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[1] Land surface models have uncertainties due to their approximation of physical
processes and the heterogeneity of the land surface. These can be compounded when key
variables are inadequately represented. Land surface temperature (LST) is critical as it
forms an integral component in the surface energy budget, water stress evaluation, fuel
moisture derivation, and soil moisture–climate feedbacks. A reduction in the uncertainty of
surface energy fluxes, and moisture quantification, is assumed to be achievable by
constraining simulations of LST with observation data. This technique is known as data
assimilation and involves the adjustment of the model state at observation times with
measurements of a predictable uncertainty. In this paper, the validity of LST simulations in
a regionalized parameterization of the land surface model Joint UK Land Environment
Simulator (JULES) for Africa is assessed by way of a multitemporal intercomparison
study with the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced
Along Track Scanning Radiometer (AATSR), and the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) thermal products, with a two‐thirds reduction in model bias
found when soil properties are reparameterized. A data assimilation experiment of SEVIRI
LST into the JULES model via an ensemble Kalman filter shows an improvement
in the modeled LST, soil moisture, and latent and sensible heat fluxes. This paper presents
the first investigation into reducing the uncertainty in modeling energy and water fluxes
with the United Kingdom’s most important land surface model, JULES, by means
of data assimilation of LST.
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1. Introduction

[2] Land surface models are mathematical representations
of the biophysical processes that constitute the terrestrial
biosphere. They are crucial elements of general circulation
models (GCMs), since they determine the surface radiative
properties and the surface to atmosphere fluxes of heat,
water and carbon; influencing cloud cover, precipitation,
and atmospheric chemistry. However, much variation exists
in their parameterization, representation of biophysical
processes, and as a result of the heterogeneity of the land
surface; leading to uncertainty in how climate change
influences the terrestrial biosphere, and how the land surface
may evolve in the future. Improvements can be made by
integrating additional data into these models; a technique
known as data assimilation. While field measurements can
provide accurate constraints to models, their limited geo-

graphical extent reduces their effectiveness, whereas
remotely sensed data from Earth observation (EO) satellites
can overcome this limitation thereby providing the most
realistic source of data at appropriately fine temporal reso-
lution over large geographical regions.
[3] Data assimilation involves adjusting the model state

with external measurements of established uncertainty at
regular intervals. With the inherent uncertainty in model
predictions, data assimilation represents a process of mini-
mizing the errors in the model physics through the updating
of the model state variables at each time step when
observations become available. Both the model uncertainty
and the observation uncertainty play significant roles in the
determination of the correction to be applied to the state
variable. Where the observation data values are more reli-
able the model estimates are adjusted to more closely cor-
respond to these observations.
[4] Several assimilation techniques exist, including the

three‐dimensional variational (3DVAR) scheme, and the
Kalman filter method and its variants. The difference between
these is in the evolution of the error structure, and the meth-
odology for solving the analysis update equation. The Kalman
filter provides the optimum linear sequential assimilation
solution based on model and observation uncertainties [Gelb,
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1974], and is designed to apply this prior knowledge of the
uncertainties to achieve the optimum correction to be
applied to the model estimation. To cope with nonlinear
assimilation a variant called the extended Kalman filter
(EKF) was developed. An alternative to this is the ensemble
Kalman filter (EnKF) [Evensen, 2003], which employs a
Monte Carlo approach to avoid the computationally expen-
sive integration of the state error covariance matrix; and
compared with the EKF is more robust and flexible in
covariance modeling [Reichle et al., 2002].
[5] Previous implementations of the EnKF have indicated

this technique to be a beneficial solution for updating state
variables with observation measurements. For instance,
Huang et al. [2008] reported a 1 K improvement in the
estimates of soil temperature when satellite land surface
temperature (LST) products were assimilated at observation
times. Quaife et al. [2008] assimilated canopy reflectance
into a simple carbon pool and box model, and found sig-
nificant improvements in the estimation of gross primary
production. Pipunic et al. [2008] assimilated LST products,
and both latent heat and sensible heat products. They found
predictions of latent and sensible heat were improved under
both assimilation scenarios. Furthermore, they found that
assimilation of higher temporal source data resulted in
improved predictions compared with lower temporal source
data.
[6] In this study, we investigated the feasibility of

assimilating LST into the Joint UK Land Environment
Simulator (JULES) land surface model, which is the com-
munity version of the UK Met Office’s Met Office Surface
Exchange Scheme (MOSES) scheme. Although simulations
from land surface models may well be reasonably repre-
sentative of real values, during long modeling runs consid-
erable deviation can result [Huang et al., 2008]. Constraining
these simulations with observation data is therefore a desir-
able objective.
[7] LST is the radiative skin temperature of the land. It is

derived from solar radiation and influences the partitioning
of energy into ground, sensible, and latent heat fluxes. Being
an important component of the surface energy budget it is
therefore of significant value in validating and constraining
land surface models. It is influenced by various surface‐
atmosphere boundary conditions, such as albedo, and pre-
cipitation [Huang et al., 2008]; and is more closely related
to the physiological activities of leaves than air temperature
[Sims et al., 2008]. Furthermore, differences between the air
temperature and surface temperature of dry ground can be as
much as 20°C [Byrne et al., 1979].
[8] The importance of LST in applications such as vege-

tation water stress monitoring, as a result of its close rela-
tionship to vapor pressure deficit [Hashimoto et al., 2008];
and surface energy balance assessment [Pinheiro et al.,
2006], is well documented. Additionally, LST has an
important role to play in the fire regime. It has been argued
in previous studies [Sandholt et al., 2002; Snyder et al.,
2006] that the ratio between the normalized difference
vegetation index (NDVI) and LST can be expressed as a
surface dryness index representing live fuel moisture content
(FMC), which is a critical variable in the prediction of fire
occurrence and propagation.
[9] A primary use of LST data derived from EO satellites

has been in the validation/calibration of other LST data sets

[Noyes et al., 2006; Trigo et al., 2008a]. However, maybe in
recognition of the important role LST has to play in land
surface modeling, much recent work with satellite derived
LST data has focused on this data being used as the source
of observations to constrain models. Numerous studies have
investigated the use of LST observations from satellite in
model simulations. Bosilovich et al. [2007], for example,
employed the 3DVAR assimilation method to assimilate
LST into the National Center for Atmospheric Research
(NCAR) Community Land Model. Margulis and Entekhabi
[2003] also used a variational assimilation technique to
optimize the water and energy budgets of a 1‐D model. As
for LST validation studies, both Ge et al. [2008] and Jin
et al. [1997] compared land surface model LST simula-
tions with remote sensing observations. These studies
illustrated the importance of LST in the surface energy
balance representation in biophysical models, and argued
how improvements can be made with the utilization of
satellite observations. A similar study involving JULES is
thus a valuable objective. This study however, is the first to
both attempt to validate the simulation of LST from a land
surface model with satellite derived LST data from multiple
sources, and to assimilate the most spatially and temporally
appropriate product into the model using a sequential
assimilation method, such as the EnKF. The ultimate aim of
this study is to investigate the impact of a better represen-
tation of LST in the land surface model both on surface
energy fluxes and biogeochemical cycles.
[10] Whereas many previous assimilation studies have

