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Efficient identification of exoplanetary transit candidates
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ABSTRACT
Transiting extrasolar planets constitute only a small fraction of the range of stellar systems

found to display periodic, shallow dimmings in wide-field surveys employing small-aperture

camera arrays. Here we present an efficient selection strategy for follow-up observations, de-

rived from analysis of the light curves of a sample of 67 SuperWASP targets that passed the

selection tests we used in earlier papers, but which have subsequently been identified either

as planet hosts or as astrophysical false positives. We determine the system parameters using

Markov-chain Monte Carlo analysis of the SuperWASP light curves. We use a constrained

optimization of χ2 combined with a Bayesian prior based on the main-sequence mass and

radius expected from the Two Micron All Sky Survey J − H colour. The Bayesian nature of

the analysis allows us to quantify both the departure of the host star from the main-sequence

mass–radius relation and the probability that the companion radius is less than 1.5 Jupiter

radii. When augmented by direct light-curve analyses that detect binaries with unequal pri-

mary and secondary eclipses, and objects with aperture blends that are resolved by SuperWASP,

we find that only 13 of the original 67 stars, including the three known planets in the sam-

ple, would qualify for follow-up. This suggests that planet discovery ‘hit rates’ better than
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Efficient transit candidate identification 1231

one-in-five should be achievable. In addition, the stellar binaries that qualify are likely to have

astrophysically interesting stellar or substellar secondaries.

Key words: methods: data analysis – techniques: photometric – planetary systems.

1 I N T RO D U C T I O N

Wide-field photometric surveys using commercial, small-aperture

camera lenses and large-format CCDs have yielded several dis-

coveries of new transiting extrasolar planets (Alonso et al. 2004;

McCullough et al. 2006; O’Donovan et al. 2006; Bakos et al.

2007a,b; Burke et al. 2007; Collier Cameron et al. 2007; O’Donovan

et al. 2007). Deeper surveys based on light curves from the Optical

Gravitational Lensing Experiment (OGLE) project have produced

a further five such planets (Konacki et al. 2003; Bouchy et al. 2004;

Konacki et al. 2004; Pont et al. 2004; Konacki et al. 2005).

The most efficient follow-up strategies (in terms of telescope time

expended per false positive) are high-resolution radial-velocity sur-

veys using 2-m and larger telescopes. Pont et al. (2005a) points

out that a single spectrum quickly unmasks double-lined spectro-

scopic binaries and rapid rotation resulting from tidal locking of the

primary’s rotation by a stellar mass companion. It also reveals pres-

sure broadening of strong absorption-line wings, distinguishing K

giants from K dwarfs. Second-epoch spectra then eliminate the nar-

row, single-lined stellar spectroscopic binaries among the surviving

main-sequence stars. All the teams engaged in such searches report

high rates of astrophysical false positives. For example, Pont et al.

(2005a) carried out a detailed analysis of targets followed up in the

OGLE Carina field. They found that nearby blended eclipsing bina-

ries, grazing equal-mass stellar binaries and transits by planet-sized

stars near the bottom of the main sequence are the most common

impostors.

Several authors have described methods for pre-selecting targets

for such programmes in order to minimize the number of astrophys-

ical false positives in samples selected for radial-velocity follow-up.

Seager & Mallén-Ornelas (2003) pointed out that the relative radii of

the planet and star can be estimated from the transit depth, while the

durations of ingress and egress can break the degeneracy between

the impact parameter and the star’s radius. The transit duration then

yields the radius of the primary, and Kepler’s third law establishes its

density, allowing dwarf–giant separation. The masses of bona fide

main-sequence primaries are then estimated from the mass–radius

relation.

In practice, however, the signal-to-noise ratios of transit profiles

secured with wide-field cameras are seldom good enough to deter-

mine the duration of ingress and egress reliably. This problem led

Tingley & Sackett (2005) to propose a simpler test, based on transit

duration, depth and orbital period, for the selection of transit can-

didates worthy of follow-up. Drake (2003) and Sirko & Paczyński

(2003) used ellipsoidal variations in the out-of-transit light curve to

eliminate stellar binaries. Even with careful pre-selection on tran-

sit depth, duration and primary star colour and ellipsoidal varia-

tions using a combination of all these methods, the success rate

of such follow-up programmes currently runs at about one planet

per 10 or more stars surveyed (Pont et al. 2005a). To make the

most efficient use of follow-up facilities, more efficient candidate-

selection methods are clearly needed. Our goal is to perform ef-

ficient selection using the discovery observations in conjunction

with data mining of publicly available data bases of photometry and

proper motions, without having to perform further time-consuming

observations.

Here we present a Bayesian approach to identifying targets whose

light-curve morphologies and infrared colours are consistent with

expectations for main-sequence stars with transiting Jupiter-sized

companions. In Sections 2 and 3 we describe the SuperWASP

photometry and follow-up spectroscopy. The spectra, augmented

by photometric tests for eliminating blends with nearby eclips-

ing binaries and grazing stellar binaries with observable secondary

eclipses, yield spectroscopic and photometric classifications of 67

high-priority transit candidates selected from the 2004 SuperWASP

transit survey data.

In Section 4 we analyse the light curves of all 67 stars to de-

rive posterior probability distributions for their orbital parameters

and radii via Markov-chain Monte Carlo (MCMC) analysis. In Sec-

tion 5 we show that the stellar and planetary parameters obtained for

WASP-1 and WASP-2 with this method compare well with results

obtained from high-precision transit photometry with larger instru-

ments. In Section 6 we develop candidate-selection criteria based

on the posterior probability that the companion has a radius appro-

priate to a planet, and apply them to the SuperWASP sample. An

ancillary method of dwarf–giant separation based on the reduced

proper motion (RPM) and the J − H colour is given in Section 7.

2 O B S E RVAT I O N S

Among the 109 SuperWASP transit candidates selected for poten-

tial spectroscopic follow-up, 67 stars were examined in sufficient

detail to establish their nature. These 67 objects are listed in Table 1

together with their spectroscopic and photometric classifications.

They were initially selected for follow-up using criteria described

by Collier Cameron et al. (2006), Christian et al. (2006), Street

et al. (2007) and Lister et al. (2007). Among them are the three

known planet host stars XO-1 (McCullough et al. 2006), WASP-

1 and WASP-2 (Collier Cameron et al. 2007). The remaining 64

were eliminated as planet candidates using the spectroscopic and

photometric criteria described here and in Section 3.

2.1 SuperWASP photometry

The light curves analysed in this paper were secured between 2004

May and September using the SuperWASP wide-field camera array.

The SuperWASP instrument and data pipeline are described in full

by Pollacco et al. (2006). During 2004, the instrument comprised

five f/1.8 Canon lenses of 200-mm focal length backed by Andor

CCD arrays of 2048 × 2048 13 μm pixel. Each camera imaged an

area of sky 7.8 deg2. The automated observing routine followed a

raster pattern sweeping from 3.5 h east to 3.5 h west of the meridian,

returning to a given field every 6 min on average. The light curves

of most targets comprise some 3000 observations secured over a

period of 100–150 d.

The ensemble photometry from each camera on each night was

calibrated and corrected for extinction, colour and zero-point terms

using networks of local secondary standards. Additional patterns of
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1232 A. Collier Cameron et al.

Table 1. Classification criteria for 67 SuperWASP transit candidates. The codes in the Tel/Inst column are E = OHP 1.93 m with ELODIE, S = OHP 1.93

m with SOPHIE, I = INT with IDS, T = Tautenburg 2-m telescope, W = SuperWASP, X = XO project. Spectroscopic classifications denote whether the

spectrum is rotationally broadened (Gaussian σ > 8 km s−1), single or double, upper limits on radial-velocity variability and BisVar = line-bisector variability.

The presence of interstellar sodium or Class III pressure broadening in the wings of strong lines indicates a giant. Photometric classifications are AB = aperture

blend, SE2 = secondary eclipse seen when folded on twice best-fitting period, EV2 = ellipsoidal variation seen when folded on twice best-fitting period. The

values of the main-sequence (MS) prior and the probability that the companion radius is less than 1.5 RJup yield the selection criteria in the penultimate column;

the final selection including photometric rejection criteria is given in the final column. The acronyms RPM and MCMC denote reduced proper motion and

Markov-chain Monte Carlo, respectively.

