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Abstract

Numerical Methods for Heath-Jarrow-Morton Model of Interest Rates

by

Maria Krivko

The celebrated HJM framework models the evolution of the term structure of
interest rates through the dynamics of the forward rate curve. These dynamics are
described by a multifactor in�nite-dimensional stochastic equation with the entire
forward rate curve as state variable. Under no-arbitrage conditions, the HJM model
is fully characterized by specifying forward rate volatility functions and the initial
forward curve. In short, it can be described as a unifying framework with one
of its most striking features being the generality: any arbitrage-free interest rate
model driven by Brownian motion can be described as a special case of the HJM
model. The HJM model has closed-form solutions only for some special cases of
volatility, and valuations under the HJM framework usually require a numerical
approximation.We propose and analyze numerical methods for the HJM model. To
construct the methods, we �rst discretize the in�nite-dimensional HJM equation in
maturity time variable using quadrature rules for approximating the arbitrage-free
drift. This results in a �nite-dimensional system of stochastic di¤erential equations
(SDEs) which we approximate in the weak and mean-square sense. The proposed
numerical algorithms are highly computationally e¢ cient due to the use of high-
order quadrature rules which allow us to take relatively large discretization steps in
the maturity time without a¤ecting overall accuracy of the algorithms. They also
have a high degree of �exibility and allow to choose appropriate approximations in
maturity and calendar times separately. Convergence theorems for the methods are
proved. Results of some numerical experiments with European-type interest rate
derivatives are presented.
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Chapter 1

Introduction

1.1 Principles and aims of this thesis

In the seminal work [36] of Heath, Jarrow and Morton (HJM), the evolution of

the term structure of interest rates is modelled via the dynamics of the forward rate

curve. Speci�cally, the term structure dynamics are given by an in�nite-dimensional

multifactor stochastic di¤erential equation taking the entire forward rate curve as a

state variable. Under no-arbitrage conditions, the HJM model is fully characterized

when the forward rate volatility process and the initial forward rate curve have

been speci�ed. The HJM model may best be described as a unifying framework

for interest rate modeling. In fact, any arbitrage-free interest rate model driven by

Brownian motion can be considered a special case of the HJM model. Its generality

is one of the most striking features of the model.

While the original framework of HJM is applied to �xed income markets (see

[36, 1, 15, 18, 26, 65, 28, 68, 80] and also references therein), more recent extensions

of the HJM approach (see, e.g. the recent review [16]) have emerged. In [2, 7, 73]

the HJM philosophy is implemented in the valuation of options on credit portfolios.

Modeling the term structure of implied volatility in the spirit of the HJM approach is

considered in [17, 72, 74]. The HJM philosophy has also been extended to modelling

of mortality [5] and of �nancial electricity contracts [8].

In this thesis and [48], we deal with the standard HJM framework which models
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the dynamics of the forward curve

ff(t; T ); t � T; T 2 [t0; T �] ; t 2 [t0; t�]g :

Given an integrable deterministic initial forward curve

f(t0; T ) = f0(T ); (1.1)

the arbitrage-free dynamics of the forward curve under the risk-neutral measure Q

associated are modelled through an Ito process of the form

f(t; T )� f0(T ) =

Z t

t0

�>(s; T )

�Z T

s

�(s; u)du

�
ds (1.2)

+

Z t

t0

�>(s; T )dW (s); t0 � t � t� ^ T; t0 � T � T �;

where W (t) = (W1(t); : : : ;Wd(t))
> is a d-dimensional standard Wiener process de-

�ned on a �ltered probability space
�

;F ; fFtgt0�t�t� ; Q

�
satisfying the usual hy-

potheses; �(t; T ) is an Rd-valued Ft-progressively measurable stochastic process withR T
t0
j�(s; T )j2 ds <1; and t� ^ T := min(t�; T ):

In general, the volatility �(t; T ) := �(t; T; !) can depend on the current and past

values of forward rates. In this thesis we restrict ourselves to the case in which �

depends on the current forward rate only, i.e.,

�(t; T ) := (�1(t; T; f(t; T )); : : : ; �d(t; T; f(t; T )))
>;

where �i(t; T; z); i = 1; : : : ; d; are deterministic functions de�ned on [t0; t�]�[t0; T �]�

R: Then the term
R T
s
�(s; u)du in (1.2) can be written as

R T
s
�(s; u; f(s; u))du, and,

consequently, (1.2)-(1.1) is an in�nite-dimensional SDE.

The HJM model has closed-form solutions only for some special cases of the

forward rate volatility process and pricing of interest rate derivatives under the HJM

framework usually requires a numerical approximation. The literature on numerics
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for the HJM model is, to our knowledge, rather limited. In Section 3:3, we will

provide an overview of approximation approaches for the HJM model.

In this thesis and [48], we propose and analyze a novel class of e¤ective numerical

methods for the HJM equation exploiting the idea of the method of lines. These

methods can be used for simulating HJM models of various speci�cations. Our

main focus is on the weak-sense numerical methods which can be used for valuing

a broad range of interest rate products. To construct the numerical methods, we

�rst discretize the in�nite-dimensional HJM equation in maturity time variable T

using quadrature rules for approximating the arbitrage-free drift. This results in a

�nite-dimensional system of stochastic di¤erential equations (SDEs). As we show

in the thesis and [48], if we take a quadrature rule of order p; the solution of this

�nite-dimensional system of SDEs converges to the HJM solution with mean-square

order p in the maturity time discretization step�. From the method of lines point of

view, we interpret the maturity time T as a �space�variable and the calendar time t

as a �time�variable. To get fully discrete methods (i.e. discrete in both T and t); we

approximate the obtained �nite-dimensional system of SDEs in the weak and mean-

square senses using the general theory of numerical integration of SDEs (see, e.g.

[57, 58, 45]). The proposed numerical algorithms are computationally highly e¢ cient

due to the use of high-order quadrature rules which allow us to take relatively large

discretization steps in the maturity time without a¤ecting overall accuracy of the

algorithms, i.e., the number of forward rates we need to approximate at each time

moment t is signi�cantly less than it is usually required in the case when the time

grids for t and T coincide. Furthermore, since we exploit the method of lines, we have

�exibility in choosing appropriate approximations in �space�and �time�separately.

As we will see, in practice it is bene�cial to use higher order rules for integration

with respect to maturity time T and lower order numerical schemes for integration

with respect to calendar time t.

We also prove convergence theorems for the methods constructed. We �rst prove

convergence theorems for the HJM approximation discrete in the maturity time T

3



only. Then we analyze weak convergence of fully discrete methods to the approx-

imations discrete in the maturity time. We show that this convergence is uniform

in the maturity time discretization step � in order to obtain weak convergence of

the fully-discrete numerical methods to the solution of the HJM equation. We note

that in this thesis both the considered class of numerical methods and proof of their

convergence include the known numerical schemes for the HJM model such as, e.g.

those from [31].

We illustrate the introduced class of numerical methods by presenting some par-

ticular algorithms of various accuracy orders, which are ready for implementation.

We test the proposed numerical algorithms on pricing European-type caps with the

Vasicek and proportional volatility models for forward rates. The numerical tests

demonstrate high computational e¢ ciency of the proposed new algorithms.

1.2 Overview of chapters

Let us now provide a synopsis of the thesis chapters that are to follow.

Chapter 2 introduces the HJM framework and its properties. We begin by

recalling various interest rates and associated products such as swaps, caps/�oors

and swaptions. We then explain how any arbitrage-free interest rate model driven

by a Brownian motion can be described as a special case of the HJM model on

examples of popular interest rate models. More speci�cally, we demonstrate the

link between the HJM framework and selected models for LIBOR and short rates.

We begin Chapter 3 by recalling the selected results from the theory of numerical

integration of SDEs in weak and mean-square senses. Having covered the prereq-

uisites required we then deal with the problem that initiated this research, i.e. the

numerical approximation of the HJM model. The main objective of the chapter is

to propose a new class of numerical methods for the HJM model that display a high

degree of �exibility and computational e¢ ciency. These methods are inspired by

the idea of method of lines. We also present particular realisations of the introduced

class of numerical methods along with their simulation results. This chapter is based

4



on our paper [48].

In Chapter 4, we prove convergence theorems for the class of numerical methods

introduced in Chapter 3. First, convergence results for the HJM approximation

discrete in the maturity time T only are proved. Then, we prove convergence in

weak and mean-square sense of the fully discrete methods to the approximations

discrete in the maturity time.

In Chapter 5, we give the conclusions of the thesis and provide some remarks

about possible directions of further research.

1.3 Probation of results

The results of this thesis and our paper [48] were presented at the following confer-

ences/research seminars:

� Stochastic Analysis: A UK-China Workshop. Loughborough University, July

2011.

� Workshop on Stochastic Methods in Financial Markets. University of Ljubl-

jana, August 2011.

� European Conference on Numerical Mathematics and Advanced Applications

(ENUMATH). University of Leicester, September 2011.

� The second workshop on numerical methods for solving the �ltering problem

and high order methods for solving parabolic PDEs. Imperial College, London,

September 2011.

� Seminar �Modern Methods in Applied Stochastics and Nonparametric Statis-

tics�. WIAS (Berlin), September 2011.

� Applied Mathematics seminar. University of Leicester, January 2012.

� Applied Mathematics and Statistics seminar (AMSTAT). University of War-

wick, February 2012.
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� Frontier Science Conference for Young Researchers on "Mathematics for Inno-

vation: Large and Complex Systems�. Tokyo, March 2012.
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Chapter 2

The Heath-Jarrow-Morton

framework

In this Chapter we shall begin by presenting well-known material from the interest

rate theory based on sources such as [1, 15, 18, 26, 65, 28, 68, 80]. We concentrate

mainly on the de�nitions and concepts required for the endeavours of this thesis.

Interest rates such as instantaneous forward and LIBOR rates (Section 2.1.1) and

related, simple products such as swaps, caps/�oors and swaptions (Section 2.1.3)

are introduced with the objective to �x and explain notation that is needed for

later consideration. Selected results from the modern theory of asset pricing are

reviewed in Section 2.1.2. We next introduce the classical HJM approach (Section

2.2) starting with the general framework under the objective probability measure.

Then, we present the HJM dynamics under risk-neutral and forward measures. We

also brie�y review the LIBOR market model (Section 2.3) and one-factor short rate

models (Section 2.4) in order to explain their relationship with the HJM framework,

and thus emphasize the universality of the HJM modelling philosophy. The main

goal of this chapter is to introduce the HJM framework and demonstrate that any

arbitrage-free interest rate model driven by a Brownian motion can be described as

a special case of the HJM model.
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2.1 Introduction

2.1.1 Interest rates

Throughout this thesis we assume that there exists an arbitrage-free market with

continuous and frictionless trading taking place inside a �nite time horizon [t0; t�]

for maturities in [t0; T �].

For convenience, let us recall some terminology of the theory of interest rates.

For comprehensive studies on the interest rate term structure theory we refer to

[1, 15, 18, 26, 65, 28, 68, 80].

The most basic interest contract is a default-free zero coupon bond, or simply

bond, which has a single payment of one unit of cash at a �xed future maturity

date T . Its price at time t � T is denoted by P (t; T ): The term structure of bond

prices fP (t; T )jT > tg which we can observe at time t (today) is a (deterministic)

non-increasing positive curve su¢ ciently smooth in T with P (t; t) = 1: Whereas for

a �xed maturity T , P (t; T ) is a stochastic process, which hits the value one at its

maturity, i.e. P (T; T ) = 1:

A more informative measure of the bond market than its term structure is given

by the implied interest rates. We shall introduce some of them.

A convenient, albeit a pure theoretical concept, the forward rate f(t; T ), t � T

represents the instantaneous continuously compounded rate prevailing at time t for

riskless borrowing or lending over the in�nitesimal time interval [T; T + dT ]: The

relation between zero-coupon bonds and instantaneous forward rates is given by

P (t; T ) = exp

�
�
TR
t

f(t; s)ds

�
; (2.1)

and

f(t; T ) = �@ logP (t; T )
@T

: (2.2)
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The current instantaneous rate, or so-called short rate, is

r(t) := f(t; t): (2.3)

It is the current interest rate for a loan over the in�nitesimal interval [t; t + dt]

prevailing at time t. Loosely speaking, r(t) can be viewed as the overnight rate in

e¤ect at time t.

The money market account, B(t); represents the accumulation factor and satis�es

the following di¤erential equation

dB(t) = r(t)B(t)dt; B(t0) = 1; (2.4)

with solution

B(t) = exp

 
tR
t0

r(s)ds

!
: (2.5)

Intuitively, B(t) represents the amount of cash accumulated up to time t starting

with one unit of cash at time t0 and continually reinvesting at the short rates r(s),

s 2 [t0; t]

Among the most important benchmark interest rates is the London Interbank

O¤ered Rate (LIBOR). It is based on simple (or simply compounded) interest. The

forward LIBOR rate L(t; T; T + �) is the rate set at time t for the interval [T; T + �];

t � T: The accrual period of length � is typically equal to three or six months. If

we enter into a contract at time t to borrow one unit at time T and repay it with

interest at time T + �; the interest due will be �L(t; T; T + �):

Suppose we following this strategy: at time t sell one bond with maturity T

and purchase P (t;T )
P (t;T+�)

of bonds with maturity T + �: The net e¤ect is a forward

investment of one unit of cash at time T yielding P (t;T )
P (t;T+�)

cash units at T + � with

certainty. This simple replication argument leads to the following identity between

9



forward LIBOR rates and bond prices

L(t; T; T + �) =
1

�

�
P (t; T )

P (t; T + �)
� 1
�
: (2.6)

Remark 2.1.1 A common informative measure of the current bond market at time

t is the yield to maturity y(t; T ): It is the continuously compounding interest rate

prevailing at time t for maturity T for which an investment of P (t; T ) at time t

will produce a cash �ow of one unit of cash at maturity T . It gives an indication of

implied average interest rate o¤ered by the bond. The yield y(t; T ) can be recovered

from the price P (t; T ) via the formula

y(t; T ) =
� logP (t; T )

T � t : (2.7)

Given a set of bond prices fP (t; T )jT > tg for some �xed t; we can produce what

is called the term structure of interest rate or zero coupon yield curve, a graph of

y(t; T ) against time to maturity T � t (typically in years).

2.1.2 Objective, risk-neutral and forward measures

For reference, in this part of the thesis we provide a brief review of selected results

from the modern theory of asset pricing to introduce a terminology which will be

helpful later on. For an introductory and complete account of the material below,

see, e.g. [43, 37, 10, 20, 43].

We now �x a stochastic basis and assume that the uncertainty in the economy

is characterised by a �ltered probability space
�

;F ; fFtgt0�t�t� ;P

�
satisfying the

usual hypotheses. We assume the existence of traded non-dividend paying assets

with positive prices modelled by an m-dimensional vector-valued stochastic process

X(t) = (X1(t); : : : ; Xm(t))
> with X1(t) = B(t) de�ned in (2.4).

Let a trading strategy be an m-dimensional Ft�adapted process

�(t; !) = (�1(t; !); : : : ; �m(t; !))
> ;

10



where �i(t; !) is interpreted as the number of units at time t held in asset Xi(t): The

value process at time t associated with the strategy � is de�ned by

V (t) = �(t)>X(t):

The trading strategy is said to be self-�nancing if, for any t 2 [t0; t�] ;

V (t)� V (t0) =
Z t

t0

�(s)>dX(s):

Intuitively, a strategy is self-�nancing if changes in the portfolio value are solely due

to changes in the value of asset prices, with no funds being added or withdrawn.

The economic concept of an arbitrage opportunity in mathematical terms is de-

�ned as a self-�nancing strategy � for which V (t0) = 0 and, for some t 2 [t0; t�] ;

P (V (t) � 0) = 1;

and

P (V (t) > 0) > 0:

The important concept of a numeraire was �rst introduced in [27]. The idea is

that one of m assets, the so-called numeraire, can be used to normalise all other

assets. Let the numeraire be denoted by D(t): Choosing the numeraire D(t) implies

the normalised asset process X(t)=D(t) = (X1(t)=D(t); : : : ; Xm(t)=D(t))
> which

is called the �discounted asset price� process. We say that a measure QD is an

equivalent martingale measure induced by the numeraire D if the discounted asset

price process X(t)=D(t) is a martingale with respect to the measure QD:

The importance of an equivalent martingale measure follows from the su¢ cient

condition for no-arbitrage: the existence of an equivalent martingale measure implies

the absence of arbitrage opportunities. For the proof of this result, we refer to, e.g.

[43].

A t�-maturity derivative security (also known as a contingent claim) pays out an
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amount characterised by an Ft��measurable random variable H(t�): We say that

a contingent claim with payo¤ H(t�) is attainable if there exists a self-�nancing

strategy � such that H(t�) = V (t�) = �(t�)>X(t�):We also say in this case that the

trading strategy replicates the derivative security.

The following proposition provides mathematical characterization of the

no-arbitrage price associated with any contingent claim.

Assume there exists an equivalent martingale measure QD induced by D and

let H be a contingent claim. Then for each t 2 [t0; t�] ; we can price the derivative

security by

H(t)=D(t) = EQ [H(t�)=D(t�)j Ft] ; (2.8)

where H(t) is the price of contingent claim at time t: A corollary of (2.8) is that

the price of any traded asset Xi; i = 1; : : : ;m normalised by D is a martingale

under QD: In practical applications, the choice of numeraire is often used as a tool

to simplify calculations of the expectation in (2.8).

We say that a �nancial market is complete if every contingent claim is attain-

able. It was proved in [34] (see also [43, 37, 10, 20, 43]) that a �nancial market is

complete if and only if there is a unique equivalent martingale measure. The exis-

tence of a unique martingale measure, therefore, not only eliminates the arbitrage

opportunities but also guarantees the derivation of a unique price associated with

any contingent claim.

We denote by Q (dropping the superscript B in notation for this particular

measure) an equivalent martingale measure induced by continuously compounded

money market account B(t) de�ned in (2.4) as numeraire. This measure is often

called the risk-neutal measure. The pricing formula (2.8) under Q is

H(t) = EQ
�
exp

�
�
t�R
t

r(s)ds

�
H(t�)

����Ft� : (2.9)

This result is often referred as the fundamental pricing formula.

If we apply (2.9) under the risk neutral measure to the time t price P (t; T ) of a

12



T -maturity zero coupon bond, we obtain the fundamental bond pricing formula

P (t; T ) = EQ
�
exp

�
�
TR
t

r(s)ds

�����Ft� : (2.10)

Let us consider an equivalent martingale measure QT+� induced by the bond

P (t; T + �). This measure is called T + ��forward measure. The forward measure

was introduced by Jamshidian [39] (see also [27]).

The pricing formula (2.8) under QT+� is

H(t)=P (t; T + �) = EQ
T+�

[H(T )=P (T; T + �)j Ft] : (2.11)

The Radon-Nikodym derivative de�ning the measure QT+� is given by

�T =
dQT+�

dQ
=
P (T; T + �)B(t0)

P (t0; T + �)B(T )
: (2.12)

The derivation of (2.12) is outlined as follows. By (2.11), we obtain

H(t0)=P (t0; T + �) = E
QT+�

�
H(T )

P (T; T + �)

�
;

and, by (2.9), we have

H(t0)=P (t0; T + �) = E
Q

�
H(T )B(t0)

B(T )P (t0; T + �)

�
:

Hence

EQ
T+�

�
H(T )

P (T; T + �)

�
= EQ

�
H(T )B(t0)

B(T )P (t0; T + �)

�
: (2.13)

By de�nition of the Radon-Nikodym derivative, we also know that

EQ
T+�

�
H(T )

P (T; T + �)

�
= EQ

�
H(T )

P (T; T + �)

dQT+�

dQ

�
:

By comparing right hand sides of the last two equalities, we obtain (2.12).

13



For t � T; by the de�nition of the Radon-Nikodym process and (2.8), we have

�t = E
Q [�T j Ft] = EQ

�
P (T; T + �)B(t0)

P (t0; T + �)B(T )

����Ft� = P (t; T + �)B(t0)

P (t0; T + �)B(t)
: (2.14)

Setting in (2.11) � = 0; we obtain the well-known result (see for e.g. [1, 15, 26, 80])

for valuing a claim under T�forward measure:

H(t) = P (t; T )EQ
T

[H(T )j Ft] :

A particularly appealing feature of this result is that it does not require knowledge

of the joint distribution of H(T ) and 1
B(T )

(cf. (2.9)) or 1
P (T;T+�)

(cf. (2.11)).

Based on (2.11), one can show that the forward LIBOR rates L(t; T; T + �) are

martingales under QT+�: Indeed, by putting H(t) = L(t; T; T + �)P (t; T + �) in

(2.11), we obtain

L(t; T; T + �) = EQ
T+�

[L(T; T; T + �)j Ft] : (2.15)

2.1.3 Interest rate products

Let us review now some basic interest rate products such as swaps, caps/�oors and

swaptions [1, 15, 18, 26, 65, 28, 68, 80].

We specify a number of future dates T0 < T1 < : : : < Tn for notational simplicity

equidistant with � = Ti � Ti�1; i = 1; : : : ; n: For convenience, we assume a unit

notional value of all the contracts we introduce below.

Interest rate swap

An Interest-Rate Swap (IRS) is a contract allowing to exchange a payment stream

at a �xed interest rate for a payment stream at a �oating rate. Popularity of swaps

re�ects the fact that di¤erent companies can borrow at �xed or at �oating rates in

di¤erent markets. We shall consider here only plain vanilla IRS.

A payer (receiver) interest rate swap with a �xed rateK and a unit nominal value

14



settled in arrears is a contract according to which its holder pays (receives) �xed

payments of �K and receives (pays) �oating payments of �L(Ti�1; Ti�1; Ti) at the

coupon dates Ti; i = 1; : : : ; n: At this description, we are considering for simplicity

that �xed-rate payments and �oating-rate payments occur at the same dates and

with the same year fraction. Though the generalisation to di¤erent payment dates

and day-count conventions is straightforward.

The net cash �ow at time Ti is

� (L(Ti�1; Ti�1; Ti)�K) :

By the fundamental evaluation result (2.9), the value of the swap at time t � T0 is

equal to the expected discounted value of its net cash �ows, i.e.

Vswap(t) = B(t)
nX
i=1

EQ
�
B�1(Ti)� (L(Ti�1; Ti�1; Ti)�K)

��Ft�
= B(t)

nX
i=1

EQ
�
B�1(Ti�1)� (L(Ti�1; Ti�1; Ti)�K)

EQ

 
exp

 
�

TiR
Ti�1

r(s)ds

!�����FTi�1
!�����Ft

#

= B(t)
nX
i=1

EQ
�
B�1(Ti�1)� (L(Ti�1; Ti�1; Ti)�K)P (Ti�1; Ti)

��Ft� ;
in the second and third equalities we used the iterated conditioning and (2.10),

correspondingly. Then, using (2:6), we obtain

Vswap(t) =

nX
i=1

B(t)EQ
�
B�1(Ti�1) (P (Ti�1; Ti�1)� P (Ti�1; Ti)�K�P (Ti�1; Ti))

��Ft�
=

nX
i=1

[P (t; Ti�1)� P (t; Ti)�K�P (t; Ti)]

= P (t; T0)� P (t; Tn)�K�
nX
i=1

P (t; Ti); (2.16)

where in the second equality we used the fact that since P (�; Ti) are traded assets,

their discounted prices by B�1(�) are martingale.
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Recalling again (2:6) ; (2:16) can be rewritten as

Vswap(t) = �
nX
i=1

P (t; Ti) (L(t; Ti�1; Ti)�K) : (2.17)

The interesting observation from (2.16) and (2.17) is that plain vanilla IRS can

be valued at time t � T0 using only the term structure observed at that time.

The �xed rate K that makes the IRS a fair contract at time t � T0; i.e. for

which Vswap(t) = 0 is called the forward swap rate Rswap(t) and is given by

Rswap(t;T0; Tn) =
P (t; T0)� P (t; Tn)
�
Xn

i=1
P (t; Ti)

: (2.18)

Thus, for t � s � T0 the swap evaluation formula (2.17) can be rewritten as follows

Vswap(s) = �
nX

i=s+1

P (s; Ti)(L(s; Ti�1; Ti)�Rswap(t;T0; Tn)):

Caps and �oors

An Interest Rate Cap (IRC) is a security that allows its holder to bene�t from low

�oating rates and be protected from high ones. It can be viewed as a payer IRS,

where each exchange payment is executed only if it has positive value. Similarly,

an Interest Rate Floor (IRF) is an instrument designed to protect from low �oating

interest rates yet allow the holder to bene�t from the high rates. It is equivalent to

a receiver IRS, where exchange payments take place only if their values are positive.

Formally, a cap price is obtained by summing up the prices of the underlying

caplets, call options on successive LIBOR rates. Consider a caplet set at time Ti�1

with payment date at Ti; i � 1 with strike K and unit cap nominal value. Its price

at time t � T0 is given by

Vcaplet(t) = EQ
�
exp

�
�
Z Ti

t

r(u)du

�
� (L(Ti�1; Ti�1; Ti)�K)+

����Ft�
= EQ

�
exp

�
�
Z Ti�1

t

r(u)du

�
P (Ti�1; Ti)� (L(Ti�1; Ti�1; Ti)�K)+

����Ft�
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= EQ
�
exp

�
�
Z Ti�1

t

r(u)du

�
(1� (1 +K�)P (Ti�1; Ti))+

����Ft� ; (2.19)

where the second equality comes from iterated conditioning and (2.10). Therefore,

the caplet price can be written as a multiple of the price of the European put with

maturity Ti�1; strike 1=(1 +K�); written on a zero-coupon bond with maturity Ti

and (1 +K�) nominal amount.

Therefore, the caplet price can be written as a European put option with ma-

turity Ti�1 and unit strike written on (1 + K�) units of a zero coupon bond with

maturity Ti:

We note that the caplet price in terms of instantaneous forward rates becomes

Vcaplet(t) (2.20)

= EQ exp

�
�
Z Ti�1

t

r(u)du

��
1� (1 +K�) exp

�
�
Z Ti

Ti�1

f(Ti�1; u)du

��
+

:

By switching to the Ti�forward measure (cf. (2.11)), the valuation formula (2.19)

(and analogously (2.20)) for caplets can be written in a more convenient form

Vcaplet(t) = �P (t; Ti)E
QTi
�
(L(Ti�1; Ti�1; Ti)�K)+

��Ft� : (2.21)

Similarly, a �oor is a strip of �oorlets, put options on successive LIBOR rates.

Though we do not present a valuation formula for a �oorlet price here, its form can

be simply deduced from (2.19) or found in [1, 15, 18, 26, 65, 28, 68].

Swaptions

A European payer (receiver) swaption is an option that gives its holder a right, but

not an obligation, to enter a payer (receiver) swap at a future date at a given �xed

rate K. Usually, the swaption maturity coincides with the �rst reset date T0 of the

underlying swap. The underlying swap length Tn � T0 is called the tenor of the

swaption.
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The value of the payer swaption at time t � T0 (cf. (2:17)) can be found as

Vswaption(t) = E
Q

�
exp

�
�
Z T0

t

r(u)du

�
(Vswap(T0))+

����Ft�
= EQ

�
exp

�
�
Z T0

t

r(u)du

�
(2.22)

�
"

nX
i=1

P (T0; Ti)� (L(T0; Ti�1; Ti)�K)
#
+

�����Ft
!
;

or alternatively in terms of instantaneous forward rates evaluates to

Vswaption(t) = EQ
�
exp

�
�
Z T0

t

r(u)du

��
1� exp

�
�
Z Tn

T0

f(T0; u)du

�
(2.23)

�
nX
i=1

K� exp

�
�
Z Ti

T0

f(T0; u)du

�!#
+

�����Ft
!
:

Using (2.18), we can rewrite (2.22) in a more compact form

Vswaption(t) = E
Q exp

�
�
Z T0

t

r(u)du

�
� (Rswap(T0)�K)+

nX
i=1

P (T0; Ti): (2.24)

It is evident from (2.24) that a European payer (receiver) swaption is a call (put)

option on the forward swap rate struck at the �xed rate of swap.

We note thatRswap(t)
nX
i=1

P (t; Ti) is a price of a tradable asset and that
nX
i=1

P (t; Ti),

being a linear combination of zero coupon bonds, can be classi�ed as a numeraire.

The measure induced by this numeraire is known (see e.g. [1, 15, 26, 68]) as a swap

measure with Rswap(t) being a martingale under this measure.

2.2 The Heath-Jarrow-Morton framework of in-

stantaneous forward rates

2.2.1 Forward curve dynamics

The Heath-Jarrow-Morton (HJM) model refers to a class of models that characterises

the evolution of the term structure of interest rates through the dynamics of the
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forward rate curve [36]. These dynamics are described by a multifactor in�nite-

dimensional stochastic equation with the entire forward rate curve as state variable.

It is important to note that HJM framework is a general setup which uni�es all

interest rate models driven by a Brownian motion.

We shall follow this setup pioneered by Heath, Jarrow and Morton in 1992 [36].

We assume that there exist an economy with a frictionlessly traded continuum of

default-free zero-coupon bonds fP (t; T ); t � T; T 2 [t0; T �] ; t 2 [t0; t�]g; where

P (t; T ) denotes the price at time t of a bond with maturity T .

In the framework proposed by Heath, Jarrow, and Morton the forward curve

dynamics under the objective probability measure P are modelled through an Ito

process of the form

f(t; T )� f0(T ) =

Z t

t0

�(s; T )ds+

Z t

t0

�>(s; T )dW (s); (2.25)

t0 � t � t� ^ T; t0 � T � T �;

where

� W (t) = (W1(t); : : : ;Wd(t))
> is a d-dimensional standard Wiener process de-

�ned on
�

;F ; fFtgt0�t�t� ;P

�
;

� f0(T ) := f(t0; T ) is a �xed, deterministic initial forward rate curve which is

measurable as mapping f(t0; �) : ([t0; T �] ;B [t0; T �])! (R;B), where B [t0; T �]

is the Borel �-algebra restricted to [t0; T �] ;

� �(s; T ) := �(t; T; !) is an R-valued Ft-progressively measurable stochastic

process, i.e. it is a measurable mapping:

� : (f(s; u) : t0 � s � u � Tg � 
;B(f(s; u) : t0 � s � u � Tg)
Fs)! (R;B) ;

with
TR
t0

j�(s; T; !)j dt < +1 a.e. P; for all T 2 [t0; T �] ;
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� �(s; T ) := �(t; T; !) is an Rd-valued Ft-progressively measurable stochastic

process, i.e. �i is measurable as mapping:

�i : (f(s; u) : t0 � s � u � Tg � 
;B(f(s; u) : t0 � s � u � Tg)
Fs)! (R;B) ;

with

TR
t0

�2i (t; T; !)dt < +1 a.e. P; for all T 2 [t0; T �] ; i = 1; : : : ; d;

and t� ^ T := min(t�; T ):

We note that this setup is quite general. The only substantive economic restric-

tions imposed on the forward rate process are that they have continuous sample

paths and that they are driven by a �nite number of random shocks.

Remark 2.2.1 We follow the classical HJM framework and consider the case when

the forward rate dynamics are driven by a �nite-dimensional Wiener process, i.e.

d < 1 in (2.25). For an in�nite-dimensional prospective on HJM framework we

refer to [25; 18]:

Next, we are interested in the dynamics of the short rate process. From (2.25)

with T = t; the dynamics of the short rate process in integral form is

r(t) = f0(t) +

Z t

t0

�(s; t)ds+

Z t

t0

�>(s; t)dW (s); (2.26)

To obtain the di¤erential form, we apply the Ito formula to r(t) := f(t; t)

dr(t) = df(t; T )jT=t +
@

@T
f(t; T )jT=t dt;

r(t0) = f0(t0):

This yields

dr(t) =

�
df0(t)

dt
+ �(t; t) +

Z t

t0

@�(s; t)

@t
ds (2.27)
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+

Z t

t0

@�>(s; t)

@t
dW (s)

�
dt+ �>(t; t)dW (t);

r(t0) = f0(t0):

The su¢ cient regularity conditions (see [36, Conditions C.2]) to ensure that the

savings account B(t) satis�es

0 < B(t) < +1 a:e:P; t0 � t � t�;

are

Z t�

t0

jf0(s)j ds < +1 and
Z t�

t0

�Z t

t0

j�(s; t)j du
�
ds < +1 a.e. P: (2.28)

The conditions (see [36, Conditions C.3]) imposed on the bond price process to

ensure that it is well-behaved are

Z t

t0

�Z t

s

j�i(s; u)j du
�2
ds < +1 a.e. P; for all t 2 [t0; t�] ; i = 1; : : : ; d; (2.29)

Z t

t0

�Z T

t

j�i(s; u)j du
�2
ds < +1 a.e. P; for all t 2 [t0; T ] ; T 2 [t0; T �] ; i = 1; : : : ; d;

(2.30)

and

t!
Z T

t

�Z t

t0

j�i(s; u)j dWi(s)

�2
du < +1 (2.31)

is continuous a.e. P; for all T 2 [t0; T �] ; i = 1; : : : ; d:

Lemma 2.2.2 Suppose conditions (2.28)-(2.31) are satis�ed. Then the zero-coupon

bond price process corresponding to (2.25) is an Ito process of the form

P (t; T ) = P (t0; T )

+

Z t

t0

P (s; T )(r(s) + b(s; T ))ds+

Z t

t0

P (s; T )�>P (s; T )dW (s); (2.32)

t0 � t � t� ^ T; t0 � T � T �;
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where

�P (s; T ) = �
Z T

s

�(s; u)du; (2.33)

is the T -bond volatility and

b(s; T ) = �
Z T

s

�(s; u)du+
1

2
�>P (s; T )�P (s; T ): (2.34)

Proof . Based on (2.1) and (2.25) the log-dynamics of the bond price process is

logP (t; T ) = �
Z T

t

f(t; u)du

= �
Z T

t

f0(u)du�
Z T

t

Z t

t0

�(s; u)ds du�
Z T

t

Z t

t0

�>(s; u)dW (s) du:

Using the classical and stochastic Fubini Theorems (Appendix B and also see [36,

26]) twice, we obtain

logP (t; T )

= �
Z T

t

f0(u)du�
Z t

t0

Z T

t

�(s; u)du ds�
Z t

t0

Z T

t

�>(s; u)du dW (s)

= �
Z T

t0

f0(u)du�
Z t

t0

Z T

s

�(s; u)du ds�
Z t

t0

Z T

s

�>(s; u)du dW (s)

+

Z t

t0

f0(u)du+

Z t

t0

Z t

s

�(s; u)du ds+

Z t

t0

Z t

s

�>(s; u)du dW (s)

= �
Z T

t0

f0(u)du+

Z t

t0

�
b(s; T )� 1

2
�>P (s; T )�P (s; T )

�
ds+

Z t

t0

�P (s; T ) dW (s)

+

Z t

t0

�
f0(u) +

Z u

t0

�(s; u) ds+

Z u

t0

�>(s; u) dW (s)

�
du:

Then by (2.26) we have

logP (t; T ) = logP (t0; T ) +

Z t

t0

�
r(s) + b(s; T )� 1

2
�>P (s; T )�P (s; T )

�
ds

+

Z t

t0

�P (s; T ) dW (s):

An application of Ito�s formula to the above result implies (2.32). �

We also shall be interested in the dynamics for the discounted bond price process
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de�ned as P (t;T )
B(t)

: This is the value of a T -maturity bond expressed in the units of

the accumulating factor B(t). A straightforward application of Ito�s formula yields

(cf. (2.4) and (2.32))

P (t; T )

B(t)
= P (t0; T )

+

Z t

t0

P (s; T )

B(s)
b(s; T )ds+

Z t

t0

P (s; T )

B(s)
�>P (s; T )dW (s); (2.35)

t0 � t � t� ^ T; t0 � T � T �:

2.2.2 HJM: Risk-neutral measure dynamics

We shall now investigate the restriction on the HJM dynamics (2.25) imposed by no-

arbitrage argument under the risk-neutral measure Q associated with the numeraire

B(t). In what follows we let Q s P be an equivalent probability measure. We denote

by WQ the d-dimensional Brownian motion under measure Q obtained by Girsanov

transform.