successfully improved the estimations from simple bio-
sphere models, few such as the assimilation of NDVI data
into the Organizing Carbon and Hydrology In Dynamic
Ecosystems Environment (ORCHIDEE) land surface model
[Vivoy et al., 2001] have attempted to integrate satellite data
into more complex biophysical and biogeochemical models.
The current study represents a first investigation at
sequential assimilation with the EnKF into the land surface
model employed within the UK Met Office’s Unified
Modeling System. This paper will describe this land surface
model and the assimilation methodology applied (section 2);
and will present the results of the intercomparison of the
model with remote sensing products, and of the assimilation
of the observations into the model (section 3). Potential
deficiencies in the existing state variable estimation will be
discussed and improvements through assimilation will be
analyzed (section 4).

2. Materials and Methods

2.1. Model Description

[11] JULES is based on the MOSES system, which was
developed to calculate the surface‐to‐atmosphere fluxes of
heat and water when coupled to the Hadley Centre’s General
Circulation Model (GCM), and is described in detail by Cox
et al. [1999]. It is a terrestrial grid box model driven by
meteorological data and features a fine temporal resolution
to characterize the diurnal cycle, updating the state variables
at intervals typically of 30 or 60 min. Additionally, it is
coupled to a dynamic global vegetation model called Top‐
down Representation of Interactive Foliage and Flora
Including Dynamics (TRIFFID) which adopts a heuristic
modeling approach for determining vegetation distribution

GHENT ET AL.: LST ASSIMILATION INTO JULES WITH AN ENKF D19112D19112

2 of 16



and carbon storage. A feature of the model is that for the
duration of the model run biophysical parameters remain
constant.
[12] Each grid box is represented as a composite of nine

surface “tiles.” These consist of five plant functional types
(PFTs): broadleaf trees, needleleaf trees, C3 grasses, C4

grasses, and shrubs; and four nonvegetation types: urban,
inland water, bare soil and ice. The subsurface of each grid
box is profiled into four soil layers, with each layer homo-
geneous within a grid box. Soil thermal characteristics are
functions of soil moisture, with diffusive heat exchanges
between layers. Using the mean heat and water fluxes over
the time step, prognostic soil fields are updated from values
for the previous time step [Cox et al., 1999; Smith et al.,
2006]. Dynamic vegetation structure is simulated as the
density of carbon and fractional cover of the five PFTs, with
modified Lotka‐Volterra equations determining competitive
advantages between PFTs as described by Hughes et al.
[2006].
[13] Unlike single‐source models, which can produce

model errors in their predictions of surface heat fluxes in
mixed canopy/soil surfaces [Kustas and Norman, 1999],
JULES explicitly treats the energy exchanges between each
tile and the overlying atmosphere; with the surface energy
balance equation for each tile, as defined byCox et al. [1999],
given by

SWN þ LW# � �T 4
s ¼ H þ LE þ G0 ð1Þ

where Ts is the surface temperature, s is the Stefan–
Boltzmann constant, SWN is the net downward short wave
radiation derived from the surface albedo, LW↓ is the
downward long wave radiation, H is the sensible heat flux,
LE is the latent heat flux, and G0 is the heat flux into the
ground. The grid box LST is a sum of the surface tem-
peratures of each tile multiplied by their respective fractional
covers within the grid box.
[14] The surface temperature Ts is a critical variable in the

derivation of sensible heat flux H (equation (2)), and latent
heat flux LE (equation (3)). The sensible heat flux is cal-
culated using the temperature gradient between the surface
and reference height z1 above the surface:

H ¼ �cp
ra

Ts � T1
g

cp
z1

� �
ð2Þ

where r is the surface air density, cp is the specific heat
capacity of the air, ra is the aerodynamic resistance, g is the
acceleration due to gravity, and T1 is the air temperature at
reference height z1. The latent heat flux is similarly derived
using the humidity gradient between the surface and atmo-
spheric reference height z1:

LE ¼ Y
L�

ra
qsat Tsð Þ � q1ð Þ ð3Þ

whereby LE is driven by evapotranspiration (ET), with y
being a factor determined from the proportions of canopy
evaporation, bare soil evaporation, transpiration by vegeta-
tion, and sublimation from snow. L is the latent heat of
vaporization of water, qsat(Ts) is the saturated specific
humidity at surface temperature Ts, and q1 is the specific

humidity at reference height z1. Within the soil hydrology
component of the model, total unfrozen soil moisture con-
tent M within each layer is given by equation (4), in which
the surface soil moisture is incremented according to
equation (5):

M ¼ �wDzQu ð4Þ

dM1

dt
¼ Pf þ Sm � Ys �W1 � � 1� fað Þ qsat Tsð Þ � q1f g

� 1� vð Þ� Q1ð Þ
ra þ rss

þ e1v

ra þ rc

� �
ð5Þ

where rw is the density of water, Dz is the depth of the soil
layer, and Qu is the volumetric concentration of unfrozen
soil moisture. Pf is the throughfall precipitation, Sm is
snowmelt, Ys is surface runoff, W1 is the diffusive water flux
flowing out to the layer below, fa is the wet canopy fraction
of the grid box, v is the vegetated fraction of the grid box,
b(Q1) is the soil moisture availability factor with volumetric
soil moisture concentration Q1 in the topsoil layer, e1 is the
fraction of the transpiration extracted from the topsoil layer;
and rss and rc are a fixed soil surface resistance and the
canopy resistance, respectively. For more comprehensive
detail regarding the soil thermodynamic and hydrology
components of the model, these are described by Cox et al.
[1999].

2.2. Study Area

[15] For this investigation the study region was Africa,
chosen in order to assess the benefits of LST assimilation
over a large geographical area at a fine temporal resolution.
Africa has a strong wet and dry seasonality, and is an
important component in the global carbon cycle; yet this
continent remains the least studied [Intergovernmental Panel
on Climate Change, 2007], even though climate scenarios
for Africa remain highly uncertain [Williams et al., 2007].
During the 20th Century Africa experienced an overall
warming. With warming expected to accelerate here in most
scenarios [Hulme et al., 2001], improved quantification of
the surface to atmosphere heat and water fluxes through data
assimilation offers the prospect of improving confidence in
climate predictions for this region. Furthermore, the simu-
lation of realistic fire disturbance regimes with biophysical
and biogeochemical models, by applying improved estima-
tions of FMC, is a prerequisite for reducing the uncertainty
of the African carbon cycle. Since the observation network
around Africa is relatively sparse only EO data represents a
feasible option for constraining model estimates.

