unspecified deletion and creation of nodes and edges could be

done. Instead, we are following a concrete semantics to generate transition

system and projection extended to NACs.

In [27] the semantics of dynamic sytems is expressed where systems whose

topology admits successives transformations. Compositionality is achieved by

extending the composition of partial maps in a categorical context. In [27]

the main emphasis is on the sequential composition of edges.

In [13, 29, 30] the notions of transformation units and transformation

modules are introduced. Large graph transformation systems are constructed

from smaller ones. Compositionality is achieved by interleaving ordinary di-

rect derivation steps with calls of imported transformation units. A trans-

formation unit can use other transformation units for reuse and structuring.

A cluster of transformation units is called a module. Control conditions are

intoduced which cut down the nondeterminism of rule applications.

The compositionality approaches above do not give support for stochastic

analysis of a system, which we achieve by transforming LTSs of models into

PEPA (stochastic process algebra) or PRISM (stochastic model checker).

They do not support synchronization over shared labels. We extend and apply

earlier work on stochastic modelling and modularity of graph transformation

systems, especially [23, 24].

Using modularity to reduce complexity is an old idea, even in graph trans-

formation. Specifically the present approach is inspired by proposals on view

10

based modelling [17, 20], but apart from being fully formalised, differs from

it in two ways. First, we consider attributes and application conditions, and

second, the present approach does not apply a loose semantics. The reason is

that, to generate a transition system, loose semantics is not practical because

it would allow far too many transitions. At the specification level this means

that we use more restrictive conditions on views and their composition.

2.2 Performance Modelling and Analysis for

Mobile Applications

The majority of approaches to performance modellings and analysis for mo-

bile systems are stochastic extensions of process algebra such as StoKlaim [11]

deriving from Klaim (the Kernel Language for Agents Interaction and Mo-

bility) [7, 9] and mobile stochastic logic (MoSL) [10, 12]. Occasionally, these

languages are integrated with standard modelling languages like the UML to

provide a more mainstream frontend notation for modelling [43].

Where these approaches address mobility, it is usually code/agent mo-

bility in the context of global computing, rather than physical mobility as

in our approach. We propose to model both architecture and interaction of

services and physical mobility by graphs and graph transformation. This has

the advantage of being able to use a visual formal language, with less empha-

sis on logical and algebraic notation as used in approaches based on process

algebra and logic.

In our work, we (mostly) separate operations which change locations from

11

operations which change the state of the system. A similar separation of

concerns is established in the PEPA Nets modelling language [18], where

PEPA terms are used as the tokens of a coloured stochastic Petri net and

movement of a token from one place to another represents mobility and

changes of state are denoted by rewriting the PEPA terms within a place.

2.3 Comparison with Related Approaches

In [39, 41] graph transformation systems are decomposed, where rules are de-

composed into subrules and original rules are constructed by merging corre-

sponding subrules. In [17, 20, 21] views are derived from a common reference

model which can be integrated to compose a system model. In [13, 29, 30]

compositionality is achieved by interleaving ordinary direct derivation steps,

while control conditions cut down the nondeterminism of rule applications.

We perform decomposition at the type level and projection is extended to

NACs. We synchronize subrules over shared labels in either PEPA or PRISM

where we also perform stochastic analysis of models.

StoKlaim [11] and PEPA Nets [18] are stochastic extensions of process

algebras for mobile systems. Where these approaches address mobility, it

is usually code/agent mobility in the context of global computing. We use

graphs and graph transformation for mobility modelling. Graphs give a visual

notation for architecture and behaviour modelling.

In Table 2.1, we have taken mobility, visual notation, modularity (type

level and instance level), operational semantics (loose and concrete), stochas-

tic analysis and synchronization over shared labels as our parameters. We

12

Table 2.1: Comparison of our work with other approaches

Mobility Visual Modularity Semantics Stochastic Synchronization
NotationTypeInstanceLooseConcrete Analysis over Shared Labels

StoKLAIM
√ √ √ √ √

PEPA Nets
√ √ √ √ √ √

Instance based √ √ √
Compositionality [39, 41]
Type based √ √ √ √
compositionality [17, 20]
Control Structure based √ √ √ √
Compositionality [29, 30]
Our Work

√ √ √ √ √ √ √

compare our approach with related approaches, where our approach satisfies

all the given parameters, while others satisfy some of them.

2.4 Summary

In this chapter we have discussed different approaches to mobility modelling,

performance modelling and analysis, and compositionality of graph trans-

formation systems. We have given a comparative analysis of our work with

other related approaches by means of various parameters.

13

Chapter 3

Background

In this chapter we will informally discuss attributed graphs, morphisms,

graph transformation systems, stochastic graph transformation systems and

the tools that we have used in our work, i.e., GROOVE [38], PEPA [25, 26, 42]

and PRISM [31, 32].

3.1 Graph Transformation

Graphs are an intuitive and very powerful formalism for modelling a sys-

tem architecture and its behaviour showing the conceptual structure and the

functionality of a system. Type graphs depict the architecture of a system

and graph transformation rules model the behaviour.

Graph Transformation was introduced in the early 1970s as a generaliza-

tion of Term Rewriting and Chomsky’s (string) grammars [14].

14

3.1.1 Type and Instance Graphs

Similar to class diagrams in object-oriented models or entity relationship

diagrams in data models, we use type graphs to restrict the set of admissible

graphs. One common means to restrict the shape of an object is to prescribe

a type for the object.

A type graph TG is a graph whose nodes represent node types and whose

edges represent edge types. A graph that is typed over a type graph TG, also

called instance graph over TG, is a graph G equipped with a graph morphism

typeG : G → TG that assigns a type to every node and edge in G. A typed

graph morphism is a morphism that preserves the typing of graphs.

G f //

typeG

CC
C

!!CC
C

H

typeH
{{

{

}}{{
{

TG

=

An edge type in TG represents a structural relationship among nodes of

TG-typed graphs. This is because, due to the typing morphism, edges of an

edge type may only connect nodes of the node types that are incident to the

edge type in TG. A node type can be compared to a class and an edge type

can be compared to an association in a UML class diagram. Type graphs can

be represented by UML class diagrams, instance graphs can be represented

by corresponding UML object diagrams.

15

3.1.2 Attributed Type Graphs

Attributed graphs are used for modelling data-intensive systems such as

object-oriented systems. Attributes of a graph behave similarly as attributes

of an object oriented system. Attributed graphs are those graphs in which

nodes and edges can be assigned attributes of some data types.

Node attributes can be used to store additional information in a node. As

known from object-oriented languages, an attribute consists of a name and a

data value. In the context of typed graphs, we have to declare the attributes

belonging to a certain node type by their name and data type in the type

graph. In a corresponding instance graph, every instance of the node type

can carry its own values for these attributes.

In connection with graph transformations, attributes can be used as spe-

cial labels that identify certain nodes along a sequence of transformation

steps. They are also useful to restrict the applicability of transformation

rules to situations in which involved nodes have specific attribute values.

Attributed graphs can occur at both levels, as type graphs and as instance

graphs. In type graphs, the attributes are in fact attribute declarations, and

their values are in fact sort names that determine possible values to be as-

signed to the attributes in an instance graph.

Similarly to the terminology for database systems, we call the set of all

possible values that can be assigned to attributes a domain. The values be-

longing to the domain are partitioned into disjoint sorts representing differ-

ent basic data types. A subset of the value domain consists of variable names

which can be assigned to attributes instead of concrete values.

16

Since we want to declare node attributes in a type graph by using sort

names as attribute values, type graphs are attributed over the set of sort

names.

Fig. 3.1 shows the type graph of the TIS model and Fig. 3.2 shows a

possible instance graph. The TIS and Car nodes of Fig. 3.2 are typed over

type nodes of Fig. 3.1; id is the attribute of a Car node with attribute values

1 and 2 which show the identity of cars.

Figure 3.1: Type graph of the Traffic Information System.

Figure 3.2: Instance graph

3.1.3 Graph Transformation

In the case of graph transformation rules, the left-hand side and the

right-hand side are instance graphs. The left-hand side represents the pre-

conditions of the rule while the right-hand side describes its effects and post-

conditions.

17

According to the aforementioned paradigm, such a rule can be applied

to a concrete instance graph G, also called host graph, whenever there is an

occurrence of the left-hand side L in G. In this context, occurrence means a

subgraph of G which has the same structure as L and whose elements conform

to the typing and attribute values of L. Sometimes, such an occurrence is

also called a match of L in G.

Formally a graph transformation rule p(x̄) : [N] L→ R consists of a rule

name p, a declaration of formal parameters x̄ = x1, . . . , xn with variables

xi ranging over attribute values, a left-hand side L representing the pattern

of elements required for the application of the rule, a right hand side R

describing the situation this pattern is to be replaced with, and a negative

application condition N stating the absence of certain elements in the context

of this pattern. The intersection graph L ∩ R defines the elements that are

read by the rule, but are not consumed. A rule application deletes L \ R

elements from a host graph and adds R \ L elements in the host graph.

Nodes in L,R, and N are attributed by expressions over variables in X.

Given a graph G and a rule p(x̄) : [N] L → R, we can apply the rule

if there is a match m : L → G embedding L into G such that none of

the forbidden patterns in N are present. The transformation is denoted by

G
p(ā),m
=⇒ H, where ā = a1, . . . , an is the list of actual parameters, i.e., attribute

values occurring in G given by ai = m(xi) and m is a match in the graph

G. The transformation from graph G to graph H done in zero or more steps

is denoted by G =⇒∗ H, i.e., G = G0
p1(ā1),m1

=⇒ G1
p2(ā2),m2

=⇒ ...Gn−1
pn(ān),mn

=⇒

Gn = H. Thus instantiated rule signatures serve as labels.

The left-hand side L of a transformation rule specifies which pattern has

18

to be present in a host graph before the rule can be applied. On the contrary,

we sometimes require that certain elements are not present when a rule is

applied. In such a case, we add negative application conditions (NAC) to a

transformation rule [19].

We specify negative application conditions by so-called forbidden graphs.

A transformation rule can only be applied to an occurrence of its left-hand

side, if the occurrence cannot be extended to the forbidden graph.

A negative application condition is satisfied with respect to a given match

m : L→ G if there exists no morphism n : N → G such that any two graph

objects being mapped to one another by l are mapped to the same object in

the host graph G by both n and m (more formally: there must be no total

morphism n : N → G such that n ◦ l = m).

3.1.4 Graph Transformation Systems

Combining a type graph and a set of graph transformation rules that operate

on instances of the type graph results in a graph transformation system. A

type graph determines the set of valid instance graphs, and graph transfor-

mation rules are used to define local transformations of graphs. In software

engineering, graph transformation systems can be used for various specifi-

cation and modelling purposes. Applications range from specifying visual

languages to abstract data types, object-oriented programs, and software ar-

chitectures [15]. In our case, we will use them to model mobile systems and

their stochastic analysis.

Graphs represent individual system states, and a transformation step rep-

19

resents the evolution from one state to a new state. In order to model the

behavior of a software system we have to define a set of rules P together with

the host graph (start graph). Parameter declarations refer to the numbered

id attributes, with the nth formal parameter referring to the attribute value

labelled $n as it is shown in Fig 3.4 where $1 refers to the 1st formal param-

eter. When a moveCar(car) rule will be applied on the graph of Fig 3.3, the

instantiated rule signature moveCar(1) will serve as a label where 1 is the

actual parameter.

Formally, a typed attributed graph transformation system with rule signa-

tures (GTS) is a tuple G = (TG, P, π) where

• TG is a type graph,

• P is a set of rule names,

• π : P −→ X∗×Rules(TG,X) assigns to each rule name a pair π(p) =

(x̄) : [N] L → R of a parameter declaration x̄ = x1 . . . xn and a rule

[N] L → R. We call p(x̄) : [N] L → R a parameterised rule and refer

to p(x̄) as its signature.

Sometimes, we assume that the actual parameters carry enough informa-

tion to make transformations deterministic, that is, for transformation steps

G
p(ā)
=⇒ H and G

p(ā′)
=⇒ H ′, if a = a′ then the resulting graphs H and H ′ are

isomorphic.

We will employ the GROOVE syntax for presenting our rules, and will ex-

plain this syntax in more detail before returning to an example. In GROOVE

notation [38] the various components of a rule (called readers, erasers, cre-

ators or embargoes) are combined within a single rule graph, distinguishing

20

Figure 3.3: Start graph of the Traffic Information System (match for move-
Car(1) indicated in bold)

them by different colours and styles. Consider for example the rule in Fig. 3.4

modelling the movement of a Car from one Road to another across a Junc-

tion. Readers in L∩R, such as the nodes of type Car, Path, Road, Junction,

and the edges of type follow, has, to, from, are thin and solid ordinary graph

elements that are required, but preserved by the transformation. Erasers in

L \ R, such as the edge of type on pointing to the left-most Road node, are

shown as thin and dashed elements, to be deleted. Creators in R \ L, such

as the other edge of type on, represented by slightly wider, solid outlines,

are to be created by the rule. Embargoes in N , such as the nodes of type

Accident and the edges of type occurredAt, had and rejoin, are represented

by wider and dashed outline. They prevent a rule from being applied if the

corresponding elements are present in the graph. In a printed version of this

thesis, reader elements are shown in black, while all other elements are in

21

grey. The GROOVE tool uses blue for erasers, green for creators and red for

embargoes. Attribute values are depicted as circles pointed to by an edge

from the attributed node. For example, in the rule in Fig. 3.4, node Car has

attribute id whose value is depicted as parameter 1. It corresponds to the 1st

formal parameter in the rule’s signature moveCar(car).

An instance graph is shown in Fig. 3.3 representing a map of Roads and

Junctions as well as two Cars following predefined Paths. To identify Cars,

these nodes have been given id attributes of type integer. In general we allow

graph nodes to be attributed by values of predefined data types, such as

strings or natural numbers. In this thesis all attribute values will be positive

integers, but see [34] for a general treatment of attributed graphs and their

transformation. An application of the rule moveCar(car) in Fig. 3.4 to the

Car at the top of the instance graph in Fig. 3.3 will lead to a transition

labelled moveCar(1) that will transform the graph by replacing the on edge

of the Car by one pointing to the next Road. This is possible because the

rule’s left hand side is matched to the graph as shown by the highlighted

nodes and edges in Fig. 3.3. In particular notice that, given the match of the

Car to the one with id = 1, the dashed (blue) on edge in the rule enforces

the matching of the left-hand side Road node in the rule to the Road on top,

which the Car is following, determines that the other Road node in the rule

should be mapped to the next Road, where the new (solid, green) on edge

will be pointing. The result of the transformation is shown in Fig. 3.5.