Theorem 2.2.3 (HJM drift condition) Given that the forward curve evolution un-

der the objective probability measure P is of the form (2.25) and conditions (2.28)-

(2.31) hold, the arbitrage-free dynamics of the forward curve under the risk neutral

measure Q associated with the numeraire B(t) are of the form

f(t; T )� f0(T ) =

Z t

t0

�>(s; T )

�Z T

s

�(s; u)du

�
ds (2.36)

+

Z t

t0

�>(s; T )dWQ(s); t0 � t � t� ^ T; t0 � T � T �:

Proof. There is no arbitrage in the model if there is an equivalent martingale

measure Q such that the discounted bond price process P (t;T )
B(t)

is a Q-martingale, as

we already stated in Section 2.1.2 (see also [20, 1, 15, 26]), for t0 � t � t� ^ T; t0 �

T � T �. Hence, in view of (2.35) the Q-dynamics of P (t;T )
B(t)

are of the form

P (t; T )

B(t)
= P (t0; T ) +

Z t

t0

P (s; T )

B(s)
�>P (s; T )dW

Q(s); (2.37)
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t0 � t � t� ^ T; t0 � T � T �;

and this obviously posits the dynamics of the bond price process (cf. (2:32)) to be

P (t; T ) = P (t0; T )

+

Z t

t0

P (s; T )r(s)ds+

Z t

t0

P (s; T )�>P (s; T )dW
Q(s): (2.38)

Through (2.1), the dynamics in (2.38) constrain the evolution of forward rates. By

Ito�s formula,

d lnP (t; T ) =

�
r(t)� 1

2
�>P (t; T )�P (t; T )

�
dt+ �>P (t; T )dW

Q(t): (2.39)

Thus

df(t; T ) = �d
�
@ logP (t; T )

@T

�
= � @

@T
(d logP (t; T ))

= � @

@T

�
�1
2
�>P (t; T )�P (t; T )

�
dt� @

@T
�>P (t; T )dW

Q(t)

= �>P (t; T )
@

@T
�P (t; T )dt�

@

@T
�>P (t; T )dW

Q(s): (2.40)

Using (2.33) we can, therefore, rewrite the expression for the drift in (2.40) as

�>(t; T )

Z T

t

�(t; u)du;

This is the risk-neutral drift of the forward curve process imposed by the absence of

arbitrage. Substituting it back into (2.40), we arrive to (2.36). �

2.2.3 HJM: Forward measure dynamics

The HJM dynamics can be written under the Ti-forward measure QTi instead of

the risk-neutral measure. Let us denote a drift in the HJM dynamics under the

Ti-forward measure by �
Ti
f (t; T ).
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We introduce

�j(t; T ) := � (�P (t; T ))j �

�
�Tif (t; T )

�
j

�j(t; T )
;

where the subscript j denotes the corresponding component of the vector. Then, in

view of (2.36), by Girsanov�s theorem, we have

�t =
dQTi

dQ

����
Ft
= exp

�
�
Z t

t0

�>(s)dWQ(s)� 1
2

Z t

t0

�>(s)�(s)ds

�
:

The process �t is an exponential martingale and has the dynamics

d�t = ��>(t)�tdWQ(t): (2.41)

The process W Ti de�ned by

dW Ti = �(t)dt+ dWQ(t);

is a standard Brownian motion under QTi :

Recall (2.14):

�t =
P (t; Ti)

P (t0; Ti)B(t)
; (2.42)

and, hence, taking into account (2:37) :

d�t =
1

P (t0; Ti)

P (t; Ti)

B(t)
�P (t; Ti)dW

Q(t): (2.43)

Comparing (2.41) and (2.43), we deduce

��(t)�t =
1

P (t0; Ti)

P (t; Ti)

B(t)
�P (t; Ti):

Finally, taking into account (2.42), we obtain

�(t; T ) = ��P (t; Ti);
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or, by de�nition of �;

�Tf (t; T ) = ��>(t; T )
�Z Ti

T

�(t; u)du

�
:

Hence, the corresponding forward rate dynamics have the form (cf. (2:36)):

f(t; T )� f0(T ) = �
Z t

t0

�>(s; T )

�Z Ti

T

�(s; u)du

�
ds (2.44)

+

Z t

t0

�>(s; T )dWQTi (s); t0 � t � t� ^ T; T < Ti � T �:

2.2.4 The HJM framework: summary and discussion

In the HJM setting we concern ourselves with modelling the evolution of the term

structure of interest rates over time by describing the dynamics of the forward rate

curve. The resulting class of models is very broad. In this sense, the HJM model is

probably the best described as a unifying framework with one of its most striking

features being the generality: any arbitrage-free interest rate model driven by a

Brownian motion can be described as a special case of the HJM model.

To specify a particular no-arbitrage HJM dynamics (cf. (2:36) ; (2:44)), two

inputs are required, namely, the forward rate volatility function, �(t; T ); and the

initial forward curve, f0(T ). Thus, any arbitrage-free interest rate model de�ned in

the �ltration generated by a Brownian motion corresponds to a particular choice of

�(t; T ): Also, we note that the HJM models are automatically consistent with the

initial bond prices P (t0; T ) if the initial forward curve chosen relates to these bonds

prices through (2.1). This contrasts with the short rate model approach (see Section

2.4 below) where choosing parameters of the drift is essential for calibrating models

to observed bond prices.

The HJM dynamics (2:25) are described by a multifactor in�nite-dimensional

stochastic equation with the entire forward rate curve as state variable. We note

that it can be transformed to a �rst-order hyperbolic SPDE using the Musiela para-

meterization [61], where the forward curve is parametrized by the time to maturity
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x = T � t :

u(t; x) = f(t; t+ x):

This results in the following SPDE

du(t; x) =

�
@

@x
u(t; x) + ~�(t; x)

�
dt+ ~�>(t; x)dW (t);

u(t0; �) = f(t0; �);

t0 � t � t�; 0 � x � T � � t0;

where ~�(t; x) := �(t; t+ x) and ~�(t; x) := �(t; t+ x):

The HJM model in the framework of stochastic partial di¤erential equation has

attracted a signi�cant amount of attention in the literature, see e.g. the monographs

[18, 25] and references therein.

Here, we have considered exclusively models driven by Wiener processes. For the

literature on the extended HJM methodology for the term structure models driven

by Poisson measures see for instance the monographs [77, 11]. In [24] term structure

models driven by a Lévy process are considered.

2.3 Market model dynamics of LIBOR rates

The models considered in this section are closely related to the HJM framework

(Section 2.2) in that they describe the arbitrage-free dynamics of the term structure

of interest rates through the evolution of forward rates. But they model the dynamics

of simple interest rates, such as LIBOR rates, rather then continuously compounded

forward rates. In this section we shall consider the interest rate market model

developed primarily through the work of Brace, Gatarek, and Musiela (BGM) [14]

and Miltersen, Sandmann, and Sondermann [42]. The term �market model�refers to

the fact that the approach is based on modelling interest rates that are observable in

the market. These models follow the spirit of HJM (see Sections 2.2.2, 2.2.3), where

the drift conditions of the modelled rates are imposed by no-arbitrage considerations
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once the numeraire and volatility structure are speci�ed. The LIBOR market model

is a subclass of the general HJM framework that is derived based on the assumption

of lognormal LIBOR rate dynamics. The motivation for its introduction was to

derive a model consistent with the market practice to price caplets/�oorlets with

Black�s formula.

We consider a class of models in which a �nite set of maturities or tenor dates

t0 = T0 < � � � < TN = T �; Ti = i�; i = 0; : : : ; N; (2.45)

are �xed in advance, where

� = (T � � t0)=N;

denotes the �xed length of the interval between tenor dates and typically is set to

either three or six months.

Let us denote, for simplicity of the presentation, the time t forward LIBOR rate

(2.6) for the accrual period [Ti; Ti+1] and the payment at Ti+1 by

Li(t) : = L(t; Ti; Ti+1);

t0 � t � t� ^ Ti; t0 < Ti � T �; i = 0; : : : ; N � 1:

Also, denote by %(t) the auxiliary index dependent on time t so that

%(t) = min fi = 0; 1; : : : ; N : t < Tig ; (2.46)

i.e., or T%(t) is the closest maturity to the time t from the right.

Recall that the LIBOR rate as of time t is given in the terms of the continuous

forward rate curve at time t by (cf. (2:6) ; (2:2))

1 + �Li(t) = exp

�Z Ti+1

Ti

f(t; u)du

�
: (2.47)
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2.3.1 LIBOR: Risk neutral measure dynamics

We shall follow the BGM original approach [14] which derives the LIBOR market

model from the arbitrage-free dynamics (2.36) of the continuous forward curve under

the risk-neutral measure Q. To specify an HJM model, or equivalently, to specify

instantaneous forward rate volatility function, �(t; T ); we assume that the LIBOR

rate dynamics have lognormal volatility structure, i.e.

dLi(t)

Li(t)
= �Li(t)dt+ �

>
i (t)dW

Q(t); (2.48)

where �i(t) := �(t; Ti; �) is an Rd-valued bounded and piecewise continuous deter-

ministic function and �Li(t) := �L(t; Ti; �) is the drift corresponding to the dynamics

(2.48) which we shall derive below.

Using the Ito formula, (2.47) and (2.39), we have

dLi(t) =
1

�
d exp

�Z Ti+1

Ti

f(t; u)du

�
=

1

�
exp

�Z Ti+1

Ti

f(t; u)du

�
d

�Z Ti+1

Ti

f(t; u)du

�
+
1

2�
exp

�Z Ti+1

Ti

f(t; u)du

�
j�P (t; Ti)� �P (t; Ti+1)j2 dt

=
1

�
exp

�Z Ti+1

Ti

f(t; u)du

��
1

2

�
j�P (t; Ti+1)j2 � j�P (t; Ti)j2

�
dt

+(�P (t; Ti)� �P (t; Ti+1))>dWQ(t)
�

+
1

2�
exp

�Z Ti+1

Ti

f(t; u)du

�
j�P (t; Ti)� �P (t; Ti+1)j2 dt

=
1

�

�
1 + �Li(t)

� �
�>P (t; Ti) (�P (t; Ti)� �P (t; Ti+1)) dt

+(�P (t; Ti)� �P (t; Ti+1))> dWQ(t)
i
:

In order for the LIBOR rate dynamics to have a lognormal volatility structure

(2.48), we need to impose the following restriction on the volatility structure of the

zero-coupon bond prices,

�P (t; Ti)� �P (t; Ti+1) =
�Li(t)

(1 + �Li(t))
�i(t); (2.49)
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or, equivalently,

�P (t; Ti+1) = �
iX

j=%(t)

�Lj(t)

(1 + �Lj(t))
�j(t) + �P (t; T%(t));

t0 � t � t� ^ Ti; t0 � Ti � T �:

Consequently, the LIBOR rate process can be rewritten as

dLi(t)

Li(t)
= �>i (t)

0@ iX
j=%(t)

�Lj(t)

(1 + �Lj(t))
�j(t)� �P (t; T%(t))

1A dt
+�>i (t)dW

Q(t); (2.50)

t0 � t � t� ^ Ti; t0 � Ti � T �:

Remark 2.3.1 (Relationship with the HJM analysis) From the derivation of the

LIBOR rate model it is clear that it is a special case of the general HJM class of

di¤usive interest rate models. It follows from (2.33) and (2.49) that the LIBOR rate

model volatility L(t; T; T + �)�(t; T ; �) is related to the HJM instantaneous volatility

function �(t; T ) by

Z T+�

T

�(t; u)du =
�L(t; T; T + �)

(1 + �L(t; T; T + �))
�(t; T ; �): (2.51)

We can rewrite the r.h.s of (2.51) using (2.47) as

Z T+�

T

�(t; u)du =

�
1� exp

�
�
Z T+�

T

f(t; u)du

��
�(t; T ; �):

Di¤erentiating in T we obtain

�(t; T + �) = �(t; T ) + (f(t; T + �)� f(t; T )) exp
�
�
Z T+�

T

f(t; u)du

�
�(t; T ; �)

+

�
1� exp

�
�
Z T+�

T

f(t; u)du

��
@�(t; T ; �)

@T
:

This gives a recurrence relation. Once �(t; �) is speci�ed for T 2 [0; �) (typically
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one put �(t; T ) = 0 for T 2 [0; �)) it can be solved by forward induction. This results

in a complicated dependence of the HJM instantaneous volatility function �(t; T ) on

the forward rate curve. The question of whether the corresponding HJM equation

has a unique and well-behaved solution was studied in [14] and also in [25].

2.3.2 LIBOR: Forward measure dynamics

We are interested in �nding the LIBOR rate dynamics Li(t) under the forward

measure QTk for the maturity Tk associated with the numeraire P (�; Tk):

Let us �rst consider the probability measure QTi+1 associated with P (�; Ti+1);

i.e. the price of the bond whose maturity coincides with the maturity of the LIBOR

rate. Recall from (2.15) that the LIBOR rate Li(t) is a martingale under the measure

QTi+1. Under the lognormal assumption (cf. (2.50)), we obtain the dynamics of Li(t)

under QTi+1:

dLi(t) = Li(t)�>i (t)dW
QTi+1 (t); t � Ti: (2.52)

Hence, the QTi+1-distribution of logLi(Ti) conditional on Ft is Gaussian with mean

logLi(t)� 1
2

R Ti
t
j�i(s)j2 ds

and variance R Ti
t
j�(s; Ti)j2 ds:

Then, the time t � Ti price of a caplet (2.1.3) set at time Ti with payment date at

Ti+1; with strike K and unit cap nominal value can be evaluated by Black�s formula:

Vcaplet(t) = �P (t; Ti+1)E
QTi+1

�
Li(Ti)�K

�
+

= �P (t; Ti+1)
�
Li(t)�(d1(t))�K�(d2(t))

�
; (2.53)

d1;2 =
log
�
Li(t)
K

�
� 1

2

R Ti
t
j�(s; Ti)j2 dsqR Ti

t
j�(s; Ti)j2 ds

;
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where � is the standard Gaussian cumulative distribution function.

Let us now �nd the dynamics of Li(t) under a measure QTk+1 di¤erent from

QTi+1 : This can be done with the help of the Girsanov theorem. The systematic

procedure of how asset price dynamics change when one changes the numeraire is

described in [15].

First, notice that for Tk > Ti; t � Ti

P (t; Tk+1)

P (t; Ti+1)
= 1=

kY
j=i+1

�
1 + �Lj(t)

�
;

and for Tk < Ti; t � Tk

P (t; Tk+1)

P (t; Ti+1)
=

iY
j=k+1

(1 + �Lsj(t)) :

Let us denote the drift of the Li(t) dynamics under a measure QTk+1 by �Tk+1L (t) and

prove by backward iteration that

�
Tk+1
L (t) =

8>>>><>>>>:
iP

j=k+1

�Lj(t)
1+�Lj(t)

�>i (t)�j(t); Tk < Ti; t � Tk;

�
kP

j=i+1

�Lj(t)
1+�Lj(t)

�>i (t)�j(t); Tk > Ti; t � Ti:

(2.54)

We �rst show that (2.54) holds for the base case k = i � 1: The Radon-Nykodim

derivative process �t relating the measure Q
Ti+1 and QTi (cf. (2.12)) is given by

�t = EQ
Tk+1

�
dQTi

dQTi+1

����Ft�
=

P (t; Ti)P (t0; Ti+1)

P (t0; Ti)P (t; Ti+1)
=
�
1 + �Li(t)

� P (t0; Ti+1)
P (t0; Ti)

;

and hence by (2.52)

d�t =
P (t0; Ti+1)

P (t0; Ti)
�dLi(t) =

P (t0; Ti+1)

P (t0; Ti)
Li(t)�>i (t)dW

QTi+1 (t);
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or
d�t
�t
=
Li(t)�>i (t)

1 + �Li(t)
dWQTi+1 (t):

From the Girsanov theorem, it follows that

dWQTi (t) = dWQTi+1 (t)� Li(t)�i(t)

1 + �Li(t)
dt;

is a QTi� Brownian motion.

Hence,
dLi(t)

Li(t)
=

Li(t)

1 + �Li(t)
�>i (t)�i(t)dt+ �

>
i (t)dW

QTi (t);

and also

dLi�1(t)

Li�1(t)
= � Li(t)

1 + �Li(t)
�>i�1(t)�i(t)dt+ �

>
i�1(t)dW

QTi+1 (t):

For some general k < i� 1; we have analogous to the basis case

d�t =
P (t0; Ti+1)

P (t0; Tk)

iY
j=k+1

d(1 + �Lj(t)):

Applying the product rule for Ito processes, we have

iY
j=k+1

d(1 + �Lj(t))

=

iY
j=k+1

(1 + �Lj(t))

iX
j=k+1

 
�dLj(t)

1 + �Lj(t)
+

iX
l=j+1

�dLj(t)

1 + �Lj(t)

�dLl(t)

1 + �Ll(t)

!

=

iY
j=k+1

(1 + �Lj(t))

iX
j=k+1

(
�

iX
m=j+1

�Lj(t)�>j (t)

1 + �Lj(t)

Lm(t)�m(t)

1 + �Lm(t)
dt

+�>j (t)dW
QTi+1 (t) +

iX
l=j+1

�Lj(t)�>j (t)

1 + �Lj(t)

�Ll(t)�l(t)

1 + �Ll(t)

)

=

iY
j=k+1

(1 + �Lj(t))

iX
j=k+1

�Lj(t)

1 + �Lj(t)
�>j (t)dW

QTi+1 (t):
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From this we conclude that

d�t
�t
=

iX
j=k+1

�Lj(t)

1 + �Lj(t)
�>j (t)dW

QTi+1 (t);

and hence

dWQTk+1 (t) = dWQTi+1 (t)�
iX

j=k+1

�Lj(t)

1 + �Lj(t)
�>j (t)dW

QTi+1 (t)dt:

Then, the dynamics of Li(t) under QTk+1 is given according to the following three

cases

dLi(t)

Li(t)
=

8>>>>>>>>><>>>>>>>>>:

iP
j=k+1

�Lj(t)
1+�Lj(t)

�>i (t)�j(t)dt+ �
>
i (t)dW

QTk+1 (t); Tk < Ti; t � Tk;

�>i (t)dW
QTi+1 (t); Tk = Ti; t � Ti;

�
kP

j=i+1

�Lj(t)
1+�Lj(t)

�>i (t)�j(t)dt+ �
>
i (t)dW

QTk+1 (t); Tk > Ti; t � Ti:

(2.55)

2.4 One factor short rate models

The earliest stochastic interest rate models were models of the short rates and they

are still popular in the �nancial industry. They are all, however are HJM models

and demonstrating that this is the case for a selected number of examples is the

purpose of this section.

We recall from (2.10) that discount bond prices are given by the risk-neutral

expectation

P (t; T ) = EQ
�
exp

�
�
TR
t

r(s)ds

�����Ft� : (2.56)

Thus, knowledge of the risk-neutral dynamics of the short rate process r(t) is in

principle, su¢ cient to compute time t discount bond prices for all maturities T > t:

One approach, for which evaluating expectation in (2.56) becomes particularly

tractable, is to model the short rate as a Gaussian random process. We shall consider
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two examples of such models here, namely the Ho-Lee and the Vasicek models. One

of the drawbacks of Gaussian short rate models is a positive probability of negative

short rates. Another problem is the lack of interest rate dependence of the short rate

volatility and hence no means to control the volatility skew implied by the model.

We shall present one example of the model, namely the Cox-Ingersol-Ross model,

which can address, at least partially, both of these shortcomings. We present below

one-factor models only. For more details on the short-rate modeling approach (e.g.

multifactor models) see e.g. [1, 15, 26, 65, 28, 68].

Example 2.4.1 Ho-Lee model

In the case of the Ho-Lee model, the dynamics of the short rate under the risk

neutral measure Q are given by the stochastic di¤erential equation

dr(t) = �(t)dt+ �rdW
Q(t); r(0) = r0; (2.57)

where �(t) is a deterministic function and �r > 0 is constant.

It is clear that �
R T
t
r(s)ds is Gaussian with mean conditional on Ft equal to

E
�
�
R T
t
r(s)ds

���Ft� = �(T � t)r(t)� R Tt (T � u)�(u)du
and variance conditional on Ft equal to

V ar
�
�
R T
t
r(s)ds

���Ft� = 1

3
�2r(T � t)3:

Hence, from the basic moment properties of lognormal variables we have

P (t; T ) = exp

�
�(T � t)r(t)�

R T
t
(T � u)�(u)du+ 1

6
�2r(T � t)3

�
:

Then, using (2.2), we obtain

f(t; T ) = r(t) +
R T
t
�(u)du� 1

2
�2r(T � t)2;
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and hence

df(t; T ) = �2r(T � t)dt+ �rdWQ(t): (2.58)

We have, thus, established that the forward rate volatility in the Ho-Lee model is

�(t; T ) = �r (cf. (2.36)).

Example 2.4.2 Vasicek model

The Vasicek model assumes that the short rates follow a one-factor Ornstein-

Uhlenbeck process with constant coe¢ cients under the risk-neutral measure, that

is

dr(t) = �(#� r(t))dt+ �rdWQ(t); r(0) = r0; (2.59)

where �, # and �r are positive constants.

Integrating equation (2.59), we obtain, for each s � t;

r(s) = r(t) exp(��(s� t) + (1� exp(��(s� t)))#+ �r
sZ
t

exp(��(s� u)dWQ(u);

so that r(s) conditional on Ft is normally distributed with mean and variance given

by

E (r(s)j Ft) = r(t) exp(��(s� t)) + (1� exp(��(s� t)))#; (2.60)

V ar (r(s)j Ft) =
�2r
2�
[1� exp(�2�(s� t)] : (2.61)

As a consequence of (2.60), the short rate is mean reverting in the sense that if

an interest rate is high for historical reasons, it will most likely fall in the future

(and vice versa if the interest rate is low). As t ! 1; the mean of the short rate

approaches # and the variance goes to �2r=2�: Accordingly, # is regarded as a long

term level (also known as mean reversion level). The speed at which the short rate

can be expected to revert to its long-term level is determined by �; known as the

mean reversion speed.

To establish a discount bond pricing formula (2.56) in the Vasicek model, we
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observe that �
R T
t
r(s)ds is Gaussian with mean conditioned on Ft equal to

E
�
�
R T
t
r(s)ds

���Ft� = �#(T � t)� (r(t)� #) (exp(��(T � t))� 1) =�
and variance conditioned on Ft equal to

V ar
�
�
R T
t
r(s)ds

���Ft� = �2r
4�3

[� exp(�2�(T � t))� 4 exp(��(T � t)) + 2(T � t)�� 3] :

From the standard properties of lognormal random variable, it follows that the

discount bond prices (2.56) in the Vasicek model can be evaluated as

P (t; T ) = exp (A(t; T ) +B(t; T )r(t)) ; (2.62)

where

B(t; T ) =
(1� exp(��(T � t)))

�
;

A(t; T ) =

�
#� �2r

2�2

�
(B(t; T )� (T � t))� �

2
rB(t; T )

4�2
:

Finally, (2.2) and (2.62) yields the form of the initial forward curve

f0(T ) = exp(��(T � t0))r0 + (1� exp(��(T � t0)))# (2.63)

� �
2
r

2�2
(1� exp(��(T � t0)))2 ;

and thus the forward rate volatility corresponding to the Vasicek model becomes

�(t; T ) = �r exp(��(T � t)): (2.64)

Example 2.4.3 Cox-Ingersol-Ross (CIR) model

A special case of time-homogeneous a¢ ne one-factor short rate models (i.e.,

models with the drift and square of the di¤usion linear in r(t)) is the CIR model
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where the risk-neutral short rate dynamics are given by

dr(t) = �(� � r(t))dt+ �r
p
r(t)dWQ(t); r(0) = r0; (2.65)

where � > 0, �r > 0; r0; > 0 and � are constants.

The regularity condition

2�� > �2r;

has to be imposed to ensure that zero is unattainable to the process (2.65), i.e. r(t)

stays strictly positive (see, e.g. [1, 15, 26]).

The process r(t) features a non-central chi-squared distribution with 4��=�2r

degrees of freedom and non-centrality parameter 4�r0 exp(��t)=�2r(1� exp(��t)):

By the Feynman-Kac formula, P (t; x;T ) satis�es the following PDE

@

@t
P (t; x;T ) + �(�� x) @

@x
P (t; x;T ) +

1

2
�2rx

@2

@x2
P (t; x;T )� xP (t; x;T ) = 0; (2.66)

with the terminal condition

P (T; x;T ) = 1:

The solution of this PDE problem is given by

P (t; x;T ) = exp (A(t; T )�B(t; T )x) ;

where A(t; T ) and B(t; T ) satisfy a system of Riccati ODEs (see details in [1, 15, 26])

dA

dt
� ��B = 0;

�dB
dt
+
1

2
�2rB

2 + �B = 1;

with terminal conditions A(T; T ) = 0; B(T; T ) = 0:

Thus, by (2.2) the forward curve must evolve as

f(t; T ) = r(t)
@B

@T
(t; T )� ��

Z T

t

@B

@T
(s; T )ds;
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and the corresponding forward rate volatility has the form

�(t; T ) = �r
p
r(t)

@B

@T
(t; T ):

2.5 Summary

In this Chapter de�nitions and models from the interest rate theory which will be

used throughout the thesis are presented. We introduce various interest rates such

as forward, LIBOR and short rates (Section 2.1.1) along with some popular models

for them (Sections 2:2; 2:3; 2:4 correspondingly). We recall the basic building

blocks for most interest rate derivatives, namely, swaps, caps/�oors and swaptions

(Section 2:1:3). Some fundamental results from the theory of arbitrage-free pricing

of contingent claims are also reviewed (Section 2:1:2).

The focus of the Chapter is on the Heath-Jarrow-Morton framework for mod-

elling of instantaneous forward rates and the corresponding terminology. We high-

light the key elements and assumptions of the HJM modelling philosophy. We

start by presenting the general framework under the objective probability measure

(Sections 2:2:1). Then, the arbitrage-free dynamics under risk-neutral (Sections 2:2:2)

and forward measures (Sections 2:2:3) are derived.

We also explain how this HJM framework uni�es other popular interest rates

models. Namely, we demonstrate how the dynamics of LIBOR (Section 2:3:1) and

short rates (Section 2:4) can be derived from the HJM framework.
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Chapter 3

Numerical methods for

Heath-Jarrow-Morton models

In this thesis we propose and analyze a new class of e¤ective numerical methods for

the HJM equation inspired by the idea of the method of lines (see, e.g. [71]). Our

methods facilitate simulation of the HJM model under various speci�cations. The

primary focus is weak-sense approximations which can be used for valuation of a

broad class of interest rate products. To construct these numerical methods, we �rst

discretise the HJM equation in the maturity time variable T applying quadrature

rules to approximate the arbitrage-free drift (Section 3:4:1). In e¤ect, this reduces

the in�nite-dimensional HJM equation to a �nite-dimensional system of coupled sto-

chastic di¤erential equations (SDEs). In accordance with the method of lines, the

maturity time T is interpreted as a �space�variable while the calendar time t is in-

terpreted as a �time�variable. To obtain fully discrete methods (discrete in both T

and t); we then approximate the obtained �nite-dimensional system of SDEs in the

weak (Section 3:4:2) and mean-square (Section 3:6) senses using the general theory

of numerical integration of SDEs (Section (3.1.2) and also see, e.g. [45, 58, 57]).

The proposed numerical algorithms (see Section 3:5 for realisations of the algorithms

and Section 3:7 for numerical experiments) are computationally highly e¢ cient due

to the use of high-order quadrature rules. The quadrature rules of high orders allow
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us to use relatively large discretisation-steps in maturity time T without a¤ecting

the overall accuracy of the methods. More precisely, the number of forward rates

that need to be approximated at each time moment t are signi�cantly less in our

algorithms than what is usually required when the time-grids for t and T coincide.

Moreover, by capitalising on the method of lines, our numerical methods o¤er �exi-

bility in choosing appropriate approximations in �space�and �time�separately. As

we will see, in practice (see Remark 3.4.7), it is advantageous to use higher-order

quadrature rules for integration with respect to maturity time T and lower-order

numerical schemes for integration with respect to calendar time t.

We shall start this Chapter by presenting material on solutions of SDEs and their

properties based on sources such as [3, 29, 49, 41, 70]. We consider �usual�SDEs

and also a more general form of SDEs which initial value and coe¢ cients depend on

a parameter. We present results (see Section 3.1.1) on existence and uniqueness of

the solutions of such equations and their di¤erentiability with respect to a parameter

if they dependent on it.

It is well-known that only some SDEs can be solved exactly and, in general, an

approximation is required to obtain a numerical solution. In Section (3.1.2) we are

going to be concerned with the numerical issues related to such approximations. We

introduce criteria of mean-square and weak approximations and give examples of

numerical schemes of various orders of accuracy. For a detailed and extensive study

on numerical analysis of stochastic di¤erential equations see [45, 58, 57].

3.1 Introduction to numerical methods for sto-

chastic di¤erential equations

We assume that the following assumptions hold throughout this section. As be-

fore let
�

;F ; fFtgt0�t�t� ;P

�
be a �ltered probability space satisfying the usual

hypotheses and �x a time horizon [t0; t�]. For simplicity, we will drop the measure

superscript on the expectation operator, so will write simply E for the expectation
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under measure P:

To keep this subsection of a manageable size, we will only present the material

relevant to this thesis and forego to carry out the proofs of the theorems, as long as

they can be found exactly as stated in the literature.

3.1.1 The solution of stochastic di¤erential equations

We consider a vector-valued SDE in the Ito sense

X(t) = x0 +

tZ
t0

a(s;X(s))ds+
dX
i=1

tZ
t0

bi(s;X(s))dWi(s); (3.1)

or in an abbreviated di¤erential notation

dX(t) = a(t;X(t))dt+
dX
i=1

bi(t;X(t))dWi(t); (3.2)

X(t0) = x0; (3.3)

where X(t) is an Rn-valued stochastic process de�ned on [t0; t�];

W (t) = (W1(t); : : : ;Wd(t))
> is a d-dimensional standard Wiener process;

a : [t0; t
�]�Rn ! Rn is a measurable function with

R t
t0
ja(s;X(s))j ds < 1 a.s.

for any t 2 [t0; t�] ; bi : [t0; t�]�Rn ! Rn are measurable functions withR t
t0
jbi(s;X(s))j2 ds <1; i = 1; : : : ; d a.s. for any t 2 [t0; t�] ; x0 is an Ft0-measurable

Rn-valued random variable.

The theory of such equations and their solutions being stochastic processes can

be found, e.g. in [3, 29, 41, 70]. Let us give the de�nition of the solution of equation

(3:2) ; (3:3) (see [41, pp. 48]):

De�nition 3.1.1 An Rn-valued stochastic process fX(t)gt0�t�t� is called a solution

of equation (3:2) ; (3:3) if it has the following properties:

(i) fX(t)g is continuous and Ft�adapted;

(ii) equation (3:1) holds for every t 2 [t0; t�] with probability 1.

42



A solution fX(t)g is said to be unique if any other solution fX̂(t)g is indistinguish-

able from fX(t)g; that is

P(X(t) = X̂(t) for all t0 � t � t�) = 1:

We shall now state the conditions that guarantee the existence and uniqueness

of the solution to equation (3:2) ; (3:3) : The proof of this result can be found, e.g.

in ([41, pp. 51]):

Theorem 3.1.2 (existence and uniqueness) Suppose a(t; x) and b(t; x) satisfy the

Lipschitz and linear growth conditions

ja(t; x)� a(t; y)j+ jb(t; x)� b(t; y)j � K jx� yj ; (3.4)

ja(t; x)j2 + jb(t; x)j2 � K2
�
1 + jxj2

�
; (3.5)

for all t 2 [t0; t�] and x; y 2 Rn, where K is a constant. Then the equation (3:2) ;

(3:3) has a unique Rn-valued solution X(t) on [t0; t�] :

We shall now give estimates for the moments of the solution of (3:2) ; (3:3) that

will be used in the thesis (see e.g. [3, pp. 116] for the proof).

Theorem 3.1.3 Suppose that the assumptions of Theorem 3.1.2 are satis�ed and

that

E jx0j2m <1;

where m is a positive integer. Then, for the solution X(t) to equation (3:2) ; (3:3)

on [t0; t�] ;

E jX(t)j2m �
�
1 + E jx0j2m

�
eC(t�t0);

where C = 2m(2m+ 1)K2 and K from (3.4)-(3.5).

Let us consider SDE of the form (3.1) whose initial value x0 and coe¢ cients a

and bi depend on a parameter # which varies through some set of numbers � � R,

i.e., we consider SDE of the form
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X(#; t) = x0(#) +

tZ
t0

a(#; s;X(#; s))ds+

dX
i=1

tZ
t0

bi(#; s;X(#; s))dWi(s); (3.6)

where for each # 2 �, a : �� [t0; t�]�Rn ! Rn is a measurable function withR t
t0
ja(#; s;X(s))j ds < 1 a.s. for any t 2 [t0; t

�] ; bi : �� [t0; t�]�Rn ! Rn are

measurable functions with
R t
t0
jbi(#; s;X(s))j2 ds < 1; i = 1; : : : ; d a.s. for any

t 2 [t0; t�] ; x0 (#) is an F0-measurable Rn-valued random variable.

We �x # 2 � and assume that conditions of Theorem 3.1.2 are satis�ed: Then

the equation (3:6) has on [t0; t�] a unique Rn-valued solution X(t; #); continuous in

t with probability 1:

We shall now be interested in the question of di¤erentiability of the solution of

SDE with respect to a parameter. We present the statement of the theorem which

addresses this issue, for its proof see [49, pp. 105].

Theorem 3.1.4 Suppose that the process x0(#) is j times (continuously) di¤eren-

tiable at a point #0 2 �; and that the functions a(#; s; y), bi(#; s; y) are j times

continuously di¤erentiable with respect to #; y: Furthermore, assume that all deriv-

atives of the foregoing functions, up to order j inclusive, do not exceed K(1 + jyj)m

for any # 2 �; y: Then the process X(#; t) is j times (continuously) di¤erentiable

at the point #0:

3.1.2 Mean-square and weak approximations for stochastic

di¤erential equations

The material presented in this part of the thesis follows closely [58] to which we

refer for a comprehensive study on stochastic numerics.

We consider an equally-spaced grid for time t with step h = (t� � t0)=M :

t0 < � � � < tM = t�; tk = kh; k = 0; : : : ;M: (3.7)
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We use a constant step h to keep notation manageable. All results in this section,

however, are easily extendable to the non-equidistant grids.

A numerical method for the approximation of the solution of (3:2) ; (3:3) on

the grid (3.7) is an algorithm that produces a set of discrete values
�
�X(tk)

	
; k =

0; : : : ;M which approximate the solution X(t) evaluated on the grid (3.7).