2.3. Experimental Setup

[16] For this study, JULES version 2.1 was run at an
hourly time step at 1° × 1° spatial resolution. Meteorological
input data were taken from 6‐hourly National Centers for
Environmental Prediction (NCEP) reanalysis data sets
[Kalnay et al., 1996]. However, caution has been advocated
in the use of NCEP precipitation data [Ichii et al., 2005], so
calibration with monthly Tropical Rainfall Measuring
Mission (TRMM) precipitation data [Kummerow et al.,
1998] was therefore applied according to the method used
by Sheffield et al. [2006] and Weber et al. [2009], in which
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the 6‐hourly NCEP values are scaled to match the monthly
TRMM values as follows:

Calibrated NCEP6hr ¼ TRMMmonthly

NCEPmonthly
� NCEP6hr ð6Þ

[17] Land cover change was not considered in this experi-
ment, since the duration of the model run was too short to
trigger significant vegetation‐climate feedbacks as a result of
changes to vegetation distribution. The geographical distri-
bution of the JULES tiles was therefore determined from
the seventeen International Geosphere‐Biosphere Programme
(IGBP) land cover classes, which are available in a 1° × 1°
gridded file from the International Satellite Land Surface
Climatology (ISLSCP) Initiative II data collection, by apply-
ing the linear mapping algorithm of Dunderdale et al. [1999],
rather than being simulated by TRIFFID. JULES was spun up
until the soil thermal and hydrologic properties, and the
modeled carbon cycle, were equilibrated with the climate
forcing. This equilibrium state is used as the initial condition
for the main run, and limits anomalous responses at the
beginning of the simulation.
[18] LST simulated by JULES was compared during

March, June, September, and December 2006 with three
widely used thermal satellite products: the Advanced Along
Track Scanning Radiometer (AATSR); the Moderate Res-
olution Imaging Spectroradiometer (MODIS); and the
Spinning Enhanced Visible and Infrared Imager (SEVIRI).
The choice of 4 distinct months enabled any seasonal effects
to be highlighted. For comparison, each satellite product
was reprojected onto a 1° × 1° grid for the African conti-
nent, as dictated by the resolution of the model forcing data,
by averaging within each grid box all georeferenced, cloud
free pixels, where the respective quality flags were of the
highest rank.
[19] This intercomparison experiment was carried out for

two different parameterizations of the model. First, a stan-
dard parameterization (denoted as model A), where soil
parameters are derived from the global vegetation and soils
data set of Wilson and Henderson‐Sellers [1985]. Second, a
modified parameterization (denoted as model B), where soil
parameters are derived from the International Satellite Land
Surface Climatology Project (ISLSCP) II soil data set
[Global Soil Data Task Group, 2000]; with soil albedo from
the data set of Houldcroft et al. [2009]. The assimilation
experiment involved SEVIRI observations being assimilated
into the most appropriate parameterization of JULES for a
full year. This choice of EO product was made based on the
correspondingly fine temporal resolution of both model and
satellite product.

2.4. Remote Sensing Data

[20] SEVIRI acquires an image every 15 min, at a spatial
resolution of between 3 km and 5 km for the African con-
tinent, and is the main payload on board the Meteosat
Second Generation (MSG) geostationary satellites centered
over the equator. A split‐window algorithm for channels
IR10.8 and IR12.0 is used to process LST data at an accu-
racy of 1.5 K [Sobrino and Romaguera, 2004] for most
simulations between nadir and 50° viewing zenith angle.
LST retrieval requires identification of cloudy/part cloudy
pixels since clouds scatter and absorb IR radiance. The

Satellite Application Facility on Land Surface Analysis
(LandSAF), whom generate and disseminate SEVIRI data,
identify clear sky pixels through the application of a cloud
mask which makes use of software developed by the
Nowcasting and Very Short‐Range Forecasting Satellite
Application (NWC SAF; https://www.nwcsaf.org). This
information is delivered in quality flags; and for this study,
only pixels identified as cloud‐free were used. A complete
description of the LandSAF algorithm for LST retrievals can
be found in the product user manual (available at the
LandSAF web site http://landsaf.meteo.pt/).
[21] In this study, we used version 4 of the global MODIS

LST product MOD11A1, which is acquired from thermal IR
sensors on board the Sun‐synchronous, near‐polar‐orbiting
satellite Terra at a spatial resolution of 1 km. LST data is
processed using a generalized split‐window algorithm for
bands 31 and 32 at a nominal accuracy better than 1.0 K
[Wan et al., 2004; Wan, 2008]. The large swath width of
2330 km allows data to be acquired for the African conti-
nent twice daily. A limitation of MODIS LST data is cloud
contamination. MODIS LST data is accompanied by quality
control flags; to minimize cloud contamination only pixels
with the highest quality control flags were used.
[22] The swath width of the AATSR sensor on board the

Sun‐synchronous, polar‐orbiting satellite Envisat is 512 km,
with global coverage every 3 days and a repeat orbit of
35 days. Furthermore, measurements are available at two
viewing angles, forward and nadir. For the purpose of LST
studies however, only measurements from the nadir view,
data set ATS_NR_2P, with a spatial resolution of 1 km are
available. The uncertainty reported by Coll et al. [2005] for
AATSR observations at nadir can be less than 1.0 K,
depending on the algorithm and location; cloud contami-
nation, though, is a limitation. Cloud identification is per-
formed by the AATSR processor which identifies cloud
affected pixels by applying a series of tests to the brightness
temperature. If any test indicates the presence of clouds then
this information is stored in the accompanying confidence
flags. Full details of the LST retrieval algorithm can be
found in the product user manual (available at the Envisat
web site http://envisat.esa.int/).

