Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

John Fawcett and Gregory A. Solan*

Department of Chemistry, University of Leicester, Leicester LE1 7RH, England

Correspondence e-mail: jxf@leicester.ac.uk

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.064$
$w R$ factor $=0.190$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ - N-(2,6-dimethylphenyl)acetamidato]bis(dimethylaluminium)

The structure of the title compound, $\left[\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\right)_{2}\right]$ or $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NCMeO}\right\}\right]_{2}$, consists of a fourcoordinate dimeric centrosymmetric eight-membered ring Alcontaining species.

Comment

The synthesis and structural characterization of alkylaluminium complexes containing N, O-amidate ligands, $\left[R^{\mathrm{I}} \mathrm{NCR}(=\mathrm{O})\right]^{-}(R=$ alkyl or aryl $)$, has recently received attention due, in part, to the rich variety of bonding modes that are accessible. For example, the ligand can bridge, chelate or act as a monodentate ligand to a single metal centre, the precise bonding mode being dependent on the acidity and the steric bulk of the amide precursor employed (Huang et al., 2002). Furthermore, the reactions of amides with $R_{3} \mathrm{Al}$ have allowed access to aluminium diketimates, some of which are not obtainable by more conventional synthetic routes (Huang et al., 2001).

We report here the synthesis and the crystal structure of $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NCMeO}\right\}\right]_{2}$, (I). The ${ }^{1} \mathrm{H}$ NMR spectrum gives methyl resonances in a ratio of 12:6:12, corresponding to the aromatic ($\delta 2.40$), acetamide ($\delta 1.70$) and aluminium methyls ($\delta-0.15$), respectively. The X-ray analysis of (I) reveals a dimeric structure based on a centrosymmetric eight-membered ring. The bridging amidate ligand coordinates to the two Al atoms through both the N and the O atoms. The geometry at each Al atom can be best described as distorted tetrahedral, with two methyl C atoms, an N atom and an O atom occupying the coordination sites. The $\mathrm{C} 3-\mathrm{O} 1$ [1.296 (4) \AA] and $\mathrm{C} 3-\mathrm{N} 1 A[1.298$ (4) \AA] bond lengths suggest some delocalization within the OCN moiety. The $\mathrm{Al} 1-\mathrm{O} 1$ [1.800 (3) Å], Al1-N1 [1.961 (3) Å], Al1-C1 [1.968 (5) Å] and Al1-C2 [1.961 (4) \AA] bond distances in (I) are comparable with the corresponding distances observed in the related structures $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NCPhO}\right\}\right]_{2}$ (Kai et al., 1971) and

Received 16 May 2005 Accepted 19 May 2005 Online 28 May 2005

Figure 1
Molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The molecule is located on a centre of symmetry [primed atoms are generated by $(1-x, 2-y, 2-z)$]. H atoms have been omitted for clarity.
$\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(2,6-\mathrm{Pr}_{2}{ }^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NCPhO}\right\}\right]_{2}$ (Huang et al., 2002). The benzene rings are arranged orthogonal to the puckered eightmembered ring. There are no intermolecular packing interactions of note.

Experimental

Under an atmosphere of nitrogen, trimethylaluminium (3.07 ml , $6.13 \mathrm{mmol}, 2 M$ solution in toluene) was added to a solution of $N-(2,6-$ dimethylphenyl)acetamide ($0.50 \mathrm{~g}, 3.06 \mathrm{mmol}$) in toluene (30 ml), and the reaction mixture was heated to reflux for 12 h . On cooling to room temperature, the volatiles were removed under reduced pressure and the residue dried overnight. Slow cooling of a hot acetonitrile (40 ml) solution containing the complex gave pale-yellow crystals of the title compound suitable for single-crystal X-ray diffraction analysis (yield $0.50 \mathrm{~g}, 75 \%$). Analysis found: C 65.89 , H 8.31, N 6.57%; calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 65.75, H 8.22, N 6.39\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.20-7.05(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.40(\mathrm{~s}, 12 \mathrm{H}$, $\mathrm{Ar}-\mathrm{Me}), 1.70[s, 6 \mathrm{H}, \mathrm{MeC}(\mathrm{O})]$ and $-0.15\left(s, 12 \mathrm{H}, \mathrm{Al}-\mathrm{CH}_{3}\right)$.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\right)_{2}\right]} \\
& M_{r}=438.51 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.028(2) \AA \\
& b=10.4955(9) \AA \\
& c=11.116(5) \AA \\
& \beta=90.37(3) \AA \\
& V=1286.6(6) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