22

Figure 3.4: Rule, moveCar(car) models the mobility of a Car following a
Path.

Figure 3.5: Resulting graph after applying moveCar(1) to the graph in
Fig. 3.3

23

3.1.5 Graph Transition System

A transition system describes the overall behaviour of a system in terms

of its states and transitions. In a graph transition system states represent

isomorphism classes of graphs and transitions represent rule applications as

it is shown in the Fig. 3.6. Transition systems are frequently used to rep-

resent the behavior of software systems. They divide the runtime evolution

of a system into discrete states and use a binary transition relation to de-

fine possible state changes. In the case of graph transition systems [37], one

considers graphs as representations of system states. If used as operational

model of a graph transformation system, its state space contains all reach-

able graphs of the transformation system. Such a transition system can be

generated by recursively applying all enabled graph transformation rules of

G at each state and by matching the resulting graphs with already generated

isomorphic graphs.

Most analysis techniques based on state transition systems suffer from

the state space explosion problem. Therefore, it is desirable to keep the state

space as small as possible. In the context of graph transformations, the be-

havior is determined by the applicability of graph transformation rules on

certain states, and the set of applicable rules remains the same for isomor-

phic graphs. The GROOVE tool [38] that we are using for modelling graph

transformation systems uses symmetry reduction for isomorphic graphs to

reduce the state space.

After the generation of the labelled transition systems (LTSs) from

a graph transformation systems in GROOVE, they are transformed into

24

Figure 3.6: A graph transition system

CTMCs and synchronized over shared labels in PEPA or PRISM.

3.2 Stochastic Graph Transformation

Stochastic graph transformation is a blend of graphical modelling and

stochastic analysis techniques. For stochastic performance analysis of graph

transformation systems we translate the graph transition systems generated

by GROOVE into CTMCs, and further into PEPA or PRISM models.

Stochastic graph transformation systems add to each rule a rate, i.e., a

positive Real number representing the parameter of the exponential distribu-

tion associated with the frequency of execution of the rule (or, equivalently,

the reciprocal of the average delay once the rule is enabled for a given match).

25

Formally, a stochastic GTS is given by a GTS G = (TG, P, π) together

with a mapping ρ : P → R+ assigning each rule name its rate.

3.3 GROOVE

GROOVE (GRaph based Object-Oriented VErification) [38] is a graph trans-

formation tool for software model checking of object oriented systems. It uses

graphs to represent states of a system and transitions as rule applications.

A graph transformation system given in GROOVE yields a graph transi-

tion system as computational model obtained by recursively computing and

applying all enabled graph transformation rules at each state. Each newly

generated state is compared to all known states up to isomorphism. Finding

matches and checking graph isomorphisms are performance-critical parts of

the GROOVE simulator. The first problem is NP-complete while the other

one is NP.

Labelled transition systems (LTSs) generated by GROOVE [38] minimize

the number of states by a form of symmetry reduction: A newly generated

graph is checked against all existing graphs for isomorphism (structural equal-

ity). If a graph is found to be isomorphic to an existing one, no new state is

added to an LTS.

3.4 Performance Evaluation Process Algebra

PEPA [25, 26, 42] extends classical process algebra with the capacity to as-

sign rates to the activities which are described in an abstract model of a

26

system. Taken together, the information about the rates of performance of

activities and the definition of the outcome of performing an activity specify

a stochastic process and thus PEPA is said to be a stochastic process algebra.

The PEPA [25] language is providing a stochastic extension of finite state

CSP processes. It has been applied as a modelling language for distributed

computer and telecommunications systems such as mobile telephone systems

and for components of flexible manufacturing systems such as robotic work-

cells. In this thesis, PEPA models are generated from graph transformation

systems rather than specified directly.

The PEPA language provides a small set of combinators. These allow

language terms to be constructed defining the behaviour of components, via

the activities they undertake and the interactions between them. The syntax

may be formally introduced by means of the grammar shown in Fig. 3.7.

In the grammar S denotes a sequential component and P denotes a model

S ::= (sequential components)

(α, r).S (prefix)

| S + S (choice)

| CS (constant)

P ::= (model components)

P ��
L
P (cooperation)

| P/L (hiding)

| C (constant)

Figure 3.7: The syntax of PEPA

component which executes in parallel. C stands for a constant which denotes

27

either a sequential or a model component, as defined by a defining equation.

C when subscripted with an S stands for constants which denote sequential

components. The component combinators, together with their names and

interpretations, are presented informally below.

Prefix: The basic mechanism for describing the behaviour of a system is to

give a component a designated first action using the prefix combinator,

denoted by a full stop. For example, the component (α, r).S carries out

activity (α, r), which has action type α and an exponentially distributed

duration with parameter r, and it subsequently behaves as S. Sequences

of actions can be combined to build up a life cycle for a component.

Choice: The life cycle of a sequential component may be more complex

than any behaviour which can be expressed using the prefix combinator

alone. The choice combinator captures the possibility of competition

or selection between different possible activities. The component P +

Q represents a system which may behave either as P or as Q. The

activities of both P and Q are enabled. The first activity to complete

distinguishes one of them: the other is discarded. The system will then

behave as the derivative resulting from the evolution of the chosen

component.

Constant: It is convenient to be able to assign names to patterns of be-

haviour associated with components. Constants provide a mechanism

for doing this. They are components whose meaning is given by a defin-

ing equation.

28

Hiding: The possibility to abstract away some aspects of a component’s be-

haviour is provided by the hiding operator, denoted by the division sign

in P/L. Here, the set L of visible action types identifies those activities

which are to be considered internal or private to the component. These

activities are not visible to an external observer, nor are they accessi-

ble to other components for cooperation. Once an activity is hidden it

only appears as the unknown type τ ; the rate of the activity, however,

remains unaffected.

Cooperation: Most systems are comprised of several components which in-

teract. In PEPA direct interaction, or cooperation, between components

is represented by the butterfly combinator (��). The set which is used

as the subscript to the cooperation symbol determines those activities

on which the cooperands are forced to synchronise. Thus the coopera-

tion combinator is in fact an indexed family of combinators, one for each

possible cooperation set L. When cooperation is not imposed, namely

for action types not in L, the components proceed independently and

concurrently with their enabled activities. However if a component en-

ables an activity whose action type is in the cooperation set it will not

be able to proceed with that activity until the other component also

enables an activity of that type. The two components then proceed to-

gether to complete the shared activity. The rate of the shared activity

may be altered to reflect the work carried out by both components to

complete the activity.

In some cases, when an activity is known to be carried out in coop-

29

eration with another component, a component may be passive with

respect to that activity. This means that the rate of the activity is left

unspecified and is determined upon cooperation, by the rate of the ac-

tivity in the other component. All passive actions must be synchronised

in the final model.

If the cooperation set is empty, the two components proceed indepen-

dently, with no shared activities. We use a compact notation—with the

two cooperands separated by parallel lines—to represent this case.

PEPA is a high-level notation for Markov modelling because it is possible

to generate directly from a PEPA model a continuous-time Markov process

which faithfully encodes the behavioural (same number of states; same tran-

sitions between states) and temporal (same rates on the transitions) aspects

of the PEPA model. Through the analysis and solution of this Markov pro-

cess the modeller can undertake an experimental investigation of the system

which the model represents.

Following is a PEPA example where we have rates, processes and their

cooperation. Rate assignments must precede any process definition. A rate

identifier is valid if it is a valid Java identifier starting with a lowercase letter

and must end with a semicolon. A process identifier is valid if it is a valid

Java identifier starting with an uppercase letter. As usual an identifier can

represent a Choice or a Prefix. It can also identify subparts of the system

when it is assigned a cooperation. Process assignments must end with a

semicolon. In the given example an equation like P1 = (a, x).P2 is a process

assignment. On the left side of the equation is P1 which is a process and on

30

the right side of the equation is an activity and resulting process P2; when an

activity is performed process P1 is transformed into process P2. An activity

includes action (a) and its rate (x). In this example processes P1 and Q1 are

cooperationg over shared action (a).

// Rates

x = 1.0;

y = 2.0;

z = 1.0;

//Processes

P1 = (a,x).P2;

P2 = (b,y).P1;

Q1 = (a,x).Q2;

Q2 = (c,z).Q1;

//Cooperation

P1 <a> Q1

Based on a PEPA process we can extract performance measures such

as the steady-state solution providing long-term probabilities for all states,

the transition throughput giving the actual long-term frequencies at which

transitions are executed, or the passage-time between occurrences of specific

transitions.

31

3.5 PRISM

The PRISM [31, 32] tool is a model checker for the modelling and analysis

of systems which exhibit probabilistic behaviour. The PRISM language is a

state-based language. We construct PRISM models by translating GROOVE

LTSs into PRISM.

The fundamental components of the PRISM language are modules and

variables. A model is composed of a number of modules which can interact

with each other. A module contains a number of local variables. The values

of these variables at any given time constitute the state of the module. The

global state of the whole model is determined by the local state of all modules.

The behaviour of each module is described by a set of commands. A command

takes the form:

[a]s = 0− > x : (s′ = 1);

Here (s = 0) is a predicate in the model in which s is a variable with 0 as

its value and (s′ = 1) describes a transition which the module can make if

the predicate is true. A transition is specified by assigning new values to the

variables in the module. Each transition is given a rate, i.e., x has rate 1.0

in the following example.

The PRISM language can be used to describe three types of probabilis-

tic models: discrete-time Markov chains (DTMCs), continuous-time Markov

chains (CTMCs) and Markov decision processes (MDPs). To indicate which

type is being described, a PRISM model includes one of the keywords dtmc,

ctmc or mdp. This is typically at the very start of the file (as in our Example

below), but can actually occur anywhere in the file (except inside modules

32

and other declarations). PRISM supports continuous stochastic logic, where

we can define properties and verify them, for example, the probability of ar-

riving at the destination within a certain period of time, and the time within

which an accident will be removed.

//model type

ctmc

// Rates

const double x = 1.0;

const double y = 2.0;

const double z = 1.0;

//modules

module M1

s : [0..1];

[a] s=0 -> x:(s’=1);

[b] s=1 -> y:(s’=0);

endmodule

module M2

t : [0..1];

[a] t=0 -> x:(t’=1);

33

[c] t=1 -> z:(t’=0);

endmodule

//Synchronization

system

M1 |[a]| M2

endsystem

3.6 Summary

In this chapter we have given a general introduction of attributed typed

graphs, graph transformation, graph transition system and stochastic graph

transformation. We have discussed the graph transformation tool GROOVE,

in which we have modelled the Traffic Information System (TIS), our case

study. The performance analysis tools PEPA and PRISM are also discussed

here in which we are going to translate our GROOVE models for stochastic

analysis.

34

Chapter 4

Methodology

In this chapter we will discuss our methodology for system modelling and

decomposition into local views. We distinguish three approaches, monolithic,

top-down and bottom-up. Modelling a system as a single graph transforma-

tion system is the monolithic approach; decomposing a system into views and

then synchronizing them is the top-down approach and composing a system

from its subsystems is the bottom-up approach.

4.1 Monolithic Approach

In the monolithic approach we model a system as a single graph transfor-

mation system. We first define the architecture of a system by means of a

type graph. Then we define a start graph and a set of rules. The monolithic

approach is demonstrated by our case study, which is modelled in GROOVE

and translated into PEPA for analysis. We will discuss it in detail in Chapter

5. There are four steps in the monolithic approach.

35

(1) System Modeling as Graph Transformation

(2) Generation of the Labelled Transition System (LTS)

(3) Transforming the LTS into a CTMC

(4) Performance Analysis (see 4.3.2)

Figure 4.1: Monolithic approach

4.1.1 System Modeling as Graph Transformation

In typed graph transformation systems we define the structural model of a

system as a type graph which gives the architecture and imposes constraints

on instance graphs. We then define a start graph (an instance graph) and

a set of rules which are applied to the start graph non-deterministically to

produce the state space of the system.

4.1.2 Generation of the LTS

A labelled transition system (LTS) gives us all the possible evolutions of a

system throughout its life cycle. It is generated when all applicable rules are

36

applied on a start graph, and all subsequent graphs, at all possible matches.

In a labelled transition system states represent isomorphism classes of graphs

and transitions represent rule applications. Instantiated rule signatures serve

as labels.

4.1.3 Transforming the LTS into a CTMC

We translate the LTS into CTMC [4, 8], as GROOVE [38] does not support

stochastic analysis of a system such as steady-state analysis, passage time

analysis etc. At the same time we get another advantage from CTMC for

synchronizing individual views (subsystems) to compose a global model. We

can integrate individual CTMCs and synchronize them over shared labels

(rule names) to compose resulting CTMC, which is bisimilar to the CTMC

of the global model. In this way we get the same behaviour of the global

model and avoid scalability problems which arise in the verification of large

systems. PEPA provides various performance analysis techniques; but it lacks

support for large files; while PRISM has support for large files.

4.2 Top-down Approach

Many system verification approaches based on state space exploration face

scalability problems. We mitigate these problems by separating the model

into different views. Decomposing a system into views, we then synchronize

them over shared labels in the top-down approach. It is composed of the

following six steps.

(1) System Modeling as Graph Transformation (see 4.1.1)

37

(2) Generation of Local Views

(3) Generation of Labelled Transition Systems (see 4.1.2)

(4) Transforming the LTS into a CTMC (see 4.1.3)

(5) Synchronization of Local Views

(6) Performance Analysis (see 4.3.2)

The case study model given in Chapter 5 is decomposed into different views;

and these views’ LTSs are later synchronized in either PEPA or PRISM.

We will discuss modularity and synchronization of views in Chapter 6. Since

we have already discussed steps 1, 3, 4 and 6 of top-down approach in the

monolithic approach, we focus on the remaining steps here.

Figure 4.2: Top-down modularity approach

38

4.2.1 Generation of Local Views

In GROOVE a system is modelled as a single graph transformation sys-

tem. Therefore, in system analysis there are usually scalability problems. We

suggest and demonstrate to model a system as composition of views (sub-

systems). We have developed a tool that generates local views from a global

system based on the views’ type graphs.

For a decomposition of a system we identify subsystems (views) on the

base of the core functionality they are providing and define projections of

the subsystems’ type graphs out of the global system’s type graph. Types

of nodes and edges that are required by the functionality of the view are

retained and all other node types and edge types that are not used by the

view are removed from the view’s type graph. Often these subsystems are

not disjoint, but share a common interface over which they co-operate. Rules

and instances (start graphs) are then reduced according to the type graphs

of local views by our View Generator tool that generates views on the basis

of their local type graphs. Projected rules that are reduced to identities in

one view and completely remain in the other view are removed from a view,

while rules that partially remain are kept in the given views.