2.5. LST Intercomparison

[23] For the intercomparison exercise observations over
Africa were grouped as “day” (approximately 0700–
1200 UTC); and “night” (approximately 1900–2400 UTC)
to correspond with the Terra MODIS orbital overpass times.
Variability of LST over brief temporal periods ensures
validation of LST products is a challenging undertaking
[Pinheiro et al., 2006]. As stated in section 2.3, to account
for the spatial variability satellite images were resampled to
a 1° × 1° grid to correspond with the JULES output. As for
the temporal variability in the different sources, intercom-
parison between the modeled values and the satellite pro-
ducts was performed at individual 1° grid boxes only at a
JULES time step when this corresponded both with a
MODIS overpass time and with an AATSR overpass time,
specifically when both these satellite images were classified
as cloud‐free, within a ±10 min time window; and when the
closest 15 min SEVIRI retrieval also resulted in cloud‐free
images. The monthly composites for the entire continent are
an aggregation of all the individual grid box comparisons
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carried out over the course of the month. First, the standard
soil parameterization of JULES (model A) was run for each
of the months of March, June, September, and December
2006 and compared with each of the EO products. Finally,
this experiment was repeated under the modified soil
parameterization (model B).

2.6. Data Assimilation

[24] Assimilation was carried out with the EnKF, which
uses a Monte Carlo approach, and is a variant of the Kalman
filter sequential assimilation method. The EnKF, first pro-
posed by Evensen [1994], propagates an ensemble of states
from which the state error covariance matrix can be deter-
mined from the distribution of the ensemble spread. The
expensive integration of the state error covariance matrix is
therefore avoided. In our data assimilation scheme, only
LST is directly manipulated, where the state vector Xt+1

representing LST in all 2548 independent grid boxes at time
t + 1 is defined as

Xtþ1 ¼ F Xt;atþ1;bð Þ ð7Þ

where F is the model operator which in this case is JULES,
and which operates on the state variable at time t, the
meteorological forcing data (air temperature, downward
long wave radiation, downward short wave radiation, pre-
cipitation, specific humidity, and surface pressure) at t + 1
represented by at+1, and the time‐invariant model para-
meters represented by b.
[25] Starting from time t = 0, which is the initial state

following model spin‐up, each ensemble member of the
forecast state vectorXt+1

f at time t + 1 is propagated by adding
stochastic forcing g to equation (7) and is expressed as

Xf
tþ1 ¼ F Xa

t;atþ1;b
� �þ g g � N 0;Pð Þ ð8Þ

whereXa
t is the analysis state vector at time t. g conforms to a

Gaussian distribution with mean of zero and model error
covariance P. In the case of the initial condition of the
assimilation run (t = 0), each ensemble member of the state
vector Xa

0 is derived by adding random noise based on our
knowledge of the model error which conforms to a Gaussian
distribution with mean of zero and error covariance P0. The
model error strongly influences data assimilation perfor-
mance; here model error was based on the standard deviation
of the bias between the model simulations and in situ ob-
servations taken from a prior field campaign to the site of the
Skukuza Eddy Covariance Tower in the Kruger National
Park, South Africa, during July and August 2009. From this
field data the mean model error was defined as 3.6 K. When
observations for a grid box become available each ensemble
member of the forecast state for that grid box is then updated
by applying the update equation defined by Evensen [2003]:

Xa ¼ Xf þK y�HKf þ e
� �

e � N 0;Rð Þ ð9Þ

where K is the Kalman gain matrix, which determines the
correction to the forecast state Xf of the grid box, and is a
function of the model error covariance matrix P, and obser-
vation error covariance matrix R:

K ¼ PfHT H Pf HT þ R
� 	�1 ð10Þ

[26] H in equations (9) and (10) is the observation oper-
ator, which relates the model state variables to the ob-
servations. The observation y is perturbed with stochastic
forcing e conforming to a Gaussian distribution with mean
of zero and model error covariance R. For the LST ob-
servations, the product uncertainty for SEVIRI measure-
ments is used to determine its error range. In this case, the
product uncertainty is defined as 1.5 K [Sobrino and
Romaguera, 2004], which is comparable to the observa-
tion error of 1.6 K recorded during the field campaign to the
site of the Skukuza Eddy Covariance Tower during July and
August 2009.
[27] Equation (10) is traditionally solved by eigenvalue

decomposition, whereby the cost of decomposition is a
function of the ensemble size. The optimum number of
ensemble members should therefore be determined for
applying this method with minimal computational cost. The
optimum estimate of the model state can be taken as the
mean of the ensemble members [Burgers et al., 1998;
Evensen, 2003], with the variance around the mean a reflec-
tion of the uncertainty. As indicated in equations (2)–(5), LST
(Ts) is a key variable for determining heat and water fluxes.
The manipulations to LST carried out within our data
assimilation scheme are propagated throughout the model
structure affecting sensible and latent heat fluxes, and soil
moisture.
[28] Assimilation was carried out using JULES (model B)

over the duration of 2007. The resultant LST root‐mean‐
square errors (RMSEs) were compared against the MODIS
LST data set, since this can provide a context for an eval-
uation of the JULES model. Additionally, modeled esti-
mates of surface soil moisture produced by JULES, with and
without the assimilation of LST data, were compared with a
surface soil moisture (SSM) data set derived at the Institute
of Photogrammetry and Remote Sensing at the Vienna
University of Technology, from radar backscattering coeffi-
cients produced from the active C‐band (5.6 GHz) micro-
wave scatterometer instruments on board the European
Remote Sensing Satellites (ERS‐1 and ERS‐2). In our study,
comparison between the model and the SSM data set was
performed over an area of West Africa (15°W to 10°E
longitude, 5°N to 20°N latitude) from 1 January to 31 May
2007. The SSM “observations” are generated from two
separate ERS receiving stations (Maspalomas and Matera)
covering this region of Africa.
[29] A detailed description of the change detection

method for SSM retrieval is given by Wagner et al. [1999],
but briefly, scatterometer estimates are used to model the
incidence angle dependency of the radar backscattering
coefficients, which are normalized to a 40° reference inci-
dence angle. The relative SSM data, which ranges from 0%
to 100%, are derived from the normalized coefficients,
which are scaled between the driest and wettest observations
over the long term. Validation studies of the ERS scatte-
rometer SSM data set have been undertaken by Wagner
et al. [1999], who compared the data set with gravimetric
soil moisture measurements over Ukrainian field sites; and
by Ceballos et al. [2005], who compared the data set with
soil moisture from a network of 20 stations in western
Spain. These studies recorded mean correlations of 0.41 and
0.75 in the top 100 cm soil profile. Furthermore, in their
study, Ceballos et al. [2005] recorded a RMSE of 2.2%
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between the scatterometer data and the average soil mois-
ture. Additionally, it has been shown there is good agree-
ment between the SSM data set and other soil moisture data
sets in temperate, tropical and dry climates [Crow and Zhan,
2007; Pellarin et al., 2006; Wagner et al., 2003].
[30] In situ validation of the results was performed by

analyzing the RMSEs of sensible (H) and latent heat (LE)
fluxes, from both open loop modeling and following
assimilation of LST, when compared with Eddy Covariance
measurements [Papale et al., 2006]. These in situ measure-
ments were obtained for a 3 month period, October–
December 2007, from four African sites: the Skukuza flux
tower (25.02°S, 31.50°E) in South Africa, situated in semi-
arid savanna; the Mongu flux tower (15.44°S, 23.25°E) in
Zambia, located in Miombo woodland; the Tchizalamou flux
tower (4.29°S, 11.66°E) in the Congo, within a tropical
savanna; and the Demokeya flux tower (13.28°N, 30.48°E)
situated in a savanna/grassland area of the Sudan.

