
Computing the Structural Difference between State-Based Models

Kirill Bogdanov and Neil Walkinshaw
Department of Computer Science

The University of Sheffield
Sheffield, UK

{k.bogdanov,n.walkinshaw}@dcs.shef.ac.uk

Abstract—Software behaviour models play an important role
in software development. They can be manually generated
to specify the intended behaviour of a system, or they can
be reverse-engineered to capture the actual behaviour of the
system. Models may differ when they correspond to different
versions of the system, or they may contain faults or inac-
curacies. In these circumstances, it is important to be able
to concisely capture the differences between models – a task
that becomes increasingly challenging with complex models.
This paper presents the PLTSDiff algorithm that addresses
this problem. Given two state machines, the algorithm can
identify which states and transitions are different. This can be
used to generate a ‘patch’ with differences or to evaluate the
extent of the differences between the machines. The paper also
shows how the Precision and Recall measure can be adapted
to quantify the similarity of two state machines.

I. INTRODUCTION

Models of software behaviour are useful for a variety of
development tasks. Developers can use them as a basis for
communicating with each other, they can be inspected, or
used for specification-based testing or model checking. If
the model is complete and up-to-date, the aforementioned
techniques can be used in harmony to ensure that the
software ultimately behaves correctly.

The need to authoritatively compare two different models
arises in a number of areas in software engineering. For
example, the accuracy of reverse-engineering techniques
can be evaluated by examining differences between mod-
els they produce from the same system. In model-driven
development, a developer will inevitably end up with mul-
tiple models corresponding to different versions, alternative
specifications, or reverse-engineered implementations. Being
able to concisely characterise the differences between these
models is key to developing the system in such a way that
it is both correct and consistent.

Traditionally, model-comparison techniques have been
black-box approaches that compare the observable “lan-
guages” of two models, where the language is the set of all
possible (and impossible) sequences of events in a model
(c.f. previous work by the authors [1], [2]). Although this
sort of comparison presents useful insights into the external
behaviour of the model, it neglects its actual transition
structure. As a motivating example, a developer may look at
two models corresponding to different versions of a software

system, and try to understand what has changed. Comparing
them in terms of their languages will not fully answer this
question. What is required is a white-box approach that
manages to consisely capture which states and transitions
have been inserted or removed to transform one model into
the other.

This paper makes two contributions. It presents the PLTS-
Diff algorithm, which concisely captures the difference
between two models in terms of added / removed states and
transitions. It also shows how the output of the algorithm
can be used with the well established precision and recall
measure [3] to provide a more descriptive measure of
similarity between two models. The algorithm supports non-
deterministic models containing disconnected parts.

The rest of this paper is structured as follows. Section II
introduces the challenge of comparing finite state models,
and shows why existing techniques are insufficient. Sec-
tion III introduces the core of our technique - a mechanism
that computes the similarity of states in different machines,
based on their surrounding transition structure. Section IV
presents our comparison algorithm that is based on the state-
similarity scores, and also shows how the output of the
algorithm can be used to compute the precision and recall
measure. Section V presents a case study that demonstrates
the application of the algorithm by comparing the outputs
from two different state machine inference techniques. Fi-
nally, sections VI and VII discuss related work and outline
our future plans, respectively.

II. BACKGROUND

This section presents some preliminary definitions, and
then provides an overview of existing techniques that are
used to compare state-based models. These techniques are
primarily from the domain of finite state machine / regular
grammar inference, where they are used to establish the ac-
curacy of inferred models with respect to reference models.

A. Preliminary definitions

In this work, we assume that software behaviour is
modelled in terms of a Labelled Transition System. A broad
range of state-based formalisms can be interpreted as LTSs
(e.g. Abstract State Machines [4], Extended Finite-State
Machines [5]). Ultimately, an LTS represents the set of all

valid and invalid sequences of events or functions (which
are represented by labels).

Definition 2.1 (Labelled Transition System (LTS)): A
LTS [6] is a quadruple (Q,Σ,∆, q0), where Q is a finite
set of states, Σ is a finite alphabet, ∆ : Q × Σ → Q is a
partial function and q0 ∈ Q. This can be visualised as a
directed graph, where states are the nodes, and transitions
are the edges between them, labelled by their respective
alphabet elements.

State-based descriptions of software behaviour are usually
presumed to be complete; if a particular transition cannot
be followed in a model, it is assumed to be impossible. In
practice however, models are usually incomplete. Whether
designed by hand or reverse-engineered, it is rarely realistic
to assume that a model is complete in every respect. As
a result, the absence of a transition may be either due to
the fact that it would be impossible, or that it is simply not
known. To accomodate this possibility, the technique pre-
sented in this paper is defined with respect to an extension of
conventional LTS’s. We interpret the models to be compared
as Partial LTSs (PLTSs) [6] which allow one to explicitly
distinguish between model transitions that are known to be
invalid, and transitions that are simply not known to exist at
all.

Definition 2.2 (Partial LTS (PLTS)): A PLTS is a 5-tuple
(Q,Σ,∆, q0,Ψ). This is defined as a LTS, but it is assumed
to be only partial. Let the set of elements of an alphabet
used on outgoing transitions from a specific state s can be
denoted by Σs = {σ ∈ Σ|∃t ∈ Q.s σ→ t ∈ ∆}. To make the
distinction between unknown and invalid behaviour, function
Ψ : Q → 2Σ is introduced; it has to satisfy ∀q ∈ Q.Σq ∩
Ψq = ∅.

Definition 2.3 (Language of a PLTS): The sequence α ∈
Σ∗ belongs to the language of a PLTS if there is a path
from the initial state q0 to a state q. In symbols, q0

α→ q, for
q ∈ Q.