4.2.2 Synchronization of Local Views

In PEPA views are represented as individual sequential components. These

sequential components are represented by initial states. These sequential

components are merged together and are co-ordinated by the PEPA co-

operation operator, e.g., P1 �� Q1, while in PRISM views are represented

39

as individual modules and PRISM synchronizes them over shared labels im-

plicitly. PRISM also uses a CSP-based operator for synchronization, i.e., M1

|| M2. We will demonstrate and discuss modularity of a system in Chapter

6.

4.3 Bottom-up Approach

Composing a system from its subsystems is the bottom-up approach. In this

approach we have to identify subsystems or modules which are perspectives

or parts of a system and their common interface over which subsystems coop-

erate. The bottom-up approach requires a composition of individual subsys-

tems which share a common interface. It consists of the following five steps.

Most of them are analogous to the monolithic and top-down approaches, so

we are not repeating them here.

Figure 4.3: Bottom-up modularity approach

(1) Modelling of Views

40

(2) Generation of the Labelled Transition System (see 4.1.2)

(3) Transforming the LTS into a CTMC (see 4.1.3)

(4) Synchronization of Local Views (see 4.2.2)

(5) Performance Analysis

4.3.1 Modelling of Views

Graph transformation does not allow to model a system as composition of

subsystems. Systems are modelled as whole-world/global models. By defining

a common interface among subsystems, we achieve system’s modularity.

4.3.2 Performance Analysis

Once we have transformed the GROOVE LTS into a PEPA or PRISM model,

we can get stochastic analysis results supported by PEPA or PRISM. In

PEPA we can analyze non-functional properties of mobile applications such

as steady-state probabilities and throughput. Steady-state analysis deter-

mines the long term probability for the system to be in a certain state and

throughput analysis gives the long term frequency of its actions (rule labels).

In PRISM we can analyze the steady-state of a system. As PRISM supports

continuous stochastic logic, where we can define properties and verify them,

for example, the probability of arriving at the destination within a certain

period of time, and the time within which an accident will be removed.

41

4.4 Summary

In this chapter we have presented our methodology, we have introduced

three approaches monolithic, top-down and bottom-up, to system modelling.

When we analyze a system through state space exploration there is usually

a state space explosion problem. This is the major bottleneck in the deriva-

tion of a CTMC of a system. Therefore, we have given the top-down and the

bottom-up modularity approaches for modelling a system. Both approaches

are demonstrated in detail in Chapter 6.

42

Chapter 5

Traffic Information System: A

Case Study

The Accident Assistance Scenario of the Sensoria Project [6, 28] inspired

the Traffic Information System (TIS) model that we have taken as our case

study. In this chapter we will discuss in detail our case study. We follow the

methodology outlined in Chapter 4 for the monolithic approach.

5.1 System Modeling as Graph Transforma-

tion

In this section we will discuss how we model a system as a graph transforma-

tion system (GTS). We use graphs to model the structure of the application,

including the topology of locations, the current locations of relevant devices,

existing links between application components as well as their states. Our

graphs come in two flavours, as type and instance graphs. A type graph pro-

43

Figure 5.1: Type graph of the Traffic Information System

vides a structural model of the admissible states of a system, similar to the

way a class diagram describes valid object structures.

Fig. 5.1 shows the type graph of the TIS model, with an instance graph

in Fig. 5.2 representing a map of Roads and Junctions as well as two Cars

following predefined Paths. The model allows to represent Accidents that

can be reported to the TIS. The TIS then shares the information with other

Cars. To identify Cars, these nodes have been given id attributes of type

integer. We have given attributes to Cars only to make the model simple and

to avoid large state space.

Instance graphs are transformed by rules modelling operations, distin-

guished into three (not strictly disjoint) categories: Mobility operations access

and change the location of devices, recovery operations deal with the removal

of accidents and service operations capture the state changes brought about

by the sending and receiving of messages between services and their client

applications. We do not model the communication itself, i.e., rules will not

describe the sending and receiving of messages, but only their effects on the

states of components.

44

Figure 5.2: Start graph of the Traffic Information System (match for move-
Car(1) indicated in bold)

Figure 5.3: Rule moveCar(car) models the mobility of a Car following a
Path.

The complete model of the Traffic Information System (TIS) consists of

the type graph in Fig. 5.1 and eleven rules with the following rule signatures.

Parameter declarations refer to the numbered id attributes, with the nth

formal parameter referring to the attribute value labelled $n.

• moveCar(car): moves the Car from one Road to the next on allocated

Path, see Fig. 5.3;

• accident(car): the Car suffers an Accident, see Fig. 5.5(a);

45

Figure 5.4: Resulting graph after applying moveCar(1) to the graph in
Fig. 5.2

• removeAccident(car): the Accident is removed, see Fig. 5.5(b);

• getAccidentInfo(car): the TIS receives information about an Accident,

see Fig. 5.6(a);

• sendAccidentInfo(car): the TIS informs the Car about an Accident that

happened to another one, see Fig. 5.6(b);

• detour(car): the Car, after receiving Accident information, takes a de-

tour leaving current Path and follows another Path, see Fig. 5.7;

• rejoin(car): the Car rejoins its previous Path, leaving the detour Path

after passing the Accident, see Fig. 5.8;

• arriveAtDest(car): the Car arrives at its destination, i.e., the end of its

46

(a) accident(car) (b) removeAccident(car)

Figure 5.5: Rules modelling the occurrence and removal of Accidents.

(a) getAccidentInfo(car) (b) sendAccidentInfo(car)

Figure 5.6: Rules for the TIS to receive Accident information and pass it to
other Cars

path, see Fig. 5.9;

• assign(car): the TowTruck is assigned to the Car which suffered an

Accident, see Fig. 5.10;

• moveTowTruck(car): the TowTruck moves towards the Accident spot,

see Fig. 5.11;

• moveBackTowTruck(): the TowTruck moves back to its garage, see

Fig. 5.12;

47

Figure 5.7: Rule detour(car) shows how a Car takes a detour to avoid an
Accident spot.

Figure 5.8: Rule rejoin(car) shows how a Car rejoins its previous Path.

5.2 Generation of the LTS

After modelling a system as a graph transformation system in GROOVE, we

generate an LTS from it. All possible applications of rules on the start graph

and the resulting graphs produce the system’s state space, which gives all

possible evolutions of a system.

48

Figure 5.9: Rule arriveAtDest(car) shows a Car finishing its journey.

Figure 5.10: Rule assign(car) depicts that TowTruck is assigned to an Acci-
dent.

5.3 Transforming the LTS into a CTMC

We have developed a tool that assigns every transition in LTS a rate (stochas-

tic delay) and generates CTMC. This CTMC could be analyzed in any tool

supporting CTMCs [36] for stochastic performance analysis.

CTMCs can be translated into any tool supporting them [36]; so we are

translating these CTMCs in PEPA or PRISM for stochastic analysis, where

individual views can be merged together in a single file and are synchronized

over shared labels. PEPA provides various performance analysis techniques;

but it lacks support for large files; while PRISM has support for large files.

49

Figure 5.11: Rule moveTowTruck(car) shows a TowTruck moving towards
an Accident spot.

Figure 5.12: Rule moveBackTowTruck depicts a TowTruck moving back to
its garage.

5.4 Summary

In this chapter we have discussed the global model of our case study. This

case study is modelled in the graph transformation tool GROOVE. Cars can

move, Accidents can occur and be removed by Recovery service. The Traffic

Information System (TIS) informs Cars about the Accident after receiving

Accident information so that Cars may change their route to avoid the dif-

ficulties and inconveniences. Cars may rejoin their previous Path, once they

have passed the Accident, which they may follow until they arrive at their

destinations.

50

Chapter 6

Modularization: Top-down and

Bottom-up Approaches

Scalability problems occur due to state space explosion, where the size of a

system grows exponentially. These problems can be tackled by introducing a

view-based approach to a system modelling.

6.1 Top-down Approach

In the top-down approach, a system is modelled as a graph transformation

system and then it is decomposed into its subsystems. LTSs of subsystem are

transformed into CTMCs and later merged together in any tool supporting

CTMCs. The top-down approach has the six steps as described in Chapter

4. Some steps are similar to the monolithic approach in Chapter 5, so we are

not repeating them here.

51

6.1.1 Generation of Local Views

Views are perspectives on a real system representing a particular concern or

part of the system to focus attention and capability for analysis. In our case

we can distinguish three perspectives, the Car and its location and mobility,

the Recovery Service that removes accidents and the Service view that sends

news about Accidents.

Car View models the dynamicity of the TIS which shows mobility along

the Path. Cars may have Accidents before arriving at their destinations. The

Car view receives Accident information by the Service view.

Service View sends up-to-date accident information to Cars so that they

may take a detour and avoid any delay or inconvenience caused by Accidents

on their route journey.

Recovery View extends Car view because it needs all the information

about Accidents, i.e., at what places Accidents are occurring and with what

frequency/ratio these Accidents are taking place on the roads of the given

road network. The Recovery view extends the removeAccident(car:Car) rule.

All other rules of the Car view remain unaltered.

Fig. 6.2 shows the decomposition of a global graph into its subgraphs,

namely Car, Service and Recovery views’ graphs. These subgraphs are typed

over Car, Service and Recovery views’ type graphs which are actually subtype

graphs of the global type graph of our case study.

In the global model of a system, intuitively a view is defined by identifying

52

(a) TISGlobalModel (b) TISPackageDiagram

Figure 6.1: Type graph of the Traffic Information System and TIS package
diagram

in the global type graph of Fig. 6.1(a) the node and edge types that should be

abstracted from, i.e., that are not required by the functionality of the view.

This includes node types TIS and TowTruck and edge type knows in the

Car view of Fig. 6.3(a); node type TIS in the Recovery view of Fig. 6.3(b);

and node types Road, Junction, Path and TowTruck in the Service view of

Fig. 6.3(c). We have developed a tool that requires the type graph of a view

and couples the projection of global graphs based on the view’s local type

graph automatically. It reduces start graphs and rules to the remaining types,

removing all instances of types that are no longer present in the view’s type

graph.

53

Figure 6.2: Depicting the decomposition of a global graph into subgraphs
which are typed over the views’ local type graphs

In our case, this is illustrated in Fig. 6.4(a) showing the projection of

the global graph in Fig. 5.2 to TGCar in Fig. 6.3(a), Fig. 6.4(b) shows the

projection of the same global graph to TGRecovery in Fig. 6.3(b). Similarly,

Fig. 6.4(c) shows the projection of the same global graph to TGService in

Fig. 6.3(c).

We generate the projection automatically from the GROOVE model by

deleting all nodes and edges which are not part of the projection. Our View

Generator tool deletes all incident edges of deleted nodes too, so that there

are no dangling edges. It also deletes NACs and attributes of the deleted

nodes as there should not remain any dangling nodes.

Let us consider what happens when we apply this definition to the global

TIS model, using (sub) type graph TGCar in Fig. 6.3(a) for the projection.

Rules moveCar(car), accident(car), rejoin(car), and arriveAtDest(car) only

contain elements of types occurring in TGCar, so they are kept unchanged as

54

(a) TGCar (b) TGRecovery

(c) TGService

Figure 6.3: Type graphs of Car, Recovery and Service views

part of the Car view, as shown in Fig. 5.3, Fig. 5.5(a), Fig. 5.8, and Fig. 5.9

respectively.

In the Car view, rules getAccidentInfo(car) and sendAccidentInfo(car),

assign(car), moveTowTruck(car) and moveBackTowTruck() are reduced to

identities, so they do not have any effect on the graph and (as we shall see

later) are not needed for synchronization with rules in the Service view and

Recovery view. Rule detour(car) in Fig. 5.7 is retained as it is, except for the

single knows edge, which is not part of the Car view and rule removeAcci-

dent(car) looses TowTruck node and its two edges on and assigned as seen

in Fig. 6.5

The Recovery view extends the Car view so it has all the rules of the

Car view as they are except removeAccident(car) rule which is extended as

shown in the Fig. 5.5(b). In addition the Recovery view has assign(car), move-

55

(a) StartGraphCar (b) StartGraphRecovery (c)
StartGraphService

Figure 6.4: Start graphs of Car, Recovery and Service views

Figure 6.5: In Car view removeAccident rule is the projection of the global
rule of Fig. 5.5(b).

TowTruck(car) and moveBackTowTruck() rules which are given in Fig. 5.10,

Fig. 5.11 and Fig. 5.12 respectively. Rules getAccidentInfo(car) and sendAc-

cidentInfo(car) are reduced to identities and are not needed by the synchro-

nization with rules in the Service view and Car view, so they are removed

from this view.

For the Service view, type graph TGService in Fig. 6.3(c) yields a projection

where only rules getAccidentInfo(car) and sendAccidentInfo(car) are kept un-

changed. Rules moveCar(car), detour(car), rejoin(car), arriveAtDest(car),

assign(car), moveTowTruck(car) and moveBackTowTruck() are reduced to

identities without visible effect, while rules accident(car) and removeAcci-

56

(a) accident(car) (b) removeAccident(car)

Figure 6.6: Service view projections of accident(car), removeAccident(car)

dent(car) survive in reduced form, as seen in Fig. 6.6.

In general, if a rule is completely retained in one view and does not change

the graph in the other view, it can be removed from the other view altogether.

This is an optimization which does not change the semantics of the overall

model, but reduces the cost of generating the state space. This is the case for

moveCar(car), arriveAtDest(car) and rejoin(car) which are only kept in the

Car view; while getAccidentInfo(car) and sendAccidentInfo(car) rules which

are only kept in the Service view. For example, in Fig. 6.4(a) the start graph

of the Car view indicates a match for moveCar(1). It coincides with the

match shown in the global start graph in Fig. 5.2 because the applicability

and effect of the rule can be determined entirely in the Car view. Instead, in

the start graph for the Service view shown in Fig. 6.4(c), the corresponding

match shows that moveCar(1) would not have any effect on the state and

can therefore be ignored. Since the Recovery view extends the Car view, it

has all the rules of the Car view as well as assign(car), moveTowTruck(car)

and moveBackTowTruck().

We assume (as happens in our example) that node types equipped with id

57

attributes that are used as parameters (just Car in our case) are preserved in

the projection. This ensures that the actual parameters in labels are preserved

and are used consistently in local views, so that synchronisation over shared

labels leads to the correctly composed model in PEPA and PRISM.