1SWASP Tel/Inst Spectral Photometric RPM MS prior Probability Select? Select?

classification classification classification S = −2 ln (Rp < 1.5 RJup) (MCMC (MCMC

P(M∗, R∗) only) and photometric)

Planets

J002040.07+315923.7 S Planet (WASP-1) – Dwarf 0.98 0.989 TRUE TRUE

J160211.83+281010.4 X Planet (XO-1) – Dwarf 0.04 0.958 TRUE TRUE

J203054.12+062546.4 S Planet (WASP-2) – Dwarf 0.84 1.000 TRUE TRUE

Spectral binaries –

J130322.00+350525.4 I SB1 – Dwarf 3.87 0.445 TRUE TRUE

J133339.36+494321.6 E SB1 – Dwarf 0.24 0.992 TRUE TRUE

J134815.27+464811.0 E Broad – Dwarf 0.01 0.864 TRUE TRUE

J174118.30+383656.3 S SB1 – Dwarf 0.86 0.983 TRUE TRUE

J175401.58+322112.6 E SB1 – Dwarf 0.00 0.995 TRUE TRUE

J181858.42+103550.1 E Broad – Dwarf 0.26 0.905 TRUE TRUE

J184119.02+403008.4 T SB1 – Dwarf 0.86 0.970 TRUE TRUE

J203704.92+191525.1 T SB1 – Dwarf 0.08 0.999 TRUE TRUE

J210009.75+193107.1 E Broad – Dwarf 0.30 0.998 TRUE TRUE

J211608.42+163220.3 S SB2 – Dwarf 1.42 0.396 TRUE TRUE

J212855.03+075753.5 I SB1 – Dwarf 0.11 0.312 TRUE TRUE

J223320.44+370139.1 S SB1 – Dwarf 0.22 0.998 TRUE TRUE

J234318.41+295556.5 S SB1 – Dwarf 0.10 0.988 TRUE TRUE

J010151.11+314254.7 S,T SB1 broad – Dwarf 17.56 0.970 FALSE FALSE

J023445.65+251244.0 T SB1 – Dwarf 7.37 0.034 FALSE FALSE

J031103.19+211141.4 S Broad – Dwarf 10.52 0.000 FALSE FALSE

J051221.34+300634.9 S Multiple – Dwarf 7.36 0.001 FALSE FALSE

J115718.66+261906.1 I SB1 – Dwarf 0.42 0.074 FALSE FALSE

J141558.71+400026.7 E Broad – Dwarf 0.12 0.002 FALSE FALSE

J152131.01+213521.3 I SB1 – Dwarf 2.21 0.000 FALSE FALSE

J153135.51+305957.1 E Broad – Dwarf 11.67 0.000 FALSE FALSE

J165949.13+265346.1 S Broad – Dwarf 8.41 0.032 FALSE FALSE

J172549.13+502206.4 E Broad – Dwarf 2.66 0.150 FALSE FALSE

J173650.17+105557.9 E Broad – Dwarf 0.60 0.000 FALSE FALSE

J173748.98+471348.7 I SB1 – Dwarf 7.84 1.000 FALSE FALSE

J174327.81+582512.7 E Broad – Dwarf 14.02 0.002 FALSE FALSE

J175511.09+134731.5 E Broad – Dwarf 10.39 0.042 FALSE FALSE

J175620.84+253625.7 T SB2 – Dwarf 3.35 0.005 FALSE FALSE

J180010.55+214510.2 T SB1 – Giant 0.13 0.010 FALSE FALSE

J182620.36+475902.8 E SB2 – Giant 90.38 0.000 FALSE FALSE

J202824.02+192310.2 E Broad – Dwarf 0.86 0.000 FALSE FALSE

J203906.39+171345.9 E SB1 – Dwarf 4.67 0.015 FALSE FALSE

J215802.14+253006.1 S SB2 – Dwarf 32.53 0.906 FALSE FALSE

J231533.56+232637.5 T SB1 – Dwarf 59.89 0.017 FALSE FALSE

Photometric binaries

J003039.21+205719.1 T,W SB2 SE2 Dwarf 1.60 0.022 FALSE FALSE

J015711.29+303447.7 T SB2 SE2 Dwarf 1.42 0.927 TRUE FALSE

J160242.43+290850.1 W – SE2 Giant 16.32 0.000 FALSE FALSE

J165423.72+241335.7 W – SE2 Giant 2.88 0.847 TRUE FALSE

J183104.01+323942.7 S SB2 SE2 Dwarf 0.68 0.997 TRUE FALSE

J183805.57+423432.3 W – SE2 Giant 4.08 0.995 TRUE FALSE

J205308.03+192152.7 S SB2 SE2 Dwarf 3.22 1.000 TRUE FALSE

J210909.05+184950.9 W – EV2 Dwarf 0.36 0.991 TRUE FALSE

J222353.83+412813.5 W – EV2 Dwarf 53.32 0.000 FALSE FALSE

J223651.20+221000.8 S SB2 SE2 Giant 1.13 0.021 FALSE FALSE
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Efficient transit candidate identification 1233

Table 1 – continued.

1SWASP Tel/Inst Spectral Photometric RPM MS prior Probability Select? Select?

classification classification classification S = −2 ln (Rp < 1.5 RJup) (MCMC (MCMC

P(M∗, R∗) only) and photometric)

Aperture blends

J025500.31+281134.0 S,T <10 m s−1 AB Giant 15.19 0.000 FALSE FALSE

J133156.81+460026.6 W – AB Giant 82.69 0.000 FALSE FALSE

J161644.68+200806.8 W – AB Giant 79.66 0.000 FALSE FALSE

J181454.99+391146.0 W – AB Giant 2.55 1.000 TRUE FALSE

J184303.62+462656.4 S I/S Na I, Class III AB Giant 60.26 0.971 FALSE FALSE

J204142.49+075051.5 W – AB Giant 1.54 1.000 TRUE FALSE

J204712.42+202544.5 W,T <1 km s−1 AB Giant 1.93 1.000 TRUE FALSE

J204745.08+103347.9 W – AB Giant 65.54 0.780 FALSE FALSE

J213416.37+205644.4 W,T – AB Dwarf 35.47 0.000 FALSE FALSE

J215226.17+331424.7 W – AB Dwarf 52.29 0.036 FALSE FALSE

J222317.60+130125.8 S I/S Na I, Class III AB Giant 38.09 0.994 FALSE FALSE

J223809.90+401038.1 W – AB Giant 5.55 1.000 FALSE FALSE

J224104.57+363648.3 W – AB Giant 43.77 0.994 FALSE FALSE

Other blends, giants

J161732.90+242119.0 S,E <10 m s−1 – Dwarf 0.53 1.000 TRUE TRUE

J210318.01+080117.8 S I/S Na I, BisVar – Dwarf 0.26 0.983 TRUE TRUE

J005225.90+203451.2 S,T <10 m s−1 – Dwarf 14.03 0.008 FALSE FALSE

J181252.03+461851.6 S,E <10 m s−1 – Dwarf 2.46 0.036 FALSE FALSE

J204125.28+163911.8 S Class III – Giant 37.85 1.000 FALSE FALSE

J205027.33+064022.9 S <10 m s−1 – Dwarf 33.23 0.986 FALSE FALSE

J214151.03+260158.5 S – – Giant 26.81 1.000 FALSE FALSE

systematic error affecting all the stars were identified and removed

using the SysRem algorithm of Tamuz, Mazeh & Zucker (2005).

The search for transit-like events and selection of astrophysically

plausible transit candidates was performed using the methodology

of Collier Cameron et al. (2006), backed up by visual inspection of

the light curves to verify the reality of the transits as described by

Christian et al. (2006).

In total these procedures yielded a ‘long list’ of 109 transit can-

didates with periods less than 5 d, from which obvious impostors

such as ellipsoidal variables and objects showing clear secondary

eclipses on the best-fitting period had been eliminated.