3. Results

3.1. LST Intercomparison

[31] Figure 1 shows both the SEVIRI daytime LST
composite for the month of March 2006 and the difference
between this nominal reference and both JULES (model A)
and other satellite products. Since the composites are based
on temporal retrievals when all four LST sources intersect
within ±10 min tolerance windows, the image gaps are a
result of insufficient intersecting observations available to
be able to construct a monthly composite. AATSR was
found to be the remote sensing product with the highest
mean temperatures, as well as displaying the largest stan-
dard deviation. MODIS was the product with the lowest
mean temperatures, with the viewing angle generating
noticeable effects (Figure 2); as the viewing angle increased
the bias between SEVIRI and MODIS also increased. There
is a general agreement between these findings and those of
previous intercomparison studies. For instance, Trigo et al.
[2008a] reported SEVIRI to systematically record higher
surface temperatures than the MODIS product over Central
Africa and the Iberian peninsula; and Noyes et al. [2006]
found a similar tendency across ten sites in Europe and
North Africa. This latter study also found AATSR to gen-
erate the highest mean LST of these products. The smaller
range of view zenith angles for AATSR, compared with
MODIS, means fewer pixels are affected by shadow and
nondirect sunlight, resulting in a tendency to retrieve higher
temperatures.
[32] Larger MODIS viewing angles were found to corre-

spond with the largest daytime discrepancies in agreement
with Trigo et al. [2008a]; a result one can reasonably
assume to be a product of differential heating rates between
sunlit and shadow scenes, whereas the SEVIRI geometry
observes predominantly sunlit scenes. All three products
displayed similar diurnal ranges, as reported in these two
aforementioned studies. In the study of the Senegal River
region by Stisen et al. [2007], however, the SEVIRI diurnal
range was systematically larger than that of MODIS; a result
that should warrant further investigation.
[33] LST simulated by model A is cooler than any of the

satellite products (Table 1), with large negative biases
occurring both during the day and the night. When each

IGBP land cover class was analyzed, it was found that the
bias was most pronounced over barren or sparsely vegetated
grid boxes. Results from the comparison during September
produced the most striking differences between the modeled
LST and the remote sensing products. One possible cause of
this was an underestimation in the contribution of the bare
soil tile LST to the grid box aggregate. Grid box LST in
JULES is a linear combination of the associated tile LSTs
and their corresponding fractional covers. However, in a
two‐source model surface temperature is defined as the
fourth root of the aggregation of the fourth power of both
soil and canopy LSTs multiplied by their corresponding
fractional covers [Norman et al., 1995; Li et al., 2005].
Experimentation reveals only minimal improvement if the
linear grid box averaging in JULES is substituted with this
nonlinear approach; the largest adjustments being less than
0.1K, with these occurring in the savanna regions of the
continent. Moreover, the barren or sparsely vegetated grid
boxes consist almost exclusively of single tile components,
whereby both aggregation methods produce the same LST.
[34] Although model representation of the average grid

box LST could be a potential explanatory factor for a pro-
portion of the bias where multiple tile fractions exist within
a grid box, it was instead suspected that the prime candidate
for model underestimation with respect to the remotely
sensed LST was most likely to be the parameterization of
the soil conditions. In order to investigate this further an
alternative parameterizationwas experimentedwith (modelB).
This encompassed the use of the 1° × 1° gridded data set of
soil characteristics produced by ISLSCP II project [Global
Soil Data Task Group, 2000] from the IGBP Data and
Information System soil data set; and the soil albedo data set
produced by the University of Swansea [Houldcroft et al.,
2009]. Warmer signatures were obtained over much of the
continent during March 2006 (Figure 3a), and resulted in a
reduction in the mean monthly “daytime” continental bias
between modeled LST and SEVIRI, from −5.39 K to −5.05 K;
with the reduction being −8.87 K to −4.48 K for barren or
sparsely vegetated grid boxes. The corresponding reduction
during the “night” was −5.45 to −3.62 over the continent; and
−7.62 to −5.59 over barren or sparsely vegetated grid boxes. It
is the combination of the soil characteristics, such as soil
moisture content and soil albedo (Figure 3b), which are
responsible for the reduced bias between modeled LST from
model B and SEVIRI LST. This experiment was repeated for
June, September, and December 2006 with consistent reduc-
tions in bias achieved (Table 2). In spite of these reductions a
residual bias still existed between model B and the SEVIRI
product. In an assimilation system, such as the EnKF, a
residual bias between the model and the observations prevents
a statistically optimal analysis [Dee and da Silva, 1998]. The
bias correctionmethodology ofReichle and Koster [2004] was
therefore employed, in which the cumulative distribution
functions (CDF) of the model and SEVIRI data were equated
(Figure 4). This is an appropriate method, since CDFmatching
reduces systematic biases between model and observations
without attributing the biases to a source [Drusch et al., 2005].
Here, the scaled SEVIRI LST denoted by x′ was given by the
solution to equation (11):

CDFm x0ð Þ ¼ CDFs xÞð ð11Þ
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Figure 1. (top left) SEVIRI mean LST during March 2006 for day observations (approximately 0700–
1200 UTC) displayed in absolute units and the difference between alternative LST sources and SEVIRI:
(top right) AATSR minus SEVIRI, (bottom left) JULES model A minus SEVIRI, and (bottom right)
MODIS minus SEVIRI. The monthly composites are based on temporal retrievals at JULES time steps
whereby these coincided with both MODIS and AATSR overpass times within a ±10 min tolerance,
and the nearest 15 min SEVIRI retrieval was applied.
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where CDFm and CDFs denote the CDFs of the model LST
and SEVIRI LST, respectively; with x being the unscaled
SEVIRI LST.