6.1.2 Synchronization of Local Views

In both PEPA and PRISM individual subsystems are integrated and are

synchronized over shared labels. In PEPA after generating sequential PEPA

processes from the Car, the Recovery and the Service view, the resulting

processes Car, Recovery and Service are synchronised using the PEPA

co-operation operator, i.e., as Car �� Recovery �� Service. That means

that transitions carrying labels shared between processes must be executed

simultaneously, while transitions whose labels occur only in one of the pro-

cesses are independent. In PEPA we take initial states of a sequential PEPA

processes as sequential PEPA components which are actually the initial states

of views LTSs. The synchronization is performed over these sequential com-

ponents.

In PRISM, after generating modules from individual views, these modules

are merged together in a single PRISM file. PRISM synchronizes individual

modules over shared labels implicitly and it also uses CSP-based operators

for synchronization of modules, e.g., M1 ‖ M2 ‖ M3. For synchronization

in PRISM initial states of modules should be the same as they are in the

GROOVE LTSs of views.

58

6.2 Bottom-up Approach

Composing a system from subsystems which share a common interface is a

bottom-up approach. Instead of modelling a large system and then decom-

posing it into its subsystems, it is better practice that we should model a

system as a set of subsystems which share a common interface. Then LTSs

generated from these subsystems can be transformed into CTMCs. These

CTMCs can be synchronized over shared labels in any tool supporting them

[36].

The bottom-up approach has the five steps as described in Chapter 4.

Most of them are analogous to the monolithic and top-down approaches, so

we are not repeating them here.

6.2.1 Modelling of Views

In software engineering, usually systems are modelled as the composition of

components/subsystems. Though graph transformation is a very powerful

specification formalism for modelling software systems, it lacks composition-

ality. We suggest and demonstrate that if we define a common interface

among subsystems, we can synchronize these subsystems over a shared in-

terface in any tool supporting the synchronization. In our case, we make

use of PEPA and PRISM for synchronization of subsystems, where CTMCs

generated from LTSs of subsystems are synchronized over shared labels.

Fig. 6.1(b) shows the three views of the TIS system plus their common

interface. Rules describe the functionality of each view and the TIS interface

defines the shared labels over which local views can be synchronized. Here

59

shared labels are accident(car) and removeAccident(car). The TIS interface is

embedded in the Car view and Service view, and the Recovery view extends

the Car view, so it is in the Recovery view by default. The Car view shows

that a Car can receive Accident information, take a detour to avoid the

Accident, etc. The Recovery view depicts that Accidents are assigned to the

Recovery service to be removed. The Service view describes how the Accident

information is shared by the TIS. As we have already given the views of our

case study in the top-down approach, we are not repeating them here.

6.2.2 Performance Analysis

Table 6.1 and Fig. 6.7 show the probability distributions of the TIS global

model vs the TIS synchronized model. Here, random variable K has a unit of

times per day. It shows that there is 0.78 probability of a Car arriving at its

destination in nearly 14.4 minutes. It also demonstrates that the synchronized

model and the global model are equal. The numerical variations are down to

the numerical method used by PRISM and cut-off points for the synchronised

and global models.

60

Figure 6.7: The TIS global model vs the TIS synchronized model and their
probability distributions of arriveAtDest rule

Table 6.1: The TIS global model vs the TIS synchronized model and their
probability distributions of arriveAtDest rule

K TISSynchronizedModel TISGlobalModel
0 0 0
0.001 0.034291191 0.034284062
0.002 0.113960078 0.113911438
0.003 0.214079389 0.213952186
0.004 0.319367304 0.319135669
0.005 0.420924055 0.420573353
0.006 0.513993612 0.513516955
0.007 0.596444815 0.595839628
0.008 0.66775315 0.667018739
0.009 0.728328087 0.72746419
0.01 0.77907684 0.778082931

61

6.3 Summary

In this chapter we have demonstrated and explained in detail the modular-

ity approaches. We have decomposed the global system of our TIS model

into subsystems, i.e., Car view, Recovery view and Service view through our

View Generator tool, which supports the projection of graph transformation

systems based on the type graphs of corresponding views. These views are

transformed into PEPA models or PRISM models. In PEPA or PRISM these

views are synchronized over shared labels to compose a global model. We

have also discussed the bottom-up approach where subsystems/views share

a common interface. Synchronization of views is achieved by the shared labels

of a common interface in PEPA or PRISM.

62

Chapter 7

Composition and

Decomposition

In this chapter we are giving the formalization of our modularity approaches.

We decompose graph transformation system into views. Transition systems

can be generated separately for different views which, when synchronised

using a CSP-like operator, yield a system that is bisimilar to the original

global system.

In the top-down approach, a view is defined by identifying in the global

type graph of Fig. 7.1(a) the node and edge types that should be abstracted

from, i.e., that are not required by the functionality of the view. Our View

Generator tool projects the start graphs and rules based on the subtype

graphs of local views. While in bottom-up approach, we have to identify a

common interface and subsystems (views), which could be composed to get

the global system as depicted in the Fig. 7.1(b). Where compositionality is

achieved by synchronizing subsystems over the common interface. We have

63

(a) TISGlobalModel (b) TISPackageDiagram

Figure 7.1: Type graph of the Traffic Information System and TIS package
diagram

identified views as Car view, Service view and Recovery view.

7.1 Typed Attributed Graph Transformation

This section introduces the basic notions of typed attributed graph transfor-

mation with negative application conditions. The formalisation follows the

algebraic approach [14]. A graph is a tuple (V,E, src, tgt) where V is a set

of nodes (or vertices), E is a set of edges and src, tgt : E → V associate,

respectively, a source and target node for each edge in E. Given graphs G1

and G2, a graph morphism is a pair (fV , fE) of total functions fV : V1 → V2

and fE : E1 → E2 such that source and targets of edges are preserved as

64

shown below.

E1
src ++

=

tgt
33

fE

��

V1

fV

��
E2

src ++
tgt

33 V2

An E-graph is a graph equipped with an additional set VA of data nodes

(or values) and special sets of edges EEA (edge attributes) and ENA (node

attributes) connecting, respectively, edges in E and nodes in V to values

in VA. An attributed graph is a tuple (EG,A) where EG is an E-graph

and A is an algebra with signature Σ = (S,OP) such that
⊎
s∈S As = VA.

Intuitively, an attributed graph is an E-graph where VA is the set of all

data values available for attribution. A morphism f : (EG,A) → (EG′, A′)

of attributed graphs is a pair of an E-graph morphism fEG : EG → EG′

and a compatible algebra homomorphism fA : A→ A′. Fixing an attributed

graph TG as attributed type graph, we define the category AGraphTG of TG-

typed attributed graphs [14]. Objects are pairs (G, t) of attributed graphs G

with typing homomorphisms t : G → TG and morphisms f : G → H are

attributed graph morphisms compatible with the typing.

We denote by X = (Xs)s∈S a family of countable sets of variables, indexed

by sorts s ∈ S, and write (x : s) ∈ X for x ∈ Xs. A TG-typed graph

transformation rule (or production) over X is a span L
l←− K

r−→ R where

l, r are monomorphisms, the algebra component of L,K,R is TΣ(X) (the

term algebra of Σ with variables in X) such that lA = rA = idTΣ(X). That

means, variable names are preserved across the rule. The class of all rules

65

over TG with variables in X is denoted Rules(TG,X).

The operational semantics of rules is defined by the double-pushout con-

struction. Given a TG-typed graph G and graph production L
l← K

r→ R

together with a match (a TG-typed graph morphism) m : L→ G, a di-

rect derivation G
p,m
=⇒ H exists if and only if the diagram below can be

constructed, where squares (1) and (2) are pushouts in AGraphTG such

that G,C,H share the same algebra A and the algebra components l∗A, r
∗
A

of morphisms l∗, r∗ are identities on A. This ensures that data elements

are preserved across derivation sequences, which allows their use as ac-

tual parameters in a global namespace. We also write G
p/d
=⇒ H to refer

to the entire DPO diagram d = (dL, dK , dR). A derivation is a sequence

G0
p1, m1
=⇒ G1

p2, m2
=⇒ . . .

pn, mn
=⇒ Gn of direct derivations.

L

(1)m=dL
��

K
loo r //

dK
��

(2)

R

m∗=dR
��

G C
l∗

oo
r∗

// H

L n //

m

��

L̂

q

��
G

A negative constraint on a TG-typed graph L is a morphism n : L → L̂

over TG. A morphism m : L → G satisfies n (written m |= n) if there

is no morphism q : L̂ → G such that q ◦ n = m, A negative application

condition (NAC) over L is a set of negative constraints N . A morphism

m : L→ G satisfies N (written m |= N) if m satisfies every constraint in N ,

i.e., ∀n ∈ N : m |= n.

66

Figure 7.2: Top to bottom: Rules
moveCar and sendAccidentInfo

Figure 7.3: Rule detour for Car to
avoid location of Accident

7.2 Signatures and Systems

We introduce a notion of observation on transformation steps based on rule

names with parameters, whose declarations are collected in a transformation

signature. Throughout the rest of the paper we assume a signature Σ =

(S,OP), a family X = (Xs)s∈S of countable sets of variables and a Σ-algebra

A.

Definition 1 (transformation signature, labels) A transformation sig-

nature (over Σ, X,A) is a tuple S = (TG, P, σ) where

• TG is an attributed type graph,

• P is a countable set of rule names,

• σ : P −→ X∗ assigns each rule name a list of parameters σ(p) = (x1 :

s1, . . . , xn : sn) with xi ∈ Xsi
for 1 ≤ i ≤ n.

For p ∈ P with σ(p) = (x1 : s1, . . . , xn : sn) we also write p(x1 : s1, x2 :

s2, . . . , xn : sn) ∈ S.

67

Given a rule signature p(x1 : s1, . . . , xn : sn) ∈ S we denote by p(A) the

set of all rule labels p(a1, . . . , an) with ai ∈ Asi
. The label alphabet L over S

is the union over all rule labels
⋃
p∈P p(A).

For example, the signatures of the rules in Fig. 7.2 are moveCar($1 : int)

and sendAccidentInfo($1 : int), both referring to the id attribute of Car

nodes. A graph transformation system over a signature adds definitions of

rules with application conditions for all rule names.

Definition 2 (TAGTS) Given a transformation signature S = (TG, P, σ),

a typed attributed graph transformation system (TAGTS) over S is a tuple

G = (S, π,N) where

• π : P −→ Rules(TG,X) assigns each rule name a span sp = L
l←

K
r→ R over TG and X.

• N = (Np)p∈P is a family of application conditions such that for π(p) as

above, Np is a NAC over L.

Observations on transformations are defined by obs(G
p,m
=⇒ H) =

p(a1, a2, . . . , an) if σ(p) = (x1 : s1, . . . , xn : sn) and ai = m(xi). A step

t = (G
p,m
=⇒G H) is a transformation such that match m satisfies Np. A deriva-

tion is a sequence G0
p1,m1
=⇒ G . . .

pn,mn
=⇒ G Gn, also written G0 =⇒∗G Gn. The pair

(G, G0) with G0 a TG-typed graph is called a typed attributed graph gram-

mar (TAGG) over S. Grammar (G, G0) is deterministic if for all reachable

graphs G and transformations via p ∈ P , obs(G
p,m
=⇒G H) = obs(G

p,m′
=⇒G H ′)

implies m = m′.

Spans are attributed over TΣ(X) and parameters xi ∈ Xsi
are from the

same set, so they refer to the variables used in attribute expressions in rules.

68

The algebra component of attributed graphs is preserved by transformations,

allowing actual parameters to be used globally.

Grammars are deterministic if labels carry enough information to deter-

mine the match into any graph reachable from the start graph. While the

notion abstracts from the mechanism by which this happens, we employ id

attributes on nodes, referred to by rule parameters as part of transformation

labels.

We will see in Sec. 7.4 that the notion of deterministic grammars is re-

quired for the composition of grammars to be semantically meaningful. The

requirement will be imposed on the interface (intersection) only of the two

grammars to be composed, rather than on the component grammars them-

selves.

Applying the same rule at the same match leads to isomorphic DPO

diagrams and resulting graphs. The transition system generated by a TAGTS

identifies isomorphic graphs, so deterministic TAGTS lead to deterministic

transition systems.

Definition 3 (induced labelled transition system) Let (G, G0) be a

TAGG and G = (TG, P, σ, π,N). The labelled transition system LTS(G, G0)

is given by (L, S, T, [G0]) where

• S is the set of all isomorphism classes of graphs reachable from G0, i.e.

S = { [Gn] | G0 =⇒∗G Gn};

• L is the label alphabet over S;

• T ⊆ S×L×S is the transformation relation, where 〈[G], l, [H]〉 ∈ T if

there is a transformation step t = (G
p,m
=⇒ H) with obs(t) = l;

69

• [G0] is the isomorphism class of the initial graph G0.

7.3 Projection and Composition of Systems

Given a subgraph TG′ ⊆ TG, a TG-typed instance graph G can be projected

to an instance G|TG′ of TG′ by removing all elements of G whose types are in

TG, but not in TG′. This projection, formally the inverse image of TG′ under

the morphism typing G in TG, can be described abstractly as a pullback of

TG′ ⊆ TG and G’s typing morphism. The projection extends to morphisms,

making it a functor |TG′ : AGraphTG → AGraphTG′ [22].

The functor can be used to define the projection of graph transformation

rules and application conditions to a subgraph of their current type graph.

We define a more general projection based on a subsignature, which allows

to reduce the set of rule names as well as the type graph.

Definition 4 (subsignature, projection) A transformation signature

S ′ = (TG′, P ′, σ′) is a subsignature of S = (TG, P, σ), written S ′ ⊆ S, iff

TG′ ⊆ TG, P ′ ⊆ P , and σ′ = σ|P ′.

Given a TAGTS G = (S, π,N) we define the restriction G|S′ = (S ′, π′, N ′)

of G to S ′ for all p ∈ P ′ by

• π′(p) = L|TG′
l|TG′←− K|TG′

r|TG′−→ R|TG′ if π(p) = L
l←− K

r−→ R

• N ′p = {n|TG′ : L|TG′ → L̂|TG′ | n : L → L̂ ∈

Np s.t. the diagram below is a pushout.}

L̂|TG′� _

��

L|TG′n|TG′
oo

� _

��
L̂ Lnoo

70

The projection is sound if for all rules p ∈ P \P ′, it reduces π(p) to a span of

isomorphisms. A constraint n such that the diagram above forms a pushout

is preserved by the projection to TG′.

For a projection to be sound, i.e., to preserve transformations, we must

only drop rules that are rendered idle, such as moveCar, detour from the

Service view signature and sendAccidentInfo from the Car view signature.