2.2 OHP 1.93-m spectroscopy

The initial spectroscopic follow-up of transit candidates identified

from the 2004 SuperWASP survey was carried out during three

four-night observing runs on the 1.93-m telescope at l’Observatoire

de Haute-Provence (OHP). The first two runs, in 2006 May and

June, utilized the ELODIE spectrograph and radial-velocity soft-

ware (Bouchy et al. 2006). ELODIE was replaced by its successor

SOPHIE in time for the third run of the series, in 2006 August.

Both instruments were used in their ‘high-efficiency’ modes, which

cover the wavelength range from 387 to 694 nm with resolving

power λ/�λ = 35 000. Radial velocities are computed at the tele-

scope, using cross-correlation with a mask spectrum, using ThAr

arc spectra to monitor the stability of the instrument. The typical

radial-velocity precisions were of the order of 40 m s−1 for narrow-

lined objects observed with ELODIE, and 12 m s−1 with SOPHIE.

The cross-correlation functions allow several types of astrophysical

false positive to be identified from a single exposure. Targets were

rejected if the first-epoch spectrum revealed them to be double lined

or rapidly rotating (and hence presumably tidally locked by a stellar

mass companion). Examples of such cross-correlation functions are

illustrated in fig. 1 of Pont et al. (2005a). Velocity shifts of more

than a few hundred m s−1 between the first spectrum and a second

measurement on a subsequent night also led to rejection as a stellar

binary.

As Table 1 shows, 14 targets were eliminated as broad, single-

lined or double-lined binaries during the ELODIE runs. 12 stars

were identified as binaries with SOPHIE, while a further 10 were

found to be either giants (deduced visually from absence of pressure-

broadening wings on the Na ID and Mg Ib lines, and/or from the

presence of narrow foreground interstellar sodium absorption), or to

exhibit no detectable radial-velocity variation (suggesting blending

with a nearby eclipsing binary).

2.3 Tautenburg spectroscopy

Further spectra of several targets were secured using the coudé

echelle spectrograph on the 2-m Alfred Jensch telescope at the

Thüringer Landessternwarte Tautenburg over the winter of 2006–

07. A 2-arcsec slit width was used, yielding a spectral resolving

power λ/�λ = 35 000. For most observations, velocities were ob-

tained by cross-correlation referenced to the ThAr wavelength cal-

ibration, using telluric lines as a secondary reference to monitor

and correct possible instrumental shifts. The overall velocity preci-

sion was typically of the order of 200 m s−1. The rejection criteria

were similar to those described above for the OHP observations.

Six additional stars were eliminated as binaries on the basis of these

observations.

2.4 INT spectroscopy

Spectra were secured of several previously unobserved targets us-

ing the intermediate-dispersion spectrograph (IDS) on the 2.5-m

Isaac Newton Telescope (INT) at the Observatorio del Roque de los

Muchachos, La Palma, during 2007 April. Similar rejection criteria

were applied. Five stars were found to be single-lined binaries.
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3 F U RT H E R P H OTO M E T R I C T E S T S

3.1 Resolved aperture blends

Eclipsing binary systems blended with nearby bright, non-variable

stars represent the most common type of mimic in planetary tran-

sit surveys (Pont et al. 2005a). The WASP data reduction pipeline

performs photometry in three concentric circular apertures centred

on each object, with radii of 2.5, 3.5 and 4.5 13.5-arcsec pixels. In

cases where an eclipsing binary system lies just outside the main

(3.5-pixel radius) photometric aperture of a non-variable star, the

two systems will contribute different amounts of light to different

apertures. Light leaking from the wings of the binary’s image into

the apertures of the non-variable star may mimic a shallow transit

at times when the binary is in eclipse. The amount of leakage is the

greatest in the outer apertures. As a consequence, the depth of the

‘transit’ in the non-variable object is the greatest when measured in

the outer apertures.

The eclipsing binary BQ Pegasi is a typical example. This

is an Algol system with primary eclipses 2.6 mag deep, lo-

cated 69 arcsec away from a 12-mag non-variable star (1SWASP

J213416.37+205644.4). The centre-to-centre separation of these

two systems is approximately 5 pixels causing a small amount of

overlap between the photometric apertures. This overlap was suf-

ficient to induce a 2 per cent dip in brightness in the non-variable

star, closely mimicking the photometric signal of a transiting planet

with a period of 1.574 55 d – identical to BQ Peg. As a result the

non-varying star was flagged by the transit detection algorithm as

a high-priority planet candidate. The planet candidate light curve

is shown in Fig. 1 together with the light curve for BQ Peg. We

see that the phase of the false transit, folded on the period of BQ

Peg, matches that of the binary’s primary eclipse. Without knowl-

edge of the variable nature of the blending system this candidate

would be difficult to eliminate without further follow-up. However,

a plot of the difference in magnitudes between the main and outer

photometric apertures (Fig. 2), phase folded on the orbital period

determined for the planet candidate, shows a clear V-shaped eclipse

indicating that the star is blended. A non-blended system would not

Figure 1. Blended eclipse of the planet candidate 1SWASP

J213416.37+205644.4. The top panel shows the low-amplitude eclipse

induced in the light curve by the eclipsing Algol BQ Peg at a distance of 69

arcsec. The bottom panel shows the light curve for BQ Peg itself. The lack

of a sharp minimum on the primary eclipse is due to the poorer data quality

as the flux approaches the SuperWASP faint limit at the V = 16.7 primary

minimum. Both are phase folded on the BQ Peg period of 1.574 520 d.

Figure 2. Aperture-blend test for planet candidate 1SWASP

J213416.37+205644.4. The plot shows the magnitude in the main

photometric aperture minus that in the larger outer aperture, phase folded

on the determined period of the planet candidate. A V-shaped eclipse is

clearly seen indicating this object is blended with a resolved eclipsing

binary system, in this case BQ Peg.

be expected to produce a change in the flux ratio between different

apertures in this situation.

13 objects failed the photometric aperture-blend test. Five among

these were also observed spectroscopically. Two were found to be

giants; of the two that were observed more than once, neither showed

significant radial-velocity variability.

3.2 Ellipsoidal variables and secondary eclipses

Because the transit search was restricted to periods less than 5 d,

a few objects were detected in which secondary eclipses and/or

ellipsoidal variability were present, but in which the best-fitting

period found by the transit-search algorithm was half the true period.

To guard against this possibility we examined the light curves of all

candidates phase-folded on twice the best-fitting period.

Two were eliminated photometrically as exhibiting ellipsoidal

variability on twice the orbital period found by the transit detection

software. A further seven objects were found to exhibit unequal

depths or displacements in phase between odd- and even-numbered

transits, indicating that the periods were indeed twice those found by

the transit-search software, and that secondary eclipses were present.

The five among these that were also observed spectroscopically were

all found to be double-lined binaries.

4 M A R KOV- C H A I N M O N T E C A R L O
M O D E L L I N G

MCMC methods are rapidly gaining popularity as an efficient and

informative means of solving of multivariate parameter-fitting prob-

lems in astronomy and many other branches of science. They pro-

vide not just a means of optimizing the fit of a model to data, but

their mode of operation allows a precise exploration of the joint

posterior probability distribution of the fitted parameters. Tegmark

et al. (2004) give a clear description of the technique and its use for

deriving limits on cosmological parameters from the spatial power

spectrum of the cosmic microwave background. Ford (2006) and

Gregory (2007) have applied MCMC to the derivation of orbital

parameters and detection of additional planets from radial-velocity
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Efficient transit candidate identification 1235

Figure 3. The lower triangular matrix shows the correlation diagram for the six proposal parameters {T0, P, �F, tT, b, M∗} for an MCMC analysis of the 2004

SuperWASP light curve of the planet host star XO-1. The MCMC run imposed Bayesian priors on both the stellar mass and the stellar radius, derived from the

J − H colour and the main-sequence mass–radius relation. The shape of the transit profile allows a wide range of intermediate values for the impact parameter

b. None the less, the majority of the proposal parameters are very close to being mutually uncorrelated, with the exception of b and �F, which are correlated

through the effect of limb darkening. The upper triangular matrix shows the mutual correlations among the physical parameters b and R∗/a and Rp/R∗. The

well-known correlation between b and R∗/a is very much stronger than those seen among the six observational parameters that we have adopted here.

curves. Holman et al. (2006) have shown MCMC methods also to

be particularly well suited to the problem of deriving the physical

parameters of star–planet systems by optimizing model fits to the

light curves of transiting exoplanets.