B. The Challenge of Structural Comparison of Finite-State
Models

When comparing or evaluating models of software be-
haviour, it is important to account for the structure of the
model, as well as its language. Ideally, there should be
a measure of structural overlap between two models, that
can be presented alongside the conventional language-based
similarity measures. One intuitive approach is to look at
the difference between two models in terms of the set of
states and transitions that are superfluous or missing. This
is reminiscent of Levenshtein’s edit-distance metric [7], but
instead of strings, we are comparing state machines.

Structurally comparing two non-trivial LTS’s is difficult.
The task essentially involves establishing which states and
transitions in both machines appear to be equivalent, and
then working out which states and transitions must have been
added or removed. An LTS is a simplification of the richer

Statechart-like notations that are often used in software en-
gineering. Data-related annotations are stripped away; states
are mere points in time that are used to specify a partial
order of events as specified by the state transition labels.
Accordingly, we cannot rely on state-annotations to compare
models. Any two transitions in the two machines that have
the same label could potentially be equivalent. Whether or
not this is actually the case can only be established by
pairing up the surrounding states and transitions – a process
that can become very expensive. The challenge lies in doing
so in an efficient manner.

III. MEASURING THE SIMILARITY OF STATES

The PLTSDiff algorithm (which is described in section
IV) depends on the ability to compute a score that measures
the similarity of states. This score is computed by matching
up the surrounding network of states and transitions. Com-
puting the overlap of the surrounding behaviour from two
states is a recursive process. It is first necessary to establish
the overlap of their immediate surrounding transitions (local
similarity), and then to consider the similarity of the target /
source states of these transitions (global similarity). Section
III-A describes how two states can be compared in terms of
the overlap of their adjacent transitions, section III-B then
gives a recursive extension accounting for similarity of their
adjacent states.

A. Scoring local similarity

In this subsection we describe the process of calculating
local similarity of two states for non-deterministic PLTS.
Essentially, the local similarity SAB of two states A and B
is computed by dividing the number of overlapping adjacent
transitions by the total number of adjacent transitions. Given
a set Γ, we denote the number of elements in Γ as |Γ|. Using
this notation, SAB = |(matchingAdjacentTransitions)|

|(AllAdjacentTransitions)| .
The similarity of two states can be computed either in

terms of their outgoing or incoming transitions. We start by
describing how to match states in terms of their outgoing
transitions; the analogous computation for incoming transi-
tions is very similar. Section III-B describes how to compute
the global similarity of all pairs of states will also show how
the two outgoing and incoming measures are combined to
form a single similarity score.

Assuming that the state machines are deterministic, the
score can simply be computed by SAB = |(ΣA∩ΣB)|

|(ΣA∪ΣB)| . If
there are no outgoing transitions from either of the two
states, the score is considered to be zero. Examples (A,B,C)
in Figure 1 all show examples for deterministic states. In
(A) the outgoing transitions are identical, which produces a
score of 1. In (B) there are no common outgoing transitions,
producing a score of 0. In (C) only one of the two outgoing
transitions from state B is matched, producing a score of
0.5.

The calculation that we actually use is a slightly expanded
version that accounts for non-determinism. As an example,

A

B a

b

a
a

(D)A

B

a

a(A) 1
1

(B)
A

B

a

b

S (A,B)=L
Succ

1
0

A

B

a

b

a

(C)
2
1

(2*2+1*1)+(1+1)
2*2+1*1

(E)

(2*1)+1
2*1

A

B
b

a
a

b

a
ac

d
S (A,B)=L
Succ

S (A,B)=L
Succ

S (A,B)=L
Succ

S (A,B)=L
Succ

Figure 1. Non-recursive score computation

in Figure 1(D) it is impossible to say whether the transition
B

a→ matches the upper or lower A
a→. In (E) there

are four possible ways in which the outgoing transitions
labelled a from states A and B can match each other.
To account for this we take the total number of pairs of
transitions that overlap and divide it by the total number of
outgoing transitions. Givel PLTS X and Y, for each label
σ ∈ (ΣX ∪ ΣY), the number of matching transitions from
states A ∈ QX , B ∈ QY is counted in terms of the number
of individual pairs of target states that can be reached by
matching transitions. This is defined as follows:

SuccA,B = {(a, b, σ) ∈ QX ×QY × (ΣX ∪ ΣY) | A σ→ a ∧ B σ→ b}

Given the definition for SuccA,B , we can determine the
similarity score. As mentioned previously, this is computed
by dividing the number of matching adjacent transitions
by the total number of adjacent transitions. For outgoing
transitions this is computed as follows (the L superscript
stands for “local”):

S
L
Succ(A,B) =

|SuccA,B |
|ΣA − ΣB |+ |ΣB − ΣA|+ |SuccA,B |

(1)

The equation above computes the set of all matching pairs
of target states and transition labels with respect to outgoing
transitions. However, state machines characterise a state both
in terms of its potential past behaviour (incoming transitions)
as well as its potential future behaviour (outgoing transi-
tions). Thus we also define the set of matching incoming
transitions in a similar manner:

PrevA,B = {(a, b, σ) ∈ QX ×QY × (ΣX ∪ ΣY) | a σ→ A ∧ b σ→ B}

For incoming transitions, the score PrevA,B is defined in
a similar way using Prev instead of Succ and {σ ∈ Σ|∃t ∈
Q.t

σ→ s ∈ ∆} instead of Σs .
A pair of states (A,B) may be considered incompatible.

This is the case if an outgoing transition A x→ is considered
valid but B x→ is invalid (or vice versa). With respect to
the PLTS, x ∈ (ΣA ∩ ΨB) ∪ (ΣB ∩ ΨA). If this is the
case, S(A,B) = −1. By assigning negative scores, we
are drawing a distinction between states that are merely
dissimilar (which can in the worst case obtain a score of 0),
and states that are definitely incompatible. It is important to
note that the inclusion of incompatibility information is not
crucial for the purposes of this work.