Constraints of retained rules are dropped if they are not preserved, i.e., if

they loose any negative elements L̂ \ n(L).

Lemma 1 (projection of steps) Assume signatures and systems S ′ ⊆ S

and G as above such that the projection G ′ = G|S′ is sound. Then, for each

step t = (G
p,m
=⇒G H), either there exists a step t|S′ = (G|TG′

p,m|TG′=⇒ G′ H|TG′)

with obs(t) = obs(t|S′), or G|TG′ , H|TG′ are isomorphic.

Proof 1 If p ∈ P \ P ′ the projection of π(p) is a span of identities. Since

AGraph is adhesive [33], the projection functor preserves pushouts where

one of the given morphisms is mono, such as the pushouts in a double-pushout

diagram. That means, the projection of double pushout t is a DPO over TG′

where the top span is made of identities. Since pushouts preserve isos, graphs

G|TG′ , H|TG′ at the bottom of the DPO are isomorphic.

If p ∈ P ′ we have t|S′ because (1) the projection functor preserves double

pushouts and (2) m|TG′ |= N ′p iff m |= Np. To see (2), consider the cube

diagram below, whose back face represents the pushout of Def. 4.1 while the

sides and front are pullbacks arising from the projection functor. The back

square, with its two opposing monos, is a pullback too. Using the pushout

property of the back square it follows that existence of q1 commuting the

71

top triangles implies existence of q commuting the bottom triangles and the

resulting diagonal vertical square. The reverse implication can be established

with the help of the pullback property of the front square. That means, m

satisfies n iff m|TG′ satisfies n|TG′.

L̂|TG′

||yy
yy

yy
yy

y
q1

##

� _

��

L|TG′

m|TG′
ww

w

{{ww
w

� _

��

n|TG′
oo

TG′� _

��

G|TG′� _

��

oo

L̂

{{ww
ww

ww
ww

ww
q

$$

L

muuuuu

zzuuu
uu

noo

TG Goo

Composition of systems is based on composition of rules, defined by the

union of two rules agreeing on a common projection. Constraints of the two

given rules have to be transferred to the enlarged left-hand side of the new

rule.

Definition 5 (extension and union) Assume rule span s1 = (L1
l1←−

K1
r1−→ R1) embedded into s = (L

l←− K
r−→ R) by inclusions iL1 , iK1 , iR1

as in the diagram below, denoted s1 ⊆ s.

If n1 is a constraint over L1, the extension of n1 to L is defined by the

pushout (1) where iL̂1
is the inclusion of L̂1 into L̂ and n is the extended

constraint over L. If N1 is a set of constraints over L1, we denote by NL
1 the

72

corresponding set of constraints extended to L.

L̂1

(1)

� _

iL̂1 ��

L1
n1oo

� _

iL1

��

K1
l1oo r1 //

� _

iK1

��

R1� _

iR1

��

L̂ L
noo K

loo r // R

The union of two rule spans s1 and s2 with si = (Li
li←− Ki

ri−→ Ri) is

defined if they have a well-defined intersection, that is, the componentwise

intersection s1 ∩ s2 = L1 ∩ L2
l1∩l2←− K1 ∩K2

r1∩r2−→ R1 ∩ R2 is a rule span. In

this case, their union is s1 ∪ s2 = L1 ∪ L2
l1∪l2←− K1 ∪K2

r1∪r2−→ R1 ∪ R2 where

X1∪X2 is the pushout of X1, X2 over X1∩X2 with inclusions as morphisms,

for X ∈ {L,K,R}.

Extending this notion from rules to systems, we arrive at the composition

of TAGTS.

Definition 6 (composition of TAGTS) Assume a signature S with sub-

signatures S1 ⊆ S and S2 ⊆ S. Let S0 = (TG0, P0, σ0) be defined by

component-wise intersection TG0 = TG1 ∩ TG2, P0 = P1 ∩ P2 and σ0 =

σ1|P0 = σ2|P0.

Given two systems G1 = (S1, π1, N1) and G2 = (S2, π2, N2), their composi-

tion G1⊕G2 is defined if G1|S0 = G2|S0. We then call the systems composable,

and define G1 ⊕ G2 = (S1 ∪ S2, π,N) by

• S1 ∪ S2 = (TG1 ∪ TG2, P1 ∪ P2, σ1 ∪ σ2);

• π(p) =

π1(p) if p ∈ P1 \ P2

73

π2(p) if p ∈ P2 \ P1

π1(p) ∪ π2(p) = L1 ∪ L2
l1∪l2←− K1 ∪K2

r1∪r2−→ R1 ∪R2 if p ∈ P1 ∩ P2

• Np =

N1p if p ∈ P1 \ P2

N2p if p ∈ P2 \ P1

N1
L1∪L2
p ∪N2

L1∪L2
p if p ∈ P1 ∩ P2

The composition of grammars (G1, G
1
0) and (G2, G

2
0) is defined if G1,G2 are

composable and G0
0 = G1

0|TG0 = G2
0|TG0. In this case, (G1, G

1
0) ⊕ (G2, G

2
0) =

(G1⊕G2, G
0) with G0 = G1

0∪G2
0, the pushout representing the union of G1

0, G
2
0

over G0
0.

Hence two systems are composable if they agree on the projection to S0,

the intersection of their signatures. The same is true of transformations in

these two views, i.e., if their projections to S0 coincide, they give rise to a

composed transformation using the composed rule.

Lemma 2 (composition of steps) Assume two systems G1 and G2, their

projection G0 = G1|S0 = G2|S0 and composition G = G1 ⊕ G2 as above. Given

steps ti = (Gi
p,mi
=⇒Gi

Hi) for i = 0, 1, 2 with t1|S0 = t2|S0 = t0, there exists a

step t1 ⊕ t2 = (G1 ∪G2
p,m1∪m2

=⇒ G H1 ∪H2).

Proof 2 Let us start by constructing the underlying DPO diagram of t1⊕ t2

from those of the given transformations. First, observe that t1 ← t0 → t2 form

a span of DPO diagrams with six-tuples of graph morphisms between corre-

sponding left, right, and interface graphs at rule and transformation level re-

lating them. Because they are obtained as projections, these morphisms form

74

pullback diagrams wherever a square can be found. Forming the component-

wise pushout t1 → t1 ⊕ t2 ← t2 of t1 ← t0 → t2, it follows from adhesiveness

that the object obtained is a double pushout and all new squares are pull-

backs, too. This is a variant of the Distribution Theorem for graph transfor-

mation [16]. It remains to show that the combined DPO forms a step in G,

i.e., that the constraints of the combined rule are satisfied. By Def. 6 these

are given by extending constraints of the two component rules. Thus, by the

same argument as in the proof of Lemma 1 and the fact that they are satisfied

for t1 and t2 it follows that they are satisfied for t1 ⊕ t2.

7.4 Operations on Transition Systems

With the semantics of a TAGTS defined as its induced labelled transition sys-

tem, we interpret their composition by a corresponding notion of composition

of LTS, synchronising transitions with shared labels while interleaving those

whose labels only occur in one or the other LTS. This matches the PEPA

coordination operator [26] which itself is based on composition in CSP.

Definition 7 (composition of transition systems) Given LTS1 =

(S1, L1,=⇒1,s
0
1) and LTS2 = (S2, L2,=⇒2, s

0
2), their product

LTS1 ⊗ LTS2 = (S, L,=⇒, s0) has as states S all pairs of states (s1, s2)

with si ∈ Si. The set of labels is defined by L = L1 ∪ L2 and the transition

relation is the smallest one satisfying

• if l ∈ L1 \ L2 and s1
l

=⇒1 s
′
1, then (s1, s2)

l
=⇒ (s′1, s2);

• if l ∈ L2 \ L1 and s2
l

=⇒2 s
′
2, then (s1, s2)

l
=⇒ (s1, s

′
2);

75

• if l ∈ L1 ∩ L2, s1
l

=⇒1 s
′
1 and s2

l
=⇒2 s

′
2, then (s1, s2)

l
=⇒ (s′1, s

′
2).

The initial state s0 is (s0
1, s

0
2), the pair of initial states of the two systems.

Under suitable assumptions, composition of TAGTS is reflected by the

corresponding composition of their LTS. This supports the bottom-up ap-

proach of our methodology.

Proposition 1 (composition) Assume grammars (G1, G
0
1) and (G2, G

0
2),

with Gi = (Si, πi, Ni) and S0 = S1 ∩ S2 = (TG0, P0, σ0), such that the gram-

mar’s composition is defined,

1. (G1|S0 , G
0
1|TG0) is deterministic, and

2. for all rules p1 ∈ P1 \P2 (resp., p2 ∈ P2 \P1), the projection π1(p1)|TG0

(resp., π2(p2)|TG0) is a span of isomorphisms.

Then, transition systems LTS(G, G0) and LTS(G1, G
0
1) ⊗ LTS(G2, G

0
2) are

bisimilar.

Proof 3 We write [G1, G2] ∼ [G] iff Gi = G|TGi
for i = 1, 2. States of

the composed LTS(G1, G
0
1) ⊗ LTS(G2, G

0
2) are pairs of isomorphism classes

([G1], [G2]), denoted as [G1, G2]. States of LTS(G, G0) are isomorphism

classes of graphs [G]. We will show that relation ∼ as defined above is a

bisimulation between LTS(G1, G
0
1) ⊗ LTS(G2, G

0
2) and LTS(G, G0). Recall

that a bisimulation is a relation R between the states of two systems such

that, if P1 R P2, then both P1
l−→1 Q1 implies P2

l−→2 Q2 and Q1 R Q2 as

well as P2
l−→2 Q2 implies P1

l−→1 Q1 and Q1 R Q2.

Assume that [G1, G2] ∼ [G] and let [G]
l−→ [H] be a transition in

LTS(G, G0). That means, there exists a transformation t = (G
p,m
=⇒G H)

76

with obs(t) = l. The projections G|Si
are sound because of Assumption 2 in

the proposition above.

Hence, with Lemma 1, Gi = G|TGi
and Hi = H|TGi

, there are either

two projections ti = (Gi

p,m|TGi=⇒ Gi
Hi) with obs(t) = obs(ti) = l for i = 1, 2,

or one such projection, say WLOG for i = 1, while G2
∼= H2. In the first

case, [Gi]
l−→i [Hi] are transitions in LTS(Gi, G0

i). By the third clause in

Def. 7, [G1, G2]
l−→ [H1, H2] is a transition in LTS(G1, G

0
1)⊗ LTS(G2, G

0
2).

In the second case, [G1, G2]
l−→ [H1, G2] = [H1, H2] by the first clause and

[G2] = [H2].

Vice versa, let [G1, G2]
l−→ [H1, H2] be given in LTS(G1, G

0
1) ⊗

LTS(G2, G
0
2). By Def. 7 either there are transitions [Gi]

l−→ [Hi] in

LTS(Gi, G0
i) for i = 1, 2, based on steps ti = (Gi

p,mi
=⇒Gi

Hi), or there is

one such transition, say WLOG for i = 1, and [G2] = [H2].

In the first case, it is easy to see that the projections from Si to S0 are

sound because, e.g., P1\P1∩P2 = P1\P2 and so soundness from S1 to S0 fol-

lows from Assumption 2 above. The projections yield ti|S0 = (Gi|TG0

p,mi|TG0=⇒

Hi|TG0) with obs(ti|TG0) = l. [G1, G2] ∼ [G] implies G1|TG0 = G2|TG0 =: G0.

Since (G0, G
0
0) = (G1|S0 , G

0
1|TG0) is deterministic and G0 is reachable, m0 =

m1|TG0 = m2|TG0, so ti|S0 = (G0
p,m0
=⇒G0 Hi|TG0) for i = 1, 2 are related by

unique isomorphisms on intermediate and derived graphs.

To apply Lemma 2 we require steps in G1,G2 which project to the same

step in G0. Using the unique isos between t1|S0 and t2|S0 and the fact that

t2|S0 ⊆ t2 we can rename t2 into t′2 = (G2
p,m2
=⇒G2 H

′
2) such that t′2|S0 = t1|S0.

In particular, H1|TG0 = H ′2|TG0 = H1∩H ′2 and so t1⊕ t′2 = (G1∪G2
p,m1∪m2

=⇒ G

H1 ∪H ′2) with obs(t1 ⊕ t′2) = l is a transformation in the composed TAGTS

77

delivering transition [G]
l−→ [H1 ∪H ′2]. Then, [H1, H2] ∼ [H1 ∪H ′2] because

H2
∼= H ′2 and therefore [H1, H2] = [H1, H

′
2] ∼ [H1 ∪H ′2].

In the second case, by Def. 7, l ∈ L1 \ L2 so by Def. 1 p ∈ P1 \ P2. By

Assumption 2 in the proposition above the projection π1(p)|TG0 yields a span

of isomorphisms which extends to a transformation t0 = (G1|TG0

p,m1|TG0=⇒

H1|TG0) with G1|TG0
∼= H1|TG0. Any G2

∼= H2 can be extended to a DPO

diagram over TG2 that projects to t0, and following a similar argument as

above we can build (G1∪G2
p,m1
=⇒G1 H1∪H2), extending (G1

p,m1
=⇒G1 H1) by the

idle context G2
∼= H2. Thus [H1, H2] ∼ [H1 ∪H2] and [G]

l−→ [H1 ∪H2].

The condition for the projection to S0 to be deterministic ensures that,

on the interface, labels uniquely determine transformations. Thus transitions

carrying the same labels in the two views can be synchronised. The corollary

below derives the conditions for decomposition of systems by projection.

Corollary 1 (decomposition) Assume a system G over S with sub-

signatures S1 and S2 such that S = S1∪S2, the projections G|S1 and G|S2 are

sound,

1. G|S1∩S2 is deterministic;

2. for all rules p ∈ P1 \ P2, π(p)|TG1 = π(p) and Np|TG1 = Np while

π(p)|TG2 is a span of isomorphisms, and vice versa swapping TG1, P1

and TG2, P2;

3. for all p ∈ P1 ∩ P2, any constraint n ∈ Np is preserved by projection to

either TG1 or TG2.

Then LTS(G, G) and LTS(G|S1 , G|TG1)⊗ LTS(G|S2 , G|TG2) are bisimilar.

78

Proof 4 To apply Prop. 1 it suffices to show that G|S1 ⊕ G|S2 = G and As-

sumptions 1, 2 are satisfied. Assumption 1 follows directly from Assumptions

1 above. Assumption 2 in Prop. 1 follows from Def. 4. Finally, G|S1⊕G|S2 = G

because, due to Assumptions 2 and 3 above, rule spans and application con-

ditions in G can be reconstructed from their projections.