3.2. Data Assimilation

[35] Following the bias correction, SEVIRI LST was
assimilated into the model B parameterization of JULES for
the entire year of 2007. An important step to undertake prior
to assimilation analysis is to identify an optimum number
of ensemble members. Figure 5 identifies a considerable
reduction in RMSE, with respect to MODIS LST, when
even a small ensemble size is used in comparison to the
modeled scenario. This reduction continues as the number of
ensemble members is increased, but at a decreasing rate.
Since increased ensemble size corresponds to an increased

Figure 2. Bias between SEVIRI LST and MODIS LST for each of the 4 month assimilation periods in
2006 grouped by MODIS viewing angle.

Figure 3a. Mean daytime (approximately 0700–1200UTC)
LST difference, during March 2006, between the JULES
model with alternative thermal, hydrologic, and albedo soil
parameters (model B) and the JULES model with standard
soil parameters (model A).

Table 1. Mean Day (Approximately 0700–1200 UTC) and Night
(Approximately 1900–2400 UTC) Biases, Covering the 4 Month
Comparison Periods of March, June, September, and December
2006, Between Modeled LST (Model A) and Remote Sensing
Products for the Continental Landmass and for the Barren or
Sparsely Vegetated IGBP Land Cover Class

Month

Continental Bias (K)
Barren or Sparsely
Vegetated Bias (K)

AATSR MODIS SEVIRI AATSR MODIS SEVIRI

Day
March −6.76 −1.85 −5.39 −9.40 −6.56 −8.87
June −6.81 −2.14 −5.48 −11.74 −7.33 −10.33
September −11.21 −5.27 −7.47 −17.62 −10.19 −12.06
December −6.52 −2.25 −5.50 −6.87 −5.19 −8.08

Night
March −3.27 −0.12 −5.45 −3.92 −2.57 −7.62
June −7.37 −2.20 −5.46 −9.96 −6.05 −9.18
September −8.49 −4.33 −7.54 −11.52 −8.12 −11.23
December −2.31 0.71 −1.15 −1.88 −0.71 −3.17
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computational burden, the desired number of ensemble
members should maximize the RMSE reduction while
minimizing the computational load. For the assimilation
experiment an ensemble size of 100 was chosen, as any
further reductions in RMSEs for larger ensemble sizes were
minimal.
[36] The time series of LST for 2007 (Figure 6) illustrates

the change in JULES LST in the context of the MODIS
LST. What we found was that the model predictions under
the influence of data assimilation were more comparable
with this alternative LST data set than were the modeled
values; with a 54.5% reduction in RMSE from 2.11 K to
0.96 K. Larger adjustments were experienced during the
middle of the year, due to larger changes during the hottest
hours of each day for this period of the year; whereas the
start and end of the year experienced reductions in LST as a
result of greater changes during the night but in a downward
direction.
[37] Furthermore, a comparison was made between the

soil moisture outputs of the model with and without LST
data assimilation, and SSM scatterometer values in the top
5 cm of the soil over an area of West Africa for the first
5 months of 2007 (Figure 7). The modeled values are clearly
higher than the SSM “observations” derived from the ERS
scatterometer. Following assimilation, the updated model
estimates are closer to the “observation” values. This can be
quantified as a 21.6% reduction in RMSE, from 17.1vol% to
13.4vol% between the model estimates and the ERS scat-
terometer “observations.” A t statistic of 10.4, generated
from t tests assuming equal variances on the mean RMSEs
from 50 repeated open loop and model runs with LST data
assimilation, indicated that these reductions in RMSE were
significant at the 99% confidence level. The spatial distri-

bution of the differences between these updated model esti-
mates following LST assimilation and the model estimates
without data assimilation are illustrated in Figure 8. Corre-
sponding time series for evapotranspiration (ET) and LE
over the same geographical area for this 5 month period are
illustrated in Figure 9; whereby the changes in LE are driven
by changes in ET.
[38] During 2007, the values of H and LE fluxes for open

loop and model runs with LST data assimilation were
compared against in situ measurements from Skukuza,
Mongu, Tchizalamou, and Demokeya from October to
December (Table 3). This was the only period of sufficient
collection from all of these sites during this year. Reductions in

Figure 3b. Differences in selected soil characteristics between model B and model A during March
2006: (left) soil moisture content and (right) soil albedo.

Table 2. Mean Day (Approximately 0700–1200 UTC) and Night
(Approximately 1900–2400 UTC) Biases, Covering the 4 Month
Comparison Periods of March, June, September, and December
2006, Between Modeled LST (Model B) and Remote Sensing
Products for the Continental Landmass and for the Barren or
Sparsely Vegetated IGBP Land Cover Class

Month

Continental Bias (K)
Barren or Sparsely
Vegetated Bias (K)

AATSR MODIS SEVIRI AATSR MODIS SEVIRI

Day
March −6.42 −1.51 −5.05 −5.01 −2.16 −4.48
June −5.13 −0.45 −3.79 −5.82 −1.41 −4.41
September −7.94 −2.00 −4.21 −10.78 −3.36 −5.23
December −4.83 −0.55 −3.81 −2.52 −0.85 −3.74

Night
March −1.44 1.71 −3.62 −1.89 −0.53 −5.59
June −2.55 2.62 −0.64 −2.77 1.14 −1.99
September −3.22 0.95 −2.27 −3.69 −0.28 −3.40
December −2.11 0.91 −0.95 −1.59 −0.42 −2.88
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RMSE were recorded for both H and LE fluxes from the
assimilation runs, comparedwith the respective fluxes from the
standard model runs, with respect to the fluxes recorded at all
four Eddy Covariance towers. The reduction in RMSE of H
with respect to the flux recorded at Demokeya shows the
strongest reduction of uncetainty through the LST data
assimilation.When these reductionswere tested on 50 repeated
open loop and model runs with LST data assimilation using t

tests assuming equal variances, all the reductions were sig-
nificant at the 95% confidence level, with six of these being
significant at the 99% confidence level.

4. Discussion

[39] LST validation with ground measurements can be
both time consuming, and limited in its geographical extent.

Figure 4. The average cumulative distribution function (CDF) of both the modeled LST and the SEVIRI
LST. The bold arrows illustrate schematically how the unscaled SEVIRI observation x is converted into
the scaled observation x′ using CDF matching.

Figure 5. Comparison test of the results from the assimilation of SEVIRI LST into the JULES model for
the entire year 2007, showing LST RMSEs with respect to MODIS LST observations for experiments
with different ensemble sizes.
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An intercomparison exercise between thermal products
generated aboard EO satellites provides a more realistic
alternative over large spatial and temporal scales; with these
products also representing the most feasible source of
observation values for assimilating into regional and global
parameterizations of land surface models, such as the UK
Met Office’s JULES model. A caveat to the intercomparison

test carried out here is that due to cloud contamination,
available MODIS LST products were limited. Indeed, cloud
masking makes any intercomparison a more challenging
undertaking, as fewer pixels are available for analysis.
However, an improvement could be achieved with the use of
the latest MODIS LST version (V5), which includes a
refinement in the cloud screening process [Wan, 2008].