B. Scoring global similarity

The previous subsection shows how states are matched
in terms of their adjacent transitions. However, we account
for the similarity of pairs of states in terms of their wider
context. When comparing a pair of states, for every matching
pair of adjacent transitions we want the final similarity score
to incorporate the similarity of the source or target states of
these transitions as well. For two matched transitions, we
want to produce a higher score if the source / target states
of these transitions are almost equivalent, and a lower score
if they are dissimilar. We now describe an algorithm that
extends the local similarity scoring scheme to compare states
recursively, creating an aggregate score by accounting for
the similarity of the states that are connected to the adjacent
transitions.

We start with the local similarity scoring algorithm for
(potentially non-deterministic) states shown in the equa-
tion (1). The score is entirely dependent on the number of
matching transitions |SuccA,B | and |PrevA,B |. We extend
this to aggregate the similarity score for every successive
matched pair of transitions.

S
G1
Succ(A,B) =

1

2

∑
(a,b,σ)∈SuccA,B

(
1 + SG1

Succ(a, b)
)

|ΣA − ΣB |+ |ΣB − ΣA|+ |SuccA,B |

This equation augments the local similarity equation to
recursively account for the similarity of next states. This can
however lead to unintuitive scores because the score of every
successive pair of states is given an equal precedence. The
score can be skewed by high scores for state pairs that are
far away. To give precedence to state pairs that are closer to
the original pair of states, we introduce an attenuation ratio
k, which gives rise to equation (2):

S
G
Succ(A,B) =

1

2

∑
(a,b,σ)∈SuccA,B

(
1 + k SGSucc(a, b)

)
|ΣA − ΣB |+ |ΣB − ΣA|+ |SuccA,B |

(2)

The fraction in front ensures that |SGSucc(A,B)| ≤ 1. In a
similar way, we may define SGPrev(A,B) using Prev instead
of Succ.

Given two PLTS X and Y , it is possible to solve the
system of equations for every pair (A,B) ∈ QX ×QY . The
equation system is obtained by supplying the local knowl-
edge for every pair of states (i.e. SuccA,B and ΣA−ΣB), so
that the only unknown variables for each equation are the
scores of the succeeding (or preceding) pairs of states.

Figure 2 contains an example of two state machines, and
the matrix containing the system of equations that results
from their comparison. The first row can be obtained by
rearranging the scoring equation SGSucc(A,E) (equation (2)).
Here SuccA,E = {(B,F, a)} which means that |SuccA.E | =
1. |ΣA − ΣE | = 0, |ΣE − ΣA| = 1. So, put together, the
equation is S(A,E) = 1

2
1+kS(B,F)

0+1+1 . This can be rewritten
to: 4S(A,E) − kS(B,F) = 1, which provides us with the
encoding for the first row in the matrix. A solution to the
system of equations will produce a similarity score for every
pair of states. The described systems of equations are solved
separately for the forward direction and inverse, producing
a solution for SGSucc(A,B) and SGPrev(A,B) for every pair
of states. These are subsequently combined to form a score

E F

a

b

a

c

d

A B C
a

b a

c
(A)

(B)

AE AF BE BF CE CF
AE 4 -k 1
AF -k 6 -k 1
BE 6 -k -k 2
BF -k 8-k 2
CE 1 0
CF 1 0

Figure 2. Illustration of a system of equations for computation of scores
in the general case.

as shown in equation (3):

S(A,B) =

{
SGSucc(A,B)+SGPrev(A,B)

2 compatible
−1 incompatible

(3)

IV. THE PLTSDIFF ALGORITHM

Our PLTSDiff algorithm is inspired by the cognitive
process a human would be expected to adopt when com-
paring two state machines. It is usually possible to identify
‘landmarks’ [8] – certain pairs of states that can with confi-
dence be deemed to be equivalent. Once a set of landmarks
(referred to as key pairs) has been identified, it can be used
as a basis for further comparison of the remaining states and
transitions in the machines.

A. Identifying Key Pairs (Landmarks)

Section III shows how to compute the similarity of two
states. The pairs of states with the highest scores are chosen
to be key pairs, and are the starting point for the PLTSDiff
algorithm.

Having computed the scores with the system of linear
equations described in the previous section, we adopt a two-
stage approach to select pairs that are most likely to be
equivalent. First, we use a threshold parameter, and consider
only those pairs that fall above that parameter (e.g. consider
only the top 25%). However, a state may happen to be
similar to several other states; even if it is well matched to
them, it is unclear which of those states it should be paired
with. For this reason, the second criterion is introduced: a
ratio of the best match to the second best score. With such
a ratio, only pairs where the best match is at least twice as
good as any other match are added to the set of key pairs.

B. Computing the difference between machines

The process of comparing two graphs is similar to the
cognitive process a human might undertake when navigating
through an unfamiliar landscape with a map. A map reader
operates in terms of landmarks, by selecting an easily

identifiable point in the landscape and trying to find it in the
map, or vice-versa. The cognitive process of comparing two
graphs is similar – easily identifiable states (e.g. states with
a unique surrounding topology of states and transitions) are
used as landmarks, and the rest of the comparison is carried
out with respect to them.