Note that, with TG = TG1∩TG2, projection of graphs and rules is inverse

to their union. This can be shown by formalising the union of type graphs as

a van Kampen square, which extends to a cube with the union of instance

graphs, such as the left-hand sides of corresponding rules, and their typing

morphisms.

Let us analyse the conditions of Cor. 1 by considering the three rules in

Fig. 7.2 and 7.3. Specifically, condition 2 distinguishes rules like sendAcci-

dentInfo and moveCar, both retained entirely in one view and mapped to

spans of isos in the other, from rules like detour, also mapped to isos in the

Service views, but loosing an edge of type knows in the Car view. While

the reconstruction of the first two examples is trivial, with the rules being

complete in one of the two views each, in the third case we require synchro-

nisation to recover the projected edge. Hence in this case the rule must be

retained in both views. Similarly, for a rule present in both views, each of its

constraints must be preserved in at least one view. In the case of detour, all

constraints remain in the Car view.

The key ingredient is the fact that labels determine matches and trans-

formations up to isomorphism. Therefore, n steps in different views with the

same label starting from compatible graphs are consistent as distributed steps

79

and can therefore be amalgamated. Not surprisingly, therefore, the results of

analyzing the model obtained by synchronizing the n projections coincide

with those of analyzing the global model.

If we assume PEPA processes P1, P2, ..., Pn and let LTS(P) be the

labelled transition system generated by a PEPA process (ignoring rates

for the time being), the product of transition systems is the semantic

equivalent of PEPA’s co-operation operator, i.e., the reachable portions of

LTS(P1 �� P2 �� ... �� Pn) and LTS(P1)⊗ LTS(P2)⊗ ...⊗ LTS(Pn)

are isomorphic. As a consequence, the two systems are bisimilar. Similarly

in PRISM we suppose modules M1, M2, ..., Mn and LTS(M) be the la-

belled transition system generated by PRISM, then the synchronization of

PRISM modules over shared labels and the product of transition systems

LTS(M1 || M2 || ... || Mn) and LTS(M1) ⊗ LTS(M2) ⊗ ... ⊗ LTS(Mn)

are isomorphic. Moreover, a shared label will have the same rate in sequen-

tial PEPA processes or in individual PRISM modules and in the global PEPA

process or in the global PRISM module, and synchronization of transitions

in PEPA or PRISM retains that rate. Therefore, the relationship between

composition and product carries over to transition systems with rates (or

continuous-time Markov chains).

7.5 Summary

We have formalised notions of views for typed attributed graph transfor-

mation systems with rule signatures for decomposition and composition of

systems that are compatible with corresponding notions of composition of

80

transition systems based on synchronisation over shared labels. Conceptually,

decomposition and composition correspond to the top-down and the bottom-

up methodologies of modular graph transformation systems. We show that

LTS generated by the synchronization of views is bisimilar to the LTS of

global model.

81

Chapter 8

Generating CTMCs

In this chapter we discuss how we generate CTMCs from LTSs. Generating

CTMCs from LTSs requires additional information not present in the LTSs

such as event arrival rates. These CTMCs are further translated into PEPA

or PRISM models.

8.1 From Transition Systems to Markov

Chains

We define Labelled Transition Systems (LTS) and Continuous Time Markov

Chains (CTMCs). We discuss some of the basic properties of the Q−matrix

and explain the connection with CTMCs [35].

A labelled transition system describes the overall behaviour of a system

in terms of its states and transitions. In a graph transition system states

represent isomorphism classes of graphs and transitions represent rule ap-

plications as it is shown in the Fig. 8.1. Transition systems are frequently

82

used to represent the behavior of software systems. They divide the runtime

evolution of a system into discrete states and use a binary transition relation

to define possible state changes. State space S contains all reachable graphs

of the graph transformation system. Such a transition system can be gen-

erated by recursively applying all enabled graph transformation rules of G

at each state and by matching the resulting graphs with already generated

isomorphic graphs.

Definition 8 (Q-matrix) Let S be a countable set. A Q-matrix on S is a

real-valued matrix Q = Q(s, s′)s,s′∈S satisfying the following conditions:

(i) 0 ≤ −Q(s, s) <∞ for all s ∈ S,

(ii) Q(s, s′) ≥ 0 for all s 6= s′,

(iii)
∑

s′∈S Q(s, s′) = 0 for all s ∈ S.

The Q-matrix is also called transition rate matrix of the Markov chain. A

CTMC makes transitions from state to state independent of the past for an

exponentially distributed amount of time. It has the memoryless property.

Definition 9 (CTMC) A (homogeneous) Continuous Time Markov Chain

is a pair 〈S,Q〉 where S is a countable set of states and Q is a Q-matrix on

S.

Q(s) =
∑
s 6=s′

Q(s, s′) <∞

If s 6= s′ and Q(s, s′) > 0, then there is a transition from s to s′. The

transition delay is exponentially distributed with rate Q(s, s′). Consequently,

83

the probability that, being in s, the transition s→ s′ can be triggered within

a time interval of length t is 1 − e−Q(s,s′)t. The total exit rate Q(s) specifies

the rate of leaving a state s to any other state and the diagonal entry −Q(s)

makes the total row sum zero. If the set {s′ | Q(s, s′) > 0} is not a singleton,

then there is a competition between the transitions originating in s. The

probability that transition s→ s′ wins the ’race’ is [1].

Q(s, s′)

Q(s)

We say that a state s′ can be reached from s, and write s ⇀ s′, if there are

states s = s0, . . . , sn = s′, such that Q(s0, s1) ·Q(s1, s2) · . . . ·Q(sn−1, sn) > 0.

If s ⇀ s′ and s′ ⇀ s, then we say that s and s′ communicate, and write

s
 s′.

Definition 10 (irreducible Q-matrix) A Q-matrix Q is irreducible if

s
 s′ for all s, s′ ∈ S.

Fig. 8.1 shows the LTS of the TIS inteface and Fig. 8.2 shows its

Q − matrix. We have given accident and removeAccident 1 and 8 rates

respectively. When we are modeling a system as a GTS, we have to take care

that the resulting Markov chain should be irreducible. Meaning that every

state in the LTS is reachable from every other one. In our case study, when

a car reaches its destination, it is replaced at its starting point. Thus the

behaviour is cyclic and so the Markov chain is irreducible.

84

Figure 8.1: The LTS of the TIS inteface
−2 1 1 0

1
8
−9

8
0 1

1
8

0 −9
8

1
0 1

8
1
8
−2

8


Figure 8.2: Q-matrix of the TIS inteface

8.2 Choosing Transition Rates

Rates are based on observations of real world behaviour and their timings.

Delays can be measured in the real world, that the average delay for a certain

kind of event can be computed, and how the rate relates to the average delay.

In the CTMCs reciprocal of a rate is the average delay. Table 8.1 shows rule

labels and their associated rates. We use a unit, on average, of times per day,

e.g., accident = 1, removeAccident = 8 and arriveAtDest = 17280 meaning

that Accidents can occur once a day and are removed within 3 hours and

a car is replaced at its starting point within 5 sec, this does not mean a

car arrives after 5 secs, but that once the car has arrived, it takes 5 secs on

average for it to be replaced.

The exponential distribution is the only continuous memoryless random

85

Table 8.1: Rule labels and their rates

Rule Labels Rates Real World Values
accident 1 1 day
arriveAtDest 17280 5 sec
assign 1440 1 min
detour 17280 5 sec
getAccidentInfo 1440 1 min
moveCar 288 5 min
moveTowTruck 144 10 min
moveBackTowTruck 144 1 min
rejoin 17280 5 sec
removeAccident 8 3 hours
sendAccidentInfo 72 20 min

distribution. If we know how many times in a day, a car takes a detour,

or how often accidents are occuring then these events can be considered as

following an exponential distribution. The exponential distribution is always

the choice to represent the time between events that happen at a constant

average rate such as getAccidentInfo time and rate of arriveAtDest. Expo-

nential distributions tie together mean and variance, respectively 1
λ

and 1
λ2 ,

where λ is the exponential rate.

Stochastic analysis heavily depends on the rates. If the timing of obser-

vations are very close to the real world scenarios, the results of a stochastic

analysis can be realistic too. If rates are inaccurate, so will be the stochastic

analysis.

86

8.3 CTMCs Generated from LTSs

We transform LTSs annotated with rates into CTMCs and further translate

them into either PEPA or PRISM. We have translated the TIS Interface

LTS of Fig 8.1 into CTMC and then into PEPA. Process variables such as

P0 correspond to a state s0 in the labelled transition system. An equation

like P0 = (”accident(2)”,accident).P1 means that there exists a transition

with rate accident = 1 from P0 to P1, labelled accident(2).

// PEPA model

accident = 1; //parameter

removeAccident = 8; //parameter

P0 =

("accident(2)",accident).P1+

("accident(1)",accident).P2;

P1 =

("accident(1)",accident).P3+

("removeAccident(2)",removeAccident).P0;

P3 =

("removeAccident(1)",removeAccident).P1+

("removeAccident(2)",removeAccident).P2;

P2 =

("accident(2)",accident).P3+

("removeAccident(1)",removeAccident).P0;

P0

// End PEPA model

87

8.4 Summary

In this chapter we have defined Continuous Time Markov Chains (CTMCs)

and have shown how we generate a CTMC from the LTS of a GROOVE

model and rates.

88

Chapter 9

Tool Support

In this chapter we will discuss tool support to transform LTSs generated from

graph transformation systems in GROOVE into CTMCs. These CTMCs are

further translated into PEPA or PRISM models. Tool support for automated

generation of local views from a global graph transformation system is also

given.

9.1 Transforming GROOVE Models into

CTMCs

CTMCs are presented in different ways by different tools. We consider PEPA

and PRISM as targets.

89

9.1.1 PEPA

Our tool generates PEPA sequential components from graph transforma-

tion systems in GROOVE. These individual components are synchronised in

PEPA by the cooperation operator.

In PEPA we can analyze non-functional properties of a model, such as

the steady-state of a system, which gives the long term probability of each

state, and the throughput, which gives the long term frequency of its actions.

Passage time analysis can be carried out to explore within which time frame

a request will be satisfied.

Figure 9.1: The architecture of PEPA model generation

Figure 9.2: Input files needed for a CTMC generation

We generate an LTS from a graph transformation system in GROOVE.

90

We then transform this LTS into a CTMC by assigning each rule label a rate

through our CTMC Generator tool. The CTMC is further translated into a

PEPA model. Fig. 9.2 shows the interface of the CTMC Generator tool. The

first file is the LTS of the TIS global model and the second is its rates file.

The output file is TISGlobalModel.pepa. Its input files are shown below.

******* An extract of TISGlobalModel.gxl ******

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd">

<graph edgemode="directed" edgeids="false" role="graph" id="TIS-

GlobalModel">

<attr name="$version$">

<string>curly</string>

</attr>

<node id="n2396"/>

<node id="n1471"/>

<node id="n1174"/>

<node id="n2091"/>

...

<edge to="n317" from="n213">

<attr name="label">

<string>accident(1)</string>

</attr>

</edge>

91

<edge to="n1500" from="n1316">

<attr name="label">

<string>getAccidentInfo(1)</string>

</attr>

</edge>

<edge to="n392" from="n630">

<attr name="label">

<string>assign(1)</string>

</attr>

</edge>

...

</graph>

</gxl>

******* TISGlobalModelRates.txt ******

accident = 1

arriveAtDest = 17280

assign = 1440

detour = 17280

getAccidentInfo = 1440

moveCar = 288

moveTowTruck = 144

moveBackTowTruck = 144

rejoin = 17280

92

removeAccident = 8

sendAccidentInfo = 72

Above is the algorithm for generating a PEPA model from an LTS of

GROOVE and rates. In the algorithm, in lines 3 to 6 rule labels/actions are

assigned rates. At lines 8 to 25 each process is assigned certain activities.

When these activities are performed a process transforms to the resulting

processes. An extract of the PEPA model (TISGlobalModel.pepa) is given

below. Process variables such as N563261 correspond to states in the labelled

transition system LTS(G, G0). An equation like N563261 = (”removeAcci-

dent(1)”, removeAccident).N563269 means that there exists a transition with

rate removeAccident = 8 from N563261 to N563269, labelled removeAcci-

dent(1).

// Rates

accident = 1; arriveAtDest = 17280;

detour = 17280; getAccidentInfo = 1440;

moveCar = 288; rejoin = 17280;

removeAccident = 8; sendAccidentInfo = 72;

...

//Processes

N563261 =

("removeAccident(1)", removeAccident).N563269+

("removeAccident(2)", removeAccident).N563396+

("getAccidentInfo(1)", getAccidentInfo).N563357;

93

Algorithm 1 Generating a PEPA model from an LTS and rates

1: Input: states[], transitions[][], rules[]with rates

2: //Parameters
3: for (a=0 to number of rules) do
4: rate = getRate(rules[a])
5: print rules[a] = rate
6: end for

7: //Processes
8: for (i=0 to number of states) do
9: print states[i]

10: firstIteration = true

11: for (j=0 to number of transitions) do
12: transSourceState = transitions[j][0]
13: transition = transitions[j][1]
14: transTargetState = transitions[j][2]

15: if ((states[i]==transSourceState) & isValidTransi-
tion(transition)) then

16: if (firstIteration) then
17: firstIteration = false
18: else
19: print +
20: end if
21: rate = getRate(transition)
22: print transition, rate and transTargetState
23: end if
24: end for
25: end for

N563262 =

("removeAccident(1)", removeAccident).N563416+

("removeAccident(2)", removeAccident).N563424;

...

In the PEPA Editor we open and edit PEPA model files. PEPA model

files have the .pepa extension in the workbench. Once a model is loaded, it

is automatically parsed and we can derive its state space. Fig. 9.3 shows a

94

tabular representation of the derived state space in the State Space View with

steady-state probability distribution of the TISSynchronized model. The first

column shows the state number and 2nd, 3rd and 4th columns are showing

state space of synchronised components (views) Recovery View, Car View

and Service View respectively, and 5th column is showing the steady-state

probability distribution. In addition, throughput and utilisation are carried

out automatically and results are in the Performance Evaluation View.

Figure 9.3: Steady-state of TIS synchronized model

The Performance Evaluation View shows information about throughput

and utilisation. Throughput gives the actual long-term frequencies at which

transitions are executed and utilization gives the long term probability dis-

tribution of individual states of components. Fig. 9.4 shows throughput of

TISSynchronized model.