Data collection

Bruker P4 diffractometer ω scans
Absorption correction: none 2650 measured reflections
2257 independent reflections
1598 reflections with $I>2 \mathrm{~s}(I)$
$R_{\text {int }}=0.029$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 13 \\
& k=-1 \rightarrow 12 \\
& l=-13 \rightarrow 13 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 1000 \text { reflections } \\
& \quad \text { intensity decay: }<1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.190$
$S=1.07$
2257 reflections
137 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.065 P)^{2}\right. \\
& \quad+3.0349 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXLL97 } \\
& \text { Extinction coefficient: } 0.023(4)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

Al1-O1	$1.800(3)$	Al1-C2	$1.961(4)$
Al1-N1	$1.961(3)$	Al1-C1	$1.968(5)$
O1-Al1-N1	$103.37(13)$	O1-Al1-C1	$109.21(16)$
O1-Al1-C2	$107.46(17)$	N1-Al1-C1	$110.47(17)$
N1-Al1-C2	$105.81(18)$	C2-Al1-C1	$119.3(2)$

All H atoms were included in calculated positions and treated as riding on the bonded atom $(\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA) . U_{\text {iso }}(\mathrm{H})$ was set to $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all other H atoms.

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the University of Leicester for financial support.

References

Fait, J. (1991). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, B.-H., Yu, T.-C., Huang, Y.-L., Ko, B.-T. \& Lin, C.-C. (2002). Inorg. Chem. 41, 2987-2994.
Huang, Y.-C., Huang, B.-H., Ko, B.-T. \& Lin, C.-C. (2001). Dalton Trans. pp. 1359-1365.
Kai, Y., Yasuoka, N. \& Kakudo, M. (1971). J. Organomet. Chem. 32, 165-179. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2005). E61, m1210-m1211 [doi:10.1107/S1600536805015941]

Bis[μ - N-(2,6-dimethylphenyl)acetamidato]bis(dimethylaluminium)

John Fawcett and Gregory A. Solan

S1. Comment

The synthesis and structural characterization of alkylaluminium complexes containing N, O-amidate ligands, ${ }^{\text {l }} \mathrm{NCR}(=$ $\mathrm{O})]^{-}(R=$ alkyl or aryl $)$, has recently received attention due, in part, to the rich variety of bonding modes that are accessible. For example, the ligand can bridge, chelate or act as a monodentate ligand to a single metal centre, the precise bonding mode being dependent on the acidity and the steric bulk of the amide precursor employed (Huang et al., 2002). Furthermore, the reactions of amides with $R_{3} \mathrm{Al}$ have allowed access to aluminium diketimates, some of which are not obtainable by more conventional synthetic routes (Huang et al., 2001).

We report here the synthesis and the crystal structure of $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NCMeO}\right\}\right]_{2}$, (I). The ${ }^{1} \mathrm{H}$ NMR spectrum gives methyl resonances in a ratio of $12: 6: 12$, corresponding to the aromatic ($\delta 2.40$), acetamide ($\delta 1.70$) and aluminium methyls ($\delta-0.15$), respectively. The X-ray analysis of (I) depicts a dimeric structure based on a centrosymmetric eight-membered ring. The bridging amidate ligand coordinates to the two Al atoms through both the N and the O atoms. The geometry at each Al atom can be best described as distorted tetrahedral with two methyl C atoms, an N atom and an O atom filling the coordination sphere. The $\mathrm{C} 3-\mathrm{O} 1[1.296$ (4) \AA] and $\mathrm{C} 3-\mathrm{N} 1 A[1.298$ (4) $\AA]$ bond lengths suggests some delocalization to be present within the OCN moiety. The All—O1 [1.800 (3) \AA], Al1—N1 $[1.961$ (3) \AA], All— $\mathrm{C} 1[1.968(5) \AA]$ and All-C2 [1.961 (4) $\AA]$ bond distances in (I) are comparable to the corresponding distances observed in the related structures $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NCPhO}\right\}\right]_{2}$ (Kai et al., 1971) and $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\left(2,6-\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NCPhO}\right\}\right]_{2}$ (Huang et al., 2002). The phenyl groups are arranged orthogonally to the puckered eight-membered ring. There are no intermolecular packing interactions of note.