Input: PLTSX , PLTSY , t, k
/* PLTSs are the two machines, t is

the threshold-ratio pair that is
used to identify key pairs, and k
is the attenuation value */

Data: KPairs, PairsToScores, NPairs
Result: (Added,Removed,Renamed)
/* two sets of transitions and a

relabelling */
PairsToScores← computeScores(PLTSX ,PLTSY , k);1

KPairs← identifyLandmarks(PairsToScores, t);2

if KPairs = ∅ and S(p0, q0) ≥ 0 then3

KPairs← (p0, q0);4

/* p0 is the initial state in
PLTSX, q0 is the initial state in
PLTSY */

end5

NPairs←
⋃

(A,B)∈KPairs Surr(A,B)− KPairs;6

while NPairs 6= ∅ do7

while NPairs 6= ∅ do8

(A,B)← pickHighest(NPairs,PairsToScores);9

KPairs← KPairs ∪ (A,B);10

NPairs← removeConflicts(NPairs, (A,B));11

end12

NPairs←
⋃

(A,B)∈KPairs Surr(A,B)− KPairs;13

end14

Added← {B1
σ→ B2 ∈ ∆Y | @

(
A1

σ→ A2 ∈ ∆X ∧15

(A1, B1) ∈ KPairs ∧ (A2, B2) ∈ KPairs
)
};

Removed← {A1
σ→ A2 ∈ ∆X | @

(
B1

σ→ B2 ∈ ∆Y ∧16

(A1, B1) ∈ KPairs ∧ (A2, B2) ∈ KPairs
)
};

Renamed← KPairs;17

return (Added, Removed,Renamed)18
Algorithm 1: PLTSDiff

The PLTSDiff algorithm imitates this process. Whereas a
human might merely rely on a couple of landmarks for the
sake of navigating from one point to another, our algorithm
wants to make a wholesale comparison between the two
machines. For this reason it wants to map every feature in
one machine to another, starting from landmarks and then
exploring the area around them. To do so, it starts off with
the most obvious pairs of equivalent nodes, and uses these
to compare the surrounding graph areas, until no further
pairs of features can be found. What is left is the difference
between the two machines. A set of key-pairs KPairs is a
set of matching features of landscape, initialised to pairs of

landmarks and iteratively extended. To simplify the process
of matching, we assume that KPairs is a one-to-one function;
this property is enforced by the construction of the initial
set of landmarks and subsequently preserved when this set
is extended.

The algorithm is shown in algorithm 1. The
functions computeScores(PLTSX ,PLTSY , k) and
identifyLandmarks(PairsToScores, t) were described in the
previous section; SurrA,B = {(a, b) ∈ QX × QY | ∃σ ∈
(ΣX∪ΣY).

(
(A

σ→ a∧B σ→ b)∨(a
σ→ A∧b σ→ B)

)
}. Having

started with landscapes, lines 6 and 13 compute candidate
landmarks in order to extend KPairs, by considering not
only transitions with the same label in the forward direction
but also in the inverse one (hence Surr(A,B) is used). The
loop in lines 8-11 uses candidates from NPairs to extend
KPairs (this corresponds to a navigator looking around
known features so as to match new ones). The set of pairs
NPairs may contain numerous pairs, inclusion of which will
violate the one-to-one property, this is why the best pair is
chosen first (pickHighest(NPairs,PairsToScores)) and then
all pairs which share either the first or the second element
with the chosen one are eliminated from NPairs (using
removeConflicts(P, (A,B)) = {(a, b) ∈ P | a 6= A ∧ b 6=
B}). Subsequently, the next pair is chosen and so on until
no pairs are left in NPairs. The extension of the boundary
of exploration is performed by the loop in lines 7-14 where
the algorithm alternates between the computation of a new
set of candidates and choosing what to add to the set of
key pairs.

Lines 15-17 guarantee that regardless of the
choices made earlier in the algorithm the triple
(Added,Removed,Renamed) forms a valid patch, that
is, when transitions in Removed are removed from the
first machine, then relabelling Renamed is applied to the
remaining vertices and finally transitions in Added are
added, the outcome has the same transitions as those of the
second machine.

Theorem 4.1 (Correctness of patch generation): Assume
that (1) names of states in PLTSs X and Y do not intersect
(this can be accomplished using a suitable renaming) and
consider PLTS BIG consisting of all states in QX and
QY . We additionally assume that (2) before a patch is
applied, ∆BIG = ∆X and (3) Renamed : QX → QY is a
one-to-one function. If (1)-(3) are satisfied, the application
of the patch computed by algorithm 1 yields ∆BIG = ∆Y

regardless of the choice of pairs in Renamed.
Proof: If there are no key pairs found, Added = ∆X ,

Removed = ∆Y and Renamed = ∅, hence ∆BIG = (∆X −
∆X) ∪∆Y = ∆Y .

If a number of key pairs are found, Renamed contains
these key pairs. By definition of Removed, transitions not
included in Removed are {A1

σ→ A2 | ∃A1, A2 ∈
QX ;B1, B2 ∈ QY .

(
(A1, B1) ∈ KPairs ∧ (A2, B2) ∈

KPairs ∧ A1
σ→ A2 ∈ ∆X ∧ B1

σ→ B2 ∈ ∆Y

)
}, thus

these transitions will remain after those in Removed are
taken out. The renaming process turns all qX to qY where
(qX , qY) ∈ Renamed. Since Renamed = KPairs, after
making the renaming substitutions in the above expression,
we get a set of transitions {B1

σ→ B2 | ∃A1, A2 ∈
QX , B1, B2 ∈ QY .

(
(A1, B1) ∈ KPairs ∧ (A2, B2) ∈

KPairs ∧ A1
σ→ A2 ∈ ∆X ∧ B1

σ→ B2 ∈ ∆Y

)
}. By

comparing this to the definition of Added, this is exactly
the set of transitions from ∆Y which is not going to be
added. This shows that after applying a computed ‘patch’
the outcome contains exactly the transitions of PLTS B.

Since multiple key pairs may have the same score, pick-
Highest is non-deterministic, although in practice it would
use secondary measures such as state identifiers to return
the same result for the same set of pairs.