In our implementation of MCMC, we assume the planet’s orbit to

be circular. We characterize the system using the six parameters {T0,

P, �F, tT, b, M∗}. Here T0 is the epoch of mid-transit, P is the orbital

period,�F is the fractional flux deficit that would be observed during

transit in the absence of limb darkening, tT is the total duration of

the transit from first to last contact, b is the impact parameter of the

planet’s path across the stellar disc in units of the primary’s radius

and M∗ is the mass of the primary in solar units. These six quantities

constitute the ‘proposal parameters’, which are allowed to perform a

random walk through parameter space, generating a cloud of points

that map out the joint posterior probability distribution (Fig. 3). The

best-fitting values of the proposal parameters are listed for all 67

stars in Table 2.

At each step in the MCMC procedure, each proposal parameter

is perturbed from its previous value by a small random amount:

T0,i = T0,i−1 + σT0
G(0, 1) f ,

Pi = Pi−1 + σP G(0, 1) f ,

�Fi = �Fi−1 + σ�F G(0, 1) f ,

tT ,i = tT ,i−1 + σtT G(0, 1) f ,

bi = T0,i−1 + σbG(0, 1) f ,

M∗,i = M∗,i−1 + σM G(0, 1) f ,

where G(0, 1) is a random Gaussian deviate with mean zero and

unit standard deviation. The scalefactor f is an adaptive step-size

controller whose value is initially set to 0.5, but which evolves to-

gether with the estimated parameter uncertainties as described in

Section 4.1.

The first four parameters (T0, P, �F and tT) are more or less

directly measurable from the folded light curve. Their initial val-

ues and their associated 1σ uncertainties are taken directly from

the results of the accelerated box least-squares algorithm of Collier

Cameron et al. (2006). The impact parameter is given an initial value

b0 = 0.5 and a 1σ uncertainty σb = 0.05. The stellar mass M∗ is

initially set to the value M0 derived from the J − H colour using the

calibration described in Appendix B, and assigned an arbitrary but

plausible 1σ uncertainty σM = 0.1M0.

Once the physical parameters R∗, Rp, a and cos i have been derived

from the proposal parameters �F, tT, b and P using the relation-

ships presented in Appendix A, it is straightforward to compute the

projected separation of centres (in units of the primary radius) at

any time tj of observation

z(t j ) = sin2 φ j + (bR∗/a)2 cos2 φ j

R∗/a
. (1)

The orbital phase angle at time tj is φ j = 2π(tj − T0)/P.

We compute the flux deficit at all observed orbital phases using

the algorithm of Mandel & Agol (2002) for small planets with the

four-coefficient limb-darkening model of Claret (2000). The four

limb-darkening coefficients are interpolated from Claret’s tables for

the R band (whose mean wavelength approximates the effective
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1236 A. Collier Cameron et al.

Table 2. Observable and physical parameters for the 67 stars in the sample, computed by optimizing the posterior probability Q incorporating the main-sequence

prior constraint on the primary mass and radius.