S2. Experimental

Under an atmosphere of nitrogen, trimethylaluminium ($3.07 \mathrm{ml}, 6.13 \mathrm{mmol}, 2 M$ solution in toluene) was added to a solution of N-(2,6-dimethylphenyl)acetamide ($0.50 \mathrm{~g}, 3.06 \mathrm{mmol}$) in toluene (30 ml), and the reaction mixture was heated to reflux for 12 h . On cooling to room temperature, the volatiles were removed under reduced pressure and the residue dried overnight. Slow cooling of a hot acetonitrile (40 ml) solution containing the complex gave pale-yellow crystals of the title compound suitable for single-crystal X-ray diffraction analysis (yield $0.50 \mathrm{~g}, 75 \%$). Analysis found: C 65.89, H 8.31, $\mathrm{N} 6.57 \%$; calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C} 65.75, \mathrm{H} 8.22$, $\mathrm{N} 6.39 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.20-7.05(m, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $2.40(s, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{Me}), 1.70[s, 6 \mathrm{H}, \mathrm{MeC}(\mathrm{O})]$ and $-0.15\left(s, 12 \mathrm{H}, \mathrm{Al}-\mathrm{CH}_{3}\right)$.

S3. Refinement

The Al atom is located on a centre of symmetry [symmetry-related atoms generated by $(1-x, 2-y, 2-z)$]. All H atoms were included in calculated positions with the atom coordinates riding on the bonded atom ($\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$). $U_{\text {iso }}(\mathrm{H})$ was set to $1.5 U_{\text {eq }}$ of the C atom for methyl H atoms and $1.2 U_{\mathrm{eq}}$ for all other H atoms.

Figure 1

Molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The molecule is located on a centre of symmetry [primed atoms are generated by ($1-x, 2-y, 2-z$)]. H atoms have been omitted for clarity.

bis $[\mu-N$-(2,6-dimethylphenyl)acetamidato]bis[dimethylaluminium

Crystal data

$\left[\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\right)_{2}\right]$
$M_{r}=438.51$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=11.028$ (2) \AA
$b=10.4955(9) \AA$
$c=11.116$ (5) \AA
$\beta=90.37$ (3) ${ }^{\circ}$
$V=1286.6$ (6) \AA^{3}
$Z=2$

Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω scans

2650 measured reflections
2257 independent reflections
1598 reflections with $I>2 \mathrm{~s}(I)$
$F(000)=472$
$D_{\mathrm{x}}=1.132 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 27 reflections
$\theta=4.7-12.5^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, pale yellow
$0.53 \times 0.41 \times 0.41 \mathrm{~mm}$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=0 \rightarrow 13$
$k=-1 \rightarrow 12$
$l=-13 \rightarrow 13$
2 standard reflections every 1000 reflections
intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.190$
$S=1.07$
2257 reflections
137 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.065 P)^{2}+3.0349 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3}\)
```

$\Delta \rho_{\text {min }}=-0.54$ e \AA^{-3}
Extinction correction: SHELXL97, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.023 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Al1	0.56700 (10)	1.01577 (11)	0.83404 (10)	0.0346 (4)
O1	0.6307 (2)	1.0135 (2)	0.9835 (2)	0.0328 (6)
N1	0.4303 (3)	0.8969 (3)	0.8447 (2)	0.0305 (7)
C1	0.5088 (4)	1.1888 (4)	0.7972 (4)	0.0541 (12)
H1A	0.4511	1.2149	0.8567	0.081*
H1B	0.4708	1.1891	0.7193	0.081*
H1C	0.5761	1.2467	0.7974	0.081*
C2	0.6846 (4)	0.9348 (5)	0.7268 (4)	0.0571 (12)
H2A	0.7042	0.8514	0.7566	0.086*
H2B	0.7569	0.9856	0.7237	0.086*
H2C	0.6502	0.9277	0.6475	0.086*
C3	0.6447 (3)	1.0996 (3)	1.0659 (3)	0.0295 (8)
C4	0.7501 (4)	1.1884 (4)	1.0544 (4)	0.0422 (10)
H4A	0.7497	1.2485	1.1195	0.063*
H4B	0.7443	1.2331	0.9793	0.063*
H4C	0.8241	1.1402	1.0568	0.063*
C5	0.4160 (3)	0.8022 (3)	0.7517 (3)	0.0307 (8)
C6	0.4677 (3)	0.6807 (4)	0.7681 (3)	0.0371 (9)
C7	0.4593 (4)	0.5944 (4)	0.6738 (4)	0.0465 (11)
H7A	0.4930	0.5137	0.6825	0.056*
C8	0.4015 (4)	0.6264 (4)	0.5674 (4)	0.0501 (11)
H8A	0.3963	0.5673	0.5053	0.060*
C9	0.3515 (4)	0.7460 (4)	0.5530 (4)	0.0478 (11)
H9A	0.3137	0.7669	0.4806	0.057*
C10	0.3567 (3)	0.8355 (4)	0.6445 (3)	0.0381 (9)
C6A	0.5284 (4)	0.6454 (4)	0.8838 (4)	0.0518 (11)
H6D	0.5565	0.5589	0.8799	0.078*
H6E	0.4724	0.6541	0.9490	0.078*
H6F	0.5962	0.7013	0.8968	0.078*
C10A	0.3007 (5)	0.9660 (4)	0.6288 (4)	0.0565 (12)

H10D	0.2638	0.9720	0.5506	0.085^{*}
H10E	0.3625	1.0300	0.6367	0.085^{*}
H10F	0.2402	0.9789	0.6893	0.085^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
A11	$0.0355(7)$	$0.0404(7)$	$0.0280(6)$	$-0.0045(5)$	$0.0018(4)$	$-0.0007(5)$
O1	$0.0343(14)$	$0.0327(13)$	$0.0314(13)$	$-0.0004(11)$	$-0.0006(10)$	$-0.0060(11)$
N1	$0.0320(16)$	$0.0324(16)$	$0.0270(14)$	$-0.0010(13)$	$-0.0022(12)$	$-0.0049(12)$
C1	$0.063(3)$	$0.048(3)$	$0.051(3)$	$-0.008(2)$	$-0.011(2)$	$0.011(2)$
C2	$0.049(3)$	$0.078(3)$	$0.045(2)$	$-0.003(2)$	$0.014(2)$	$-0.009(2)$
C3	$0.0275(18)$	$0.0294(18)$	$0.0316(18)$	$0.0031(15)$	$-0.0027(14)$	$0.0008(15)$
C4	$0.038(2)$	$0.039(2)$	$0.049(2)$	$-0.0064(18)$	$0.0086(18)$	$-0.0060(18)$
C5	$0.0284(19)$	$0.0312(18)$	$0.0325(18)$	$-0.0006(15)$	$0.0005(14)$	$-0.0055(15)$
C6	$0.033(2)$	$0.038(2)$	$0.040(2)$	$-0.0002(16)$	$0.0039(16)$	$-0.0028(17)$
C7	$0.043(2)$	$0.037(2)$	$0.060(3)$	$0.0024(18)$	$0.010(2)$	$-0.011(2)$
C8	$0.049(3)$	$0.054(3)$	$0.047(2)$	$0.000(2)$	$0.006(2)$	$-0.023(2)$
C9	$0.043(2)$	$0.061(3)$	$0.039(2)$	$-0.001(2)$	$-0.0021(18)$	$-0.014(2)$
C10	$0.036(2)$	$0.041(2)$	$0.037(2)$	$0.0018(17)$	$-0.0050(16)$	$-0.0058(17)$
C6A	$0.057(3)$	$0.047(2)$	$0.051(2)$	$0.015(2)$	$-0.003(2)$	$0.000(2)$
C10A	$0.069(3)$	$0.058(3)$	$0.042(2)$	$0.018(2)$	$-0.018(2)$	$-0.007(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

All-O1	1.800 (3)	C5-C10	1.400 (5)
Al1-N1	1.961 (3)	C5-C6	1.408 (5)