Theorem 4.2 (Symmetry of the patch): Given
PLTS X and Y , PLTSDiff (X,Y) can return
(Added,Removed,Renamed) if and only if PLTSDiff (Y,X)
can return (Removed,Added,Renamed−1) (note that since
Renamed is a one-to-one function, so will be Renamed−1)

Proof: We need to show that PLTSDiff (Y,X) computes
Renamed−1, with this in place the symmetry follows from
the definitions of Removed and Added.

In order to demonstrate that Renamed from
PLTSDiff (X,Y) is the same as Renamed−1 from
PLTSDiff (Y,X), we have to prove that construction of
KPairs is symmetrical. This follows from (1) computation
of scores S(X,Y) is symmetric, hence PairsToScores
computed by computeScores is symmetric; (2) the
selection of pairs from a collection of them by both
identifyLandmarks and PickHighest only considers scores
rather than properties of specific states. Among the possible
outcomes of PickHighest there is a symmetric one. For this
reason, line 6 of algorithm 1 can deliver a symmetric KPairs
set; (3) Lines 6 and 13 compute NPairs symmetrically; (4)
the removeConflicts operation is symmetric. The above
shows that at line 15 KPairs of PLTSDiff (X,Y) is the
same as KPairs−1 of PLTSDiff (Y,X).

The algorithm described above does not directly address
vertices which are not connected anywhere. For a PLTS G,
these can be defined by UCG = {q ∈ QG | (@A ∈ QG, σ ∈
ΣG.q

σ→ A) ∧ (@A ∈ QG, σ ∈ ΣG.A
σ→ q)}. Since such

vertices have no transitions leading to or leaving them, many
of them can be accounted for by adding pairs of them to
Renamed, with the rest handled by introducing AddedUV
and RemovedUV to the patch. With an arbitrary renaming
from UCX to UCY included in Renamed, RemovedUV =
{A ∈ UCX | @B ∈ UCY .(A,B) ∈ Renamed } and
AddedUV = {B ∈ UCY | @A ∈ UCX .(A,B) ∈ Renamed }.

C. Computing Structural Precision and Recall

PLTSDiff returns the structural difference between two
FSMs. For certain tasks, such as comparing the accuracy of
two inferred state machines, it is however also necessary to

make some quantitative evaluation of their accuracy. Given
the output from PLTSDiff, this is relatively straightforward.
Here we show how the output can be used to compute the
Precision and Recall [3] of a state machine. Previous work
by the authors [2] shows how Precision and Recall can be
computed with respect to the languages of two machines;
this section provides an equivalent measure with respect to
the actual state transition structure.

Precision and recall is a measure that was originally
developed by van Rijsbergen to evaluate the accuracy of
information retrieval techniques [3]. The measure consists
of two scores: Precision measures the ‘exactness’ of the
subject, and recall measures the ‘completeness’. Given a set
REL of relevant elements, and a set RET of returned items,
precision and recall are computed as follows: Precision =
|REL∩RET |
|RET | , Recall = |REL∩RET |

|REL| .
In our case, given two state machines X and Y , we

assume that machine X is considered ‘relevant’. Thus,
rel = ∆X and ret = ∆Y . The intersection of ret and rel
is computed with the help of PLTSDiff, and can be defined
as follows: REL ∩RET = ∆X − Removed.

D. Implementation

The PLTSDiff algorithm has been implemented as part
of our state machine inference and analysis framework
StateChum (http://statechum.sourceforge.net). The user can
supply two state machines, and the difference between them
is graphically displayed in a window.

The linear system of equations is solved with the UMF-
PACK library [9], which takes advantage of the sparse nature
of the matrices that are produced. This is combined with
the Automatically Tuned Linear Algebra Software (ATLAS)
package [10], which can be calibrated to take advantage of
any specific hardware features such as multicore processors
and cache size. The most computationally-intensive part of
PLTSDiff is the construction and solution of a system of
linear equations. For this reason, in a preliminary study to
assess the scalability of PLTSDiff, pairwise scores have been
computed between states of a few random state machines
of various sizes. Such a computation proved feasible for
machines with up to ≈500 states and 1-2 transitions from
each state using a dual-core 2.4Ghz CoreDuo2TM with 3GB
of memory running 64-bit Linux. With more states or greater
density, computation of scores may run out of memory. For
this reason, one may simply start with the pair of initial states
as the only key pair before running the rest of PLTSDiff
algorithm.

V. PRACTICAL EXAMPLE AND DISCUSSION

This section serves to show how PLTSDiff can be used
in practice. This is illustrated with a small example of how
to compare the state machines that are produced by two
diverse state machine inference techniques. This is followed

initialise

connect

login

changedir

changedir

changedir

listfiles

listfiles m
a
ke

d
ir

m
akedirretrievefile

st
o
re

fi
le

storefile

storefile

rename

listnames

delete

appendfile
appendfile

lo
g

o
u

t

logout
logout

logout

lo
go

ut

setfiletype

se
tfi

le
ty

p
e

disconnect

Figure 3. The original specification of the CVS client

by a discussion of the merits and potential problems that
can arise when applied in practice.

There are a host of scenarios, especially in the domain
of model-driven development, that rely on the comparison
of different models. In their work on comparing Statechart
specifications for example, Nejati et al. [11] motivate their
comparison approach by comparing two Statecharts of dif-
ferent versions of a call-logging system (one with and one
without voicemail). The development of our comparison
technique was largely spurred by the need to be able to
evaluate the accuracy of reverse engineered models [12], [2]
in terms of their structure.