De�nition 3.1.5 (Mean-square convergence) We say that a numerical method has a

mean-square order of accuracy q > 0 if there exists a positive constant K independent

of k and h such that �
E
��X(tk)� �X(tk)

��2� 1
2 � Khq: (3.8)

Remark 3.1.6 Often the notion of strong order of accuracy is used: if for some

numerical method �
E
��X(tk)� �X(tk)

��� � Khq; (3.9)

where K is a positive constant independent of k and h, then we say that the strong

order of accuracy of the method is equal to q. Clearly, if the mean-square order of a

method is q, then the method has the same strong order.

In what follows, we will denote by X(tk) or Xk the solution of (3:2) ; (3:3)

evaluated at tk and an approximation of X(tk) by �X(tk) or simply by �Xk: Also,

Xtk;X(t) denotes the solution of (3:2) ; (3:3) for tk � t � t� satisfying the initial

condition X(tk) = X at time tk; where X is an Ftk�measurable random variable

with �nite second moment, i.e. E jXj2 <1:

The one-step approximation �Xt;x(t+ h); t0 � t < t+ h � t�, depends on x; t; h,

and fW1(�)�W1(t); : : : ;Wd(�)�Wd(t); t � � � t+ hg and it is de�ned as follows:

�Xt;x(t+ h) = x+ A(t; x; h;Wi(�)�Wi(t); i = 1; : : : ; d; t � � � t+ h); (3.10)

where by �Xt;x(t+ h) we denote the approximation of the solution at step t+ h such

that �X(t) = x and A is a vector function of dimension n:
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Now based on the one-step approximation we can recurrently construct the ap-

proximations
�
�Xk;Ftk

�
; k = 0; : : : ;M; tk+1 � tk = hk+1; tM = t� :

�X0 = X(t0) = x0; (3.11)

�Xk+1 = �Xtk; �Xk(tk+1) =
�Xk

+A(tk; �Xk; hk+1;Wi(�)�Wi(t); i = 1; : : : ; d; tk � � � tk+1);

where by �Xtk;X(tk+1) denotes the approximation of the solution at step k + 1 satis-

fying the following condition at step k : �X(tk) = X: Clearly,

�Xk+1 = �Xtk; �Xk(tk+1) =
�Xt0; �X0(tk+1):

We shall now provide the statement of the theorem which relates properties of

a one-step approximation with the mean-square order of convergence of the corre-

sponding numerical scheme. The proof of this theorem can be found in [58, Chapter

1] (also see [56, 57]).

Theorem 3.1.7 Suppose the one-step approximation �Xt;x(t + h) has order of ac-

curacy q1 for the expectation and order q2 for the mean-square deviation; more pre-

cisely, for arbitrary t0 � t � t� � h; x 2 Rn the following inequalities hold

��E �Xt;x(t+ h)� �Xt;x(t+ h)
��� � K(1 + jxj2) 12hq1 ; (3.12)

h
E
��Xt;x(t+ h)� �Xt;x(t+ h)

��2i 12 � K(1 + jxj2) 12hq2 ; (3.13)

also let

q2 �
1

2
; q1 � q2 +

1

2
:

Then for any M and k = 0; : : : ;M the following inequality holds:

h
E
��Xt0;X0(tk)� �Xt0;X0(tk)

��2i 12 � K(1 + jX0j2)
1
2hq2�

1
2 ;
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i.e. the mean-square order of accuracy of the method constructed using the one-step

approximation �Xt;x(t+ h) is q = q2 � 1
2
:

Mean-square convergence is a typical criteria in applications concerned with sce-

nario simulation where it is necessary to simulate approximate trajectories of solu-

tions of SDEs. However, in �nance quite often only moments of a function of SDE

solutions are of interest. In pricing of contingent claims, it is the expectation of

a certain payo¤ function that one wants to approximate (cf. (2.9), (2.11)). Thus,

convergence in distribution of the numerical solutions will be su¢ ce. In such appli-

cations the weak convergence is considered. The key results on weak approximations

were obtained in [54, 55, 57, 78, 64].

We say that a function g(x) belongs to class F if we can �nd constants K > 0;

{ > 0 such that for all x 2 Rn the following inequality holds

jg(x)j � K (1 + jxj{) : (3.14)

If a function g(x; s) also depends on parameter s 2 S, then we say that g(x; s)

belongs to F (with respect to the variable x) if the inequality of the type (3.14)

holds uniformly in s 2 S.

De�nition 3.1.8 (Weak convergence) We say that a numerical method has weak

order of accuracy q > 0 if there exists a positive constant K independent of k and h

such that ��Eg(X(tk))� Eg( �X(tk))�� � Khq: (3.15)

Note that numerical integration in the mean-square sense with some order of

accuracy guarantees an approximation in the weak sense with the same order of

accuracy, since if
�
E
��X(tk)� �X(tk

��2� 1
2
= O(hq) then for every function satisfying

a Lipschitz condition we have Eg(X(tk))� Eg( �X(tk) = O(hq):

The one step weak approximation �Xt;x(t+ h) of the solution Xt;x(t+ h) can be

constructed by comparing moments up to su¢ cient order of the vector �Xt;x(t+h)�x

and the corresponding moments of the vector Xt;x(t+ h)� x:

47



Let us along with (3:2) ; (3:3) consider the one-step approximation of the form

�Xt;x(t+ h) = x+ A(t; x; h; �); (3.16)

where � is a random variable (in general a vector) having moments up to su¢ ciently

high order and A is a vector function of dimension n:

According to (3.16), we construct the approximating sequence

�X0 = X0 = X(t0);

�Xk+1 = �Xk + A(t; �Xk; h; �); k = 0; : : : ;M; (3.17)

where �0 is independent of �X0; while �k for k > 0 is independent of �X0; : : : ; �Xk;

�0; : : : ; �k�1:

We denote by �X = X � x = Xt;x(t+ h)� x; � �X = �X � x = �Xt;x(t+ h)� x and

by �X i; � �X i the i-th component of the vectors �X and � �X; correspondingly.

Next, we give the statement of the theorem which relates properties of a one-step

approximation with the weak order of convergence of the corresponding numerical

scheme. The proof of this theorem can be found in [58, Chapter 2] (see also [55, 57,

78]).

Theorem 3.1.9 Suppose that

(a) the coe¢ cients of equation (3:2) are continuous, satisfy a Lipschitz condition

(3.4) and together with their partial derivatives with respect to x of order up to 2p+2,

inclusively, belong to F;

(b) the method (3.16) is such that

�����E
 

sY
j=1

�X ij �
sY
j=1

� �X ij

!����� � K(x)hq+1; s = 1; : : : ; 2p+ 1; K(x) 2 F (3.18)

E

2p+2Y
j=1

��� �X ij
�� � K(x)hq+1; ij = 1; : : : ; n; K(x) 2 F; (3.19)
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(c) the function g(x) together with its partial derivatives of order up to 2p + 2;

inclusively, belong to F;

(d) for a su¢ ciently large m the expectation E
�� �Xk

��2m exist and are uniformly

bounded with respect to M and k = 0; : : : ;M:

Then, for all M and all k = 0; : : : ;M the following inequality holds:

��Eg(Xt0;X0(tk))� Eg( �Xt0;X0(tk))
�� � Khq;

i.e., the method (3.17) has order of accuracy q in the sense of weak approximations.

We shall now give examples of some numerical algorithms for SDE (3:2)� (3:3).

For this purpose let us recall the Ito-Taylor expansion of solutions of SDE (see, e.g.

[45, 58, 57]). For the clarity of presentation, we start with the integral representation

of (3:2) :

Xt;x(t+ h) = x+

t+hZ
t

a(s;X(s))ds+
dX
i=1

t+hZ
t

bi(s;X(s))dWi(s): (3.20)

Applying Ito�s formula to a(s;X(s)) gives

a(s;X(s)) = a(t; x) +

sZ
t

La(u;X(u))du+
dX
i=1

sZ
t

�ia(u;X(u))dWi(u); (3.21)

where the operators L and �i; i = 1; : : : ; d are given by

L =
@

@t
+ a>

@

@x
+
1

2

dX
i=1

nX
m=1

nX
j=1

bmi b
j
i

@2

@xm@xj
;

�i =

nX
j=1

bji
@

@xj
:

Similarly,

bi(s;X(s)) = bi(t; x) +

sZ
t

Lbi(u;X(u))du+
dX
j=1

sZ
t

�jbi(u;X(u))dWj(u): (3.22)
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Plugging (3.21) and (3.22) into (3.20), we obtain

Xt;x(t+ h) = x+ a(t; x)h+

dX
i=1

bi(t; x)(Wi(t+ h)�Wi(t)) + �1; (3.23)

where

�1 =

t+hZ
t

0@ sZ
t

La(u;X(u))du

1A ds+ dX
i=1

t+hZ
t

0@ sZ
t

�ia(u;X(u))dWi(u)

1A ds
+

dX
i=1

t+hZ
t

0@ sZ
t

Lbi(u;X(u))du

1A dWi(s) (3.24)

+
dX
i=1

dX
j=1

t+hZ
t

0@ sZ
t

�jbi(u;X(u))dWj(u)

1A dWi(s):

We can repeat this procedure arbitrary many times assuming a and bi are su¢ ciently

smooth. Just applying it one more time we arrive at

Xt;x(t+ h)

= x+ a(t; x)h+
dX
i=1

bi(t; x)(Wi(t+ h)�Wi(t))

+La(t;X(t))
h2

2
+

dX
i=1

�ia(t;X(t))

t+hZ
t

(Wi(s)�Wi(t)) ds

+
dX
i=1

Lbi(t;X(t))

t+hZ
t

(s� t) dWi(s)

+
dX
i=1

dX
j=1

�jbi(t;X(t))

t+hZ
t

(Wj(s)�Wj(t)) dWi(s) + �2; (3.25)

�2 =

t+hZ
t

sZ
t

0@ uZ
t

L2a(u1; X(u1))du1

+

dX
i=1

uZ
t

�iLa(u1; X(u1))dWi(u1)

1A du ds
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+

dX
i=1

t+hZ
t

sZ
t

0@ uZ
t

L�ia(u1; X(u1))du1

+

dX
j=1

uZ
t

�j�ia(u1; X(u1))dWj(u1)

1A dWi(u) ds

+
dX
i=1

t+hZ
t

sZ
t

0@ uZ
t

L2bi(u1; X(u1))du1

+

dX
j=1

uZ
t

�jLbi(u1; X(u1))dWj(u1)

1A du dWi(s)

+

dX
i=1

dX
j=1

t+hZ
t

sZ
t

uZ
t

L�jbi(u1; X(u1)) du1 dWj(u) dWi(s)

+
dX
i=1

dX
j=1

dX
m=1

t+hZ
t

sZ
t

uZ
t

�i�jbk(u1; X(u1)) dWm(u1) dWj(u) dWi(s):

The truncated Ito-Taylor expansion based on (3.23):

�Xt;x(t+ h) = x+ a(t; x)h+
dX
i=1

bi(t; x)(Wi(t+ h)�Wi(t)); (3.26)

corresponds to the one-step Euler approximation.

By (3.11), this approximation generates the explicit Euler method:

�X0 = x0;

�Xk+1 = �Xk + akh+

dX
i=1

bik(Wi(tk + h)�Wi(tk)); (3.27)

where ak; bjk are the values of the coe¢ cients a and bj evaluated at the point (tk; Xk):

To establish the mean square order of accuracy, we shall �nd q1 and q2 as in

Theorem 3.1.7. We assume that functions a(t; x) and b(t; x) have partial derivatives

with respect to t up to order one and with respect to x up to order two which belong

to F:
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From (3.23) and (3.26), we have

��E �Xt;x(t+ h)� �Xt;x(t+ h)
��� = jE�1j :

The form of the remainder �1 (3.24) and the fact that La 2 F imply that we can

�nd an even number 2m and a number K > 0 such that

jE�1j =

������E
t+hZ
t

0@ sZ
t

La(u;X(u))du

1A ds
������

�

������
t+hZ
t

0@ sZ
t

K
�
1 + E jX(u)j2m

�1A ds
������ ;

Moreover, with help of Theorem 3.1.3, we conclude

jE�1j � K(x)h2; K(x) 2 F; (3.28)

i.e. q1 = 2. Next, to �nd q2, we estimate the mean-square deviation of the one-step

approximation �Xt;x(t+ h) as follows:

E
��Xt;x(t+ h)� �Xt;x(t+ h)

��2 = E j�1j2 (3.29)

� K

0B@E
������
t+hZ
t

0@ sZ
t

La(u;X(u))du

1A ds
������
2

+ E

������
dX
i=1

t+hZ
t

0@ sZ
t

�ia(u;X(u))dWi(u)

1A ds
������
2

+E

������
dX
i=1

t+hZ
t

0@ sZ
t

Lbi(u;X(u))du

1A dWi(s)

������
2

+E

������
dX
i=1

dX
j=1

t+hZ
t

0@ sZ
t

�jbi(u;X(u))dWj(u)

1A dWi(s)

������
2
1CA

Let us estimate each term in (3.29) separately based on the assumption that La 2 F;

Lbi 2 F; �ia 2 F; �jbi 2 F, also using the Ito isometry, Cauchy�Bunyakovsky
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inequality and Theorem 3.1.3:

E

������
t+hZ
t

0@ sZ
t

La(u;X(u))du

1A ds
������
2

� hE

0@ t+hZ
t

0@ sZ
t

(1 + jX(u)j�) du

1A2

ds

1A � Kh3
t+hZ
t

sZ
t

�
1 + E jX(u)j2�

�
du ds

� K(x)h5; K(x) 2 F; (3.30)

E

������
dX
i=1

t+hZ
t

0@ sZ
t

�ia(u;X(u))dWi(u)

1A ds
������
2

� KE

dX
i=1

0@ t+hZ
t

0@ sZ
t

�ia(u;X(u))dWi(u)

1A ds
1A2

� KhE
dX
i=1

t+hZ
t

0@ sZ
t

�ia(u;X(u))dWi(u)

1A2

ds

� Kh
dX
i=1

t+hZ
t

sZ
t

�
1 + E jX(u)j2�

�
du ds � K(x)h3; K(x) 2 F; (3.31)

E

������
dX
i=1

t+hZ
t

0@ sZ
t

Lbi(u;X(u))du

1A dWi(s)

������
2

� KE
dX
i=1

0@ t+hZ
t

0@ sZ
t

Lbi(u;X(u))du

1A dWi(s)

1A2

� K
dX
i=1

0@ t+hZ
t

E

0@ sZ
t

Lbi(u;X(u))du

1A2

ds

1A
� Kh

dX
i=1

0@ t+hZ
t

sZ
t

�
1 + E jX(u)j2�

�
du ds

1A � K(x)h3; K(x) 2 F; (3.32)
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E

������
dX
i=1

dX
j=1

t+hZ
t

0@ sZ
t

�jbi(u;X(u))dWj(u)

1A dWi(s)

������
2

� KE

dX
i=1

dX
j=1

0@ t+hZ
t

0@ sZ
t

�jbi(u;X(u))dWj(u)

1A dWi(s)

1A2

� K
dX
i=1

dX
j=1

0@ t+hZ
t

sZ
t

�
1 + E jX(u)j2�

�
du ds

1A � K(x)h2; K(x) 2 F:(3.33)

Based on estimates (3.30)-(3.33), we conclude that

E j�1j
2 � K(x)h2; K(x) 2 F; (3.34)

i.e. q2 = 1: Therefore, according to Theorem 3.1.7 the Euler method (3.27) has

mean-square order of convergence equal to 1=2: In the case of additive noise, i.e.

when bk(t; x) � bk(t), based on (3.31),(3.32) we �nd that q2 = 3=2: This implies

that the Euler method (3.27) for systems with additive noise is of the �rst mean-

square order.

Additionally assuming that a(t; x) and b(t; x) have partial derivatives in x up to

order four that belong to F; we shall demonstrate that the Euler method has the

�rst order of weak convergence. Speci�cally, by Theorem 3.1.9 we should establish

that the following inequalities hold

�����E
 

sY
j=1

�X ij �
sY
j=1

� �X ij

!����� � K(x)h2; s = 1; : : : ; 3; K(x) 2 F; (3.35)

E
4Y
j=1

��� �X ij
�� � K(x)h2; ij = 1; : : : ; n; K(x) 2 F;

where

�X ij = X
ij
t;x(t+ h)� xij = aij(t; x)h+

dX
k=1

b
ij
k (t; x)

t+hZ
t

dWk(s)ds+ �
ij
1 ;

� �X ij = �X
ij
t;x(t+ h)� xij = aij(t; x)h+

dX
k=1

b
ij
k (t; x)

t+hZ
t

dWk(s)ds;
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and �1 is from (3.24).

To show that the inequalities under consideration hold, we will use the following

estimate ������E�1
t+hZ
t

dWk(s)

������ � K(x)h2; K(x) 2 F; (3.36)

To proof (3.36), we note that the expectation of the norm of the �rst three terms in

�1 multiplied by
t+hR
t

dWk(s) has at least the second order of smallness with respect

to h: This follows from the application of the Cauchy�Bunyakovsky inequality to

this product and, subsequently, (3.30)-(3.32). To show that this also holds for the

last term in �1 multiplied by
t+hR
t

dWk(s); we apply Ito�s formula to this last term in

�1:

dX
i=1

dX
j=1

t+hZ
t

0@ sZ
t

�jbi(u;X(u))dWj(u)

1A dWi(s) (3.37)

=
dX
i=1

dX
j=1

�jbi(t;X(t))

t+hZ
t

sZ
t

dWj(u) dWi(s)

+
dX
i=1

dX
j=1

t+hZ
t

sZ
t

uZ
t

L�jbi(u1; X(u1)) du1 dWj(u) dWi(s)

+
dX
i=1

dX
j=1

dX
m=1

t+hZ
t

sZ
t

uZ
t

�i�jbk(u1; X(u1)) dWm(u1) dWj(u) dWi(s):

All terms in (3.37), except of the �rst one, have order of smallness at least 3=2: Using

the Cauchy�Bunyakovsky inequality, we can readily show that the expectation of

absolute value of the product of each of such terms with
t+hR
t

dWk(s) is smaller or

equal to K(x)h2; K(x) 2 F: Let us now prove that the expectation of the product

of the �rst term in (3.37) with
t+hR
t

dWk(s) is zero, i.e.

E

0@ dX
i=1

dX
j=1

�jbi(t;X(t))

t+hZ
t

sZ
t

dWj(u) dWi(s) �
t+hZ
t

dWk(s)

1A = 0: (3.38)
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Indeed, by changing the variables

Vk = �Wk; k = 1; : : : ; d;

where Vk are independent Wiener processes. Since the number of Wiener processes

participating in (3.38) is odd,. we have

E

0@ t+hZ
t

sZ
t

dWj(u) dWi(s) �
t+hZ
t

dWk(s)

������Ft
1A

= �E

0@ t+hZ
t

sZ
t

dVj(u) dVi(s) �
t+hZ
t

dVk(s)

������Ft
1A ;

which implies (3.38). Establishing (3.38) completes the proof of (3.36)

For s = 1; i.e. we are considering �rst moments, (3.35) follows from (3.28). For

s = 2; (3.35) holds, since we have

�����E
 

2Y
j=1

�X ij �
2Y
j=1

� �X ij

!�����
=

������E
2X
j=1

0@�ij1 aij(t; x)h+ �ij1 dX
k=1

b
ij
k (t; x)

t+hZ
t

dWk(s)ds

1A+ �i11 �i21
������

� K(x)h3 +K(x)h2 +K(x)h2 � K(x)h2; K(x) 2 F;

where we used (3.28), (3.34), (3.36) and the Cauchy�Bunyakovsky inequality. This

also already makes clear that for s = 3 all terms contain at least one component of

�1 as a factor and, hence, have order of smallness at least 2 with respect to h:

For weak convergence we only need to approximate the measure induced by

the process, hence we can replace the Wiener process increments by other random

variables with similar �rst four moment properties. Thus, by choosing more easily

replicated increments we can obtain a simpler scheme. For instance, the method

usually called as the weak Euler scheme

�X0 = x0;
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�Xk+1 = �Xk + akh+
dX
i=1

bik�ik
p
h; (3.39)

where �j;k k = 0; : : : ;M�1, are independent random variables distributed by the law

P (� = �1) = 1=2; also has �rst order of accuracy in the sense of weak approximation.

With addition of one extra term from the Ito-Taylor expansion (3.25) to the

Euler scheme we obtain the one-step approximation

�Xt;x(t+ h) = x+ a(t; x)h+
dX
i=1

bi(t; x)(Wi(t+ h)�Wi(t))

+

dX
j=1

dX
i=1

�jbi(t;X(t))

t+hZ
t

(Wj(s)�Wj(t)) dWi(s): (3.40)

Iteratively progressing forward this results in the Milstein scheme (see [53, 45, 58,

57]):

�X0 = x0;

�Xk+1 = �Xk + akh+
dX
i=1

bik(Wi(tk + h)�Wi(tk))

+
dX
i=1

dX
j=1

�jbik

tk+hZ
tk

(Wj(s)�Wj(t)) dWi(s): (3.41)

For this method we have

E
��Xt;x(t+ h)� �Xt;x(t+ h)

�� = O(h2);
E
��Xt;x(t+ h)� �Xt;x(t+ h)

��2 = O(h3);
i.e. q1 = 2 and q2 = 3=2, yielding �rst order of the mean-square convergence for

(3.41) according to Theorem 3.1.7.

We remark that in the general case we will face with the di¢ culty of simulating

multiple stochastic integrals appearing in scheme (3.41) since they cannot be easily

expressed in terms of Wiener process increments. However, it is clearly possible for
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a single noise (d = 1) since

tk+hZ
tk

(W (s)�W (t)) dW (s) = 1

2
(W (tk + h)�W (tk))2 �

1

2
h:

The Milstein scheme (3.41) has the same weak order of accuracy as the Euler

method does. This illustrates the fact that an increase in the order of accuracy in

the mean-square sense does not in general imply an increase of the weak order of

accuracy.

Finally, we shall consider a scheme, which will be of the second weak order. The

one-step approximation is obtained by truncating the remainder in (3.25). Using

the identity

t+hZ
t

(s� t) dWi(s) = h

t+hZ
t

dWi(s)�
t+hZ
t

(Wi(s)�Wi(t))ds;

the one-step approximation becomes

�Xt;x = x+ ah+
dX
i=1

bi

t+hZ
t

dWi(s) + La
h2

2

+

dX
i=1

(�ia� Lbi)
t+hZ
t

(Wi(s)�Wi(t)) ds+

dX
i=1

Lbi

t+hZ
t

dWi(s)h

+

dX
i=1

dX
j=1

�jbi

t+hZ
t

(Wj(s)�Wj(t)) dWi(s);

where the coe¢ cients a; bi; La; �ia; Lbi; �jbi are evaluated at the point (t; x):

The corresponding method where we replace the Wiener process increments by

simpler random variables has the form ([54, 57, 58, 78, 45]):

Xk+1 = Xk + akh+

dX
i=1

bik�ikh
1=2 + (La)k

h2

2
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+
1

2

dX
i=1

(�ia+ Lbi)k �ikh
3=2 +

dX
i=1

dX
j=1

(�jbi)k �ijk; (3.42)

where �ijk satisfy

�ijk =
1

2
�ik�jk �

1

2
�ij� ik�jk; �ij =

8>>>><>>>>:
�1; i < j;

1; i � j;

and �ik and � ik k = 0; : : : ;M � 1, are independent random variables distributed by

the corresponding law P (� = 0) = 2=3; P (� = �
p
3) = 1=6 and P (� = �1) = 1=2:

3.2 The HJM framework: revisited

In this Section we shall revisit (see Section 2.2) the HJM model under risk-neutral

measure Q in order to state the assumptions we impose on the volatility and initial

forward curve. These assumptions guarantee the existence of the unique strong

solution of the SDE corresponding to HJM model and are su¢ cient for construction

of the class of numerical methods proposed in Section 3.4. We shall also formulate a

pricing problem for European type interest rate products which will used to illustrate

the numerical algorithms proposed.

As before (see Chapter 2), we assume that there exists an arbitrage-free market

with a frictionlessly traded continuum of default-free zero-coupon bonds fP (t; T );

t � T; T 2 [t0; T �] ; t 2 [t0; t�]g; where P (t; T ) denotes the price at calendar time t

of a bond with maturity T . We require that P (T; T ) = 1 and P (t; T ) is su¢ ciently

smooth in the maturity variable T:

The HJM framework [36] models the dynamics of the forward curve (see Section

2.2.1)

ff(t; T ); t � T; T 2 [t0; T �] ; t 2 [t0; t�]g :

We recall from Section 2.2.2, that given an integrable deterministic initial forward
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curve

f(t0; T ) = f0(T );

the arbitrage-free dynamics of the forward curve under the risk-neutral measure Q

associated with the numeraire B(t) (cf. (2.4),(2.5)) are modelled through an Ito

process of the form

f(t; T )� f0(T ) =

Z t

t0

�>(s; T )

�Z T

s

�(s; u)du

�
ds (3.43)

+

Z t

t0

�>(s; T )dWQ(s); t0 � t � t� ^ T; t0 � T � T �;

where W (t) = (W1(t); : : : ;Wd(t))
> is a d-dimensional standard Wiener process de-

�ned on a �ltered probability space
�

;F ; fFtgt0�t�t� ;Q

�
satisfying the usual hy-

potheses; �(t; T ) is an Rd-valued Ft-progressively measurable stochastic process withR T
t0
j�(s; T )j2 ds <1; and t� ^ T := min(t�; T ):

In general, the volatility �(t; T ) := �(t; T; !) can depend on the current and past

values of forward rates. In this thesis we restrict ourselves to the case in which �

depends on the current forward rate only, i.e.,

�(t; T ) := (�1(t; T; f(t; T )); : : : ; �d(t; T; f(t; T )))
>; (3.44)

where �i(t; T; z); i = 1; : : : ; d; are deterministic functions de�ned on [t0; t�]�[t0; T �]�

R: Then the term
R T
s
�(s; u)du in (3.43) can be written as

R T
s
�(s; u; f(s; u))du, and,

consequently, (3.43)-(3.44) is an in�nite-dimensional SDE. We impose the following

assumptions on the HJM model (3.43)-(3.44).

Assumption 3.2.1 The functions �i(t; T; z); i = 1; : : : ; d; are uniformly bounded,

i.e., there is a constant C > 0 such that

j�i(t; T; z)j � C; (t; T; z) 2 [t0; t�]� [t0; T �]� R: (3.45)
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Assumption 3.2.2 For su¢ ciently large p1; p2 � 1; the partial derivatives

@j+k+l�i(t; T; z)

@tj@T k@zl
, 0 � j � p1; 0 � k + l � p2; i = 1; : : : ; d; (3.46)

are continuous and uniformly bounded in [t0; t�]� [t0; T �]� R.

Assumption 3.2.3 The initial forward curve f0(T ); T 2 [t0; T �] ; is deterministic

and su¢ ciently smooth.

The imposed conditions are su¢ cient to ensure that the stochastic equation

(3.43)-(3.44) has a unique strong solution f(t; T ) (cf. Theorem 3:1:2); which is

su¢ ciently smooth in the last argument (cf. Theorem 3.1.4), (see [36, 79] and also

[49, 29] for di¤erentiating SDE solutions with respect to a parameter).

Further, it is not di¢ cult to show (see Appendix A) that they imply boundedness

of exponential moments of f(t; T ); i.e., for any c 2 R there is a constant C > 0 such

that

EQ exp(cjf(t; T )j) < C (3.47)

for all (t; T ) 2 [t0; t�] � [t0; T �] : The constant C in (3.47) depends on the initial

forward curve f0(T ); volatility �(t; T; z); and on c:

Remark 3.2.4 As it was shown in [79], for the SDE (3:43)-(3:44) to have the

unique strong solution it su¢ ces to require a weaker assumption than Assump-

tion 3.2.1:

j�i(t; T; z)j � C
�
1 + jzj1=2

�
:

However, in the thesis we restrict ourselves to the stronger set of conditions which

allow us to consider methods of higher order. Assumptions 3.2.1-3.2.3 are su¢ -

cient for all the statements in this thesis. The choice of p1 and p2 depends on a

particular algorithm (as usual, the more accurate an algorithm the more derivatives

are needed). At the same time, the imposed conditions are not necessary and the

proposed numerical methods themselves can be used under broader assumptions.
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We pay attention that Assumptions 3.2.1-3.2.3 do not guarantee positiveness of

f(t; T ) which could be a desirable property taking into account the �nancial context

of the HJM model. One can notice that if we also require that

f0(T ) � 0 and �i(t; T; 0) = 0; i = 1; : : : ; d; (t; T ) 2 [t0; t�]� [t0; T �];

then the forward rates are nonnegative f(t; T ) � 0 for all (t; T ) 2 [t0; t�]� [t0; T �]:

We will illustrate our numerical methods for the HJM model (3.43)-(3.44) by

pricing interest rates derivatives of European-type which we described in Section

2.1.3. Among these instruments are interest rate caps, �oors, and swaptions [1,

15, 18, 26, 65, 28, 68]. A cap price is obtained by summing up the prices of the

underlying caplets. Consider a caplet set at time sk with payment date at si > sk;

with strike K and unit cap nominal value. We recall from Section 2.1.3, that its

price at time t0 � sk is given by (cf. (2.20))

EQ exp

�
�
Z sk

t0

r(u)du

��
1� (1 +K(si � sk)) exp

�
�
Z si

sk

f(sk; u)du

��
+

: (3.48)

Now consider a payer swaption of maturity sk and with underlying swap maturity

si > sk: Its price at time t0 � sk can be found as (cf. (2.23))

EQ exp

�
�
Z sk

t0

r(u)du

��
1� exp

�
�
Z si

sk

f(sk; u)du

�
(3.49)

�K
iX

j=k+1

(sj � sj�1) exp
�
�
Z sj

sk

f(sk; u)du

�#
+

:

Let G(z); z 2 R; be a payo¤ function satisfying the global Lipschitz condition,

i.e.,

jG(z)�G(z0)j � K jz � z0j ; z; z0 2 R: (3.50)

In this thesis, motivated by the above examples, we consider the price of a generic
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interest rate contract under risk-neutral measure of the form

F (t0; f0 (�) ; sk; si) = E exp(�Y (sk))G (P (sk; si)) ; (3.51)

where

Y (sk) =

Z sk

t0

r(u)du; (3.52)

P (sk; si) = exp (�Z(sk; si)) ; (3.53)

and

Z(sk; si) =

Z si

sk

f(sk; u)du: (3.54)

We note that (3.51) does not cover the case of swaptions (3.49). To include

swaptions, the payo¤G in (3.51) should be of the form G (P (sk; sk+1); : : : ; P (sk; si))

and

F (t0; f0 (�) ; sk; sk+1; : : : ; si) = E exp(�Y (sk))G (P (sk; sk+1); : : : ; P (sk; si)) : (3.55)

We limit ourselves in the thesis to the payo¤ of the form (3.51) for the sake of

transparent exposition. All the proposed numerical algorithms are applicable to the

more general form of the payo¤ (3.55). Also, no additional ideas are required to

extend our theoretical analysis to the case (3.55).

Remark 3.2.5 (Forward measure pricing) The HJM dynamics can be written under

the sk-forward measure (see Section 2.2.3) instead of the risk-neutral measure. We

recall that the corresponding SDE has the form (cf. (3:43)):

f(t; T )� f0(T ) =

Z t

t0

�>(s; T )

�Z T

sk

�(s; u)du

�
ds+

Z t

t0

�>(s; T )dW sk(s);(3.56)

t0 � t � t� ^ T ^ sk; t0 � T � T �;

with W sk(s) being a d-dimensional standard Wiener process under the sk-forward

measure Qsk : The pricing formula for a generic interest rate contract with payo¤
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G (P (sk; si)) under Qsk is (cf. (2:11)):

F (t0; f0 (�) ; sk; si) = P (t0; sk)EQ
sk (G (P (sk; si))) : (3.57)

This form is computationally simpler than (3:51) since it does not require evaluation

of the short rate. At the same time we note that pricing of some interest rate products

(e.g., Eurodollar futures) require the use of risk-neutral measure [15, 62]. In this

thesis we construct numerical algorithms for approximating (3:51): Obviously, these

algorithms are readily (actually more easily) applicable to (3:57):

3.3 Review of existing numerical methods for

HJM model

The HJM model has closed-form solutions only for some special cases of volatility,

and valuations under the HJM framework usually require a numerical approxima-

tion. Before embarking on the construction of the numerical algorithms for HJM

model, we are going to review the existing methods. As far as we know, the literature

on numerics for the HJM model is rather sparse.

The common approach (see, e.g. [35, 40, 31, 32, 12] and the references therein)

is to discretize the HJM equation itself taking coinciding grids in the calendar time

t and in the maturity time T: As we will see, the requirement of taking the same

steps in calendar and maturity times limits e¢ ciency of numerical schemes. The

known methods di¤er in the way they approximate the integral in the arbitrage-

free drift of the HJM model while they all use Euler-type schemes for discretization

in calendar time. In [35, 40, 31, 32] approximations of the arbitrage-free drift are

chosen so that the overall discrete approximations of the HJM equation preserve the

martingale property for the discretized discounted bond process. Moreover, in [32]

a variance-reduction technique based on a combination of importance sampling and

strati�ed sampling for pricing path-dependent European-style interest rate options
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in a multifactor HJM setting is analysed. The authors in [12] present two numerical

methods for HJMmodel, Euler type �nite di¤erence and �nite element methods, and

prove their error estimates which can be useful for adaptive algorithms. Though,

the setting considered is restricted to the volatility function depending the forward

curve only through the current short rate.

A di¤erent numerical approach, based on Galerkin approximation, is consid-

ered in [52]. In this paper, the problem of valuing American type interest rate

products is characterised as the solution of an in�nite-dimensional Hamilton-Jacobi

variational inequality which reduces to the Kolmogorov backward equation for the

products exclusive of early exercise. The forward rate curve is approximated using

a Fourier-Legendre expansion resulting in a �nite-dimensional approximation of the

in�nite-dimensional HJM equation and associated valuing problem. This valuing

problem is further approximated by a nonlinear partial di¤erential equation trough

the use of the penalization technique. An adaptive method-of-lines extrapolation

�nite element method based upon the penalised formulation of the valuing problem

is proposed. The spacial semi-discretisation in terms of the linear �nite element ba-

sis is introduced. Whereas, the semi-implicit discretization in time based upon the

backward Euler method is employed to obtain fully discreet analogue of the valuing

problem.

Using the Musiela parametrization (Section 2.2.4, see also [61, 25, 18]), the HJM

equation can be re-written in the form of a �rst-order stochastic partial di¤erential

equation (SPDE) which then can be approximated using an SPDE solver. Such an

approach was used, e.g., in [22, 23]. In [23], the authors consider the HJM SPDE

with stochastic volatility chosen as a mean-reverting Ornstein-Uhlenbeck process. A

symmetrically weighted sequential splitting scheme of weak order 2 along with Quasi-

Monte Carlo algorithm is analysed within this setting. It is argued in this paper

that higher-order weak approximation schemes can be used together with Quasi

Monte Carlo algorithms to obtain an e¢ cient pricing method, which is superior to

Multi-level Monte Carlo. The e¢ ciency of the numerical method is demonstrated
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by the calibration of the model to a caplet data. Also, a payer swaption is priced

using the calibrated model.

We note that, in comparison with other works, the papers [12, 22, 23, 52] rigor-

ously proof convergence results of the proposed numerical methods.

3.4 New class of numerical methods for

HJM model

In this section we construct a numerical method for simulating (3.51) with the for-

ward rates f(t; T ) satisfying the in�nite-dimensional SDE (3.43)-(3.44). Examples

of some particular algorithmic realizations of this method are given in Section 3.5.