Al1-C2	1.961 (4)	C6-C7	1.387 (5)
All-C1	1.968 (5)	C6-C6A	1.494 (6)
O1-C3	1.296 (4)	C7-C8	1.382 (6)
N1-C3 ${ }^{\text {i }}$	1.298 (4)	C7-H7A	0.9300
N1-C5	1.443 (4)	C8-C9	1.379 (6)
C1-H1A	0.9600	C8-H8A	0.9300
C1-H1B	0.9600	C9-C10	1.386 (5)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	C9-H9A	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600	C10-C10A	1.512 (6)
C 2 - H 2 B	0.9600	C6A-H6D	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600	C6A-H6E	0.9600
$\mathrm{C} 3-\mathrm{N} 1^{\mathrm{i}}$	1.298 (4)	C6A-H6F	0.9600
C3-C4	1.496 (5)	C10A-H10D	0.9600
C4-H4A	0.9600	C10A-H10E	0.9600
C4-H4B	0.9600	C10A-H10F	0.9600
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600		
O1-Al1-N1	103.37 (13)	C10-C5-C6	121.6 (3)
O1-All-C2	107.46 (17)	C10-C5-N1	119.1 (3)
N1-Al1-C2	105.81 (18)	C6-C5-N1	119.3 (3)
O1-Al1-C1	109.21 (16)	C7-C6-C5	117.9 (4)

N1-Al1-C1	110.47 (17)
C2-All-C1	119.3 (2)
C3-O1-Al1	133.4 (2)
C3i-N1-C5	120.0 (3)
C3i-N1-Al1	121.5 (2)
C5-N1-Al1	118.4 (2)
$\mathrm{Al1}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
All- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
All- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
Al1- $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
Al1-C2-H2B	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
All- $\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1^{\mathrm{i}}$	119.1 (3)
O1-C3-C4	117.6 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{C} 4$	123.2 (3)
C3-C4-H4A	109.7
C3-C4-H4B	109.4
H4A-C4-H4B	109.5
C3-C4-H4C	109.3
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
N1-All-O1-C3	-117.9 (3)
C2-Al1-O1-C3	130.5 (3)
$\mathrm{C} 1-\mathrm{All}-\mathrm{O} 1-\mathrm{C} 3$	-0.3 (4)
$\mathrm{O} 1-\mathrm{Al1}-\mathrm{N} 1-\mathrm{C} 3^{\text {i }}$	45.6 (3)
C2-Al1-N1-C3 ${ }^{\text {i }}$	158.4 (3)
$\mathrm{C} 1-\mathrm{All-N1-C3}{ }^{\text {i }}$	-71.1 (3)
O1-Al1-N1-C5	-132.9 (2)
C2-Al1-N1-C5	-20.1 (3)
C1-Al1-N1-C5	110.3 (3)
All-O1-C3-N1 ${ }^{\text {i }}$	101.3 (4)
Al1-O1-C3-C4	-80.4 (4)
C3- ${ }^{\text {i }} 1-\mathrm{C} 5-\mathrm{C} 10$	97.9 (4)
All-N1-C5-C10	-83.5 (4)
C3- ${ }^{\text {- }} 1-\mathrm{C} 5-\mathrm{C} 6$	-85.5 (4)
Al1-N1-C5-C6	93.0 (4)

C7-C6-C6A	$121.1(4)$
C5-C6-C6A	$121.0(3)$
C8-C7-C6	$121.1(4)$
C8-C7-H7A	119.5
C6-C7-H7A	119.5
C9-C8-C7	$120.2(4)$
C9-C8-H8A	119.9
C7-C8-H8A	119.9
C8-C9-C10	$121.1(4)$
C8-C9-H9A	119.4
C10-C9-H9A	119.4
C9-C10-C5	$118.2(4)$
C9-C10-C10A	$121.0(4)$
C5-C10-C10A	$120.9(3)$
C6-C6A-H6D	109.8
C6-C6A-H6E	109.8
H6D-C6A-H6E	109.5
C6-C6A-H6F	108.8
H6D-C6A-H6F	109.5
H6E-C6A-H6F	109.5
C10-C10A-H10D	109.5
C10-C10A-H10E	109.5
H10D-C10A-H10E	109.5
C10-C10A-H10F	109.4
H10D-C10A-H10F	109.5
H10E-C10A-H10F	109.5

$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.6(5)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-175.8(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6 \mathrm{~A}$	$-178.7(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6 \mathrm{~A}$	$4.9(5)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.3(6)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.1(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.3(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.7(7)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$1.1(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 10 \mathrm{~A}$	$-179.4(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-1.0(6)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$175.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 10 \mathrm{~A}$	$179.4(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 10 \mathrm{~A}$	$-4.1(6)$

[^0]
[^0]: Symmetry code: (i) $-x+1,-y+2,-z+2$.