Conventionally, evaluations of reverse-engineering tech-
niques neglect the structure of the models and concentrate
solely on the external behaviour (the languages) [13], [14].
Here, we show how the PLTSDiff algorithm can be used
to provide a more insightful, structural comparison that can
be used to complement the language-based measures. As a
basis we will use a small model of a CVS client (shown in
figure 3 – derived from a similar model by Lo et al. [14]). A
random sample of traces is taken from this model and these
are used as input for two different inference techniques.

The two techniques we use are Markov and EDSM.
Markov was proposed by Cook and Wolf [15] and uses
the concept of Markov models to find the most probable
state machine. EDSM [16] is an inference algorithm that
originated in the domain of grammar-inference. Without
going into detail, EDSM is a heuristic alternative to the k-
Tails algorithm [17] that scores sets of state-pairs before
merging the pair with the highest score. To save space, the
individual reverse-engineered models are not included, but
can be downloaded1 (they are part of the diff- models shown
in figures 4 and figure 5 anyway).

1http://www.dcs.shef.ac.uk/∼nw/Files/wcre/edsm2.pdf
http://www.dcs.shef.ac.uk/∼nw/Files/wcre/markov.pdf

PrecLang RecLang PrecFSM RecFSM

Markov 1 0.45 0.60 0.44
EDSM 0.47 0.8 0.42 0.37

Table I
PRECISION AND RECALL RESULTS FOR LANGUAGE AND STRUCTURE

A. Results

A conventional evaluation would compare the reverse-
engineered models to the reference model in figure 3 in
terms of their languages [14], [2]. In comparing the lan-
guages, the aim is to identify the extent to which the
sequences of events that are produced by one model overlap
with the sequences of events that are produced by the other.
A precision and recall-based comparison of the languages
[2] is provided in table I under headings PrecLang and
RecLang . Precision measures what proportion of valid event
sequences in the inferred model are present in the target.
Recall measures the proportion of valid event sequences
in the target that are captured by the inferred model. It is
possible to also compute “negative” precision and recall to
measure the accuracy of the machines with respect to invalid
sequences of events, but we omit these here for the sake of
simplicity.

The language measures suggest that the model produced
by the Markov learner is more precise than EDSM. In
fact, it suggests that the language of the Markov model
is a proper subset of the language of the target model.
The EDSM model has a much higher recall, which means
it correctly inferred a broader range of target language.
However, the low precision score suggests that it includes a
lot of false positive sequences. This is about as much as can
be ascertained from language-based scores; the generality
of one machine versus an other. We have no idea of which
particular areas of the machine have been correctly inferred
or missed out.

By applying the PLTSDiff algorithm, we can gain more
concrete insights comparing the essential components of the
inferred machines; their states and transitions. The output
from the PLTSDiff algorithm for the markov model is
presented in figure 4 and figure 5 for the EDSM model.
Non-bold transitions should be interpreted as “edits” - ad-
ditions and removals that would be required to transform
the inferred model into the reference model. Dashed (light)
transitions are additions in the inferred model and non-
dashed (dark) transitions are missing. The bold transitions in
the PLTSDiff output are those transitions that are correctly
inferred. In this case, 15 out of the 21 edges in the markov
model are correct, whereas only 10 of the 21 edges in the
EDSM model are correct.

The precision and recall measures introduced in section
IV-C are presented in table I under headings PrecFSM and
RecFSM . These present a completely different perspective

of the accuracy which, along with the language-based scores
can be used to provide a more complete picture. Scores
still show that the Markov model is more precise, but
the fact that it contains superfluous edges prevents it from
achieving a perfect score. In terms of recall, the EDSM is
missing more transitions than the Markov model. EDSM
can often produce models that are too general in terms
of their language, because they tend to merge too many
states together. Although these merges are often wrong,
the language-based score rewards this by a higher recall.
However, under the structural precision and recall scores
produced here, this is penalised, by accounting for the set of
transitions that disappear as a result of erroneous mergers.
This helps to provide a more balanced assessment of the
accuracy of the final model.

Importantly, the structural results permit us to see exactly
which transitions were (in-)correctly inferred by the different
techniques. Thus we establish that there is very little overlap
between the two inferred machines. The patch of correct
transitions in the EDSM model starting with the appendfile
event is missing from the Markov model, and most of the
correct transitions in the Markov model are missing from
the EDSM model. This suggests that the two techniques
offer complementary strengths, leading to the reasonable
conclusion that a hybrid approach would produce better
results. This could not have been ascertained from the
language-based measures.

B. Discussion

PLTSDiff has a number of advantages over existing
state machine comparison techniques. Most state machine
comparison techniques require their inputs to be minimal
and deterministic, with all states reachable from the initial
state. This is not necessary for PLTSDiff, which can just
as easily be applied to non-minimal and non-deterministic
machines. The Markov model above is non-deterministic. It
also demonstrates that PLTSDiff can accept graphs as input
that are not even fully connected.

Besides its versatility, the technique also tends to be very
good at optimising the difference between two automata.
PLTSDiff is likely to identify the matching state-pairs,
whereas other techniques are not always as likely to do so
(see section VI). Given that the landmark pairs are always
likely to be correctly matched, it will usually produce the
smallest Added and Removed sets.