Figure 6. Time series of open loop modeling versus model run following assimilation of mean daily
LST for the continental landmass covering the entire year 2007. MODIS observations are plotted for
comparison.

Figure 7. Time series of open loop modeling versus model run following LST assimilation for values
over a region of West Africa (15°W to 10°E longitude, 5°N to 20°N latitude) from 1 January to 31 May
2007 of mean daily soil moisture in the top 5 cm of the soil profile. ERS scatterometer surface soil mois-
ture observations from the top 5 cm of the soil profile are plotted for comparison.
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Even so, the loss of pixels to cloud contamination is limit-
ing, particularly for the comparison with AATSR retrievals
due to the longer repeat cycle.
[40] JULES is an evolving land surface model, whereby

recent studies [Alton et al., 2007b; Mercado et al., 2007]
have made improvements to the standard implementation.
Furthermore, recent sensitivity and validation analyses of
JULES [Alton et al., 2007a; de Rosnay et al., 2009; Weber
et al., 2009] have established confidence in the biophysical
representations of ecosystem processes in tropical biomes,
including those covering Africa. Data assimilation repre-
sents the next logical step in further improving the reliability
of the model and reducing uncertainties inherent in all such
land surface models.

[41] A variable with potentially far‐reaching influence in
land surface models is LST. In JULES this variable is
derived from the surface energy balance. When this was
compared with the satellite‐derived LST data, we found the
model underestimated LST when compared with all three
satellite‐derived LST data sets during the entire diurnal
cycle, with larger biases experienced for less vegetated
surface types (Table 1). We suggest several possible
explanations for this discrepancy. First, there is a tendency
for satellite‐derived LST data to systematically overestimate
in situ measurements. This occurrence was reported by
Trigo et al. [2008a] for SEVIRI observations, with possible
explanations of sensor calibration and a favoring of sunlit
surfaces being proposed. Second, the assumptions present in
the algorithms for generating high‐level thermal products
may be inconsistent with those in the land surface model,
resulting maybe in an inadequate processing of long wave
emissivity in JULES, which has not been investigated here
and will require further examination. Finally, the parame-
terization of thermal and hydrological soil characteristics do
not appropriately represent the spatial heterogeneity of these
qualities for sparsely vegetated regions. This is pertinent
since the bare soil surface temperature in JULES is quanti-
fied from the temperature of the upper layer in the soil
profile as well as the surface energy balance equation. This
final possibility provided motivation for the study by
Houldcroft et al. [2009] to improve the description of sur-
face albedo in land surface models.
[42] When this modified soil albedo data set, derived from

the MODIS MCD43C1 albedo product, was employed in
the model, and the standard soil parameters from the global
vegetation and soils data set of Wilson and Henderson‐
Sellers [1985] were substituted for parameters derived
from the ISLSCP II soil data set, a reduction in the biases
between model and EO products was recorded. It is rea-
sonable to accept this improvement with the recognition that
soil moisture, and surface albedo, are two of the most
significant determining factors in LST variability [Goward
et al., 2002]. Soil moisture has a significant influence on

Figure 8. Mean daily soil moisture difference in the top
5 cm of the soil profile between the open loop model run
and the model run following LST assimilation over a region
of West Africa (15°W to 10°E longitude, 5°N to 20°N lati-
tude) from 1 January to 31 May 2007.

Figure 9. Time series of open loop modeling versus model run following LST assimilation for values
over a region of West Africa (15°W to 10°E longitude, 5°N to 20°N latitude) from 1 January to 31 May
2007 of (left) mean daily evapotranspiration and (right) mean daily latent heat flux.
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the partitioning of energy into sensible and latent heat fluxes.
For instance, a wet soil surface is cooler and loses more
latent heat, whereas a dry soil surface generally corresponds
to higher surface temperatures and loses more sensible heat
[Smith et al., 2006]. Surface albedo, determines the amount
of energy absorbed by the land surface. The modified albedo
data set developed for land surface modeling is more com-
parable with EO albedo products, particularly over sparsely
vegetated regions [Houldcroft et al., 2009].
[43] Probably all land surface models, including JULES,

are limited by the accuracy to which their representation of
physical processes imitate the terrestrial biosphere. Optimi-
zation of variable estimation, such as LST, can be achieved
by assimilating observation data into the model through a
mechanism like the EnKF. This technique balances the
uncertainty in both the model and observations, but is sub-
ject to sampling errors which are a function of the ensemble
size [Evensen, 2003]. It is therefore important to select an
appropriately sized ensemble that on the one hand mini-
mizes the sampling errors and obtains satisfactory results,
whereas concurrently reducing the computational burden.
[44] Moreover, EnKF data assimilation over land is often

based on covariance localization methods, in which sampled
cross covariances between geographically disparate points
are explicitly set to zero. The concept here is to subdivide
the global analysis into smaller subdomains which are
independently analyzed based only on local observations,
with these subdomains simultaneously updated in parallel as
implemented by Hamill et al. [2001] and Houtekamer and
Mitchell [2001]. This requirement is because of the uncer-
tainties in sampling cross covariances using finite ensembles
sizes, and the possibility of creating spurious cross corre-
lations. Indeed, Reichle and Koster [2003] have found
covariance localization to increase the accuracy of estima-
tions for small ensemble sizes in particular. In this study
analysis is subdivided into the individual model grid cells

which are independent of each other since no lateral fluxes
exist in JULES.
[45] The reduction in RMSE with respect to MODIS LST

is clearly discernable as the ensemble size is initially
increased, with further improvement experienced at a
decreasing rate for larger ensemble sizes (Figure 5). Indeed
when t tests assuming equal variances were performed on
the mean RMSEs from 50 repeated runs, the reduction in
RMSE remained statistically significant at the 5% level even
when the ensemble size was increased from 50 to 100, but
this ceased to be the case when the ensemble size was fur-
ther increased to 150. The chosen size of 100 therefore
produced acceptable results, whereby a further increase in
size to 150 did not significantly improve the EnKF results.
[46] Much of the shift in the LST as a result of assimi-

lation occurred during the hottest parts of each day, partic-
ularly for regions with sparse vegetation coverage. One
possibility for this occurrence could be that the model is
simulating suboptimal diffusion of heat between the land
surface and the topsoil layer, thereby producing large var-
iances in the LST estimations. A caveat to these findings is
that although the observation perturbations remain con-
strained by a fixed product uncertainty; the lower depen-
dency on the differential heating or cooling of the surface, a
result of sunlit or shadow areas, during the daytime could
result in observation errors that are larger than the applied
product uncertainty. Indeed, SEVIRI observations during
the daytime hours are reported to regularly fail to meet the
accuracy target of the satellite application facility on land
surface analysis (LandSAF), who generate and disseminate
SEVIRI data, of 2.0 K over desert and semiarid regions
[Trigo et al., 2008b].
[47] It is evident from Figure 7 that a reduction in the