This section is organized in the following way. We �rst introduce a maturity time

discretization (T -discretization) and arrive at a �nite-dimensional approximation of

(3.43)-(3.44), i.e., at a �nite system of SDEs (Section 3.4.1). Then (Section 3.4.2)

we discretize time (t-discretization) and apply a weak-sense numerical integrator to

the obtained �nite system of SDEs. Finally, Section 3.4.3 deals with approximating

the functionals Y and Z from (3.52)-(3.54) and the option price (3.51).

For the simplicity of presentation, we consider equally-spaced grids for maturity

time T and time t: A nonuniform discretization might be needed in practical �nancial

applications, and a generalization of the proposed algorithms to nonuniform time

grids is straightforward.

3.4.1 T -discretization

Consider a uniform partition of the maturity time interval [t0; T �] with a maturity

time step (T -step) � = (T � � t0)=N :

t0 = T0 < � � � < TN = T �; Ti = i�; i = 0; : : : ; N: (3.58)
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Figure 3.1: Index notation for the closest node on the grid (3.58) to the time t from
the left (or from the right), denoted by T`(t) (or by T%(t)).

We note that the grid (3.58) has clearly di¤erent meaning to the partition introduced

in Chapter 2, though we use a similar notation as it is standard for both cases.

We shall �rst introduce the index notation we are going to use. Denote by `(t)

the auxiliary index dependent on time t so that

`(t) = max fi = 0; 1; : : : ; N : t � Tig ; (3.59)

and by %(t) the auxiliary index dependent on time t so that

%(t) = min fi = 0; 1; : : : ; N : t < Tig ; (3.60)

i.e., T`(t) � t < T%(t) and T`(t) (or T%(t)) is the closest node on the grid (3.58) to the

time t from the left (or from the right). See Figure 3.1 for illustration of this index

notation. We also point out that %(t) = `(t) + 1:

Further, we require for simplicity that � is su¢ ciently small so that a number

of nodes Ti between t� and T � is su¢ cient for realization of all the quadrature

rules and interpolation/extrapolation used in the method which we introduce in
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this Section 3.4. We will pay attention to the required amount of nodes between

t� and T � in the method�s description. At the same time, if in practical realization

the distance between t� and T � is relatively small in comparison with the chosen

T -step �; then one would need to run simulation for a slightly longer maturity-time

interval, extending it beyond T � by a few steps of � (see further explanation in

Section 3.5.3).

For a node Ti, i = 0; : : : ; N; on the maturity time grid (3.58), we approximate

the integrals in (3.43):

Ij(s; Ti) :=

Z Ti

s

�j(s; u)du; j = 1; : : : ; d; t0 � s � t� ^ Ti; i = 1; : : : ; N; (3.61)

by a composite quadrature rule SIj(s; Ti;�) :

Ij(s; Ti) � SIj(s; Ti;�) = �
�(s;Ti)X
k=%(s)

k(s)�j(s; Tk); (3.62)

where the quadrature rule�s weights k(s) and the nodes k = %(s); : : : ; �(s; Ti) are

chosen so that under Assumptions 3.2.1-3.2.3 the approximation is of order O(�p)

for a given p � 1; i.e., the numerical integration error is estimated as

�
E
h
S
Ij
(s; Ti;�)� Ij(s; Ti)

i2�1=2
� C�p (3.63)

with a constant C > 0 independent of�; s; Ti; j: Some examples of such quadratures

are given in Section 3.5. We note (see details in Section 3.5) that when s and Ti

are close, to approximate Ij(s; Ti) with a required accuracy the number �(s; Ti) in

(3.62) can be chosen larger than i: We recall that since we assumed that there is a

su¢ cient number of nodes between t� and T � the number �(s; Ti) does not exceed

N: We will also use the vector notation I(s; Ti) := (I1(s; Ti); : : : ; Id(s; Ti))
> and

SI(s; Ti;�) := (SI1(s; Ti;�); : : : ; SId(s; Ti;�))
>:

For a �xed T = Ti; it is convenient for later purposes (namely, for computing

the short rate r(t) = f(t; t) as it will become clear in Section 3.4.3) to consider the
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SDE (3.43)-(3.44) on a slightly larger time interval: t0 � t � t� ^ T(i+1)^N ; i.e., for

Ti < t
� (note that t� � TN) we would like to extend the de�nition of f(t; Ti) from

t 2 [t0; Ti] to t 2 [t0; Ti+1]: Though from the point of view of �nancial applications the

forward rate f(t; Ti) is not de�ned on the interval t 2 (Ti; Ti+1]; Assumptions 3.2.1-

3.2.3 guarantee that (3.43)-(3.44) has the strong solution on the extended interval

and, as it will be seen in future, this extension is bene�cial from the computational

prospective (see also Remarks 3.4.3 and 3.4.4). This extension requires from us to

consider, in addition to (3.61), the integrals

Ij(s; T`(s)) :=

Z T`(s)

s

�j(s; u)du: (3.64)

We approximate these integrals by a quadrature rule analogous to the one in (3.62)

but with summation index k starting from `(s) :

Ij(s; T`(s)) � SIj(s; T`(s);�) = �
�(s;T`(s))X
k=`(s)

k(s)�j(s; Tk); (3.65)

and we require that its error satis�es (3.63). Combining (3.62) and (3.65), we will

write in what follows that

SIj(s; Ti;�) = �

�(s;Ti)X
k=`(s)

k(s)�j(s; Tk) (3.66)

with the coe¢ cient `(s)(s) = 0 if i > `(s):

Using (3.66), we approximate the solution f(t; T ) of the in�nite-dimensional

SDE (3.43)-(3.44) at the nodes T = T0; : : : ; TN ; by the N +1-dimensional stochastic

process ~f i(t) � f(t; Ti); i = 0; : : : ; N; which satis�es the �nite system of coupled

SDEs:

~f i(t)� f i0 =

Z t

t0

~�>i (s)
~SI(s; Ti;�)ds+

Z t

t0

~�>i (s)dW (s); (3.67)

t0 � t � t� ^ T(i+1)^N ; i = 0; : : : ; N;
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where

f i0 = f0(Ti); (3.68)

~�i(s) = (~�i;1(s); : : : ; ~�i;d(s))
> = (�1(s; Ti; ~f

i(s)); : : : ; �d(s; Ti; ~f
i(s)))>;

~SI(s; Ti;�) =
�
~SI1(s; Ti;�); : : : ; ~SId(s; Ti;�)

�>
and

~SIj(s; Ti;�) = �

�(s;Ti)X
k=`(s)

k(s)~�k;j(s): (3.69)

We emphasize again that we extended the time interval from t 2 [t0; t
�] to t 2

[t0; t
� ^ T(i+1)^N ]:

Assumptions 3.2.1-3.2.3 guarantee the existence of the unique strong solution of

(3.67)-(3.69). Further, it is not di¢ cult to show that they also imply boundedness

of exponential moments of ~f i(t); i.e., for any c 2 R there is a constant C > 0 such

that (cf. (3.47)):

E exp(cj ~f i(t)j) < C (3.70)

for all t 2 [t0; t�]^T(i+1)^N ; i = 0; : : : ; N: In connection with (3.70) we recall that due

to Assumption 3.2.3 the initial forward rate curve f0(T ); t0 � T � T �; is bounded

by a �nite constant. Hence, ~f i(0) = f i0; i = 0; : : : ; N; are bounded by the same

constant.

In Section 4.1.1 we prove (see Theorem 4.1.1) mean-square convergence of ~f i(t)

to f(t; Ti) when � ! 0: We note that the system (3.67)-(3.69) plays only an aux-

iliary role in our consideration. It is used as guidance in constructing fully discrete

numerical algorithms (i.e., discrete in both T and t) and also in proofs of their

convergence.

3.4.2 t-discretization

In this section we discretize the �nite system of coupled ordinary SDEs (3.67)-(3.69)

with respect to calendar time t and thus arrive at a fully discrete method.
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We introduce an equally-spaced grid for calendar time t with step (t-step) h =

(t� � t0)=M :

t0 < � � � < tM = t�; tk = kh; k = 0; : : : ;M:

In what follows we use the notation (cf. (3.59) and (3.60)):

`k := `(tk); %k := %(tk): (3.71)

We consider an approximation �f ik+1 of ~f
i(tk+1) from (3.67) (i.e., a full discretiza-

tion of (3.43)-(3.44) in both T and t) of the form (cf. (3.17))

�f i0 = f
i
0; i = 0; : : : ; N; (3.72)

�f ik+1 =
�f ik + A

i(tk; Ti; �f
j
k ; j = `k+1; : : : ; �(tk+1; Ti) _ i;h; �k);

i = `k+1; : : : ; N; k = 0; : : : ;M;

where the form of the functionsAi depends on the coe¢ cients of (3.67)-(3.69), i.e., on

� and on a choice of the quadrature rule SIj ; �(tk; Ti) is as in the quadrature (3.69);

�k; k = 0; : : : ;M; are some random vectors which have moments of a su¢ ciently

high order and �k for k > 0 are independent of �f
i
j ; i = `j; : : : N; j = 0; : : : ; k; and of

�0; : : : ; �k�1:

To simplify the exposition of our theoretical analysis, in what follows we consider

the extended ~f i(t) and �f ik: We put

~f i(t) = ~f i(Ti+1); T(i+1)^N ^ t� � t � t�; 0 � i � `(t�)� 1;

and then the N + 1-dimensional vector f ~f i(t); i = 0; : : : ; Ng is de�ned for all t 2

[t0; t
�]: We put

�f ik =
�f im; k =m+ 1; : : : ;M; 0 � i � `(t�)� 1;

wherem = d(Ti+1 � t0) =he�1 (we recall that d�e denotes the ceiling function). Then
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the N +1-dimensional vector f �f ik; i = 0; : : : ; Ng is de�ned for all k = 0; : : : ;M . Let

us emphasize that we do not use the extension of �f ik in numerical algorithms and

these extensions of ~f i(t) and �f ik are done in order to use the vector notation ~f(t)

and �fk without need to adjust length of these vectors as t and k grow.

We assume that the Ai in (3.72) are such that �f ik satisfy the following condition.

Assumption 3.4.1 For any c 2 R there is a constant C > 0 such that

E exp(cj �f ikj) < C (3.73)

for all i = 0; : : : N; k = 0; : : : ;M:

This condition is satis�ed by all sensible numerical schemes (i.e., sensible choices

of Ai in (3.72)) thanks to the uniform boundedness of �i(t; T; z) (see Assump-

tion 3.2.1) and boundedness of the initial condition (see Assumption 3.2.3 and also

the comment after (3.70)). In particular, it is satis�ed by the weak Euler-type

scheme (3.95) we use in the algorithms in Section 3.5.

We also require that the numerical method (3.72) for the SDEs (3.67)-(3.69) is

of local weak order q + 1; i.e., that the following assumption holds.

Assumption 3.4.2 We assume that the method (3.72) is such that for some pos-

itive constant C independent of �

jE(
sY
j=1

� ~f ij �
sY
j=1

� �f ij)j � Chq+1; s = 1; : : : ; 2q + 1; (3.74)

E

2q+2Y
j=1

j� �f ij j � Chq+1; (3.75)

where

� ~f i := ~f it;x(t+ h)� xi; � �f i := �f it;x(t+ h)� xi;

and ~f it;x(t+ h) is the solution of the SDEs (3.67) with the initial condition x given

at time t : ~f it;x(t) = x
i; and �f it;x(t+h) is the one-step approximation of (3.67) found

according to (3.72) with �f it;x(t) = x
i:
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Assumption 3.4.2 is similar to the one used in the standard theory of numerical

integration of SDEs in the weak sense (cf. Theorem 3.1.9). As we will see in

Section 4.1, Assumptions 3.2.1-3.2.3 and 3.4.1-3.4.2 guarantee weak convergence of

the numerical method (3.72) to the solution of the auxiliary system of SDEs (3.67)

with order hq:

We note that C in (3.74)-(3.75) is independent of x while in the standard the-

ory of numerical integration of SDEs one usually has C depending on x in such

estimates (see Theorem 3.1.9). In our case it is natural to put C independent of

x since the coe¢ cients of (3.67) and their derivatives are uniformly bounded (see

Assumptions 3.2.1-3.2.2). We also emphasize that the constants C in (3.74)-(3.75)

are required not to depend on �.

Remark 3.4.3 The numerical method (3:72) contains the approximation �f `kk of the

forward rate f(tk; T`k) (recall that tk � T`k) which from the �nancial point of view

does not exist unless tk = T`k . However, from both theoretical and numerical points

of view, it is not prohibiting to consider the values �f `kk which, as we will see later

in Section 3.4.3, is computationally bene�cial. We may interpret the points (tk; T`k)

on our (t; T )-grid as �ctitious nodes (see also Remark 3.4.4).

The approximation (3.72) of the in�nite-dimension stochastic equation (3.43)-

(3.44) has two discretization steps: T -step� (i.e., step in maturity time) and t-step h

(i.e., step in time). We can say that the T -step� controls the error of approximating

(3.43)-(3.44) by (3.67)-(3.69) while the t-step h controls the error of approximating

(3.67)-(3.69) by (3.72). We will later (see Remark 3.4.7) discuss how to choose �

and h in practice.

3.4.3 Approximation of the price of an interest rate contract

In the previous section we introduced an approximation �f ik of the solution to (3.43)-

(3.44). Now we illustrate how this approximation can be used for evaluating the
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expectation (3.51)-(3.54), i.e.,

F (t0; f0 (�) ; sk; si) = E exp(�Y (sk))G (P (sk; si)) :

To �nd F , one has to compute Z(sk; si) from (3.52) and Y (sk) from (3.54). In this

section we construct numerical approximations for Z(sk; si) and Y (sk): For clarity

of the exposition, we assume in what follows that

sk = t
� and si = T

� :

We approximate the maturity time integral from (3.54) by a quadrature rule

SZ(t
�; T �;�) :

Z(t�; T �) =

Z T �

t�
f(t�; u)du � SZ(t�; T �;�) = �

NX
j=%M

~jf(t
�; Tj); (3.76)

where the weights ~j are chosen so that the quadrature rule is of order p > 0; i.e.,

an inequality of the form (3.63) holds:

�
E [SZ(t

�; T �;�)� Z(t�; T �)]2
�1=2 � C�p: (3.77)

The assumption we made at the beginning of Section 3.4.1 that there is a su¢ cient

number of nodes Ti between t� and T � ensures that we can �nd a quadrature rule

(3.76) satisfying (3.77). Some examples of quadratures SZ(t�; T �;�) are given in

Section 3.5.

In general, T -discretization and t-discretization have di¤erent steps � and h;

and approximate values of the short rate r(tk) = f(tk; tk) (cf. (2.3)) are not directly

available among �f ik which are de�ned on the (t; T )-grid. Then to numerically evaluate

Y (t�); we need to construct an approximation of f(tk; tk) based on the values �f ik;

i = `k; : : : ; N . To this end, let us �rst consider an approximation of the exact short

rate r(t) = f(t; t) using the values of f(t; Ti); i = `(t); : : : ; N . We recall that thanks

74



to Assumptions 3.2.2-3.2.3 the solution f(t; T ) of (3.43)-(3.44) is su¢ ciently smooth

in the last argument. We approximate r(t) by �(t) as

�(t) = �(t; f(t; Ti); i = `(t); : : : ; `(t) + �) (3.78)

=

`(t�)X
l=0

�X
i=0

�i(t)f(t; Tl+i)�t2[Tl;Tl+1)

=
�X
i=0

�i(t)f(t; T`(t)+i); t 2 [t0; t�];

where �i(t) are coe¢ cients independent of f; j�i(t)j are bounded by a constant

independent of �, � is a non-negative integer independent of t and �; and �A is the

indicator function of a set A: We choose the number � and the coe¢ cients �i(t) so

that the approximation (3.78) is of order p :

�
E [r(t)� �(t)]2

�1=2 � C�p; p > 0: (3.79)

The form of (3.78) covers both polynomial interpolation and extrapolation. For

interpolation, we approximate r(t) using the values f(t; Ti); i = `(t); : : : ; `(t) + �:

For extrapolation, the coe¢ cient �0(t) = 0 and we approximate r(t) using the values

f(t; Ti); i = %(t); : : : ; %(t) + � � 1: Some particular examples of the approximation

�(t) are given in Section 3.5. Recall that in Section 3.4.1 we assumed that � is such

that there is a su¢ cient number of nodes Ti between t� and T � which should, in

particular, ensure that `(t�) + � � N:

Remark 3.4.4 We note that we need �ctitious points (tk; T`k) on our (t; T )-grid

(see also Remark 3.4.3) for the interpolating form of (3:78). The extrapolating form

of (3:78) does not need the �ctitious points as it is su¢ cient to compute �f ik for

i = %k; : : : ; %k + �� 1; k = 0; : : : ;M; all of which have the usual �nancial meaning.

However, we reserve the possibility to use an interpolation (and, consequently, the

�ctitious points) for simulating short rates since interpolation is usually computa-

tionally preferable to extrapolation.

Using the short rate approximation �(s); we approximate the time integral in
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(3.52) as

Y (t�) =

Z t�

t0

r(s)ds �
Z t�

t0

�(s)ds � ~Y (t�) :=

Z t�

t0

~�(s)ds; (3.80)

where ~�(s) has the form of �(s) from (3.78) but with ~f i(t) instead of f(t; Ti) :

~�(s) = �(s; ~f i(s); i = `(s); : : : ; `(s) + �):

We extend the system of SDEs (3.67) by adding to it the auxiliary di¤erential

equation

d ~Y = �(s; ~f i(s); i = `(s); : : : ; `(s) + �)ds; ~Y (t0) = 0: (3.81)

Recall that ~�(s) for every s 2 [t0; t�] is a linear combination of ~f i(s); i = `(s); : : : ; `(s)+

�:

Let ~Yt;x;y(s); s � t; be the solution of (3.81) with the initial condition ~Yt;x;y(t) = y

and with ~f i(s) = ~f it;x(s) (recall that ~f
i
t;x(s) are de�ned in Assumption 3.4.2). We

observe that:

~Yt;x;0(t+ h) =

`(t+h)X
l=`(t)

Z t+h

t

�X
i=0

�i(s) ~f
l+i
t;x (s)�s2[Tl;Tl+1)ds; (3.82)

We can show (see Appendix A), that under h � �� for some � > 0 and for any

positive integer m; we have

E
��� ~Yt;x;0(t+ h)���m � Chm

0@1 + `(t+h)+�X
l=`(t)

jxljm
1A ; (3.83)

where C > 0 is a constant independent of � and x: We note that the condition

h � �� guarantees that the number `(t + h) � `(t) is independent of �; which

ensures that the constant C in (3.83) is independent of � and the number of terms

in the sum on the right-hand side of (3.83) is also independent of �: This will be

essential for proving convergence Theorem 4.1.6.

Now we extend the fully discrete approximation (3.72) by adding to it an ap-
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proximation of (3.81):

�Y0 = 0; �Yk+1 = �Yk + A
Y (tk; �f

j
k ; j = `k; : : : ; `k+1 + �;h); k = 0; : : : ;M; (3.84)

where the form of AY (tk; �f
j
k ; j = `k; : : : ; `k+1 + �;h) = AY (tk;h) depends on the

form of �(s) from (3.78) and the accuracy required.

We replace Assumption 3.4.2 on the one-step approximation by the assump-

tion which is applicable to the extended system (3.67), (3.81) and the extended

discretization (3.72), (3.84).

Assumption 3.4.5 Let h � �� for some � > 0: We assume that the method

(3.72), (3.84) is such that for some positive constant C independent of �

�����E
 
� ~Y m

s�mY
j=1

� ~f ij � � �Y m
s�mY
j=1

� �f ij

!����� � Chq+1
0@1 + `(t+h)+�X

l=`(t)

jxljm
1A ; (3.85)

m = 0; : : : ; s; s = 1; : : : ; 2q + 1;

24E max
0�m�2q+2;fi1;:::i2q+2�mg2f0;:::;Ng

������ �Y m
2q+2�mY
j=1

� �f ij

�����
2
351=2 (3.86)

� Chq+1

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1A ;

where

� ~f i = ~f it;x(t+ h)� xi; � �f i = �f it;x(t+ h)� xi;

� ~Y = ~Yt;x;y(t+ h)� y; � �Y = �Yt;x;y(t+ h)� y;

~f it;x(t + h) and �f it;x(t + h) are as in Assumption 3.4.2 and ~Yt;x;y(s); s � t; is the

solution of (3.81) with the initial condition ~Yt;x;y(t) = y; and �Yt;x;y(t + h) is its

one-step approximation found according to (3.84) with �Yt;x;y(t) = y:
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Note that the constants C in (3.85)-(3.86) do not depend on x; y; and �: The

dependence of the estimates (3.85)-(3.86) on x is consistent with (3.83). The condi-

tion h � �� in Assumption 3.4.5 is not restrictive from the practical point of view

since we aim to be constructing e¢ cient numerical algorithms for the HJM model by

allowing bigger T -steps � without losing accuracy. We also note that this condition

arises only when we need to approximate the short rate (see also Remark 4.1.7).

Further, we make the following assumption.

Assumption 3.4.6 For some c > 0 and C > 0

E exp(cj �Ykj) < C (3.87)

for all k = 0; : : : ;M:

As a rule, the condition (3.87) immediately follows from Assumption 3.4.1 which

is the case, e.g., for the algorithms presented in Section 3.5.

Based on (3.76), (3.80) and using (3.72), (3.84), we arrive at the approximation

�F of F from (3.51):

F (t0; f0 (�) ; t�; T �) � �F (t0; f0; t
�; T �) = E exp(� �YM)G

�
�P (t�; T �)

�
; (3.88)

where �YM is from (3.84);

�P (t�; T �) = exp
�
� �SZ(t�; T �;�)

�
; (3.89)

�SZ(t
�; T �;�) is the quadrature rule of the form (3.76) with f(t�; Tj) replaced by

�f jM :

�SZ(t
�; T �;�) = �

NX
j=%M

~j
�f jM ; (3.90)

and f0 means the initial condition of (3.67), which is the N + 1-dimensional vector

(f 00 ; : : : ; f
N
0 )

>
= (f0(T0); : : : ; f0(TN))

>
:
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Finally, the expectation of the discounted payo¤ in (3.88) is approximated by

the Monte Carlo method, i.e.,

F (t0; f0 (�) ; t�; T �) � �F (t0; f0; t
�; T �) (3.91)

� F̂ (t0; f0; t
�; T �) =

1

L

LX
l=1

exp(� �Y (l)M )G
�
�P (l)(t�; T �)

�
;

where �Y (l)M ; �P
(l) are computed using independent realizations �f j;(l)k ; j = `k; : : : ; N;

k = 1; : : : ;M; of the random variables �f jk :

In (3.91) the �rst approximate equality corresponds to the error of numerical

integration and the error in the second approximate equality comes from the Monte

Carlo technique.

The Monte Carlo (i.e., statistical) error in (3.91) is evaluated by

��MC = c

�
V ar

�
exp(� �YM)G

�
�P (t�; T �)

�	�1=2
L1=2

(3.92)

� c
[V ar fexp(�Y (t�))G (P (t�; T �))g]1=2

L1=2
;

where, for example, the values c = 1; 2; 3 correspond to the �ducial probabilities

0:68; 0:95; 0:997; respectively. The Monte Carlo error can be decreased by variance

reduction techniques (see, e.g. [31, 32, 58, 60] and references therein). In this paper

we deal with the numerical integration error and numerical algorithms which are

e¤ective with regard to (t; T )-discretization.

The numerical integration error is analyzed in Section 4.1. The main result of this

Section is stated in Theorem 4.1.8, that proves the convergence of the approximation

�F (t0; f0; t
�; T �) to F (t0; f0 (�) ; t�; T �) with order p > 0 in � and with order q > 0 in

h. This provides the theoretical basis for the following remark.

Remark 3.4.7 (Relationship between � and h) A higher order p; i.e., a higher or-

der of an approximation ~F (t0; f0; t
�; T �) of F (t0; f0 (�) ; t�; T �); can be achieved by

using a higher-order quadrature rules in (3:66) and (3:76) and higher-order inter-

polation or extrapolation in (3:78). For this purpose, we can use a large arsenal of

79



e¤ective quadrature rules and interpolation/extrapolations methods from the deter-

ministic numerical analysis (see, e.g. [19, 50, 66] ) which are directly applicable here

(see Section 3.5). To achieve a higher order q; we need a higher-order weak-sense

numerical scheme for (3:67)-(3:69). As it is known (see, e.g.[45, 58, 57]), this is

a harder task, and, due to complexity of stochastic schemes, one usually restricts

themselves to using weak methods of orders 1 or 2: As a result, in practice we will

take p � q: Then, to balance the two errors in (4:58), we choose � = �hq=p for some

� > 0 to obtain the overall error to be of order O(hq): In other words, by increasing

the order p we can take larger T -discretization steps � and, consequently, signi�-

cantly improve computational e¢ ciency of HJM simulation which, in particular, is

illustrated in our numerical experiments in Section 3.7.

3.5 Numerical algorithms

In this section we provide some particular examples of the generic numerical method

introduced in Section 3.4. For simplicity of the presentation, we restrict ourselves

in this section to the case of T -step being not larger than the t-step, i.e.,

h � �; (3.93)

which is a stronger condition than the one assumed in Theorems 4.1.6 and 4.1.8:

h � ��; � > 0: These Theorems we discuss in the next Section. This requirement

is not particular restricting since our aim is to construct e¢ cient algorithms for the

HJM model by allowing bigger T -steps � without losing accuracy as it is discussed

in the beginning of Section 3.4 and Remark 3.4.7. We note that there is no di¢ culty

in constructing algorithms imposing h � �� for some � > 0 instead of (3.93). The

condition (3.93) ensures that there cannot be more than one node Ti in any interval

[tk; tk+1) hence there are only two cases possible: either `k+1 = `k or `k+1 = `k + 1

(see Figure 3.2 for illustration of the nodes locations in both cases): This is used in

constructing numerical algorithms of this section.
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Figure 3.2: Two possible cases of the nodes location on the grid under condition
h � �:

We need the following new notation in this section:

�i;k := Ti � tk (3.94)

and

tk+1=2 =
tk + tk+1

2
:

We shall limit the illustration (see also Remark 3.5.4) of the generic numerical

method from Section 3.4 to considering only the weak Euler-type scheme (i.e., with

q = 1) as a numerical approximation of the SDEs (3.67), (3.81), i.e., as an approxi-

mation of the t-dynamics. For approximations of higher order q see Remark 3:5:4:

Based on the Euler-type approximation for the t-dynamics, the extended discretiza-

tion (3.72), (3.84) takes the form

�f i0 = f
i
0; i = 0; : : : ; N; �Y0 = 0; (3.95)

�f ik+1 =
�f ik +

dP
j=1

��i;j(tk)�SIj(tk; Ti; �; h) + h1=2
dP
j=1

��i;j(tk)�j;k+1;
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i = `k+1; : : : ; N;

�Yk+1 = �Yk + A
Y (tk; �f

j
k ; j = `k; : : : ; `(t

�) + �;h); k = 0; : : : ;M � 1;

where �j;k+1 are independent random variables distributed by the law P (� = �1) =

1=2;

(��i;1(tk); : : : ; ��i;d(tk))
> = (�1(tk; Ti; �f

i
k); : : : ; �d(tk; Ti;

�f ik))
>;

�SIj(tk; Ti; �; h) depends on our choice of the quadrature rule (3.66), and AY is as in

(3.84) and depends on the choice of approximation for the short rate (3.78).

In the remaining part of this section, we give three algorithms based on rectangle

(p = 1), trapezoid (p = 2), and Simpson (p = 4) quadrature rules SIj(tk; Ti;�)

accompanied by short rate approximations of the corresponding orders. In all these

cases it is not di¢ cult to check that (3.95) satis�es Assumption 3.4.1 and that �Yk

satisfy Assumption 3.4.6.

3.5.1 Algorithm of order O(� + h)

The application of the composite rectangle rule to approximate the integrals Ij(tk; Ti)

in (3.61) and Z(t�; T �) in (3.52) yields

�SIj(tk; T`k+1 ; �; h) = h�`k+1;k��`k+1;j(tk); (3.96)

�SIj(tk; T%k+1 ; �; h) =

8>>>><>>>>:
h�%k+1;k��%k+1;j(tk); if T`k+1 < tk;

�SIj(tk; T`k+1 ; �; h) + h���%k+1;j(tk); otherwise,

�SIj(tk; Ti; �; h) = �SIj(tk; T%k+1 ; �; h) + h�
iX

m=%k+1+1

��m;j(tk);

i = %k+1 + 1; : : : ; N; j = 1; : : : ; d;

�SZ(t
�; T �;�) = �f

%M
M �%M ;M +�

NX
m=%M+1

�fmM : (3.97)
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By straightforward calculations one can show that the used rectangle rule satis�es

the order conditions (3.63) and (3.77) with p = 1. We pay attention that we incor-

porated two cases in (3.96): when `k+1 = `k and hence T`k+1 � tk and when (see

also (3.93)) `k+1 = `k + 1 and hence T`k+1 > tk:

We use the piecewise constant approximation of the short rate (cf. (3.78)):

�(t) =

`(t�)X
l=0

f(t; Tl)�t2[Tl;Tl+1); t 2 [t0; t
�]: (3.98)

The approximation (3.98) obviously satis�es the order condition (3.79) with p = 1.

To satisfy Assumption 3.4.5 with q = 1, we, in particular, need to approximate the

integral ~Yt;x;0(t + h) in (3.82) by �Yt;x;0(t + h) from (3.84) with local order O(h2):

In the case of (3.98) the coe¢ cient in the right-hand side of (3.81) �(s;xi; i =

`(s)) =

`(t�)X
l=0

xl�s2[Tl;Tl+1) = x
`(s) is only piece-wise smooth. Further, according to the

condition (3.93), we can have two cases: either an open interval (tk; tk+1) does not

contain any node Ti of the T -grid or it contains a single node T%k : In the former case

we can approximate the integral ~Yt;x;0(t+h) in (3.82) by the left rectangle rule and we

have AY (tk; �f
j
k ; j = `k; `k+1;h) = h

�f `kk with the local error of order O(h2) as needed.

In the second case to achieve the local error of orderO(h2) despite lack of smoothness

of �(s;xi; i = `(s)), we split the integral ~Yt;x;0(t+h) = ~Yt;x;0(T`k+1)+
~YT%k ;f(T`k+1);0(t+

h) and approximate the �rst integral by the left-rectangle rule and the second by the

right-rectangle rule: AY (tk; �f
j
k ; j = `k; `k+1;h) = �`k+1;k

�f `kk ��`k+1;k+1
�f
`k+1
k+1 : Thus,

AY (tk; �f
j
k ; j = `k; `k+1;h) =

�
h ^�`k+1;k

�
�f `kk � (0 ^�`k+1;k+1)

�f
`k+1
k+1 : (3.99)

We note that despite the use of �f `k+1k+1 in the right-hand side of (3.99) the method

does not require to resolve any implicitness.

Assumption 3.4.5 with q = 1 can be checked for the scheme (3.95), (3.96), (3.99)

following the standard, routine way (see Section 4.3 and also. [58, Chap. 2]).

The algorithm based on (3.95) and (3.96), (3.97), (3.99), we will call Algo-

rithm 3.5.1 for the option price (3.51)-(3.54). According to Theorem 4.1.8 from
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the next Chapter, this algorithm is of order O(�+h), which under the condition (see

(3.93)) � = �h; � � 1; resulting in O(h): We also note that in the case � = h the

short rate is readily available on the grid and its approximation is not needed. Algo-

rithm 3.5.1 with � = h is analogous to the numerical methods for the HJM model

considered in [35, 40, 31]. As it is shown in our numerical experiments (see Sec-

tion 3.7), Algorithm 3.5.1 is less e¢ cient than the new algorithms (Algorithms 3.5.2

and 3.5.3) which we propose in the next two sections.

Remark 3.5.1 If we replace AY in (3:99) by

AY (tk;h) = h �f
`k
k (3.100)

then Assumption 3.4.5 with q = 1 is not satis�ed and we cannot guarantee closeness

of �Yk and ~Y (tk): Nevertheless, �Yk from (3:100) still apparently approximates Y (tk)

so that the overall algorithm for computing the option price (3:51)-(3:54) remains

of weak order O(� + h): This can be justi�ed by some nonrigorous arguments and

this was also demonstrated in our numerical experiments. To obtain such a result

rigorously, we need to conduct convergence proof without using the intermediate

�nite-dimensional SDEs (3:67); (3:81). We do not pursue this direction in the thesis.

At the same time, we note that in all our numerical tests the scheme using AY from

(3:99) gave more accurate results than the scheme with AY from (3:100) in the cases

when the Ti nodes do not belong to the t-grid. Otherwise AY in (3:99) and AY in

(3:100) obviously coincide.

3.5.2 Algorithm of order O(�2 + h)

In this section we use quadrature rules (3.66), (3.76) and a short rate approximation

(3.78) of order O(�2):

We aim at applying the standard composite trapezoid rule to the integrals

Ij(s; Ti) in (3.61) and (3.64). The trapezoid rule requires that each of the inte-

gration subintervals [T`(s); s]; [s; T%(s) ]; [T%(s) ; T%(s)+1]; : : : ; [Ti�1; Ti] span at least two
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nodes on the T -grid. However, the integration intervals [T`(s); s] and [s; T%(s) ] usually

contain just a single node on the T -grid: T`(s) and T%(s); respectively. We resolve

this issue by applying the right and left rectangle rules on these two intervals, re-

spectively. Thus, the quadrature rule SIj(s; Ti;�) takes the form for s 2 [t0; t�];

i = `(s); : : : ; T � :

SIj(s; T`(s);�) =
�
T`(s) � s

�
�j(s; T`(s)); (3.101)

SIj(s; Ti;�) = (T%(s) � s)�j(s; T%(s)) +
�

2

i�1X
m=%(s)

[�j(s; Tm) + �j(s; Tm+1)] for s � Ti;

j = 1; : : : ; d:

This quadrature rule satis�es the order condition (3.63) with p = 2. To this end, we

recall that left and right rectangle rules have local order two and we use them here

on one or two integration steps only while the trapezoid rule has local order three

and the composite trapezoid rule is of order two.