Whenever PLTSDiff performs poorly, most transitions of
X are deemed removed and all of Y – added. This may
happen if few key pairs are found or when identifyLand-
marks chooses too many pairs, many of them spurious. In
the former case, this would be because the threshold-ratio
is too ‘strict’ and allowing too few pairs to be chosen. On
graphs with disconnected parts, some of these parts may
have no state chosen for a key pair, leading the entire part
to feature in the Removed part and the corresponding part

rename

setfiletype

renamestorefile

makedir

initialise

listfiles

changedirectory

disconnect

setfiletype logout

logoutstorefile

delete

appendfile

delete

changedirectory

logoutappendfile

changedirectory

logout

retrievefile

logout

makedir

listnames

setfiletype storefile storefilelistfiles makedirchangedirectory

connect

login

Figure 4. Results of PLTSDiff for Markov model

delete

appendfile changedir

initialise

logout

listnames

disconnect

storefile

disconnect

logout

logout

retrievefile

changedirectory changedir

listnames

logout

makedir disconnect

storefile changedirsetfiletype

storefile listfiles

changedirectorymakedir logout

makedir
delete

setfiletype

appendfile

storefile

rename

listfiles

connect

login

logout

appendfile

setfiletype

logout

storefile

Figure 5. Results of PLTSDiff for EDSM model

from the second graph — in the Added one. When too many
pairs are chosen, many of them will have few ‘matched’
transitions, with all the remaining ones featuring in Removed
and Added. Such a poor performance can be exhibited even
when matching a graph with itself and can be dealt with by
adjusing t and k parameters in algorithm 1.

The selection of the values of t and k depends on the
characteristics of the state machines. If they are highly
homogeneous, with many very similar vertices, the threshold
should be higher, to make sure that the algorithm only starts
with pairs of states that clearly stand out. Most of the time,
states can easily be distinguished from each other. When

this is the case, anecdotal experience by the authors suggests
that setting the threshold value to top 25%, ratio of the best
match to the second best to 2, and the attenuation factor to
0.5 produces correct results.

VI. RELATED WORK

Nejati et al. have proposed a similar structural comparison
technique as part of a broader approach to comparing
UML Statecharts [11]. Their technique relies on a machine
where all states can be reached from the initial node, and
that is deterministic (for every label in one machine, the
algorithm will only attempt a single corresponding transition

in the other machine). Their algorithm starts the machine
comparison at the initial states of the two machines. Scores
are propagated through the machine by choosing best next
pairs until the process converges at a fixed point. There are
two potential problems here; first, the similarity scores for a
given pair of states can only be valid if the pairs of states that
were identified in the prior run-up are themselves equivalent.
In the scenario where segments of the machine that may
be far removed from the initial node are similar, but the
rest of the machines are completely different, this approach
may produce unreliable results. The second problem is
that the fixed point may not be reached - meaning that
the computation may have to be stopped at an arbitrary
point. As part of their broader Statechart-based approach,
Nejati et al. adopt some useful techniques for comparing
the attribute labels of states and transitions, to increase the
confidence that are a pair of states are equivalent; although
our technique only considers LTS’s, their complementary
techniques could prove useful in the presence of additional
state / transition labels.

The technique presented in this paper offers some im-
portant improvements. It is important to note that it solely
concentrates on comparing transition structure, and does
not consider other complementary measures also considered
by Nejati et al. (however several of their other measures
could easily be incorporated into our approach). The use
of a linear equation solver ensures that computation of a
score for a pair is not dependent on a specific path used to
reach the pair from the initial state and fixpoint is always
reached. Thus, even in cases where small isolated areas of
the machine are very similar to their counterparts in the
other machine, these will be identified. Finally, PLTSDiff
starts with a carefully chosen set of pairs and propagates
them in all directions using precomputed scores while [11]
considers the two directions completely separately.

Fixed-point computation for state matching is also utilised
in [18] where (1) the notion of state-dependent ‘propagation
coefficient’ is used – we use the same value of attenuation
factor and (2) filtering of results of matching uses a number
of different techniques in order to approximate results ob-
tained by a human. We plan to consider filtering techniques
of [18] in our future work.

In their work on evaluating reverse-engineered automata,
Quante and Koschke [19] present a technique with a similar
aim to ours. Their approach works by computing the union
of the two machines [20], and comparing each machine
to the union (by computing the product of each machine
with the union). Computing the product produces a count
of missing and inserted transitions. In practice, there are a
number of problems that can arise with this technique. Com-
putation of a union produces a non-minimal state machine
that is non-deterministic. Removing this nondeterminism
and minimising the non-deterministic machine can result in
a very large machine even if there are only few differences

between the original machine. In other words, there is
the danger that the computed “patch” (added and removed
transitions) could be much bigger than it needs to be.

The problem of comparing state machines shares several
traits with the protein sequence-alignment problem [21],
aimed at finding an alignment of proteins maximising their
overlapping segments. Both tasks involve identifying ‘land-
marks’, to detect overlapping states / protein segments.

The problem of computation of maximal set of common
edges between two undirected graphs has been considered
by [22]; their approach has some similarity to this work.
First of all, both focus on identification of a maximal set
of ‘unchanged’ edges. The ‘second-tier’ approximation of
the solution size in [22] uses a matrix of scores for pairs of
states, similar to our local similary scores. From this matrix,
best matches are picked; the main algorithm of [22] is a
search with backtracking. In our work, pairwise scores are
computed recursively and many matches can be filtered out
in an attempt to find best matches. The fact that PLTSDiff
considers directed graphs means that (1) the outcome of
a recursive score computation is of good quality and (2)
PLTSDiff can use these scores and avoid backtracking.

The challenge is a specific instance of the graph iso-
morphism problem, called error-correcting graph isomor-
phism [23]. Conventional approaches to computing the edit-
distance between graphs take as input two undirected graphs.
In our case, node comparison relies on edge labels and edge
direction.

In the context of inference of probabilistic automata,
work by Kermorvant and Dupont [24] describes an inference
process, using a procedure similar the idea of local similarity.
Given (1) probabilities of transitions from each state, (2)
probabilities that a state is reached and (3) probabilities
that a sequence reaching each state terminates there, the
procedure described in [24] determines when two states can
be considered probabilistically behaviourally-equivalent.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for computing the dif-
ference between two finite state machines, along with a
proof-of-concept implementation. The PLTSDiff algorithm
has several advantages over existing approaches to state
machine comparison. Machines can be non-deterministic,
non-minimal, and not connected. The latter means that a
machine may contain groups of states with no transitions
between these groups (three groups in Figure 4). The imple-
mentation of PLTSDiff has been tested on reasonably large
state machines, and appeared to scale well for state machines
with hundreds of states.