1SWASP Transit Orbital Transit Transit Impact Stellar Primary Secondary

epoch T0 period P duration depth parameter mass radius radius

(HJD) (d) tT/P �F b M∗/M� R∗/R� R2/RJup

Planets

J002040.07+315923.7 3219.5240 2.520 65 0.055 0.010 0.028 1.24 1.38 1.36

J160211.83+281010.4 3178.2780 3.941 64 0.032 0.019 0.402 0.99 0.97 1.30

J203054.12+062546.4 3216.7138 2.152 02 0.034 0.015 0.696 0.84 0.83 1.02

Spectral binaries

J130322.00+350525.4 3167.4755 2.673 82 0.055 0.014 0.038 1.05 1.28 1.48

J133339.36+494321.6 3175.1566 3.649 42 0.038 0.009 0.021 1.33 1.19 1.08

J134815.27+464811.0 3169.5603 1.056 03 0.056 0.009 0.807 1.04 1.04 0.98

J174118.30+383656.3 3197.8605 4.244 81 0.037 0.010 0.280 1.28 1.32 1.28

J175401.58+322112.6 3194.0863 1.949 18 0.050 0.012 0.537 1.13 1.10 1.15

J181858.42+103550.1 3170.8197 2.465 30 0.056 0.010 0.113 1.41 1.39 1.34

J184119.02+403008.4 3188.2544 3.737 65 0.040 0.013 0.058 1.06 1.15 1.29

J203704.92+191525.1 3215.3230 1.680 08 0.045 0.009 0.762 1.12 1.11 1.02

J210009.75+193107.1 3194.0029 3.055 62 0.041 0.007 0.516 1.61 1.40 1.13

J211608.42+163220.3 3219.5782 3.468 29 0.031 0.015 0.842 1.23 1.35 1.60

J212855.03+075753.5 3220.9833 4.689 94 0.023 0.030 0.757 0.95 0.92 1.56

J223320.44+370139.1 3240.4446 1.874 78 0.050 0.010 0.565 1.29 1.17 1.11

J234318.41+295556.5 3245.1886 4.240 98 0.030 0.021 0.008 0.78 0.85 1.20

J010151.11+314254.7 3230.3097 3.650 98 0.050 0.014 0.010 0.76 1.28 1.45

J023445.65+251244.0 3234.8368 1.553 73 0.082 0.018 0.020 0.93 1.26 1.65

J031103.19+211141.4 3250.5698 2.729 25 0.063 0.031 0.020 0.94 1.36 2.35

J051221.34+300634.9 3253.3499 1.237 58 0.085 0.028 0.657 1.03 1.36 2.22

J115718.66+261906.1 3156.3795 2.453 97 0.058 0.014 0.066 1.36 1.38 1.60

J141558.71+400026.7 3170.0586 1.642 77 0.055 0.050 0.995 1.33 1.29 3.95

J152131.01+213521.3 3154.5622 4.014 93 0.043 0.026 0.082 1.19 1.32 2.08

J153135.51+305957.1 3181.9327 4.467 54 0.047 0.029 0.070 0.94 1.40 2.31

J165949.13+265346.1 3200.5994 2.683 05 0.042 0.023 0.885 1.11 1.48 2.35

J172549.13+502206.4 3198.8106 2.271 29 0.044 0.025 0.785 1.01 1.19 1.84

J173650.17+105557.9 3193.1694 3.441 02 0.041 0.030 0.037 0.94 1.03 1.74

J173748.98+471348.7 3182.5662 3.337 91 0.046 0.008 0.025 0.86 1.19 1.05

J174327.81+582512.7 3213.7625 2.844 93 0.064 0.013 0.016 1.01 1.53 1.69

J175511.09+134731.5 3203.1171 2.443 67 0.057 0.019 0.602 1.03 1.43 1.92

J175620.84+253625.7 3204.0353 4.416 02 0.034 0.031 0.667 1.05 1.28 2.18

J180010.55+214510.2 3198.2836 4.415 13 0.023 0.051 0.751 0.67 0.75 1.66

J182620.36+475902.8 3205.5267 3.044 16 0.086 0.068 0.935 0.05 0.91 2.99

J202824.02+192310.2 3211.1395 1.257 88 0.092 0.018 0.016 1.30 1.36 1.76

J203906.39+171345.9 3209.4011 2.697 05 0.045 0.021 0.758 1.16 1.42 1.99

J215802.14+253006.1 3215.6417 1.512 72 0.046 0.018 0.332 0.75 0.67 0.87

J231533.56+232637.5 3225.8489 4.562 89 0.061 0.016 0.003 0.35 1.39 1.74

Photometric binaries

J003039.21+205719.1 3230.6250 4.566 17 0.028 0.020 0.792 1.21 1.34 1.86

J015711.29+303447.7 3237.7106 2.043 21 0.056 0.012 0.428 1.05 1.17 1.27

J160242.43+290850.1 3187.2622 1.304 33 0.082 0.044 0.681 0.66 1.13 2.30

J165423.72+241335.7 3188.8269 2.571 22 0.045 0.031 0.030 0.60 0.80 1.36

J183104.01+323942.7 3210.9015 2.378 43 0.040 0.008 0.769 1.30 1.33 1.18

J183805.57+423432.3 3199.0823 3.517 09 0.036 0.016 0.046 0.59 0.82 0.99

J205308.03+192152.7 3204.4935 1.676 30 0.076 0.005 0.008 1.22 1.41 1.00

J210909.05+184950.9 3216.9989 2.917 66 0.044 0.007 0.470 1.70 1.45 1.16

J222353.83+412813.5 3239.3999 1.553 04 0.130 0.038 0.112 0.48 1.51 2.87

J223651.20+221000.8 3205.6264 3.226 59 0.032 0.056 0.865 0.77 0.91 2.42

wavelength of the unfiltered WASP instrumental bandpass) using

the stellar effective temperature determined from the J − H colour

via equation (B1). We adopted surface gravity log g = 4.5, a micro-

turbulent velocity υ turb = 2 km s−1 and a metallicity [Fe/H] = 0.1

on the grounds that planet-bearing stars tend to have heavy-element

abundances slightly above solar. After converting these flux deficits

to model magnitudes μj relative to the flux received from the system

outside transit, we compute the zero-point offset from the observed

magnitudes mj :

�m =
∑

j (m j − μ j )w j∑
j w j

, (2)

where the observational errors σ j define the inverse-variance

weights w j = 1/σ 2
j . We thus obtain the fitting statistic for the set of
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Efficient transit candidate identification 1237

Table 2 – continued

1SWASP Transit Orbital Transit Transit Impact Stellar Primary Secondary

epoch T0 period P duration depth parameter mass radius radius

(HJD) (d) tT/P �F b M∗/M� R∗/R� R2/RJup

Aperture blends

J025500.31+281134.0 3237.4163 2.165 94 0.068 0.029 0.034 0.70 1.14 1.88

J133156.81+460026.6 3166.2329 3.166 78 0.091 0.063 0.072 0.08 0.91 2.22

J161644.68+200806.8 3243.4648 3.968 30 0.069 0.178 0.994 0.10 0.85 4.90

J181454.99+391146.0 3192.6921 1.102 69 0.067 0.018 0.081 0.47 0.65 0.85

J184303.62+462656.4 3192.1856 3.338 71 0.060 0.020 0.066 0.22 0.94 1.30

J204142.49+075051.5 3207.5200 2.762 43 0.037 0.008 0.110 0.59 0.75 0.65

J204712.42+202544.5 3208.9201 2.613 03 0.041 0.020 0.004 0.60 0.76 1.06

J204745.08+103347.9 3200.9224 3.236 10 0.062 0.021 0.061 0.18 0.88 1.23

J213416.37+205644.4 3220.5575 1.574 55 0.105 0.019 0.013 0.63 1.42 1.89

J215226.17+331424.7 3226.5888 1.065 91 0.149 0.018 0.039 0.41 1.34 1.75

J222317.60+130125.8 3227.4250 1.613 85 0.085 0.016 0.060 0.39 1.00 1.23

J223809.90+401038.1 3240.3573 1.406 52 0.065 0.016 0.023 0.52 0.77 0.94

J224104.57+363648.3 3245.1212 1.733 99 0.081 0.019 0.100 0.31 0.92 1.24

Other blends, giants

J161732.90+242119.0 3182.9227 1.453 78 0.055 0.012 0.436 0.72 0.82 0.87

J210318.01+080117.8 3214.3962 1.223 95 0.077 0.013 0.255 1.06 1.10 1.22

J005225.90+203451.2 3230.5589 1.718 94 0.059 0.031 0.869 0.81 1.27 2.36

J181252.03+461851.6 3210.2889 2.525 01 0.039 0.033 0.831 0.91 1.10 1.98

J204125.28+163911.8 3214.3614 1.221 54 0.096 0.006 0.027 0.38 0.97 0.74

J205027.33+064022.9 3209.8236 1.229 27 0.125 0.007 0.007 0.74 1.58 1.31

J214151.03+260158.5 3238.9321 1.825 88 0.064 0.007 0.031 0.38 0.84 0.69

model parameters pertaining to the ith step of the Markov chain:

χ 2
i (T0, P, �F, tT, b, M∗) =

∑
j

(m j − μ j − �m)2

σ 2
j

. (3)

4.1 Main-sequence prior

In Bayesian terms, the likelihood of obtaining the observed data D
given the model defined by a particular set of proposal parameters

is

P(D | T0, P, �F, tT, b, M∗) ∝ exp

(
−χ 2

2

)
, (4)

but the full posterior probability distribution for the data and the

model depends on the prior probability distribution for each of the

model parameters. We are only interested in solutions for which

the companion is a planet-sized object yielding a transit of observ-

able depth, so we restrict the impact parameter to the range 0 <

b < 1.0, rejecting proposal steps that fall outside this range.

For most of the remaining parameters the uniform prior implied

by the random-walk nature of MCMC is valid, but the stellar mass

and radius are already determined a priori from the J − H colour,

under the implicit assumption that the star is single and on the main

sequence. Under this prior assumption we expect the stellar mass

to lie somewhere within an approximately Gaussian distribution

with mean M0 and standard deviation σM = M0/10 (i.e. the same

arbitrary but plausible value used to determine the average jump size

in M∗). We use a power-law approximation to the main-sequence

mass–radius relation to define a prior probability distribution for R∗
with mean R0 = M0.8

0 (Tingley & Sackett 2005) and hence standard

deviation σR = 0.8(R0/M0)σM .

This gives a joint prior probability distribution for the values of

the proposal parameter M∗ and the derived physical parameter R∗

of the form

P(M∗,i , R∗,i ) = exp

[
− (M∗,i − M0)2

2σ 2
M

− (R∗,i − R0)2

2σ 2
R

]
. (5)

Since the posterior probability distribution is P(M∗,i , R∗,i )

P(D|T0, P, �F, tT, b, M∗), we impose the prior on M∗,i and R∗,i

by replacing χ2
i with the logarithm of the posterior probability dis-

tribution

Qi ≡ χ2
i + (M∗,i − M0)2

σ 2
M

+ (R∗,i − R0)2

σ 2
R

(6)

as the statistic on which acceptance of a set of proposal parameters

is decided.

For every new proposal set generated, the decision as to whether

or not to accept the set is made via the Metropolis–Hastings rule: if

Qi < Qi−1 the new set is accepted; if on the other hand Qi > Qi−1,

the new set is accepted with probability exp (−�Q/2), where �Q ≡
Qi − Qi−1. The algorithm first converges to, then explores the param-

eter space around a constrained optimum solution that represents a

compromise between fitting the light curve and reconciling the re-

sulting stellar dimensions with prior expectations derived from the

J − H colour. As we shall see later, the value of the main-sequence

prior P(M∗,i , R∗,i ) at the global minimum of Q constitutes a useful

measure of how far the stellar parameters must be displaced from

the main-sequence values appropriate to the star’s colour in order

to fit the transit light curve.

We introduce a step-size controller f which is adjusted on every

100th step to ensure that the acceptance rate is held close to the

optimal value of 0.25 (Tegmark et al. 2004). The value of f is deter-

mined by the simple linear algorithm f new = 400 f old/j, where j is the

total number of proposals generated and tested during the previous

100 successful steps. We find that values in the range 0.5 < f < 1

achieve the necessary acceptance rate when the correct values of the

parameter uncertainties are used. In any case, we find that all six
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1238 A. Collier Cameron et al.

parameters invariably converge to their optimal values within 500

steps. Once this ‘burn-in’ phase is complete, the uncertainties on the

data are adjusted to take account of correlated errors by rescaling

to ensure that the value of χ 2 at the optimal solution is equal to the

number of degrees of freedom. The parameter uncertainties are sub-

sequently allowed to evolve as the computation progresses, being

recomputed from the Markov chains themselves every 100 success-

ful steps. This ensures that the step size in each dimension samples

the parameter space adequately. After discarding the first 500 steps

we compared the variances within and between five independent

subchains, using the test statistic of Gelman & Rubin (1992). The

value of the Gelman–Rubin statistic was invariably within a frac-

tion of 1 per cent of unity, verifying that the chains were properly

converged and well mixed.