To ensure that (3.95) satis�es Assumption 3.4.5 with q = 1, we, in particular,

need to approximate the integral
R tk+1
tk

~SIj(s; Ti;�)ds by �SIj(tk; Ti; �; h) on a single

step with weak order O(h2): If the node T`k+1 is not between tk and tk+1 (due to

(3.93) it cannot be more than one T -node in (tk; tk+1)), it is su¢ cient to approximate

the integral by the left rectangle rule and put �SIj(tk; Ti; �; h) = h �SIj(tk; Ti;�);

where �SIj(tk; Ti;�) is of the form (3.101) but with ��m;j(tk) instead of �j(s; Tm):

However, if T`k+1 > tk then due to (3.101) we apply one integration rule on [tk; T`k+1 ]

and the other on [T`k+1 ; T%k+1 ]; which causes loss of smoothness of the integrand

~SIj(s; Ti;�): To reach the required order O(h
2); we construct the approximation

using the following guidance. First, we split integrals and apply the corresponding

integration rules to ~SIj(s; Ti;�) according to (3.101). Thus, for i > `k+1, we obtain

Z tk+1

tk

~SIj(s; Ti;�)ds (3.102)

=

Z T`k+1

tk

~SIj(s; Ti;�)ds+

Z tk+1

T`k+1

~SIj(s; Ti;�)ds
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=

Z T`k+1

tk

0@(T`k+1 � s)~�`k+1;j(s) + �2
i�1X

m=lk+1

[~�m;j(s) + ~�m+1;j(s)]

1A ds
+

Z tk+1

T`k+1

0@(T%k+1 � s)~�%k+1;j(s) + �2
i�1X

m=%k+1

[~�m;j(s) + ~�m+1;j(s)]

1A ds
=

Z T`k+1

tk

�
(T`k+1 � s)~�`k+1;j(s) +

�

2
~�`k+1;j(s) +

�

2
~�%k+1;j(s)

�
ds

+

Z tk+1

T`k+1

(T%k+1 � s)~�%k+1;j(s) +
�

2

Z tk+1

tk

i�1X
m=%k+1

[~�m;j(s) + ~�m+1;j(s)] :

Lets us consider each term of (3.102) along with the corresponding approximation

separately:

Z T`k+1

tk

�
(T`k+1 � s)~�`k+1;j(s) +

�

2
~�`k+1;j(s)

�
� ~�`k+1;j(tk)

Z T`k+1

tk

�
T`k+1 � s+

�

2

�
ds = (T`k+1 � tk)

T`k+1 � tk +�
2

~�`k+1;j(tk);

Z T`k+1

tk

�

2
~�%k+1;j(s)ds+

Z tk+1

T`k+1

(T%k+1 � s)~�%k+1;j(s)

� ~�%k+1;j(tk)
 Z T`k+1

tk

�

2
ds+

Z tk+1

T`k+1

(T%k+1 � s)ds
!
=
�

2
[tk+2 � T`k+1 ]~�%k+1;j(tk);

�

2

Z tk+1

tk

i�1X
m=%k+1

[~�m;j(s) + ~�m+1;j(s)] � h
�

2

i�1X
m=%k+1

[~�m;j(tk) + ~�m+1;j(tk)] ;

This yields the following approximation for
R tk+1
tk

~SIj(s; Ti;�)ds :

Z tk+1

tk

~SIj(s; Ti;�)ds � (T`k+1 � tk)
T`k+1 � tk +�

2
~�`k+1;j(tk) (3.103)

+
�

2
[tk+2 � T`k+1 ]~�%k+1;j(tk) + h

�

2

i�1X
m=%k+1

[~�m;j(tk) + ~�m+1;j(tk)]

For i = `k+1, we have Z tk+1

tk

~SIj(s; T`k+1 ;�)ds (3.104)
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=

Z T`k+1

tk

~SIj(s; T`k+1 ;�)ds+

Z tk+1

T`k+1

~SIj(s; T`k+1 ;�)ds

=

Z T`k+1

tk

(T`k+1 � s)~�`k+1;j(s)ds+
Z tk+1

T`k+1

(s� T`k+1)~�`k+1;j(s)ds

�
�
T`k+1 � tk

� �
T`k+1 � tk+1

�
~�`k+1;j(tk):

As a result �SIj(tk; Ti;�) in (3.95) is taken of the form:

�SIj(tk; T`k+1 ; �; h) =

8>>>><>>>>:
h�`k+1;k��`k+1;j(tk); if T`k+1 � tk;

�`k+1;k�`k+1;k+1��`k+1;j(tk); otherwise,

; (3.105)

�SIj(tk; T%k+1 ; �; h) =

8>>>><>>>>:
h�%k+1;k��%k+1;j(tk); if T`k+1 � tk;

�`k+1;k
�%k+1;k

2
��`k+1;j(tk)��`k+1;k+2

�
2
��%k+1;j(tk); otherwise,

�SIj(tk; Ti; �; h) = �SIj(tk; T%k+1 ; �; h)

+ h
�

2

0@��%k+1;j(tk) + 2 i�1X
m=%k+1+1

��m;j(tk) + ��i;j(tk)

1A ;
i = %k+1 + 1; : : : ; N; j = 1; : : : ; d:

Remark 3.5.2 We note that in (3:105) we can substitute the rules �SIj(tk; T`k+1 ; �; h)

and �SIj(tk; T%k+1 ; �; h) by the slightly simpler ones

�SIj(tk; T`k+1 ; �; h) = h�`k+1;k��`k+1;j(tk);

�SIj(tk; T%k+1 ; �; h) =

8>>>><>>>>:
h�%k+1;k��%k+1;j(tk); if T`k+1 � tk;

�`k+1;k
�
2

�
��`k+1;j(tk) + ��%k+1;j(tk)

�
; otherwise,

without losing order of convergence (cf. (3:103); (3:104)). But we suggest to use
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the expression in (3:105) due to its better symmetry properties in the case of the

coinciding maturity and calendar time grids and also potentially better accuracy.

By a similar reasoning used to derive (3.101), we obtain the corresponding

quadrature rule SZ(t�; T �;�) (see (3.76)). Namely, we apply the right-rectangle

rule on the integration interval
�
tM ; T%M

�
and the composite trapezoid rule on the

rest of the integration interval, i.e.,

�SZ(t
�; T �;�) = �f

%M
M �%M ;M +

�

2

0@ �f%MM + 2
N�1X

j=%M+1

�f jM +
�fNM

1A : (3.106)

It is not di¢ cult to show that the combination of rectangle and trapezoid rules used

for deriving (3.106) satis�es the order condition (3.77) with p = 2.

We use linear interpolation for the short rate in (3.78):

�(t) =

`(t�)X
l=0

�
t� Tl
�

f(t; Tl+1) +
Tl+1 � t
�

f(t; Tl)

�
�t2[Tl;Tl+1); t 2 [t0; t

�]: (3.107)

The approximation (3.107) obviously satis�es the order condition (3.79) with p = 2.

As in the case of Algorithm 3.5.1, the coe¢ cient in the right-hand side of (3.81)

is also only piece-wise smooth here. Consider �rst the case when the node T`k+1 is

not between tk and tk+1: The application of the left-rectangle rule to the integralR tk+1
tk

~�(s)ds has the error O(h2=�); i.e., it does not lead to a uniform error esti-

mate O(h2) required by Assumption 3.4.5. To ensure that the estimates O(h2) in

Assumptions 3.4.5 are uniform in �; we use the following guidance:

Z tk+1

tk

~�(s)ds =

Z tk+1

tk

�
s� T`k+1
�

~f%k+1(s) +
T%k+1 � s

�
~f `k+1(s)

�
ds

� ~f%k+1(tk)

Z tk+1

tk

s� T`k+1
�

ds+ ~f `k+1(tk)

Z tk+1

tk

T%k+1 � s
�

ds

= ~f%k+1(tk)h
tk+1=2 � T`k+1

�
+ ~f `k+1(tk)h

T%k+1 � tk+1=2
�

:

So, in this case we put AY (tk;h) = h
h
��k+1;k+1=2

�
�f
`k+1
k � �`k+1;k+1=2

�
�f
%k+1
k

i
: In the

other case, i.e., if T`k+1 > tk; we split the integral
R tk+1
tk

~�(s)ds =
R T`k+1
tk

~�(s)ds +
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R tk+1
T`k+1

~�(s)ds and approximate each of them separately as we did in constructing

(3.99),i.e.

Z T`k+1

tk

~�(s)ds =

Z T`k+1

tk

�
s� T`k
�

~f lk+1(s) +
Tlk+1 � s
�

~f `k(s)

�
ds

� ~f lk+1(tk)

Z T`k+1

tk

s� T`k
�

ds+ ~f `k(tk)

Z T`k+1

tk

Tlk+1 � s
�

ds

=
�
Tlk+1 � tk

��tk � Tlk�1
2�

~f lk+1(tk) +
Tlk+1 � tk
2�

~f `k(tk)

�
;

Z tk+1

T`k+1

~�(s)ds =

Z tk+1

T`k+1

�
s� T`k+1
�

~f%k+1(s) +
T%k+1 � s

�
~f `k+1(s)

�
ds

� ~f%k+1(tk+1)

Z tk+1

T`k+1

s� T`k+1
�

ds+ ~f `k+1(tk+1)

Z T`k+1

tk

T%k+1 � s
�

ds

=
�
tk+1 � Tlk+1

��tk+1 � Tlk+1
2�

~f lk+1(tk+1) +
T%k+1+1 � tk+1

2�
~f `k(tk+1)

�
;

As a result, we arrive at

AY (tk;h) =

8>>>>>>>>><>>>>>>>>>:

h
h
��k+1;k+1=2

�
�f
`k+1
k � �`k+1;k+1=2

�
�f
%k+1
k

i
; if T`k+1 � tk;

�`k+1;k

h
�`k+1;k

2�
�f `kk �

�`k�1;k
2�

�f
`k+1
k

i
��`k+1;k+1

h
�%k+1+1;k+1

2�
�f
`k+1
k+1 �

�`k+1;k+1

2�
�f
%k+1
k+1

i
otherwise.

(3.108)

Assumption 3.4.5 with q = 1 can be checked for the scheme (3.95), (3.105),

(3.108) following the standard way which we describe in Section 4.3.

The algorithm based on (3.95) and (3.105), (3.106), (3.108) we will call Algo-

rithm 3.5.2 for the option price (3.51)-(3.54). According to Theorem 4.1.8 from the

next Chapter, this algorithm is of order O(�2 + h): In practice (see Remark 3.4.7)

we choose � = �
p
h with � > 0 such that (3.93) is satis�ed, which results in the

algorithm�s accuracy O(h): In our experiments (see Section 3.7) Algorithm 3.5.2

outperformed Algorithm 3.5.1.
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3.5.3 Algorithm of order O(�4 + h)

At the beginning of Section 3.4.1 we made the assumption that there is a su¢ cient

number of nodes Ti between t� and T � which ensures that we have enough nodes on

the T -grid for using the quadrature rules (3.66) and (3.76) and the short rate ap-

proximations (3.78) of the required accuracy. This assumption gives an unnecessary

restriction for using higher-order algorithms in practice and we now demonstrate

how it can be relaxed. To this end, we introduce N
0
instead of N in the method

(3.72) as the number of discretization nodes on T -grid:

N
0
:= N _ max

0<i�N
�(t�; Ti) _ (`(t�) + �) ; (3.109)

where �(t�; Ti) and � are as in (3.66) and (3.78), respectively. Also, in (3.76) we can

put N
0
instead of N and if required increase N

0
further to be able to approximate

the integral Z(t�; T �) on the left-hand side of (3.76) with the prescribed accuracy.

As a result, we avoid the restriction on how close t� can be to T �: It is clear that

this extension of the T -grid by a �xed number of nodes in the case of large � does

not in�uence our theoretical results.

Without re-writing the Euler-type scheme (3.95), we will assume in this section

that we run it for i = `k+1; : : : ; N
0
instead of i = `k+1; : : : ; N:

We are aiming at constructing an algorithm of order O(�4 + h) and would like

to exploit the standard composite Simpson rule for approximation of the integrals

Ij(s; Ti) =
R Ti
s
�j(s; u)du from (3.61) and (3.64). The Simpson rule needs three nodes

per integration step. But the integrals Ij(s; T`(s)); Ij(s; T%(s)); and Ij(s; T%(s)+1) are

over the intervals which have just one or two nodes on the T -grid under (3.93).

We �rst consider the integrals Ij(s; Ti) =
R Ti
s
�j(s; u)du with Ti = T`(s); T%(s);

and T%(s)+1; which we approximate by quadrature rules SIj(s; Ti;�) of the form

SIj(s; Ti;�) = (Ti � s)
�
�i1�j(s; T`(s)) + �

i
2�j(s; T%(s)) + �

i
3�j(s; T%(s)+1)

�
; (3.110)

where the coe¢ cients �i1; �
i
2, �

i
3 depend on the value of Ti: We require that (3.110)
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is of order 4; i.e., that (3.63) is satis�ed for these three integrals with p = 4: One

can show that the following sets of coe¢ cients satisfy this order requirement:

�
`(s)
1 =

5

12
+
5

12

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

; (3.111)

�
`(s)
2 =

2

3
� 1
3

T%(s) � s
�

� 1
3

�
T%(s) � s

�2
�2

; �
`(s)
3 = � 1

12
� 1

12

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

;

�
%(s)
1 =

1

4

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

; �
%(s)
2 = 1� 1

3

�
T%(s) � s

�2
�2

; (3.112)

�
%(s)
3 = �1

4

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

;

�
%(s)+1
1 = � 1

12
+
1

12

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

; (3.113)

�
%(s)+1
2 =

2

3
+
1

3

T%(s) � s
�

� 1
3

�
T%(s) � s

�2
�2

; �
%(s)+1
3 =

5

12
� 5

12

T%(s) � s
�

+
1

6

�
T%(s) � s

�2
�2

:

Further, for %(s)+1 < i � N we write Ij(s; Ti) = Ij(s; T%(s))+Ij(T%(s); Ti; s) with

Ij(T%(s); Ti; s) :=
R Ti
T%(s)

�j(s; u)du; and we approximate the integral Ij(T%(s); Ti; s); %(s)+

1 < i � N
0
; by the composite Simpson rule SIj(T%(s); Ti;�; s) if its integration in-

terval spans an odd number of maturity time nodes:

SIj(T%(s); Ti;�; s) =
�

3

 
�j(s; T%(s)) + 2

(i�%(s))=2�1P
l=1

�j(s; T%(s)+2l) (3.114)

+4
(i�%(s))=2P

l=1

�j(s; T%(s)+2l�1) + �j(s; Ti)

!
;

and otherwise we apply the Simpson�s 3/8 rule for the last four nodes:

SIj(T%(s); Ti;�; s) =
�

3

 
�j(s; T%(s)) + 2

(i�%(s)�1)=2�2P
l=1

�j(s; T%(s)+2l)

+4
(i�%(s)�1)=2�1P

l=1

�j(s; T%(s)+2l�1) + �j(s; Ti�3)

!
(3.115)

+
3�

8
(�j(s; Ti�3) + 3�j(s; Ti�2) + 3�j(s; Ti�1) + �j(s; Ti)) :
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By straightforward calculations one can show that the quadrature rule (3.110),

(3.114), and (3.115) satis�es the order condition (3.63) with p = 4:

To obtain �SIj(tk; Ti; �; h) based on (3.110), (3.114), and (3.115), we need again

to consider the two cases: when `k+1 = `k and hence T`k+1 � tk and when (see also

(3.93)) `k+1 = `k + 1 and hence T`k+1 > tk: If `k+1 = `k; the application of the

left-rectangle rule to the integral
R tk+1
tk

~SIj(s; Ti;�; s)ds has the error O(h
2) required

by Assumption 3.4.5 with ~SIj(tk; Ti;�; tk) of the form (3.110), (3.114)-(3.115) with

~�l;j(tk) instead of �j(tk; Tl): Hence, we put �SIj(tk; Ti; �; h) := h �SIj(tk; Ti;�; tk) with

�SIj(tk; Ti;�; tk) having the form (3.110), (3.114)-(3.115) with �j(tk; Tl) replaced by

��l;j(tk): It is quite easy to show that this approximation has the required error O(h2):

For instance, for �SIj(tk; Ti;�; tk) of the form (3.110), we need to show that this is

true for the approximations of the following integrals (cf. (3.111)-(3.113)):

Z tk+1

tk

(Ti � s)ds = h (Ti � tk) +O(h2);

Z tk+1

tk

(Ti � s)
T%k � s
�

ds =
h

�
(Ti � tk)

�
T%k � tk

�
+R(h);

where for # between t and t+ h

R1(h) = �
h2

2

1

�
[(Ti � #) +

�
T%k � #

�
];

and hence

jR1(h)j �
h2

2
;

Z tk+1

tk

(Ti � s)
�
T%k � s

�2
�2

ds =
h

�2
(Ti � tk)

�
T%k � tk

�2
+R2(h);

where for # between t and t+ h

R2(h) = �
h2

2

1

�2
[(Ti � #)2 +

�
T%k � #

�
(Ti � #)];
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and hence

jR2(h)j �
h2

2
;

As a result, when `k+1 = `k; �SIj(tk; Ti;�) in (3.95) is taken of the form:

�SIj(tk; Ti; �; h) = h �SIj(tk; Ti;�; tk); (3.116)

with �SIj(tk; Ti;�; tk) of the form (3:110); i = `k+1; %k+1; %k+1 + 1;

�SIj(tk; Ti; �; h) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�SIj(tk; T%k+1 ; �; h) + �SIj(T%k+1 ; Ti;�; s);

with �SIj(T%k ; Ti;�; s) of the form (3:114);

i� %k+1 + 1 is odd;

�SIj(tk; T%k+1 ; �; h) + �SIj(T%k+1 ; Ti;�; s);

with �SIj(T%k+1 ; Ti;�; s) of the form (3:115);

i� %k+1 + 1 is even;

i = %k+1 + 1; : : : ; N
0
; j = 1; : : : ; d:

In the case, when `k+1 = `k + 1, we split the integral

Z tk+1

tk

~SIj(s; Ti;�)ds =

Z T`k+1

tk

~SIj(s; Ti;�)ds+

Z tk+1

T`k+1

~SIj(s; Ti;�)ds

and plug in the corresponding approximations of ~SIj(s; Ti;�) according to (3.110),

(3.114)-(3.115). Thus, when `k+1 = `k + 1; we obtain

Z tk+1

tk

~SIj(s; T`k+1 ;�)ds (3.117)

=

Z T`k+1

tk

�
T`k+1 � s

� �
�
%k
1 ~�`k;j(s) + �

%k
2 ~�%k;j(s) + �

%k
3 ~�%k+1;j(s)

�
ds

+

Z tk+1

T`k+1

�
T`k+1 � s

� h
�
`k+1
1 ~�`k+1;j(s) + �

`k+1
2 ~�%k+1;j(s) + �

`k+1
3 ~�%k+1+1;j(s)

i
ds;
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Z tk+1

tk

~SIj(s; T%k+1 ;�)ds (3.118)

=

Z T`k+1

tk

�
T%k+1 � s

� h
�
%k+1
1 ~�`k;j(s) + �

%k+1
2 ~�%k;j(s) + �

%k+1
3 ~�%k+1;j(s)

i
ds

+

Z tk+1

T`k+1

�
T%k+1 � s

� �
�
%k+1
1 ~�`k+1;j(s) + �

%k+1
2 ~�%k+1;j(s) + �

%k+1
3 ~�%k+1+1;j(s)

�
ds;

Z tk+1

tk

~SIj(s; T%k+1+1;�)ds (3.119)

=

Z T`k+1

tk

��
T`k+1 � s

� �
�
%k
1 ~�`k;j(s) + �

%k
2 ~�%k;j(s) + �

%k
3 ~�%k+1;j(s)

�
+
�

3

�
~�`k+1;j(s) + 4~�%k+1;j(s) + ~�%k+1+1;j(s)

��
ds

+

Z tk+1

T`k+1

�
T%k+2 � s

� h
�
%k+1+1
1 ~�`k+1;j(s) + �

%k+1+1
2 ~�%k+1;j(s) + �

%k+1+1
3 ~�%k+1+1;j(s)

i
ds;

Z tk+1

tk

~SIj(s; Ti;�)ds (3.120)

=

Z T`k+1

tk

�
T`k+1 � s

� �
�
%k
1 ~�`k;j(s) + �

%k
2 ~�%k;j(s) + �

%k
3 ~�%k+1;j(s)

�
ds

+

Z T`k+1

tk

�

3

 
~�`k+1;j(s) + 2

(i�`k+1)=2�1P
l=1

~�`k+1+2l;j(s)

+4
(i�`k+1)=2P

l=1

~�`k+1+2l�1;j(s) + ~�i;j(s)

!
ds

+

Z tk+1

T`k+1

�
T%k+1 � s

� �
�
%k+1
1 ~�`k+1;j(s) + �

%k+1
2 ~�%k+1;j(s) + �

%k+1
3 ~�%k+1+1;j(s)

�
ds

+

Z tk+1

T`k+1

�

3

 
~�`k+1;j(s) + 2

(i�`k+1�1)=2�2P
l=1

~�`k+1+2l;j(s)

+4
(i�`k+1�1)=2�1P

l=1

~�`k+1+2l�1;j(s) + ~�i�3;j(s)

!
ds

+

Z tk+1

T`k+1

3�

8
(~�i�3;j(s) + 3~�i�2;j(s) + 3~�i�1;j(s) + ~�i;j(s)) ds;

for i > %k+1 + 1 and i� `k+1 + 1 is odd.

94



Analogously to (3.120), we can derive the expression for
R tk+1
tk

~SIj(s; Ti;�)ds when

i > %k+1 + 1 and i� `k+1 + 1 is even.

Next, we approximate (3.117)-(3.120) to obtain the required �SIj(tk; Ti; �; h) anal-

ogously to how we have proceeded in constructing Algorithm 3.5.2. As a result, we

obtain the corresponding expressions of �SIj(tk; Ti; �; h) in (3.95) when `k+1 = `k of

the form:

�SIj(tk; T`k+1 ; �; h) = �
2
`k+1;k

�
��
%k
1 ��`k;j(tk) +

��
%k
2 ��%k;j(tk) +

��
%k
3 ��%k+1;j(tk)

�
(3.121)

+�2
`k+1;k+1

�
��
`k+1
1 ��`k+1;j(tk) +

��
`k+1
2 ��%k+1;j(tk) +

��
`k+1
3 ��%k+1+1;j(tk)

�
;

where

��
%k
1 =

1

12

�`k+1;k

�
+
1

24

�2
`k+1;k

�2
; ��

%k
2 =

1

2
� 1

12

�2
`k+1;k

�2
;

��
%k
3 = � 1

12

�`k+1;k

�
+
1

24

�2
`k+1;k

�2
;

��
`k+1
1 = �1

2
�1
4

�`k+1;k+1

�
� 1

24

�2
`k+1;k+1

�2
; ��

`k+1
2 =

1

3

�`k+1;k+1

�
+
1

12

�2
`k+1;k+1

�2
;

��
`k+1
3 = � 1

12

�`k+1;k+1

�
� 1

24

�2
`k+1;k+1

�2
;

�SIj(tk; T%k+1 ; �; h) = �`k+1;k

�
��
%k+1
1 ��`k;j(tk) +

��
%k+1
2 ��%k;j(tk) +

��
%k+1
3 ��%k+1;j(tk)

�
+�`k+1;k+1

�
��
%k+1
1 ��`k+1;j(tk) +

��
%k+1
2 ��%k+1;j(tk) +

��
%k+1
3 ��%k+1+1;j(tk)

�
; (3.122)

where

��
%k+1
1 = � 1

12
� +

1

12

�2
`k+1;k

�
+
1

24

�3
`k+1;k

�2
;

��
%k+1
2 =

2

3
� +

1

2
�`k+1;k �

1

12

�3
`k+1;k

�2
;

��
%k+1
3 =

5

12
�� 1

12

�2
`k+1;k

�
+
1

24

�3
`k+1;k

�2
;
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��
%k+1
1 = � 5

12
�� 1

2
�`k+1;k+1�

1

4

�2
`k+1;k+1

�
� 1

24

�3
`k+1;k+1

�2
;

��
%k+1
2 = �2

3
� +

1

3

�2
`k+1;k+1

�
+
1

12

�3
`k+1;k+1

�2
;

��
%k+1
3 = � 1

12
�� 1

12

�2
`k+1;k+1

�
� 1

24

�3
`k+1;k+1

�2
;

�SIj(tk; T%k+1+1; �; h) = �`k+1;k

�
��
%k
1 ��`k;j(tk) +

��
%k
2 ��%k;j(tk) +

��
%k
3 ��%k+1;j(tk)

�
(3.123)

+�`k+1;k
�

3

�
��`k+1;j(tk) + 4��%k+1;j(tk) + ��%k+1+1;j(tk)

�
+�`k+1;k+1

�
��
%k+1+1
1 ��`k+1;j(tk) +

��
%k+1+1
2 ��%k+1;j(tk) +

��
%k+1+1
3 ��%k+1+1;j(tk)

�
;

where ��%k1 ; ��
%k
2 ;
��
%k
3 as in (3.121), and

��
%k+1+1
1 = �1

3
� 1
2
�� 1

4

�2
`k+1;k+1

�
� 1

24

�3
`k+1;k+1

�2
;

��
%k+1+1
2 = �4

3
� +

1

3

�2
`k+1;k+1

�
+
1

12

�3
`k+1;k+1

�2
;

��
%k+1+1
3 = �1

3
�� 1

12

�2
`k+1;k+1

�
� 1

24

�3
`k+1;k+1

�2
;

Finally, if i > %k+1 + 1 and i� `k+1 + 1 is odd, we have.

�SIj(tk; Ti; �; h) (3.124)

= �`k+1;k

�
��
%k
1 ��`k;j(tk) +

��
%k
2 ��%k;j(tk) +

��
%k
3 ��%k+1;j(tk)

�
+�`k+1;k

�

3

 
~�`k+1;j(tk) + 2

(i�`k+1)=2�1P
l=1

~�`k+1+2l;j(tk)

+4
(i�`k+1)=2P

l=1

~�`k+1+2l�1;j(tk) + ~�i;j(tk)

!
+�`k+1;k+1

�
��
%k+1
1 ~�`k+1;j(tk) +

��
%k+1
2 ~�%k+1;j(tk) +

��
%k+1
3 ~�%k+1+1;j(tk)

�
+�`k+1;k+1

�

3

 
~�`k+1;j(tk) + 2

(i�`k+1�1)=2�2P
l=1

~�`k+1+2l;j(tk)
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+4
(i�`k+1�1)=2�1P

l=1

~�`k+1+2l�1;j(tk) + ~�i;j(tk)

!
�`k+1;k+1

3�

8
(~�i�3;j(tk) + 3~�i�2;j(tk) + 3~�i�1;j(tk) + ~�i;j(tk)) ;

where ��%k1 ; ��
%k
2 ;
��
%k
3 as in (3.121) and ��

%k+1
1 ; ��

%k+1
2 ; ��

%k+1
3 as in (3.122). Analogously to

(3.124), the expression for �SIj(tk; Ti; �; h) can be derived in the case if i > %k+1 + 1

and i� `k+1 + 1 is even.

Using (3.110), (3.114), and (3.115), we construct the quadrature rule SZ(t�; T �;�)

(see (3.76)) and arrive at

�SZ(t
�; Ti;�) = �i;M

h
�i1
�f `MM + �i2

�f
%M
M + �i3

�f
%M+1
M

i
; (3.125)

�SZ(T%M ; T
�;�) =

�

3

 
�f
%M
M + 2

(N�%M�1)=2P
l=1

�f
%M+2l
M + 4

(N�%M+1)=2P
l=1

�f
%M+2l�1
M + �fNM

!
;

(3.126)

�SZ(T%M ; T
�;�) =

�

3

 
�f
%M
M + 2

(N�%M )=2�2P
l=1

�f
%M+2l
M + 4

(N�%M )=2�1P
l=1

�f
%M+2l�1
M + �fN�3M

!
+
3�

8

�
�fN�3M + 3 �fN�2M + 3 �fN�1M + �fNM

�
: (3.127)

Then we de�ne �SZ(t�; T �;�) to be used in the algorithm as

�SZ(t
�; T �;�) =

8>>>>>>>>><>>>>>>>>>:

(3.125), (3.112) with i = %M if N = %M ;

(3.125), (3.113) with i = %M + 1 if N = %M + 1;

�SZ(tM ; T%M ;�) +
�SZ(T%M ; TN ;�) if N > %M + 1;

(3.128)

where �SZ(tM ; T%M ;�) is from (3.125), (3.113) with i = %M and

�SZ(T%M ; TN ;�) =

8>>>><>>>>:
(3.126) if N � %M + 1 is odd,

(3.127) if N � %M + 1 is even.
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It is not di¢ cult to show that the quadrature rules used for deriving (3.128) satisfy

the order condition (3.77) with p = 4.

For the short rate approximation �(t) (see (3.78)), we use cubic polynomial

interpolation which obviously satis�es the order condition (3.79) with p = 4:

�(t) =

3X
j=0

Lj(t)f(t; T`(t)+j); (3.129)

where

Lj(t) =
3Y
i=0
i6=j

t� T`(t)+i
T`(t)+j � T`(t)+i

:

To obtain the corresponding AY (tk;h) = AY (tk; �f
j
k ; j = `k; : : : ; `k+1+3;h), we follow

a similar guidance as the one used to obtain (3.108).

Z tk+1

tk

~�(s)ds =

Z tk+1^T%k

tk

�
(s� T%k)(s� T%k+1)(s� T%k+2)

�6�3
~f lk(s) (3.130)

+
(s� T`k)(s� T%k+1)(s� T%k+2)

2�3
~f%k(s)

(s� T`k)(s� T%k)(s� T%k+2)
�2�3

~f%k+1 +
(s� T`k)(s� T%k)(s� T%k+1)

6�3
~f%k+2

�
ds

+

Z tk+1

tk+1^T%k

�
(s� T%k+1)(s� T%k+1+1)(s� T%k+1+2)

�6�3
~f lk+1(s)

+
(s� T`k+1)(s� T%k+1+1)(s� T%k+1+2)

2�3
~f%k+1

(s� T`k+1)(s� T%k+1)(s� T%k+1+2)
�2�3

~f%k+1+1

+
(s� T`k+1)(s� T%k+1)(s� T%k+1+1)

6�3
~f%k+1+2

�
ds:

Next, each of ~f i(s) in (3.130) is approximated, e.g. as ~f lk(s) � ~f lk(tk) and ~f lk+1(s) �
~f lk+1(tk+1). Then, the integrals in (3.130) are evaluated exactly. In our numerical

experiments (see Section 3.7); we approximate these integrals with the standard

composite Simpson rule (cf. (3.114)), since it is exact for cubic polynomials. We do

not write the expression of AY (tk;h) here but there is no di¢ culty to restore it.

The algorithm presented in this section, we will call Algorithm 3.5.3 for the

option price (3.51)-(3.54). Assumption 3.4.5 with q = 1 can be checked for this
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algorithm following the standard way. According to Theorem 4.1.8 from the next

Section, Algorithm 3.5.3 is of order O(�4+h): In practice (see Remark 3.4.7) we will

choose � = � 4
p
h with � > 0 such that (3.93) holds, which results in the algorithm�s

accuracy O(h):

Remark 3.5.3 (Complexity of the algorithms) Let us estimate computational com-

plexity of the algorithms considered in this section. The number of operations in

these algorithms is of order O(MN): Then running times of Algorithm 3.5.1 with

� = �h, Algorithm 3.5.2 with � = �
p
h, and Algorithm 3.5.3 with � = � 4

p
h

are proportional to M2; M
p
M; and M 4

p
M; respectively. Also, it should be taken

into account that Algorithms 3.5.2 and 3.5.3 require approximately twice and four

times number of operations per t-step, respectively, than Algorithm 3.5.1. Hence

one can expect that in reaching a similar accuracy Algorithm 3.5.3 is approximately

M3=4=4 faster than Algorithm 3.5.1 and Algorithm 3.5.2 is
p
M=2 faster than Algo-

rithm 3.5.1. This is con�rmed in our numerical experiments (see Section 3.7).

Remark 3.5.4 If in Algorithms 3.5.2 and 3.5.3 we substitute the Euler scheme

(3:95) by a second-order (i.e., q = 2) weak scheme (see (3.42) and also more ex-

amples of such schemes can be found in, e.g. [57, 58, 45]); then these modi�ed

algorithms (they should satisfy Assumption 3.4.5 with q = 2) will become of order

O(h2 + �2) and O(h2 + �4); respectively. Choosing � = h and � = �
p
h in the

modi�ed Algorithms 3.5.2 and 3.5.3, respectively, their accuracy becomes of order

O(h2):

3.6 Mean-square method

In most of the �nancial applications weak numerical methods, which we have consid-

ered in the previous sections, are su¢ cient. At the same time, mean-square methods

(see Section 3.1.2) can be useful for simulating scenarios. Also, mean-square conver-

gence of fully discrete approximations for the HJM model is of theoretical interest.

99



In this section we consider a mean-square method for (3.67)-(3.69) and in Section 4:2

we prove its convergence.

We consider an approximation �f ik+1 of ~f
i(tk+1) from (3.67) (i.e., a full discretiza-

tion of (3.43)-(3.44) in both T and t) of the form

�f i0 = f
i
0; i = 0; : : : ; N;

�f ik+1 =
�f ik+ (3.131)

+Ai(tk; Ti; �f
j
k ; j = `k+1; : : : ; �(tk+1; Ti) _ i;h;Wl(s)�Wl(tk);

l = 1; : : : ; d; tk � s � tk+1);

i = `k+1; : : : ; N; k = 0; : : : ;M;

where the form of function Ai depends on the coe¢ cients of (3.67)-(3.69), i.e., on �

and on choice of the quadrature rule SIj ; �(tk; Ti) is as in the quadrature (3.69). Note

that in this section we use the same notation �f ik for the mean-square approximation

as the one we use for weak approximations in all the other sections of this paper.

Since mean-square approximations of (3.67) are considered in this section only, this

abuse of notation does not lead to any confusion.

As before, we put

�f ik =
�f im; k =m+ 1; : : : ;M; 0 � i � `(t�)� 1;

wherem = d(Ti+1 � t0) =he�1: Then theN+1-dimensional vector f �f ik; i = 0; : : : ; Ng

is de�ned for all k = 0; : : : ;M:

We impose the following assumption on the one-step approximation �f it;x(t + h)

of the method (3.131) for the solution ~f it;x(t+ h) of (3.67) with the initial condition

x given at time t : ~f it;x(t) = x
i.

Assumption 3.6.1 Let

q2 �
1

2
; q1 � q2 +

1

2
: (3.132)

Suppose the one-step approximation �f it;x(t+h) has order of accuracy q1 for expecta-
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tion of the deviation and order of accuracy q2 for the mean-square deviation; more

precisely, for arbitrary t0 � t � t� � h; x 2 RN+1 the following inequalities hold:

jE( ~f it;x(t+ h)� �f it;x(t+ h))j � Chq1 ; (3.133)

h
Ej ~f it;x(t+ h)� �f it;x(t+ h))j2

i1=2
� Chq2 ; (3.134)

i = 0; : : : N;

where C > 0 is a constant independent of h; �; and x:

Assumption 3.6.1 is analogous to the conditions of the fundamental theorem

of mean-square convergence in [58, p. 4] (see Theorem 3.1.7). We note that C

in (3.133)-(3.134) are independent of x while in the fundamental theorem such C

depend on x. In our case it is natural to put C independent of x since the coe¢ cients

of (3.67) and their derivatives are uniformly bounded (see Assumptions 3.2.1-3.2.2).

We also emphasize that the constants C in (3.133)-(3.134) do not depend on �.

To illustrate the results of this section, let us present a mean-square algorithm

for (3:43)-(3:44) based on the mean-square Euler-type scheme:

�f i0 = f
i
0; i = 0; : : : ; N; �Y0 = 0; (3.135)

�f ik+1 =
�f ik +

dP
j=1

��i;j(tk)�SIj(tk; Ti; �; h) + h1=2
dP
j=1

��i;j(tk)�j;k+1;

i = `k+1; : : : ; N;

where �j;k+1 are independent Gaussian random variables with zero mean and unit

variance,

(��i;1(tk); : : : ; ��i;d(tk))
> = (�1(tk; Ti; �f

i
k); : : : ; �d(tk; Ti;

�f ik))
>;

and �SIj(tk; Ti; �; h) depends on our choice of the quadrature rule (3:66). If
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�SIj(tk; Ti; �; h) is taken from (3:96) or (3:105) or from Algorithm 3.5.3 then p = 1;

p = 2 or p = 4; respectively, and q1 = 2 and q2 = 1 under h � �: The overall error

of these algorithms are O(� + h1=2); O(�2 + h1=2); and O(�4 + h1=2); respectively.