95

Figure 9.4: Throughput analysis of TIS synchronized model

9.1.2 PRISM

The PRISM [31, 32] tool is a probabilistic model checker, which is used

for modelling and analysis of systems which exhibit probabilistic behaviour.

The PRISM is a state-based language. We construct PRISM models by trans-

forming GROOVE LTSs into CTMCs and then further translating them into

PRISM models. Below is the algorithm for generating a PRISM model from

a GROOVE LTS and rates. In the algorithm in lines 3 to 6 constants are

assigned rates. In line 19 each state is assigned a transition and in square

bracket there is a transition/action label.

We have transformed GROOVE models into PRISM, because PEPA does

not support larger models. The TIS global model with two cars, having 2400

states and 7904 transitions, could not be loaded by PEPA, but we can con-

96

Algorithm 2 Generating a PRISM model from an LTS and rates

1: Input: states[], transitions[][], rules[]with rates

2: //Constants
3: for (a=0 to number of rules) do
4: rate = getRate(rules[a])
5: print rules[a] = rate
6: end for

7: //Module
8: initialNode = getInitialNode(transitions)
9: print module moduleName

10: state = ’anyVariale’
11: print state: [0.. number of states -1] init initialNode
12: for (i=0 to number of states) do

13: for (j=0 to number of transitions) do
14: transSourceState = transitions[j][0]
15: transition = transitions[j][1]
16: transTargetState = transitions[j][2]

17: if ((states[i]==transSourceState) & isValidTransi-
tion(transition)) then

18: rate = getRate(transition)
19: print [transition] (state = transSourceState) -〉 rate * 1 : (state’

= transTargetState)
20: end if
21: end for
22: end for

struct the same model from its local views namely Car View, Service View

and Recovery View.

Fig. 9.2 shows the interface of the CTMC Generator which takes two files

as input and produces the CTMC of a model. The CTMC is further translated

into two PRISM files. One is a system model (TISGlobalModel.sm) and the

other is continuous stochastic logic (CSL) file (TISGlobalModel.csl) which is

a set of formulas and sets of states. The CSL file is used to express and verify

properties like the probability of arriving at destinations and the time frame

97

Figure 9.5: The architecture of PRISM model generation.

within which an accident will be removed, etc. When defining properties of

a model, one of the most fundamental tasks is to identify particular sets of

states of the model. For example, to verify a property such as “the car arrives

at its destination with probability 1”, it is first necessary to identify the states

of the model which correspond to a situation where “the car arrives at its

destination”. Action labels identify particular sets of states of the system.

Followings are the PRISM files of the TIS model.

******* An extract of TISGlobalModel.sm ******

stochastic

const double accident = 1;

const double arriveAtDest = 17280;

const double assign = 1440;

const double detour = 17280;

...

98

module K

s : [0..215] init 0;

[accident_1] (s=0) -> accident * 1 :(s’=3);

[accident_3] (s=0) -> accident * 1 :(s’=1);

[moveCar_2] (s=0) -> moveCar * 1 :(s’=5);

[moveCar_1] (s=0) -> moveCar * 1 :(s’=6);

[moveCar_3] (s=0) -> moveCar * 1 :(s’=4);

[accident_2] (s=0) -> accident * 1 :(s’=2);

[accident_2] (s=1) -> accident * 1 :(s’=7);

[moveCar_2] (s=1) -> moveCar * 1 :(s’=9);

[accident_1] (s=1) -> accident * 1 :(s’=8);

[removeAccident_3] (s=1) -> removeAccident * 1 :(s’=0);

[moveCar_1] (s=1) -> moveCar * 1 :(s’=10);

[removeAccident_2] (s=2) -> removeAccident * 1 :(s’=0);

...

endmodule

The statement in the above PRISM model “[accident 1] (s=0) − > acci-

dent * 1 :(s’=3)” shows that there is a transition from (s = 0) to (s′ = 3) with

rate 1 which is the value of accident rule label. In square bracket [accident 1]

it shows the action label for the transition.

******* An extract of TISGlobalModel.csl *******

99

const double k;

label "accident_1" = (s= 170| s= 433| s= 186| s= 199| s= 105| ...);

label "accident_1" = (s= 212| s= 468| s= 238| s= 252| s= 147| ...);

label "moveCar_1" = (s= 495| s= 228| s= 474| s= 339| s= 91| ...);

label "moveCar_1" = (s= 420| s= 286| s= 394| s= 229| s= 120| ...);

label "removeAccident_1" = (s= 302| s= 67| s= 345| s= 107| ...);

label "removeAccident_1" = (s= 357| s= 102| s= 390| s= 144| ...);

...

P=? [F<=k "removeAccident_1"]

P=? [F<=k "arriveAtDest_1"]

The statement in the above CSL file label “accident 1” = (s= 170| s=

433| s= 186|s= 199| s= 105| . . .) identifies a set of states of the model which

correspond to situation where “accident 1” is an action label of a transition.

The statement P=? [F<= k “arriveAtDest 1”] is a formula for analysing

a transient property of a system. It asks what is the probability of a car

arriving at its destination, where k will have a range of values. We change

k by small steps from 0 to a sufficiently large number, here in our case k

represents a unit of times per day.

Fig. 9.6 shows a snapshot of a PRISM system file (TISGlobalModel.sm).

When we compile it we get 2400 states and 7904 transitions. Fig. 9.7 shows

the PRISM CSL file (TISGlobalModel.csl) which depicts a transient proper-

ity of arriveAtDest rule.

100

Figure 9.6: PRISM system file (TISGlobalModel.sm) is loaded in editor

Figure 9.7: PRISM CSL file (TISGlobalModel.csl) is loaded in properties
view

101

9.2 A Tool for Generation of Local Views

The View Generator tool requires a global graph transformation system of

GROOVE and the type graph of a view. It performs the projection of global

graphs to the view’s local type graph. It reduces start graphs and rules to the

remaining types, removing all instances of types that are no longer present in

the views’ type graphs. Following is the algorithm of View Generator tool. In

lines 2 to 4 the loop calls modularize function for each instance of the global

model that includes all rules and start graphs. The function parameters are

an instance graph of a global model and a local type graph of a view. The

modularize function given at line 5 identifies nodes and edges that should be

subtracted from the global model, then it deletes all nodes and edges whose

types could not survive in the projection.

Algorithm 3 View Generator Algorithm

1: Input: globalInstanceGraphs[] includes rules and start graphs, view-

TypeGraph

2: for (a=0 to number of globalInstanceGraphs) do

3: modularize(globalInstanceGraphs[a],viewTypeGraph)

4: end for

5: function modularize(instanceGraph,viewTypeGraph)

6: instanceGraphNodes = getNodes(instanceGraph)

7: instanceGraphEdges = getEdges(instanceGraph)

8: viewTypeGraphEdges = getEdges(viewTypeGraph)

9: for (i=0 to number of instanceGraphEdges) do

10: isViewEdge = false

102

Algorithm 4 View Generator Algorithm

11: isViewNode = false

12: edgeSourceNode = instanceGraphEdges[j][0]

13: instanceEdge = instanceGraphEdges[j][1]

14: edgeTargetNode = instanceGraphEdges[j][2]

15: if (instanceEdge == nodeType) then

16: for (j=0 to number of viewTypeGraphEdges) do

17: viewEdge = viewTypeGraphEdges[j][1]

18: if (instanceEdge == viewEdge) then

19: isViewNode = true

20: break

21: end if

22: end for

23: if (!isViewNode) then

24: deleteNodes.add(edgeSourceNode)

25: end if

26: else if (instanceEdge == dataType) then

27: AttributeNodes.add(edgeSourceNode)

28: else if (instanceEdge == NACNode) then

29: NACNodes.add(edgeSourceNode)

30: else if (isValidEdge(instanceEdge)) then

31: for (j=0 to number of viewTypeGraphEdges) do

32: viewEdge = viewTypeGraphEdges[j][1]

33: if (instanceEdge == viewEdge) then

34: isViewEdge = true

103

Algorithm 5 View Generator Algorithm

35: break

36: end if

37: end for

38: if (!isViewEdge) then

39: deleteEdges.add(instanceEdge)

40: end if

41: end if

42: end for

43: deleteNodes(deleteNodes, AttributeNodes, NACNodes)

44: deleteEdges(deleteEdges)

45: end function

Figure 9.8: The View Generator tool takes a global model as an input.

Fig. 9.8 shows the interface of the View Generator tool. It takes a global

GTS as input. In global GTS we reduce the global type graph to the view’s

local type graph, so it is used as another input for the tool. View Generator

projects global GTS to the local view based on the view’s type graph. In our

case it reduce the TIS global model to Car view, Service view and Recovery

view as discussed in Chapter 6. It does this by transforming GROOVE’s XML

representation of rules and start graphs by deleting all nodes and edges whose

types do not survive in the projection. It also takes care of dangling edges

104

(a) Type graph of Ser-
vice View

(b) accident(car) rule of the TIS model

(c) Service View rule accident(car) af-
ter projection

Figure 9.9: Service view projections of accident(car)

and dangling nodes, by deleting all incident edges of deleted nodes and by

deleting all NACs and attribute nodes of the deleted nodes.

Fig. 9.9(c) shows the projection of the TIS model’s rule accident(car)

given in Fig. 9.9(b) to Service View model. As the Service View type graph

given in Fig. 9.9(a) does not have road node type, so the View Generator

tool deletes road node instances and all thier incident edges.

105

9.3 Summary

In this chapter we have discussed our tool support for CTMC generation

and the tool that automatically generates views from a global graph trans-

formation system based on their local type graphs. The CTMC Generator

transforms GROOVE LTSs into CTMCs. These CTMCs are further trans-

lated into PEPA or PRISM models for synchronization and stochastic analy-

sis. The View Generator transforms the global graph transformation system

given as a GROOVE model by projecting GROOVE’s XML representation

of rules and graphs into projected rules and graphs of the view based on its

type graph.

106

Chapter 10

Evaluation

In this chapter we discuss limitations and achievements of our approach, ad-

vantages and shortcomings of modelling through graph transformation and

performance analysis. We also suggest that views should be as small as pos-

sible, because this will reduce the size of the state space.

10.1 Global vs Synchronized Model

The results of analysing the model obtained by synchronising the projections

coincide with those of analysing the global model. What is more interesting

is the reduction in the state spaces produced. To witness, Table 10.1 shows

the size of the global and local views as generated by GROOVE and the syn-

chronized models composed in PRISM and PEPA. The synchronized model

is composed in PEPA for two cars, while in PRISM for two and three Cars.

GROOVE is out of memory for three cars in the case of the global model

and in the case of local views it is out of memory for five cars.

107

Table 10.1: Global vs synchronized model

Cars
GROOVE PRISM PEPA

Global model Car view Service view Recovery view Synchronized model Synchronized model
states trans. states trans. states trans. states trans. states trans. states trans.

2 2400 7904 84 248 16 48 512 1524 2400 7904 2400 7904
3 out of memory 936 4062 216 1188 6600 25434 401436 1956078 out of memory
4 9984 56652 10000 92000 79793 373162 out of memory
5 out of memory

Table 10.2: Global model vs local views state and transition ratio

Cars
Global model Car view Service view Recovery view States Ratio States + Trans. Ratio

states trans. states trans. states trans. states trans. (CV+SV+RV)/G (CV+SV+RV)/G
2 2400 7904 84 248 16 48 512 1524 0.255 0.236
3 401436 1956078 936 4062 216 1188 6600 25434 0.01931 0.01630

108

It turns out that, in this case, we are unable to generate the LTS from

the global system directly, but through modularity and by synchronization of

local views over shared labels, we can compose a global system with 401436

states and 1956078 transitions.

10.2 Decomposition of Views

As we are decomposing a system on the basis of local type graphs, while

decomposing a system into views we should take care that they have as

small type graphs as possible. Projections over smaller type graphs result in

smaller subsets of rules. Therefore, the generated state spaces would also be

smaller. If some views are very small and some are very large, then their state

spaces are unbalanced, resulting in a large overall state space. Therefore, we

suggest that there should be some balance between views. In Table 10.2 we

give the ratio of global models compared to local views. As for three Cars we

can compose a global model from its local views, we also give it in the table.

Table 10.2 shows that there is a four times reduction in the state space and

number of transitions for two Cars and more than a 98% reduction in the

state space and number of transitions for three Cars.

10.3 Performance Analysis

Based on the PEPA process we can extract performance measures such as

the steady-state solution providing long-term probabilities for all states and

the transition throughput giving the actual long-term frequencies at which

109

transitions are executed. Table 10.3 shows rule labels and their rates. We

use a unit of times per day , e.g., accident = 1 and removeAccident = 8

mean that an Accident can occur once a day and it is removed in 3 hours

respectively. Fig 10.4 shows steady-state solution for the TIS Interface given

in Fig 8.1. It shows that for 79% of the time, the system will be in state

P0, for nearly 20% in states P1 or P2 and for nearly 1% in state P3. That

means, for most of the time there is no accident, while the probability that

one car is involved in an accident at any time is 20% and the probability that

two cars are involved at the same time is 1%.

Another interesting property to be analysed in our model is the through-

put of rules, showing the long-term frequency of actions. Fig. 10.5 shows

the througphput of our model. The throughput of rule arriveAtDest(car)

shows the long-term frequency at which Cars finish their journey. They are

replaced by Cars at the start of their trip in order to yield a non-reducible

(i.e., strongly connected) CTMC. It shows that a Car finishes its journey in

about 11 minutes. The throughput is therefore a measure of the long-term

average time between these arrival transitions. The results reported in Table

10.6 also show the throughput of the arriveAtDest and detour rules. When

we increase the rate of the removeAccident rule from 8 to 24, then a Car’s

arrival at destination is sped up by 6.1% and its detour possibility is reduced

by 53.8%. This gives an indication of the potential pay-off in investing in

more tow trucks to remove accidents.