For all its advantages, MCMC is a discrete, stochastic process.

After each MCMC run was completed, we therefore refined the

values of the six proposal parameters that represent the optimum

solution for Q using the AMOEBA (downhill simplex) algorithm

(Press et al. 1992), using the best-fitting step of the Markov chain

as one of the initial vertices and the first six successful steps of

the chain as the others. The derived primary and secondary radii (in

solar and Jovian Units), are listed alongside the best-fitting proposal

parameters for all 67 stars in Table 2.

4.2 Orthogonality properties

We note that the proposal parameter set {T0, P, �F, tT, b, M∗} is

particularly well suited to MCMC, because the first four parameters

have approximately Gaussian probability density functions that are

directly related to observationally determined quantities. As Fig. 3

illustrates, all six are close to being mutually uncorrelated. This

circumvents the difficulty commonly encountered in some applica-
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Figure 4. Impact parameter versus planet radius and stellar radius versus stellar mass for MCMC analysis of the SuperWASP light curves of the grazing

broad-lined spectroscopic binary 1SWASP J215802.14+253006.1. The left-hand realization imposes a prior on the stellar mass, derived from the J − H colour.

The right-hand panels show the effect of imposing an additional main-sequence prior on the stellar radius.

tions of MCMC to transit modelling, in which the normalized stellar

radius R∗/a is used directly in place of tT. The parameters Rp/R∗,

R∗/a and b are strongly covariant, leading to correlation lengths of

several hundred to 1000 steps in the Markov chain (Holman et al.

2006; Winn, Holman & Roussanova 2007) if they are used directly as

proposal parameters. Shorter correlation lengths are desirable, since

they allow more statistically independent samples of the parameter

space to be generated in less computing time. In our parameter space

the equivalent observational parameters �F, tT and b are only very

weakly covariant. Their use reduces the correlation lengths in the

chains for these parameters to between 4 and 20 steps, yet they yield

R∗/a and Rp/R∗ directly via equations (A1) and (A2). We note that

Burke et al. (2007) have arrived at a very similar conclusion, and

that further shortening of the correlation length is possible if their

orthogonalization procedure is employed.

5 S E C O N DA RY R A D I I A N D I M PAC T
PA R A M E T E R S

The use of the Two Micron All Sky Survey (2MASS) J − H colour

to place prior constraints on the stellar mass and radius is of key

importance in extracting essential information about the system di-

mensions from SuperWASP light curves. The value of the prior at

the constrained optimum solution gives a powerful diagnostic for the

presence of multiple stellar spectra, and for the host star’s proximity

to the main sequence.

To illustrate this point we show in Figs 4–6 the MCMC realiza-

tions of the relationship between impact parameter and planet radius

for WASP-1, WASP-2 and the broad double-lined spectroscopic bi-

nary 1SWASP J215802.14+253006.1. We performed two MCMC

analyses. The first imposed a prior on the stellar mass only. The

posterior probability density is then proportional to exp(−Qi/2),
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Figure 5. As for Fig. 4, but for the known exoplanet host star WASP-1.

Figure 6. As for Fig. 4, but for the known exoplanet host star WASP-2.
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1240 A. Collier Cameron et al.

where

Qi = χ2
i + (M∗, i − M0)2

σ 2
M

is used as the statistic to which the Metropolis–Hastings rule is

applied. The second analysis imposed the full main-sequence prior

as described in equation (6).

1SWASP J215802.14+253006.1 was selected as a candidate,

having been found to exhibit transits 0.024 mag deep. Its 2MASS

J − H = 0.29 suggests an early G spectral type. It passed the tran-

sit depth and duration tests of Tingley & Sackett (2005) and all

other photometric selection tests. A single SOPHIE spectrum, how-

ever, revealed the presence of two rotationally broadened stellar

spectra.

The left-hand panel of Fig. 4 shows the MCMC joint pos-

terior probability distributions of the impact parameter and sec-

ondary radius, and of the primary mass and radius of 1SWASP

J215802.14+253006.1. The MCMC results for which the prior is

applied to the stellar mass only show that the impact parameter

is high, indicating a grazing eclipse. The mass–radius plot reveals

a further inconsistency: the inferred primary radius is twice that

expected for a main-sequence star. Imposing the further Bayesian

constraint on the primary radius does little to improve matters. The

prior’s attempt to pull the primary’s dimensions towards the main

sequence is thwarted by the need to fit the V shape of the transit

light curve. The impact parameter is reduced somewhat, but the pri-

mary mass is pulled towards a value too low to be consistent with

the colour. The primary’s radius remains too large for its mass. The

probability that the secondary has a radius less than 1.5 times that of

Jupiter remains negligible, while the statistic representing the main-

sequence prior is driven to the very high value S = 32.53. The star

1SWASP J215802.14+253006.1 thus fails two important statistical

tests, and can be eliminated as a viable exoplanet transit candidate

without the need for spectroscopic follow-up.

For those systems that appear to have single main-sequence pri-

maries, the mass–radius constraint also serves to reduce the uncer-

tainty in the impact parameter of the transit. By imposing a prior

that pulls the stellar radius towards the main-sequence mass–radius

relation, we reduce the degeneracy between the stellar radius and

impact parameter that arises from the transit duration. Since the ratio

of the secondary’s radius to that of the primary depends on the tran-

sit depth and impact parameter, the uncertainty in the secondary’s

radius is substantially improved.

In Table 3 we compare the stellar and planetary dimensions in-

ferred from the SuperWASP light curves using this method, with

the values determined by Shporer et al. (2007) from high-quality

I-band transit photometry of WASP-1, and by Charbonneau et al.

(2007) from high-quality z-band observations of both WASP-1 and

WASP-2. The imposition of the main-sequence prior fixes the im-

pact parameter at values for both stars that agree well with those

of both sets of authors. Our values for the radii of both planet and

host star in the WASP-2 system are also in excellent agreement with

those of Charbonneau et al. (2007).

Our radii for WASP-1 and its planet are systematically smaller

than those found by Charbonneau et al. (2007) and by Shporer

et al. (2007). These authors both determine a primary radius that

is consistent with the star being somewhat above the main sequence

and hence slightly evolved, whereas our method artificially pulls

the radius towards the expected main-sequence value. The mass

that we derive from J − H is consistent with the range of values

determined by Stempels et al. (2007) from their recent spectro-

scopic abundance analysis of WASP-1. The inflated radius found by

Table 3. Comparison of stellar and planetary dimensions derived by other

authors from high-precision photometry with those derived from Super-

WASP photometry in the present study using the constrained MCMC analy-

sis. The middle columns show the radius values of Shporer et al. (2007) and

Charbonneau et al. (2007) rescaled as M1/3
∗ to account for the differences in

the other authors’ assumed and our fitted stellar masses.

Parameter Shporer et al. Charbonneau et al. This study

(2007) rescaled (2007) rescaled

WASP-1

R∗/R� 1.46 ± 0.06 1.490 ± 0.033 1.382+0.047
−0.116

Rp/RJup 1.44 ± 0.06 1.480 ± 0.040 1.358+0.048
−0.104

b 0.03 ± 0.17 < 0.336 0.215+0.091
−0.156

M∗/M� 1.24 (matched) 1.24 (matched) 1.240.12
−0.17

WASP-2

R∗/R� – 0.830 ± 0.033 0.834+0.066
−0.083

Rp/RJup – 1.059 ± 0.051 1.017+0.111
−0.153

b – 0.731 ± 0.026 0.753+0.033
−0.151

M∗/M� – 0.84 (matched) 0.840.07
−0.11

Shporer et al. (2007) and Charbonneau et al. (2007) is consistent with

the rather low log g = 4.28 ± 0.15 found by Stempels et al. (2007).

WASP-1 thus provides valuable verification that the selection crite-

ria suggested in Section 6 below are not so strict as inadvertently to

exclude inflated planets orbiting slightly evolved stars.