model predictions of soil moisture over an area of West
Africa for the period 1 January to 31 May 2007 has resulted
through the process of data assimilation. This corresponds to
reductions in both ET and LE experienced for this same
spatial and temporal window (Figure 9). The ET rate is
controlled by stomatal conductance, which is affected by the
quantity of photosynthetically active radiation. Furthermore,
the positive relationship between ET and net primary pro-
ductivity (NPP), as suggested by Rosenzweig [1968], implies
the assimilation of LST also has the potential to influence
the interannual variability in the carbon cycle.
[48] Additionally, the change in LST influences the H

flux, whereby the increase in surface energy is differentially
partitioned into H and LE, as a result of the changes in the
temperature and humidity gradients in the surface boundary
layer, respectively. This is a consequence of the propor-
tional changes to LST experienced over the vegetated and
nonvegetated fractions of each grid box. The result of these
changes in the surface energy budget is that reductions in
RMSEs for H and LE fluxes are observed when evaluated
against in situ measurements (Table 3). Although the
magnitude of the RMSE reductions when compared with
measurements taken during the final 3 months of 2007 from
Skukuza, Mongu and Tchizalamou are relatively small, a
possible reason may be because of the higher vegetative
cover during the southern African wet season; whereas a
larger RMSE reduction was experienced for sensible heat
flux when compared for the Demokeya site. This site is
located in more sparsely vegetated ground, and is subject to

Table 3. Evaluation of Open Loop Modeling and Model Run
Following LST Assimilation With Respect to 1‐Hourly Eddy
Covariance Measurements of Sensible and Latent Heat Fluxes
From Four African Sites Covering the Period October–December
2007a

RMSE (W m−2)

Reduction (%) t StatisticbModeled Assimilated

Skukuza
H 30.76 28.66 6.83 5.066**
LE 47.52 43.17 9.15 10.935**

Mongu
H 41.42 40.56 2.08 2.251*
LE 49.21 47.29 3.90 4.441**

Tchizalamou
H 27.18 24.26 10.74 7.620**
LE 41.30 39.48 4.41 4.938**

Demokeya
H 54.15 40.78 24.69 35.393**
LE 41.07 40.31 1.85 1.993*

aAfrican sites: Skukuza, South Africa; Mongu, Zambia; Tchizalamou,
Congo; and Demokeya, Sudan. The percentage reduction in RMSE is
given along with the t statistic and an indication of significance of the
one‐tailed t test. The t tests assuming equal variances were performed on
the mean RMSEs from 50 repeated runs of the model. H, sensible heat
flux; LE, latent heat flux.

b**, significance at the 0.99 level; *, significance at the 0.95 level.
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the lowest annual precipitation (320 mm) of the four sites; in
comparison to Tchizalamou (1150 mm), Mongu (945 mm)
and Skukuza (547 mm). Moreover, the final 3 months of
2007 correspond to the beginning of the dry season at
Demokeya. Indeed, it is likely large RMSE reductions
could also be experienced at alternative sites located
within sparsely vegetated ground. Further investigation is
thus required of the JULES model to see if LE and H are
accurately simulated at other African ground stations
across a range of biomes.
[49] It is feasible that changes to a key variable, such as

LST, could have a detrimental impact upon the energy
fluxes within the model. Despite the fact that reductions in
RMSEs for H and LE fluxes were relatively small, with
respect to the eddy covariance measurements, the changes to
these fluxes did not result in any increase in RMSE. Overall,
when considering these findings, it can be argued that a
benefit could be gained in updating the modeled state with
remotely sensed observations using an EnKF. This would be
consistent with findings from previous studies, such as those
by Huang et al. [2008] and Pipunic et al. [2008].
[50] Although promising in nature, these findings are

based upon updating model LST by assimilating frequent
observations from the SEVIRI sensor onboard the geosta-
tionary MSG satellites. The temporal memory of JULES
LST is limited to the previous 30 or 60 min time step. This
may not be significant when the observations are the fre-
quent SEVIRI retrievals, but can become pertinent for less
frequent remote sensing observations from polar‐orbiting
satellites. Future research, utilizing an alternative observa-
tion operator, could therefore examine updating variables in
JULES with longer memory, such as soil temperature,
through the assimilation of remotely sensed LST products
with less frequent retrievals, such as MODIS or AATSR.

5. Conclusions

[51] This paper has considered the importance of LST as
an integral component in the calculation of surface to
atmosphere heat fluxes, and has investigated a technique to
constrain the estimations within a state‐of‐the‐art land sur-
face model. An intercomparison was carried out between the
model simulated LST and various thermal remote sensing
products. This represented an attractive alternative to veri-
fication with in situ measurements, which are sparsely
located and may not easily represent a heterogeneous grid
box. Satellite‐derived LST estimates were then assimilated
into the land surface model using an EnKF filter.
[52] Although differences exist for sparsely vegetated

regions, LST simulated by JULES is comparable with
remotely sensed LST products. In light of the sensitivity of
the LST to changes in soil albedo and soil thermal and
hydrologic characteristics however, further investigation
into the soil parameterization of JULES merits attention.
The differences between the model and satellite observa-
tions of LST can additionally be reduced through data
assimilation. Our results indicate that data assimilation can
indeed prove to be a consistent and reliable method of
constraining the simulations of complex biophysical land
surface models. Despite the ensemble size being one of the
most sensitive approximations in the EnKF formulation, we

found that satisfactory improvements can be made with
relatively few ensemble members.
[53] This study represents the first step in producing an

operational data assimilation scheme for the JULES model;
and indeed further work is also required in optimizing soil
parameters, particularly where LSTs are considerably
underestimated, with vegetation parameterization also wor-
thy of closer investigation. Following these promising results
in the experiments of LST assimilation, further work can be
carried out both in the assimilation of LST from less tem-
porally frequent sources, such as MODIS and AATSR; and
remotely sensed vegetation indices, such as NDVI data,
thereby constraining the estimation of a surface dryness index
to estimate live FMC; an important variable in modeling fire
occurrence and propagation. Indeed, data assimilation offers
the opportunity of integrating numerous reflectance products
into land surface models with the prospect of reducing the
considerable uncertainties in the simulation of biogeochem-
ical fluxes.
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