110

Table 10.3: Rule labels and their rates

Rule Labels Rates
accident 1
arriveAtDest 17280
assign 1440
detour 17280
getAccidentInfo 1440
moveCar 288
moveTowTruck 144
moveBackTowTruck 144
rejoin 17280
removeAccident 8
sendAccidentInfo 72

Table 10.4: Steady-state of the TIS Interface

States Steady-state
P0 0.790123457
P1 0.098765432
P2 0.098765432
P3 0.012345679

111

Table 10.5: Rule labels and their throughput

Action type Throughput
accident(1) 0.874260487
accident(2) 0.874260487
arriveAtDest(1) 131.1622293
arriveAtDest(2) 131.1622293
assign(1) 0.874260487
assign(2) 0.874260487
detour(1) 13.43105839
detour(2) 13.43105839
getAccidentInfo(1) 0.873101931
getAccidentInfo(2) 0.873101931
moveBackTowTruck() 0.843486439
moveCar(1) 248.8934003
moveCar(2) 248.8934003
moveTowTruck(1) 0.42174322
moveTowTruck(2) 0.42174322
rejoin(1) 13.43105839
rejoin(2) 13.43105839
removeAccident(1) 0.874260487
removeAccident(2) 0.874260487
sendAccidentInfo(1) 0.809099415
sendAccidentInfo(2) 0.809099415

Table 10.6: The performance of arriveAtDest and detour rules are shown,
when the rate of removeAccident is increased from 8 to 24

Action type
removeAccident removeAccident

Percentage
(Rate = 8) (Rate = 24)

arriveAtDest 131.1622293 139.2083196 6.134457
detour 13.43105839 6.203623247 -53.8114

112

10.4 Summary

In this chapter we have discussed the limitations of GROOVE, PEPA and

PRISM tools and have given the comparative analysis of local views and

global models in terms of states and transitions. We have shown how modu-

larity reduces the size of the state space, mitigating the scalability problem.

We have also given performance analysis of our models.

113

Chapter 11

Conclusion

This chapter presents a summary of our contributions and their evaluation

in terms of our thesis statement. We also discuss possible future work.

11.1 Summary of Contributions

We have used graph transformation as a language for developing abstract

models of systems of dynamic nature. Using the Traffic Information System

(TIS) as our case study, we have modelled it by incorporating physical mo-

bility and the interaction and communication with other components of the

business domain, introducing modularity to avoid state space explosion. In

addition, we have given tool support for performance analysis, where LTSs

generated from graph transformation systems are transformed into CTMCs

by our CTMC Generator tool. These CTMCs are further translated into

PEPA or PRISM to analyze performance properties. Tool support for auto-

mated generation of local views from a global graph transformation system

114

is also given.

We have distinguished three approches monothic, top-down and bottom-

up, to system modelling. In the monolithic approach, the system is modelled

globally. Graph transformation does not allow to model a system as composi-

tion of subsystems, which is a major bottleneck for modelling large systems.

In the top-down approach a global graph transformation system is decom-

posed into its subsystems (views) based on their local type graphs by our

View Generator tool, while in the bottom-up approch the system is modelled

as a composition of subsystems having a shared interface. We knit these sub-

systems (views) together in either PEPA or PRISM and synchronize them

over shared labels. Through synchronization of subsystems we get a resulting

system which is bisimilar to the original global system. We have also given

the formalization of the composition and decomposition of systems.

11.2 Evaluation

In our thesis statement, we identified challenges of modelling mobility, state

space explosion, and performance analysis. We have given the solution of

these problems in our thesis and review them here briefly.

Modelling Mobility We have used graph transformation as a language for

developing abstract models of systems of dynamic nature. We have modelled

the TIS, which incorporates physical mobility, interaction and communica-

tion with other components of a business domain, through graph transfor-

mation.

115

State Space Explosion We have introduced top-down and bottom-up

modularity to mitigate state space explosion, which usually occurs while

modelling complex/large systems. In the top-down approach, our View Gen-

erator tool decomposes a global model into subsystems (views). In the

bottom-up approach, we structure our models into different views sharing

a common interface.

Synchronization over Shared Labels Subsystems/views are synchro-

nized over shared labels in PEPA and PRISM in order to compose a global

system. In our model we have accident(Car) and removeAccident(Car) as

shared labels. Attributes that are used as parameters (just Car in our case)

are preserved in the projection. This ensures that the actual parameters in

labels are preserved and are used consistently in local views, so that synchro-

nisation over shared labels leads to the correctly composed model in PEPA

and PRISM.

Projection of Rules extended to NACs In the top-down approach,

projection of rules is extended to NACs. When a rule is decomposed into

subrules, so are the NACs. In the composition of a rule from its subrules we

get a global rule and its NACs.

Performance Analysis We derive CTMCs from GROOVE LTSs by our

CTMC Generator tool for stochastic analysis of graph transformation sys-

tems. These CTMCs are further translated into PEPA and PRISM which

provide a rich environment for performance checking and properties analy-

sis.

116

Formalization We have formalised notions of views for typed attributed

graph transformation systems for decomposition and composition of systems.

We have explained the conditions for correctness, i.e., the equivalence of the

resulting synchronized LTS with the one derived directly from a monolithic

system.

11.3 Future Work

In modularity approaches, what other conditions could be satisfied for com-

posing more complex systems, e.g., dependencies and conflicts between views.

We envisage language support for the bottom up approach to composing

systems from views and investigate how the modularity achieved can be ex-

tended to the stochastic aspect. Another concern is the limitation of the

present theory to the DPO approach, while GROOVE supports the more

general SPO-like behaviour. This requires an encoding of rules that delete

nodes with an unbounded number of incident edges, typically leading to ad-

ditional states and transitions.

117

Bibliography

[1] W. G. Anderson. Continuous-Time Markov Chains. Springer, 1991.

[2] N. Arijo and R. Heckel. View-based Modelling and State-Space Gen-

eration for Graph Transformation Systems. In GT-VMT’12, 11th In-

ternational Workshop on Graph Transformation and Visual Modeling

Techniques, March 24-25, 2012, in Tallin, Estonia .

[3] N. Arijo, R. Heckel, M. Tribastone, and S. Gilmore. Modular Perfor-

mance Modelling for Mobile Applications. In Samuel Kounev, Vittorio

Cortellessa, Raffaela Mirandola, and David J. Lilja, editors, ICPE’11 -

Second Joint WOSP/SIPEW International Conference on Performance

Engineering, Karlsruhe, Germany, March 14-16, 2011. ACM, 2011.

[4] C. Baier, B.R.H.M. Haverkort, H. Hermanns, and J.P. Katoen. Model

checking continuous-time markov chains by transient analysis. In E.A.

Emerson and A.P. Sistla, editors, Computer Aided Verification, 12th

International Conference, CAV 2000, volume 1855 of Lecture Notes in

Computer Science, pages 358–372, Berlin, 2000. Springer Verlag.

[5] P. Baldan, H. Ehrig, and B. König. Composition and Decomposition

of DPO Transformations with Borrowed Context. In Andrea Corradini,

118

Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg,

editors, Graph Transformations, volume 4178 of Lecture Notes in Com-

puter Science, pages 153–167. Springer Berlin / Heidelberg, 2006.

[6] D. Berndl and N. Koch. Automotive scenario: Illustrating service spec-

ification, 016004. Technical report, Sensoria, August 31, 2007.

[7] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti,

E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri. The KLAIM Project:

Theory and Practice. In C. Priami, editor, Global Computing: Pro-

gramming Environments, Languages, Security and Analysis of Systems,

number 2874 in LNCS, pages 88–150. Springer, 2003.

[8] E. Brinksma and H. Hermanns. Process algebra and markov chains.

In Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors,

Lectures on Formal Methods and Performance Analysis, volume 2090 of

Lecture Notes in Computer Science, pages 183–231. Springer Berlin /

Heidelberg, 2001.

[9] R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: A kernel language

for agents interaction and mobility. IEEE Transactions on Software

Engineering, 24(5):315, 1998.

[10] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink.

MoSL: A Stochastic Logic for StoKlaim. Technical Report ISTI-06-35,

2006.

119

[11] R. De Nicola, J.-P. Katoen, D. Latella, and M. Massink. STOKLAIM:

A Stochastic Extension of KLAIM. Technical Report 2006-TR-01, ISTI,

2006.

[12] R. De Nicola, J.P. Katoen, D. Latella, M. Loreti, and M. Massink.

Model checking mobile stochastic logic. Theoretical Computer Science,

382(1):42–70, 2007.

[13] F. Drewes, P. Knirsch, H.-J. Kreowski, and S. Kuske. Graph transfor-

mation modules and their composition. In Proc. of the International

Workshop on Applications of Graph Transformations with Industrial

Relevance, AGTIVE ’99, pages 15–30, London, UK, UK, 2000. Springer-

Verlag.

[14] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-

braic Graph Transformation (Monographs in Theoretical Computer Sci-

ence. An EATCS Series). Springer, 2006.

[15] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of

Graph Grammars and Computing by Graph Transformation, Volume 2:

Applications, Languages and Tools. World Scientific, 1999.

[16] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and

A. Corradini. Algebraic approaches to graph transformation, Part II:

Single pushout approach and comparison with double pushout approach.

In G. Rozenberg, editor, Handbook of Graph Grammars and Comput-

ing by Graph Transformation, Volume 1: Foundations, pages 247–312.

World Scientific, 1997.

120

[17] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A combined reference

model- and view-based approach to system specification. Int. Journal

of Software and Knowledge Engeneering, 7(4):457–477, 1997.

[18] S. Gilmore, J. Hillston, M. Ribaudo, and L. Kloul. PEPA nets: A

structured performance modelling formalism. Performance Evaluation,

54(2):79–104, October 2003.

[19] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with nega-

tive application conditions. Fundamenta Informaticae, 26(3-4):287–313,

1996.

[20] R. Heckel. Compositional verification of reactive systems specified by

graph transformation. In Proc. Fundamental Approaches to Software

Engineering (FASE’98), Lisbon, Portugal, volume 1382 of LNCS, pages

138–153. Springer Verlag, 1998.

[21] R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. Handbook of graph

grammars and computing by graph transformation. chapter A view-

based approach to system modeling based on open graph transforma-

tion systems, pages 639–668. World Scientific Publishing Co., Inc., River

Edge, NJ, USA, 1999.

[22] R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. A view-based approach

to system modeling based on open graph transformation systems, pages

639–668. World Scientific Publishing Co., Inc., River Edge, NJ, USA,

1999.

121

[23] R. Heckel, G. Lajios, and S. Menge. Modulare Analyse Stochastis-

cher Graphtransformationssysteme. In P. Liggesmeyer, K. Pohl, and

M. Goedicke, editors, Proc. Software Engineering 2005, volume 64 of

Lecture Notes in Informatics, pages 141–152. GI, March 2005.

[24] R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation

systems. Fundamenta Informaticae, 74, 2006.

[25] J. Hillston. Process algebras for quantitative analysis. In Proceedings of

the 20th Annual IEEE Symposium on Logic in Computer Science (LICS’

05), pages 239–248, Chicago, June 2005. IEEE Computer Society Press.

[26] J. Hillston. Tuning systems: From composition to performance. The

Computer Journal, 48(4):385–400, May 2005. The Needham Lecture

paper.

[27] M. A. Hoff, K. G. Roggia, and P. B. Menezes. Composition of transfor-

mations: A framework for systems with dynamic topology. International

Journal of Computing Anticipatory Systems, 14:259–270, 2004.

[28] N. Koch and D. Berndl. D8.2a: Requirements modelling and analysis

of selected scenarios automotive case study, 016004. Technical report,

Sensoria, August 31, 2007.

[29] H.-J. Kreowski and S. Kuske. Handbook of graph grammars and com-

puting by graph transformation. chapter Graph transformation units

and modules, pages 607–638. World Scientific Publishing Co., Inc., River

Edge, NJ, USA, 1999.

122

[30] H.-J Kreowski, S. Kuske, and G. Rozenberg. Concurrency, graphs and

models. chapter Graph Transformation Units — An Overview, pages

57–75. Springer-Verlag, Berlin, Heidelberg, 2008.

[31] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model check-

ing in practice: Case studies with PRISM. ACM SIGMETRICS Perfor-

mance Evaluation Review, 32(4):16–21, 2005.

[32] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic

model checking for performance and reliability analysis. ACM SIG-

METRICS Performance Evaluation Review, 36(4):40–45, 2009.

[33] S. Lack and P. Sobocinski. Adhesive categories. In Igor Walukiewicz, ed-

itor, Foundations of Software Science and Computation Structures, vol-

ume 2987 of Lecture Notes in Computer Science, pages 273–288. Springer

Berlin / Heidelberg, 2004.

[34] M. Löwe, M. Korff, and A. Wagner. An algebraic framework for the

transformation of attributed graphs. In M. Sleep, M. Plasmeijer, and

M. van Eekelen, editors, Term Graph Rewriting: Theory and Practice,

pages 185–199. Wiley, 1993.

[35] J. R. Norris. Markov Chains. University of Cambridge, 1997.

[36] B. Plateau and J.M. Fourneau. A methodology for solving Markov mod-

els of parallel systems. Journal of parallel and distributed computing,

12(4):370–387, 1991.

123

[37] A. Rensink. Towards model checking graph grammars. In M. Leuschel,

S. Gruner, and L. Lo Presti, editors, Proc. 3rd Workshop on Automated

Verification of Critical Systems, Tech. Report DSSE-TR-2003-2, pages

150–160. University of Southhampton, 2003.

[38] A. Rensink. The GROOVE simulator: A tool for state space genera-

tion. In J.L. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of

Graph Transformations with Industrial Relevance (AGTIVE), volume

3062 of Lecture Notes in Computer Science, pages 479–485, Berlin, 2004.

Springer Verlag.

[39] A. Rensink. Compositionality in graph transformation. In S. Abramsky,

C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis,

editors, Automata, Languages and Programming (ICALP), Bordeaux,

France, volume 6199 of Lecture Notes in Computer Science, pages 309–

320, Berlin, July 2010. Springer Verlag.

[40] A. Rensink. Compositionality in Graph Transformation. In Samson

Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der

Heide, and Paul Spirakis, editors, Automata, Languages and Program-

ming, volume 6199 of Lecture Notes in Computer Science, pages 309–320.

Springer Berlin / Heidelberg, 2010.

[41] A. Rensink. A first study of compositionality in graph transformation.

Technical Report TR-CTIT-10-08, Centre for Telematics and Informa-

tion Technology University of Twente, Enschede, February 2010.

124

[42] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA Eclipse Plug-in.

Performance Evaluation Review, 36(4):28–33, March 2009.

[43] M. Wirsing, M. Hölzl, L. Acciai, F. Banti, A. Clark, A. Fantechi,

S. Gilmore, S. Gnesi, L. Gönczy, N. Koch, A. Lapadula, P. Mayer,

F. Mazzanti, R. Pugliese, A. Schroeder, F. Tiezzi, M. Tribastone, and

D. Varró. Sensoria patterns: Augmenting service engineering with formal

analysis, transformation and dynamicity. In Tiziana Margaria and Bern-

hard Steffen, editors, ISoLA, volume 17 of Communications in Computer

and Information Science, pages 170–190. Springer, 2008.

125