6 S E L E C T I O N O F E X O P L A N E TA RY T R A N S I T
C A N D I DAT E S

Instruments such as SuperWASP are capable of detecting the transits

of gas-giant planets orbiting stars on or at most slightly above the

main sequence. The J − H colour of a viable candidate should thus

yield a stellar mass and radius that lie near the main sequence, and

which are consistent with the duration of the transit. The value of

the main-sequence prior P(M∗, R∗) measures the displacement of

the fitted stellar mass and radius at the global minimum of Q from

the main-sequence values we expect from the star’s J − H colour.

The radius derived for the companion should be consistent with its

being a planet. Although the SuperWASP light curves are not always

of sufficient quality to discern the shape of the transit, the main-

sequence prior helps to break the well-known degeneracy between

the impact parameter b and the stellar radius R∗ (which is strongly

correlated with the companion radius via the transit depth). The use

of MCMC allows us to determine directly the probability that the

companion radius is less than some specified amount.

For convenience we define the quantity

S = −2 lnP(M∗, R∗) = (M∗,i − M0)2

σ 2
M

+ (R∗,i − R0)2

σ 2
R

as a measure of the discrepancy between the constrained optimum

stellar dimensions and the values derived from J − H.

In Fig. 7 we plot S against the probability that the companion has

a radius less than 1.5 times that of Jupiter, for the three planet host

stars and the various classes of astrophysical false positive in our

survey sample. The diagram shows clearly that the sample is cleanly

partitioned into objects with high and low probabilities of having

Jupiter-sized secondary components.

There is a tight cluster of objects in the lower right-hand cor-

ner of Fig. 7, with the main-sequence prior giving S < 1 and
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Figure 7. Logarithm of main-sequence prior probability versus probability that companion radius is less than 1.5 RJup for known planets (red circles) and

other forms of astrophysical false positive. Open circles and diamonds represent spectroscopic binaries and unresolved aperture blends, which could only be

identified spectroscopically as false positives. Upright and diagonal crosses are eclipsing binaries and resolved aperture blends, detected using the methodology

of Sections 3.2? and 3.1, respectively. The right-hand panel gives an enlarged view of the lower right-hand corner of the left-hand panel.

probabilities greater than 0.95 that the secondary radius is less than

1.5 times that of Jupiter. This cluster includes all three known plan-

ets in the sample, together with two unresolved aperture blends and

10 spectroscopic binaries, two of which can be eliminated photo-

metrically as exhibiting ellipsoidal variations or unequal odd- and

even-numbered transits.

In selecting targets for spectroscopic follow-up it would be un-

wise to set thresholds as tight as the bounds of this cluster. The

light curve of the recently discovered TrES-3 (O’Donovan et al.

2007) is a good illustration of the need for caution. The light curve

of TrES-3 was recorded by the SuperWASP cameras as 1SWASP

J175207.01+373246.3 and its transits were detected with the cor-

rect period (Lister et al. 2007) even though it did not satisfy our

original selection criteria for follow-up at high priority. Applying

the MCMC test to the SuperWASP light curve of TrES-3, we find

that S = 0.06, indicating a stellar mass and radius consistent with

expectations, but P(R2 < 1.5RJup) = 0.236. The reason for the

apparently low probability of the secondary having a planet-like

radius arises because TrES-3 has a high impact parameter. Limb

darkening produces a strong positive correlation between b and Rp,

giving a range of solutions with 0.8 < b < 1 and 1.3 < Rp < 2.0

RJup. By requiring candidates for follow-up spectroscopy to have

S < 5 and P(R2 < 1.5RJup) > 0.2, we leave a sufficient margin

to allow for the possibility of detecting inflated planets transiting

slightly evolved main-sequence stars at high impact parameters.

Six of the 19 binaries that satisfy these more relaxed selection

criteria are represented by diagonal crosses in Fig. 7, having been

identified photometrically as mimics from their ellipsoidal varia-

tions or secondary eclipses. Similarly, three of the five surviving

blends, denoted by upright crosses in Fig. 7, fail the photometric

aperture-blend test. They could thus have been eliminated without

requiring spectroscopic follow-up. With the wisdom of hindsight,

we would thus retain 18 candidates from our original sample of

67 stars for spectroscopic follow-up, of which two are unresolved

aperture blends, 13 are stellar binaries and three are planet host

stars. The final selection decisions are given in the last column of

Table 1.

7 DWA R F – G I A N T S E PA R AT I O N

If proper motion information is available, a useful secondary check

can be made on the luminosity class of the primary. Evolved giant

and subgiant stars have very similar photometric colours to their

main-sequence counterparts and are frequently a source of contam-

ination in exoplanetary transit surveys. They can easily be identified,

however, from their proper motions. Giant stars are significantly

more distant than dwarfs of the same magnitude, and so exhibit

substantially smaller proper motions.

Gould & Morgan (2003) found that a plot of RPM against Tycho-

2 BT − VT provided an effective means of separating giants from

dwarfs. We adapted this method using the J − H colour index and

proper motions from the all-sky USNO-B1.0 catalogue (Monet et al.

2003). Our model is calibrated using stars from the catalogues of

Valenti & Fischer (2005) and Cayrel de Strobel et al. (2001) which

list over 2000 FGK stars with high-resolution, high signal-to-noise

ratio spectra from which the surface gravity has been determined to

better than ±0.1 dex. The stars were cross-matched with the USNO-

B1.0 catalogue to determine proper motions and with the 2MASS

catalogue to determine J − H using a simple nearest neighbour

search within a radius of 10 arcsec. The stars were partitioned into

dwarfs with log g � 4.0 and giants with log g � 3.0. These conser-

vative limits reduce the chances of accidental elimination of mildly

evolved dwarfs. This resulted in 1526 dwarfs and 1145 giants. Al-

though this is a much smaller sample than that used by Gould &

Morgan (2003), the luminosity class determination is based on more

accurate spectroscopic measurements rather than broad-band pho-

tometric calibrations. The RPM, HJ, is defined as

HJ = J + 5 log(μ), (7)

where J is the 2MASS J apparent magnitude and μ is the proper

motion. In Fig. 8 we plot HJ against J − H. A clean separation is seen

between the giants and dwarfs. As predicted the giants, in general,

have lower RPMs than the dwarfs with the same J − H colour.

A fourth-order polynomial has been fitted to a subjectively drawn

boundary showing the best separation between the two luminosity

classes where

y = −141.25(J − H )4 + 473.18(J − H )3

−583.6(J − H )2 + 313.42(J − H ) − 58.

The greatest cross-contamination occurs for early K dwarfs/giants

(J − H ∼ 0.5) in agreement with Gould and Morgan’s findings. Un-

fortunately, this sample lacks large numbers of K and M dwarfs due

to the inherent difficulty in obtaining high signal-to-noise ratio spec-

tra for these faint stars. As a result, the dwarf/giant determination

becomes increasingly uncertain with decreasing temperature.

We stress that although the RPM test is a very useful secondary

check on the MCMC statistics, we do not use it as a primary
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Figure 8. RPM against J − H for dwarfs (log g � 4.0) and giants (log �
3.0).

selection criterion. It carries too high a risk of inadvertently re-

jecting genuine K dwarfs which just happen to have low proper

motions. None the less, we note that all the objects classified as

giants on the basis of their RPMs fail one or other of the selection

criteria. In particular, we note from Table 1 that the photometric

aperture blends are almost invariably also classified as giants. The

RPM giants among the aperture that were observed with SOPHIE

showed the low pressure broadening in the line wings expected of

giants (Fig. 9).

8 D I S C U S S I O N A N D C O N C L U S I O N S

We conclude that MCMC analyses of transit light curves can be

carried out in such a way as to break the degeneracy between im-

pact parameter and stellar radius, if a Bayesian prior is imposed

to constrain the stellar mass and radius to values consistent with

the host star’s J − H colour. The posterior probability distributions

for the stellar and planetary parameters are obtained directly from

the Markov chain. They provide a straightforward estimate of the

probability that the secondary has a radius consistent with planetary

status.