In our future work we intend to carry out a more formal
study into the scalability of the approach. The technique
depends on solving linear systems of equations. This is
known to scale reasonably well if the matrix of equations is
sparse, and it will be our priority to investigate how the scale

is effected by dense state machines, which would produce
matrices that are also correspondingly dense.

ACKNOWLEDGEMENTS

This research is supported by the EPSRC-funded AutoAb-
stract and REGI grants (EP/C511883/1, EP/F065825/1) and
the EU FP7 ProTest project. The authors thank Jonathan
Cook at New Mexico State University for supplying the
Balboa software, which contained the Markov learner in the
case study.

REFERENCES

[1] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahud-
din, “Improving dynamic software analysis by applying gram-
mar inference principles,” Journal of Software Maintenance
and Evolution: Research and Practice, 2008.

[2] N. Walkinshaw, K. Bogdanov, and K. Johnson, “Evaluation
and comparison of inferred regular grammars,” in Proceed-
ings of the International Colloquium on Grammar Inference
(ICGI’08), St. Malo, France, 2008.

[3] C. J. V. Rijsbergen, Information Retrieval. Newton, MA,
USA: Butterworth-Heinemann, 1979.

[4] E. Börger, “Abstract state machines and high-level system
design and analysis,” Theoretical Computer Science, vol.
336, no. 2-3, pp. 205–207, 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.tcs.2004.11.006

[5] K. Cheng and A. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in
30th ACM/IEEE Design Automation Conference, 1993, pp.
86–91.

[6] S. Uchitel, J. Kramer, and J. Magee, “Behaviour model
elaboration using partial labelled transition systems,” in
ESEC/SIGSOFT FSE. ACM, 2003, pp. 19–27. [Online].
Available: http://doi.acm.org/10.1145/940071.940076

[7] V. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals.” Soviet Physics Doklady., vol. 10,
no. 8, pp. 707–710, Feb. 1966, doklady Akademii Nauk
SSSR, V163 No4 845-848 1965.

[8] M. Sorrows and S. Hirtle, “The nature of landmarks for
real and electronic spaces,” in Spatial information theory
- Cognitive and computational foundations of geographic
information science. Berlin: Springer, 1999, pp. 37–50.

[9] T. Davis, “Algorithm 832: Umfpack v4.3—an unsymmetric-
pattern multifrontal method,” ACM Trans. Math. Softw.,
vol. 30, no. 2, pp. 196–199, 2004.

[10] R. Whaley and A. Petitet, “Minimizing development and
maintenance costs in supporting persistently optimized
BLAS,” Software: Practice and Experience, vol. 35, no. 2,
pp. 101–121, February 2005.

[11] S. Nejati, M. Sabetzadeh, M. Chechik, S. M.
Easterbrook, and P. Zave, “Matching and merging
of statecharts specifications,” in ICSE. IEEE Com-
puter Society, 2007, pp. 54–64. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.50

[12] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahud-
din, “Reverse engineering state machines by interactive gram-
mar inference,” in WCRE’07, 2007.

[13] N. Walkinshaw and K. Bogdanov, “Inferring finite-state mod-
els with temporal constraints,” in Proceedings of the 23rd
International Conference on Automated Software Engineering
(ASE’08), 2008.

[14] D. Lo and S. Khoo, “QUARK: Empirical assessment of
automaton-based specification miners,” in Proceedings of the
Working Conference on Reverse Engineering (WCRE’06).
IEEE Computer Society, 2006, pp. 51–60.

[15] J. Cook and A. Wolf, “Discovering models of software pro-
cesses from event-based data,” ACM Transactions on Software
Engineering and Methodology, vol. 7, no. 3, pp. 215–249,
1998.

[16] K. Lang, B. Pearlmutter, and R. Price, “Results of the Ab-
badingo One DFA learning competition and a new evidence-
driven state merging algorithm,” in Proceedings of the Inter-
national Colloquium on Grammar Inference (ICGI’98), vol.
1433, 1998, pp. 1–12.

[17] A. Biermann and J. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” IEEE Transactions
on Computers, vol. 21, pp. 592–597, 1972.

[18] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching,” in 18th International
Conference on Data Engineering (ICDE 2002), 2002.
[Online]. Available: http://ilpubs.stanford.edu:8090/730/

[19] J. Quante and R. Koschke, “Dynamic proto-
col recovery,” in Proceedings of the Interna-
tional Working Conference on Reverse Engineering
(WCRE’07), 2007, pp. 219–228. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/WCRE.2007.24

[20] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation, Third Edition.
Addison-Wesley, 2007.

[21] S. Needleman and C. Wunsch, “A general method applicable
to the search of similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology, vol. 48, pp. 443–453,
1970.

[22] J. Raymond, E. Gardiner, and P. Willett, “RASCAL: Cal-
culation of graph similarity using maximum common edge
subgraphs,” The Computer Journal, vol. 45, no. 6, pp. 631–
644, 2002.

[23] H. Bunke, “On A relation between graph edit distance and
maximum common subgraph,” Pattern Recognition Letters,
vol. 18, no. 8, pp. 689–694, Aug. 1997.

[24] C. Kermorvant and P. Dupont, “Stochastic grammatical in-
ference with multinomial tests,” in Grammatical Inference:
Algorithms and Applications, ser. Lecture Notes in Artificial
Intelligence, vol. 2484. Springer-Verlag, 2002, pp. 149–160.