3.7 Numerical examples

In this section we demonstrate accuracy and convergence properties of the algorithms

from Section 3.5. We also compare computational costs of the algorithms. This

comparison illustrates that the algorithms with higher-order quadrature rules are

more e¢ cient.

For illustration, we price an interest rate caplet (see Section 2.1.3) which is an

interest rate derivative providing protection against an increase in an interest rate

for a single period. Suppose a caplet is set at time t� with payment date at T �

and has the unit nominal value and a strike K: The arbitrage price of the caplet

is given by (3.48) with t� = sk and T � = si: The caplet parameters chosen for the

experiments are t� = 1:0; T � = 6:0; K = 0:03:

A particular model within the HJM framework (3.43)-(3.44) is speci�ed by a

choice of the volatility function and initial forward rate curve. Here we consider

two examples: a one-factor model with deterministic exponential volatility function

(Vasicek model, see, e.g. [6, 15] and cf. Section 2.4) and a two-factor model with

proportional volatility function (see, e.g. [36, 31, 62, 33]). The former one admits a

closed-form formula for the caplet price.

The algorithms were implemented using C++ with GCC 3.4.3 compiler. The

experiments were run on ALICE HPCComputer nodes of the University of Leicester,

each with dual quad-core 2.67GHz Intel Xeon X5550 processor, 12 GB RAM, and

OS 64-bit Scienti�c Linux 5.4. Uniform random numbers were generated with the

additive lagged Fibonacci generator, F (1279; 418) (for implementation see [58, 66]).
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3.7.1 Vasicek model

We consider the one-factor HJMmodel (3.43)-(3.44) with the deterministic volatility

function given by

�(t; T ) = � exp(��(T � t)); (3.136)

and the initial forward curve de�ned as

f0(T ) = exp(��(T�t0))r0+(1� exp(��(T � t0)))#�
�2

2�2
(1� exp(��(T � t0)))2 ;

(3.137)

where �; �; r0; and # are given positive constants.

Table 3.1: Algorithm 3.5.1 for the Vasicek model. Performance of Algorithm 3.5.1
with � = h in the case of the Vasicek model (3.136), (3.137) with parameters
� = 0:02, r0 = 0:05, � = 1 and � = 1 for pricing a unit nominal caplet with
parameters t0 = 0, t� = 1:0, T � = 6:0; K = 0:03: L is the number of independent
runs in the Monte Carlo simulation (see (3.91)).

h L error CPU time; min

0:2 107 4:22� 10�2 � 2:80� 10�6 4:00� 10�1

0:1 107 2:04� 10�2 � 3:06� 10�6 9:00� 10�1

0:05 107 1:00� 10�2 � 3:19� 10�6 2:45� 100

0:025 107 4:98� 10�3 � 3:26� 10�6 7:73� 100

0:0125 109 2:48� 10�3 � 3:29� 10�7 2:30� 103

0:00625 109 1:24� 10�3 � 3:31� 10�7 8:32� 103

It is known ((2.19) and also see, e.g. [6, 15, 68]) that a caplet corresponds to

a put option on a zero-coupon bond. In [38] analytic expressions for the European

option prices on zero-coupon and coupon bearing bonds under the Vasicek model

are derived. In particular, the price of the caplet set at time t� with payment date

at T �, unit nominal value and strike K is given by

F (t0; f0 (�) ; t�; T �) = P (t0; t�)�(�cP + �P )� (1 +K(T � � t�))P (t0; T �)�(�cP );

(3.138)
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Table 3.2: Algorithm 3.5.2 for the Vasicek model. Performance of Algorithm 3.5.2
with � =

p
h in the case of the Vasicek model (3.136), (3.137) with the same

parameters as in Table 3.1.

h L error CPU time; min

0:2 107 6:53� 10�3 � 2:72� 10�6 3:00� 10�1

0:1 107 3:32� 10�3 � 2:99� 10�6 5:33� 10�1

0:05 107 1:65� 10�3 � 3:11� 10�6 1:03� 100

0:025 107 8:29� 10�4 � 3:22� 10�6 2:13� 100

0:0125 109 4:13� 10�4 � 3:27� 10�7 4:65� 102

0:00625 109 2:07� 10�4 � 3:30� 10�7 1:09� 103

Table 3.3: Algorithm 3.5.3 for the Vasicek model. Performance of Algorithm 3.5.3
with � = � 4

p
h in the case of the Vasicek model (3.136), (3.137) with the same

parameters as in Table 3.1.

h L error CPU time; min �

0:2 107 1:25� 10�3 � 2:53� 10�6 2:59� 10�1 9:97� 10�1

0:1 107 6:28� 10�4 � 2:87� 10�6 4:10� 10�1 9:70� 10�1

0:05 107 3:18� 10�4 � 3:09� 10�6 8:11� 10�1 9:76� 10�1

0:025 107 1:56� 10�4 � 3:20� 10�6 1:59� 100 9:43� 10�1

0:0125 109 9:62� 10�5 � 3:26� 10�7 3:13� 102 9:97� 10�1

0:00625 109 4:71� 10�5 � 3:30� 10�7 5:96� 102 9:70� 10�1

where �(�) denotes the standard normal cumulative distribution function and

�P =
�

�

r
1� exp(�2�(t� � t0))

2�
[1� exp(�2�(T � � t�))] ;

cP =
1

�P
ln
(1 +K(T � � t�))P (t0; T �)

P (t0; t�)
+
�P
2
:

The values of parameters chosen in the experiments are t0 = 0; � = 0:02; r0 =

0:05; � = 1; and # = 1: The values � = 1 and # = 1 are rather unrealistic from

the �nancial point of view and are chosen for illustrative purposes. Under a more

realistic choice of parameters, simulations are done with a particular time step h

(see Table 3.4).
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The results of the experiments with Algorithm 3.5.1 of order O(� + h), Algo-

rithm 3.5.2 of order O(�2+h), and Algorithm 3.5.3 of order O(�4+h) are presented

in Tables 3.1, 3.2, and 3.3, respectively. For Algorithms 3.5.1 and 3.5.2, we set� = h

and � =
p
h; respectively. For Algorithm 3.5.3, we set � = � 4

p
h with � > 0 so

that T -grid remains equally spaced:

� =
1
4
p
h

8>>>>>><>>>>>>:
T ��t0�

T��t0
4p
h

�
+1
; if T ��t0

4p
h
�
j
T ��t0
4p
h

k
� 1

2
;

T ��t0�
T��t0
4p
h

� ; otherwise,
(3.139)

where b�c denotes the integer part of a real number. It is clear that � � 1:

As a result, the errors of all three algorithms become of order O(h). In the

tables, the values before ���are estimates of the bias computed as the di¤erence

between the exact caplet price (3.138) and its sampled approximation (see (3.91)),

while the values after ��� give half of the size of the con�dence interval for the

corresponding estimator with probability 0:95. The number of Monte Carlo runs

L is chosen here so that the Monte Carlo error is small in comparison with the

bias. The results from the tables are visualised in Figure 3:3: This con�rms that the

experimentally observed convergence rates for Algorithms 3.5.1, 3.5.2 and 3.5.3 are

in agreement with the theoretical �rst order convergence in h (reference line "Order

one"). We note that in the analysis of convergence of Algorithm 3.5.3 one has to

take into account not only values of h but also of �: As expected, the experiments

demonstrate that Algorithm 3.5.3 is the most computationally e¢ cient among the

three algorithms tested and also Algorithm 3.5.2 outperforms Algorithm 3.5.1. As

it follows from Tables 3.1-3.4, for a �xed time step h the ratios of running times

of the considered algorithms is in agreement with the theoretical prediction (see

Remark 3.5.3).

In Table 3.4 we present results for h = 0:1 and L = 109 in the case of the more

realistic choice of parameters � = 0:178 and # = 0:086 of the Vasicek model. With
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Figure 3.3: Vasicek model: Stepsize error diagram in log coordinates of the results
from Tables 3.1, 3.2, and 3.3. Log(error) is the log of estimates of the bias.

these parameters, the bias is very small, and if one would like to analyze it, e.g. for

h = 2�2� 5�1; then the number of Monte Carlo runs has to be increased up to 1011

in order to make the Monte Carlo error su¢ ciently smaller than the bias. We see

from Table 3.4 that Algorithm 3.5.3 is more than twice faster and more accurate

than Algorithm 3.5.1.

3.7.2 Proportional volatility model

Here we choose the volatility functions of the form

�j(t; T ) = �j exp(��j(T � t))min (f(t; T );�) ; (3.140)

where �j and �j are positive constants and � is a large positive number introduced

to cap the proportional volatility in order to avoid an explosion of the forward-rate
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Table 3.4: Vasicek model. Performance of the algorithms (3.5.1)-(3.5.3) with h = 2�6

and L = 109 in the case of the Vasicek model (3.136), (3.137) with parameters
� = 0:02, r0 = 0:05, � = 0:178 and � = 0:086 for pricing a unit nominal caplet with
parameters t0 = 0, t� = 1:0, T � = 6:0; K = 0:03:

h L error CPU time; min

Algorithm 3.5.1 0:1 109 �5:38� 10�4 � 2:90� 10�6 9:79� 101

Algorithm 3.5.2 0:1 109 1:75� 10�4 � 2:86� 10�6 5:51� 101

Algorithm 3.5.3 0:1 109 7:81� 10�5 � 2:89� 10�6 4:10� 101

process (cf. Assumption 3.2.1 and also Remark 3.2.4). The volatility speci�cation

of the form (3.140) yields an approximately lognormal distribution of forward rates

(cf. Section 2.3).

Table 3.5: Algorithm 3.5.1 for the Proportional volatility model. Performance of
Algorithm 3.5.1 with � = h in the case of the proportional volatility model (3.140)
with parameters (3.141) and with initial forward curve (3.142) for pricing a unit
nominal caplet with parameters t0 = 0, t� = 1:0, T � = 6:0; K = 0:03:

h L error CPU time; min

0:2 109 5:80� 10�4 � 2:57� 10�6 6:99� 101

0:125 109 3:64� 10�4 � 2:57� 10�6 1:21� 102

0:1 109 2:92� 10�4 � 2:57� 10�6 1:67� 102

0:05 109 1:48� 10�4 � 2:56� 10�6 4:84� 102

0:025 109 7:50� 10�5 � 2:56� 10�6 1:63� 103

Let us note that in [33] a number of volatility models including one and two

factors proportional volatility models are examined. The performance of the models

is evaluated based on the accuracy of their out-of-sample price prediction and their

ability to hedge caps and �oors. This study reveals that in out-of-sample pricing

accuracy the one- and two- factor proportional volatility models outperform the

other competing one- and two- factor models, correspondingly. The one-factor LI-

BOR market model (see Section 2.3) outperforms the proportional volatility model

only in pricing tests, which were not strictly out-of-sample. In terms of hedging

performance, the two-factor models provides signi�cantly better results than the

one-factor models.
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Table 3.6: Algorithm 3.5.2 for the Proportional volatility model. Performance of
Algorithm 3.5.2 with� =

p
h in the case of the proportional volatility model (3.140)

with the same parameters as in Table 3.5.

h L error CPU time; min

0:2 109 1:50� 10�4 � 2:56� 10�6 5:70� 101

0:125 109 8:91� 10�5 � 2:56� 10�6 7:88� 101

0:1 109 8:01� 10�5 � 2:56� 10�6 1:03� 102

0:05 109 3:47� 10�5 � 2:56� 10�6 2:16� 102

0:025 109 1:62� 10�5 � 2:54� 10�6 4:78� 102

Table 3.7: Algorithm 3,5.3 for the Proportional volatility model. Performance of
Algorithm 3.5.3 with � = � 4

p
h in the case of the proportional volatility model

(3.140) with the same parameters as in Table 3.5.

h L error CPU time; min �

0:2 109 7:04� 10�5 � 2:57� 10�6 5:32� 101 9:97� 10�1

0:125 109 4:59� 10�5 � 2:57� 10�6 6:34� 101 9:17� 10�1

0:1 109 3:66� 10�5 � 2:57� 10�6 7:40� 101 9:70� 10�1

0:05 109 1:74� 10�5 � 2:57� 10�6 1:54� 102 9:76� 10�1

In our experiments we consider two factors, i.e., d = 2. We use the same pa-

rameters for (3.140) as those found in [33] by calibrating the model to the market

prices of caps and �oors across di¤erent maturities and strike rates:

�1 = 0:1043; �2 = 0:1719; �1 = 0:052; �2 = 0:035: (3.141)

As the initial forward curve, we take the one used in numerical examples in [32]:

f0(T ) = log(150 + 48T )=100: (3.142)

Since the closed-form formula for caplet price is not available for the HJM model

(3.43)-(3.44) with the volatility (3.140), we found the reference caplet price by eval-

uating the price using Algorithm 3.5.3 with h = 0:00625; � = � 4
p
h with � from

(3.139), and taking the number of Monte Carlo runs L = 109. This reference value
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has the Monte Carlo error 2:56� 10�6; which gives half of the size of the con�dence

interval for the corresponding estimator with probability 0:95.

Tables 3.5, 3.6, and 3.7 report the results of our experiments for Algorithm 3.5.1

with � = h, Algorithm 3.5.2 with � =
p
h; and Algorithm 3.5.3 with � = � 4

p
h;

� is from (3.139). As in the previous tables, the error column values before ���

are estimates of the bias computed using the reference price value and the values

after ��� re�ect the Monte Carlo error with probability 0:95. As in the Vasicek

model example, the Monte Carlo error was made relatively small in order to be able

to analyze the bias. We visualise results from the tables in Fugure 3.4. It is clear

that the results demonstrate �rst order of convergence which is in agreement with

our theoretical results. The experiments also clearly illustrate the computational

superiority of Algorithm 3.5.3 whereas Algorithm 3.5.1 is the slowest out of the three

algorithms presented. For instance, Algorithm 3.5.1 with h = 0:025 and the error

7:5�10�5�2:56�10�6 required 1:63�103 minutes of computer time (see Table 3.5)

while Algorithm 3.5.3 with h = 0:2 and the similar error 7:04� 10�5 � 2:57� 10�6

required 5:32 � 101 minutes of computer time (see Table 3.7), i.e., Algorithm 3.5.3

is 30 time faster than Algorithm 3.5.1 in achieving the same level of accuracy.

We note that time measurements were made for comparison purposes only, every

e¤ort was made to realize all the algorithms in an analogous way but we did not aim

at having the most e¢ cient computer code. Further, to demonstrate convergence

of the algorithms, we made the Monte Carlo error much smaller that the numerical

integration error. In practice, one usually balances the two errors, e.g. in the case

of Algorithm 3.5.3 with h = 0:2 it is su¢ cient to use L = 107 instead of L = 109

in order to get accuracy of order 10�4� 10�5; this simulation requires just about 30

seconds of computer time.

3.8 Summary

We start this Chapter by revising well-known results from the theory of SDEs. In

particular, we consider the �usual�SDE and also the SDE which depend on a pa-
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Figure 3.4: Proportional volatility model: Stepsize error diagram in log coordinates
of the results from Tables 3.5, 3.6, and 3.7. Log(error) is the log of estimates of
the bias.

rameter. The results on existence and uniqueness of the solutions of such equations

and their di¤erentiability with respect to a parameter, if they dependent on such,

are presented in Section 3.1.1. The HJM equation is an example of an in�nite-

dimensional SDE which initial value and coe¢ cients depend on a parameter.

In Section 3.1.2, we review construction of numerical algorithms based on the

Ito-Taylor expansion and present the mean-square and weak criteria for evaluating

their order of convergence.

The main contribution of this Chapter is to propose and analyze a new class

of e¢ cient numerical methods for the HJM model, inspired by the method of lines

(Section 3.4). This provides a rigorous framework for the construction of numerical

algorithms that features a high degree of �exibility. The results of this Chapter

are based on our paper [48]. In Section 3.4.1, we proceed by �rst discretising the
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arbitrage-free drift in the HJM equation in maturity-time variable via the use of

high-order quadrature rules. This leads to a �nite-dimensional system of coupled

stochastic di¤erential equations to which a weak sense numerical integrator is ap-

plied for discretisation in calendar time (see Section 3.4.2 ). Examples of some

particular algorithmic realizations of this method are given in Section 3.5. Even

though, the main focus of the thesis is weak-sense approximations for the HJM

model, we consider mean-square approximations in Section 3.6. They present their

own theoretical interest and make our account on HJM numerics complete. The use

of high-order quadrature rules allows us to take relatively large steps in the maturity

time approximation, preserving the overall accuracy of the algorithms. This is con-

�rmed by our numerical experiments in Section 3.7. We also demonstrate accuracy

and convergence properties of the algorithms from Section 3.5 and document the

computational costs attached. We conclude that the algorithms with higher-order

quadrature rules are more e¢ cient.
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Chapter 4

Proof of convergence theorems

In this Chapter we are going to be concerned with establishing a theoretical basis

for validity of the results from Chapter 3. More speci�cally, in Section 4.1 we prove

convergence theorems for the methods constructed in Section 3.4. We �rst establish

convergence results for the HJM approximation discrete in the maturity time T

only (Section 4.1.1). Then, we analyze weak convergence of fully discrete methods

to the approximations discrete in the maturity time (Section 4.1.2). We show that

this convergence is uniform in the maturity time discretization step � in order to

obtain weak convergence of the fully-discrete numerical methods to the solution of

the HJM equation. In Section 4.2 we prove convergence for the mean-square method

de�ned in Section 3:6: Finally, in Section 4.3 we demonstrate the routine check of

the assumptions imposed on the numerical method in Section 3.4 on the example of

Algorithm 3:5:2 de�ned in Section 3:5:

4.1 Convergence theorems

The aim of this section is to prove the convergence of the approximation

�F (t0; f0; t
�; T �) de�ned in (3.88) to F (t0; f0 (�) ; t�; T �) from (3.51) as h ! 0 and

�! 0: Recall that F (t0; f0; t�; T �) and �F (t0; f0 (�) ; t�; T �) have the form:

F (t0; f0 (�) ; sk; si) = E exp(�Y (sk))G (P (sk; si)) ;
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where

Y (sk) =

Z sk

t0

r(u)du;

P (sk; si) = exp (�Z(sk; si)) ;

and

Z(sk; si) =

Z si

sk

f(sk; u)du;

while

�F (t0; f0; t
�; T �) = E exp(� �YM)G

�
�P (t�; T �)

�
;

where �YM is from (3.84):

�Y0 = 0; �Yk+1 = �Yk + A
Y (tk; �f

j
k ; j = `k; : : : ; `k+1 + �;h); k = 0; : : : ;M;

�P (t�; T �) = exp
�
� �SZ(t�; T �;�)

�
;

and

�SZ(t
�; T �;�) = �

NX
j=%M

~j
�f jM :

Denote by ~F (t0; f0; t
�; T �) the approximation of F (t0; f0 (�) ; t�; T �) from (3.51)

resulting from approximating the solution f(t; Ti) of (3.43)-(3.44) by ~f i(t) from

(3.67), i.e.,

~F (t0; f0; t
�; T �) = E exp(� ~Y (t�))G

�
~P (t�; T �)

�
; (4.1)

where

~P (t�; T �) = exp
�
� ~SZ(t�; T �;�)

�
; (4.2)

~Y (t) is from (3.81) and ~SZ(t�; T �;�) is the quadrature rule of the form (3.76) with

f(t�; Tj) replaced by ~f j(t�):

The error R of weak approximation of F by �F can be written as a sum of two
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contributing terms:

R = F (t0; f0 (�) ; t�; T �)� �F (t0; f0; t
�; T �) (4.3)

=
h
F (t0; f0 (�) ; t�; T �)� ~F (t0; f0; t

�; T �)
i
+
h
~F (t0; f0; t

�; T �)� �F (t0; f0; t
�; T �)

i
: = R1 +R2;

where R1 is the error due to T -discretization of (3.43)-(3.44) and R2 is the error due

to t-discretization of (3.67)-(3.69). The �rst error, R1; is analyzed in Section 4.1.1

and the second error, R2; is analyzed in Section 4.1.2.

Note that in this section we shall use the letters K; C; and c to denote various

constants which are independent of � and h:

4.1.1 T -discretization error

In this section we analyze the error of the �nite-dimensional approximation (3.67)-

(3.69) for the in�nite-dimensional stochastic equation (3.43)-(3.44). The plan of

this section is as follows. First, we prove (see Theorem 4.1.1) that the approxi-

mation (3.67)-(3.69) has mean-square convergence of order �p: This result plays

an intermediate role for getting an estimate for the T -discretization error R1 but,

at the same time, it has its own theoretical value. Based on Theorem 4.1.1, we

prove (see Lemma 4.1.2) the mean-square convergence of ~Y from (3.80) to Y from

(3.52). Finally, in Theorem 4.1.3 we prove that the weak-sense error R1 (see (4.3))

of (3.67)-(3.69) is of order �p:

Theorem 4.1.1 Suppose Assumptions 3.2.1-3.2.3 are satis�ed. Then the approx-

imation ~f i(t) from (3:67)-(3:69) converges to f(t; Ti) from (3:43)-(3:44) as � ! 0

with the mean-square order p, i.e.,

�
E
��� ~f i(t)� f(t; Ti)���2�1=2 � K�p; t 2 [t0; t� ^ T(i+1)^N ]; i = 0; : : : ; N; (4.4)

where K > 0 is a constant independent of �; t; and i:
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Proof. Denote by �(t; Ti) the error of the approximation (3.67)-(3.69):

�(t; Ti) := ~f i(t)� f(t; Ti); t 2 [t0; t� ^ T(i+1)^N ]; i = 0; : : : ; N: (4.5)

Clearly,

�(t0; Ti) = 0: (4.6)

Due to Assumption 3.2.2, �(s; T; z) is globally Lipschitz in z whence

j~�i(s)� �(s; Ti)j =
����(s; Ti; ~f i(s))� �(s; Ti; f(s; Ti))��� � K j�(s; Ti)j ; (4.7)

and (cf. (3.66) and (3.69))

��� ~SI(s; Ti;�)� SI(s; Ti;�)��� = �

������
�(s;Ti)X
k=`(s)

k(s) (~�k(s)� �(s; Tk))

������ (4.8)

� K�

�(s;Ti)X
k=`(s)

j~�k(s)� �(s; Tk)j � K�
�(s;Ti)X
k=`(s)

j�(s; Tk)j :

We have from (3.67)-(3.69) and (3.43)-(3.44):

�(t; Ti) =

Z t

t0

h
~�>i (s)

~SI(s; Ti;�)� �>(s; Ti)I(s; Ti)
i
ds

+

Z t

t0

[~�i(s)� �(s; Ti)]> dW (s)

=

Z t

t0

~�>i (s)
h
~SI(s; Ti;�)� SI(s; Ti;�)

i
ds

+

Z t

t0

~�>i (s) [SI(s; Ti;�)� I(s; Ti)] ds

+

Z t

t0

[~�i(s)� �(s; Ti)]> I(s; Ti)ds+
Z t

t0

[~�i(s)� �(s; Ti)]> dW (s):

By Ito�s formula, we obtain

�2(t; Ti) =

Z t

t0

2�(s; Ti)~�
>
i (s)

h
~SI(s; Ti;�)� SI(s; Ti;�)

i
ds (4.9)

+

Z t

t0

2�(s; Ti)~�
>
i (s) [SI(s; Ti;�)� I(s; Ti)] ds
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+

Z t

t0

2�(s; Ti) [~�i(s)� �(s; Ti)]> I(s; Ti)ds

+

Z t

t0

[~�i(s)� �(s; Ti)]> [~�i(s)� �(s; Ti)] ds

+

Z t

t0

2�(s; Ti) [~�i(s)� �(s; Ti)]> dW (s):

Then

E�2(t; Ti) = 2

Z t

t0

E�(s; Ti)~�
>
i (s)

h
~SI(s; Ti;�)� SI(s; Ti;�)

i
ds (4.10)

+2

Z t

t0

E�(s; Ti)~�
>
i (s) [SI(s; Ti;�)� I(s; Ti)] ds

+2

Z t

t0

E�(s; Ti) [~�i(s)� �(s; Ti)]> I(s; Ti)ds

+

Z t

t0

E [~�i(s)� �(s; Ti)]> [~�i(s)� �(s; Ti)] ds:

Using the boundedness of �(s; T; z) (see (3.45)) and the inequality (4.8), the �rst

term on the right-hand side of (4.10) is estimated as

����2Z t

t0

E�(s; Ti)~�
>
i (s)

h
~SI(s; Ti;�)� SI(s; Ti;�)

i
ds

���� (4.11)

� K�

24Z t

t0

E j�(s; Ti)j
�(s;Ti)X
k=`(s)

j�(s; Tk)j ds

35 :
Using the boundedness of �(s; T; z); the inequality 2ab � a2+ b2; and the condition

(3.63) for the quadrature rule SI , we obtain for the second term on right hand side

of (4.10):

����2Z t

t0

E�(s; Ti)~�
>
i (s) [SI(s; Ti;�)� I(s; Ti)] ds

���� (4.12)

� K

Z t

t0

Ej�(s; Ti)j jSI(s; Ti;�)� I(s; Ti)j ds

� K

Z t

t0

�
E�2(s; Ti) + E jSI(s; Ti;�)� I(s; Ti)j2

�
ds

� K

Z t

t0

�
E�2(s; Ti) + �

2p
�
ds:
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Using the inequality (4.7) and the boundedness of �(s; T; z), we get for the third

term on the right-hand side of (4.10):

����2Z t

t0

E�(s; Ti) [~�i(s)� �(s; Ti)]> I(s; Ti)ds
���� � K Z t

t0

E�2(s; Ti)ds: (4.13)

By the inequality (4.7), the fourth term on the right-hand of (4.10) is estimated as

Z t

t0

E [~�i(s)� �(s; Ti)]> [~�i(s)� �(t; Ti)] ds � K
Z t

t0

E�2(s; Ti)ds: (4.14)

Substituting (4.11)-(4.14) in (4.10) and using the inequality 2ab � a2+b2, we obtain

E�2(t; Ti) � K

Z t

t0

8<:E�2(s; Ti) + �E
24j�(s; Ti)j �(s;Ti)X

k=`(s)

j�(s; Tk)j

35+�2p

9=; ds
� K

Z t

t0

�
(1 + �(�(s; Ti)� `(s) + 2))E�2(s; Ti)

+�

�(s;Ti)X
k=`(s); k 6=i

E�2(s; Tk) + �
2p

9=; ds
� K

Z t

t0

8<:E�2(s; Ti) + �
�(s;Ti)X

k=`(s); k 6=i

E�2(s; Tk)

9=; ds+K�2p;

t 2 [t0; t
� ^ T(i+1)^N ]; i = 0; : : : ; N: (4.15)

We have used here that �(�(s; Ti)� `(s) + 2) � T � � t0:

Introduce �M(t) := max`(t)�i�N E�
2(t; Ti); t 2 [t0; t�]: Clearly (see (4.6)), �M(t0) =

0: Then we get from (4.15):

�M(t) � K
Z t

t0

�M(s)ds+K�
2p;

whence (4.4) follows by the Gronwall inequality. Theorem 4.1.1 is proved. �

Using Theorem 4.1.1, we prove the following lemma.

Lemma 4.1.2 Suppose Assumptions 3.2.1-3.2.3 are satis�ed. The approximation

117



~Y (t) from (3:81) converges to Y (t) from (3:52) as �! 0 with the mean-square order

p > 0, i.e., �
E
h
Y (t�)� ~Y (t�)

i2�1=2
� K�p; (4.16)

where K > 0 is a constant independent of �:

Proof. Consider the error of the approximation (3.81) for (3.52) (see also (3.80)):

Y (t�)� ~Y (t�) =

Z t�

t0

f(s; s)ds�
Z t�

t0

~�(s)ds: (4.17)

We rearrange the right-hand side of (4.17) to split this error into the error due to

approximation of the short rate r(t) = f(t; t) by �(t) and the error due to approxi-

mation of f(t; Ti) by ~f i(t) :

Y (t�)� ~Y (t�) =

Z t�

t0

(f(s; s)� �(s)) ds+
Z t�

t0

(�(s)� ~�(s)) ds: (4.18)

Due to the condition (3.79) imposed on our choice of the approximation �(s); we

have

E

�Z t�

t0

(f(s; s)� �(s)) ds
�2
� K�2p: (4.19)

Recalling the form of the approximation �(s) from (3.78), we get

E

�Z t�

t0

(�(s)� ~�(s)) ds
�2

= E

24Z t�

t0

`(t�)X
l=0

�X
i=0

�i(s)(f(s; Tl+i)� ~f l+i(s))�s2[Tl;Tl+1)ds

352 ;
where �i(s) are bounded coe¢ cients and the number � is independent of �. Then,

using (4.4), we obtain

E

�Z t�

t0

(�(s)� ~�(s)) ds
�2
� K�2p: (4.20)

The relations (4.18)-(4.20) imply the required error estimate (4.16). �
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In the next theorem we obtain an estimate for the weak sense error R1 from

(4.3).

Theorem 4.1.3 Suppose Assumptions 3.2.1-3.2.3 are satis�ed. Assume that the

payo¤ function G(z) satis�es the global Lipschitz condition (3:50). Then the ap-

proximation ~F (t0; f0; t�; T �) from (4:1) converges to F (t0; f0 (�) ; t�; T �) from (3:51),

(3:52)-(3:54) with order p > 0; i.e.,

���F (t0; f0 (�) ; t�; T �)� ~F (t0; f0; t
�; T �)

��� � K�p; (4.21)

where K > 0 is a constant independent of �:

Proof. We have (see (3.51), (3.52)-(3.54) and (4.1)-(4.2)):

R1 = F (t0; f0 (�) ; t�; T �)� ~F (t0; f0; t
�; T �)

= E exp(�Y (t�))G (P (t�; T �))� E exp(� ~Y (t�))G
�
~P (t�; T �)

�
= E

h
exp (�Y (t�))� exp

�
� ~Y (t�)

�i
G
�
~P (t�; T �)

�
(4.22)

+E
h
G (P (t�; T �))�G

�
~P (t�; T �)

�i
exp(�Y (t�)):

Consider the �rst term on the right-hand side of (4.22). By the mean value

theorem, we get

exp (�Y (t�))� exp
�
� ~Y (t�)

�
= (~Y (t�)� Y (t�)) exp(#); (4.23)

where # is a point between � ~Y (t�) and �Y (t�):

Due to the global Lipschitz condition (3.50) imposed on G(z), we have (recall that

~SZ(t
�; T �;�) is the quadrature rule of the form (3.76) with f(t�; Ti) replaced by

~f i(t�) :

jG( ~P (t�; T �))j � K ~P (t�; T �) = K exp
�
� ~SZ(t�; T �;�)

�
(4.24)

= K exp

0@�� NX
j=%M

~j ~f
j(t�)

1A :
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Using (4.23), (4.24), and the Cauchy�Bunyakovsky inequality twice, we obtain

���E hexp (�Y (t�))� exp(� ~Y (t�))iG( ~P (t�; T �))��� (4.25)

� K

�������
h
E( ~Y (t�)� Y (t�))2

i1=2
[E exp(4#)]1=4

24E exp
0@�4� NX

j=%M

~j
~f j(t�)

1A351=4
������� :

Thanks to (3.47) and (3.70), exponential moments of� ~Y (t�) and�Y (t�) are bounded

and, consequently, for some K > 0 we get E exp(4#) < K: Due to (3.70), we also

have

E exp

0@�4� NX
j=%M

~j
~f j(t�)

1A = E

24exp
0@�4T NX

j=%M

~j
~f j(t�)

1A351=N

� 1

N

NX
j=%M

E exp
�
�4T ~j ~f j(t�)

�
< K:

Then (4.25) together with (4.16) implies

jE
h
exp (�Y (t�))� exp(� ~Y (t�))

i
G( ~P (t�; T �))j � K�p: (4.26)

Let us now consider the second term on the right-hand side of (4.22). Due to

the global Lipschitz condition (3.50) imposed on G(z), we have

���G (P (t�; T �))�G( ~P (t�; T �))��� � K �
���P (t�; T �)� ~P (t�; T �)

��� : (4.27)

Further, by the mean value theorem, we get

P (t�; T �)� ~P (t�; T �) = exp (�Z (t�; T �))� exp
�
� ~SZ(t�; T �;�)

�
=

�
~SZ(t

�; T �;�)� Z (t�; T �)
�
exp (#) ; (4.28)

where # is between � ~SZ(t�; T �;�) and �Z (t�; T �).
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Using (4.27), (4.28), and the Cauchy�Bunyakovsky inequality twice, we obtain

���E hG (P (t�; T �))�G( ~P (t�; T �))i exp(�Y (t�))��� (4.29)

�
�
E
�
~SZ(t

�; T �;�)� Z (t�; T �)
�2�1=2

[E exp(�4Y (t�))]1=4 [E exp(4#)]1=4 :

It is clear that (3.47) and (3.70) imply boundedness of the exponential moments

present in the right-hand side of (4.29) and, hence,

���E hG (P (t�; T �))�G� ~P (t�; T �)�i exp(�Y (t�))��� (4.30)

� K

�
E
�
~SZ(t

�; T �;�)� Z (t�; T �)
�2�1=2

:

We have

E
�
~SZ(t

�; T �;�)� Z (t�; T �)
�2

(4.31)

= E
�
~SZ(t

�; T �;�)� SZ(t�; T �;�) + SZ(t�; T �;�)� Z (t�; T �)
�2

� 2E
h
~SZ(t

�; T �;�)� SZ(t�; T �;�)
i2
+ 2E

h
~SZ(t

�; T �;�)� Z (t�; T �)
i2
:

Due to the condition (3.77) imposed on the quadrature rule SZ(t�; T �;�); the second

term on the right-hand side of (4.31) is bounded from above by K�2p: Using (4.4),

we obtain for the �rst term on the right-hand side of (4.31) (cf. (3.76)):

2E
h
~SZ(t

�; T �;�)� SZ(t�; T �;�)
i2

= 2�2E

24 NX
j=%M

~j (
~f j(t�)� f(t�; Tj))

352

� K�

NX
j=%M

E
h
~f j(t�)� f(t�; Tj)

i2
;

� K�(N � %M + 1)�2p � K�2p:

Hence

E
�
~SZ(t

�; T �;�)� Z (t�; T �)
�2
� K�2p: (4.32)

121



The required estimate (4.21) follows from (4.22), (4.26), (4.30), and (4.32). The-

orem 4.1.3 is proved. �

4.1.2 t-discretization error

In this section we analyze the error R2 (see (4.3)) due to t-discretization of (3.67)-

(3.69):

R2 = ~F (t0; f0; t
�; T �)� �F (t0; f0; t

�; T �):

Then combining its estimate with the estimate (4.21) for R1 from Theorem 4.1.3,

we prove convergence of the weak approximation �F to F (see (4.3)). In the analysis

of R2 the key is to show that convergence of �F (t0; f0; t�; T �) to ~F (t0; f0; t�; T �) is

uniform in �, which is the reason why we cannot just apply here the standard

results of weak convergence of numerical methods for SDEs (see, e.g. [45, 57, 58]).

The convergence theorem is proved under the assumption that the pay-o¤ function

G(z) in (3.51) is su¢ ciently smooth. At the end of this section we also discuss how

this assumption can be relaxed.

To prove the convergence theorem (Theorem 4.1.6) of �F (t0; f0; t
�; T �) to

~F (t0; f0; t
�; T �); we need the following technical lemma. We will use the multi-index

notation:

i = (i0; : : : ; iN)

with ij being nonnegative integers, jij = i0 + � � �+ iN ; and i! = i0! � � � iN !:

Lemma 4.1.4 Let �m be the mth-order operator

�m = �m� =
X
jij=m

�i
@m

(@x0)i0 � � � (@xN)iN

with any �i: Suppose Assumptions 3.2.1 and 2.2 are satis�ed. Assume that the payo¤

function G(z) has m� bounded derivatives. Then for m > 0 up to the order m�

����m ~F (t; x; t�; T �)��� � K�Max exp(c�jxj); (4.33)

122



where K > 0 and c > 0 do not depend on � and x 2 RN+1; and �Max :=

maxjij=m j�ij.