The prior carries the implicit assumption that the star is single

and on the main sequence. We have found in this study that in a

large fraction of astrophysical false positives for which these as-

sumptions are invalid, the value of the prior at the optimum solution

(in the sense of minimizing the quantity Qi defined in equation 6) is

significantly greater than unity, if the uncertainty in the stellar mass

derived from J − H is fixed (arbitrarily but reasonably) at 10 per cent.

The three known planets in our sample and the newly discovered

TrES-3 all yield values of the prior less than unity at their optimal

solutions.

The probability that the secondary is of planetary dimensions

and the value of the prior at the optimum solution provide the two-

dimensional classification scheme shown in Fig. 7. For the sample of

stars studied here, which had already passed the preliminary selec-

tion procedures of Collier Cameron et al. (2006), this classification

scheme is effective at identifying 75 per cent of all types of aperture

blend. The figure improves to 90 per cent if the flux ratio in differ-

ent photometric apertures is used to identify blends of non-variable

stars with eclipsing binaries near the edge of the photometric

aperture.

Figure 9. SOPHIE spectra of the Mg Ib triplet region in the K giant 1SWASP

J204125.28+163911.8 (upper) and the K dwarf planet host star WASP-2.

Note the difference in pressure broadening of the wings of the Mg Ib triplet

lines at 5167.3, 5172.7 and 5183.6 Å.

The Bayesian selection scheme also eliminates roughly 67 per

cent of all spectroscopic binaries. It is particularly effective at re-

moving grazing stellar binaries, most of which yield very low prob-

abilities of having planet-sized secondaries, and many of which also

produce values of the main-sequence prior that are too high to be

consistent with a single, main-sequence primary of the observed J −
H colour. Grazing binaries frequently show either ellipsoidal varia-

tions or unequal eclipses when folded on twice the best period found

by the accelerated box least-squares algorithm, giving an effective

second line of defence against this type of impostor.

The remaining candidates have demonstrably low companion

radii, generally low impact parameters, and primaries that appear

to be close to the part of the main sequence suggested by their ob-

served J − H colours. Many of them are likely to be astrophysically

interesting binaries, whose Jupiter-sized stellar or substellar com-

panions will add to our knowledge of the mass–radius relation at

and below the bottom of the main sequence once their spectroscopic

orbits are established. Other teams pursuing similar studies have al-

ready achieved important advances in this area (Bouchy et al. 2005;

Pont et al. 2005a,b, 2006). In planet-hunting terms alone, however,

the prospects for a high ‘hit rate’ in future follow-up campaigns are

good: in our sample, confirmed transiting planets comprise nearly

20 per cent of the survivors.
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A P P E N D I X A : O B S E RVA B L E A N D P H Y S I C A L
PA R A M E T E R S

Seager & Mallén-Ornelas (2003) characterized the light curve of a

transit candidate in terms of four observable quantities: the transit

depth �F expressed as a fraction of the system flux outside transit,

the total transit duration tT from first to fourth contact, the duration

tF of the flat part of the transit from second to third contact and

the orbital period P. Assuming that the transit is total, that all the

light emanated from the primary star and that the orbit was circular,

they derived expressions for the ratio of the planet’s radius Rp to

that of the star R∗, the ratio of R∗ to the orbital separation a and the

impact parameter b = a cos i/R∗. Kepler’s third law then gives the

stellar density ρ/ρ�, under the further assumption that the mass

ratio Mp/M∗ � 1.

Here we adopt a similar approach, generalized to allow for grazing

as well as total eclipses. Following Seager & Mallén-Ornelas (2003)

and using the approximation that Rp + R∗ � a we determine the

stellar radius from the transit depth, duration and impact parameter

via the relation

R∗
a

= tT

P

π

(1 + √
�F)2 − b2

. (A1)

For transits where the companion is fully silhouetted against the pri-

mary during the middle part of the transit we neglect limb darkening

and define

Rp

R∗
=

√
�F . (A2)

For partial transits, or at phases where the projected separation z of

the centres lies in the range 1 − Rp/R∗ < z < 1 + Rp/R∗, the fraction

of the primary’s disc that is obscured by the companion is

�F = Rp

R∗
(π − β + sin β cos β + α − sin α cos α) . (A3)

The angle α is subtended at the centre of the primary by the line

of centres and the radius of the primary at the point where the two

limbs intersect. The angle β is subtended at the centre of the planet

by the line of centres and the radius of the planet at the point where

the two limbs intersect (Fig. A1). The angles α and β are defined

by

cos α = 3

2
z + 1 + (Rp/R∗)2

2z
(A4)
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Figure A1. Geometry of partial transit phases, showing the angles α and β used in computing the fraction of the stellar disc obscured by the companion.

and

cos β = 1 − (Rp/R∗)2 − z2

2z Rp/R∗
. (A5)

For cases where Rp/R∗ < 0.3 or so, the fractional obscuration of

the primary’s disc can be approximated to better than 4 per cent by

a linear function of the separation z of the centres:

�F = Rp

2R∗

(
1 + Rp

2R∗
− z

)
. (A6)

This equation is quadratic in Rp/R∗ and has the positive solution

Rp

R∗
= z − 1 +

√
(1 − z)2 + 8�F

2
. (A7)

Since z = b at mid-transit, the ratio of the planetary and stellar radii

can be determined from the transit depth �F at mid-transit even for

grazing eclipses, provided b is known.

In practice, the combination of observational errors and the effects

of limb darkening make it very difficult to determine the duration tF

of the middle phase of the transit with any degree of reliability. For

this reason we parametrize the form of the transit profile in terms

of �F, tT, b and P. Like Seager & Mallén-Ornelas (2003) we use

Kepler’s third law to determine the stellar density in solar units:

ρ

ρ�
= 0.013 4063

( a

R∗

)(
P

1 d

)−2

. (A8)

In order to close the system, we need either an additional equa-

tion or an independent determination of the stellar mass. It is then

straightforward to determine the stellar radius (in solar units) from

the stellar density.

Seager & Mallén-Ornelas (2003) chose the former approach,

imposing a main-sequence mass–radius relation on the primary

of the form R∗ ∝ M0.8
∗ . We choose instead to use the J − H

colour index taken from the 2MASS Point Source Catalogue of

Cutri et al. (2003) to estimate the stellar effective temperature and

hence the corresponding main-sequence stellar mass, as described in

Appendix B.

A P P E N D I X B : R A D I U S E S T I M AT I O N U S I N G
J − H

The 2MASS J − H colour index was calibrated using stellar tem-

peratures from a sample of 100 000 Tycho-2 FGK dwarf stars from

Ammons et al. (2006), selected to assist in target selection for radial-

velocity planet searches. The temperatures were calculated by fit-

ting spline functions to broad-band Hipparcos/Tycho-2 and 2MASS
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Figure B1. J − H colour index against temperature for FGK dwarfs from

the Tycho-2 catalogue (only 1/15 data points are shown for clarity).

photometry using a training set of stars observed with the Keck High-

Resolution Echelle Spectrometer. The temperature model is quoted

with an accuracy of better than 100 K. We extracted a subset of ap-

proximately 65 000 stars from this sample for which the errors in

the effective temperature were less than 150 K and the photometry

errors less than 1 per cent. The J − H index was then plotted against

temperature (Fig. B1) and fitted with a linear relation

Teff = −4369.5(J − H ) + 7188.2, (B1)

which is valid over the approximate temperature range 4000 < Teff

< 7000 K. The J − H index is preferred over J − K as the 2MASS

errors for H magnitude are generally lower than for K.

The scatter of the data about the linear fit is 114 K and is an

improvement of the fit given by the relations of Cox (2000).

The stellar radius is then calculated from a polynomial fit to the

temperature/radius relation for main-sequence stars tabulated in ap-

pendix B1 of Gray (1992), which is again valid over the temperature

range 4000 < Teff < 7000 K.

R∗
R�

= −3.925 × 10−14(Teff)
4 + 8.3909 × 10−10(Teff)

3

−6.555 × 10−6(Teff)
2 + 0.022 45(Teff) − 27.9788.

The stellar mass is then estimated via the main-sequence mass–

radius relationship

M∗
M�



(

R∗
R�

)1/0.8

. (B2)
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