Remark 4.1.5 To help with intuitive understanding of this lemma, we remark that

�m ~F can be viewed as a Frechet derivative of the option price with respect to the

discretized initial forward rate curve.

Proof of Lemma 4.1.4. Recall the notation: ~f jt;x(s); s � t; is the solution of the

system of SDEs (3.67)-(3.69) with the initial condition at t � t0 : ~f jt;x(t) = xj: We

introduce a more detailed notation for ~SZ(t�; T �;�) (cf. (3.76)):

~SZ(t; x; t
�; T �;�) = �

NX
j=%M

~j
~f jt;x(t

�); (4.34)

which we can present as (cf. (3.67))

~SZ(t; x; t
�; T �;�) = �

NX
j=%M

~jx
j

+�
NX

j=%M

~j

�Z t�

t

�>(s; Tj; ~f
j
t;x(s)) ~SI(t; x; s; Tj;�)ds+

Z t�

t

�>(s; Tj; ~f
j
t;x(s))dW (s)

�
;

where (cf. (3.69))

~SI(t; x; s; Tj;�) = �

�(s;Tj)X
l=`(s)

l(s)�(s; Tl;
~f lt;x(s)): (4.35)

Then, thanks to Assumption 3.2.1, we obtain for any positive integer m :

E ~Pm(t�; T �) = E exp
�
�m ~SZ(t; x; t�; T �;�)

�
(4.36)

= E exp

0@�m� NX
j=%M

~jx
j

�m�
NX

j=%M

~j

�Z t�

t

�>(s; Tj; ~f
j
t;x(s)) ~SI(t; x; s; Tj;�)ds+

Z t�

t

�>(s; Tj; ~f
j
t;x(s))dW (s)

�1A
� K exp

0@c� NX
j=%M

jxjj

1A ;
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where K > 0 and c > 0 do not depend on �:

Further, recall that ~Yt;x;y(s); s � t; is the solution of (3.81) with the initial

condition ~Yt;x;y(t) = y and with ~f i(s) = ~f it;x(s); i.e.,

~Yt;x;y(s) : = y +

Z s

t

~�(s0)ds0 (4.37)

= y +

Z s

t

�(s0; ~f it;x(s
0); i = `(s0); : : : ; `(s0) + �)ds0

= y +

`(s)X
l=`(t)

�X
i=0

Z s^Tl+1

t_Tl
�i(s

0) ~f l+it;x (s
0) ds0

= y +

`(s)X
l=`(t)

l+�X
m=l

Z s^Tl+1

t_Tl
�m�l(s

0) ~fmt;x(s
0)ds0; t � t0; s � t;

where (cf. (3.78)) � and �m�l(s0) depend on our choice of the accuracy order of short

rate approximation, and � does not depend on �; and j�m�l(s0)j are bounded by a

constant independent of �:

We also see that ~Yt;x;y(s) = y + ~Yt;x;0(s): Using (4.37), (3.67), and Assump-

tion 3.2.1, one can show that for any { > 0

E
h
exp({j ~Yt;x;0(t�)j)

i
(4.38)

= E exp

0@{
������
`(t�)X
l=`(t)

l+�X
m=l

Z t�^Tl+1

t_Tl
�m�l(s

0) ~fmt;x(s
0)ds0

������
1A � K exp

0@c� `(t�)+�X
l=`(t)

jxlj

1A ;
where K > 0 and c > 0 do not depend on �:

Using smoothness of G(z), we obtain

�m ~F (t; x; t�; T �) = E�m exp(� ~Yt;x;0(t�))G( ~P (t�; T �)) (4.39)

= E
X
jij=m

�i
@m

(@x0)i0 � � � (@xN)iN
exp(� ~Yt;x;0(t�))G( ~P (t�; T �))

= E exp(� ~Yt;x;0(t�))
mX

k�=0

m�k�X
n�=0

mX
�=0

�X
�=0

X
�jk�+

�ln�=m

C(�; �; j1; : : : ; jk� ; l1; : : : ; ln�)

� d�

dz�
G
�
~P (t�; T �)

�
~P �(t�; T �)
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�
NX

i1;:::;i�jk�
;r1;:::;r�ln�

=0

�i
k�Y
k=1

@jk

@x
i1+�jk�1 � � � @xi�jk

~Yt;x;0(t
�)

�
n�Y
n=1

@ln

@x
r1+�ln�1 � � � @xr�ln

~SZ(t; x; t
�; T �;�);

where C(�; �; j1; : : : ; jk� ; l1; : : : ; ln�) are constants independent of N ; �jk =
Pk

r=1 jr;

�ln =
Pn

r=1 lr; the sum
P

�jk�+
�ln�=m

is taken over all positive integers j1; : : : ; jk� and

l1; : : : ; ln� such that jk � jk+1; k = 1; : : : ; k� � 1; ln � ln+1; n = 1; : : : ; n� � 1; and

�jk� + �ln� = m; and in the right-hand side the multi-index i at �
i corresponds to the

values taken by i1; : : : ; i�jk� ; r1; : : : ; r�ln� :

We have (cf. (4.34)):

@l

@xi1 � � � @xil
~SZ(t; x; t

�; T �;�) = �
NX

q=%M

~q
@l

@xi1 � � � @xil
~f qt;x(t

�): (4.40)

Using the Cauchy-Bunyakovsky inequality, the assumed boundedness of deriva-

tives of G(z); and the inequalities (4.36) and (4.38), we obtain from (4.39)-(4.40):

j�m ~F (t; x; t�; T �)j � K exp

0@c� NX
j=%M

jxjj

1A (4.41)

�
mX

k�=0

m�k�X
n�=0

X
�jk�+

�ln�=m

0@E
24 NX
i1;:::;i�jk�

;r1;:::;r�ln�
=0

�i
k�Y
k=1

@jk

@x
i1+�jk�1 � � � @xi�jk

~Yt;x;0(t
�)

�
n�Y
n=1

0@� NX
q=%M

~q
@ln

@x
r1+�ln�1 � � � @xr�ln

~f qt;x(t
�)

1A3521A1=2

;

where K > 0 and c are independent of � and x: Then, to complete the proof of

this lemma, it is su¢ cient to show that for any 0 � k� � m and 0 � n� � m � k�;

any combinations of j1; : : : ; jk� and l1; : : : ; ln� satisfying �jk� + �ln� = m; and any
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combination of q1; : : : ; qn� with %M � qi � N :

E

24 NX
i1;:::;i�jk�

;r1;:::;r�ln�
=0

�i
k�Y
k=1

@jk

@x
i1+�jk�1 � � � @xi�jk

~Yt;x;0(t
�) (4.42)

�
n�Y
n=1

@ln

@x
r1+�ln�1 � � � @xr�ln

~f qnt;x(t
�)

#2
� K�2Max;

where K > 0 is independent of � and x:

We can obtain the following SDEs (see (3.81)):

d
@j

@xi1 � � � @xij
~Yt;x;0(s) =

`(t�)X
l=`(t)

l+�X
r=l

�s2[Tl;Tl+1) � �r�l(s) �
@j

@xi1 � � � @xij
~f rt;x(s)ds;

@j

@xi1 � � � @xij
~Yt;x;0(t) = 0;

and (see (3.67))

d
@l

@xr1 � � � @xrl
~f qt;x(s) =

lX
�=0

lX
�=0

l�1X
n�=0

l�n�X
��=1

X
�ln�+�p��=l

C(�; �; n�; � �)

�
X

fk1;:::;klg=fr1;:::;rlg

�

�(s;Tq)X
v=`(s)

v
d�

dz�
�>(s; Tq; ~f

q
t;x(s))

d�

dz�
�>(s; Tv; ~f

v
t;x(s))

�
n�Y
n=1

@ln

@x
k1+�ln�1 � � � @xk�ln

~f qt;x(s)
��Y
�=1

@p�

@x
k1+�ln�+�p��1 � � � @xk�ln�+�p�

~f vt;x(s) ds

+

lX
�=1

lX
n�=1

X
�ln�=l

C(�; n�)
X

fk1;:::;klg=fr1;:::;rlg

d�

dz�
�>(s; Tq; ~f

q
t;x(s))

�
n�Y
n=1

@ln

@x
k1+�ln�1 � � � @xk�ln

~f qt;x(s) dW (s);

@l

@xr1 � � � @xrl
~f qt;x(t) = �l=1;

whereC(�; �; n�; � �) andC(�; n�) are constants independent ofN; and
P

fk1;:::;klg=fr1;:::;rlg

means summation over all possible recombinations fk1; : : : ; klg of r1; : : : ; rl (note

that the number of terms in this sum depends on l but not on N):

To obtain (4.42), we �rst consider the case m = 1 for which it is su¢ cient

to get an estimate for E
hPN

i=0 �
i @
@xi
~f jt;x(s)

i2
: To this end, introduce the process
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�t;x(s) = (�
0(s); : : : ; �N(s))> with �j(s) :=

PN
i=0 �

i @
@xi
~f jt;x(s); s � t; which satis�es

the following system of SDEs

d�j =
d

dz
�>(s; Tj; ~f

j
t;x(s)) � ~SI(t; x; s; Tj;�) � �j ds

+�>(s; Tj; ~f
j
t;x(s)) ��

�(s;Tj)X
l=`(s)

l(s)
d

dz
�>(s; Tl; ~f

l
t;x(s)) � � l ds+

d

dz
�>(s; Ti; ~f

j
t;x(s)) � �j dW (s);

�j(t) = �j; j = 0; : : : ; N:

Then using Ito�s formula and Assumptions 3.2.1 and 3.2.2, we obtain after some

straightforward calculations:

E
�
�jt;x(s)

�2 � K ��j�2 +K Z s

t

E
�
�j(s0)

�2
ds0 +K

Z s

t

�

�(s;Tj)X
l=`(s0)

E
�
� l(s0)

�2
ds0:

Let E(s) := max0�j�N E
�
�jt;x(s)

�2
: Then

E(s) � K�2Max +K

Z s

t

E(s0)ds0;

where K > 0 does not depend on � and x: Hence, by Gronwall�s inequality

E(s) � K�2Max; t � s � t�: (4.43)

Next, we consider the (N + 1)2-dimensional process

�j1;j2(s) :=
NX

i1;i2=0

�i1;i2
@

@xi1
~f j1t;x(s)

@

@xi2
~f j2t;x(s); j1; j2 = 0; : : : ; N; s � t:

Using the same recipe as in the case of estimating max0�j�N E
�
�jt;x(s)

�2
; we get

that

max
0�j�N

E
�
�j1;j2t;x (s)

�2 � K�2Max; (4.44)

where K > 0 does not depend on � and x: Using (4.44) and repeating the same
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recipe again in the case of the processes

2�
j
t;x(s) : =

NX
i1;i2=0

�i1;i2
@2

@xi1@xi2
~f jt;x(s); j = 0; : : : ; N;

�jt;x(s) : =

NX
i1;i2=0

�i1;i2
@

@xi1
~Yt;x;0(s)

@

@xi2
~f jt;x(s); j = 0; : : : ; N; s � t;

we obtain

max
0�j�N

E
�
2�
j
t;x(s)(s)

�2 � K�2Max; (4.45)

max
0�j�N

E
�
�jt;x(s)

�2 � K�2Max; (4.46)

where K > 0 does not depend on � and x: Using (4.45), it is not di¢ cult to get

that for the process

2�t;x(s) :=
NX

i1;i2=0

�i1;i2
@2

@xi1@xi2
~Yt;x;0(s)

the following estimate also holds

E
�
2�t;x(s)

�2 � K�2Max: (4.47)

It is clear that (4.44)-(4.47) are su¢ cient for proving (4.42) with m = 2. To show

(4.42) form = 3; we need to obtain estimates for the second moments of the processes

�j1;j2;j3(s) =
NX

i1;i2;i3=0

�i1;i2;i3
@

@xi1
~f j1t;x(s)

@

@xi2
~f j2t;x(s)

@

@xi3
~f j3t;x(s); j1; j2; j3 = 0; : : : ; N;

2�
j1;j2
t;x (s) =

NX
i1;i2;i3=0

�i1;i2;i3
@2

@xi1@xi2
~f j1t;x(s)

@

@xi3
~f j2t;x(s); j1; j2 = 0; : : : ; N;

3�
j
t;x(s) =

NX
i1;i2;i3=0

�i1;i2;i3
@3

@xi1@xi2@xi3
~f jt;x(s); j = 0; : : : ; N; s � t;
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and

�j1;j2t;x (s) =

NX
i1;i2;i3=0

�i1;i2;i3
@

@xi1
~f j1t;x(s)

@

@xi2
~f j2t;x(s)

@

@xi3
~Yt;x;0(s); j1; j2 = 0; : : : ; N;

2;1�
j
t;x(s) =

NX
i1;i2;i3=0

�i1;i2;i3
@2

@xi1@xi2
~f jt;x(s)

@

@xi3
~Yt;x;0(s); j = 0; : : : ; N;

1;2�
j
t;x(s) =

NX
i1;i2;i3=0

�i1;i2;i3
@

@xi1
~f jt;x(s)

@2

@xi2@xi3
~Yt;x;0(s); j = 0; : : : ; N;

3�t;x(s) =
NX

i1;i2;i3=0

�i1;i2;i3
@3

@xi1@xi2@xi3
~Yt;x;0(s); s � t;

which can be done using the same recipe but with more laborious calculations. In

the case of an arbitrary m one need to consider processes �j1;:::;jm(s); 2�
j1;:::;jm�1
t;x (s);

: : : ; m�
j
t;x(s); �

j1;:::;jm�1
t;x (s); m�1;1�

j
t;x(s); : : : ; m�t;x(s) de�ned in the same fashion as

we did in the cases m = 2 and 3: It is not di¢ cult to see that employing the same

recipe maxima of their second moments will be again bounded by K�2Max; from

which (4.42) follows for an arbitrary m:

The required inequality (4.33) follows from (4.41) and (4.42). Lemma 4.1.4 is

proved. �

Using Lemma 4.1.4, we now prove convergence of �F (t0; f0; t�; T �) to ~F (t0; f0; t�; T �)

in the case of smooth payo¤s G:

Theorem 4.1.6 Let h � �� for some � > 0: Suppose Assumptions 3.2.1-3.2.3 and

Assumptions 3.4.1, 3.4.5, and 3.4.6 are satis�ed. Assume that the payo¤ function

G(z) has bounded derivatives up to a su¢ ciently high order. Then the approximation

�F (t0; f0; t
�; T �) de�ned by (3:88)-(3:90); (3:72); (3:84) converges to ~F (t0; f0; t

�; T �)

from (4:1) with order q > 0; i.e.,

��� ~F (t0; f0; t�; T �)� �F (t0; f0; t
�; T �)

��� � Khq; (4.48)

where K > 0 is a constant independent of h and �:
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Proof. Using the standard technique (see [58, p. 100]), we can write the di¤erence

R2 in the form

R2 = ~F (t0; f0; t
�; T �)� �F (t0; f0; t

�; T �) (4.49)

= E exp(� ~Yt0;f0;0(tM))G(exp(� ~SZ(t0; f0; t�; T �;�)))

�E exp(� �YM)G(exp(� �SZ(t�; T �;�)))

=

M�1X
i=0

E
h
exp(� ~Yti; �fi; �Yi(tM))G(exp(� ~SZ(ti; �fi; t

�; T �;�)))

� exp(� ~Yti+1; �fi+1; �Yi+1(tM))G(exp(� ~SZ(ti+1; �fi+1; t
�; T �;�)))

i
=

M�1X
i=0

Efexp(� ~Yti; �fi; �Yi(ti+1))E[exp(� ~Yti+1; ~fti; �fi (ti+1);0(tM))

�G(exp(� ~SZ(ti+1; ~fti; �fi(ti+1); t
�; T �;�)))j ~fti; �fi(ti+1)]

� exp(� �Yi+1)E[exp(� ~Yti+1; �fi+1;0(tM))G(exp(� ~SZ(ti+1; �fi+1; t
�; T �;�)))j �fi+1]g

=
M�1X
i=0

E
n
exp(� ~Yti; �fi; �Yi(ti+1)) ~F (ti+1; ~fti; �fi(ti+1); t

�; T �)

� exp(� �Yi+1) ~F (ti+1; �fi+1; t�; T �)
o

=

M�1X
i=0

E exp(� �Yi)E
h
exp(� ~Yti; �fi;0(ti+1)) ~F (ti+1; ~fti; �fi(ti+1); t

�; T �)

� exp(� �Yti; �f �i ;0(ti+1)) ~F (ti+1; �fti; �fi(ti+1); t
�; T �)

�� �fii
=

M�1X
i=0

E exp(� �Yi)�(ti; �fi);

where

�(t; x) = E[exp(� ~Yt;x;0(t+ h)) ~F (t+ h; ~ft;x(t+ h); t�; T �) (4.50)

� exp(� �Yt;x;0(t+ h)) ~F (t+ h; �ft;x(t+ h); t�; T �)]:

Nowwe write the Taylor expansion of the terms under expectation in (4.50) in powers
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of � ~Y = � ~Yt;x;0(t+h) and � ~f i = ~f it;x(t+h)�xi and in powers of � �Y = � �Yt;x;0(t+h)

and � �f it;x = �f it;x(t+ h)� xi: As a result, we obtain

exp(� ~Yt;x;0(t+ h)) ~F (t+ h; ~ft;x(t+ h); t�; T �) (4.51)

= ~F (t+ h; x; t�; T �)

+

2q+1X
jij+k=1

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x; t�; T �)

�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y k

+
X

jij+k=2q+2

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x+ ~�( ~ft;x(t+ h)� x); t�; T �)

� exp(�~� ~Yt;x;0(t+ h))�
�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y k;

where ~� and ~� are from [0; 1].

Further,

exp(� �Yt;x;0(t+ h)) ~F (t+ h; �ft;x(t+ h); t�; T �) (4.52)

= ~F (t+ h; x; t�; T �)

+

2q+1X
jij+k=1

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x; t�; T �)

�
� �f 0
�i0 � � � �� �fN�iN � �Y k

+
X

jij+k=2q+2

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x+ ��( �ft;x(t+ h)� x); t�; T �)

� exp(��� �Yt;x;0(t+ h))
�
� �f 0
�i0 � � � �� �fN�iN � �Y k;

with �� and �� being from [0; 1].

It is not di¢ cult to check (see also (3.83)) that under the assumed condition

h � ��; � > 0; the following inequality holds:

24E max
0�m�2q+2;fi1;:::i2q+2�mg2f0;:::;Ng

������ ~Y m
2q+2�mY
j=1

� ~f ij

�����
2
351=2 � Chq+1

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1A ;

(4.53)

where C > 0 is independent of �: We note that the number of components xl

appearing in the right-hand side of (4.53) is not larger than 1 + �; which does not

depend on �:
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Using Lemma 4.1.4, the inequalities (4.53), (4.38) and (3.70), and the Cauchy-

Bunyakovsky inequality, we obtain

jE
X

jij+k=2q+2

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x+ ~�( ~ft;x(t+ h)� x); t�; T �)

� exp(�~� ~Yt;x;0(t+ h))
�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y kj

� E exp(j ~Yt;x;0(t+ h)j)�
2q+2X
k=0

������
X

jij=2q+2�k

1

i!k!

�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y k

� @jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x+ ~�( ~ft;x(t+ h)� x); t�; T �)

����
� KE

�
exp(j ~Yt;x;0(t+ h)j) max

jij+k=2q+2
j
�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y kj

� exp(c�jx+ ~�( ~ft;x(t+ h)� x)j)
i

� K exp(c�jxj)

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1Ahq+1; (4.54)

where K > 0 and c > 0 independent of �; h; and x:

Analogously, using Lemma 4.1.4, the inequality (3.86) from Assumption 3.4.5,

and Assumptions 3.4.1 and 3.4.6, we get

jE
X

jij+k=2q+2

1

i!k!

@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x+ ��( �ft;x(t+ h)� x); t�; T �) (4.55)

� exp(��� �Yt;x;0(t+ h))
�
� �f 0
�i0 � � � �� �fN�iN j

� K exp(c�jxj)

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1Ahq+1:

We obtain from (4.50)-(4.52) and (4.54), (4.55):

j�(t; x)j �
2qX
k=0

������
2q+1�kX
jij=1

�ik
@jij

(@x0)i0 � � � (@xN)iN
~F (t+ h; x; t�; T �)

������ (4.56)

+K exp(c�jxj)

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1Ahq+1;
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with K > 0 and c > 0 independent of � and

�ik =
1

i!k!

�
E
�
� ~f 0
�i0
� � �
�
� ~fN

�iN
� ~Y k � E

�
� �f 0
�i0 � � � �� �fN�iN � �Y k� :

Applying Lemma 4.1.4 and using the inequality (3.85) from Assumption 3.4.5, we

obtain from (4.56):

j�(t; x)j � K exp(c�jxj)

0@1 + `(t+h)+�X
l=`(t)

jxlj2q+2
1Ahq+1; (4.57)

where K > 0 and c > 0 do not depend on � and x:

Substituting (4.57) in (4.49) and using Assumptions 3.4.1 and 3.4.6 and the

Cauchy-Bunyakovsky inequality, we arrive at the required (4.48). Theorem 4.1.6 is

proved. �

Remark 4.1.7 As it follows from the proof, in Theorem 4.1.6 the condition h � ��

is used only for estimating the parts of the error involving the approximate discount-

ing factor ~Yt;x;0(s). If pricing an interest rate derivative does not require a discount-

ing factor (e.g., when one uses the forward measure pricing, cf. Remark 3.2.5) then

a theorem analogous to Theorem 4.1.6 can be proved under Assumptions 3.2.1- 3.2.3

and Assumptions 3.4.1 and 3.4.2 without the restriction on h:

Theorems 4.1.3 and 4.1.6 imply the following result.

Theorem 4.1.8 Under the conditions of Theorems 4.1.1 and 4.1.6, the approxima-

tion �F (t0; f0; t�; T �) de�ned by (3:88)-(3:90); (3:72); (3:84) converges to

F (t0; f0 (�) ; t�; T �) from (3:51)-(3:54), (3:43)-(3:44) with order p > 0 in � and with

order q > 0 in h; i.e.,

��F (t0; f0 (�) ; t�; T �)� �F (t0; f0; t
�; T �)

�� � K(�p + hq); (4.58)

where K > 0 is a constant independent of � and h:
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According to the motivation examples considered in Section 2.2, the payo¤G(z)

is usually globally Lipschitz (see (3.50)) but not su¢ ciently smooth function as it is

required in Theorem 4.1.6 and, consequently, in Theorem 4.1.8. Let us discuss two

ways how one can deal with this theoretical di¢ culty.

First, as it was noted in, e.g. [59], we can approximate the payo¤ function

G(z) by a smooth function �G(z): Denote by " an error of this approximation. The

proposed numerical method can be applied to the smooth approximating function

�G(z) and Theorems 4.1.6 and 4.1.8 remain valid for F with �G instead of G: In this

case, the overall error in evaluating the price of an interest rate contract consists of

the numerical integration errors estimated in Theorem 4.1.8 and the error " of the

smoothening of G:

Second, one can exploit the result of [4] which in application to our problem

means that if the transition Markov function for the process ~f(t) is su¢ ciently

smooth and �f ik is simulated by the strong Euler scheme then �F (t0; f0; t
�; T �) con-

verges to ~F (t0; f0; t�; T �) with order one in h even for nonsmooth G:

We remark that the computational practice (see our numerical experiments in

Section 3.7) suggests that the error estimates of Theorems 4.1.6 and 4.1.8 are valid

for the weak Euler-type scheme (see (3.95) below) in the case of nonsmooth G(z).

Further, it is natural to expect that for higher-order weak schemes the error estimates

of Theorems 4.1.6 and 4.1.8 are also valid for nonsmooth payo¤s G(z):We note that

to answer on these theoretical questions related to nonsmoothness of G(z) further

development of the general theory of numerical integration of ordinary SDEs is

required which is outside the scope of the present thesis.

4.2 Mean-square convergence theorems

In this Section �rst we shall prove mean-square convergence of �f ik de�ned in (3.131)

to ~f i(tk) from (3:67)-(3:69) is uniform in �: This result is then used to prove mean-

square convergence of �f ik to f(tk; Ti) from (3:43)-(3:44) exploiting in addition The-

orem 4.1.1. We cannot use here the standard result, e.g. the fundamental theorem
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of mean-square convergence [58, p. 4], since we need to show that the convergence

is uniform in �:

Theorem 4.2.1 Suppose Assumptions 3.2.1-3.2.3 and Assumption 3.6.1 are satis-

�ed. Then for anyM; N and k = 0; 1; : : : ;M; i = 0; 1; : : : ; N the following inequality

holds: h
Ej ~f i(tk)� �f ikj2

i1=2
� Khq2�1=2 ; (4.59)

i.e., the order of mean-square accuracy of the method (3:131) for (3:67) is q =

q2 � 1=2:

Proof. We have (cf. [58, pp. 7-8])

~f i(tk+1)� �f ik+1 =
~f it0;f0(tk+1)� �f it0;f0(tk+1) =

~f i
tk; ~f(tk)

(tk+1)� �f itk; �fk(tk+1) (4.60)

= ( ~f i
tk; ~f(tk)

(tk+1)� ~f itk; �fk(tk+1)) + (
~f itk; �fk(tk+1)� �f itk; �fk(tk+1)) ;

where the �rst di¤erence in the right-hand side of (4.60) is the error of the solution

arising due to the error in the initial data at time tk; accumulated over k steps, and

the second di¤erence is the one-step error at the (k + 1)-step. Taking the square of

both sides of (4.60), we obtain

R2i;k+1 := Ej ~f i(tk+1)� �f ik+1j2 (4.61)

= EE(j ~f i
tk; ~f(tk)

(tk+1)� ~f itk; �fk(tk+1)j
2jFtk)

+EE(j ~f itk; �fk(tk+1)� �f itk; �fk(tk+1)j
2jFtk)

+2EE(( ~f i
tk; ~f(tk)

(tk+1)� ~f itk; �fk(tk+1))(
~f itk; �fk(tk+1)� �f itk; �fk(tk+1))jFtk) :

Due to the condition (3.134), we get for the second term on the right-hand side

of (4.61):

jEE(j ~f itk; �fk(tk+1)� �f itk; �fk(tk+1)j
2jFtk)j � Ch2q2 : (4.62)
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Let us estimate the �rst term on the right-hand side of (4.61). Ito�s formula

implies that

"2i (tk+1) := Ej ~f itk; ~f(tk)(tk+1)�
~f itk; �fk(tk+1)j

2

= Ej ~f i(tk)� �f ikj2 + 2E
Z tk+1

tk

( ~f i
tk; ~f(tk)

(s)� ~f itk; �fk(s))

�[�>(s; Ti; ~f itk; ~f(tk)(s))
~SI(tk; ~f(tk); s; Ti;�)� �>(s; Ti; ~f itk; �fk(s)) ~SI(tk; �fk; s; Ti;�)]ds

+E

Z tk+1

tk

j�(s; Ti; ~f itk; ~f(tk)(s))� �(s; Ti;
~f itk; �fk(s))j

2ds:

Then, recalling that �(s; T; z) is globally Lipschitz in z due to Assumption 3.2.2 and

the form of ~SI(tk; �fk; s; Ti;�) (see (4.35)), we obtain

"2i (tk+1) � Ej ~f i(tk)� �f ikj2 +K
Z tk+1

tk

Ej ~f i
tk; ~f(tk)

(s)� ~f itk; �fk(s)j
2ds

+K�

Z tk+1

tk

�(s;Ti)X
l=`(s)

Ej ~f l
tk; ~f(tk)

(s)� ~f ltk; �fk(s)j
2ds;

where K > 0 does not depend on �. Introduce "2Max(s) := max0�i�M "
2
i (s): Then

"2Max(tk+1) � max
0�i�M

Ej ~f i(tk)� �f ikj2 +K
Z tk+1

tk

"2Max(s)ds

which implies that for all 0 � i �M and all su¢ ciently small h > 0 :

"2i (tk+1) � eKh max
0�i�M

Ej ~f i(tk)� �f ikj2 � max
0�i�M

Ej ~f i(tk)� �f ikj2 � (1 +Kh); (4.63)

where K > 0 does not depend on � and h:

Now let us estimate the third term on the right-hand side of (4.61). We have

(cf. Lemma 1.1.3 in [58, p. 5]):

~f i
tk; ~f(tk)

(tk+1)� ~f itk; �fk(tk+1) =
~f i(tk)� �f ik + Z

i; (4.64)
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where

Zi =

Z tk+1

tk

[�>(s; Ti; ~f
i
tk; ~f(tk)

(s)) ~SI(tk; ~f(tk); s; Ti;�)

��>(s; Ti; ~f itk; �fk(s)) ~SI(tk; �fk; s; Ti;�)]ds

+

Z tk+1

tk

[�>(s; Ti; ~f
i
tk; ~f(tk)

(s))� �>(s; Ti; ~f itk; �fk(s))]dW (s):

Using (4.63), it is not di¢ cult to get

E
�
Zi
�2 � Kh � max

0�i�M
Ej ~f i(tk)� �f ikj2; (4.65)

where K > 0 does not depend on � and h: Using (4.64), (3.133), (3.134), (4.65),

and (3.132), we obtain

jEE(( ~f i
tk; ~f(tk)

(tk+1)� ~f itk; �fk(tk+1))(
~f itk; �fk(tk+1)� �f itk; �fk(tk+1))jFtk)j (4.66)

� jE( ~f i(tk)� �f ik)E(
~f itk; �fk(tk+1)� �f itk; �fk(tk+1))jFtk)j

+jEZ i � ( ~f itk; �fk(tk+1)� �f itk; �fk(tk+1))j

� (Ej ~f i(tk)� �f ikj2)1=2 �Khq1 +
�
E
�
Zi
�2�1=2 �

E( ~f itk; �fk(tk+1)� �f itk; �fk(tk+1)
2
�1=2

� Khq1(Ej ~f i(tk)� �f ikj2)1=2 +Khq2+1=2 �
�
max
0�i�M

Ej ~f i(tk)� �f ikj2
�1=2

� Khq2+1=2 �
�
max
0�i�M

Ej ~f i(tk)� �f ikj2
�1=2

;

where K > 0 does not depend on � and h:

Let R2Max;k := max
0�i�M R

2
i;k: Then it follows from (4.61), (4.62), (4.63) and

(4.66) that

R2Max;k+1 � R2Max;k � (1 +Kh) +Khq2+1=2RMax;k + Ch
2q2 :
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Using the elementary relation

hq2+1=2RMax;k �
R2Max;kh

2
+
h2q2

2
;

we get

R2Max;k+1 � R2Max;k � (1 +Kh) + Ch2q2

whence (4.59) follows taking into account Lemma 1.1.6 from [58, p. 7] and the fact

that R2Max;0 = 0: Theorem 4.2.1 is proved. �

Theorems 4.1.1 and 4.2.1 imply the following result.

Theorem 4.2.2 Assume that the conditions of Theorems 4.1.1 and 4.2.1 hold.

Then for any M; N and i = 0; 1; : : : ; N; k = 0; 1; : : : ; d(Ti � t0) =he � 1 the mean-

square error is estimated as

�
Ejf(tk; Ti)� �f ikj2

�1=2 � K � (�p + hq2�1=2) ; (4.67)

where K > 0 is a constant independent of � and h:

4.3 Checking assumptions for Algorithm 3:5:2

In Section 3:5 we gave examples of particular algorithmic realisations of the generic

numerical method de�ned in Section 3.4. In this Section we are going to demonstrate

a routine check of the assumptions we imposed on the method on the example of

one of the algorithms from Section 3:5. More speci�cally, we shall be checking that

Assumptions 3.4.1, 3.4.5 and 3.4.6 are satis�ed by Algorithm 3.5.2:

Recall (see Section 3:5) that Algorithm 3.5.2 is de�ned as follows

�f i0 = f
i
0; i = 0; : : : ; N; �Y0 = 0; (4.68)

�f ik+1 =
�f ik +

dP
j=1

��i;j(tk)�SIj(tk; Ti; �; h) + h1=2
dP
j=1

��i;j(tk)�j;k+1;
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i = `k+1; : : : ; N;

�Yk+1 = �Yk + A
Y (tk; �f

j
k ; j = `k; : : : ; `(t

�) + �;h); k = 0; : : : ;M � 1;

where �j;k+1 are independent random variables distributed by the law P (� = �1) =

1=2;

(��i;1(tk); : : : ; ��i;d(tk))
> = (�1(tk; Ti; �f

i
k); : : : ; �d(tk; Ti;

�f ik))
>;

�SIj(tk; T`k+1 ; �; h) =

8>>>><>>>>:
h�`k+1;k��`k+1;j(tk); if T`k+1 � tk;

�`k+1;k�`k+1;k+1��`k+1;j(tk); otherwise,

(4.69)

�SIj(tk; T%k+1 ; �; h) =

8>>>><>>>>:
h�%k+1;k��%k+1;j(tk); if T`k+1 � tk;

�`k+1;k
�%k+1;k

2
��`k+1;j(tk)��`k+1;k+2

�
2
��%k+1;j(tk); otherwise,

�SIj(tk; Ti; �; h) = �SIj(tk; T%k+1 ; �; h)

+h
�

2

0@��%k+1;j(tk) + 2 i�1X
m=%k+1+1

��m;j(tk) + ��i;j(tk)

1A ;
i = %k+1 + 1; : : : ; N; j = 1; : : : ; d:

AY (tk;h) =

8>>>>>>>>><>>>>>>>>>:

h
h
��k+1;k+1=2

�
�f
`k+1
k � �`k+1;k+1=2

�
�f
%k+1
k

i
; if T`k+1 � tk;

�`k+1;k

h
�`k+1;k

2�
�f `kk �

�`k�1;k
2�

�f
`k+1
k

i
��`k+1;k+1

h
�%k+1+1;k+1

2�
�f
`k+1
k+1 �

�`k+1;k+1

2�
�f
%k+1
k+1

i
otherwise.

(4.70)

Checking Assumption 3.4.1We need to check that for a c 2 R there is a constant

C > 0 such that

E exp(cj �f ikj) < C

for all i = 0; : : : N; k = 0; : : : ;M: This condition is clearly satis�ed by Algo-
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rithm 3.5.2 thanks to the uniform boundedness of �i(t; T; z) (see Assumption 3.2.1)

and boundedness of the initial condition (see Assumption 3.2.3 and also the comment

after (3.70)).

Checking Assumption 3.4.6. We need to show that �Yk satis�ed the estimate

E exp(cj �Ykj) < C

for some c > 0 and C > 0 for all k = 0; : : : ;M: This result clearly follows from

(4.70) and Assumption 3.4.1.

Checking Assumption 3.4.5. We need to demonstrate that Algorithm 3.5.2 is

such that for some independent of � positive constant C

�����E
 
� ~Y m

s�mY
j=1

� ~f ij � � �Y m
s�mY
j=1

� �f ij

!����� � Ch2
0@1 + `(t+h)+1X

l=`(t)

jxljm
1A ; (4.71)

m = 0; : : : ; s; s = 1; : : : ; 3;24E max
0�m�4;fi1;:::i2q+2�mg2f0;:::;Ng

������ �Y m
4�mY
j=1

� �f ij

�����
2
351=2 � Ch2

0@1 + `(t+h)X
l=`(t)

jxlj4
1A ; (4.72)

where

� ~f i = ~f it;x(t+ h)� xi =
Z t+h

t

~�>i (s)
~SI(s; Ti;�)ds+

Z t+h

t

~�>i (s)dW (s); (4.73)

� �f i = �f it;x(t+ h)� xi = �>(t; Ti; xi)�SIj(t; Ti;�) + h1=2�>(t; Ti; xi)�j;k+1; (4.74)

where �j;k+1 are independent random variables distributed by the law P (� = �1) =

1=2;

� ~Y = ~Yt;x;y(t+ h)� y (4.75)

=

Z t+h^T%(t)

t

�
T%(t) � s
�

~f
`(t)
t;x (s) +

s� T`(t)
�

~f
%(t)
t;x (s)

�
ds

+

Z t+h

T%(t)^t+h

�
T%(t+h) � s

�
~f
`(t+h)
t;x (s) +

s� T`(t+h)
�

~f
%(t+h)
t;x (s)

�
ds;
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� �Y = �Yt;x;y(t+ h)� y (4.76)

= h ^
�
T%(t) � t

��T`(t+h) � t
2�

^
T`(t+h) � t� h=2

�
� x`(t)

+
t+ h=2� T`(t)

�
^
t+�� T`(t)

2�
� x%(t)

�
+0 _

�
t+ h� T%(t)

��T%(t+h) +�� t� h
�

�f
`(t+h)
t;x (t+ h)

+
t+ h� T`(t+h)

�
�f
%(t+h)
t;x (t+ h)

�
:

In what follows, O(h2) are functions such that

��O(h2)�� � Kh2 (4.77)

where Kdoes not depend on h, � and x:

Let us �rst check condition (4.72). We have

������ �Y m
4�mY
j=1

� �f ij

����� =
����h ^ �T%(t) � t��T`(t+h) � t2�

^
T`(t+h) � t� h=2

�
� x`(t) (4.78)

+
t+ h=2� T`(t)

�
^
t+�� T`(t)

2�
� x%(t)

�
+

�
0 _

�
t+ h� T%(t)

� T%(t+h) +�� t� h
�

�f
`(t+h)
t;x (t+ h)

+
t+ h� T`(t+h)

�
�f
%(t+h)
t;x (t+ h)m

�����m
�
�����
4�mY
j=1

�
�>(t; Tij ; x

ij)�SIj(t; Tij ;�) + h1=2�>(t; Tij ; xij)�
������

� hmjx`(t) + x%(t) + x`(t+h) + x%(t+h) + � �f `(t+h) + � �f%(t+h)jm
4�mY
j=1

(Kh+Kh1=2)

� Khm+2�m=2(jx`(t)jm + jx%(t)jm + jx`(t+h)jm + jx%(t+h)jm + j� �f `(t+h)jm + j� �f%(t+h)jm)

� Khm=2+2(jx`(t)jm + jx%(t)jm + jx`(t+h)jm + jx%(t+h)jm +Khm=2)
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Hence

max
0�m�4;fi1;:::i2q+2�mg2f0;:::;Ng

������ �Y m
4�mY
j=1

� �f ij

����� (4.79)

� Kh2(jx`(t)j4 + jx%(t)j4 + jx`(t+h)j4 + jx%(t+h)j4 + 1):

We note that the estimate is not even random due to boundedness of � and �:

The range of indices, m = 0; : : : ; s; s = 1; : : : ; 3; in (4.71) generates 9 cases (see

below). We start with the case m = 0; s = 1, i.e. we want to establish

���E �� ~f ij � � �f ij���� � Ch2; (4.80)

for some independent of � positive constant C: By (4.73) and (4.74), we have

���E �� ~f ij � � �f ij���� = jE Z t+h

t

~�>i (s)
~SI(s; Ti;�)ds� �>(t; Ti; xi)�SI(t; Ti;�)j:

Applying Ito formula (cf. (3.67)), we obtain

~�i(s) = �(s; Ti; ~f
i
t;x(s)) = �(t; Ti; x

i) (4.81)

+

Z s

t

(
@

@s
+ ~�>i (s)

~SI(s; Ti;�)
@

@xi
+
��>

2

@2

@xi@xi
)�(s0; Ti; ~f

i
t;x(s

0))ds0

+

Z s

t

~�>i (s)
@

@xi
�(s0; Ti; ~f

i
t;x(s

0))dW (s0):

Then

jE
Z t+h

t

~�>i (s)
~SI(s; Ti;�)ds� �>(t; Ti; xi)�SI(t; Ti;�)j (4.82)

= j�>(t; Ti; xi)
�
E

Z t+h

t

~SI(s; Ti;�)ds� �SI(t; Ti;�)
�
j+O(h2);

where O(h2) as in (4.77) and we used above that �SI(t; Ti;�) is non-random, since

(cf. 4.69) it is a linear combination of �(t; Tj; xj); j = `(t); : : : ; i.

Recall from Section 3:5 the procedure we used to construct �S based on the the

quadrature rule de�ned in (3.101). For instance, for Ti � t + h; using (4.81), we
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have

E

Z t+h

t

~SIj(s; Ti;�)ds = E

Z t+h

t

[(T%(s) � s)~�%(s);j(s)

+
�

2

i�1X
m=%(s)

(~�m;j(s) + ~�m+1;j(s))]ds =

Z t+h

t

[(T%(s) � s)�j(t; T%(t); x%(t))

+
�

2

i�1X
m=%(s)

�
�j(t; Tm; x

m) + �j(t; Tm+1; x
m+1)

�
]ds+O(h2)

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

h(T%(t) � t� h=2)�j(t; T%(t); x%(t))

+�
2
h
Xi�1

m=%(t)
(�j(t; Tm; x

m) + �j(t; Tm+1; x
m+1))

+O(h2) if T%(t) � t+ h

R T%(t)
t

[(T%(t) � s)�j(t; T%(t); x%(t)) + �
2

Xi�1

m=%(t)
(�j(t; Tm; x

m)

+�j(t; Tm+1; x
m+1))]ds+

R t+h
T%(t)

[(T%(t)+1 � s)�j(t; T%(t)+1; x%(t)+1)

+�
2

Xi�1

m=%(t)+1
(�j(t; Tm; x

m) + �j(t; Tm+1; x
m+1))]ds

+O(h2) if T%(t) < t+ h

=

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

h(T%(t) � t� h=2)�j(t; T%(t); x%(t)) + �
2
h
Xi�1

m=%(t)
(�j(t; Tm; x

m)

+�j(t; Tm+1; x
m+1)) if T%(t) � t+ h;

1
2
(T%(t) � t)(T%(t) +�� t)�j(t; T%(t); x%(t))

+1
2
�(t+ 2h� T%(t))�j(t; T%(t)+1; x%(t)+1)

+h�
2

Xi�1

m=%(t)+1
(�j(t; Tm; x

m) + �j(t; Tm+1; x
m+1)) +O(h2) if T%(t) < t+ h

(4.83)

It is clear that O(h2) in (4.83) does not depend on � and x: Then, truncating the
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terms of order O(h2) in (4.83), we obtain �S as in (4.69). This gives us:

E

Z t+h

t

~SI(s; Ti;�)ds� �SI(t; Ti;�) = O(h2); Ti � t+ h: (4.84)

Analogously, we can establish the same estimate for the t � Ti < t + h: Thus, in

view of (4.82) and (4.84), we establish (4.80).

Next, we consider the case m = 0; s = 2: Using (4.82), (4.84), (4.81), we obtain

�����E
 

2Y
j=1

� ~f ij �
2Y
j=1

� �f ij

!����� (4.85)

=

����E �Z t+h

t

Z t+h

t

~�>i1(s)
~SI(s; Ti1 ;�)~�

>
i2
(�s) ~SI(�s; Ti2 ;�)dsd�s+

Z t+h

t

~�>i1(s)~�i2(s)ds

�

��>(t; Ti1 ; xi1)�SI(s; Ti1 ;�)�>(t; Ti2 ; xi1)�SI(�s; Ti2 ;�)� h�>(t; Ti1 ; xi1)�(t; Ti2 ; xi2)
��

= O(h2)

Analogously, we can show that (4.71) holds for m = 0; s = 3:

We shall now analyse the case m = 1; s = 1:We are going to consider each term

in � ~Y with its corresponding term in � �Y separately. Using (4.80), (4.82) and (4.84),

we obtain:

����E Z t+h^T%(t)

t

T%(t) � s
�

~f
`(t)
t;x (s)ds

�h ^
�
T%(t) � t

��T%(t) � t
2�

^
T%(t) � t� h=2

�

�
x`(t)

����
=

����E Z t+h^T%(t)

t

T%(t) � s
�

�Z s

t

~�>`(t)(s
0) ~SI(s

0; T`(t);�)ds
0 +

Z s

t

~�>`(t)(s
0)dW (s0)

�
ds

����
= O(h2);

����E Z t+h^T%(t)

t

s� T`(t)
�

~f
%(t)
t;x (s)ds

�h ^
�
T%(t) � t

� t+ h=2� T`(t)
�

^
t+�� T`(t)

2�
� x%(t)

����
144



=

����E Z t+h^T%(t)

t

s� T`(t)
�

�Z s

t

~�>%(t)(s
0) ~SI(s

0; T%(t);�)ds
0 +

Z s

t

~�>%(t)(s
0)dW (s0)

�
ds

����
= O(h2);

�����E
Z t+h

T%(t)^t+h

T%(t+h) � s
�

~f
`(t+h)
t;x (s)ds

�0 _
�
t+ h� T%(t)

� T%(t+h) +�� t� h
�

�f
`(t+h)
t;x (t+ h)

����
=
���0 _ �t+ h� T%(t)�E h ~f `(t+h)t;x (t+ h)� �f

`(t+h)
t;x (t+ h)

i
� E

Z t+h

T%(t)^t+h

T%(t+h) � s
�

�Z t+h

s

�>(s0; T`(t+h); ~f
`(t+h)

s; ~ft;x(s)
) ~SI(s

0; T`(t+h);�)ds
0

+

Z s

t

�>(s0; T`(t+h); ~f
`(t+h)

s; ~ft;x(s)
)dW (s0)ds

����� = O(h2);
�����E
Z t+h

T%(t)^t+h

s� T`(t+h)
�

~f
%(t+h)
t;x (s)ds

�0 _
�
t+ h� T%(t)

� t+ h� T`(t+h)
�

�f
%(t+h)
t;x (t+ h)

����
=
���0 _ �t+ h� T%(t)�E h ~f%(t+h)t;x (t+ h)� �f

%(t+h)
t;x (t+ h)

i
� E

Z t+h

T%(t)^t+h

s� T`(t+h)
�

�Z t+h

s

�>(s0; T%(t+h); ~f
%(t+h)

s; ~ft;x(s)
) ~SI(s

0; T%(t+h);�)ds
0

+

Z s

t

�>(s0; T%(t+h); ~f
%(t+h)

s; ~ft;x(s)
)dW (s0)ds

����� = O(h2):
Finally, let us consider the case m = 1; s = 2: Thanks to (4.78), it is only left to

analyse the following

���E� ~Y � ~f i��� = ����E� ~Y �Z t+h

t

~�>ij(s)
~SI(s; Tij ;�)ds+

Z t+h

t

~�>ij(s)dW (s)

����� :
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We shall consider the product of each term in � ~Y and � ~f i separately. We have

����E Z t+h^T%(t)

t

T%(t) � s
�

~f
`(t)
t;x (s)ds

�
�Z t+h

t

~�>ij(s)
~SI(s; Tij ;�)ds+

Z t+h

t

~�>ij(s)dW (s)

�����
� Kjx`(t)h2 +Kh3 + E

Z t+h^T%(t)

t

Z t+h

t

~�>`(t)(s)~�ij(s)dW (s)j � Kj1 + x`(t)jh2;

����E Z t+h^T%(t)

t

s� T`(t)
�

~f
%(t)
t;x (s)ds

�
�Z t+h

t

~�>ij(s)
~SI(s; Tij ;�)ds+

Z t+h

t

~�>ij(s)dW (s)

�����
� Kjx%(t)h2 +Kh3 + E

Z t+h^T%(t)

t

Z t+h

t

~�>%(t)(s)~�ij(s)dW (s)j � Kj1 + x%(t)jh2;

�����E
Z t+h

T%(t)^t+h

T%(t+h) � s
�

~f
`(t+h)
t;x (s)ds

�
�Z t+h

t

~�>ij(s)
~SI(s; Tij ;�)ds+

Z t+h

t

~�>ij(s)dW (s)

����� � Kj1 + x`(t+h)jh2;
�����E
Z t+h

T%(t)^t+h

s� T`(t+h)
�

~f
%(t+h)
t;x (s)ds

�
�Z t+h

t

~�>ij(s)
~SI(s; Tij ;�)ds+

Z t+h

t

~�>ij(s)dW (s)

����� � Kj1 + x%(t+h)jh2:
Using a similar approach and (4.78), (4.71) for the remaining cases, m = 1; s = 3;

m = 2; s = 2; 3; m = 3; s = 3 can be checked.

For Algorithm 3.5.1 and Algorithm 3.5.3; Assumptions 3.4.1, 3.4.5 and 3.4.6 can

be checked via an analogous routine as we described in this Section.
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4.4 Summary

This Chapter is devoted to proving and establishing convergence properties for the

numerical methods from Chapter 3: We begin this Chapter with Section 4.1, in

which the convergence theorems for the methods constructed in Section 3.4 are

proved. More speci�cally, in Section 4.1.1 we prove convergence results for the

maturity time approximations of the HJM model and the pricing problem under

consideration. Then, in Section 4.1.2 we establish weak convergence of fully discrete

methods to the approximations discrete in the maturity time. In spirit of the method

of lines, this convergence is proved to be uniform in the maturity time discretization

step �: Convergence results for the mean-square method de�ned in Section 3:6 are

considered in Section 4.2. We �nish this Chapter by showing that the assumptions

imposed on the generic numerical method in Section 3.4 hold for the algorithms

presented in Section 3:5:
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In this section we present the main conclusions from the preceding chapters.

The background to our endeavours

One of the most general platforms in the interest rate theory is the celebrated

HJM framework [36] which models the entire forward curve directly. This is a very

broad setup which covers all arbitrage-free interest rate models driven by a �nite

number of Brownian motions. More speci�cally, the representatives of the HJM

framework are the popular LIBOR market models and short rate models The HJM

model is mathematically described via an in�nite-dimensional multifactor stochastic

di¤erential equation taking the entire forward rate curve as a state variable. Under

no-arbitrage conditions, the HJM model is fully characterized by specifying the

forward rate volatility process and the initial forward rate curve.

The original HJM framework is used for modelling �xed income markets (see

[36, 15, 18, 28] and also references therein). Recently, the HJM philosophy has

been extended to credit and equity markets (see, e.g. the recent review [16]) and

modelling of mortality [5] and of �nancial electricity contracts [8].

The HJM framework possesses many interesting and powerful properties (see

Section 2.2), though its mathematical description is rather complex. The numerical
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approximation of the HJM model with stochastic volatility functions remains a

challenging task. As far as we know, the literature on numerics for the HJM model

is rather sparse.

Novel class of numerical methods for HJM framework

In this thesis we proposed a novel class of numerical algorithms for the HJM model

together with a rigorous numerical analysis. The idea of the method of lines served

as inspiration for our approach. The proposed methods facilitate simulation of the

HJM model under various speci�cations. The main focus of our research was put on

the weak-sense numerical methods which can be used for valuing a broad range of

interest rate products. The numerical methods were constructed with the following

guidance. We �rst discretized the in�nite-dimensional HJM equation in maturity

time variable T by approximating the arbitrage-free drift with quadrature rules. As

a result, we obtained a �nite-dimensional system of stochastic di¤erential equations

(SDEs). This system played an intermediate role in our considerations. It was

used as a guidance to construct the fully discrete numerical methods and in the

proofs of the convergence results. We showed in this thesis and in [48] that if we

take a quadrature rule of order p; the solution of this �nite-dimensional system of

SDEs converges to the HJM solution with mean-square order p in the maturity time

discretization step �. The fully discrete methods (discrete in both T and t); were

obtained by approximating the �nite-dimensional system of SDEs in the weak and

mean-square senses using the general theory of numerical integration of SDEs (see,

e.g. [57, 58, 45]). We proved in this thesis and in [48] that if we take a mean-square

numerical integrator of order q; the solution of this fully discrete method converges

to the solution of the HJM approximation discrete in the maturity time T only with

mean-square order q in the calendar time discretization step h. For illustration of

our weak-sense numerical methods for the HJM model we considered approximation

of the pricing problem of a generic interest rate contract of European-type, which

covers a broad range of popular derivatives. We analyzed weak convergence of fully
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discrete methods to the approximations discrete in the maturity time. We showed

that this convergence is uniform in the maturity time discretization step � in order

to obtain weak convergence of the fully-discrete numerical methods to the solution

of the HJM equation.

The introduced class of numerical methods was illustrated by presenting some

particular algorithms of various accuracy orders, which are ready for implementa-

tion. We tested the proposed numerical algorithms on pricing European-type caps

with the Vasicek and proportional volatility models for forward rates. The results of

the numerical tests con�rmed our theoretical conclusions that, within the proposed

class, the numerical methods possess both computational e¢ ciency and �exibility.

The computational e¢ ciency is due to the use of high-order quadrature rules which

permits us to take large discretization steps in the maturity time without a¤ecting

overall accuracy of the algorithms. More precisely, the number of forward rates

that need to be approximated at each time moment t are signi�cantly less in our

algorithms than what is usually required when the time-grids for t and T coincide.

As illustrated in the numerical experiments, new algorithms (e.g., Algorithm 5.3)

can considerably outperform the existing algorithms with coinciding grids (with

Algorithm 5.1 being a typical representative). Fast numerical algorithms are the

cornerstone of e¢ cient calibration of the HJM model. In particular, fast calibration

is crucial for the model�s applicability in practice. In spirit of the method of lines, the

proposed class of numerical methods displayed a high degree of �exibility providing

freedom in choosing appropriate approximations in �space�and �time�separately.

Based on our theoretical results and demonstrated in our numerical experiments, we

concluded that, it is bene�cial in practice to use higher order rules for integration

with respect to maturity time T and lower order numerical schemes for integration

with respect to calendar time t.
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5.2 Outlook for research

In this section, we shall discuss some possible directions of future research to develop

the work of this thesis further.

The numerical experiments in this thesis and in [48] demonstrated that new

algorithms can considerably outperform the existing ones. Within the proposed

approach, even more computationally e¢ cient algorithms based on second order

numerical integrators (see Remark 3.5.4) and/or multi-level Monte Carlo method

[30] can be derived. From a �nancial engineering point of view, this means, in

particular, that calibration of the HJM model can be done faster,which makes the

HJM model more attractive to practitioners.

The proposed numerical approximation of the HJM model are tested on pricing

European-type interest rate derivatives. Combining the developed numerical algo-

rithms with, for instance, regression (see, e.g., [51] and also [32]), one can construct

numerical procedures for pricing interest rate contracts of American and Bermudian-

types which requires further study. The other extensions of the results presented in

this thesis and [48] include computing Greeks (see algorithms for evaluation Greeks

in the case of equity markets in, e.g., [32, 59] and in the references therein).

Though the original HJM framework is used for modelling �xed income markets.

As we mentioned before, the applicability of HJM model goes far beyond interest

rate modelling (see, e.g. the recent review [16]). Potentially, the ideas we developed

in this thesis could be useful for constructing numerical approximation in these

applications.

In addition, the HJM model can be transformed into a �rst-order hyperbolic

SPDE using the Musiela parameterization and numerical algorithms exploiting SPDE

solvers can be considered. Let us also note that in general not much attention has

been paid yet to weak-sense numerical approximations of in�nite-dimensional sto-

chastic equations, including SPDEs, with exception of, e.g. [75, 13, 22, 21]. The

approach to numerical analysis of weak methods for the HJM model considered in

this thesis has a potential to be exploited for weak approximations of SPDEs.
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Another challenging direction of research is to develop numerical algorithms for

pricing interest rate barrier options within HJM framework. At the moment this

problem is the main focus of our research.
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Appendix A

Proofs of selected expressions

In this Appendix derivation of some expressions from Chapter 3 are presented.

Proof of expression (3.47): To show that (3.47) holds it is su¢ cient to demon-

strate the following is true:

E exp(j
Z t

t0

�>(s; T )dWQ(s)j) � C: (A.1)

We note that

exp(j
Z t

t0

�>(s; T )dWQ(s)j) (A.2)

� exp(

Z t

t0

�>(s; T )dWQ(s)) + exp(�
Z t

t0

�>(s; T )dWQ(s)):

Thanks to the boundness of � (3.45), we have

Z t

t0

�>(s; T )�(s; T )ds) � C: (A.3)

Using (A.3), we obtain

EQ exp

�Z t

t0

�>(s; T )dWQ(s)

�
(A.4)

� CEQ
�
exp

�Z t

t0

�>(s; T )dWQ(s)� 1
2

Z t

t0

�>(s; T )�(s; T )ds

��
;
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where C > 0 is a constant.

Also, from (A.3), the Novikov condition

EQ exp

�
1

2

Z t�

t0

�>(s; T )�(s; T )ds

�
<1;

is evidently satis�ed. This ensures that the expression under expectation operator

in (A.4) is a martingale with initial value 1: Hence, we conclude that

EQ exp(

Z t

t0

�>(s; T )dWQ(s)) � C:

Analogously, we can show that

EQ exp(�
Z t

t0

�>(s; T )dWQ(s)) � C:

The last two estimates yield (A.1) and, hence, show that (3.47) holds.

Proof of expression (3.83): Recall that (cf. (3.67), (3.82))

~f it;x(s) = xi +

Z s

t

~�>i (u) ~SI(u; Ti;�)du+

Z s

t

~�>i (u)dW (u); (A.4)

t0 � t � t� ^ T(i+1)^N ; i = 0; : : : ; N;

~Yt;x;0(t+ h) =

`(t+h)X
l=`(t)

Z t+h

t

�X
i=0

�i(s) ~f
l+i
t;x (s)�s2[Tl;Tl+1)ds: (A.5)

We shall show:

E
��� ~Yt;x;0(t+ h)���m � Chm

0@1 + `(t+h)+�X
l=`(t)

jxljm
1A : (A.6)

Let us �rst consider the case m = 1: By (A.4) and (A.5), we have

E
��� ~Yt;x;0(t+ h)���

= E

������
`(t+h)X
l=`(t)

Z t+h

t

�X
i=0

�i(s) ~f
l+i
t;x (s)�s2[Tl;Tl+1)ds

������
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� C

`(t+h)X
l=`(t)

Z t+h

t

�X
i=0

E

�����xl+i + Z s

t

~�>l+i(u)
~SI(u; Tl+i;�)du

+

Z s

t

~�>l+i(u)dW (u)

�
�s2[Tl;Tl+1)ds

����
� C

`(t+h)X
l=`(t)

�X
i=0

Z t+h

t

h��xl+i��+ h+ h 1
2

i
ds � Ch

0@1 + `(t+h)+�X
l=`(t)

jxlj

1A ;
where C > 0 is a constant independent of � and x: To obtain the last inequality,

we use the condition that h � �� for some � > 0 which ensures, that the number

`(t+ h)� `(t) is independent of �:

Next, we shall consider the case m = 2: Using the Cauchy�Bunyakovsky inequal-

ity, we have

E
��� ~Y 2t;x;0(t+ h)���

� CE

������
`(t+h)X
l=`(t)

`(t+h)X
k=`(t)

Z t+h

t

Z t+h

t

�X
i=0

�X
j=0

~f l+it;x (s)
~fk+jt;x (s

0)�s2[Tl;Tl+1)�s02[Tk;Tk+1)dsds
0

������
� CE

������
`(t+h)X
l=`(t)

`(t+h)X
k=`(t)

Z t+h

t

Z t+h

t

�X
i=0

�X
j=0

��
~f l+it;x (s)

�2
+
�
~f l+jt;x (s)

�2�
�s2[Tl;Tl+1)�s02[Tk;Tk+1)dsds

0
����

�
`(t+h)X
l=`(t)

`(t+h)X
k=`(t)

Z t+h

t

Z t+h

t

�X
i=0

�X
j=0

h��xl+i��2 + h2 + hi dsds0 � Ch2
0@1 + `(t+h)+�X

l=`(t)

jxlj2
1A :

Using the similar reasoning, we can prove (A.6) for general m:
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Appendix B

Stochastic Calculus

In this Appendix we give a short overview of the tools from stochastic calculus

frequently used in this thesis. For more extensive background on the topics covered

in this Appendix see e.g. [9, 41, 44, 63, 67, 76].

We assume that we are working on a �ltered probability space (
;F ;P; fFtgt�0)

satisfying the usual conditions:

1. F is P-complete: if B � A 2 F and P(A) = 0 then B 2 F .

2. F0 contains all P-null sets;

3. The �ltration fFtgt�0 is right continuous, i.e. Ft =
T
s>tFs for all t � 0.

A �ltration is a familyfFtgt�0 of increasing sub-�-algebras, i.e. Fs � Ft � F for

all 0 � s < t <1.

A n-dimensional function X : 
 ! Rn; n 2 N is called F�measurable if

X�1(B) = f! 2 
 : X(!) 2 Bg 2 F for all B 2 B(Rn); where B(Rn) is the Borel

sigma-algebra in Rn: A n-dimensional measurable function X : 
 ! Rn; n 2 N is

called an Rn�valued random variable.

If a random variable X : 
 ! R is integrable with respect to the probability

measure P; then the number EP [X] =
R


X(!)dP(!) is called the expectation of X

with respect to the measure P:
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The conditional expectation of an integrable random variable X given a sub-

sigma algebra G � F is de�ned to be a G�measurable function EP [Xj G] with

Z
G

X(!)dP(!) =

Z
G

EP [Xj G] dP(!) for all G 2 G.

For background on conditional expectation and its properties see [9, 76].

De�nition B.1 (Stochastic process) A stochastic process (vector process) is a

family fX(t)gt�0 of random variables (vectors) de�ned on the �ltered probability

space (
;F ;P; fFtgt�0) and indexed by some set I. In our setting, I is taken as

[t0; t
�] for some t� > t0 � 0. We say that

(a) fX(t)gt�0 is adapted (to the �ltration fFtgt�0) if X is Ft-measurable for every

t � 0.

(b) fX(t)gt�0 is measurable if the stochastic process regarded as a function of two

variables (t; !) from [0;1)�
 to Rn; n 2 N is B([0;1))
F-measurable with

B([0;1))
F denoting the product sigma-algebra created by B([0;1)) and F ;

i.e. the smallest sigma algebra which contains all sets G1�.G2 2 B([0;1))�F :

(c) fX(t)gt�0 is progressively measurable if the mapping (t; !) : [0; T ] � 
 ! Rn;

n 2 N is B([0; T ])
FT -measurable.

Note, that each progressively measurable stochastic process is also adapted.

Moreover, if stochastic process is adapted and all its paths are right-continuous

then it is progressively measurable.

Let us now de�ne a special stochastic process which may be considered as one

of the atoms of modern �nance.

De�nition B.2 (Brownian motion) A one-dimensional (P�) Brownian motion

is a real-valued (P-a.s) continuous Ft-adapted process W (t) = fW (t)gt�0 with the

following properties

1. W (0) = 0 P-a.s.;
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2. for 0 � s < t <1, under P; the incrementW (t)�W (s) is normally distributed

with mean zero and variance t� s;

3. for 0 � s < t <1, the increment W (t)�W (s) is independent of Fs.

A d-dimensional process W (t) = (W1(t); : : : ;Wd(t)) de�nes a d-dimensional

Brownian motion if every Wi(t) is a one-dimensional Brownian motion, and

W1(t); : : : ;Wd(t) are independent.

We note that we will write, when it is necessary, WP(t) for Brownian motion

with respect to measure P.

We shall always assume that Brownian motions are de�ned relative to the �ltra-

tion given in the de�nition of the underlying �ltered probability space.

One of the important concepts we need for modelling in �nance is that of mar-

tingales.

De�nition B.3 An Rn�valued fFtgt�0�adapted integrable stochastic process

fX(t)gt�0 is called a martingale with respect to fFtgt�0 and the measure P if

EP [X(t)j Fs] = X(s) P� a.s for all 0 � s < t <1:

Note that every martingale has a cadlag modi�cation, i.e. another stochastic

process fY (t)gt�0 which is right continuous and has left limits and such that P(! :

X(t; !) = Y (t; !) = 1):

Let 0 � t � t�. We shall now de�ne the Itô integral

Z t

0

X(s)dW (s) (B1)

for any stochastic process X = fX(t)g0�t�t� in the space of all real-valued progres-

sively measurable stochastic processes equipped with the norm

jXj2 = E
Z t

0

jX(t)j2dt <1: (B2)
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To de�ne this Itô integral, we �rst de�ne the integral
R t
0
H(s)dW (s) for a class of

simple processes H: Then we show that each progressively measurable process X

with jXj <1 can be approximated by such simple processes H�s and we de�ne the

limit of
R t
0
H(s)dW (s) as the integral

R t
0
X(s)dW (s):

De�nition B.4 (Simple processes) A real-valued stochastic process H =

fH(t)g0�t�t� is called a simple process if there exists a partition 0 = t0 < t1 <

: : : < tn = t� and bounded random variables �i, 0 � i � n � 1, such that �i is

Fti-measurable and

H(t) = �0�[t0;t1](t) +

n�1X
i=1

�i�[ti;ti+1](t); t 2 [0; t�]: (B3)

In the above de�nition, �[A](t) is the indicator function of the set A:

De�nition B.5 (Itô integral with simple integrands) If H is a simple process

with the form (B3), the Itô integral, of H with respect to the Brownian motion W

is the process de�ned by

Z t

0

H(s)dW (s) :=
nX
i=0

�i(W (ti+1)�W (ti)); t 2 [0; t�]:

De�nition B.6 (Itô integral) Let be X a progressively measurable process satis-

fying jXj <1: The Itô integral of X with respect to the Brownian motion W is the

process de�ned by

Z t

0

X(s)dW (s) := lim
n!1

Z t

0

Hn(s)dW (s) in L2(
;R); t 2 [0; t�];

where fHng is a sequence of simple processes such that

lim
n!1

E
Z t

0

jX(s)�Hn(s)j2ds = 0:

We shall now give some of the properties of the Itô integral.
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Proposition B.7 Let be X; Y a progressively measurable processes satisfying jXj <

1; jY j <1: Then

(a)
R t
0
X(s)dW (s) is Ft�measurable;

(b) E
R t
0
X(s)dW (s) = 0

(c) Itô isometry:

E
����Z t

0

X(s)dW (s)

����2 = EZ t

0

jX(s)j2 ds; (B5)

(c) for �; � 2 R;
R t
0
[�X(s) + �Y (s)] dW (s) = �

R t
0
X(s)dW (s)+�

R t
0
Y (s)dW (s):

De�nition B.8 An n-dimensional Itô process is an Rn-valued continuous adapted

process of the form

X(t) = X(0) +

tZ
t0

a(s;X(s))ds+
dX
i=1

tZ
t0

bi(s;X(s))dW
P
i (s); (B6)

whereWP(t) =
�
WP
1 (t); : : : ;W

P
d (t)

�>
is a d-dimensional standard P�Wiener process;

a is Rn�valued adapted process with
R t
t0
ja(s;X(s))j ds < 1 a.s. for any t 2 [t0; t�] ;

bi are Rn�valued adapted processes with
R t
t0
jbi(s;X(s))j2 ds < 1; i = 1; : : : ; d a.s.

for any t 2 [t0; t�] : We shall say that X(t) has stochastic di¤erential dX(t) given by

dX(t) = a(t;X(t))dt+
dX
i=1

bi(t;X(t))dW
P
i (t); (B7)

Proposition B.9 (Itô formula) Let X(t) be n-dimensional Itô process with the

stochastic di¤erential (B7). Let f : [0;1)� Rn ! R, (t; x)! f(t; x) be a function

once di¤erentiable with respect to t and twice with respect to x: Then

f(t;X(t))

is again an Itô process with stochastic di¤erential of the form

df(t;X(t)) = Lf(t;X(t))dt+

dX
i=1

�if(t;X(t))dW
P
i (t); (B8)
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where the operators L and �i; i = 1; : : : ; d are given by

L =
@

@t
+ a>

@

@x
+
1

2

dX
i=1

nX
m=1

nX
j=1

bmi b
j
i

@2

@xm@xj
;

�i =

nX
j=1

bji
@

@xj
:

The Itô formula is the chain rule of stochastic calculus. It di¤ers from the

corresponding result in ordinary calculus through the appearance of second order

derivatives in dt term.

We shall now give some results from the change of measure technique.

De�nition B.10 (Equivalent measures) Let P and Q be two measures de�ned

on the same measurable space (
;F). We say that Q is absolutely continuous with

respect to P; written Q� P; if Q(G) = 0 whenever P(G) = 0; G 2 F : If both Q� P

and P� Q; we call P and Q equivalent measures and denote this by Q� P:

Theorem B.11 (Radon-Nikodym) Let P and Q be measures on the measurable

space (
;F). Then Q� P if and only if there exist an integrable function g > 0

Q-a.s. such that

Q(G) =

Z
G

gdP for all G 2 F :

g is called the Radon-Nikodym derivative of Q with respect to P and it is also written

as g = dQ/dP:

For calculating conditional expectations it can be needed to change the point of

view and use a di¤erent measure. The following theorem gives us a relation between

conditional expectations with respect to di¤erent measures.

Theorem B.12 (Bayes formula) Let P and Q be two measures de�ned on the

same measurable space (
;F) and let dQ/dP be the Radon-Nikodym derivative of Q

with respect to P: Furthermore, let X be an integrable random variable on the prob-

ability space (
;F ;Q) and G � F be a sub-sigma algebra of F . Then the following
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holds:

EP
�
X � dQ

dP

����G� = EQ [Xj G] � EP � dQdP
����G� :

Theorem B.13 (Girsanov theorem) Let X be an n-dimensional Itô process in-

troduced in De�nition B.8. Suppose there exist an Rd-valued Ft-adapted process �(t)

with
R t
0
j�(s)j2ds < 1 a.s. for every t 2 [0; t�] and also an Rn-valued Ft-adapted

process v(t;X(t)) with
R t
0
jv(s;X(s))jds <1 such that

b(t;X(t))�(t) = a(t;X(t))� v(t;X(t))

and assume that �(t) satis�es the Novikov condition

E
�
exp

�
1

2

Z T

0

�2(s)ds

��
<1: (B9)

De�ne

�t = exp

�
�
Z t

0

�|(s)dWP(s)� 1
2

Z t

0

�2(s)ds

�
; t � t�; (B10)

and

dQ = �TdP on FT :

Then

WQ(t) =

Z t

0

�(s)ds+WP(t); t � t�; (B11)

is a Brownian motion with respect to the probability measure Q and the process X

has the stochastic di¤erential of the form

dX(t) = v(t;X(t))dt+ b(t;X(t))dWQ(t) (B12)

in terms of ~W (t):

We shall �nally state the Fubini�s theorem for stochastic integrals. The proof of

this theorem can be found for e.g. in [26, pp. 99].

Theorem B.14 (Fubini�s theorem for stochastic integrals) Consider the Rd-
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valued stochastic process � = �(!; t; s) with two indices, 0 � t, s � T , satisfying the

following properties

1. � is progressively measurable;

2. supt;s k�(t; s)k <1.

Then Z T

0

�Z T

0

�(t; s)dW (t)

�
ds =

Z T

0

�Z T

0

�(t; s)ds

�
dW (t): (B13)
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